
AD-8134 832 COMPUTER PROGRRM DEVELOPMENT SPECIFICATION FOR ADA
INTEGRATED ENVIRONMENT.. (U) INTERMETRICS INC CAMBRIDGE
MR 85 NOV 82 IR-677-2 F30602-80-C-0291

UNCLSSIFIED F/G 9/2 , N

mEmmEEmohEoiE
EohEEEEohmhmhE

~,L
au

1111L.5. 1flIl12 Ij_ 11.6-

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

CONTRACT F30602-80-C-0291

1"477-2
COMPUTER PROGRAM

DEVELOPMENT SPECIFICATION
FOR

Ads INTEGRATED ENVIRONMENT:
Ado COMPILER PHASES
35-MEl (1) COMP(1

DTIC
ELECTE

S OVEMBER 1082 OCT 25 I

PREPARED FOR: ROME AIR DEVELOPMENT CENTER
CONTRACTING DIVISION/PKRD
GRIFFISS AF89 N.Y. 13441

PREPARED BY: E TERMETRICS, INC.

73CONCORD AVE.
CAMRIDEMA 02136

A 3 09g 19 05
t Apvpod lin 1public releae

iNTIRMITRICS INCORIPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(6817) 66l1w4

* * *
- "

- *.
-' .

S - S - . -.

BS-AIE(l) .COMP(l)

This document was produced under contract F30602-S0-C-0291/SAP0009 for the Rome Air Developmuent Center. Mr. Donald Mark is theProgram Engineer for the Air Force. Mr. Mike Ryer is the Project
Manager for Intermetrics.

Accession For
NTIS GRA&I

.stificatio

I RME RC N O P R T D *73C N O DA E U A BI GM S A H S~S018*(1)6114

*i . .' . * . .B y--~.A
*- .. . -

... i.

* . -,s w ~ . C .. C . - z . . .- -. . . . -. - - -+ -.

TABLE OF CONTENTS
PAGE

1.0 SCOPE 1

1.*1 Identification 1
1.2 Functional Summary 1

2.0 APPLICABLE DOCUMENTS 5

2.1 Program Definition Documents 5
2.2 Inter Subsystem Specifications 5
2.3 Military Specifications and Standards 5
2.4 Miscellaneous Documents 5

3.0 RZOUIRUEENTS 7

3.1 Introduction 7

3.1.1 General Description 7
3.1.2 Peripheral Equipment Identification 7
3.1.3 Interface Identification 7

I.I

3.2 Fu-ntional. Description 9

3.2.1 Equipment Description 9
3.2.2 Computer Input/Output Utilization 9
3.2.3 Computer Interface Block Diagramu 9
3.2.4 Program Interfaces 9

3.2.4.1 WAPSE interface 9
3.2.4.2 Program Library Interface 10
3.2.4.3 Compiler Data Interface 10

3.2.4.3.1 DIANA !bmt 10
3.2.4.3.2 BILL ftrmat 10

3.2.4.4 Virtual memory Methodology (VMM)
Interface 10

3.2.4.4.1 Rep Analyzer 11
3.2.4.4.2 VMM Access Routines 11

3.2.4.5 Listing Interface 11
3.2.4.6 Parameter Interface 11

ii

IC0

INEMTISICROAE T 3 ONOAENUE CATENTS MASCH-T,°238.(17 6114

-. 0 1 * . . .4.SCO* ' * -*E***** .•

Table of Contents (con't) Page

3.2.4.7 Debugger Interface 13
3.2.4.8 Linker Interface 13
3.2.4.9 Invocation Interface 13
3.2.4.10 Ada Interface 14

3.2.5 Function Description 14

3.2.5.1 Front End 14
3.2.5.2 Middle Part 19

3.2.5.3 Back End 20

3 .3 Detailed Functional Requirements 20

3.3.1 Front End 20

3.3.1.1 DRIVER 20

3.1.1.1.1 Inputs 21
3.1.1.1.2 Processing 21
3.1.1.1.3 Outputs 22
3.1.1.1.4 Special Requirements 22

3.3.1.2 LZXSTN 22

3.3.1.2.1 Inputs 22
3.3.1.2.2 Processing 24
3.3.1.2.3 Outputs 29
3.3.1.2.4 Special Requirements 29

3.3.1.3 SEN 30

3.3.1.3.1 Inputs 30
3.3.1.3.2 Processing 30

3.3.1.3.2.1 Generics 46

3.3.1.3.2.1.1 Generics
Semantic
Analysis 46

3.3.1.3.2•1.2 Instantiation
Representation 48

3.3.1.3.2.1.2.1 Instantiation

Code Sharing
48

3.3.1.3.3 Outputs 49
3.3.1.3.4 Special Requirements 49

ii

IWTUEWRICS INCORMORATEO 73 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

-, , ,, ,b ., ., , ', % • ,. ' ".•l
°

,', , '.'
o. ' . .". " "."• "." . " .A . A

Table of Contents (con't)
Page

3.3.2 Middle Part 49 .

3.3.2.1 GENINST 49

3.3.2.1.1 Inputs 50
3.3.2.1.2 Processing so
3.3.2.1.3 Outputs 50
3.3.2.1.4 Special Requirements 51

3.3.2.2 STATINFO 51

3.3.2.2.1 Inputs 51
3.3.2.2.2 Processing 51

3.3.2.2.2.1 DEF ID 51
3.3.2.2.2.2 COHILATION UNIT 52
3.3.2.2.2.3 block stm, subprogram

body, package body,
task body 52

3.3.2.2.2.4 package decl 53
3.3.2.22.5 pragma ecl 53
3.3.2.2.8.6 USED SYMBOL 53
3.3.2.2.2.7 STH 53
3.3.2.2.2.8 NAME EXP 54
3.3.2.2.2.9 record..typ*e 54

3.3.2.2.3 Outputs 54

3.3.2.2.3.1 DEF ID 54
3.3.2.2.3.2 COMPILATION UNIT 54 I
3.3.2.2.3.3 ITEM 54

3.3.2.2.3.4 STM 55
3.3.2.2.3.5 NAME EXP 55
3.3.2.2.3.6 TYPE-SPEC 55

3.3.2.2.4 Special Requirements 55

3.3.2.3 STORAGE 55

3.3.2.3.1 Inputs 56
3.3.2.3.2 Processing 56

3.3.2.3.2.1 Type Declarations 58

3.3.2.3.2.1.1 Scalar Types 58

3.3.2.3.2.1.1.1 Integer Types 58
3.3.2.3.2.1.1.2 Enumeration

Types I
3.3.2.3.2.1.1.3 Floating

Point Types 59

SIii -S1

INTlURMUTRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIOGE, MASSACHUSETTS 02136 * (617) 661.1840

• ., •o.t a ,

Table of Contents (con't)
Page

3.3.2.3.2.1.1.4 Fixed Point
Types 59

3.3.2.3.2.1.2 Record Type. 59
3.3.2.3.2.1.3 Array Types 61
3.3.2.3.2.1.4 Access Types 62

3.3.2.3.2.2 Nontypes Entities 62

3.3.2.3.2.2.1 Packages 63
3.3•2.3.2.2.2 Subprograms 63

3.3.2.3.2.2.2.1 Signatures
and Call
Sites 63

3.3.2.3.2.2.2.1.1 Layout of
of Para-
meters 63

3.3.2.3.2.2.2.2 Subprogram
Bodies 64

3.3.2.3.2.2.2.3 Aggregates 65
3.3.2.3.2.2.2.4 Tasks 65
3.3.2.3.2.2.2.5 Generics 66

3.3•2.3.3 Outputs 66

*3.3•2•3.4 Special Requirements 66

3.3.2.4 EXPAND 66

3.3.2.4.1 Inputs 67
3.3.2.4.2 Processing 67

3.3•2.4•2.1 Lexical Elements 68
3.3.2.4.2.2 Declarations and Types 68
3.3.2.4.2.3 Names and Expressions 69
3.3.2•4.2.4 Statements 70
3.3.2.4.2.5 Subprograms 71
3.3.2.4.2.6 Packages 72
3.3.2.4.2.7 Visibility Rules 72
.3.3.2.4.2.8 Tasks 72
3.3.2.4.2.9 Exceptions 72

3.3.2.4.3 Outputs 72
3.3.2.4.4 Special Requirements 72

3.3.2.5 UTILITIES 72

iv

INTIRMETRICS INCORPORATED * 733 CONCORO AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661.1840

Table of Contents (con't) i
Page

3.3.3 Back End 73

3.3.3.1 FLOW 73

3.3.3.1.1 Inputs 74
3.3.3.1.2 Processing 74
3.3.3.1.3 Outputs 79
3.3.3.1.4 Special Requirements 79

3.3.3.2 VCOD - 79

3.3.3.2.1 Inputs 80
3.3.3.2.2 Processing so
3.3.3.2.3 Outputs 82
3.3.3.2.4 Special Requirements 83

3.3.3.3 THBIND 83

3.3.3.3.1 Inputs 84
3.3.3.3.2 Processing 84
3.3.3.3.3 Outputs 86
3.3.3.3.4 Special Requirements 86

3.3.3.4 CODEGEN 86

3.3.3.4.1 Inputs 87
3.3.3.4.2 Processing 87
3.3.3.4.3 Outputs 88
3.3.3.4.4 Special Requirements 92

3.3.3.5 FINAL 92

3.3.3.5.1 Inputs 92
3.3.3.5.2 Processing 92
3.3.3.5.3 Outputs 94
3.3.3•5.4 Special Requirements 94 "

3.3.3.6 UTILITIES 94

3.4 Adapation 95
3.5 Capacity 96

4.0 QUALITY ASSURANCE PROVISIONS 99

4.1 Introduction 99
4.2 Test Requirements 99

4.2.1 Subprogram Testing 99
4.2.2 Program Testing 99
4.2.3 Subsystem Testing 100

V

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Table of Contents (con't)
Page

4.3 Acceptance Test Requirements 100
4.4 Facilities 101

4.4.1 Bootstrapping Requirements 101

4.4.2 Metering 101
4.4.3 Test Scripts 101

APPENDIX A: ERROR MESSAGES 103

A.1 General Format 103
A.2 Severity Levels 103
A.3 Error Messages Generated by LEXSYN 103
A.4 Error Messages Generated by Presemantics and 105

Semantics
A.5 Error Messages Generated by Storage 105

FIGURES

FIGURE 1-1: COMPILER PHASE BREAKDOWN 3

FIGURE 3-1: COMPILER INTERFACES 8
FIGURE 3-2: COMPILER FLOW OF CONTROL 15
FIGURE 3-3: COMPILER FLOW OF DATA 16
FIGURE 3-4: FRONT END FLOW OF CONTROL 17
FIGURE 3-5: FRONT END FLOW OF DATA 18
FIGURE 3-6t LEXSYN LOGICAL ORGANIZATION , 23
FIGURE 3-7: SEM LOGICAL ORGANIZATION 31
FIGURE 3-8: NAME TABLE AFTER PARSING 40
FIGURE 3-9t NAME TABLE AFTER SEMANTICS 41
FIGURE 3-10: LEXICAL VISIBILITY STACK 43
FIGURE 3-11: USE VISIBILITY 44

vi

INTIRMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 561-1840

• ",". . . .* , ."..9. . • .*.*. - , . . - i ..- / . ..- . .

I. B S-AIE(l).COMP(1)

1.0 SCOPE

1.1 Identification

This document specifies the requirements for the performance
and verification of the Ada compilers (COMP) for the IBM (VM/370)
and Perkin-Elmer (PE) 8/32 (OS/32) systems. Each compiler provides
the user with the ability to translate an Ada compilation and obtain
a program listing and linkable machine code for the respective
target machine; listing, optimization, and debugging control are
selectable by the user. Because of the compiler structure and the
similarity of the target machines, the two compilers are nearly
identical. As a result, this document presents the design as though

* there were a single Ada compiler, where target-machine dependencies
make the compilers different, this is pointed out in the
discussion. .

The CPCI's that comprise the compiler subsystem are listed
below along with their component CPC's. An asterisk indicates two
CPCI's (one for the IBM 370/VM and one for the PE 8/32).

CPCIname CPCname

(ID) (ID)

FRONT END(FE) DRIVER(A)
LXSIN (B)
SEM(C)
UTILITIES (D)

*MIDDLE PART(MID) GENINST(A)
STATINFO(B)
STORAGE (C)
EXPAND (D)
UTILITIES (E)

*BACK END (BE) FLOW(A)
VCODE(B)
TNBIND(C)
CODEGEN(D)
FINAL(E)
UTILITIES (F)

DIANA (DIANA)

LOW-LEVEL INTERMEDIATE LANGUAGE (BILL)

1.2 Functional Summary

The Ada compiler is composed of several phases, partitioned
into a Front End, a Middle Part, and a Back End. The Front End is
organized into two processing phases that, together, perform
lexical, syntactic, and semantic analysis and generate a DIANA

1

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAM3RIDGE, MASSACHUSETTS 02138 * (617) 661-1840

.,-v'.-'..,--' ...-...- .' --. '...-. ------ ,'-..--. . -. '- '. . . .-. .-. "-.. . ." .- .'-'' .-- - - ".". - -- .

BS-AIE(l).COMP(l)

representation for each compilation unit. The compiler DRIVER(COMP.FE.A) that selects processing phases is also part of the Front

End. The Middle Part, organized into four processing phases,
selects the run-time model and produces a low-level tree
representation incorporating machine-dependent decisions. The Back
End, organized into five processing phases, performs optimization
and code generation and yields a linkable object program.

Language dependencies in the compiler are concentrated in the
Front End (static semantics) and the Middle Part (run-time
semantics). There are relatively few language dependencies in the
Back End. Target machine dependencies occur in the Middle Part and
the Back End. Though the Front End may have to call
machine-dependent procedures during semantic analysis, the interface
is narrow and clearly defined.

Figure 1-1 shows the phase breakdown. The compiler phases are
* strictly sequential and may be overlaid for host systems lacking

virtual memory facilities.

I., G

-'4

.

.4

"" ' 2

*INTERMUTIRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

V-P ,. : . . ., . - . - . . • .. ° ,, . , . . , - . . . ,

.. . 4 5 . 4 . r - *" . , " ' '• 0 "O ' 0 % D • " ..

35-AIE(1).COMP(l)

J@

IN r-- -- ----..

EN

5,----]I
. ,o

tuDDLt

CM

I g

21281134-28

FIGURE 1-: Compilr Phase Breakdown

3

IN T E R M INTR IC S IN C O R PO R A T E @ 73 3 C O N C O R A V E N U E * C A M ORIO G 6, M A S S A C H U S E T T S 0 2 138 , (6 17 1 66 1-184 0

; . ' L ' , . ' , . I
, , , ' . _ , , . - . . - • -. , . - . ,, • -. , - . v c o . . . ,.I.

--.-

B5-AIE(1).COMP (1)

'I

D.3

~INTUAMErRIcS INCORiPORqATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 . (817) 661-1840

S , - -. A. '. . .- ,. .". . .-. . . . ". -.

BS-AIE(1) .COMP(1)

2.0 APPLICABLE DOCUMENTS

2.1 Proqram Definition Documents

Reference Manual for the Ada Prosrmm in Language, Draft
proposed ANSI standa-3 d e-ntJ

Reuirements for Ada Pro raminq S Environments,
S TONEMAN", February-T80, Department of ense.

Revised Statement of Work, (15 March 1980).

2.2 Inter Subsystem Specifications

System Specification for Ada Integrated Environment, Type A

Computer Program Development Specifications for Ada Integrated
Environment (Type B5):

KAPSE/Database, AIEW(i .KAPSE(l)
MAPSE Comimand Processor, AIE(1).MCP(1)

MAPSE Generation and Support, AIE(1).MGS(l)

Program Integration Facilities, AIE(1).PIF(1)

MAPSE Debugging Facilities, AIE (1) .DBUG(1)

MAPSE Text Editor, AIE(l).TXED(1)

Virtual Memory Methodology, AZE(1) .VMM(2)

Technical Report (INTERIM), IR-684

2.3 Military Specifications and Standards

Data item description DIE-30139, USAF, 24 July 1976.

2.4 Miscellaneous Documents

Diana Reference Manual, G. Goos and Win. Wulf, Institut fuer
nrmatix T, Unlversitaet Karlsruhe and Computer Science

Dept., Carnegie Mellon University, March 1981.

SIGPLAN NOTICES, Volume 17, November 6, June 1982. A Pratical
Method for Syntactic Error Recovery Diagnosis and Recovery.
Micheal Burke and Gerald Fisher, Courant Institute, New York
University, 251 Mercer Street, New York, N.Y. 10012.
Proceedings of the 1982 SIGPLAN Symposium on Compiler
Construction.

NU

NINTIRMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

S*...-.~ - .u._

BS-AIE(l) .COMP(l)

NYU LALR Parser Generator, Philippe Charles and Gerald Fisher,
ouirant Institute, New York University, unpublished paper,

1981.

J.D. Ichbiah, J.G.P. Barnes, J.C. Reliard, B.
Krieg-Bruecknor, 0. Roubine, B.A. Wichmann, Rationale for the
Design of the Ada Programming Language; ACM SIGPLAN Notices
Vol. 14, No. 6, June 1979, Part B.

G. Persch, G. Winterstein, M. Dausmann, S. Drossopoulou,
"Overloading in Preliminary Ada," in ACM SIGPLAN Notices Vol

7 15, No. 11., November 1980, pp. 47-56.

J. Welsh, "Economic Range Checks in Pascal", Software
Practice and Experience, Vol. 8, No. 1, January 1978, pp.
85-98.

R. Firth, Notes on Range Checking in Ada, Workshop on
Intermediate Languages, Murnau, W. Germany, February 1981.

W.A. Wulf "POCC2 A Machine-Relative Compiler Technology"
Carnegie-Mellon University, Department of Computer Science, 25
September 1980.

J.B. Goodenough, "The Ada Compiler Validation Capability", in
SIGPLAN Notices, Vol. 15, No. 11, November 1980, pp. 1-8.

R.G. Scarborough and H.G. Kolsky "Improved Optimization of
FORTRAN Object Programs", IBM Journal of Research and
Development, Vol 24, No 6, Nov. 198,y-p. 660-679.

R. Cattell "Formalization and Automatic Generation of Code
Generators" Ph.D. Thesis, Carnegie-Mellon University, 1978.

P.F. Stockhausen "Adapting Optimal Code Generation for
Arithmetic Expressions to the Instruction Sets Available on
Present-Day Computers", Comm. ACM, Vol. 15, No. 6, June 1973,
pp. 353-354.

R. Sethi and J.D. Ullman "The Generation of Optimal Code for
Arithmetic Expressions", Journal ACM, Vol. 17, No. 4, October,
1970, pp. 715-728.

B.M. Brosgol, "An Implementation of ECL Data Types", in
SIGPLAN Notices, Vol. 6, No. 12, December 1971, pp. 87-95.

J. Cocke and J.T. Schwartz, Programming Lanuages and Their
Comilers, Courant Institute of Mathematical Sciences, New
York Unv., April 1970.

B. Leverett, Register Allocation in Optimizing Compilers.
Ph. D. Thesis, Carnegie-Mellon Unv.-Feruary 1901.

6

INTERMITrRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

* .~. ~ * * *. . . .

I J

B -AIE(1).COMP(l)

3.0 REQUIREMENTS

3.1 Introduction

This section provides the set of requirements for the AIE
compiler. This includes the performance and interface
specifications to which the compiler must comply.

3.1.1 General Description

The compiler is a tool in the MAPSE toolset which converts Ada
source text into machine code to execute on a target machine. The
compiler operates in three major pieces, invoked in order from
DRIVER. The pieces are the Front End, the Middle Part, and the Back
End.

The Front End of the compiler checks the source for compliance
with the rules of the Ada language definition, including syntactic
and semantic rules. The Front End inputs Ada source and outputs
DIANA as an intermediate language.

The Middle Part determines run-time storage requirements,
gathers statistics from the DIANA program, and converts the DIANA
program into a lower-level representation called BILL.

The Back End optimizes the BILL code, and converts it into
machine code.

Other MAPSE tools are described in the documents listed in
-Section 2 2.

3.1.2 Peripheral Equipment Identification

Not applicable.

3.1.3 Interface Identification

Figure 3-1 shows the relationships of the compiler to other
parts of the AIE. Program interfaces are described in detail in
Section 3.2.4.

* 7

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIOGE. MASSACHUSETTS 02138 ((617) 661-1840

BS-AIE(l) .CcX4P(l)

-KAPSE

!-

&A ~~~PROGRAM LBARY MGR. RGA IRR

COMP LERTOOLS SUBSYSTEM

DIAN me - INVOCATION

LL 0 a.1=5caNTAL RIM~e

10782378-7

FIGURE 3-1: Compiler Interfaces

INTURMETRICS INCORPORATED It 722 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

. , - - - _.--- .i ,h .- - "-. , . .- L . -• - - .- , . .

8s-AE(C) COMP(l)

3.2 Functional Description

3.2.1 Equipment Description

Not applicable.

3.2.2 Computer Input/Output Utilization

Not applicable.

3.2.3 Computer Interface Block Diagram

Not applicable.

3.2.4 Program Interfaces

3.2.4.1 KAPSE Interface

The KAPSE interface provides program invocation control system
data, and Ada run-tim. support (KWPsE.MULTPROG and KAPSE.RTS).

All Ada programs, of which the compiler is one, use the
run-time system of the KAPSE. In addition, the compiler uses
program control to access its parameters, to handle control over
compiler phases, and to invoke the Lister (LISTER). The compiler
also uses the KAPSE to provide statistics on compilation.

The compiler, being written in Ada, will, while executing call
upon facilities provided for all Ada programs in the run-time
system. These facilities include I/O, heap management, and
exception handling, but do not include tasking.

The compiler uses the KAPSE to bring in various compiler phases
either by invoking a separate program underneath DRIVER, or
overlaying a successor phase on top of a predecessor. The compiler
may be invoked by the program library tools (PIF.PLTOOLS), as well
as invoke program library tools (e.g., LISTER). The KAPSE
primitive assumed is: "call separate program with parameters".

To provide statistics and information to be incorporated in the
listing, the compiler uses the KAPSE. This information is:

(1) get current date and time
(2) get user id
(3) query cpu clock

9

INTERMIETRICS INCORPORATED * 733 CONCORD AVENUE * CAMURIOGE, MASSACHUSETTS 02138 • (617) 661-1840

* a ,,,. ,* -. * *, '.. . - .* , - . *. -*.- ,.. - - ,2.l,. . . , %..> m , . -. , .,,, .,,

35-AIE(1).COtP(1)

3.2.4.2 Program Library Interface

The compiler uses the Program Library (PIF.PLTOOLS) to access
and store results of compilations, and to provide services needed
for recompilation and separate compilation. The functions provided
allow one to:

(1) Access a program library (including creating a new one if
needed)

(2) Check existence of a program library
(3) Get library modes
(4) Set library modes
(5) Add objects to library
(6) Delete objects from library
(7) Find objects in library given Ada name and distinguishing

attributes
(8) Get object attributes
(9) Set object attributes

3.2.4.3 CmPiler Data Interface

The various compiler sections and phases must conform to agreed
upon formats in order to pass information forward from phase to
phase, and enable separate compilation. DIANA is an internal
representation visible to other tools in the AIE, while BILL is

"I strictly an internal representation.

3.2.4.3.1 DIANA Format

The compiler shall conform to DIANA as documented in
AIE(I).COMP(1 }.DIANA(l).I- 3.2.4.3.2 BILL Format

The compiler shall conform to BILL as documented in
AIE(1).COMP(l).BILL(l).

3.2.4.4 Virtual Memory Methodology (VMM) Interface

Compilation and separate compilation are done using KAPSE
objects as extended core memory in a software paging system called
VMM (VMM.VMM). There are two parts of VMM used by the compiler:
the Rep Analyzer (VMM.VMM.A), and the VMM access routines.

The Rep Analyzer is given the specifications of data structures
to be paged in a particular compiler phase, and generates Ada source
for procedures which create, modify, and access instances of those
data structures.

10

INTERMETRIC3 INCORPORATED e 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

BS-AIE(1).COMP(1)

The procedures generated by the Rep Analyzer are combined with
routines provided in the VMM package to enable the compiler to
access and manipulate paged data structures, both those defined by
the user, and those predefined abstractions provided by VMM.

3.2.4.4.1 Rap Analyzer

The compiler shall provide appropriate input for the Rep
Analyzer. The DIANA definition [AIE(1).COMP(1).DIANA(1)] is run
through a tool that converts it into legal Ada format.

3.2.4.4.2 VMK Access Routines

The compiler will use VMM support specifications to do the
following:

(1) open and close a domain
(2) access and close a subdomain (including new creation of a

subdomain)
(3) destroy a subdomain
(4) create a node
(5) reference a node (get and set of value)
(6) change a node kind
(7) get and set root node of a subdomain
(8) use predefined abstractions (lists, sets, strings)

3.2.4.5 Listinq Interface

The compiler will conform to the interface specified for LISTER
as specified in t(AIE(l).PIF(1).

3.2.4.6 Parameter Interface

The compiler can be invok: with a variety of parameters to
control its processing, and may also be supplied with parameters to
pass on to the program library manager (PIF.PLTOOLS).

The user's request to compile Ada source is represented as:

COMPILE [SOURCE-> text fileJ ELIBRARY-> prog_lib] [optionm>value...I

The text file containing the source is identified by the
optional SOURCE-) parameter. If the parameter is omitted, the
source is read from the standard input file.

The program library to be used is specified with the LIBRARY->
parameter. If omitted, the COMPILE request is interpreted as a
request for a syntax check with no semantic processing and no other
permanent output.

11

INERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617 01-1840

I,* ',".'." ..'.9. -. .. _. . - . . --,...-; ,, , ,""*** .*","-_ " " -9 . ' - 9 .' -" ... - .

BS-AIEW() .COMP(1)

Options may be specified with the COMPILE request. These
options and their values are identified below.

LIST-) (ON, OFF, SOURCE, NOSOURCE, ATTRS, NOATTRS, XREF,
NOXREF, ASSEMBLY, NOASSEMBLY)

The LIST parameter may be given a list of keywords whose
default value the user wishes to change. These are:

ON enable a listing

OFF (default) disable listing

SOURCE (default) list text

NOSOURCE do not list text

ATTRS list symbol table attributes of identifiers

NOATTRS (default) do not list attributes

XREF provide cross-reference of all identifiers

NOXREF (default) do not provide cross reference of all
identifiers

ASSEMBLY list generated code

NOASSEMBLY (default) no generated code

LISTERRS->n print errors above severity n in listing.
Default is 0.

TTYERRS->)n print errors above severity n on the
terminal. Default is 0.

NOSEMmn if more syntax errors than n occur,
suppress all phases of the compiler after
the parser. Default is 50.

NOCODE->n if more semantic errors than n occur,
suppress all phases of the compiler after
semantics. Default is S0.

DEBUG-),(ALTER, ALTER allows DBUG to alter and inspect
NOALTER, information by preventing the optimizer
BREAK, from detecting common subexpressions across
NOBREAK} statement boundaries, and moving loads and

stores of variables across statement
boundaries. This enables DBUG to access
variables which it might otherwise not be
able to access. Default is NOALTER.

BREAK inserts DBUG hooks after each
statement and at the beginning and end of
each procedure, so that a breakpoint may be
affected easily. NOBREAK is the default.

12

INTERMETRICS INCORPORATED 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETrS 02138 9 (617) 661.1840

.S-AIE(l) .COMP(l)

OP 'IMIZE-,(SPACE, Only one optimize option may be selected.
TIME, This is the same as the OPTIMIZE PRAGMA.
NONE) Default is TIME.

STATISTICS-)(ON,OFF) What statistics will be available is not
yet decided. Finer control over which
statistics are to be printed will also be
available later.

COMMENT-> (ONOFF) COMMENTS-> ON preserves coments in the
DIANA, enabling more complete source
reconstruction. Default is OFF.

REORDER-> (ONOFF) REORDER->ON allows the compiler to reorder
compilation of units. Default is ON.

SPACE-> n Allows the compiler n kilobytes of space in
which to fit. Default is 512. The minimum
and maxizmnm values are not currently known.
It is used to fit the compiler in as small
a space as possible, or use large amounts
of memory to improve the speed of
compilation of large programs.

LOOKAHEAD->n n is the number of tokens to look ahead in
parsing for a valid syntactic error
recovery. Default is 5.

TRACE-> (ON,OFF) Turn on tracing within the compiler. Used
by compiler developers and maintenance
only.

3.2.4.7 Debugger Interface

In order to allow the debugger CDBUG.DBUG] to function
successfully, some information will have to be left in the DIANA
tree and some additional tables may have to be generated and stored
in the program library. For a full specification of the required
interface, see AIE(l).DBUG(l).

3.2.4.8 Linker Interface

The compiler will conform to the linker interface, as specified
In AIE(l).PIF(1).

3.2.4.9 Invocation Interface

The compiler is invoked by the KAPSE and may invoke LISTER
(PIF.PLTOOLS.A). The compiler may also be recursively invoked by
the (PIF.LINK) when a program is not up-to-date in the program

13

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 ((617) 661.1840

~~1

BS-AIE(1).COMP(l)

library and the user wishes to execute it. Furthermore, the
compiler may be invoked by the program library interface to assist
in updating the library. In all cases, the compiler shall conform
to the invocation specifications provided by the KAPSE.

3.2.4.10 Ada Interface

The compiler shall conform to the Ada language standard in two
ways. It shall accept as valid input only Ada programs, and, being
written in Ada, it shall itself be a valid Ada program.

The compiler will use a variety of the language features,
including predefined packages, but excluding tasking.

3.2.5 Function Description

Figure 3-2 shows the flow of control in the compiler. Figure
3-3 shows the flow of data.

3.2.5.1 Front End

The compiler Front End consists of four components: DRIVER,
LEXSYN, SEM, and UTILITIES.

Figure 3-4 shows the flow of control in the Front End. Figure
3-5 shows the flow of data in the Front End.

The DRIVER is responsible for coordinating the phases of the
compiler and providing the appropriate working environment for them.The DRIVER provides VMM domains to a phase, and releases subdomains

to the library when a phase successfully terminates.

.The LEXSYN phase performs lexical and syntactic analysis. It
reads the source text for the compilation and produces an abstract
syntax tree, using a bottom-up parse algorithm driven by LR tables.
The LEXSYN phase also produces a name table as a preliminary for SEM
to create a complete symbol table. In addition, LEXSYN performs
pre-somantic checking on the tree being produced. The checks
performed are semantic tests which depend only upon the content of
the abstract syntax tree, and not upon the use of any symbol table
information. LEXSYN produces a tree of compilation unit nodes.
After LEXSYN, each phase acts in turn on a single compilation unit.

The SEN phase performs semantic analysis for a compilation unit
and transforms the abstract syntax tree into a DIANA tree. In the
course of this processing, symbol tables from separately compiled
units may be read. The SUE phase completes the symbol table for a
compilation unit.

* 14

INMTEMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 661-1840

-.4t.4, , , , ,, , ., - - . - - . • -

BS-AIE(1).COMP(1)

PROGRAM
LIBRARY R I VR

-. MGR.CP

-.4

10782378-6

FIGURE 3-2: Compiler Flow of Control

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840

. 1w , a ,e '_ * , " . , - - ' , . , - : ', *'-* . " • " _. ... ".. .. .- Y .

BS-AIZE(l) .COMP(1)

-4

A FRONT END DIANA MIDDLE END BILL BACK END

CPCI CPCI CPCI

LL. I-

L _FPROGRAM LIBRARY M4GR. OBJECT CODE
CPC I

10782378-5

FIGURE 3-3: Compiler Flow of Data

16

IMTERMETRIC3 INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

7 -7 .

BS-AIE(1) .COMP(l)

-pp

PRO GRAM
LIBRARY

MGR

10782378-4

FIGURE 3-4: Front End Flow of Control

17

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 1 6171 861-1340

B5-AIE(l) .COt4P(1)

SET

U _j ISTING AST.' ISTINGDIN

PROGRAM LIBRARY M'ANAGER

10782378-3

4" FIGURE 3-5: Front End Flow of Data

'I 18

INTERMETRICS INCORPORATED *733 CONCORD AVENUE *CAMBRIDGE, MASSACHUSETTS 02138 *(617) 861-1840

B5-AIE(l).COMP(l)

Utilities needed by the Front End are bound together in
UTILITIES. The UTILITIES package handles all outside interfaces.
These utilities are:

(1) DIANA VMM access routines to allow paging to work.
(2) Universal arithmetic processing for static expressions.
(3) Error procedures for reporting errors.
(4) Listing procedures for outputting information for a later

listing.
(5) Program library interface procedures.
(6) Query routines about DIANA attributes (e.g., is this type

limited?)
(7) Statistics procedures.
(8) Tracing procedures.

3.2.5.2 Middle Part

The Middle Part consists of five components: GENINST,
STATINFO, STORAGE, EXPAND, and UTILITIES.

GENINST performs generic instantiation. Each instantiation for
which a body is available is replaced by an equivalent declaration,
so that later phases of the compiler need not know whether a
particular subprogram or package was user-supplied or generically
generated.

STATINPO constructs the call graph and symbol cross references
for a compilation unit, noting which references are to external
compilation units. This information is used for both optimization
and listing purposes.

The STORAGE phase determines the run-time representation to
data of each type and the principal storage requirements for each
unit (as much as can be determined statically). STORAGE generates
routines for each type to carry out size determination, assignment,
equality comparison, component selection, and object

4: generation/initialization. Information computed by STORAGE is added
as attributes to the symbol table portion of the DIANA tree.

The EXPAND phase carries out a major tree rewrite that removes
the implicit Ada semantics and exposes address arithmetic for later
optimization. Data references, subprogram and entry calls,
aggregates, object creation, and Ada attributes are expanded using
the routines generated by STORAGE. Checking is added to the tree
when needed. A low-level tree is produced; its structure is
referred to as BILL ("But It's Low-Level").

The UTILITIES package contains a driver and common routines
required by the Middle Part.

19

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIOGE, MASSACHUSETTS02138 * (617) 861-1840

Ju. .-.

BS-AIE().COMP(1)

3.2.5.3 Back End

The Back End consists of six components: FLOW, VCODE, TNEBIND,
CODEGEN, FINAL, and UTILITIES.

The FLOW phase performs machine-independent optimizations based
upon machine-dependent cost criteria. The following transformations
on the BILL representation are carried out: redundant constraint
check elimination; constant folding and propagation; elimination of
unreachable coder common subexpression elimination; code motion for
loop invariants; strength reduction; and conversion of Boolean
operations to transfer logic in control flow contexts.

The VCODE phase performs a tree walk simulating code
generation. Instead of generating code it determines the register
requirements and applicable addressing modes.

The TNBIND phase determines the location of every object that
the code generator will deal with. The lifetime of each temporary
name, or "TN" (variable, common subexpression, expression value) is
determined. Based upon conflict information and a machine-dependent
cost function, a machine-independent packing algorithm determines
the register assignment for the TNs.

The CODEGEN phase uses machine-specific templates to generate a
linked list of locally optimal target machine instructions. In the
case of multiple potential matches, a cost function is used to
determine the selection.

The FINAL phase performs machine-dependent "peephole"
optimizations, and cross jumping. For the VM/370, FINAL produces
segmented coder for th'e OS/32, FINAL performs span-dependent branch
optimization. For each compilation unit, FINAL produces the input
to the linker, including the "pure" storage corresponding to the
unit (code and literals) and the required size for any static
storage associated with the unit.

.. The UTILITIES package contains- common routines required by the
Back End.

3.3 Detailed Functional Requirements

3.3.1 Front End

3.3.1.1 DRIVER

The DRIVER is the primary user interface to the compiler. That
is, an invocation of the compiler is actually an invocation of the
DRIVER. The function of the DRIVER is to sequence the phases of the
compiler.

20

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661.1840

• ',,, " * ,- - " , " " o*, .- o . . - ,--- - - -* .*.*. - . .. ,.. .

BS-AIE(l) .COMP(l)

S3. 3. 1. 1. 1 Inputs

Input to the DRIVER is the Ada source compilation to be
compiled, the program library within which this compilation is to
occur, and the set of user options specified in the call to the
compiler.

3.3.1.1.2 Processing

The DRIVER processes compilations by invoking the three main
compiler partitions in the following order: Front End, Middle Part,
and Back End. DRIVER directly invokes phases of the Front End. The
Middle and Back End phases each consist of subphases that are
controlled by a subdriver for that phase. Also, LISTER is a phase
that is run if the user specifies the listing option (See
AIE(l).PIF(1). For each phase, DRIVER performs the necessary
initialization and finalization of the VMM data structures required
by the phase. Placing VMM domain operations in DRIVER increases

* modularity by isolating VMM domain opening and closing within a
single component, so that each phase is unconcerned with these

" functions. Also, using this design, the ability to overlay phases
while maintaining VMM objects in main memory is enhanced. Such

-: overlaying reduces 'MM paging, thereby increasing the speed of the
compiler.

Input to DRIVER is an entire compilation, which may consist of
several compilation units. DRIVER calls LEXSYN with a compilation
and the computer options as its input parameters, and LEXSYN breaks
the compilation into individual compilation units, which are the
units stored in the program library. DRIVER enters the abstract
syntax trees (ASTs) of these compilation units into the library when
they are completed by LEXSYN, i.e., DRIVER does not defer entry of
the ASTs until other phases (e.g., SEM) have been run on the
compilation unit. Compilation can be suspended after the generation
of the AST; DRIVER later can be called to complete the compilation
units from the AST stored in the library. Subsequent phases operate
upon compilation units, rather than the entire compilation.

DRIVER also handles the DIANA structure needed by other phases.
During processing by a phase, the data objects of the phase are
maintained in 'MM subdomains that are temporary KAPSE objects
managed by DRIVER and separate from the program library. When phase
processing is complete, DRIVER updates the program library with the
results of the phase in a single indivisible operation. Thus,
because the program library contains only completed objects, not
partial results, abnormal terminations of the compiler (e.g., by
user abort) leave the program library in a self-consistent state.

The DIANA for a unit in the program library may become outdated
if a unit it depends upon is changed. DRIVER may triggerrecompilations indirectly if the current compilation unit depends
upon a preexisting library unit that needs recompilation. To
establish the proper context for the current compilation unit,
DRIVER calls the program library manager (PIF.PLTOOLS.B). The

6P. 21

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE a CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

p.w. Oo* - . o o o . , ,
a.,. " ° • P * • • .- . " . J - - , ° , ,. .° . . ", o . . •

S-AIEW(1 .COI4P(1)

program library manager performs the analysis to determine if the
" library is in a consistent state for compiling the current

compilation unit.

If the library is inconsistent for compilation of the current
unit, recompilations are performed by the program library manager
(involving recursive invocations of DRIVER) if the user has selected
the automatic recompilation option (a library option). If such
recompilations are unsuccessful (because of semantic errors
introduced by the previous change that necessitated recompilation)
the program library manager returns a cancel indication to DRIVER,
so that the current compilation is terminated.

3.3.1.1.3 Outputs

The outputs of the DRIVER vary depending upon the user options.
The possible outputs, for each compilation unit, are an AST, DIANA,
linkable object code, listings, statistics, errors, and cross
references. These outputs are entered into the program library.

3.3.1.1.4 Special Requirements

Because the DRIVER simply sequences the phases, it consumes
negligible execution time in proportion to the other phases.
Therefore, its execution has little effect on the speed
requirements.

3.3.1.2 LEXSYN

Figure 3-6 shows the logical flow of LEXSYN in terms of
functionality.

LECSYN, the lexical analyzer and parser, reads in the source
text for an Ada compilation and produces a set of abstract syntax
trees, one per compilation unit. The parser is driven by a set of
LR(l) tables and uses a two-level error recovery technique. The
lexical analyzer, called on a token-by-token basis from the parser,
is driven by a set of lexical finite-state machine tables. The
lexical and parse tables are generated automatically from a regular
expression notation and an LR(l) BNF grammar, respectively. The
parse table generator is based upon the NYU Ada Ed System with added
logic for handling error recovery productions. See AIE(l).MGS(l)
for further details.

LECSYN also performs some preliminary semantic analysis based
solely upon the content of the abstract syntax tree generated.

3.3.1.2.1 Inputs

LECSYN has three IN parameters, the text file containing the
source text for the compilation, compiler options, and the library
being used.

22

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

.L . - , -.

35-AIEM(1 .COMP(l)

.44

,1u

U&C~

I--

~1

C4 5i

0

,5,3

.T

,*44

.11

.°

..,FIGURE 3-6: LEXSYN Logical Organization

*44 23
INT"ERMET"RICS INCORI|ORATED * 732 CONCORD AVENUE . CAMURIDGE, MASSACHUSETTS 02138 *(817w 661.1840

o' "*: * .. ' : *--8 + . .-
~-

BS-AIEM(.COMP(l)

3.3.1.2.2 Processing

(a) Properties of the AST. If the source text comprises a lexically
and syntactically vaTi3-Xda compilation, then the abstract syntax
tree is as defined in the DIANA Reference Kanual (see Section 2.4)
with the following additional attributes:

(1) The HAS ERRORS attribute (a boolean) is defined as FALSE
for each compilation unit node.

(2) The MESSAGES attribute is defined for each compilation unit
node. Its value specifies the messages (i.e., errors, warnTngs,
notes) produced by LEXSYN for the given unit. Each message is given
by a tuple that identifies the exact position in the source text and
the nature of the message.

(3) The SOURCE attribute is defined for the compilation node.
It is a representation that allows an equivalent source text to be
retrieved. This attribute permits the listing to be generated from
the AST.

The SOURCE attribute will also, under user control, contain Ada
cmments appearing in the source, so that the full program may be
reconstructed.

(4) Each node corresponding to a namescope has a SYMTAB
attribute that gives the list of all labels defined in the source
including statement labels and loop labels.

(5) The compiler options are saved in the AST with the
compilation unit node.

If the source text contains lexical or syntactic errors, then
the abstract syntax tree corresponds to the text as repaired by the
error recovery algoritm. The attributes described above apply here
also, except that EA ERRORS is TRUE for the compilation units that
contain errors.

(b) Parser. LEXSYN uses a conventional bottom-up parse algorithm
with one symbol look-ahead, with the distinguishing feature that a
two-level error recovery technique is included. The parse stack at
any point consists of PARSE TOKENs, where each PARSE TOKEN
specifies: (I) a state in the-parse table and, possibly, -(2) a
subtree of the tree under construction (when the state corresponds

. to a non-terminal symbol). The AST generated by LEXSYN differs from
the derivation tree in that the AST does not depend on the details
of the particular LR(1) grammar which is used; e.g., "singleton"
rules of the form <non-terminal symboll :: <non-terminal symbol2)
are not present in the AST. The AST is constructed by the parse
actions associated with the rules of the grammar.

24

INTIRMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 861.1840

0,'4

B5-AIE(l) .CoMP(l)

The parser begins by creating a name table with one entry for
each unique identifier seen within a compilation unit (excluding
variations in capitalization). In the event the compilation unit is
a body or subunit, the parser first copies the name table of the
associated higher library unit, and then continues with new names

* occurring within the current compilation unit. Each name table
entry has an associated DIANA node pointer to the most recent
declaration of such an identifier. In many cases, this pointer is
null, and will be filled in by semantics processing. Package
STANDARD identifiers are an exception.

For package STANDARD, its name table is not copied into the
name space of each compilation unit. Instead, when the parser
performs a hashed lookup of a token to see if it is a keyword, it
simultaneously sees if the token is a STANDARD identifier. If so,
the DIANA node pointer for the STANDARD item is inserted along with
the identifier name in the table. Thus, only STANDARD identifiers
actually referenced by a compilation unit or its lexical
predecessors will appear in its name table.

The syntactic error recovery technique is a two-level process.
At the point of detection, a local repair is attempted based on the
following alternatives:

(1) deletion of current input token;

* (2) insertion of a legal shift symbol before the current input
token;

(3) replacement of the current input token with a legitimate
shift symbol (e.g., spelling correction).

The cost of each repair is computed by scanning ahead a fixed number
of tokens and running the parser to see whether further errors are
introduced. If one of the repairs is sufficiently economical, it is
carried out. Otherwise, a secondary approach is taken, which
consists of the following steps:

(1) Pop the stack until the top state has a shift transition
for the special error terminal symbol (the grammar has been
auqmnted with rules which end with this symbol).

(2) The action routine for each of these error rules advances
the input until either: (a) a legal shit symbol is found,
or (b) a special "beacon" symbol, such as a semi-colon, is
found.

In the first case, parsing resumes simply by reading the
symbol. In the second case, the parse stack is popped until a state
is uncovered with a non-terminal transition to a state from which
the beacon symbol may be read. This state is pushed onto the stack
and parsing resumes.

25

INTMRMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

:..''..''_ . .. *.'. *. ., * .,*-.". ._ _ ... *. " " ._ -"" : " . , ." ". "" ,, 2.- 2.,'-o , 2. ."

BS-AIE(l).COMP(1)

At the point of error detection, a message tuple is built and
appended to the value of the MESSAGES variable. When the
compilation unit node is eventually produced, the MESSAGES attribute
will be set-to the value of this variable.

Use of a complex error recovery scheme involves a small
overhead for programs which have no syntax errors. In order for the
error recovery scheme to work, tokens and reductions are buffered.
The cost of this buffering in programs without syntactic errors is
estimated to be 2% of the total parsing cost (measured in a SETL
implementation of the parser).

(c) Lexical Analyzer. The lexical analyzer, invoked by the parser
to produce the next input token, is a finite-state machine
simulator. The token which it produces consists of a token class (a
terminal symbol in the grammar) and, depending on the token class, a
token value (a pointer to the character string comprising the
token).

Reserved words are detected by a perfect hash function which is
given an identifier; thus, the individual character transitions do
not have to be built into the finite-state machine tables. Each
occurrence of a letter in an identifier is normalized by a
lower-case to upper-case conversion. Hash tables (one per
compilation unit) are maintained for pointers to nonreserved words
and literals. Thus, different occurrences of the same identifier or
literal map to different tokens with the same token value.

Processing of "." and "'" are handled by the LEXSYN phase. For
U*", the problem is to distinguish 1.0 from l..2. This is done

|* using an extra character lookahead when processing numbers.

For "'", the problem is to distinguish attribute selection from
type qualification from character literals. The parser keeps track
of the last token seen. If the token was an identifier, then the
next construct cannot be a character literal. Whether it is
attribute selection or type qualification is resolved by semantics.
If the previous token was not an identifier, then the parser
processes assuming a character literal.

The LIST pragma is processed by the lexical analyzer. An
appropriate output for the SOURCE attribute is produced, to reflect
where the listing is to be turned on or off.

(d) Presemantic Analysis. While the abstract syntax tree is being
created, some semantic checks are performed. These depend only upon
the syntax of the current compilation unit, and do not require
access to symbol information. Errors detected will generate
semantic error messages, and cause a flag to be stored in the tree.

The benefits of presesmantic checking are: errors reported
sooner, recompilation time from the AST is improved, and code is
moved out of the larger phase (SEM), giving more space for paging

data.

26

INTERMUTW#CS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

BS-AIE(1).COMP(l)

The checks performed are:

(1) Check that pragmas only appear at the following places in a
program:

(a) where a statement would be allowed
(b) where a construct whose name ends with 'declaration' or

'clause' would be allowed
(c) following a construct that ends with a semicolon
(d) before a reserved word when but not within an exit statement
(e) where a compilation unit would be allowed

(2) Check that enumeration literals in a type declaration are not
repeated.

(3) Check that if a private or incomplete type declaration is given,
then the private part completes it.

(4) Check that labels, loop identifiers and block identifiers that
occur are named uniquely", for the enclosing body of a
subprogram, package, or task.

(5) Check that subprogram end designated matches subprogram name.

(6) Check that loop id matches at beginning and end of loop.

(7) Check that ending label to accept statement matches entry name.

() Check that block simple name matches at beginning and end of a
block.

(9) Check that, if a loop name is specified, then the EXIT statement
occurs within the loop named.

(10) Check that, if a loop name is not specified, then the EXIT
statement occurs within a loop.

(11) Check that EXIT does not leave subprogram body, package body,
task body or an accept statement.

(12) Check that a RETURN statement occurs only within a function
body, a procedure body or an accept statement.

(13) Check that a RETURN statement for an accept statement,
procedure, or package body does not include an expression.

(14) Check that RETURN does not transfer control out of a package
body, or task body.

(15) Check that a GOTO statement does not go from outside into a
command statement or exception handler. A GOTO statement must
not go from one of the sequence of statements of an if, case, or
select statement to another.

27

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

|7 ,

B5-AIE(1) •COMP(i)

(16) Check that a GOTO statement does not go from an exception
handler to another, nor back to the statements of the
corresponding block, subprogram body, package body, or task
body.

(17) Check that a GOTO statement does not transfer control out of a
subprogram body, package body, task body, or an accept
statement.
A GOTO statement must not transfer control from outside to
inside the body of a subprogram, program, or task.

(18) Check that only a formal parameter with IN mode has
initializations.

(19) Check that if both positional and named associations are used in
the same call, positional associations occur first, at their
normal position: once a named association is used, the rest of
the call must use only named associations.

* (20) Check that FUNCTION parameters are all of mode IN.

(21) Check that a function body has within it, a return statement
with an expression.

(22) Check that end identifier of package specification and package
body, as well as package body identifier, matches package

specification identifier.

(23) Check that the end identifier of task specification and task
body, as well as task body identifier, matches task
specification identifier.

(24) Check that an ACCEPT statement is inside a task body, and
corresponds to an entry declaration in that task.

(25) Check that an ACCEPT statement is not within a subprogram,

package or task unit which is within that task.

(26) Check that a SELECT statement is within a task body.

(27) Check that at least one select alternative starts with an
ACCEPT.

, (28) Check that if a terminate alternative is given, a delay
alternative is not also specified.

" (29) Check that if a terminate alternative or a delay alternative is
given, an else part is not also specified.

28

. INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

':- ': ,::, -""-'""?-:-. ' . .. -*. . . --.- '. . - - .- - , , - - .- - - -- . - -

- m7

BS-AIE(l).COMP(l)

(30) Check that at most one terminate alternative is allowed.

(31) Check that at least one task name is given for a select.

(32) Check that OTHERS is last choice in exception handler, if it
occurs, and has no other names with it.

(33) Check that OTHERS is the last choice in case statement, if it
occurs, and has no other names with it.

(34) Check that if a RAISE with no name appears, it is within a
handler, and not within nested subprogram body, package body,
task body.

(35) Check that if a code statement is in the sequence of statements
of a procedure body, all other statements in this procedure body
are code statements.

(36) Check for wrong declaration order: statments not followed by
declarative items.

(37) Check that GOTO uses a valid label name.

4,q

3•3•1.2.3 Outputs

.LEXSYN has one OUT parameter, the abstract syntax tree list,
abbreviated AST. LECSYN may also generate error messages (see
Appendix A).

Z. 3.3.1.2.4 Special Requirements

In order to meet the overall compiler speed requirements, the
LZCSYN phase should run at 6000 statments/CPU-minute. To
accomplish this, it may be necessary to write out a linear
intermediate language, since there is a relatively high overhead
associated with creating and paging tree nodes a VMM subdomain.
Since the SU4 phase rewrites a whole new tree, filling in semantic
attributes, the current design calls for two tree creations in the
Front End. To reduce the cost, LEXSYN may write out a compressed
structure which is not a DIANA tree, using VMM. The actual tree
would then only be created once, by the SE4 phase. It would be
possible, however, to create the normal AST from the output of the
LEXSYN phase using a special tool.

Another alternative is for the compiler to be able to switch
phases without VMN having to close and reopen the subdomains and
domain. The SD4 phase would be overlaid on the LEXSYN phase, and
have access to the VMM objects, which would still be resident in the
paging buffers in most cases.

29

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

BS-AIE(l).COMP(l)

The exact implementation chosen will depend upon performance
measurements and the overall speed requirement of the Front End.

3.3.1.3 SE!

Figure 3-7 shows the logical processing done by SEM.

The SEM phase derives a representation of the static meaning of
the compilation unit and performs the static semantic checking
required for Ada. This phase maps an occurrence of a designator or
character literal to its definition, resolves overloading in the
case that the name itself is insufficient, and maintains direct and
USE visibility of identifiers. The SEM phase is responsible for
ccmpleting the symbol table built by the LEXSYN phase.

3.3.1.3.1 Inputs

The SEM phase has one IN parameter. The IN parameter is the
abstract syntax tree for a compilation unit, as built by the LEXSYN
phase. This includes the partially completed symbol table and the
name table.

3.3.1.3.2 Processing

(a) General Strategy. The SEM phase expands the input tree,
• : initializing values for DIANA attributes that are not present in the

abstract syntax tree. This process involves creating a new VMM
subdamain for the DIANA tree for this compilation unit. As SEM
walks the AST, the DIANA tree is built up.

The semantic analysis portion of this phase is implemented by a
recursive tree walker that visits all the nodes on the tree in
prefix (top-down) order. The walker is organized so that parts of
the tree can be replaced by new tree nodes in the few cases that
actual modifications to the tree are necessary. The remainder of
this phase consists of a set of procedures that implement the symbol
table management strategies and a set of mutually recursive
procedures that do the processing required for each of the node
types in the abstract syntax tree.

The tree walker invokes the overloading resolution procedure in
expressions. Overload resolution uses a three-pass tree walk to
derive the correct definition of an identifier or operator that does
not have a unique definition. (See section (b), Meaning Resolution
Strategy.)

(b) Meaning Resolution. The Front End of the compiler has two
basic tasIks to perfom: determining the meaning of the program, and
enforcing restrictions about the use of Ada constructs. Determining
the meaning of the program consists of name, type and "construct"

30

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIOGE. MASSACHUSETTS 02138 • (617) 661-1840

Bs-AIEM().CoMp(1)

' 0

'I 31

u

La

rCr

I'p 30

> -u

I.

NVa

X a
Lu

FIGURE 3-7: SE Logica ranzto

31

INTERMETRIC INCORPORATED 733 CONCORD AVENUE C-AMBIGMSAHSTS018(1)6114

BS-AIE(1).COMP(1)

resolution. Name resolution means identifying the explicitly or
implicitly declared entity associated with each identifier. Type
resolution means identifying the type of every name and expression
in the program. "Construct" resolution means identifying the
particular semantic construct intended when there are several
possible interpretations of some syntactic construct (e.g., NAME(1)
might mean a function call, an array reference, etc.).

Determining the program's meaning, is done in two passes over
the tree. These passes are labelled pass 2 and pass 3, with pass 1
being construction of the tree.

Pass 1 creates the tree (done by the LEXSYN phase). Pass 2 is a
bottom-up walk that propagates sets of choices of what the nodemight mean. At each node, the meanings available at the node are

matched with the arguments to the node, and only valid combinations
of meanings and arguments are preserved. For a meaning and its
arguments to match, the number and types of the arguments must
match, and any named associations (either user-specified or
language-specified) must be correct.

Thus pruning of meaning is happening during this bottom-up
pass. At the top of the tree, in a valid program, a single
unambiguous, consistent choice is found. In invalid programs,
either no choice is found, or more than one is found. Assuming a
single choice is found at the top, pass 3 then goes down again, and
finishes pruning in the lower levels, now that higher levels are
unambiguously known. By the end of pass 3, all nodes of the tree
have their unique type and symbol being referenced associated with
them.

The general process of resolution of a node consists of:

(1) For terminal nodes

For simple names - Call LOOKUP to determine the symbols which
are legal interpretations. Each interpretation gets a separate
entry on the CHOICES list.

For literals - A CHOICES list is created for the literal, and
filled in with legal type symbols.

(2) For non-terminal nodes take the set of CHOICES provided on the
operator sub-node and for each choice, process the argument
sub-nodes' information to determine if the choice is legal.
For each operator choice, this may result in zero, one, or many
possible choices to be entered in the CHOICES list for the
non-terminal node.

This is done for all nodes in the subtree, bottom up, until the
top node is completed. At that point, the meaning will be:
unambiguous, null, or ambiguous. If the meaning is null, the
program is in error. If the meaning is ambiguous, then some
language rules may require that the compiler pick a meaning; i.e.,

32

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

BS-AIEW(.COMP(l)

provide a tie-break criterion. This is particularly true with
expressions involving numeric literals, where the compiler may have
to say "If no specific user type is clearly correct, make the answer
of type UNIVERSAL x". Other tie-break rules may require the
compiler to select INTEGER, and so on. This is language construct
specific. The important point is that sometimes the compiler has
additional information available to disambiguate multiple meanings,
and sometimes it doesn't, in which case once again the program is in
error.

There are gaps in the Ada language definition with regard to
relationals which return Boolean as their type. If "..." <"...' is
seen, the output result type is known to be Boolean and the input
argument types are known to be arrays, but exactly what type is not
known. Processing will depend on the choice made regarding the
validity of a statement, if only one array type is currently
defined. If the program is valid at the top, then the unique
meaning and type is known. The compiler then goes down the tree,
knowing the type of the node because the higher node knew what type

S.it was. Knowing the type of a node, the correct choice entry is
selected as the unique meaning of the node. This is done until the
bottom of the tree, at all terminal nodes, at which point type and
name resolution are complete.

:: see(Actually, since the contents of an aggregate have not yet been
seen, the aggregate is treated as a whole new subtree to be
processed underneath us, where we know the type in advance, and thus
know the types of each component. Thus, the subtree starts in pass
3).

On the third pass, during the ascent of the tree, the DIANA
" node is transformed to that appropriate for the resolved meaning,
- thus completing construct resolution.

Use of Wild Card Types. For literals, instead of computing the
set oT-l'-vTM lty7pesp---which this literal might be, a "wild card"
type mark is passed indicating what class of types it might be
(i.e., "wild card array", "wild card integer", etc). Since the
routines which prune sets of choices use intersections of
information, those routines are built to correctly handle the wild
card type intersected with any other type, including more general
wild card types (e.g., intersecting "wild card real" with "wild card
float" will yield "wild card float"). Naturally, a wild card type
will eventually interrect into some specific type in a correct
program.

There is a wild card type for: discrete, scalar, numeric,
integer, composite, real, float, array, 1-dimension array, boolean,
access, any-type, non-limited-type, and record. There is no need to
have a wild card type for 1-dimensional array of boolean, or
1-dimensional array of character, or the like, because the component

- type of the array will be stored in a separate field of the choice
entry to be described under the wild card builtin symbol.

33

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

B5-AIE(l).COMP(1)

The constructs marked initially with wild card types are:

integer literals -) wild card integer
real literals -3 wild card real
NULL - wild card access (of any-type)
NEW X[(...)] - wild card access (of X)
aggregate - wild card composite (of any-type)
"......, -> wild card 1-dimensional array (of CHARACTER)

Use of Wild Card Builtin Symbols. Instead of returning a list
of alsail s--ymbos w- l 3--o-kup on a simple name which is
an operator symbol (builtin), a special "wild card symbol" is used
to represent predefined and derive-inherited predefined operations.
The set of symbols returned from a lookup thus has all user-defined
symbols, and one wild card symbol to represent all possible legal
predefined meanings of an operator.

The following symbols are treated generically:

+ - ABS * / REM MOD ** AND OR XOR < -& NOT /.

Note: since the user may never explicitly define "/-", the
compiler will automatically generate a "/-" definition whenever the
user redefines Ur"

The wild card symbol will have information associated with it
which will be interpreted by special choice-pruning routines. These
routines will interpret the arguments subnodes CHOICES lists in
light of the requirments of the wild card symbol. To support wild
card builtin processing, each entry in the CHOICES lists will need
additional information.

Each choice entry already had:

(1) the specific result type of the choice

(2) the specific DEF ID for an identifier

These fields are filled in when the information becomes known.

Additional information is added to the CHOICE entry, which
applies when the entry is wild card or has wild card sub-nodes.
This information, needed for correct pruning, is:

(1) a flag marking this as a wild card builtin

(2) restrictions on the result type (e.g., "wild card
integer")

(3) restrictions on the visibility (e.g., "must be in P")

(4) restrictions on components (e.g., for arrays, the
-component type must be x, and its visibility must be y)

34

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

.- :-- . .- . .-. .

BS-AIEM(.COMP(1)

Visibility information is needed because Ada allows the user to
write "P. ". Were there no selected operators allowed, visibility
information would not be required.

The result type restriction is an enumeration of:

ordinary - use of specific result type of the choice
wild card - one of the wild card types

The builtin flag is a boolean true or false.

The visibility restriction is a list of region pointers of:

reachable-region - a fake region meaning unlimited access
allowed, used for types which may be hidden,
but available. All literals have this
visibility.

visible-region - a fake region meaning must be directly
visible. All names which are not
dot-selected have this visibility.

specific region - used to allow a visible-spec region,
private-spec region or a body region of a
specific package. Dot-selected operators
have this visibility.

The region attribute is filled in for simple name nodes of the
wild card operator by looking at the visibility of the type causing
the "implicit" declaration of this wild card symbol. If
dot-selection was used to reference this builtin, then specific
regions must be named. Otherwise, visible-region is the appropriate
visibility. If the types of the arguments are NOT the same (i.e.,
mixed arithmetic like "*"Y, then the visibility is the intersection
of each argument's visibility. This may be null, in which case the
program is illegal.

The component restriction is a record which handles information
about array components and access components. The record is:

Result type restriction - same enumeral as above, refers to the

component type

Specific result type - type of the component if known

Visibility restriction - same as earlier, for the component
type

Component restriction - recursive ptr to comp restrict record
type, for arrays of arrays of
and access of X

35

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

+ . + o* . . . -.

B5-AIE(l) .COMP(l)

" . Processing For Terminal Nodes. If the node is a literal, store

" its appropriate-wid card type on its choice entry, and add
°. reachable as its visibility restriction.

If the node is a dot-selected operator, store the package
regions corresponding to the dotted name as its visibility
restriction.

If the node is some other name, store directly visible as the
visibility restriction, and the type of each choice entry is that of
the DEF ID being considered.

Processing For Non-Terminal Nodes. If entry is not wild card
builtin: For non-wild card entries, argument entries must match the
types expected by the symbol entry. If no combination of argument
entries matches, then the symbol is rejected as a choice. If a
combination is found, then the symbol becomes a choice, and further
examination of the arguments for this entry may cease (you cannot
get duplications arising). In the event the argument's type is some
wild card type, that will be acceptable in matching providing the
wild card type is compatible with the expected type for that
argument. Notice that only arguments may have wild card types at
the moment, because this is rot a wild card builtin symbol choice.

- If entry is generic builtin: For wild card builtins, argument
entries must match types, keywords, visibility restrictions, and
component restrictions.

Type matching is performed by special routines, which can
- handle the us* special markers on a wild card symbol. The markers

provide the normal wild card type restrictions on the arguments, but
they add additional restrictions on the relationships of arguments
and result type. For example, for the ">" operator, the arguments
may be of any scalar type, but they must match each other. The
resulting type is always BOOLEAN. How these relationships are
represented is managed by the pointed-to symbol and the special
routines which match wild card symbols and their argument lists.

Visibility matching is done by intersecting the visibility
restrictions of the arguments and the operator. The match means
finding the same pointers in both sets, except that:

(1) The reachable fake region matches any region and returns
the other region.

(2) The visible fake region matches a region only if the other
region is on the lexical visible stack or the use visible
stack, or is a visible fake. The result is the region
matched.

. (3) Other regions match only if the region pointers are the
same.

36

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

. t s.*.*. * - •.,.,...... --

BS-AI~i().COMP(l)

Component matching is done by matching the contents of the
record, throughout all levels provided by the recursive pointer.
Content matching is done as described above for each type of
content.

For an exmple of wild card symbol processing, consider the Ada
fragment:

package P is
type t is (aa, bb, cc);
v: t;
and P.

if P.v. < P.bb then ...

The if statement has no direct visibility over the interior of
* the package, so the "<" is not visible. In processing the tree, the

nodes for P.v and P.bb would have visibility restrictions which
would require visibility over the package spec for P. The
restrictions stem from the fact that the type used is defined in P.
The wild card symbol 0"< would have a directly-visible restriction.
These restrictions are incompatible, because declarations within P
are not directly visible. Therefore no meaning of "<" would be
found and the program considered in error.

(c) Symbol Table Design and Separate Comilation. The symbol table
is a permanent-UAX data-structure. Tere i one symbol table per
compilation unit. The table is created by the parser, and augmented
by the semantics phase. Lookups are done using information about
lexical visibility, and information about USE visibility.

Any declaration occurs within the scope of a particular region,
and is given a sequence number reflecting where in that region it is
declared.

A lookup procedure is provided which returns a list of the
possible DIANA nodes that an identifier may currently be. This list
is generated by lexical visibility, the overloading and hiding rules
of Ada, and possibly by USE visibility as well. The actual
implementation of lookup involves caching answers from previous
lookups and caching lookups for USE visibility. The details of
caching are unimportant at this level.

For lexical visibility, the compiler keeps a stack of currently
visible regions and currently visible sequence ranges. Whether a
DIANA declaration node is visible can be determined by seeing if the
region in which it was declared is on the region stack, and whether
the sequence number of the node is within the current active
sequence range of the region.

The current sequence number is needed when attempting to

reestablish correct visibility of subunits. In such cases,
additional declarations may have shown up in the region containing
the stub, after the stub was declared. These additional
declarations are not visible to the separately compiled subunit, and
this is managed using the sequence number.

37

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 6611840
.5 :-.. .*S

BS-AIE(l).COMP(l)

For USE visibility, the compiler keeps a stack of currently
USEd units. If lexical lookup is not sufficient, either because no
entry was found, or because only overloadable entries were found,
then use lookup is added. In essence, each current USE-visible
region on the use stack has its name table examined for the
appropriate identifier entry and its SAME NAME chain is used to
consider additional declaration candidates,-subject to overloading
and hiding rules of Ada.

When SMANTICS begins processing a compilation unit, it first
establishes the context of that unit. This context starts with the
higher lexical scopes still active, and symbols thus visible. If
the current compilation unit is not a top-level specification, the
symbol table of the immediately higher lexical scope is read in and
its DIANA node pointers are transferred into the current name
table.

When SDANTICS sees a WITH clause in the beginning of the
current unit, the entry for the unit named is located in that unit's
symbol table and the DIANA pointer transferred into the current
compilation unit's table. This makes the identifier visible in the
current symbol table, and, if the identifier happens to overload a
STANDARD identifier, insures that this information is not lost. It
is not lost, because the WITH'ed symbol table entry has the unit's
DIANA node pointer followed by a SAME-NAME link to the STANDARD
DIANA node.

When SDANTICS processes a declaration, the DIANA node
corresponding to the declaration will be inserted in the symbol
table with the the appropriate entry in front of all prior
declarations. This insures that lookup sees the most recent
declaration first, and that prior DIANA nodes are not re-written
upon. This is important in separate compilation to insure that
separately compiled units are accessible in a READ-only fashion.
The DIANA node is also assigned a sequence number reflecting when it
was declared within a region.

Lexical visibility is then a simple matter of looking up the
identifier's text name via hashing into the symbol table and
retrieving the corresponding DIANA node pointer. This node is the
head of a SAME NAME chain of all DIANA nodes from declaration of
.similarly named-items.

Not all items on the SAME NAME chain are currently visible.
The combination of the stack of currently visible regions and
current sequence numbers valid within a region enable lookup to
determine which SAME NAME entries are currently visible by lexical
visibility.

USE visibility merely extends lookup to see SAME NAME chains
* from symbol tables corresponding to the compilation units in which

the USE'd names arose.

38

INTERMITRICS INCORPORATED e 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

• .• . . _ * -, • o , - . . 6 . * , - . - , 7 . , 1 . ° ° .. ,

BS-AIE(1).COMP(1)

The following examples illustrate the operation of the symbol
table on simple program units. Figure 3-8 shows an example package
and the resulting name table after parsing, prior to samantics.
Note that although package Example declares two functions with the
identifier A, the name table has only a single entry for the
identifier A. This situation illustrates the property of the name
table that each unique identifier appears only once in the name
table, regardless of the number of times the identifier is used in
declarations. Semantic analysis augments this structure with
definitions for each declaration. The advantages of this property
for overload resolution are discussed below. If the user selects to
perform only parsing, LEXSYN stores the name table as shown in
Figure 3-8 in the program library, along with the AST.

Figure 3-9 shows the name table for the same package during
semantic analysis. The name table has been augmented with the DIANA
DEF ID nodes that are the corresponding definitions for the
identifier. The name table defines a mapping between identifiers
and DIANA DEF ID nodes contained within the DIANA tree. This
mapping makes -it simple to retrieve a DIANA DEF ID node, given a
DIANA UsedId node (which contains the lexical symbol
representation). Note that the entry for A contains two DEF IDs,
one for each of the (overloaded) functions defined within package
Example. A lookup of the identifier A returns the list of possible
definitions for A so that, when analyzing an expression using A,
overload resolution can select the appropriate definition (or
announce an error).

The structure shown in Figure 3-9 along with additional
-information for optimizing lookups, is built during semantic
analysis. When semantics completes, a portion of this structure is
saved along with the DIANA in the program library. The saved
portion contains the mapping between the identifiers appearing in
the compilation unit and the DEF IDs defined in this compilation
unit. To avoid redundant information, the saved portion omits the
DEF IDs defined in other compilation units (e.g., the type ids for
BooTean and Integer in package Example) and the information computed
for optimized lookups.

Because the DEF ID nodes for all identifiers that appear in a
compilation unit ari placed in a single name table, additional
information is necessary to indicate lexical nesting. This
additional information is a region identifier associated with each
region (cf. LRM 8.1) in the source program, as well as a lexical
visibility stack which dynamically reflects the lexical visibility
during semantic analysis. Each DEF ID defined in a region contains
the corresponding region identifier. The lexical visibility stack
contains the stack of lexically open regions. (See Figure 3-10).

39

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661.1840

BS-AIE(l).COMP(l)

package Example is

function A return Boolean;
function A return Integer;

3: Integer;
C: Boolean;

,I end Example:

Example

A

Boolean

Integer

B

C

10782378-10

'p

FIGURE 3-8: Name Table After Parsing

40

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661.1840

| -I.• " *4 . .. •.- I - - .-

B5-AIE(1) .COMP(l)

package Example is%
function A return Booleany

.4. function A return Integer;
B : Integer;
C : Boolean;

7: end Example;

packag IrmpcaeSadr

functioIn idf for nodes nidfo

EIxamp3-9 a(Ine er Tabl Afte Semantics

Bolanhe bx, idcte idenf ies dfneon ohrrakgs
In hi exmpethedeintio orBooleananIteearpckg

ofo patandard.dar

type d41oINTIMER C INOPRTD*73 OCR VNE A S7G.MSSCUET 23 *(1)6114

Integer

BS-AIE(l).COMP(l)

In looking up the possible meanings of an identifier, the
lookup routine considers only identifiers having a region id
currently on the lexical visibility stack. It ignores DEF IDs
having a region id other than those currently on the stack. Because
DEF IDs are inserted at the beginning of the name table list, the
lookup routine finds the most recent definitions first and rejects
those whose region id is greater than the region id currently on the
top of the lexical visibility stack. Lookup terminates when a
nonover loadable DEF ID is encountered (because a nonoverloadable
hides any DEF ID later in this list), returning a list of possible
DEF IDs.

Thus, the ordering of DEF IDa in the name table allows lookup
to be efficient. This organization also allows easy detection of
illegal redeclarations; before a new DEF ID is inserted, the list is
checked for a homograph (Ada LRM 8.4)* Tn the region on the top of
the stack. Note that the lexical visibility stack is needed only
during semantic analysis and is not saved in the program library.

Additional structure is necessary for visibility rules
concerning "USE" clauses. If a DEF ID is not found using the
immediate scope lookup, the identifieri that are "USE" visible are
inspected next. The packages currently "USE" visible are maintained
on the USE visibility stack. When a USE clause is encountered, an
entry for the package is pushed on the USE visibility stack. When

-.-. the scope of a USE clause is left, the USE visibility stack is
popped to eliminate USE visibility for the corresponding package.

During USE visibility lookup, DEF De from USE visible packages
are entered into the name table for the current compilation, along
with an indication of the defining package. In constructing this
list, Ada visibility rules are checked. These rules specify that if
more than one USE visible symbols for the same name occurs, then
they must be subprograms or enumeration literals. That is, the
occurrence of any nonoverloadable symbol cancels USE visibility
unless it is the only symbol found.

Figure 3-11 shows a simple main procedure that uses the package
Example (from Figure 3-8). When the "USE Example" clause is
encountered, Example is pushed on the USE visibility stack. The
name table entry within Main for Example refers to the DEF ID of
Example. In the assignment to B, when immediate visibility tookup
for A fails, the USE visible DEF IDs for A are looked up. This
lookup begins by looking in t e Example name table for the
identifier A, which locates the list of DEF IDs for A. Because the
only DEF IDs found are for subprograms, this list is returned as the
result o? lookup for A (and can then be used in overload resolution
for the assignment statement).

(e) Aggregate Type Identification. Ada language rules require that
the type of an aggregate be known from its context. The compiler
does not have to examine the aggregate to determine its type. Once
the type has been assigned to the aggregate, the types of each of
its components are also known, and overload resolution may proceed
for each component with minimal work.

42

INTERMETRICS INCORPORATED •733 CONCORD AVENUE •CAMBRIDGE, MASSACHUSETTS 02138 •(617) 661-1840

,. I[, - . .

BS-AIE(l) .COMP(l)

procedure Main in -- region 1
A : Integer7

., begin-- lexical visibility at TO

declare -- region 2
A : Integer;

begin
-- lexical visibility at Ti
declare -- region 3

A : Integer;
begin

-- lexical visibility at T2
end;
-- lexical visiblity at T3

end;
-- lexical visiblity at T4

end Main;

Na for A for A for A
Table

Integer region 3 region 2 region 1

Iregion 3
Visibility region 2 region 2 region 2
Stack j m o regi on 1 reinreio region 1stte -- ISI El

TO T1 2 T3 T4

10782378-11

Ii
FIGURE 3-10: Lexical Visibility Stack

The lexical visibility stack indicates the lexically openscopes during semantic analysis. Use of identifier A refers to the
DEF0ID corresponding to the region highest on the stack.

43
INTERMETRICS INCORPORATED e 733 CONCORD AVENUE • CAMERIDGE. MASSACHUSETrS 02138 • (617) 661-1840

BS-AIE(l).COMP(l)

with Example;
procedure Main is

B : Boolean;
use Example;

begin
B : A; -- assignment to local B

end Main;

rpackage id
Sfor Example

Name Table procedure id
nfor Main

2. Exam ple"

!.i ,, , ,vari able • id
-: go for B

Boolean
Ai ' A" ' I type d 1
I , for Boolean I

(from Standard)

i I - -

for A function i
fuction id I fort .1 forA r-' xAmple I

.. .. (from Example) (from Example)

v i s i b i l i t y - - - - -.-

use Example__
visibility
lookup Use visibility stack

10782378-12

FIGURE 3-11: USE Visibility

If a symbol in not found using ordinary visibility lookup,
-. "USE" visible lookup is performed. The USE visibility stack

indicates the packages current "USE" visible. Dashed boxes indicate
nodes defined in other packages.

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

":" , ~~~~~~~~...-... ,-.....-.......-.. ,... ,....-....-.. ,..

A - 3 :. .21 . 5o : .'.-.4 7 --

BS-AIE(1).COMP(l)

(f) Apply Operator and Dot Selection operator. The abstract syntax
tree contains an appy n'e in the case that a name is followed by a
parenthesized list of arguments, or an Ada operator is specified.
The Ada "dot" operator likewise can mean either name qualification
or record component selection. Semantic analysis changes these to
the appropriate DIANA representation. Analysis in both cases
determines the possible set of meanings for the name portion of the
tree, and then uses this information to drive overloading resolution
of the expression portions of the tree. For the case of dot
selection, the names must always be unique, whereas for the apply
node the names can be overloaded and must go through full overload
resolution.

(g) Compile Time Arithmetric. Ada language rules require that the
compiler evaluate arbitrarily accurate arithmetric between named
numbers in the user program (see [Ada LRM, 4.10)).

The semantic analyzer uses the Universal Arithmetic package
provided by the Front End.

(h) Derived 8m A derived type inherits the operations of its
parent type. --- yibol table entries for an abbreviated form of the
inherited operations are created but the subprogram bodies will not
be copied. For built-in functions, separate symbol table entries
will not be kept, but rather, a generic builtin symbol for a
particular operation will be used, and the overload resolution
algoritm will be modified to deal with it. See (c) above.

(M) !ra . SE accepts a variety of pragmas. The set of pragmas
accepTT--i shown below. Most of the pragas. are defined by the Ada
language, but a few have been created to assist code generation and
run-time heap management.

-Language-de fined AIE-defined

CONTROLLED ELABORATE MARK RELEASE
INTERFACE INLINE MONIfOR
LIST MEMORY SIZE STATIC
OPTIMIZE PACK
PAGE PRIORITY
STORAGE UNIT SUPPRESS
SYSTEM NAME

The MARK RELEASE, MONITOR, and STATIC pragmas are described in
AIE(l).KAPSE(T), 3.3.2.4.2.8, and 3.3.2.4.2.1.

The INTERFACE pragma is described in AIE(1).PIF(1).

The remaining language-defined pragmas are defined in the Ada
LRM.

45

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

I L ,7-' %. • - ,., -' .. ,.. _, " - -

BS-AIE(1).COMP(l)

(j) Attributes. The Front End recognizes all of the attributes
defined in the Ada language, and handles validating the context and
arguments supplied. Those attributes which have static values in
Ada, are handled by the static expression code of the compiler.

3.3.1.3.2.1 Generics

Generics processing occurs as part of semantic analysis.
Semantic analysis of generics has three major functions: (1) to
ensure conformance of generics usage with Ada rules; (2) to create a
representation of generic instantiations that is convenient for
processing by later compiler phases; and (3) to facilitate sharing
of generic bodies across multiple instantiations. Each of these
functions is described below.

3.3.1.3.2.1.1 Generics Semantic Analysis

Semantic analysis of generics occurs at three points: the
generic declaration, the generic body, and the generic
instantiation. The generic declaration establishes the properties
of the formal generic parameters. Semantic analysis completes the
DIANA representation of generic formals and checks that the formal
parameter declarations are consistent with Ada rules. Examples of
such checks are (1) ensuring that only formal objects of mode IN
have default expressions, (2) ensuring that the only form of
discrete range in a generic formal constrained array type is a type
mark, and (3) ensuring that discriminants of generic formal private
types do not include a default expression.

The corresponding generic body establishes the template to be
used by instantiations of the generic. Semantic analysis checks the
semantics of the generic body and produces the DIANA representation

* of the body template. Since the correctness of a generic
instantiation in general can depend upon the characteristics of the
generic body template, semantic analysis of the body alone cannot
decide the correctness of all possible instantiations. That is, the
instantiation of a semantically correct generic body may be illegal,
depending upon the generic actual parameters. For example, an
unconstrained array type passed to a generic formal private type
results in an illegal instantiation if the body declares objects of
the formal private type. To simplify checking of instantiations and

';o to support diagnostics, a list of actual parameter dependencies and
the points within' the generic body corresponding to these
dependencies are associated with the DIANA representation of the
body.

Generic instantiation results in matching of the generic actual
parameters with the generic formal parameters in the generic
declaration, producii.,- the DIANA representation of the generic
instantiation. This representation is not a full expansion of the
template with the generic actuals. Instead, it contains the

46

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ((617) 661-1840

.......-..

BS-AIE(.COMP(l)

attributes of the generic actuals parameters and refers to the
corresponding template (if the template is available). The
instantiation is processed based only upon the information available
from the generic declaration, without requiring that the body be
available. If the generic body is in the same declarative list, the
new specification refers to the corresponding template.

Recursive generic instantiation, either directly or indirectly,
is checked for and prohibited. To enable checking for recursive
instantiations, semantics maintains a dependence graph, associated
with the program library. Nodes in the graph represent generic
units and arcs represent instantiations. An arc from node A to node
B indicates that A instantiates B. Checking for recursive

4 instantiation, which occurs upon encountering an instantiation,
involves traversing this graph to detect cycles. A cycle indicates
a circular dependence, i.e., a recursive instantiation. Arcs in the
graph connect to both the specification and the body of the
instantiated generic, because the dependence is upon both the
specification and the body. This method enables checking for
mutually recursive generic instantiations in separately compiled
generic bodies.

In checking instantiations, the instantiation actual parameters
are matched with the corresponding generic formal parameters given
in the generic declaration. This checking ensures that generic
formal parameters receive appropriate actual parameters in the
instantiation, e.g., that a type formal parameter receives an
appropriate actual type and that a subprogram formal parameter
receives an appropriate actual subprogram. For generic objects of
mode IN OUT, a check is made that the variable is not a dependent
subcomponent of an unconstrained variable. Also, objects of mode in
are checked to ensure that the actuals are not a limited type.

For formal private types, the correctness of the instantiation
may depend upon the generic actual parameters and the
characteristics of the body. For example, if the body declares
objects of a formal private type, the instantiation is incorrect if
the actual type supplied for the formal private type is an
unconstrained array type. As discussed above, semantic analysis of
the body records the points at which the correctness of the
instantiation depends upon the characteristics of the body and the
actual parameters. Given this list of dependencies, the
instantiation simply must check the list to determine if the body
and the actual parameters are incompatible. This approach
simplifies generic instantiation by avoiding the requirements to
semantically analyze the entire program unit obtained after the
expansion of the generic template.

For formal array types, checks are performed to ensure that the
actual and formal parameters have the same number of index
positions, that they are either both constrained or both
unconstrained, and that they have the same index types. For formal
access type, checks are performed to ensure that the actual and

47

INTERMErRICS INCORPORATEO * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 9 (617) 661-1840

~~~~~~~~~~~. ,... . _, . ... ,....:-., . .,................. . .. ... ....



BS-AIE(1).COMP(l)

formal parameters designate the same type of object. For formal
subprograms, SEM checks that the corresponding implicit renaming
declaration is legal.

Because of the possibility of generic subunits, the generic
template in general may be unavailable at the point of an
instantiation. The instantiation has available the generic
declaration to perform the matching of actual and formal parameters.
However, if the body is unavailable, the instantiation produced from
the declaration must be further analyzed when the body becomes
available, due to possible body dependencies. In this case, the
linker calls a subprogram provided by semantic analysis to check for
body dependencies. This analysis involves checking only the list of
body dependencies against the actual parameters in an instantiation.
Checking for body dependencies of instantiations is a separable
function wiht semantic analysis. Separating this function allows it
to be called by tools other than the semantic analyzer, including
the linker and tools designed to update the state of an Ada program
library.

3.3.1.3.2.1.2 Instantiation Representation

To simplify later compiler phases, SM creates a normalized
DIANA representation of generic instantiations. This normalized
representation makes explicit in the DIANA representation the
renaming declarations implicit in the actual parameter associations.
The expanded representation does not duplicate instantiation bodies,
so that code sharing is possible. Normalization generates a
normalized actual parameter list, in positional order, as well as
inserting the DIANA for the implicit declarations.

Instantiation bodies are -references to the corresponding
generic body template if it is available. The DIANA representation
of the instantiation, which does not include a body representation,
contains an attribute that designates the DIANA representation of
the generic template. This attribute is null if the body is
unavailable.

3.3.1.3.2.1.2.1 Instantiation Code Sharing

After semantic analysis, separate instantiations of a generic
declaration share the DIANA representation for the generic body
template. In many cases, the machine code generated by later
compiler phases for generic instantiations also can be shared. As
examples, the representation in many cases can be shared for
generics having no parameters, and for those having only formal
objects, formal scalar types, formal access types, formal
subprograms, or combinations of formal objects, formal scalar types,
formal access types, and formal subprograms. Generics having formal
private types often can be shared, if the size of the private type
is included as a run-time parameter.

48

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



BS-AIE(1).COMP(l)

In general, SEM is unable to determine that multiple
instantiations can be shared, because it is unaware of the run-time
representation of data types. Thus, to simplify semantic analysis
and to promote code sharing, an instantiation refers to the generic
template; it does not expand the generic template replacing the
formal parameters with the actual parameters. Later compiler phases
determine the feasibility of code sharing, as these phases determine
the feasibility of code sharing, as these phases have knowledge of
run-time data and program representations. If sharing is possible,
no new body is produced for the program unit. If sharing is
impossible, a new body must be generated from the generic template,
using the appropriate instantiation actual parameters.

3.3.1.3.3 Outputs

The SEM phase has one OUT parameter, which is a completed DIANA
tree. The symbol table for the compilation unit is complete except
for some storage allocation information. The SEM phase may also
output error information in the event of errors (see Appendix B).

The DIANA tree that is produced is a copy of the input abstract
syntax tree with additional attributes and minor modification of the
tree structure (e.g., apply nodes are turned into functioncall,
procedure call, entry_call, indexed, or slice nodes).

3.3.1.3.4 Special Requirements

In.order to meet the speed requirements of the compiler, the
SEM phase should run at 6000 statement/CPU-minute. Modifications to
the passage of data between LEXSYN and SEM have already been
discussed in the special requirements section of LEXSYN. In order
to speed up compilation, it may be necessary to place a limit on the
size of a separate compilation unit. This limit enables all of the
data to be core resident. This would eliminate the need for VMM
paging, except for symbol table entries and static value
information. This limit would apply to the IBM 370, but not to the
PE 8/32 machine. Since the memory size for the PE is smaller,
placing a limit on source size in order to limit paging is probably

S, not feasible, and the 8/32 version of the compiler will run slower
than the IBM 370.

3.3.2 Middle Part

3.3.2.1 GENINST

The GENINST phase implements generic instantiation following

semantic analysis. GENINST determines if instantiations can share
generic implementations that have been generated for a previous
instantiation of the given generic. Sharing may be impossible
either because no previous implementation has been generated or

-4. 49

INTERMETRICS INCORPORATED * 733 CONCORO AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840



B5-AIE(l) .COMP(l)

because no previous implementation is suitable, due to dissimilarity
of the instantiation actual parameters. If sharing is impossible,
GENINST generates a new instance of the generic from the generic
body template. This nw instance is then available for possible
later sharing with subsequent instantiations.

3.3.2.1.1 Inputs

GENINST has one in out parameter, the DIANA tree produced by
SE. Although GENINST adds information to the DIANA representation

* !of instantiations, the original DIANA is preserved to ensure source
reproducibility.

3.3.2.1.2 Processing

GENINST is responsible for creating appropriate DIANA subtrees
for the expansion and code generation of instantiations or, if
possible, for the sharing of previously generated instances.

When generating expansions for an instantiation, GENINST uses
the generic body template to create a DIANA subtree that is like the
template, but which is augmented with attributes describing the
instance. Fbr example, subprogram calls may be marked as indirect
to enable the generated instantiations to call a subprogram passed
as a run-time parameter. Other attributes regarding object size
also may be added to the DIANA.

Whenever GENINST creates a nw instantiation body, the body is
added to a list associated with the generic template. This list
contains the instance bodies generated for this template.
Associated with the each instance body is a list describing the
actual parameters that are possible to use with that instantiation.
Upon later invocation, GENINST searches that list to determine if it
is possible to reuse that body instead of generating a new body
template instantiation. If the representation of the actual
par ameters matches those of an instance body generated previously,
that body is reused. If no matching body is found, a nw instance
body is generated.

Thus, GENINST is responsible for either creating a DIANA
sub-tree similar to the generic body template, but with additional
constraints to be obeyed by later optimization and code generation
phases, or for deciding to reuse a previous instantiation.

3.3.2.1.3 Outputs

GENINST has one in out parameter which is the DIANA tree
produced by SE.

50H. INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIOGE, MASSACHUSETTS 02138 e (6171 661.1840

4 .,", -. S- t .. L a A .



BS-AIE(1).COMP(1)

3.3.2.1.4 Special Requirements

It may be necessary for the linker to invoke the compiler for
generic instantiation in the case of separately compiled generic
bodies. In this case, GENINST is unable to determine the body to be
used with an instantiation, because the body may be unavailable.
This determination must be made when the program is linked during
program build. Thus, the linker calls GENINST when processing an
instantiation having as associated body that is separately compiled.

On the average, GENINST will process 24,000 statements/minute.
This average includes both source programs that perform
instantiations and those that do not. In the former case, GENINST
processes only DIANA generic declarations and instantiations nodes.
In the latter case, a DIANA attribute indicates that no generics are
instantiated and GENINST processing is bypassed.

3.3.2.2 STATINFO

STATINFO (STATic INFOrmation gathering) adds information to

DIANA for three purposes:

(1) It initializes attributes for later Middle Part phases.

(2) It produces a call graph and symbol cross reference.

(3) It initializes attributes for the FLOW optimizer.

The particular processing is determined by the LIST and
OPTIMIZE compiler options and by the OPTIMIZE pragmas in the unit.

3.3.2.2.1 Inputs

STATINFO is given the updated DIANA graph produced by GENINST,
for a single compilation unit. The LIST and OPTIMIZE compiler
options are present as attributes of the DIANA compilation unit
node.

3.3.2.2.2 Processing

STATINFO processes the tree in a single top-down traversal.
The actions taken depend upon the class or type of the node. Each
attribute created by STATINFO has a name beginning with the mnemonic
"si ".

3.3.2.2.2.1 DEFID

If the LIST XREF option is given, then STATINFO creates the
si refs attribute for the DEF ID node. This attribute's value is a
se of nodes, and it is iiitialized here to be empty. At the
completion of STATINFO, the set will contain those USED SYMBOL nodes

51

INTERMErRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



BS-AIE(l).COMP(l)

(in the current compilation unit) that are references to the given
DEF ID. If the LIST XREF option is given, then STATINFO also
create. the si calls attribute for a procedure id, function id,
def op, package-id, task id, variable id (for a Sask object),-and
entry id. This attribute references the "call graph": the set of

. subprograms and entries that are called from either a subprogram, a
package, a task, or an entry/accept. The si calls attribute is
initialized here to be empty. At the completTon of STATINFO, the
set will contain those USED SYMBOL nodes both internal and external,
for declared entities that are invoked in the immediate scope of the
given DIP ID.

In Ada, it is common for the same entity to have more than one
declaration point and therefore multiple DEF ID nodes. The
attributes created by STATINFO have different values in general for
each of these nodes. (For example, the call graph for a procedure
specification in simply the set of functions invoked in the header,
whereas for the procedure body, the call graph also includes
entities called from the body.)

3.3.2.2.2.2 COMPILATION-UNIT

If the LIST XREF option is given, then STATINFO creates the
si external refs attribute for the compilation unit node. This
attribute Tepresents the cross reference to symbols in separate
compilation units. The si external refs attribute is initialized
here to be empty. The value of the ittribute is a set of pairs. At
the completion of STATINFO the first element in each pair will be an
external DEF ID node referenced, and the aecond element will be the
set of all UTED SYMBOL ndoes in this compilation unit that refer to
the external noae.

3.3.2.2.2.3 block stm, subprogram body, package body, task body

Each of these nodes represents a block or body over wbich the
OPTIMIZE pragma has an effect. STATINFO creates the si opt level
attribute in the node, whose value is in the enumeration set TNONE,
SPACE, TIME), initialized to the value of the OPTIMIZE compiler
option. At the completion of the processing of the subtree rooted
at the node, this attribute value will be that given in an OPTIMIZE
pragma contained in the block or body, if any such pragma is
present. Thus an explicit pragma overrides the compiler option.

Each of these nodes also represents a scope that will be
annotated with a record of non-local variables and constants that
are referenced, provided the LIST XREF option is given. STATINFO
creates the si global refs attribute, initially empty. At the
completion of the procesing of the subtree rooted at the node, this
attribute value will be the set of OBJECT ID nodes declared outside
the scope but referenced within, with in indication for any such

node that is used in a "store" context.

52

*INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840



. -. o-,

B5-AIE(l) .COMP(l)

3.3.2.2.2.4 package-decl

STATINFO sets the si opt level attribute in the node,
initialized to the value of the -OPTIMIZE compiler option. This
value is then constant, since the OPTIMIZE pragma cannot appear in a
package declaration.

3.3.2.2.2.5 pragma-decl

If the pragma is an OPTIMIZE pragma, then STATINFO checks that
an OPTIMIZE pragma has not previously appeared in the current block
or body (if it has, then this pragma is ignored and a warning
message is produced) and then copies the value of the OPTIMIZE
pragma parameter to the si opt level attribute of the enclosing
block or body.

3.3.2.2.2.6 USED-SYMBOL

If the XREF LIST option is given, then STATINFO adds the
referenced node to the appropriate attribute:

(1) If the corresponding DEF ID node is in the current
compilation unit, then the USED SYMBOL node is added to
the si refs attribute for the DEF_ID.

(2) If the USED SYMBOL node represents a called entity, then
the corresponding DEI ID node is added to the si-cal.s
attribute for the unit-containing the call.

(3) If the corresponding DEF ID is in a separate compilation
unit, then it is added t7 the si external refs attribute
for the current compilation unit node.

(4) If the corresponding DEF ID is an OBJECT ID declared in a
scope containing tHe current subprogram body,
package body, task body, package dec, or block stm, then
it is added to the si globalFefs attribute -for this
current unit, along with-an indication whether the use is
in a "store" context (target of assign stm, or an actual
in out or out parameter).

3.3.2.2.2.7 STM

STATINFO creates the si labelled attribute in the STM node.
This attribute value will b TRUE if and only if the STM is the
target of a goto statement.

53

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840



B5-AIEW .COMP(l)

3.3.2.2.2.8 NAMEEXP

STATINFO creats the si context attribute in the NAME EXP node,
whose value is taken from the enumeration set (VALU! CONTEXT,
ADDRESS CONTEXT, PARAMETER CONTEXT, FLOW CONTEXT). FLOW CONTEXT
will be-set for a node appearing as the exEpression in an iT stm or
exit stm or as the left operand to a SHORT CIRCUTT EXP.
ADDRESS CONTEXT will be set for a node appearing as the destination
of an issign stm, as the name in an indexed, selected, and slice
node. PARAMETER CONTEXT will be set for a node appearing as an
actual parameter To a subprogram or entry call. VALUECONTEXT will
be set in all other cases.

• - . 3.3.2.2.2.9 record.type

STATINFO crests the si variant index attribute (a Boolean),
TRUE if the record type is for a variant record whose instances are
to be represented using variant indices for tag checking (see
3.3.2.3.2.1.2). This attribute is used by the STORAGE phase of the
compiler.

3.3.2.2.3 Outputs

STATINFO does not perform a tree transformation; rather, it
adds new attributes to nodes. The following summarizes the new
attributes. Each attribute value is stored in the program library.

3.3.2.2.3.1 DEF.ID

(1) sirefsa used by LISTER.

(2) si calls (for procedure id, function id, defop,
paMcage id, task id, variabTe id for a tasE object, and
entry i3); used by LISTER.

3.3.2.2.3.2 COMPILATION-UNIT

(1) si external refs; used by LISTER.

3.3.2.2.3.3 ITEM

(1) si opt level (for subprogram body, package-body,
task body, package decl), used by EXPAND, FLOW.

(2) si global refs (for subprogram body, package-body,
*'.. task body, package decl) r used by LISTER.

54

* INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ( (617) 661-1840

....



BS-AIE(l).COMP(l)

3.3.2.2.3.4 STM

(1) si opt level (for block stm): used by EXPAND, FLOW

(2) si labeled; used by EXPAND

-, (3) si-globalrefs (for the block stm): used by LISTER

3.3.2.2.3.5 NAMEExP

(1) sicontext; used by EXPAND

3.3.2.2.3.6 TYPE-SPEC

U) si variant index (for record type); used by STORAGE

3.3.2.2.4 Special Requirements

STATINPFO will process 24000 statements/minutes provided that
the LIST NCDREF and OPTIMIZE NONE options are given, no OPTIMIZE
pragmas appear in the unit, and the compiler is configured so that
the tree part of DIANA is not paged.

3.3.2.3 STORAGE

STORAGE processes the DIANA for each type, subtype, object,
component, subprogram signature, subprogram body,, package, task,
task type, aggregate, string literal, and all non-built-in function
calls. This list contains entities that have storage allocated for
them. STORAGE annotates the DIANA associated with each of those
entities with a storage information node that records the layout and
use of the entity; i.e., information bound during STORAGE.

STORAGE also adds nodes that can be accessed from the storage
informtion nodes: these describe the layout of any storage
associated with the entity and are called frame descriptors. The
phase derives its name from this binding of a layout for entities.

STORAGE also adds nodes, again reachable via attributes of an
entity's storage information node, which outline how to perform
primitive operations on the entity at run time; these are called

. operation descriptors. The term "primitive operation" is used here
to indicate one of a set of operations sufficient to compose all

,; other operations on an entity.

The storage information nodes, frame descriptors, and operation
descriptors provide EXPAND with a set of primitives. EXPAND can
then transform the compilation unit into an expanded version. The
EXPAND phase and DBUG both use the information about the compilation
unit bound by STORAGE to access the entities in the program. The

'F...55

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMERIDGE. MASSACHUSETTS 02138 e (617) 661-1840

.,.; , -'-...'- ,. - * .- . .. ,.. - -.. .. . -. - .-...*...~. *.*•..* . . . , . . , ... - . - . . . . . .....-



BS-AIEW( .CoMP()

last uu.r of the information bound by STORAGE is STORAGE itself,
which lors up, in previous compiled compilation units the layouts
of entities used in the present compilation unit.

3.3.2.3.1 Inputs

STORAGE takes as input the DIANA for the compilation unit as
augmented by STATINYO. Fbr STORAGE, STATINFO has marked entities as
having features that enable particular optimizations. The only
example of this at present is that record type nodes are marked as
suitable for the variant index optimization (see 3.3.2.3.2.1.2.)

STORAGE visits nodes in the DIANA of the compilation unit with
few exceptions. The significant exceptions are the use id nodes of
typed objects in expressions and the function-call nodes-of built in
functions.

STORAGE visits type spec nodes to bind a layout for type
'4 descriptors and prototype layouts for values of the type (subtype).

Storage visits DEF ID nodes for variables, constants and
components to bind Z layout for the object associated with the
identifier. STORAGE visits HEADER nodes to bind a layout for the
subprogram, and entry call sites. STORAGE visits aggregates, and
string literals to bind the layout of the storage associated with
the object built to hold the literal parts of the aggregate or the
string.

STORAGE scans entities that may enclose other entities;
subprogram bodies, blocks, packages, tasks, and task types. This
scan allows STORAGE to lay out the enclosed entities and in turn to
lay out the parent entity.

3.3.2.3.2 Processing

STORAGE scans the DIANA in a single recursive scan that is

primarily in elaboration order. Since it is possible to use an
entity prior to its full declaration, STORAGE departs from
elaboration order to process a private type's full declaration at
the point it is first introduced.

In scanning the DIANA, STORAGE performs a number of
interconnected tasks7 laying out entities and recording how to
compute primitive operations. Since the layout of a given entity
may require the layout of others (e.g., those embedded in the first

*4 entity or those used in the body of the first entity), a state
I': vector and stack is maintained for snapshotting the state of tasks

in progress when the mechanism of STORAGE recurses.

Typical of entries in this state vector are those present when
laying out a record. Records are processed in two stages. The
record is scanned to collect the layout of each component. The set

56

INTMRMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

*.,'-' "6-" i'"' -, '- - - ,: '" . -'-":.-.- - . ,••• .: .., - " • .- ', -- .-:.::.• - .:. - .:- ... :.-:. , : . : - ::



* - -............... ,.. .: . .t , ;..............

L" .°

B5-AIE(l) .COMP(l)

of component layouts is maintained in the state vector. In the
second stage, each component is assigned an offset in the record
(this activity is known as packing). In processing a record, it is
necessary to push the set of accumulated components whenever a
variant part is encountered. The scan for records, collection of
component layouts, followed by packing, is generalized in STORAGE
and used for all entities that enclose other constructs. Thus
packages, subprograms, and tasks are all scanned to accumulate a set
of enclosed entities and then having laid those out individually,
they are packed into a layout for the immediate enclosing
declarative region.

STORAGE decorates each type with a prototype layout for values
of that type. This prototype is used to guide the layout of objects
of the type. This design allows STORAGE two distinct points in its
processing to address the task of laying out a given typed object:
first, when the type is laid out, when issues local to the type can
be addressed; and second, when the object is declared, when issues
local to the declarative region of the object can be addressed. An
enumeration type will provide a simple example.

Enumeration types are always laid out into a minimum sized bit
field. When objects of the enumeration type are declared, that
minimum sized field may be enlarged to ease accessing. Thus, an
enumeration value which can fit in three bits can be packed into
three bits in a packed record, into a half word when a local of a
subprogram, and into a byte when a component of an array.

This distinction between prototype and actual layout is used
throughout STORAGE. In addition to being used between types and
objects of the type, it is used on other pairs related to each other
in a similar definition. Thus, generics are decorated with a
prototype of the data structure that should be created each time an
instantiation of the generic is created. Subprogram signatures are
given a prototype that is instantiated at each call site.

In the discussion which follows we review each class of entity
in the language. The discussion of array types for example includes
a discussion of array objects, much as the discussion of call sites
is included in the discussion of subprogram signatures.

3.3.2.3.2.1 Tye Declarations

In visiting the DIANA tree associated with a type (subtype),
STORAGE lays out a descriptor for the type and a prototype layout
for values of the type, adopting a minimum descriptor approach to
the creation of descriptors. If an entry in a descriptor can be
recomputed thoughout the scope of the type (subtype), then it is not
entered into a descriptor. Constant bounds for subtypes are not
placed in descriptors and subtypes declared in record declarations
are never given descriptors.

57

INTERMETRICS INCORPORATED * 733 CONCORO AVENUE * CAMBRIOGE, MASSACHUSETTS 02138 • (617) 661.1840

• ~ .. _ & . . . . .A, * .. . . . . . . . . . . .*.. .,. . ..



B5-AIE(1).COMP(l)

For each type and subtype in the compilation unit STORAGE
creates a storage information node. In addition to an attribute
which records the descriptor's layout, STORAGE also fills out
attributes describing how to perform primitive operations on the
type (subtype). Examples of such operations include computing SIZE
and FIRST for a type (subtype), or how to initialize the
descriptor.

When it visits the declaration of an object of the type,
STORAGE annotates that object's DEF ID node with an attribute that,
again, points to a storage information node. There, STORAGE records
the layout selected for the object and how to perform a set of
primitive operations on the object. Examples of such operations are
computing attributes such as SIZE, ADDRESS, and intializing the
object.

3.3.2.3.2.1.1 Scalar Types

Scalar subtypes are all given a descriptor with entries for
each bound, if that bound can not be safely and quickly recomputed
during the scope of the subtype. The storage information node for a
scalar subtype records how to compute those bounds. The Front End
of the compiler must be able to determine some attributes of static
scalar subtypes to enable it to compute static expressions. This
may require certain layout choices to be made during the SEMANTICS
phase. To enable this, the storage phase provides a package of
routines for use by the Front End to process scalar type
declarations.

3.3.2.3.2.1.1.1 Integer Types

In accordance with Ada Language rules, STORAGE selects one of
two built-in types for each integer type: i.e. small integer (a half
word on the IBM 370), or integer (a word). This built-in type has a
layout recorded on it (for example integer is a signed word) and
that layout is given to the new type. Objects of this new integer
type are aways layed out in a frame of that size, independent of
packing.

3.3.2.3.2.1.1.2 Enumeration Types

All enumeration types are treated uniformly- i.e. Boolean
types, character types, and simple enumeration types. Enumeration
types are given a prototype layout which is a bit field as small as
possible (compatible with the range of values the enumeration can
take on even given a representation specification). This prototype
can then be enlarged when objects of the enumeration type are
created.

58H. INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

4 - *. ..



B5-AIE(1).COMP(l)

Some enumeration types also require the creation of a
descriptor that holds a data structure to guide the mappings done in
computing the attributes IMAGE, VALUE, VAL, POS, SUCC, and PRED. As
STORAGE scans the representation clause's DIANA for a given
enumeration type, it lays out this data structure and creates
operation descriptors outlining how to compute those attributes.
This need only be done for each ground type and each type that was
given representation clauses.

3.3.2.3.2.1.1.3 Floating Point Types

For each floating point type, STORAGE selects one of the two
built-in types provided for floating points; i.e. float (a single
word floating point on the IBM 370), and long float (a double word
floating point). The smallest possible floating point is always
selected. An error message is issued if the accuracy requested istoo large.

The storage information nodes associated with a floating point
type have operation descriptors that outline how to compute the many
attributes of a floating point type; MANTISSA, SMALL, etc.

3.3.2.3.2.1.1.4 Fixed Point Types

All fixed point types are a single word long. The position ofthe binary point is selected to be compatible with the accuracy
constraint given on the fixed point type's immediate subtype.
STORAGE will issue an error if it is unable to achieve the accuracy
requested.

The STORAGE information node associated with a fixed point type
has operation descriptors that indicate how to compute the many
attributes of a floating point type: DELTA, WIDTH, IMAGE etc.

3.3.2.3.2.1.2 Record Types

Record types have a descriptor laid out for them that records
the value of subtype bounds in the record's declaration which were
based on expressions that cannot be safely recomputed during the
scope of the record type.

The significant processing done on a record is the scan and
packing of the record's prototype layout that was outlined earlier.
The simple outline given there is complicated by the presence of
variants in the record.

The accessing of a record component in a variant must be
prefaced by a test that this particular variant has that component
present. This test can be very complex. In some cases it is
advantageous to include an additional field in the record to

59

INTERMETRICS INCORPORATED 733 CONCORD AVENUE •CAM1RIOGE, MASSACHUSETTS 02138 a (6171 661-1840



B5-AIE(l) .COMP(l)

simplify the test. This field is called a variant index and it
records which branch of the variant this record contains. The
variant index is then computed once when the record value is
created, the test is then always a simple range check.

A variant record type may be regarded as a tree of variants;
each internal node represents the sequence of component declarations
preceding the variant part, and there is a subtree for each clause
of the variant part. For example, consider the following
declarations:

subtype S is INTEGER range i..20,

!;me T(M,N: S :-3) is

record

Al:

Bl: ...

case M of

when 1 => A2: ...

when 2..5 I 7 -> B2:

case N of

when 2..6 => A3:

when others > B3:

end case7

when others -> C2: ...
D2: ...

end case-

end record;

This produces the tree:

VI2 VI:3

60

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 , (617) 661-1840



B5-AIE(1).COMP(1)

The leaves of the tree are labeled from left to right with Variant
Index (VI) values, and parent nodes synthesize the resulting range.
When an instance of the record type is created, a specific Variant
Index is computed. This index is set in the discriminant
descriptor. When a field is selected, this index is compared
against the range of VI values for the field (this range is present
in the type descriptor). For example, the declaration:

X: T;

results in the Variant Index value 2 (since M and N are both 3).
Thus, only the selections X.B2 and X.A3 are valid; all others raise

:* CONSTRAINTERROR.

The desirablity of the variant index optimization is determined
during STATINFO. STATINFO leaves a flag in the record declaration
marking the choice it made. To avoid adding additional fields to a
record for which the user has given a representation clause,, the
variant index is not always generated. The varient index is also
not generated if tests are already simple.

The storage for disjoint variant parts is overlaid.
Discriminants are packed to be contiguous, to enable block compares
against the discriminants of other record values. Dynamically sized
record components are always placed on the tail of the record to
ease a~cessing of the statically sized components. To ease
accessing any dynamically sized objects, an offset pointer is placed
in the record's static component area.

The operation descriptors generated for a record indicate how
to compute various attributes of the record type (SIZE, for example)
as well as how to access and initialise the descriptor.

Like all entities, the components are also given storage
information nodes. The operation descriptors for those describe how
to initialize each component and how to access them. As part of
that accessing descriptor, the appropriate component present test is
included.

3.3.2.3.2.1.3 Array Typesi

There are never any array type descriptors; array subtype
descriptors may record bounds for the index subtypes. These index
subtype descriptors are identical to scalar subtype descriptors.
The storage information node for an array type records how to index
components in the array.

Array components are instantiated from the prototype of their
value's type in one of two ways, packed or not. Packed arrays are
always laid out to minimize the amount of storage they consume,
leaving only waste at word boundaries.

61

INTERMhrRICS INCORPORATED * 733 CONCORD AVENUE * CAMSRIDGE, MASSACHUSETTS 02138 * (617) 661.1840



BS-AIE(l) .COMP(l)

For nonpacked arrays, bit fields are enlarged to ease
accessing; a 7-bit field is enlarged to fill a byte to allow the
code to take advantage of string manipulating instructions when
accessing the array.

Array objects fall into two classes, statically sized (i.e.,
those whose size is known when STORAGE processes them), or
dynamically sized. Statically sized arrays are instantiated from
the prototype without change.

Dynamically sized arrays are handled differently in records vs
other situations. In records the dynamically sized objects are
placed on the tail of the record. Dynamically sized objects in all
other contexts are allocated on the secondary stack. A pointer to
the object is then placed in the package or subprogram's static data
area.

3.3.2.3.2.1.4 Access Types

Access types have storage associated with them for both a
descriptor and for a collection, if they require it. The descriptor
may contain fields for managing the collection. When STORAGE scans
the declaration of an access type it must lay out that storage.
This is done by creating an instance of a prototype maintained in an
internal catalog that indicates how access types managed by a
particular collection management scheme are to be laid out.

The operation descriptors for an access type describe how to
perform a set of primitive operations that include: allocation,
deallocation, and initializing the collection associated with the
type.

When laying out the accessed values, STORAGE must ensure, as it
does for array elements, that the size of the value is compatible
with its alignment requirements. In addition, particularly small
objects such as bit fields, may be enlarged to allow the collection
management scheme to place the data it needs into unallocated values
(pointers, sizes, etc.).

Finally, having laid out the access type descriptor and the
accessed value, STORAGE must lay out the access value prototype. In
all cases, this is a full word pointer in the IBM 370
implementation.

•3.3.2.3.2.2 Nontyped Entities

The layout of entities other than typed objects is similar to
that of records; i.e. the entity is scarned, a collection of
embedded objects is accumulated, and they are packed into a layout
for the entity. Each such entity's DIANA is decorated with nodes to
record that layout and a set of primitive operations. These
primitive operations include how to compute attributes such as
ADDRESS, or SIZE, as well as how to initialize the data structures
of the entity.

62

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

r. . % • " " . " . " . - "



L . IL i . .o ° '," - "4 ". , . . . -.. . . , . . .4 r . . - .

B5-AIE(l).COMP(l)

3.3.2.3.2.2.1 Packages

Each library unit package has as many as three areas of storage
associated with it; a read-only area that holds constants and
literals, a read-write area that holds statically sized globals, and
a portion of the secondary stack of the package's enclosing task
where objects whose size is not known until elaboration/run time can

"* be allocated.

Packages embedded within a library unit package have their
storage merged with that of their parent. Having scanned such a
package, STORAGE skips packing the set of embedded entities and
instead "hoists" them into the set of entities of the parent.

3.3.2.3.2.2.2 Subprograms

A subprogram has two kinds of data areas associated with it,
globals and locals. There are two global data areas: a read-only
data area and a read write data area. The locals area divides into
three parts: a call site, an area for locals that are statically
sized, and one for locals whose size is not known until run time.

The global data areas of a subprogram are hoisted into the
global data areas of the compilation unit in the same way that
embedded packages have their global data areas hoisted. If the user
has specified the pragme STATIC for the subprogram then STORAGE
merges the locals with the read.write global data area.

3.3.2.3.2.2.2.1 Signatures and Call Sites

The call site of a subprogram is referred to as a frame header.
STORAGE lays out the frame header when it scans the signature of a
subprogram. This region has two components. The first is the
parameter area. The second is Allocated for the Run Time System
which uses that area for linkage pointers and for the register save
area.

Having visited the signature of a subprogram, STORAGE may then
allocate storage for its call sites. These are laid out by
instantiating the frame header in the same way a prototype value
frame for a record type is instantiated. If the user has specified
the pragma STATIC for the subprogram, then STORAGE does not
instantiate a new call site but sets up the association to the
static call site of the subprogram.

3.3.2.3.2.2.2.1.1 Layout of Parameters

STORAGE treats return values like OUT parameters for layout
purposes. The exception to this rule involves subprograms that
return variable sized return objects. These are not identical to

63

*. INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661.1840
| * ..



BS-AZE( 1 .COMP(l)

OUT parameters since an OUT parameter will always have an actual of
known size prior to the call. Variable sized return objects are
allocated on a secondary stack by the subprogram and deallocated by
the caller following the return.

The layout process for parameters is only roughly similar to
the layout process for a record. Like the processing of a record,
the set of parameters is scanned and, for each parameter, a layout
is instantiated based on the prototype value layout recorded on the
storage information node of the parameter's type. Unlike the record
component instantiation process, the parameter instantiation process
can generate a layout very different than that given for the
prototype value.

2 Dynamically sized objects are passed by reference. A
descriptor must be created for such objects. The subprogram's body
will use the descriptor to enforce constraint checking. For an

.. unconstrained record parameter, this descriptor consists of a bit,
used to indicate if the value passed was constrained or not. For an
unconstrained array parameter, a descriptor of the array's bounds

V must be created.

Objects whose size is statically known to the subprogram are
divided into two classes, small and large. Small objects, which

" include all scalars, access values, small records, and small arrays,
are passed by value. Large objects are passed by reference. Thq
boundary between small and large is 64 bits.

When STORAGE lays out a call on the subprogram, it must again
consider each parameter. For those with descriptors being passed by
reference, it determines if a descriptor already exists; if not, it
must lay one out in the caller's locals. It then must record how to
initialize that in all cases except the descriptor of a dynamically
s ized return value.

The storage information node for a parameter, in addition to
describing how it is laid out in the frame header, also indicates
how to initialize and finalize the parameter. For values passed by
copy this includes doing the appropriate copying, for parameters
that use the secondary stack, it includes doing the appropriate
allocations and deallocations.

3.3.2.3.2.2.2.2 Subprogram Bodies

The storage associated with a subprogram's locals is called the
subprogram frame. One part of that storage is the frame header,
discussed in the previous section. The frame header is allocated
and initialized by the caller. For the IBM 370, it is advantageous
to keep stack frames statically sized. To achieve this, dynamically
sized locals are allocated on a secondary stack. That same
secondary stack is used to hold dynamically sized return values.

64

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ( (617) 661-1840

, .. :,- , * *..,. , , V %,*..,. .... *.. . . . . .. ., .. . . . . . ,. . " . .



B5-AIE(1) .cOMP(l)

Once subprogram frames are statically sized, then one can have
only a single stack frame allocation in each subprogram's prologue.
To allow this, all statically sized data structures local to the
subprogram must be laid out together and allocated once. In
particular, the call sites of any subprograms called from within the
subprogram being laid out must also be laid out.

STORAGE processes the body of a subprogram in a single scan
that accumulates the layouts of any enclosed entities; local
variables, and constants, type (subtype) descriptors, enclosed
blocks, current exception handler slots, call sites, and aggregates
built local to the subprogram. For each such entity, a layout is
generated, .by instantiating a prototype layout.

Storage is overlaid for those entities declared in disjoint
blocks. All call sites are laid out in a block of storage at the
tail of the subprogram frame, known as the call area. That area is
the size of the maximum sized frame header of any called subprogram.

3.3.2.3.2.2.3 Aggregates

STORAGE processes aggregates to determine if storage is
required for them and, if so, to lay out that storage. In cases
where the aggregate is the initial value of a global it may not be
necessary to allocate separate storage for the aggregate.

Storage allocates large literals to hold aggregates in one of
two ways. For record aggregates, an exact copy of the value denoted

1 by the aggregate is created. For array aggregates, a literal is
created for each entry in the array aggregate that describes a
region of the array.

3.3.2.3.2.2.4 Tasks

The layout of a task is similar to the layout of a subprogram.
Some part of the storage laid out for the task is provided to allow
the Run Time System, which is responsible for managing tasking, to
maintain the data structures associated with the task.

For each tasking construct (task or task type declarations,
entry declarations, accept statements, select statements, and entry
calls), STORAGE allocates an instance of a data structure designed
as part of the Run Time System for that task.

If the user has specified the pragma MONITOR for the task, then
the task is laid out so as not to require a stack. The details of

how the task is laid out in this and the normal case are described
in AIEW().KAPSEW().

65

INTERMITRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



BS-AIE(l) .COMP(l)

3.3.2.3.2.2.5 Generics

The GENINST phase of the compiler selects the mechanism used to
implement a particular generic. In processing a generic
instantiation, STORAGE need only instantiate a copy of the prototype
for the table that parameterizes any shared code body for used by
the instance.

3.3.2.3.3 Outputs

nSTORAGE creates, for every entity in the Ada compilation unit,

a node that reflects the information that STORAGE bound -about that
" entity. These nodes are then associated with existing nodes in the

DIANA that declared those entities. These per-entity nodes are
called storage information nodes.

A single DIANA node may generate multiple entity nodes: a type
declaration generates a node for the type and one for the subtype.

. Some DIANA nodes may only occasionally generate a new node, an
OBJECT TYPE node, for example, only generates a new subtype
information node if a new subtype is being defined.

All of the additions made by STORAGE to the DIANA tree are
added to the program library record of the compilation unit. This
enables other compilation units to use entities. declared in this

compilation unit without having to simulate" the choices that
STORAGE made in some previous compilation. The attributes of a
storage information node record the layout of entities in frame
descriptors and indicate how to perform primitive operations on
those entities in operation descriptors.

There is extensive sharing in the output of STORAGE. All
objects of a type may share the same frame descriptor. All arrays
of a given type will share the same operation descriptor outlining

:N. how to index them.

3.3.2.3.4 Special Requirements

STORAGE spends the vast majority of its time in the processing
of declarations. To enable STORAGE to process the compilation unit
at 24000 statements/minute, we assume that the compilation unit has
no more than 15, of its nodes in declarations.

3.3.2.4 EXPAND

The purpose of the EXPAND phase is to lower the semantic level
of the program tree, making it more machine-oriented and less
Ada-specific. This has the effect of exposing address arithmetic
for subsequent flow optimization, as well as localizing to this
phase many of the run-time system decisions. The output of EXPAND
is the low-level BILL tree.

66

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 ( (617) 661-1840

. .
•

.. ,

III i li ll . ... .... ...



BS-AIE(1) .COMP(l)

EXPAND transformations fall into several categories, as
described below.

(1) Data references: an explicit contents node appears when a
value is to be fetched from an address. Each address
computation is transformed into an explicit arithmetic subtree,
both for local/up-level variable refetences (up-level
addressing is the accessing of objects declared in enclosing
subprogram frames) and for array/record components. Thus,
EXPAND produces a tree that reflects stack versus static data
allocation and also the placement of data within call frames
and static storage. Ada attributes (such as 'FIRST), are
expanded into the appropriate data references.

(2) Object creation: declarations, allocations, initializations,
an aggregates are mapped to lower-level constructs. Data that
are implicit at the source and DIANA level, such as subtype
constraints, are mapped to explicit creation constructs.

(3). Subprogram calls and returns: a closed call is transformed
"i Into a subtree t makes explicit the parameter binding
choices (copy vs. reference). Stack manipulation by caller
and calls. is made explicit for closed calls. An inline call
additionally results in the production of a block for the
subprogram body.

(4) Checking: "checking" subtrees are generated for those nodes
that implicitly require run-time checks (such as assignment,
indexing, variant selection, and nested subtypes). Declarative
information and the SUPPRESS pragmas are used to avoid the
generation of unnecessary checking. More complete optimization
of constraint checking is performed by the FLOW phase.

(5) Tasking: nodes corresponding to Ada tasking primitives are
transformed to lower-level constructs and calls on run-time
support routines.

3.3.2.4.1 Inputs

The input to EXPAND is the DIANA form as augmented by previous
phases in the Middle Part. Information added to the "symbol table"
nodes in DIANA determine the nature of the expansions of the DIANA
program tree.

3.3.2.4.2 Processing

EXPAND performs a top-down traversal of the program tree. A
summary of the transformations, keyed to Ada language constructs, is
given below.

67

INlERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840



B5-AIE(l).COMP(l)

3.3.2.4.2.1 Lexical Elements

A catenation involving character strings and character type
elements is folded into a single character string. The following
pragmas are interpreted by EXPAND:

(1) CONTROLLED

(2) MARK RELEASE - see AIE(l).KAPSE(l)

(3) STATIC - this pragma has the form:
pragma STATIC (subprogramname (,subprogram name I).

This pragma, if given, must appear in the same declarative part as
the named subprograms. The effect of the pragma is that the
call frame for each of the named subprograms is allocated in static
storage. The pragma is a user assertion that the subprogram is
non-recursive and non-reentrant. If the subprogram contains dynamic
size local data, a compile-time warning is issued and the compiler
reserves as much space as is maximally required for the type (this
may cause STORAGE OVERFLOW at run time). The maximum size of these
dynamically sized-objects is computed like the maxinmm size of an
unconstrained record type.

(4) INLINE- see [Ada LRM, Section 6.3]. If an INLINE
subprogram calls itself, then a warning is issued and the
pragma is ignored. Further discussion is in 3.3.2.4.2.5
below.

(5) SUPPRESS - see IAda LRM, Section 11.7].

(6) MONITOR - see 3.3.2.4.2.8 below.

(7) INTERFACE - see AIE(1).PIF(1).

3.3.2.4.2.2 Declarations and Types

EXPAND processes declarations both by interrogating attributes
added to the symbol table nodes by STORAGE, and by generating call
nodes for the appropriate size or initialization routines.

The new symbol table attributes for a declared data object give
the call-frame position for the data value (if the object has
dynamic size, then the position of the pointer to the value) and the
call frame position (or simply the value, if static) for the subtype
descriptor.

For type and subtype symbol table nodes, new attributes give
the call frame position for the type and subtype descriptors if
run-time descriptors are required.

68

INTE1RMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840



~~- - --- -- - . _.-~ --_

B5-AIE(i) .COMP(l)

An object declaration at run time results in the reservation of
space and, possibly, an initialization. If the object has static
size, then its space .has been allotted in the fixed part of the call
frame. Otherwise, the declaration node (variable decl or
constant decl) is mapped into nodes that call the size function for
the type, reserve stack space for the required size, assign the
object pointer in the pointer area, and perform initialization of
the subtype descriptor and, if an initialization expression was
supplied (explicitly or implicitly), the object value.

The ELABORATION CHECK processing (that a body has been
elaborated before a call on the subprogram) is implemented by EXPAND
in the following fashion; checks for task body elaboration before
task activation, and generic unit elaboration before instantiation,
are handled analogously.

If a subprogram specification is given (that is not part of the
body) and if calls on the subprogram may be evaluated or executed
before the body is elaborated, then a Boolean variable
("BODY ELABORATED") is initialized to FALSE as the run-time effect
of the-subprogram specification. This variable is set TRUE as the
run-time effect of elaborating the body. Any call on the subprogram
that may be evaluated or executed before the body is elaborated is
expanded to include a test of the BODY ELABORATED variable. If the
variable is still FALSE, then PROGRAM ERROR is raised.

If the pragma SUPPRESS (ELABORATION CHECK) applies to the scope
containing the declaration of the subproram specification, then the
BODY ELABORATED variable is not created. If this pragma applies to
a s7cope containing invocations of a subprogram that has a
BODY ELABORATED variable, then no check is performed at the
invocations. For a subprogram invocation occurring within or after
the body, no check of the BODY ELABORATED variable is generated
since none is necessary.

3.3.2.4.2.3 Names and Expressions

Names are expanded so that objects in non-address contexts are
descendants of contents nodes, address arithmetic is explicit (both
for up-level addressing and array/record components), and checking
nodes are introduced. Up-level addressing is implemented by
traversal of static links.

In performing address expansion for array indexing, EXPAND does
some condensation based on its knowledge of the local properties of
the node. For example, the indexed node for A(I,I), where A is an
array (l..10, l..10) of CHARACTER, results in the address expression
(A-1i) + 11 * contents(I) where is a variable. This is done ifthe si optimization level attribute is TIME or SPACE.

69

INTERMIRRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 - (617) 661-1840

.4

a * - *. h . .- * *' **



B5-AIE(l) .COMP(l)

Aggregates, in the general case, are implemented as
temporaries stored in the stack. In special cases, EXPAND
implements optimiizations recorded by STORAGE. If each component
value in a record aggregate is a static expression and if the
constraints on the subtypes of the components in the record type
declaration are all static, then the target representation for the
aggregate is stored in the literal pool. In the case of an array
aggregate, if an others choice is present and a static expression
then its value is assigned to each array component and then the
individual non-others components are assigned. Except for cases
such as packed bitstrings, a discrete range occurring as a choice is
mapped, in general, into a run-time for loop. If an aggregate
occurs as the initialization expression for a constant or a
variable, then no separate temporary is reserved for the aggregate.

When the value of an expression must be used more than once in
an expansion (for example, an index expression for a packed array is

* -required to compute both the byte and bit offsets), the first use is
replaced by a "forced cse create" node, and subsequent references
become "forced cse use" nodes. The acronym "cse" denotes "common
sub-expression'.

3.3.2.4.2.4 Statements

. The principal expansion occurs for the assignment statement.
Constraint checking, when necessary, is made explicit, and the
assign node is replaced by a store node whose descendants give the
location of the target and the value of the source. In general, the
location of the target requires two pieces of information: (1) the
starting position (byte address and bit offset); and (2) the size of
the target (in bytes or bits.) If the si-optimization level
attribute is TIME or SPACE, an array assignment whose source is a
catenation is optimized, where possible, to avoid generation of an
extra temporary.

When a block resulting from an inline expansion is created by
EXPAND, the local variables and temporaries required by the block
are reserved in the enclosing frame.

In preparation for FLOW optimizations, a loop statement with an
iteration clause is transformed into a test of the iteration
condition followed by a loop with an exit test of the condition at
the bottom of the loop. For example,

while cond loop stm-seq end loop;

becomes

if cond then
loop
stm-seq
exit when not cond;
end loop;

end if;

70

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

l | dm lk
' , j '

bai. bm r- er ,# r. - ". . . . .. . . ,' , :



SS-AIE(l).COMP(l)

A for loop is treated analogously. This tranformation is useful
because the test of the condition before loop entry can frequently
be optimized away, and because an explicit site is created (the
point before the loop) for the movement of loop invariant
computations.

3.3.2.4.2.5 Subproqrams

As a result of processing a subprogram declaration, EXPAND
produces BILL trees for default expressions.

The processing of a subprogram body yields the size of the
call frame for the subprogram. This size is stored as an attribute
of the proc id or function id node. It may be larger than the size
predicted by STORAGE, sina EXPAND may create temporaries (e.g., for
catenation results). The static nesting level of the subprogram is
likewise stoned as an attribute.

EXPAND implements the *copy" vs "reference" binding mechanism
chosen by STORAGE. When a subprogram is passed (as a result of
generic optimization) its address, static link, and stack frame
fixed-part size are copied. If a formal parameter is implemented by
reference, then an extra contents node occurs at each reference to
the formal parameter in the body.

A call on a closed subprogram is expanded so that the caller
reserves stack space for the called subprogram's frame header.
Next, the actual parameters (or their addresses) are assigned to
formal parameter nodes, and constraint checking occurs. (Thus any

* exception raised will be handled by the caller, not the callee.) In
the event of a copy-out or copy-in-out parameter, the calculated
address is made into a forced cse create, so that it is the correct
target after the procedure returns. The EXPAND phase will pass
parameters in the call frame.

A call on an inline subprogram *is expanded into a block
(value-returning if a function), preserving the semantics of the
parameter binding as well as the semantics of up-level references
within the subprogram. Formal parameters and local variables for
the subprogram become local variables (with respect to lifetime but
not name visibility) of the enclosing scope. The representation
used for the inline body in the expansion is the tree produced by
EXPAND. If a call on an inline subprogram is compiled before the
body has appeared (e.g., the subprogram specification may occur in a
library package) then a closed call is compiled and a warning
message is issued.

if a pragma specifies a subprogram as static, then the call
frame for the subprogram is reserved in static storage. However,
any object initializations within the subprogram are carried out at
run time at each invocation.

71

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

"| . ... . . . .... ..* - *; :. . .. .~~-. -. - -- 4-



BS-AIE(l) .COMP(l)

3.3.2.4.2.6 Packages

Storage for package data is referenced from the stack frame for
the enclosing unit. This gives a consistent approach to packages,

. even when they occur as library units or subunits.

3.3.2.4.2.7 Visibility Rules

A renaming declaration is transformed so that the necessary
elaboration and constraint checking occur. When an object (or
component) is renamed, a store node is generated to assign the
address of the renamed entity.

3.3.2.4.2.8 Tasks

Tasking constructs are expanded into calls of run-time system
routines. Rendezvous are executed in the stack of the caller. If
the pragma MONITOR(T) is specified for a task or task type T, code
outside the accept statement in the body of T is also executed in
the stack of the caller. See also AIE(1).KAPSE(l).

3.3.2.4.2.9 Exceptions

The raise node is transformed in general into a call on the
run-time Raise routine, and handlers are expanded into a sequence of
statements. See also AIE(l).KAPSE(l).

3.3.2.4.3 Outputs

The output of EXPAND is a new, low-level program tree (BILL).
EXPAND does not modify its input tree. The structure of BILL is
defined in AIE(l).COMP(l).BILL(l).

3.3.2.4.4 Special Requirements

EXPAND will process 8000 statements/minute, assuming that the
compiler is configured such that the tree part of DIANA is not
paged. EXPAND is produced in Ada by the Bonsai processor that reads
a pattern-matching notation as described in AIE(l).MGS(l).

.. 3.3.2.5 UTILITIES

The UTILITIES package contains a Middle Park Driver called from
the compiler driver, and common routines required by the Middle Part

-: phases. These will be defined when the lower level structure of the
phases is established.

72

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIOGE, MASSACHUSETTS 02138 * (617) 661-1840

4 - . .". 4"- . o * . - . . , . . . , . • -. . - - - , - , - , - . 4 . . .



B5-AIE(1).COMP(1)

3.3.3 Back End

3.3.3.1 FLOW

The purpose of the FLOW phase is to perform target machine
independent optimization. The name FLOW is used to denote the
control and data flow analysis that is performed in conjunction with
optimization. Both inter-procedural (flow due to subprogram calls)
and intra-procedural (flow within subprogram) data flow analysis are
performed. The results of flow analysis are used to perform the
following optimizations:

(1) Constant propagation
(2) Redundant constraint check elimination
(3) Constant folding
(4) Elimination of unreachable code
(5) Movement of loop invariant code out of loops
(6) Redundant computation elimination
(7) Reducing imultiplications within loops to additions
(8) Algebraic simplification of expressions and statements

Beside these optimizations, FLOW performs three computations
needed by later compiler phases. FLOW computes the set of possible
addressing modes (i.e., where the datum may be stored and how it
might be addressed). It also labels the possible branches that
boolean operators may take for short circuit evaluation of the 'and
then' and 'or else6 operators. FLOW marks redundant expressions,
loop parameters, formal parameters, created objects from strength
reduction, and expressions moved out of loops so that the later
phase, VCODE, can assign them a temporary name and TNBIND can
allocate them to a register through the loop. See the phases VCODE
and TNBIND for a discussion of temporary names.

FLOW considers each unit within the compilation unit to be like
a subprogram. Packages contained in other units have been
eliminated by EXPAND." Since the effect of elaborating library
packages is the same as a call to initialize their data, such
packages may be treated as subprograms. Tasks, with their
corresponding entry names, are considered to be one unit which is

- handled much like a subprogram. Hence the rest of this discussion
will deal with subprograms with the realization that packages and
tasks are handled similarly.

The FLOW phase design is based on optimizations that are
allowed by the Ada semantics. The optimizations are constrained by
Ada Language rules (Section 11.6 of the LRM) and by the effects of
exceptions. Briefly, the rules allow the elimination of redundant
expressions and the motion of expressions from loops7 however they

a severely limit the motion of assignment statements or any other
storage-modifying statement whenever an exception might occur.
Since exceptions may occur in most Ada contexts, we have chosen not
to implement optimizations that can affect the order of
assignments.

i.%

73

* 1PTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

* . * *..* ,.r .. .. ,. ,... ... f.;.:i.. .?.i.. *. *...*... . *.i~,. S ,,. .,, . ... .' ** * * . , . .



B5-AIE(l) .COMP(l)

3.3.3.1.1 Inputs

The major input to FLOW is the BILL intermediate tree generated
by EXPAND. This tree consists of two parts. The first part is the
representation of the compilation unit. It is also referred to as a
BILL tree. The second part is the symbol table encoding all objects
that have assigned storage and their relationships to other objects.
This table is referred to as the BILLET (or BILL Environment
Table).

The FLOW phase also receives (as an attribute of the BILLET
entry for the compilation unit) the DBUG compiler options as input.
The optimization level, as determined by pragmas and the OPTIMIZE
compiler option, appears as an attribute in BILL blocks and bodies.

3.3.3.1.2 Processing

The FLOW phase is organized as three passes over the BILL tree.
Each pass performs the same optimizations, making certain
assumptions concerning loops and subprogram calls. This is
necessary since the optimization techniques used need to know both
the effects of loops before processing loops and the effects of
subprograms which may not be available until the completion of the
first pass over the entire BILL tree for the compilation unit.

The first pass over the BILL tree performs all functions
assuming that any loop modifies all objects described in the BILLET.
During this pass, it determines which objects may actually be
modified in each loop. When a subprogram call is encountered, two
assumptions are possible. If the subprogram being called has
already been completely analyzed during this pass (and all of its
effects on other subprograms and:data are known), then this computed
information is used to describe the effects of this call on local
data flow. If all of the effects of the called subprogram are not
known, the call statement is added to a call graph describing
subprogram invocation for the compilation unit. The call is assumed
to modify all objects that are visible to both the called and
calling subprogram.

At the completion of the first pass through the entire
compilation unit, FLOW has created a call graph indicating all calls
to subprograms whose entire effects were unknown at the point of
call. This includes recursive subprograms and subprograms whose
order of declaration prevented knowledge of effects. During the
first pass, FLOW also has gathered, for each subprogram, the set of
objects (BILLET entries) that were directly modified by the
subprogram. By iterating through the call graph until
stabilization, the effects of a called subprogram will be included
in the local effects of the caller. Thus, at the completion of the
first pass of this computation, the effects of all subprogram
invocations will be known.

74

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE 9 CAMBRIDGE, MASSACHUSETTS 02138 a (617) 661-1840



B5-AIE(1).COMP(1)

The first pass of FLOW is performed on each subprogram in the
compilation unit in sequence. Passes two and three (and the rest of
the Back End of the compiler) are applied to each subprogram before
processing the next subprogram in the compilation unit.

The second pass through the tree is performed if there was
either a loop statement or a subprogram call with unknown effects in
the subprogram. Thus, the pass may be performed for some of the
subprograms in a compilation unit and not for others. During this
pass, the correct set of objects possibly modified by a loop
statement is used to indicate the effects of the statement and the
correct effects of all subprogram calls are used.

The third pass will be performed if the second pass moves an
expression out of a loop, generates temporary objects for reducing
multiplication to additions, or improves its knowledge of the value
range of objects.

The above discussion describes the assumptions which are made
on each pass. The rest of the processing description will describe
how each pass over the tree is performed.

Each pass is an execution order tree walk of the BILL tree.
During this tree walk, the modification sets of each statement and
expression are computed. This information is recorded in the BILL
for loop statements and the entire body of a subprogram; however, it
is used during the tree walk to determine which expressions and
assignments affect the values of other expressions and assignments.
The techniques for recording this information will now be described
together with the optimizations performed.

These descriptions are written as if each optimization will be
applied, whenever applicable. This is not the case. Before any
optimization is applied, the modified tree and the original tree are
compared by a machine-dependent payoff function. This function
gives an estimate of the benefit that will occur from the
transformation. If the benefit is large enough, the optimization
will be performed. This can give only approximate results since
performing an optimization can have both positive and negative
results. For example, eliminating a redundant expression can
decrease the number of instructions needed if there are sufficient
registers in the target machine to hold the result. However, if the
registers are exhausted, then such an elimination might be a
pessimization.

(a) Value Numbering. Constant propagation, redundant expression
elimination, and the first part of constraint check elimination are
performed using value numbering. Value numbering consists of
assigning a key to each expression (typically a number hence value
numbering). This key only indicates the value of the expression, it
is not the value of the expression. Two expressions with the same
value number must have the same value. The value number of each
expression and object is stored in a table called the available

75

W1IAMMICS INCORPORATED • 733 CONCORD AVENUE a CAMIRIOGE, MASSACHUSETTS 02138 (617) 661-1840



B5-AIE(l) .COMP(l)

expression table. The index into this table is either the name of
the object or the operator and the value numbers of the operands of
an object. At each expression node in the BILL tree, the expression
is found in the available expression table. If it is already there,
then the expression is redundant. If it is not there, the
expression is entered. An indicator is kept to indicate whether
this expression or object in the available expression table is
constant. During the expression lookup, if the expression has
constant value the tree is replaced by the constant. During value
numbering, various relational expressions involved in checking
constraints may be eliminated, thus eliminating the constraint
check.

The available expression table is maintained with auxiliary
data structures that indicate the effects of entering compound
statements, performing a split or fork in the control flow, or
performing a join of two control flows. This information is
maintained assuming structured control statements in the subprogram.
The only effect of the unstructured 'goto' statement is on labelled
statements which are the destination of a 'goto' statement. At such
a statement, we assume that every object that can be modified by
this subprogram has been modified directly before this statement.

* The modification information is used to keep the available
expression table accurate. When an assignment statement, subprogram
call, or any other statement which can modify an object is
processed, the value number for each object modified must be changed
to indicate that all expressions involving this object as an operand
are invalid.

(b) Constant Folding Whenever the value of an expression can be
•etermined at 3ci;-time using value numbering the expression is

splaced by its value. Complex statements involving this expression
will also be simplified. Thus an 'if' statement with a conditional
expression having value true will be replaced by its 'then' part.

(c) Code Motion. Any expression whose operands are not modified in
a loop n whch is computed each time through a loop is called a
loop invariant expression. Such expressions can be precomputed
before the loop. To do this, each expression in the available
expression table is assigned a level number. This level number is
the maximum level number of each of its operands. The level number
of an object is the loop nesting level of the current assignment to
that object. The level number of an expression indicates the loops
out of which that expression can be moved. If this expresion is on
every path from the beginning of the loop, the expression will be
moved to a point prior to the loop body. The EXPAND phase has
recast loop statements so that the body of each loop statements in
the BILL will be executed at least once. Hence, this code motion
will introduce no extraneous exceptions.

76

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 * (6171 661-1840



B5-AIE(l).COMP(l)

* When FLOW decides to move an expression out of a loop, a copy
* of the expression is inserted before the loop and is marked to

signal VCODE that a TN should be assigned to it for later register
allocation. The next pass through FLOW (the second or third pass)
will eliminate all uses of the expression inside the loop by
redundant expression elimination.

(d) Alebraic Simplifications. During the tree walk, each
expression will be sinplified-by applying algebraic identities.
This will be done only if none of the operands can have side
effects, such as function calls. Such optimizations as replacing
A*O by 1 are included here.

(e) Strengt Reduction. During the processing of a loop body, FLOW
maintains a list of itiplication expressions where one of the
operands is an object and the other is a loop invariant expression
(see code motion section) and the multiplication occurs on every
path from the beginning of the loop body. If the object involved is
modified once in the loop by simple incrementing or decrementing by
a loop invariant expression, the compiler will introduce a new
object to maintain the value of the multiplication. This object is
initialized before the loop and is incremented following the

. modification of the original object. All occurrences of the
multiplication are replaced by this new object (hence, the
multiplication has been replaced by a repeated addition). If all
references to the original object have been eliminated, the object
will not be initialized before the loop. The loop exit test may
also be eliminated if the newly created object can be used in place
of the original one.

(f) Constraint Check Elimination. FLOW maintains a table recording
the Value range -3-Wjects in the BILLET and indicating whether an

4
I  access variable is not null.. This table is also maintained across

forks and joins in the control flow. Here the effects of two
separate paths at a join are combined rather than discarding the
effects of both as in the available expression table. For range
information, the ranqe at a join is the union of the ranges on each

* path. For access variables, the non-null status of an object is
true if it is non-null on both paths reaching the join.

At a fork in control flow, the range information for each path
is modified to indicate the reason for the fork. Range information
for a loop statement is maintained with the modification
information. During the first pass, worst case estimates are used
for the value range of objects. During subsequent passes, the
computed range information at the end of the loop body (from the
preceding pass) is merged with the value range information entering
the loop. This gives range information at the beginning of the loop
body.

If the range information for an object indicates that a
constraint is redundant, the constraint check is eliminated. In any
case the range information from the constraint check can be used to
improve the range information for the constrained object.

, 77

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIOGE, MASSACHUSETTS 02138 * (6171 661-1840



B5-AIE (1) .COMP(l)

(g) Addressing Modes. FLOW estimates the ways a particular value
can b addresseduring code generation. This is done using a hash
table generated by the code-generation table builder. This table is
searched using the operator and the sets of addressing modes of the
operands as a key. The result of the search is the set of
addressing modes for the tree node. There are few possible
addressing modes sets, so the sets will be identified by a small
integer indicating which set rather than a bit string.

(h) Control Flow. During the first tree walk, tho control flow of
the rande gen ,or else' and dnot operators is identified for
later code generation. This is done during the top-down tree walk
by recognizing the contexts in which such operators occur and
assigning indicators for machine labels as attributes of the
expressions and statements involved.

(i) Expression Reorderin.. During each of the three passes over
the tree, the registir complexity of each expression is estimated.
This estimate is made using a simple model of code generation where
each value is computed in a register, while objects may be in
registers or memory. Each expression is reordered, subject to Ada
semantics, to minimize the register complexity measurement.
Typically, complex operands will be computed before simpler
operands. This computation will be parameterized by a hand-built
table indicating the foruu of machine instructions available on this
machine. This table may later be generated by the tables builder
(AZE(l).MGS(l)).

(J) Effects of Options. The compiler options modify or inhibit

certaTnino-f h-op-tmzaitions as described in the following table.

optimization Level

TIME Perform all optimizations and passes
SPACE Perform all passes; however, eliminate strength

reduction and make the payoff functions more
critical of space usage.

NONE Perform only one FLOW pass.

DEBUG Option

BREAK No effect on optimization.
ALTER At statement boundaries,destory available

expression table and eliminate strength
reduction and code motion.

OFF No effect on optimization.

78

INTERMETRICS INCORPORAT'0 • 733 CONCORD, WENUE * CAMSRIDGE, MASSACHUSETTS 02138 * (817) 661.1840

L . " " " " . ' . . ' ,' .o . " . - . . , . , . , . . • ., .' ,' . .. -. . . ,. , . , -,' .. , . .. . " ,.



BS-AIE(1) .COMP(l,

3.3.3.1.3 Outputs

The output of FLOW is an updated version of the input tree.
The tree has been modified in several respects. The tree may have
been reformed to replace expressions or statements by simpler trees
such as constant expressions being replaced by the resulting
constant. Redundant expressions have been identified and marked by
filling the redundant expression attribute of each address and value
tree node with an indicator of the tree node which originally
computed this value. The tree has been modified by moving
expressions out of loop bodies. The temporary name fields for
redundant or moved expressions has been assigned a value. The flow
effects of 'and then' or 'or else' operators are recorded by
identifying their destinations on true and false values.

3.3.3.1.4 Special Requirements

The FLOW analyzer has a goal of processing 6000 statements per
minutes. FLOW has been designed to be a fast and effective
optimizer. The three pass structure with the possible elimination
of one or two passes was created to enhance the speed of
optimization without effect on the quality of optimization. For
most simple subprograms, FLOW will require only one pass to perform
optimization. If the compilation unit contains loops, two passes
are necessary. The third pass is required only when loops and
complex interactions between subprograms occur.

During a particular tree walk, there is a fixed amount of
processing per node in the tree. Thus, a tree walk occurs in time
linear in the size of the tree. For each subprogram within a
compilation unit, the entire BILL tree will be resident in core
during each tree walk. Thus the overhead of the JMM mechanism will
be minimized.

3.3.3.2 VCODE

The function of the VCODE (Virtual Code) phase is to determine
register usage. VCODE operates on one BILL unit at a time. A BILL

* unit corresponds roughly to an Ada subprogram, package, task, or
entry/accept body. (Some Ada subprograms and packages are not BILL
units since they are expanded in line or hoisted to an enclosing
scope.)

VCODE simulates the action of the code generator. Instead of
generating code it creates a map of register needs and register
usage. This structure will be used later by TNBIND to allocate
registers.

VCODE chooses a particular code sequence based on the data type
and range of operands. Note that VCODE does not choose exactly
which instructions to use; that will depend on the choice of
registers.

79

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



,q -.-,., i ,,.-, ., -3, ,. -.* .- .. .* '. ~ ~ * , t . , ' , .- - ., -.. _.'. . "- "-.L-.. .-'- / .- ."- - . . : '- ."; . - .

B5-AIE(l) .COMP(l)

' , 3.3.3.•2.1 Inputs

The input to VCODE is the BILL tree produced by FLOW. The
attributes which FLOW has initialized for access modes and for
labels of expressions in flow context are essential for VCODE to
execute properly. Other attributes initialized by FLOW such as CSE
information and evaluation order are not essential in that VCODE
will still execute properly only those CSEB created by EXPAND will
exist and a default evaluation order of tree order will be assumed.

The BILLET is not referenced at all with the single exception
being the BILLET entry for the BILL unit which is the root input
tree.

3.3.3.2.2 Processing

VCODE traverses the program tree in top-down reverse execution
order. For each operation in the tree, it determines the register
needs. This is done using the same algorithm as in the CODEGEN
phase; the only difference is that instead of generating code,
register information is generated.

The algorithm is an efficient variant on the Maximal Munch
Method of Cattell. It consists of three modules: Select, Match,
and Instantiate.

a) Select. This module selects an ordered set of templates to
conslariand then supplies them one at a time. The templates are
reasonable possibilities in that they have the correct highest order
operator. These templates are similar to those used by CODEGEN, the
only difference being that the code to produce is removed and any
templates which differ only in their register needs are combined.
These VCODE templates are generated from the CODEGEN templates by
the table builder program [AIE(1).MGS(1)J.

b) Match. The templates are ordered by decreasing size. This has
the e! t of placing more efficient special-case templates first.
Because of this ordering, the first template which matches is the
one which "manches* the largest portion of the program tree, and it
is chosen as the optimal template..4

A pattern is considered to match a program tree if three
conditions hold. These conditions are: (1) the operators of the
pattern and the program tree are the same; (2) the access modes of
the pattern leaves have a common intersection with the access modes
in the corresponding positions of the program tree; and (3) any
special restrictions on a given pattern are met. These restrictions
are such things as: must not be zero, must be a power of 2, or must
not be a comuon sub-expression.

80

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 • (6171 661-1840

T,-*,-- .,- .- * .- -... . .. . . .... ... . ..-. .... . .. . ... ... . . . . . . . ..



8S-AIE(.) .COMP(l)

After one successful match and instantiate, pattern matching
normally continues at the leaves of the matched subtree. If,
however, the subtree leaf was matched by an access mode containing
implicit hardware arithmetic, then matching continues at the leaves
of this access mode.

The access modes (also called address modes) of the IBM 370
include register (normal and floating point) access, immediate
literal access, and memory access either with no indexing, single
(base register) or double indexing (base register plus index
register) with or without a displacement. Separate access modes are
also identified based on the size of the object accessed, and there
are additional modes for the contents (r-value) and address
(1 value). Some of these modes, although not used directly to access
thle operand of an instruction, are useful to describe the components
of other access modes. Each access mode determines the type storage
it accesses and the tree of address arithemetic it represents.
Altogether approximately 70 access modes are identified for the IBM
370.

c) Instantiate. When Match determines the optimal template,
Instantiate creates TWe if registers are required. Actually a TN is
created whenever some form of storage or storage class is required.
Storage classes include various alignments of memory and different
types or classifications of registers (single register, registez
pair, odd register, etc). Although an immediate literal may be
considered storage, these do not cause the creation of TWe. The
storage classes needed are determined by the access mode(s) which
the pattern matches. If more than one access mode matches, the one
which represents the largest tree is chosen. In the case where all
matching modes represent the same size tree the TN is set to
represent a set of possible storage classes.

An EvalTn (for evalution tn) is created for the root of the
match if the result of the operation must be evaluated in a
register, and a SaveTn is created for any leaves if the operands
must be in registers. In some cases the EvalTn of the root can be
reused as the SaveTn of one of the leaves; on the IBM 370 an AR
Rl,R2 instruction uses the same register, RI, as both an operand and
the result. If an interior node of an expression has a distinct
Saven (when it is used as a leaf) and EvalTn (when it is considered
a root) then these TNs are preferenced. Each BILL node and Tn is
marked as to which pattern it matched.

* .The efficient variant of Maximal Munch includes the use of
so-called "failure links* to perform fast pattern matching. This is
a way of combining identical parts of patterns to avoid unnecessary
re-matching of similar patterns. For example, if we have determined
by attempting to match a pattern that the first operand subtree is
not a particular operator, then we can skip over all other patterns
with the same requirements for the first operand sub tree.

81

4 INTERMErRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840



- -- - -. . * - - - . . . . - . . . .. * L . -..- • -, . .

B5-AIE(l) .corM(l)

Register analysis is performed in a single reverse execution
order walk. During the walk, patterns are applied to the expression
trees to determine what code might be generated. Longer patterns
are applied first, to determine special cases before general cases.
For example, 2**(I+K) can be performed in a single shift operation
when I is a non-negative expression and K is a non-negative
constant. On the IBM 370, I is evaluated in the base register, and
I+K must be less than 128. This pattern is applied before the more
general pattern, 2**I, or the yet more general pattern, J**I. Once
a particular pattern matches, the registers needed by that code
template are recorded for later use by TUBIND. This information is
recorded by creating a structure of temporary names (TNs). Theresulting algorithm is a target machine independent interpreter
driven by target-dependent tables.

The information gathered by VCODE allows TNBIND to know which
nodes require which registers and allows CODEGEN to select actual
machine instructions.

3.3.3.2.3 Outputs

The output from VCODE is an updated version of the input tree,
including attributes for temporary names and an attribute to
indicate which VCODE template was matched. The data structure of
temporary names includes which storage class is required (for
example single register of register pair), which other TNs it is
preferenced to, and which template matches it was involved in. In
addition, a sequential list of all TNs created is produced, This
list is in reverse order of creation which is usually execution
order, the only exception being that global TNs created first by
FLOW are at the end of the list. All these data structures are used
only by TNBIND and CODEGEN and therefore can be in a temporary,
non-VMM area. The Mark-Release heap will be used; at the beginning
of the separate processing for each BILL unit (during FLOW) the heap
will be marked, and at the end after FINAL will be released.

Summary of attributes:

for BILL nodes:

EvalTn: The temporary name describing where this
node is evaluated.

SaveTN: The temporary name describing where this
node is saved.

RuleMatched, A key identifying which VCODE template
matched the root of a subtree. This may
indicate that an access mode tree
representing hardware address arithmetric
matched.

82

INTERMETRICS INCORPORATED 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 e (617) 661-1340



BS-AIE(l) .COMP(l)

for Temporary Names:

PreferenceLinks: What other TNs this is related to.
Rulsfap: The key identifying which VCODE template

caused the creation of this TN and the
position (Eval or Save TN).

global (for the BILL Unit):

TNs: A sequential list of all TNs in this unit.

3.3.3.2.4 Special Requirements

VCODE will process 24,000 statements/minute. The design
decisions not to have TN nor pattern templates be paged VMM objects
and not to reference the VMM BILLET were made primarily to improve
the speed. The fast pattern matching using failure links also
speeds processing over the traditional Maximal Munch Method
algorithms.

3.3.3.3 TNBIND

The purpose of TNBIND is to choose where each expression and
object will be computed, thereby eliminating nonproductive data
moves. The name TNBIND is a contraction of Temporary Name Binding.
Rere, TN will refer not only to temporaries, but also to loop
parameters, formals, expressions moved from loops, and redundant
expressions.

Temporary names (TN.) are created in VCODE and FLOW. In FLOW
they are assigned to redundant expressions, loop parameters, and
expressions moved from loops. In VCODE they are assigned to the
temporary expressions computed during the generation of code. As
VCODZ simulates the generation of code it records all uses of TNs
and how they are used.

TNBIND will take this information collected by VCODE and use it
to assign TNs to registers or to the spill area in the unit's local
storage. TNBIND will attempt to minimize the number of registers in
use while also minimizing the occurrence of load and store
instructions. To do this it will attempt to assign more than one TN
to the same register. This can only be done when one TN is no longer
needed at the time the other TN is computed. Furthermore VCODE
recorded a preference relation indicating that it would be helpful
if two particular Til did share storage. TNBIND attempts to
accomodate this request when it is feasible. Such preferences occur
between one of the operands of an operator and the result. If the
preference is honored by TNBIND a register-to-register move may be
eliminated.

83

INTERMUTRICS INCORPORATED * 733 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

N L.%



B5-AIE(l).COMP(l)

The TNs are allocated in order of importance without
backtracking. VCODE has provided all information for determininV

-* the costs of allocating a TN to each form of storage. The TNs are

ranked by the differential cost of storing them in registers versus
the spill area in memory. Those TNs which most adversely affect the
number of load instructions will be allocated first. It will be
assigned to one of the registers or storage which minimizes the
number of loads. This algorithm is a variant of the P0CC register
allocation method created at Carnegie Mellon University by Bruce
Leverett.

3.3.3.3.1 Inputs

The input to TNBIND is the BILL representation of a unit, the
associated TNs created by VCODE and FLOW, a preference relation on
the TNs indicating which should share storage, and a list of all

* code template matches occuring during VCODE and the place of each TN
in the relevant matches. The DBUG option is also a parameter to
TNBIND, obtained as an attribute on the BILLET node for the
compilation unit.

3.3.3.3.2 Processing

TNBIND consists of two parts. First the compiler must determine
which TNs conflict with one another. This is done by the live/dead
analysis algorithm. Then the compiler must allocate the TNs first
to registers and then to the spill area in local storage.

(a) Live/Dead Analysis. TNBIND computes live/dead information using
an iteratIve tree walk. This is a reverse execution order tree walk
which determines that a TN is live when it sees a use of the TN and
marks it dead at the point of a computation. This information is
stored as a bit vector, however these bit vectors need not be
attached to the BILL tree except in the case of loops and labelled
statements. The live/dead algorithm creates the conflict graph, a
relation on the set of TN indicating which TNs are simultaneously
live. This is done at the computation of a TN. At its computation
each TN that is live at that point is in 'conflict with the TN just
computed. The tree walk proceeds, maintaining the set of TNs live at
the current point. At forks in control paths the tree walking
procedure takes the union of the bit strings computed on each path.
At the join of a control path the tree walking procedure saves the
current set of live TNs then walks each branch separately restoring
the live/dead information as it starts each branch.

For loop statements the TNs live on entry to a loop body are
those that are live on exit from the loop body together with those
live on exit from the loop. A loop statement will require at least
two walks of the tree. The set of TNs live on entry to a loop body
is saved between passes as an attribute of the loop statement in the
BILL tree. Initially all TNs are assumed to be dead on entry to the
loop body.

84

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840



BS-AIE(l).COMP(l)
,|..

'Goto' statements must be handled separately. At each labelled
* statement is stored the set of TNs live on entry to the labelled

statement. Initially this is the empty set and on each pass it is
updated from the computed set of live TNs. The TNs live on entry to
the goto statement are those live on entry to the target of the goto
statement.

If there are no loops or goto statements the live/dead
algorithm will give correct results in one pass. If there are loop
statements two passes are necessary. When a goto statement is
present the algorithm will iterate until stable results occur. Also
note that contrary to the modification set calculation in FLOW there
are no interprocedural or aliasing effects since registers for each
unit are allocated separately and saved on entry and exit from any
subprogram call.

If the DBUG option ALTER is specified each TN is declared dead
at a statement boundary.

(b) Allocation. Allocation of TNs occurs according to rank. Each TN
is ranked according to the costs of allocating it to its preferred
storage area as opposed to its second choice. The TNs are allocated
in rank order with the rank being modified when a storage area is
filled.

When the decision to rank a particular TN is made each storage
location in the available storage area is inspected and the costs of
allocating to this location are computed. The cost includes the cost
of not being able to allocate a later TN to an area it would best be
suited for. The TN is allocated the storage location which minimizes
the cost. This location is recorded as an attribute in the TN.

When a TN is allocated, all TNs with a preference relation to
this TN are inspected and their rank modified to improve their
chances of being allocated next. In that case the allocation of the
preferenced TN will be to the same storage location since the
preference relation is one of the costs used in determining which
storage location to place a TN in.

If a TN cannot be allocated to the primary area of storage it
needs(such as a register) it is allocated to the spill area reserved
in the local storage of the unit. This spill area is allocated in
the same manner that registers are allocated so multiple TNs will
share the same storave location and preference information will be
used as with registers to eliminate loads, stores and memory to
Mory moves.

This algorithm gives an approximate minimization of register
costs. It is not truly minimal since register allocation is a
theoretically complex issue. It works particularly well wi(.h the TNs
created in VCODE since they have short lifetimes, conflict with few
TN., and do not have complex usage patterns.

as

INTRMITRICS INCORPORATED 733 CONCORD AVENUE e CAMBRIOGE, MASSACHUSETTS 02138 * (617) 661-1840

- " , -.' j.,, .. ,, ', . ' , ' ,, - . - . -.. -.- ..--......... -........ .* ... .... !



BS-AIE(1) .COMP(l)

3.3.3.3.3 Outputs

The output of TNBIND is the table of TNs annotated with the
storage information required for code generation. This information
is the physical register the TN will reside in or the location in
the spill area for the TN.

3.3.3.3.4 Special Requirements

It is the goal that TNBIND will process 12000
statements/minute. To accomplish this the live/dead analysis
algorithm was optimized to identify special cases. If there are no
loop statements and goto statements live dead analysis can be done
in one pass. If there are loop statements two passes are necessary.
When a goto statement occurs the compiler will iterate until the
live/dead information stabilizes. The allocation algorithm is linear
in the number of TNs.

The major portion of the TNs are the temporary names created by
VCODE. Typically these names have a creation point and one use. For
these TN the live/dead analysis and allocation will be particularly
fast.

3.3.3.4 CODEGEN

The purpose of CODEGEN is to generate target-machine
instructions. Like VCODE, TNBIND, and FINAL, CODEGEN operates on
one BILL unit at a time. The job of CODEGEN is relatively
straightforward due to the prior decisions that are encoded in the
post-TNBIND BILL tree, as enumerated below:

(1) a completly optimized intermediate form - all optimizations
not directly related to specific code sequences have been
performed,

(2) the execution order has been completely determined to put
minimum demand on scarce resources;

(3) the point of creation, each use, and the final use of each
connon subexpression has been determined;

(4) context information (e.g., needed to make a flow decision)
is readily available;

(5) the access mode to be used (e.g., based off the frame

pointer) has been determined for each operand;

(6) the register and storage allocation problem has been
resolvedr the code-generator knows exactly where its
operands are and where its result must go.

86

INTERMrTRICS INCORPORATED • 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840



-5-AIE(l).COMP(l)

The output of CODEGEN is pseudo-target code. It is pseudo in
that addresses of jumps and short literals have not yet been
resolved, and the instruction stream is represented as a
doubly-linked list rather than as an object module. It is target
code in that there is a one-one correspondence between most of the
nodes in the linked list and actual target machine instructions.

CODEGEN is a table-driven algorithm. It performs a reverse
execution order walk. At each step it chooses the template which
matches the largest BILL tree and instantiates it.

3.3.3.4.1 Inputs

The inputs to CODEGEN are the BILL representation for a
unit, including the TN attributes initialized by TNBIND, and the
DBUG option (appearing as an attribute of the BILLET node for the
compilation unit) that was input to the compiler DRIVER. The
attribute set by VCODE indicating its pattern match will speed
CODEGEN's similar match. The TN attributes set by TNBIND indicating
which registers are assigned will determine CODEGEN's choice of
template and code produced. The entire BILL tree is processed.
However, like VCODE, the only BILLET which is referenced is that of
the BILL Unit.

3.3.3.4.2 Processing

CODEGEN uses the same maximal munch algorithm as VCODE. This
is a reverse execution order tree walk and consists of three
moduless Select, Match, and Instantiate.

The maximal munch algorithm takes as input the BILL tree
(annotated with register usage) and a prebuilt set of code
templates. First the algorithm selects the largest template that
matches the root of the tree and tree nodes near the root. When the
match is found, the instantiate module is called to generate code.
This template match divided the tree into pieces: the matched
piece, and several unmatched subtrees. The maximal munch algorithm
is applied to each of the unmatched pieces in reverse execution
order until there are no unmatched subtrees. The resulting code is
generated in reverse order.

(a) Select. This module selects an ordered set of code templates to
consiTer and then supplies them one at a time. The templates are
reasonable possibilities in that they have the correct highest order
operator. The templates and their associated costs will for the
most part be generated manually. The table builder program
rAIE(l).MGS(l)J will perform some processing, including calculating
time and space costs based on instruction time and space, sorting
the templates by size and highest order BILL operator, generating
failure links for fast patterz matching, and combining CODEGEN
templates to produce VCODE templates.

.4

87

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE *.CAMBRIDGE. MASSACHUSETTS 02138 * (617) 661-1840

..................................

.... " '" ;'"/' "'" - - - -- - ""- - - - - - - - --""" --- - - - - - --. %."". , ..,A" S"- ' '" -, -'" ' "," "',", ' ',---' ,' ": '. ';. ............



B5-Ar E(l).COMP(l)

(b) Match. The templates are ordered by decreasing size. This has
the e11t of placing more efficient special-case templates first.
Because of this the first template which matches is the one which
"munches" the largest portion of the program tree, and it is chosen
as the optimal template.

(c) Instantiate. When Match determines the optimal template,
Instantiate issues the associated code. While this code is being
issued CODEGEN tracks the register usage as specified by TNBIND so
it can allocate extra registers when needed by a template. If DBUG
(ALTER) is specified CODEGEN notes that no registers have known
values at the beginning of a statement.

3.3.3.4.3 Outputs

The output of CODEGEN is a doubly-linked list of pseudo target
code. This is only used by the FINAL phase and, therefore, can be
in a temporary, non-VMM area. In addition, a list of all jump
instructions is generated for use by FINAL.

The representation of an external symbol is based on its
associated DIANA pointer. This DIANA pointer is found in the BILLET
for the entity. The representation consists of a combination of the
DIANA pointer plus a small number n which indicates which function
of this entity is being referenced. For example, the external
symbol for accessing the size function of a record type is the DIANA
pointer for the record type node plus some distinguishing value n.
The external symbol for a routine which allocates objects of the
same record type would have the same DIANA pointer component but a
different value for n.

In CODEGEN, while generating code for the BILL unit, additional
information in included immediately preceding the actual
instructions. This information is used by the Run Time System and
includes a fixed size static data area and a variably sized
exception handler map. The information in this static data area
includes the size of the stack frame, the size of the frame header
(standard information before local variables whose size depends on
such things as number of parameters, existence of dependent tasks,
etc.), and the address of the exception handler map. The two sizes
are available from the BILLET for the unit, and the map address is
originally (in CODEGEN) set to a pseudo-code label node which is
later (during FINAL) resolved into an address. The handler map is
variably sized depending on the number of exception handlers in the
unit. It is a table of ranges of code addresses together with the
address of either the appropriate handler or the runtime system
re-raise routine. Normally with an exception handler this contains
three ranges one each for declarations, statements, and exception
handlers. In the case of no exception handlers this is the entire
range of the unit's code with the address of the runtime re-raise
routine. The placement of the handler map in the object module is
arbitrary since it is pointed to by a fixed location.

88

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE. MASSACHUSETTS 02138 (617) 6611840



D-A34 032 COMPUTER PROGRAM.DEYELOPIENT SPECIFICATION FOR RDA
INTEGRATED ENVIRONMENT..(U) INTERMETRICS INC CAMBRIDGE
MR 85 NOV 82 IR-677-2 F306b2-80-C-029i

UNCLASSIFIED FiG 9/2 NLIii11EE111111111111E
EHEHEB



LU11 . L 1.

iima*_ mli O-
11111 II -m

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A



7 , .. .. .. '*:'.. *'...-..-. L. ...... .. .. ... '.. :..... ..' . . . .. ".

BS-AIEW() .COmP(l)

Several optimizations of this structure are planned. These
include sorting the map ranges so that only the upper bound is
required and moving the exception handler code before the
declaration code to consolidate these two ranges.

An example of several VCODE and CODEGEN templates for logical
OR follows. The structures are somewhat simplified to aid in
clarity. These templates are diagrammed in three ways, first
symbolically which is probably the clearest for intuitive
understanding, second in terms of IMD, the intermediate machine
description used to manually create the templates, and finally in
the form of the internal representation used by the compiler and
produced by the table builder program from the IMD description.

Sybolic repreeentatioh

OR Trees
3t OR $1,S2

/
.t:F bk.t " - ROW stands for full word reqiszer

/-- bor is the 8ZLL 6o operator

SIs leg 2s gl

:1D representation$

produ £ton
types value
patterns Ne~es s-g a bl or'* $Is1Y 2:W sn
act. a1. OR $1, $S2 -
end psoasaetln

* internal representation

VC008 bale
I %Lndsvelue I
I pattern I-()
I Action 1- 1. T
I Jule-ids 141 strqa A
'._----__,I.orge Rg'I

I14atchs id. .I . . . I
COOUO Role-

I ndhi'lsue I
I pattern I-(p)

cI Acton I - )Code node
I ?Les zz I
ISpaes yy I 10opIO

I .operandat2 I
I Operand SI I
I Operand $2 1

-' (p -... . _.
,Opt - I opt I ,- - I

" I Idil I I I 1 dI :3
I Parentsa I I I Parents l I I Parent il

'ers, 1-- I !ltet: I-- !exts -

IAl~sReaf 1 A lg ~ sRy
LeaO I I Leaifl I 1 :.oa2:2

I ... I I ... I ...

IN~:T TEIMII;ICRPTED .73 OCR AVENUE * CAMURIOGE. MASSACHUSET 02138 * '6171 681-1840

• ' . -- { ¢ qp - .I • • , , - o - . , ., , . - , . . . o , . . . . - - - o-• % -. .o-- ". . . . • - - .



B5-A.IEM(1 .COMP(l)

There will be several patterns for OR based on the different access
modes for the second operands. Some of theme are shown below. (There
will also be flow value templates for OR not shown).

0 Tree :- 0 $1,$2

/
$luRegF blor

$1:RegF $2:MEMF

01 Tree U 01 $1,$2

!
$l:RegF bl or

/
$l:Re*gF $2:Literal range 0..127

OC Tree :- 01 $1,$2

/
$i:NemF bl or

/
$114emF $2: Iemp/ size < 128 bytes, same size as $1, no overlap

with $1

These templates are sorted by the table builder program to
place the special case 01 first since it matches a larger subtree. A
failure link is generated from this literal directly to the second
operand of the OR tree and then 0 tree. This is because if the tree
matched this far in the 01 subtree, it will also match here (since
they are identical). For VCODE, the OR and 0 tree patterns will be
merged since they differ only in their register usage. The OC tree
will not be merged since it has additional restrictions.

90

IMTERMETRICS INCORPORATED * 733 CONCORD AVENUE s CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661.1840

4 . . . .



85-AIEW .COMP(l)

The following diagram summarizes this information:

-- Static data area follows

STATICD DSECT
*

FRNSIZE DS F size of stack frame
HRDSIZE DS F size of frame header
EZMAP DS A-OAMAP ' address of exception handler map

-- Code (instructions and literals) follows

BODY ZQU * entry point to the unit
Ist instruction of unit body
etc.

u;nit epilog (wait for tasks, restore registers, return)

HANDLE ZQU *
lst instruction in handler (if any)

handler epilog

-- Handler map follows

MIP Eau
DS A lst instruction of declarations
DS A last instruction of declarations
Do A=RTSRAISE runtime raise routine
DS A let instruction of statements
DS A last instruction of statements
DS A-HANDLE Exception handler for this range.
DS A 1st instruction in range of exception

handlers
DS A last instruction in exception handlers
DS A.RTSRAISE

additional handler map information if
hoisted
exception handlers (due to blocks, inlines,

etc.)

91

INTlEMITRICS INCORPORATED * 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

- *..; . . .) - . ... ? .? . ... ? * . .?..?. .- .. .. *i.'x. . .... =,. * --.. - ... -. ?,-."



5-AIE(1) .coMP(l)

3.3.3.4.4 Special Requirements

CODEGEN will process 24,000 statements/minute. The design
decisions against having pseudo target code for the templates paged
VMM objects were made to improve speed. Matches made during V!7ODE
that are marked in the BILL tree can also speed pattern matcthing.
The use of failure links avoids re-matching similar sub-patterns.

3.3.3.5 FINAL

The purpose of the FINAL phase is to perform peephole
optimization and branch resolution, and to generate the object
module, and address information required by DBUG and the run-time
system.

3.3.3.5.1 Inputs

The inputs to FINAL are the pseudo-target code output by
CODEGEN and the optimization, DBUG, and listing options that were
input to the compiler DRIVER and that are encoded as BILL/BILLET
attributes. All nodes of the pseudo-target code are processed.

3.3.3.5.2 Processinq

There are four subphases to the processing in FINAL; one
(peephole/planned) which requires a scan of all jump instructions
and three (peephole/table-driven, branch resolution, and object
generation) which require a pass over the pseudo-code output by
CODEGEN.

(a) Peepole. This module performs a collection of peephole
optimizations. That is, it looks for sequences of instructions that
are close (either statically or dynamically) and that can be
replaced by better sequences. There are two kinds of optimizations
attempted unless OPTIMIZE(NONE) is specified.

(1) Planned Algoritlms

These optimizations deal with jumps. Jumps to a location
containing a jump are replaced with a single jump. Cross
jumping to eliminate duplicate code sequences at the tails
of then and else clauses is performed if OPTIMIZE(SPACE) is
spe -'-d. U-eachable code after an unconditional jump is
removed. Processing is performed by scanning the list of
all jump instructions generated by CODEGEN.

(2) Table-Driven Matches

These optimizations are performed by matching templates
with the code stream and replacing matched sequences with
improved code. Such matches include: elimination of
unreachable code appearing after an unconditional jump;
eliminating jumps to the next location; replacing a

92

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIOGE. MASSACHUSETTS 02138 * (617) 661.1840

led. . . . . . - .2- *.2e -7 2 .



BS-AIE(l).COMP(l)

sequence of shifts with one shift; and a variety of
target-specific optimizations. By its very nature, this
module is highly target specific in its details. Many of
the optimizations have counterparts on most machines; some
are discovered only by looking at the generated code and
finding weaknesses. The essential ingredient here is that
the optimizations are table driven and hence easily
extendable. Processing is performed by a single scan of
the entire list of pseudo-code produced by CODEGEN is
reverse execution order.

(b) Branch resolution. Branch resolution is different for the IBM
370 and the 837. The PE 8/32 has three sizes of branch
instruction. At code generation time, the length of the branch is
unknown. This module determines the use of long and short branches
using a simple algorithm. Let min and max be the minimum and
maximum branch distance. Then a branch has determinate length if
one of the following conditions holds:

max c 30 (SF format)
30 min and max - 32768 (RX2)
32768 < min (RX3)

The length of the branch instruction is 2, 4, or 6 bytes,
respectively. All indeterminate length branch instructions are
placed on a work list. Each branch on the work list has its maximum
and minimum branch length computed. If the branch is determinate,
it is removed from the work list. Determining the length of one
branch instruction may cause other branch instructions to become
determinate in length. The work list is repeatedly scanned until a
pass causes no branches to be removed. All remaining branches are
assigned a length corresponding to the minimum. This algorithm
converges rapidly and seldom requires more than a few iterations.
Furthermore, most of the branches are resolved on the first
iteration, leaving little work for subsequent iterations. Lastly,
the work involved after the first pass is proportional to the number
of remaining unresolved branches.

The IBM 370 has no self-relative branches. All branch
locations must be reached by base register plus displacement. It is
both undesirable and unnecessary to reserve a large number of base
registers to address the program. It is undesirable because the
same general registers are more profitably used for data items. It
is unnecessary because most branches do not span large distances.

-' "The program is divided into sections, each of which can be
addressed with a single program base register. Branches within a
program section are implemented by direct branches. The initial
instruction of each section loads the program base register with the
address of the section, as do all inter-section branches.
Processing is performed by a single execution order scan of the
pseudo-code produced by CODEGEN.

93

INTERMUTRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 • (817) 661.1840



E1S-AI 1( ) •COMP(l)

This method is similar to that used by Scarborough and Kolsky,
differing only in using one register instead of two or three. Their
experience indicates that the gain in register use for data items
exceeds the cost of section address loading.

On the IBM 370 there is no general purpose immediate addressing
mode. (The load address (LA) instruction is a useful exception.)
PINAL allocates short literals (e.g., address constants) in pools
for each segment. Therefore, each segment contains both its own
code and the pool of literals used by that segment. The pool is
placed at the end of the segment.

On the PE 8/32, which has immediate instructions and 24 bit
displacements, literal values whose only references are via
immediate instructions are removed from the literal pool.

(c) Obect .ratin The doubly-linked list of pseudo-code is
traversed an he oowing actions performed:

(1) each instruction is converted into object module format;

(2) if an assembly listing has been requested, an assembly
listing line is generated.

(3) if DBUG(BREAK) is specified, each statement node is
converted into an entry in the hook table: and the table
of statement addresses is built. This hook table is
either included in the object module or attached to the
DIANA corresponding to the BILL unit depending on the
requirement of DBUG.

3.3.3.5.3 Outputs

The outputs from FINAL are the object module, including the
handler maps and list sequences required by the run-time system (see
AIE(l).KAPSE(l)), and if DBUG (BRIAK), the hook table required by
DBUG. Additional information will be generated, if required by the
linker, to associate external symbols with DIANA.

3.3.3.5.4 Special Requirements

FINAL will process 12,000 statements/minute. The list of all
jump instructions produced by CODEGEN was designed to speed this
processing.

3.3.3.6 UTILITIES

The UTILITIES package contains cmn routines required by the
Back End. These will be defined when the lower level structure of
the phases is known.

94

INTERMETRIC INCORPORATED • M23 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

, , i - , , -. . ,.. - . . . . . . . . . .. ., , -.. . . . . . . . .



BS-AIE(l) .COMP(l)

3.•4 %aptation

The compiler includes specific strategies which are appropriate
for the P2 8/32 and IN 370 architectures.

The IBM 370 is very similar to the PE 8/32 in many respects.4 However, the IBM 370 addressing modes cause special problems. The
- limitation of 12 bit displacements to byte addresses, the

limitations on immdiate operands, and the lack of program counter
relative addressing mean that all references to objects (code,
variable, literals, etc.) require that a register be loaded with a
base address. This design attempts to minimize the need for
different base registers and reduce the cost of base register

* loading.

During FLOW a choice is made between strength reduction and
base register optimization. The base register optimization combines
the constant components of addressing computations and uses a single
base register for each set of references which is in a different
block of 4096 byte*. FLOW rearranges the execution order to reduce
the number of registers which are simultaneously needed. VCODE
chooses code which reduces the demand for registers. For example,
choosing a shift, instead of a multiply by a power of two, reduces
register requirements from an even/odd pair to a single register.
In TNBIND base addresses compete with values for register space.
THBIND chooses a balance between the use of registers for base
addresses and for values. A code region which has more references
to value TIe and fewer to base register Tis will have more registers
allocated for values, and conversely. This is to be contrasted with
a design which allocates a fixed set of registers for bases. TNBIND
is responsible for allocating the even and odd registers and
register pairs which are required; e.g., for integer multiply and
divide (for both the IBM 370 and PE 8/32). Some function results
are returned in registers. TSBIND attempts, where possible, to use
the value returned without first moving it to another register or to
storege.

For the IBN 370, FPINAL divides the code into segments, each of
which can be accessed with a single base register. Each segment
includes a pool of short literals (including address constants) used
within the segment. Thus, within-segment branches and short literal
references are made relative to a single base register. A separate
control section is generated for each subprogram: thus, subprograms
that are not called need not be linked in. For the PE 8/32, FINAL
chooses imediate mode and discards literals which are only so
referenced. FINAL also optimizes branches to use the short relative
branches available on that machine.

95

II1, MIS INORPORATIE * 723 CONCORD AVENUE e CAMBRIOGE, MASSACHUSETTS 02138 * (617) 661-1840

_=. ..



BS-AIE(1).COMP(1)

3.5 Capacity

The contract specifies a number of performance requirements.
For the compiler these are:

(1) The compiler is required to compile a single 1000 statement
Ada program within one cpu minute on the IBM 4341 installed
at Intermetrics with four users logged on, one running the
compiler and the others running the command processor or
debugger or editor. The compiler time is measured with the
options for LISTING, OPTIMIZATION, COMMENTS, and DBUG
turned off.

(2) The compiler shall require no more than 512K bytes of main
memory for any Ada program. Up to an additional 512K
bytes, if available, may be utilized to speed up
compilation of larger programs.

To achieve the speed requirements, we shall require that each
section of the compiler use one third of the total time available.
Therefore:

(1) The Front End must process 3000 statuments/cpu-minute into
DIANA.

(2) The Middle Part must process the resulting DIANA in one
cpu-findte.

(3) The Back End must process the resulting BILL in one
cpu-minute.

(4) Listing generation is a separate timing issue.

(5) Linking shall take no more than 20% of the time taken by
the Back End. This means that the compiler compiles at the
required speed with optimization, and that the compiler and
linker, together, without optimization, perform as
required.

To achieve compiler size requirements, we shall require that
DRIVER, resident run-time system, VMM support routines, and the
largest compiler phase fit within 300K bytes, leaving 212K bytes for
paged and non-paged data.

The run-time system (without tasking) is constrained to 15K
*i bytes and VMM is constrained to 100K bytes.

The semantics phase of the Front End is estimated to be the
largest phase, and will be restricted to 180K bytes. All other
phases are constrained to be less than 180K bytes.

The DRIVER is to be less than 5K bytes.

96

* INIRMETRICS INCORPORATED 733 CONCORD AVENUE • CAMBRIDGE. MASSACHUSETTS 02138 • (617) 661-1840

,v : ,, r .. '.'' .- '' .,*-.:. :. -- -/ .- -.... ....- ,i , *- - -' - .- --*..* '.*,: ? : :.-*. -.* " .- . . " .



B5-A ZE(1) •CO4P(l)

A number of implementation decisions will be based upon the
performance requirements placed upon the compiler as a whole. In
order to evaluate, in advance, the costs of various strategies that
the Front End might use, a performance model has been built. This
model covers factors about the Ada language, the target machine, and
the actual implementation.

For example, factors involved in parsing include:

(1) size of input buffer
(2) avg. characters per token
(3) avg. tokens per reduction
(4) avg. DIANA nodes per reduction
(5) % of declarations per compilation unit
(6) avg. size of DIANA declaration node
(7) size of VNM paging space
(8) I/O overhead per line read
(9) avg. characters per line
(10) instruction overhead per Ada procedure call

These are combined into a linear equation which estimates the
processing taken under a variety of assumptions. Similarly, the
semantics model incorporates symbol table hit ratios, tree walk
overhead, etc. Values of the parameters are either "best-guess"
estimates, or measurements taken from other compilers, including the
Ada bootstrap compiler.

The results of performance modeling guide current design. In
addition, during impl eentation, extensive measurements of early
coding will be taken to increase the accuracy of our picture. These
actual sasurements will be used to revise the design before
complete implementation has occurred.

The requiraments of generated code efficiency, retargetability,
rehostability, statistics gathering, and compile time efficiency
interact and involve trade-offs from time to time. To clarify our
underlying philosophy for various trade-offs, our priorities for the
compiler are as follows:

(1) Maintainability and retargetability/rehostability

(2) Code efficiency

(3) User friendliness (including compile-time speed)

The Front End uses some internal stacks to aid parsing. The
needed stack space varies with the language construct being parsed
and the nesting depth of the construct within the compilation unit.
A FATAL error message shall be generated if the size of a parse
stack is exceeded.

There are two such stacks, the PARSER stack and the STATE
stack. They are each limited to 200 elements.

97

IS1IAMMTICS INCORPORATIED a 723 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 9 (617) 661-1840



BS-AZE(l).COMP(l)

The Front End inputs Ad& source lines via the KAPSE into a
local 1/O buffer. A source line exceeding 255 characters will cause
a EVZRE error message to be generated.

To improve performance, various compiler phases attempt to keep
some kinds of data only in core, and not paged to a file. This
restricts the size of user programs. The exact restrictions will be
specified at a later time but; a rough estimate is that the user is
limited to 2000 lines of Ada source PER COKPILATION UNIT.

Additional size restrictions are:

(1) In the Back End, the total size of BILL nodes to represent
a subprogram body may not exceed a figure to be determined.

(2) In the Front End, the size of the DIANA for a compilation
unit may not exceed a figure to be determined.

(3) VIH limits the compiler to 200 subdomains accessible at
once. This limits the number of units that may be WITHd,
including chains reaching units the WITHed unit WITHed
(implied references). This also limits the nesting depth
of SUBUNITS. The total nesting depth + implied and
explicit WITHe + I must be lose than 200.

(4) 1MM limits the total number of subdomains to 32K. This
limits the number of objects in the program library to 64K
as well. An object is: an abstract syntax object, a DIANA
object, a listing object or the machine code object.
Recampilation generates new DIANA, listing and machine code
objects. Objects may be thrown away and reclaimed, making
available more objects.

(5) VYE limits the total number of bytes of a subdomain.
Therefore, no compilation unit's DIANA may exceed the VMM
restriction, currently 2**29K bytes.

ININMSTRIW INCORPORATDIO 733 CONCORD AVENUE • CAMRIOGE. MASSACHUSErrS 02138 • (617) 661.1640

a * ~ a. ~*~0



BS-AIE(l) .COMP(1)

*' 4.0 QUALITY ASSURANCE PROVISIONS

4.1 Introduction

Compiler testing will be conducted in four stages. Stage one

is subprogram testing, which tests each CPC and its subunits. Stage
two is program testing, which tests the Front End (COMP.FE), the
Middle Part (COMP.MID), and the Back End (COMP.BE) individually.
Stage three is subsystem testing, which tests the entire compiler.
These tests verify that the compiler as a whole accepts Ada source
programs and produces the corresponding object code for that
program, each phase cooperating with the other phases. Stage four
is integration and acceptance testing, which validates the compiler
performance for purposes of delivery. Stage four includes both
integration and acceptance tests because the compiler mst be
verified in combination with other MAPSE tools (debugger, linker,
and recompilation checker) that depend upon its output.

4.2 Test Requirements

This section describes the requirements for subprogram level,
program level, and subsystem level testing of the compiler. The
discussion includes tools, facilities, and techniques, both
automatic and manual, for performing the tests.

4.2.1 5ub~'oram Testing

Subprogram testing consists of testing all subunits of the CPCs
as well as testing the individual CPCs. These tests wll be designed
to verify the C-5 specification for each CPC. The tests will be
designed and executed by implementation personnel. Test
descriptions and test results for each CPC will be submitted to
Quality Assurance (OA).

Testing at the subprogram level is partially automated (the
compile-time checking performed on the subprogram) but most of this
testing is manual. Prior to this testing, both the code author and
a designated code reader for the phase will inspect the subprogram,
with particular attention to its correctness, readability, and
efficiency.

4.2.2 Prga Testing

The compiler Front End (COMP.FE), Middle Part (COMP.MID) and
Back End (COMP.BE) will each be tested individually. The tests will
be described in detail in test descriptions which will be submitted
to OA and formal test reports will be issued.

For COMP.F?, these tests verify that COMP.FE accepts the full
Ada language and, for each source construct, produces the

99

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE e CAMBRIDGE, MASSACHUSETTS 02138 @ (617) 661.1840

- > ' .14. , ,A. -.-.. ....-. .... I-. ...- -,... .M.:- .r W.., ?, , ...-: ...- .... . . . .. -.... . ..



BS-AIE(l) .COMP(l)

corresponding DIANA. Testing will be conducted by first compiling
simple programs and then successively testing with more complex
programs as the implementation becomes more complete. Thus, the
emphasis is on processing complete programs as early as possible,
successively adding compiler portions to process more complex
programs. The DIANA for these tests will be inspected manually for
correspondence with the source language.

Tests include both legal and illegal Ada programs. Legal tests
check that no error messages are generated and that appropriate
DIANA is produced. Illegal tests check that all errors contained in
the source program are detected by the compiler.

For COMP.MID, these tests verify that COMP.MID accepts DIANA
and, for each DIANA construct, produces the corresponding BILL. For
COMP.BE, these tests verify that COMP.BE accepts BILL and, for each
BILL construct, produces the corresponding IBM 370 (or PE 8/32)
object code.

Because the compiler phases communicate through intermediate
languages, phases after COMP.FE may be tested independently.
COMP.FE is tested using Ada source programs as input and inspecting
the resulting DIANA for correspondence with the source program.
Testing of COMP.MID and COMP.BE need not wait until COMP.FE is fully
operational. Intermediate language programs may be edited manually,
using the Virtual Record Notation input/output packages in VMM.VMM,
and such programs allow testing to proceed in parallel. For
example, EXPAND is tested independently of STORAGE by editing
STORAGE attributes into DIANA trees manually in human-readable form
and using the VMM VRN input package to convert the DIANA into
internal form for processing by EXPAND.

4.2.3 Subsystem Testing

Subprogram tests for the compiler will be described in formal
Test Procedures. Subsystem tests include the applicable suite of
Ada Compiler Validation Capability (ACVC) tests. Ths suite includes
all ACVC tests except those that are concerned with inapplicable
machine dependent tests. Prior to formal validation, other tests
for the full compiler will be constructed to verify correct
processing for significant Ada constructs. The formal subsystem
tests for the IBM 370 will be conducted after the compiler is
complete and has been compiled by the bootstrap; they will be
conducted again after the self-host. For the PE 8/32, the tests
will be conducted when the PE 8/32 is complete and the KAPSE has
been rehosted.

4.3 Acceptance Test Requirements

Acceptance tests will be conducted to ensure that the compiler
conforms to its general requirements. The ACVC tests as well as the
Ada compiler itself and all other AIE MAPSE tools will be used as

100

INTERMETRICS INCORPORATED * 733 CONCORD AVENUE * CAMU3RIDGE, MASSACHUSETTS 02138 ,(617) 661-1840



i7

BS-AIE(l) .coMP(l)

acceptance tests. These tests concern the speed of compilation,
diagnosis and useful classification and reporting of errors, and
simplicity and usability of the user interface. Speed tests will be
measured formally by determining the speed (in lines per minute) of
the compiler. The evaluation of error handling and the usability of
the user interface is measured informally.

4.4 Facilities

4.4.1 Bootstrapping Requirements

To test the IBM 370 compiler, which is an Ada program, an
existing Ada compiler, linker, and DBUG must be available. This
existing Ada compiler, called the "bootstrap" compiler, executes on
the IBM 370, accepts a sequential subset of Ada, and generates code
for the IBM 370. The AXE compiler is written and tested using this
Ada subset.

1

Because the bootstrap is an interim tool, the bootstrap omits
many code optimizations included in the AIE compiler. Therefore, to
enhance performance, the AXE compiler must be used to compile
itself. Once the AXE compiler is sufficiently operational, the AIE
compiler source code is translated by the executable AIE compiler,
which was translated using the bootstrap. The AXE compiler for the
PE 8/32 is developed using the AXE compiler running on the IBM 370,
without use of the boostrap.

4.4.2 Metering

To verify that the compiler satisfies the speed requirements
(1000 statements per minute), a timing package is available to be
included within the compiler. For the purpose of measuring compiler
performance, a "statement" is considered to be a declaration, a
statement, or a representation clause node in the DIANA tree. These
statement counts are collected following the GENINST phase. Because
generic instantiation can result in multiple bodies, the
representation after GENINST gives a more accurate measure of
performance than the representation after semantic analysis. The
CPU time for each phase is determined and is output in the
statistics section of the listing.

4.4.3 Test Scripts

During the period that the MAPSE command processor is
unavailable, the compiler wll be tested using the command language
facilities on the IBM 370. When it is available, testing will make
use of MAPSE command language scripts where appropriate. To test
the entire compiler in conjunction with the linker and the run-time
system, test scripts- to perform "compile, load, and go" functions
will be used. Other scripts to perform regression testing and
component testing also will be constructed as needed.

101

INTERMETRICS INCORPORATED • 733 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 e (617) 661.1840



*
N

.5.

4.
~44

* ~5
N'.

454...

'N

-4.
S.;

*5~~i
-Is

4.4
.44

.5,

4.-

4.

4.

4..
*4.~

1'
49
4'

~5~

.5

'I

4.

I

a.

)4

4
at

4'
4.,
it,
S.

.5
4, 102

INTURMETRICS INCORPORATED a 722 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840
.4.

4



BS-AEM(l).COMP(l)

APPENDIX As ERROR MESSAGES

A.1 General Format

The general format error messages is:

<stnt)- cseverity> <code) <phase) <message>

where: 4stin> is the statement number, if applicable
<severity) is severity level
<code> is the nubmer of the diagnostic message
<phase> in which the error occurred
<message> is the English text of message

The places where error message are generated for user errors
are:

LEXSYN: for bad syntax
PRE-SEMANTICS: for bad semantics
SEMANTICS: for bad semantics
STORAGE: for bad pragmas and representation specifications

A.2 Severity Levels

FATAL: The compiler is aborted due to drastic errors.

INTERNAL: An internal compiler error occurred which may or may
not cause a function of the compiler to terminate abnormally. If
the compiler is able to continue, normal outputs may or may not be
produced.

ERRORs The user's program has an error. Processing continues,
but normal outputs may or may not be produced.

WARNING: The compiler has discovered a situation the user may
be unaware of, but which is legal. Normal outputs are produced.

NOTEs Advisory information is given to the user, often for the
purpose of suggesting optimizations to his program.

A.3 Error Messages Generated by LEXSYN

errors in basic character syntax (severity a ERROR)

INVALID PRINTING CHARACTER xx
INVALID NON-PRINTING CHARACTERS HEX "xx"
INCORRECT USE OF UNDERSCORE
LINE LENGTH OVERFLOW
QUOTE (") INVALID IN STRING
CHARACTER LITERALS MISSING END OUOTE ON SAME LINE
TAB IN STRING

103

INTERMIETRICS INCORPORATED * 733 CONCORD AVENUE * CAMBRIOGE. MASSACHUSETTS 02136 * (617) 661-1640

..i .?. .". .'. = .
-

"... . o..' . . . *' ** .. -.' "- ". -. .' "." * " " .. ". .. '. ' , - ' . . .". . " * " C



S-AIE(l) .COMP(l)
PERIOD POUND IN SPECIALS FOLLOWED BY ZERO
EXPECT DOUBLE (") NOT SINGLE QUOTE (') TO DELIMIT STRING

errors in numeric syntax: (severity - ERROR)

BASE VALUE (2 OR ) 16 NOT ALLOWED
DIGIT zx OUT OF RANGE FOR BASE yy
NO DIGITS FOLLOWING BASE
BASED NUMBER NOT TERMINATED IWTH # OR •
EXPONENT WITHOUT MANTISSA RADIXPOINT
EXPONENT WITHOUT DIGITS
NUMBER SHOULD BE SEPARATE FROM ADJACENT FOLLOWING IDENTIFIER
DIGIT NEEDED AFTER AND BEFORE RADIXPOINT
MULTIPLE RADIXPOINTS
NO BASE ON BASED NUMBER

general token errors: (severity - ERROR)

xx EXPECTED BEFORE THIS TOKEN
xx EXPECTED AFTER THIS TOKEN
xx EXPECTED INSTEAD OF yy
xx EXPECTED INSTEAD OF yy z
UNEXPECTED zx
RESERVED WORD zx MISSPELLED

secondary error recovery: (severity - ERROR)

BAD COMPILATION
BAD DECLARATION
BAD STATEMENT
BAD EEPTION HANDLER
BAD EXEPTION CHOICE
BAD PARAMETER DECLARATION
BAD GENERIC FORMAL
BAD COMPONENT DECLARATION
BAD GENERIC FORMAL
BAD COMPONENT DECLARATION
BAD ENTRY DECLARATION
BAD CASE ALTERNATIVE
BAD COICE
BAD EXPRESSION
BAD TERM
BAD FACTOR
BAD CONDITION IN IF STATEMENT
BAD SELECT ALTERNATIVE LIST

corrective actions taken: (severity - ERROR)

xx INSERTEDxx INSERTED TO MATCH yy

xx DELETED
xx SPELLING CORRECTED

104

INTERMETRICS INCORPORATED e 733 CONCORD AVENUE * CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-4840

' /w ,i - = . 1 ,,* ,. . . , - , . ... &*, .. - ., o- ., .- • . . %- - .,• . , •. .- - - -'



: : ,: i. .. . ,. :j, . . . ,o . ,. -,, . q. .- ,..,-... . -. , . , -. .-. ; - .. - '. j. or.-- .r-.-- ., o- .- ,. ..

B5-AIE(1).COt4P(l)

capacity limit reached:

PARSE STACK OVERFLOW (severity - FATAL)
LINE BUFFER OVERFLOW (severity - INTERNAL)

A.4 Error Messages Generated by Presemantics and Semantics

Error messages generated by semantics have not been formalized
yet. The intent is to match the messages provided by the ALS, in
order to gain some copatibility.

A.5 Error Messages Generated by Storage

Error messages generated for bad pragmas and representation
specifications have not been formalized yet.

105

INTIIRMETRICS INCIORP ORAI1D 7 33 CONCORD AVENUE •CAMBRIDGE, MASSCHUSETTS 02138 (617) 661-1840

-* .o . . • .4



FIME

NT N I R~SIcO P R TE 3 C N O O V N E UI OGm AS A H Er 3U *( 7) 61 60

.. *.J


