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L INTRODUCTION AND BACKGROUND

This document is the final report on Contract N00014-79-C-0406, for the period
June 1979 through July 1983. Part of the work is continuous with that supported under
Contract N00014-72-C-0051, which terminated in March 1978 and under

Contract N00014-78-C-0447, which terminated in May 1979.

Research under this contract has been concerned with the theoretical study of
atom-molecule reactive collisions and of electron-molecule scattering. In both areas, the
principal emphasis has been on the development of theoretical methods that are designed for

computational studies useful in interpreting or refining experimental resulits.

Principal published resuits of work supported by this contract over its four-year period
are summarized in Section II. Work done in the most recent contract period, June 1982

through July 1983, is described in Section III. Results have been reported in thirty-one

publications listed in Section IV.

bt 72 S A B R T
A .H‘. [0 1o 4 o Wh, o

.......




% IL. PRINCIPAL RESULTS

’ A. Studies of Surprisal Theory

; Information theory has been used with considerable success to analyze molecular

collision processes.! In many cases, final state population distributions of atom-molecule

f collision products are closely approximated by a linear surprisal law. This implies that the

* information content of the population distribution is minimal, subject to a single dynamical

; constraint condition

:

2 To examine the relationship of such results to the underlying collision dynamics, a

; formalism was devised in which it is possible to study the evolution of internal state

% | populations as a function of a collision coordinate in a reactive collision. Dynamical entropy

3 is defined as a statistical property of a dynamical scattering matrix, indexed by internal states

i of a molecular collision system for a specified value of a reaction coordinate. Earlier studies

: of coplanar H+H, with this formalism were extended to the three-dimensional H+H,

f exchange reaction (Section IV, Publications, No. 2), using the realistic potential

¢ hypersurface of Porter and Karplus? The results confirm the earlier coplanar studies and
indicate that the formula of surprisal theory, appropriate to a single dynamical constraint

condition (specifying the partitioning of energy between translational and internal rotational

: motion) holds accurately throughout the coordinate region of strong atom-molecule

: interaction, not just in the asymptotic region.

¢

£ Th quantum dynamical results indicate that the empirical success of surprisal

analysis follows from pure quantum collision dynamics, without invoking separate statistical

‘g‘_ phenomens. At present, a valid derivation of surprisal theory from first principles appears to

; be Iacking. Applications of surprisal theory were surveyed in a review article (Section IV,

',an-:ﬂ.«;,n. N L AR LR LA TR A S A AT BRI F SRR
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Publications, No. 12), which discusses quantum dynamical studies analyzed by use of

surprisal theory and examines implications for statistical theories of collision processes.

B. Fourier Transform Method for Molecular Collisions

A RN

Recent developments in the mathematical theory of classical dynamics have revitalized

g the long-dormant theory of semiclassical quantization. Practical semiclassical computational
? methods have been developed for bound states of systems with several nonseparable degrees
of freedom. In particular, vibrational levels of triatomic molecules have been computed.

%

As discussed by Percival,3 quantization conditions can be applied to an extended

3 -

classical trajectory characterized by definite action integrals. The locus of a trajectory in

phase space (coordinates and momenta as independent variables) is an invariant toroid,

LA MY

whenever action integrals, constant on such a toroid, are well-defined. Corresponding to
action integrals as generalized momenta, the conjugate generalized coordinates are angle

variables. The original coordinates and momenta used to construct the system Hamiltonian

SRAR R

function can be represented as periodic functions of the angle variables for the trajectory

corresponding to a given toroid. Percival considers constructing an invariant toroid directly

Ui S gt

as a geometrical object in phase space, by solving the nonlinear partial differential equations
appropriate to this representation in action-angle variables. These equations can be solved

iteratively in a Fourier transform representation. By constructing an invariant toroid, action

B T R

integrals are computed as functions of energy. Semiclassical energy levels of a bound system
correspond to quantized values of these action integrals.

Extension of this methodology to atom-molecule scattering problems might open up

new prospects for semiclassical or approximate quantum dynamical calculations, especially for

reactive collisions. As originally formulated, the theory cannot be apolied to collision

M S A L




problems. For unbounded motion, at least one of the frequency constants of the theory

T, A

vanishes, and Percival’s equations cannot be solved. However, by reflecting the scattering
potential at an external boundary, inelastic scattering problems can be adapted to this
methodology, and results for an inelastic scattering model were obtained (Section IV,
Publications, No. 1). This construction cannot be used for reactive problems, because more

than one reflection surface is required and the resulting potential function in general is not

St AL %

single-valued. In another application, the bound state formalism of Percival was used to
parametrize vibrational potential functions for triatomic molecules (Section IV, Publications,
No. 4).

I S e BT

An alternative method, suitable in principle for reactive collisions, was formulated and

£ WO

applied to model problems (Section IV, Publications, Nos. 7,8). An infinite potential barrier
is introduced either to close off entry channels in the asymptotic region or to separate
distinct potential wells. Toroids obtained for each of the resulting single-well regions are
combined to describe motion in the original potential. The required boundary constraint,
equivalent to specular reflection at the infinite barrier, is nonholonomic, expressed as

& inequalities to be sstisfied by coordinate values. By augmenting the Fourier expansion with
. functions having discontinuous derivatives, the linearized equations to be solved at each step
of iterstion were expressed as s standard linear programming problem. The dual simplex
method* of linear programming theory was adapted for solving them (Section IV,
Publications, No. 20).

An internal potential barrier is a common feature of reactive collisions. It is not
isamedintely cbvious how to extend the concept of an invariant toroid to such a system. A
similer problem cocurs for bound motion in a double potential well. For energies below the
internal barrier, two indepsndent toroids are required, but they must coalesce for energies
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above the barrier. Understanding the bound multiple-well problem is a prerequisite for
understanding the reactive coilision problem. The technique of imposing confinement within
arbitrary boundaries makes it possible to consider such problems. The method was tested for
a double well potential constructed from two Morse functions. The dynamical problem was
solved as a single well with an infinite potential barrier at the internal potential maximum.
Converged results were obtained both above and below the potential barrier. In another
application, solutions were obtained separately for two unsymmetrical potential functions
defined by setting an infinite potential barrier at the minimum of a Morse potential. These
partial solutions were combined to produce accurate solutions of the Morse oscillator
problem. The boundary constraint method was also used to obtain scattering solutions for a
model problem with a positive Gaussian potential barrier. This made it possible to study the
qualitative behavior of an invariant toroxd near an energy of stagnation, defined by total
energy equal to internal barrier height. The computational method was successful in
approaching this limit from both higher and lower energies (Section IV, Publications,

No. 21). In this work, a true second-order iterative method was introduced. All terms of
first order in the residual nonlinearity were included in the linear equations solved exactly at
each iteration. This made it possible to solve Percival’s equations for bounded model

problems with highly anharmonic potential functions.

A technical problem which has not yet been adequately solved for systems with more
than one degree of freedom is that the matching surface between arrangement channels or
distinct potential wells is not, in general, geometrically simple in both the natural coordinates
and the true angle variable coordinates of the Fourier transform method. Moreover, the
relationship between these two representations is not defined until a solution of the

dynamical equations has been obtained. Calculations on He+H, indicate that choosing a
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linear or planar surface, in the space of angle variables, to represent the matching surface is
not a useful approximation. For further progress with this method, a self-consistent

definition of the matching surface must be incorporated into the iterative computation.

C. Theoretical Methods for Electron Scattering

1. Multichannel variatiomal methods. Electron scattering by atoms and molecules is

characterized by complex short-range interactions and by long-range potential functions of
simple known form. In order to exploit the simplicity of the long-range potentials, it is useful
to consider hydrid theoretical methods in which variational treatment of the short-range
problem is combined with exact numerical solution of the long-range problem. Exploratory
studies of alternative methods have led to the adoption of a particular method for
electron-molecule scattering calculations which combines the most favorable aspects of
several earlier methods. Preliminary results obtained with this method are described in

Section III-A, below. Results of the exploratory studies are summarized here.

Two principal methods have been used for accurate electron-atom scattering
calculations: The R-matrix method® and the matrix variational method,® based on the
Hulthén-Kohn variational principle. Methods based on the Lippmann-Schwinger integral
equation,’ or more specifically on the Schwinger variational principle3 have more recently
been shown to be viable. All of these methods can be applied to electron-molecule
scattering. The standard close-coupling method is less suitable for molecules because it
requires solution of coupled partial differential equations or, alternatively, strong mixing of

spherical harmonics in a one-center expansion.

The R-matrix method exploits the applicability of different computational techniques

for large and small radial coordinate r by explicitly introducing a boundary radius r,. Basis
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functions of the inner region are truncated at r; and asymptotic close-coupling equations are

solved outside ry. This method has been used succwsfully for electron-molecule scattering
calculations.?

In the matrix variational method a basis set of localized (quadratically integrable)
functions is augmented by auxiliary functions (continuum basis) that are oscillatory in the
asymptotic region. Spherical Bessel functions have been used in calculations of electron
scattering from neutral atoms.5

In a hybrid version of this method, continuum basis functions (numerical asymptotic
functions, or NAFs) are obtained by e:_rplicit integration of the asymptotic close-coupling
m‘o The NAF method has been used for accurate calculations of electron-atom and
electron-ion cross sections.!! Assuming exact solution of the asymptotic equations, only the
residual Hamiltonian, a short-range operator, contributes to the integrals used in the
Huithén-Kohn variational formulas. Similar integrals, defined within a fixed spherical or

spheroidal boundary, must be evaluated in the R-matrix method.

The common feature of hybrid methods, as this term is used here, is to use exact
solutions of a model problem to simplify solution of the full physical scattering problem. The
physical Hamiltonian operator is separated into a model part and a residual part. If model
solutions are incorporated into a Green'’s function, the Schridinger equation can be
{ - converted to a Lippmann-Schwinger integral equation, which must be solved for the effects
of the residual Hamiltonian. As usually fornulated, the Schwinger variational principle is
derived from a Lippmann-Schwinger equatior - astructed from the free-particle Green'’s
function. Hence, the long-range multipole potentiais typical of electron scattering by atoms

or molecules are retained in the residual Hamiltonian. An alternative formalism, which

.........

..........
..............
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reduces the residual Hamiltonian to a true short-range operator, has been derived® by
constructing the Green’s function appropriate to exact solution of a multichannel model
problem, which could include all long-range multipole potentials (Section IV, Publications,
No. 9). This formalism should be competitive in efficiency to other hybrid methods
considered here. It has not yet been tested in calculations on atoms or molecules because it

cannot make use of existing bound-state computational methods and programs as readily as

do methods based on matrix representations of the Schridinger equation.

In the matrix variational method,% matrix equations for the full N+1 electron problem,
one electron scattered by an N-electron target atom or molecule, are replaced by an
equivalent formal structure: a matrix optical potential that acts on an orthogonalized
continuum wave function. A model study (Section IV, Publications, ﬁo. 19) showed that
introducir_ « Bloch operator, at finite I, into the reduced one-electron continuum equations,
valid R-matrix results can be obtained even though all the integrals used in defining the
matrix optical potential are carried out to r = «. This method becomes equivalent to the
R-matrix method, except for the specific variational principle used and for the range of
integration, if the continuum basis can represent an exact solution of the asymptotic

differential equations outside r,.

Because the phase of an asymptotic solution of the scattering problem must be
determined by solving the variational equations, two oscillatory basis functions differing in
asymptotic phase must be included in the continuum basis set for each open channel. If this
is done in variational R-matrix calculations, an exact asymptot:~ solution can be brought into
some radius r=r,, much smaller than the usual boundary at r;. The boundary radius r; must

be sufficiently large to justify neglecting nonlocal potentials. The remaining
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energy-independent basis functions have only to represent the effects of deviations from the

asymptotic Hamiltonian in the intermediate range ro<r<r;.

This remark suggests that convergence of variational R-matrix calculations® can be
facilitated by including two energy-dependent NAF basis functions for each open scattering
channel. As originally formulated,” the R-matrix method for atoms and molecules uses basis
functions with a fixed boundary condition at r,. The resulting discontinuous slope at r, is
corrected by introducing an energy-dependent basis function inside r1.12 In a model study
(Section IV, Publications, No. 18), it was shown that calculations using either the matrix
variational method or the R-matrix method with one energy-dependent oscillatory basis
function per channel showed much better convergence, with respect to the number of bound
basis functions used, than did the unmodified R-matrix method. The best convergence was
found for the R-matrix method with two energy-dependent oscillatory functions per channel.

This method is being implemented for electron-molecule scattering calculations, as reported
in Section II-A, below.

2. Theory of resonance and threshold effects. The theory of dynamical coupling between
electron scattering and nuclear motion in molecules is discussed in Section II-E, below. In
computing rovibrational transition effects from electron-molecule scattering matrices obtained
for fixed nuclei, the latter matrices must be analyzed in order to separate background
scattering from specific resonance effects. The formal theory of multichannel resonances is
well-known and can be used in this analysis. The corresponding theory of threshold
structures had not previously been developed in a form that allows the separation of
background scattering from the effects of singularities due to a Feshbach resonance,
associated with an excitation threshold, or due to a virtual state. It was found possible to

develop multichannel threshold theory in analogy to the theory of multichannel resonances,
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making an explicit separation of background scattering from the effects of pole singularities

(Section IV, Publications, Nos. 10 and 11).

3. Algebraic and numerical methods. A new iterative method for computing several
eigenvalues and the corresponding eigenvectors of large matrices has been proposed
(Section IV, Pulications, No. 15). The essential idea is to adapt the Jacobi algorithm to a
partitioned matrix, so that only the first n columns are transformed if n eigenvalues are
required. Test calculations indicate that for the lowest eigenvalue of a large matrix, this
method converges in time comparable to the successive relaxation method. It converges
equally efficiently for any specified number of eigenvalues, the computation time being

proportional to this number.

Methods for iterative solution of large systems of linear equations have also been
explored. Many variants of existing algorithms were tested on model problems. No single
algorithm was found to be both reliable (ensuring convergence) and rapidly convergent for
these test problems. However, a combination of two algorithms, both differing in detail from
prior methods, was found to be satisfactory. Details are given elsewhere (Technical
Proposal, this contract, April 1982).

In approximate treatments of electron impact excitation of molecular vibration or
dissociation, analytic models of resonance theory require knowledge of the fixed-nuclei
electronic resonance width as a function of electronic energy and of nuclear conformation. A
new numerical technique has been devised for calculations based on earlier work by Hazi,!3
who used Stieltjes moment theory in the Feshbach resonance formalism. The new method is
a practical procedure for converting a discrete representation of a Green’s function, with a

dense distribution of pole singularities, into a smooth approximation to the continuum limit of
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such a function (Section IV, Publications, No. 16). The new method uses a finite-element
representation of the pole strength function, or resonance width as a function of real energy
for a scattering problem. The method has been successfully tested in applications to a model
electron scattering problem, using the Feshbach resonance theory for a resonance phase shift.
In a second application, the Schwinger variational formula was used to compute the total
phase shift for the same model problem. The new numerical method was used to evaluate
the Green’s function integral required in the Schwinger formalism. From these two
calculations, both resonance and background phase shifts are deduced, requiring only data

computed from a discrete spectral representation of the model Hamiltonian.

The proposed method represents the pole strength distribution function by a linear

~ spline function. This function is constructed from triangular finite elements. Correct

threshold behavior is built in by using momentum or wave number k as independent
variables, and by starting the first element at the continuum threshold. Since each triangular
element has a finite and continuous Hilbert transform, a smooth fit is obtained to both real
and imaginary parts of the limiting complex-valued function, corresponding, respectively, to

the energy shift and width functions in the Feshbach resonance theory.

D. Electron Scattering by Atoms

Theoretical studies of low energy electron-atom scattering were supported by the
predecessor of this contract. Methodology developed in this project was applied to
quantitative calculations of electron scattering by He, Li, Na, K, C, N, and O atoms. Theory
and computed results, and their experimental implications, were reviewed in a general survey

of progress in this field (Section IV, Publications, No. 22). More details are given in a

recently published book.6
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Because the electron-helium elastic scattering cross section can be used as a standard
for experimental calibration, accurate theoretical calculations are desirable. Variational
calculations of s- and p-wave phase shifts for energies up to 19 eV were carried out, in
calculations designed to give 1% accuracy for the differential elastic cross section
(Section IV, Publications, Nos. 3 and 5). Agreement with high-precision experimental data
from several laboratories is compatible with this level of accuracy, estimated from
convergence studies of the variational calculations. The computed differential cross section is

in current use as an experimental standard.

In the n=2 excitation region, e +He scattering exhibits several structural features
associsted with resonances, threshold effects, and with a virtual state.5 These
energy-dependent features of the cross section can be understood in terms of the eigenphase
sums for the three lowest symmetry states 2S, 2P°, and 2D. Earlier variational calculations!4
were repeated with larger basis sets in an improved variational formalism (Section IV,
Publications, No. 24). The recomputed eigenphase sums agree in their principal qualitative
features with the earlier calculations, and are compatible with analytic structure expected
from multichannel threshold analysis (Section IV, Publications, No. 10). The 2S eigenphase
sum shows structure associated with the well-known resonance at 19.37 eV and with a
virtual state at the 2!S threshold. There is a single broad ?P° resonance, below the 21S
threshold, and a strong 2P° cusp at the 2>P° threshold. A broad 2D resonance occurs below
the 23P° threshold. Cusp or rounded step features occur at all thresholds in channels with

outgoing orbital s-waves.

E. Nuclear Motion in Electron-Molecule Scattering
A fundamental difficulty in the quantitative theory of electron-molecule scattering is

the large number of internal states of the target system. Full close-coupling caiculations in

..............................
.................
.......................................
R




&

" %

o

&

* i

o

PO

e '.,&4’{:

TR
Yy

the basis of rovibrational states are not, in general, feasible, because of the large number of
coupled scattering channels. The EMA approximation!S (Section IV, Publications, No. 6) is
intended to provide a practical solution to this problem, exploiting analytic scattering theory
and the Born-Oppenheimer approximation to extract detailed rovibrational excitation cross

sections from fixed-nuclei electron scattering calculations.

The energy-modified adiabatic approximation (EMA) can be described in terms of the
nuclear kinetic energy operator T, in the full molecular Hamiltonian. Fixed-nuclei electron
scattering calculations correspond to neglecting T, as in the Born-Oppenheimer limit of large
nuclear mass. This reduces the nuclear Hamiltonian H, to the potential energy V,, a
function of the internuclear coordinates. For a diatomic target molecule, the electronic wave
function for fixed nuclei would be computed for a range of values of two parameters:
internuclear distance R and electronic energy 2. When the electronic Schrédinger equation
solved for fixed nuclei is compared with the rovibrational close-coupling equations, it is
found that these systems of equations become formally identical if the parameter e is
replaced by the corresponding operator E-H . The electronic wave function, parametricaily
dependent on ¢ and R, becomes an operator (dependent on T,) acting on rovibrational wave

functions.

Electron scattering is determined from the asymptotic form, for large electronic radius
1, of the electronic wave function. For fixed nuclei, this is specified by the scattering matrix
S(e,R). The essential point of the EMA approximation is to replace S(e,R) by an operator
S(E~H,,,R), using forms of operator functions that are consistent with analytic scattering

theory. The rovibrational scattering matrix is obtained by evaluating matrix elements of this

operator in the basis of rovibrational wave functions.
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& When matrix elements of T, can be neglected, the EMA approximation reduces to the
Tt

well-established adiabatic-nuclei approximation.m This is true generally for pure rotational
i"‘?

i excitation,!7 but not in the vicinity of excitation thresholds and not for long-lived electronic
“; resonance states. The EMA approximation gives vibrational excitation structure for e"+N,
;,A in substantial agreement with experiment.!3 The adiabatic-nuclei approximation is not valid
kol

?’2 in this case because of the dominant effect of an electronic resonance.

t})-“

An important goal of electron-molecule scattering theory is to develop quantitative

methods for processes such as dissociation or chemical change induced by electron impact. A

typical process, dissociative attachment, is

e +AB+ A+ P ¢))

R T

The standard theory!® attributes this process to an electronic resonance state AB" with a

52
&

finite lifetime over some range of internuclear distance R, due to autodetachment. The AB"

nic

potential curve is assumed to be a complex-valued function

P

W(R) = V(R) - % T'R). 2)

A wave packet (in coordinate R) initiated in the Franck-Condon region by electron capture

loses amplitude as it moves outward. The survival probability in the limit of dissociation is a

T E L e 1 .‘4; o 1\,‘“‘9

measure of the rate of dissociative attachment.

|’—_“\.

This theory runs into difficulties when there is relatively strong autodetachment, as

&N

discussed in a review article (Section IV, Publications, No. 17). The postulates

complex-valued function may not be well-defined, or it may be multivalued. Scattering

i
) amplitudes computed by Klonover and Kaldor!? for e +H,, which give good agreement with

i p experimental vibrational excitation cross sections, computed in the adiabatic-nuclei

*:?u' BN R I N R S IR L Lt PR ._,;‘l
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approximation, were analyzed for the resonance functions V(R) and I'(R) (Section IV,
Publications, No. 23). The usual resonance formalism was found to be inadequate. The

scattering amplitudes imply a strong energy-dependent nonresonant background.

A viable theory of dissociative attachment should be valid in the strong-coupling limit.
Such a theory, based on the EMA approximation, has been proposed (Section IV,
Publications, No. 13). This theory will be used for calculations on e”+H,, using scattering

matrices obtained from new variational calculations, described below (Section III-A).
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IIl. RESEARCH ACCOMPLISHED, FINAL CONTRACT PERIOD
A. Variational Caiculation of e”+H, Scattering

Model studies show that variational R-matrix theory and hybrid versions of the Kohn
variational method can be organized so that principal computational steps are common to
both methods. In order to take advantage of these theoretical developments, a collaboration
has been initiated that includes P. G. Burke and C. J. Noble, at the Daresbury Laboratory,
England; L. A. Morgan, at Royal Holloway College, England; and the present project. The
general plan is to explore and design computational methods for electron-molecule scattering
that can be built onto the existing ALCHEMY system20 of bound state molecular wave
function programs. The programs are at present limited to diatomic target molecules, using
atomic basis orbitals of exponential form (STOs), augmented by continuum basis functions in
the form of spherical Bessel functions and by numerical asymptotic functions (NAFs).
Integrals required for calculations on polyatomic target molecules are currently being

programmed. This work is described in Sectior III-E, below.

Methods and programs are being tested in calculations of e”+H, scattering
(Section IV, Publications, No. 30). Variational R-matrix calculations were carried out
within the boundary radius r,=10.0a,, then matched to external solutions of the asymptotic
coupled differential equations. The target H, ground state, 12‘.; , is represented by the SCF
wave function of Fraga and Ransil,2! with a total of six o atomic basis orbitals. An

additional six # STOs were added in calculations taking o+ polarizability into account.

In the static exchange approximation, only the target ground state is considered,
represented by its static quadrupole potential in the asymptotic region. Converged results
were obtained for coupled s and d partial waves in the 23 ¥ scattering state, using only eight

continuum basis functions in the form of NAFs and Bessel functions for k2 up to 0.36a},2
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(Section IV, Publications, No. 26). Earlier calculations, using only STOs on the scattering
center with no true continuum basis, had required 13 such basis functions for convergence.
Results for K-matrix elements, computed for the 2X  scattering state, are listed in Table 1.
Earlier results of Collins ef al.22 are given for comparison. Compared with typical accurate
bound state calculations, the orbital basis set used here is small, giving only 15 configuration
state functions for the variational R-matrix basis. all calculations here are for internuclear
separation 1.402a,,

Experience with electron-atom scattering calculations ir.dicates that the polarization
response of the target system to an incoming electron can be taken into account by including
polarization pseudostates in the close-coupling formalism.5 The SCF ground state wave
function of H, is the single configuration (102) 'S, Using methods described below, in
Section III-D, pseudostate orbitals ¥, and o, were computed variationally and were used to

construct two pseudostate wave functions
(10,7 1, , (10,5)'57 .

For calculations involving the ll'In pseudostate or manifold of virtual excitations, six basis
STOs of = symmetry were added to the Fraga-Ransil o orbital basis. The computed parallel

and transverse polarizabilities are respectively

ay = 7014933, a, = 4.9660a,,

to be compared with accurate values (at R=1.40ay),23

ay = 6380535, a, = 4.5777ap.

3

4)

)




In order to include all components of the dipole transition moment from the 12;’
ground state, the following scattering channels must be represented, if p and f partial waves

are included in the ground state channels:

Target State Partial Wave Orbital
=} po, fo,
lﬂu do, 87,
= so, dog go, (6)

Thus, a 2-channel static exchange calculation must be extended to seven channels for a
consistent and comparable polarized pseudostate calculation. Calculations of this kind were
carried out at R=1.402a, Results for open-channel K-matrix elements are summarized in
Table 2, and are compared with earlier calculations by Klonover and Kaldor,! who
represented dynamical polarization effects by a second-order optical potential. In the present
calculations, all components of dipole transition moments and of quadrupole moments were
computed for the three target states. This matrix of moments was used to construct the
asymptotic potential functions for integration of coupled equations outside the R-matrix

boundary.

The continuum orbital basis in these calculations was carried to effective completeness

by successively adding Bessel functions in each of the partial wave channels.

Alternative ways of including numerical asymptotic functions in the orbital basis set
were tested. While two independent NAFs per open channel must be used to represent
oscillatory functions over an extended range of the radial variable, the values of k and ¢ in
the present calculations are such that the open-channel solutions of the asymptotic equations

have few if any oscillations inside r,, the R-matrix boundary. In order to avoid linear
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dependency problems one regular vector NAF per open channel is constructed as a linear
combination of the numerically integrated asymptotic functions by an algorithm described in
Section III-C, below. The d.iégonal component of this function is fitted to a regular spherical
Bessel function at a matching radius fo 2-035 in the present case, and is used as a continuum
basis function. Completeness of the continuum basis inside r, is achieved by adding Bessel
functions that vanish at r,, with successively greater numbers of radial modes. Bessel
functions were added in each of the seven partial wave channels until effective convergence
to two or three significant decimals was achieved in the eigenphase sum. Convergence was
smooth and rapid, requiring only 42 configuration state functions for the results listed in

Table 2. Wave functions of the same structure were used over the full energy range studied.

The computed eigen_phase sums shown in Table 2 are in good agreement with the
earlier work of Klonover and Kaldor,!? although the individual K-matrix elements differ
more evidently. The systematic sign reversal of element K4, appears to be an artifact of a
phase convention. The present calculations confirm the general trend of the
Klonover-Kaldor eigenphase sums. This strengthens the argument,2 sketched in
Section II-E, above, that the e”+H, scattering resonance is companied by a strongly
energy-dependent background, not considered in the current theory of dissociative

attachment.

These results represent the achievement of a major goal of this project. These are the
first electron-molecule scattering calculations to include a full dynamical pseudostate model
of molecular polarization. Special methods were developed to solve many technical problems

associated with the asymptotic integration and construction of useable basis NAFs. Some of

these developments are discussed in Section III-C, below.
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B. Dynamical Distorted Wave Calculations

In order to compute accurate differential scattering cross sections, the partial wave
representation must be summed to convergence. Long-range potentials lead to significant
contributions from high-order partial waves. Accurate variational calculations are feasible
only for a few low-order partial waves. Using the partial wave Born approximation,® partial
wave phase shifts or K-matrix elements at any given energy can be estimated accurately for
sufficiently large angular momentum /. Following Thompson,2> the Born scattering
amplitude can be corrected for short-range effects by adding a sum of low-order partial wave
corrections. The correction for each partial wave is computed by subtracting the partial wave
Born scattering amplitude from that computed variationally. This method has been used for
rare gas atoms to compute effects of the polarization potential ~a/2r% on the scattering

amplitude.

A similar approach can be used for molecules. The asymptotic potential, through
quadrupole terms for a diatomic molecule, is

V(1) = = (ag + a,P,(cos0))/2r* - QP,(cos)/r” . )

Nonspherical terms here couple partial waves 7, /#2, but the fixed-nuclei scattering
amplitude and partial wave K-matrix can still be evaluated analytically for />0 in the first
Born approximation. Molecular rotation must be taken into account as discussed in

Section II-E, above.

Because of the difficulty of accurate variational calculations, it is desirable to limit such
calculations to the smallest possible number of partial waves. For this reason, in the present
work, a dynamical distorted wave approximation has been introduced. This is implemented

by carrying full solutions of the asymptotic differential equations into the matching radius ry,
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then matching at r(, onto a diagonal R-matrix appropriate to regular free-wave functions in
all channels. This same construction, discussed in Section II-C, below, is used to define
open-channel NAFs, used as basis functions in the full variational calculations. Hence, the
dynamical distorted ‘wave approximation should approach accurate variational results in the
limit of negligible short-range interactions. This approximation should become accurate as /
increases for fixed k. Ultimately, it must also approach the Born limit, for large k, or, given
k, for large /. The general approach to be followed is to use the first Born approximation
where valid, as in Thompson’s method, correcting low-order partial wave scattering
amplitudes by use of the dynamical distorted wave approximation in its range of validity, in

turn corrected by accurate variational calculations for the lowest partial wave /-values.

The dynamical distorted-wave approximation should be valid for partial waves with
negligible amplitude inside the matching radius Io» which is chosen as an approximate outer
radius for the charge density of the target molecule. For example, ro=2.0a, is used here for
H,. Given k and /, classical trajectories pass outside the impact parameter or classical
turning-point radius

= (2+1)/x. (8)

unless deflected strongly by the long-range scattering potential. This implies, unless the

phase shift or diagonal K-matrix element is very large, that the quantum mechanical wave

-~
.

function is small inside this radius. Hence, a condition for validity of the dynamical distorted

wave approximation is

[

(9

.............................................
................................




In the present calculations on H,, for k-values up to l.Oabl, this condition is

?>>15. (10)

Table 3 shows K-matrix elements from dynamical distorted wave calculations of e*+H,
scattering, at R=1.402a,,, compared with converged variational calculations and with
K-matrix elements deduced from scattering amplitudes of Klonover and Kaldor.'® From
Eq. (10), the distorted wave approximation should be valid for />3, marginally valid for
! =3, but should fail for /=1. Comparing columns (2) and (b) in Table 3, matrix elements

‘K4 are not a useful approximation to the variational values, but the elements K43 are
accurate within 10-25%, in qualitative agreement with the argument leading to Eq. (10).
The relative error is largest for the K elements of largest magnitude, as expected. It can be
anticipated that elements with />3 are sufficiently accurate for use in Thompson’s formula,

but this has not yet been checked by variational calculations.

For scattering by an isotropic polarization potential, polarizability « in atomic units, the -
partial-wave Born approximation formula for the diagonal K-matrix element in a channel
with partial wave orbital angular momentum / is

K, = u'akz )
0 2t el + DRE-1)

(11

This formula is not exact in the present case, since it does not take into account the
anisotropic polarization and static quadrupole potentials, Eq. (7). However, matrix elements
K” and K44 in Table 3, column (a), agree in magnitude with this formula. In contrast, the
corresponding matrix elements from Klonover and Kaldor are smaller by several orders of

magnitude. Without closer examination of the original calculations,!® no explanation can be
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suggested, but the long-range potentials do not appear to be correctly represented for higher

partial wave components of the scattering amplitude in these earlier calculations.

C. Improved Computational Methods for Coupled-Channel Calculations
Outside the target molecule, electron scattering is described by coupled ordinary

differential equations of the general form
H? - B u 0 = - SV (ug ), p=1-a (12)

where qu(r) is a real symmetric matnx of asymptotic multipole potential functions.
Efficient and accurate solution of these equations is important in-the present project. They
are used in at least three different contexts: first, inward integration from large r to the
R-matrix boundary at r,, to match external partial waves with specified asymptotic forms to
a variational R-matrix; second, inward integration from r; to an inner matching radius r, to
define numerical basis functions (NAFs) for the variational calculation; third, direct inward
integration from large r to 1 in the dynamical distorted wave approximation. Here r, is a
radius beyond which nonlocal potentials can be neglected, and r(, is 2 much smaller radius,

beyond which the target multipole potentials are defined as inverse powers of r.

Integrations are done using a combination of methods. The Gailitis expansion!6 is used
in the far asymptotic region, into a Gailitis radius r;. Inside rg, integrations are done with
the R-matrix propagator method,!7 using a program described elsewhere.28 The published

methods are modified in several ways, to be described here.

A particular problem, in the present work, is the presence of strongly closed channels,
due to the dynamical representation of the polarization response of a target molecule.
Because all channels are dynamically coupled, noise terms which build up exponentially in

either direction of propagation of closed-channel wave functions can spread to the open
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channels, leading to severe loss of accuracy if functions are propagated over large coordinate
ranges. The detailed methods used here are designed to eliminate this problem as much as

possible.

In the far asymptotic region, solutions of Eq. (12) can be developed analytically. The

Ansatz used by Gailitis, 26 following Burke and Schey,29 is
Upe (1) = vy (D) Wy (), (13)

where all functions are complex, and w(r) is a solution of the uncoupled equations for some
channel s. Since w(r) is the same for all channel components Upes and the multipole
potential functions are constants times inverse powers of r, the coefficient functions yps(r)
can be developed iteratively as series in inverse powers of r. In general, these are divergent
(asymptotic) series, and the Gailitis radius r; must be chosen sufficiently large to give

adequate accuracy when such a series is truncated at its term of least magnitude.

In the present project (C. J. Noble and R. K. Nesbet, manuscript in preparation) the
Gailitis power series is replaced by a continued fraction or Padé approximant. The effect is
to bring r; down to much smaller values in difficult cases, and also to take advantage of
higher terms in the Gailitis series, beyond the truncation term of the asymptotic series. A
general algorithm for replacing a given power series by a continued fraction (or diagonal
Padé approximant) has been devised for this application (CFRACT algorithm:

R. K. Nesbet, unpublished).

In order to describe the specialized integration methods used in the present project,
several definitions are needed. Equations (12), which are second-order ordinary differential
equations, have 2n independent vectorial local solutions at any given r where the potential

functions are not singular. It is convenient to use two indices to denote a particular vector
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solution (replacing the single index s). Then for p=1,...,n; i=0,1; a=1,...,n, the function
upia(r) denotes the component in channel p of solution i,a. Depending on context, index i
denotes one of two independent solutions associated with channel a by specified boundary
conditions. The muitichannel Wronskian matrix is an invariant of integration. By a suitable

choice of boundary conditions, the Wronskian can be put into a canonical form,
Wajp = ; (Ui Up = UpiaUpp)

This is an elementary antisymmetric matrix

o I
J= [ ] . (15)
-1 o

If Eq. (12) are integrated between r, and r,, values and derivatives of any vectorial

solution at the two boundaries are related by 2n linear equations:

w(l) = -~ R;(1,2)u'(1) + Ryp(1,2)0'(2),

u(2) = - Ry (120(1) + Ry (12)0'(2) . (16)

The array of coefficients here,

[Ruu,z) R,zu.z)]
, an

Ry(12)  Ry(12)

defines the global R-matrix, which is a real symmetric 2nx 2n matrix. The conventional
definition of the R-matrix, denoted here as a local R-matrix, refers to a particular subset of n
solutions of Eq. (12) such that at ry and r,,
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3
e, u(l) = r,R(rydu(l),
‘3
A u(2) = LRV . (18)
’ The local R-matrix is a real symmetric nxn matrix. Given R(r,) and the global R-matrix,
:'?: propagation equations for R(r,) are obtained by substituting Eqs. (18) into Eqgs. (16). In
- the R-matrix propagator method,!7 this transformation is carried out for successive sectors of
& a subdivided interval (r,,r,). In the method used here,28 global R-matrices are computed
-2 variationally for each sector.
¥
’s} Regular boundary conditions at the origin of coordinates (r=0) define a subset of n
) ' solutions of Eq. (12). In conventional R-matrix calculations, a local R-matrix is computed
}‘}‘ variationally at r,, then propagated out to r; where it is matched to asymptotic solutions to
obtain the scattering matrix or K-matrix. In the present work, adapting this method to
‘3 inward integration, the sectorial global R-matrices are combined in each propagation step to
form a global R-matrix defined between current extreme boundaries, eventually building up
’_ the global R-matrix : r the full interval (rl.rG). This matrix is stored for subsequent use.
B Inward integration is continued, building up a global R-matrix for the interior interval (ro.r,),
-
5 which is used to construct NAFs. These functions are used in the variational calculation of
;;3 the local matrix R(r,), which is propagated out to r;, using the previously stored global
1 R-pmrix for the interval (ry,rg). Matching to Gailitis solutions at r completes the
‘;;;
; It is convenient to define canonical solutions of Eq. (12) as those with canonical
‘: Wronskian, W], and to define linear transformations that preserve the Wronskian, as
Ei canonical tramformatiom.6 If u'w(r) and uw(r) are combined to define a column vector
=
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(n components of \3_' followed by n components of u) the array of vectors u;, defines a

2nx 2n square matrix U. In this notation, Eq. (14) takes the simple form,

where notation (7) denotes the transpose of a real matrix. If solution vectors obtained by a

linear transformation are denoted by
vV =UQ, (20)

then it follows from Eq. (19) that the defining condition for a canonical transformation is

Q'IQ=1. (21)

Canonical transformations form a group. In particular, local values of vector solutions as

represented by the array U belong to this group.

The Gailitis functions are defined to have canonical Wronskian W=J by requiring w(r)
in Egs. (13) to be Coulomb-Bessel functions with standard normalization, or appropriate
decreasing exponential functions for closed channels. An accurate Wronskian at finite r is a
necessary condition for the validity of the Gailitis expansion. When used as a test, this
shows, in general, a very great improvement at given r when the inverse power series of the
Gailitis expansion is replaced by a continued fraction representation. To reduce subsequent
errors, an algorithm has been devised which cleans up a given approximate solution matrix U
by enforcing certain internal symmetries that are a property of canonical transformation
matrices (FCANON algorithm: Section IV, Publications, No. 28). FCANON is routinely

applied to functions evaluated from the Gailitis expansion in the present work.

If wave functions are propagated through classically forbidden regions, small errors are

smplified by exponential factors. This can cause severe computational problems when closed

----------------------
.................

. - . . - - a . : - - LT - -
N .« e . RS N . - R e . .
MR ST BTN A D S WA W W P A At e At atat et alnin? et aia s




1 %52

"-\4: 'l".

Sl
Telala

T IA L

'y

Y B ot g A . -
LR PR

V.
XD LA

TR0

13!; R

TR

£

el car g

¥

]
Y
K

vy '1 T

AW s Beb W
RN Y
Fat?,

o

YRR 15

Ay

xv
AL A
Y

ARED Y

BTSN, "t'*o ‘\ ‘- '-"p > _.)'. NGRS e T

.............
...........................

28

channels are present in Eq. (12). This loss of accuracy is a property of the system of
coupled differential equations, not of any particular method of integrating these equations.
These exponential factors do not occur if R-matrices are propagated rather than wave
functions. Hence, propagation of functions should be avoided in favor of R-matrix

propagation whenever possible, as is done in the procedures described above.

It is not possible to avoid function propagation in constructing NAFs, which are used as
variational basis functions. In the present work, the global R-matrix for interval (rgery) is
built up from sectors without referring to the propagated functions, which are constructed at
sector boundaries from the global R-matrix and from initial values at ri. Within each sector,

each NAF is represented by an expansion in Legendre polynomials.

Coupling to strongly closed channels causes large errors to accumulate when functions
are propagated over the external range (ryrg). From Egs. (16), the crucial equation for
inward integration over an interval (r,,r,) is

Ry u'(1) = Ryu'(2) - u(2) (22)

which must be solved for 1_1"(1). Then u(1) is obtained directly from Eqs. (16). It is

convenient to symmetrize the operator acting on u’(1) in Eq. (22), which becomes

R1pRy8'(1) = Ry (Rypu'(2) - u(2) (23)

then to diagonalize the resulting matrix

and to construct u’(1) for the solution vector indexed by (ia) in the form
(D) = T enld, (25)
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where
Ao =8« Rpp(Rppu',(2) - 1, (2)) . (26)

In considering examples of closed-channel system, it is found that, in general, a number
of cigenvalues A " equal to the number of closed channels n; become very small if integration
is carried out over an extended range. The coefficients d a.ia 2IS0 become small, but not
enough to remove the exaggerated effect of roundoff errors amplified by the factors A5 in
Eq. (25). Using e"+H, scattering as a model problem, with polarization pseudostate
channels included, detailed calculations show that the A;! factars can amplify roundoff
errors at 1 enough to destroy the accuracy of functions at r, (Section IV, Publications,

No. 28). The proposed solution to this problem is to carry out a linear transformation of the
given functions at IG %0 that the coefficients cl"'h of Eq. (26) are reduced to zero while
retaining the decoupling of unbounded closed-channel functions from all other functions, as
required by physical boundary conditions. In the PROJ algorithm (Section IV, Publications,
No. 28), this is done by subtracting multiples of the bounded closed-channel function vectors
from the open-channel vectors at 1. Since there are n, small eigenvalues A, this gives ny
equations for n; unknowns, for both values of index i in Eqs. (26). The actual
transformation of functions leads to very small changes at rg;, since the correction terms are
decreasing exponential functions of r, but the induced effect at r, is large. This
transformation can be justified by this observation: an adjustment at the noise level of
physical boundary conditions at rg is used to eliminate terms which are clearly identified as
amplified noise at r,. Since the PROJ linear transformation is not canonical, it is followed
by the FCANON aigorithm to produce functions at r, with a correct Wronskian. These

functions are propagated inwards to r,, as described above, with no further auxiliary
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transformations. Numerical tests show that the accuracy of functions propagated over a large

interval is improved if the PROJ and FCANON algorithms are used as described here.

Partial wave solutions of a scattering problem must be regular at r=0 and bounded at
large r. For n channels, n,,, open and n closed, at arbitrary given energy or k-value, there
are only Do regular, bounded solutions. These solutions can be constructed as linear
combinations of 2n-n, bounded functions obtained by inward integration, starting at large r
with functions that vanish in all but one asymptotic channel. The n_; unbounded asymptotic
functions are to be excluded. In standard scattering theory, external solutions would be
matched at some matching radius ry, to an internal R-matrix. A similar construction,
expressed in the form of a canonical transformation of the integrated solutions, is used in the
present work to define NAFs, giving one regular bounded variational basis function for each
open channel. Use of the remaining irregular functions will be discussed below.

Since the asymptotic potentials are not accurate inside some radius o NAFs can be
matched at r,, to arbitrary regular functions. For convenience, a diagonal R-matrix is
constructed from the known logarithmic derivatives of Coulomb-Bessel functions for open
channels, or powers of r for closed channels. This diagonal R-matrix is matched to n

op
external functions of the form

where pq=1,..,n; 3= 1....,n°p, by solving for the K-matrix:
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E Zq(up1q (fo) = FoRppliptq (7o) Kegs

& .

N = = (e (rg) = TR0 () - (28)
3

The Wronskian condition ensures that the open-channel submatrix qu is symmetric, but the

'} elements K, for closed channels s are not determined. A full nxn symmetric matrix can be
-'j
3 defined by assigning values
% Kps = Kyp » PoOpen,
K, =0, pclosed, (29)

x i
.
)

-~
.

It can easily be verified that if K is a full nxn symmetric matrix, as in Eq. (29), that the

2nx2n matrix

% I O
3 Q= (30)
_ K 1

$

& sati:iies the defining conditions for a canonical transformation, Eq. (21). This canonical

1 transformation of the integrated solutions is used to define regular NAFs for use as

-

‘ When irregular NAFs are needed to represent a phase-shifted continuum function, they
} must be matched at some point to functions that are regular at small r. Consideration of

typical functional forms indicates that this secondary matching point should be at

X3

spproximately the first zero of the corresponding regular function. In exploratory

\ calculations on ¢"+H, it was found for the range of energies and partial wave /-values

considered (Section III-A, above) that this secondary matching point was well outside r,,
! and for 8 large part of the energy range, even outside r;. Because of this, to avoid

X
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redundancy in the variational basis set, only regular NAFs were used for each partial wave,

and Bessel functions were added for completeness.

D. Molecular Moments and Polarizabilities

The ALCHEMY program system is designed for efficient calculations of individual
molecular electronic bound states. Reorganization of these programs was required in order
to compute transition multipole moments between different states, in general of different
total symmetry. This reorganization was carried out as part of the present project
(C. J. Noble and R. K. Nesbet, unpublished). The resulting program package computes
target state wave functions, energies, static moments, and transition moments in a single

computer job.

Construction of polarization pseudostates is an option of the revised program package.
Polarizability is defined as an energy correction of second order in external electric field
intensity, computed from the first-order perturbed wave function. Pseudostate orbital
functions can be deduced from the density matrix connecting the unperturbed and first-order
perturbed wave functions. At present, construction of pseudostate orbitals has been

implemented only for single-configuration unperturbed wave functions.

E. Integrals for Polyatomic Molecular Scattering

Because muiticenter Coulomb integrals can be evaluated in closed form, calculations of
bound-state electronic wave functions for polyatomic molecules are greatly facilitated by use
of Gaussian basis orbital functions. Since R-matrix calculations require integration over a
finite volume, this simplifying property of Gaussian orbitals is not directly useful in such
calculations. Polyatomic electron scattering calculations require new methods for simplifying

the multicenter integrals.
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In the present project, the approach being followed is based on a translation theorem
for Gaussian functions.39:3! This provides an analytic representation in the spherical polar
coordinates about a specified center of a solid harmonic Gaussian defined about another
center. The radial functions about the specified center can be evaluated as finite sums. For
certain ranges of the angular parameters, these sums are affected by severe numerical
cancellation. An alternative representation, a symmetric infinite series in both radial
coordinates has been derived and studied (R. Seeger, unpublished notes). It is found that
this series can be summed readily by converting to a continued fraction or Padé approximant,
using the CFRACT algorithm (Section ITI-C, above). The radial functions can be evaluated
efficiently for arbitrary parameter values by use of one or the other of these two
representations.

Programs have been written and tested for all one-electron integrals involving a mixed
basis of Gaussian orbitals and continuum Bessel functions or NAFs. Kinetic energy integrals
are evaluated in a symmetric form appropriate to a generalization of variational R-matrix
theory to enclosed volumes of arbitrary shape, discussed in Section HI-F, tziow. Work on

two-electron integrals is in progress (Section IV, Publications, No. 31).

F. Extensions of R-Matrix Theory

In considering variational R-matrix calculations for polyatomic molecules, it is
interesting to examine the possible adaptation of the theory to volumes enclosed by surface
of isregular shape. Ultimately, such a development, valid for 8 Wigner-Seitz polyhedron or
for an irregular cluster composed of an adsorbed molecule and several near-neighbor
substrate atoms, would open up new areas of quantitative theory in solid-state or surface
physics. The conceptual essence of the R-matrix theory is that the Schrédinger equation is

solved in a strictly delimited closed volume, to obtain complete information required for
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matching wave functions on the surface of that volume. Techniques for eliminating a

. common interface between two adjacent R-matrix cells can be extended indefinitely, so that
;, the global R-matrix for a larger cell of complex structure can be built up from modular units
x

iy

T corresponding to subcells. A new variational principle, suitable for such applications, will be
2 described here.

A The R-matrix theory is formulated for a multichannel one-electron Schrodinger

P equation. An N+ 1-electron problem can be reduced to this form by projecting onto

'v - N-electron core or target states. The derivation here will be presented for the simplified case
of a single core state, or equivalently, for an effective one-electron Schrédinger equation

B

k!

i) (h-e)y=0 (31)

The generalization to muitiple core states is irmmmediate.

&

;i

fh Consider solution of Eq. (31) in a volume @ of arbitrary shape, enclosed by a

boundary surface =. In spherical polar coordinates, for a spherical surface, the global

{‘1,“

’; R-matrix is indexed by spherical harmonic functions on this surface. Here, this definition is
3‘, :

generalized to a linear integral R-operator whose kernel is defined in arbitrary coordinates by
-

WD) = [RA2) 7,925, (32)

for points (1,2) on surface . It is convenient to define a reciprocal operator, the

generalized logarithmic derivative A(1,2), such that

ABAAr NN

P

v = [ A2 4213, , (33)

for the normal gradient at point 1 on surface 3.
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A variational principle for the logarithmic derivative of a radial wave function was
derived by Kohn.32 [See References 6, p. 51]. The proposed variational principle for the

linear operator A follows essentially the same logic. The variational functional is
z= fn V'~ eydr, (34)

which vanishes if Eq. (31) is solved throughout the closed region 2. Integrating the kinetic

energy matrix element by parts, this becomes

Er = j; (% _V"P"ﬂ + ¢ (V- e)lP)d'r

-1 *
LS j; ¥ (D A(1,2) ¥(2)d2,d3, . (35)

Treating A as fixed, for an infinitesimal variation 8y, the variation of =, is

8%, = j; W'l - eydr+ 1 f; 8y (V¥ - _{; AYdZ, T,
(36)
+ complex conjugate .

This vanishes for unconstrained variations of v if and only if Eq. (31) is satisfied throughout
the interior of Q and if Eq. (33) holds on the boundary surface 3.

K  is expanded as a linear combination of linearly independent basis functions ¢,, so

that
n
V= $C, s (37
2wl
then
Zp = 3,250, (Agy = Byy)ey, (38)
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o where

E3

- 1 s .

;: A, = j; ( 0 Vo, Yoy + ¢, (V - E)t{;b)d‘l’ (39)
§ and

.

) 1 ]

5 By =+ j; j;_ 8. (1) A(12) $,,(2)d43,d5, . (40)
£

: Variation of Z, with respect to the coefficients c, gives the system of linear equations

-

g ZpAnty = ZpByrCy (41)
¥

%

N =1 :

5 . fz j; 8. A(23)y(3)4Z,d3, . (42)
7

%f Sotving Eqs. (42) for the coefficients c,, Eq. (37) becomes

WD) = 3 Ty, (DATy fz j; $.(2)A23) ¥(3)dZ,dZ, . (43)

AL 6k

Consistency of these equations requires the kernel of the R operator, the reciprocal of A, to

@3

. be

B

¢ .

«% R(12) = A'Y(12) = % zbﬂ,(l)(A'l)hcbaﬂ) ’ (44)
a0 defined for points (1,2) on surface 3. It should be noted that the matrix A}, is Hermitian in
i

‘}3 general, or real symmetric if the basis function ¢, are real. It follows that the A and R

4

. operators are Hermitian, or symmetric if real-valued.

VZ;

:3 To use Eq. (44), a discrete representation of functions on surface £ can be introduced.
>

b In general, different representations can be used on different portions of the closed surface,
as might be convenient, for example, for different faces of a polyhedron. The R operators

v

; for nonoverlapping but adjacent cells can be concatenated by solving algebraic equations

i
3
v
g
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<y
2
2
o) indexed by the basis functions for a common representation on the surface of intersection. ‘
- |
‘ If Eq. (44) is specialized to spherical geometry, it reduces to a variant of the usual
.'-' formula for the R-matrix. Conventional treatment of the radial Schrédinger equation uses

r-multiplied radial functions rather than just the radial factors of three-dimensional functions.
This shifts an integrated radial term between Eqs. (39) and (40), altering both equations in a

consistent manner. The resulting R-matrix differs from the generalized R operator of

3 Eq. (32) for the same reason.

-

¥ This geometrically covariant formalism was developed in the present project originally
- to check kinetic energy integrals and surface terms for internal consistency. It is presently
’é being incorporated into new programs for electron scattering by polyatomic target molecules.
. Possible applications in solid-state or surface physics are being investigated.

G. Optical Potential and Shadow Scattering

e

When many coupled channels must be considered, solution of the matrix Schrédinger

S equations can be simplified if the coupled equations are replaced by an optica! potential in
each channel, such that
i H? -B)u,m = - VI @, (45)
':, which replaces Eq. (12). In general, a true optical potential is nonlocal and energy
; - dependent. The Ansatz given by Eq. (13), due to Burke and Schey2? and used by
% Gailitis,zs was originally introduced to provide an analytic development of asymptotic
% | solutions of Eq. (12). Analysis of Eqs. (12) and (45) in terms of this Ansatz shows that it
e provides an analytic development not only of asymptotic wave functions but also of the
optical potential (Section IV, Publications, No. 27).
N
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Substitution of Eq. (13) into Eqs. (12) and (45) gives

vom

ps YpsWs = }Zququsws . (46)

If w, is a complex-valued oscillatory solution of the uncoupled equations, Wronskian
conditions prevent both real and imaginary parts from vanishing simultaneously. Hence, this

function can be factored out of Eq. (46) to give
Ve (1) = 2V (D 7gsMv5 0} - (47)

This is an optical potential expressed as a complex function of r, given wave vector k and
angular momentum / appropriate to channel p. For consistency, index s must be equated to
p by fixing the asymptotic phase and normalization of functions ups(r) in a diagonal-channel

representation.

This construction of VO™ can be carried out as an expansion in powers of ! for large
r or as a power series in r-r, about some r,. As an example of the method, a coupled

pseudostate model of scattering by a polarizable isotropic target gives

VP(r) = % a(- ™ + (2ik/AE)rS + O(™S)) (48)

where a is the polarizability and AE is the pseudostate excitation energy. Equation (48)
adds an energy-dependent absorptive term to the well-known dipole polarization potential.

The derivation assumes that all channels are open, requiring E>AE.

This optical potential formalism has been developed to simplify calculations of
high-order partial wave terms in electron-molecule scattering. Equation (47) makes it
possible to consider shorter-range corrections to Eq. (7), in which the polarization potential

is the limiting asymptotic form of the optical potential due to closed pseudostate channels.
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L3 Equation (48) has an immediate application in interpreting recent experimental data on
extreme forward scattering of 15-25 keV electrons by rare gas atoms (Section IV,

.u Publications, No. 29). A strong forward peak and rapid angular variation, essentially a

y

Fraunhofer diffraction pattern, were observed,33 and were interpreted as a diffraction

_' pattern due to shadow scattering. The removal of forward electron flux due to inelastic

3 scattering, which dominates elastic scattering by a factor k2a2 in the forward direction, is
e expected to affect the elastic cross section analogously to the scattering effect of a black disc,
.:‘ whose shadow is described by a Fraunhofer pattern.

’ Despite this simple physical picture, no published theoretical work leads to such a

.: diffraction pattern for electron-atom scattering. The first Born elastic cross section is nearly
independent of angle in the range of interest (below 10 mrad). To simplify the theory, so

; that exact results could be obtained for a realistic model, a pseudostate model was used,

; giving exact target atom polarizability. The second Born scattering amplitude was computed
: for e"+H atom scattering, using the exact /=1 pseudostate.34 The second Born elastic cross
section was found to have no strong forward peak and no oscillations at small angles. The
imaginary part of the forward scattering amplitude agrees in second order with the optical

s

"; theorem, in which it is determined by the large total inelastic cross section.

ATELL

These results can be reconciled by considering the two leading terms of the complex

optical potential, given by Eq. (48). The WKB phase shifts due to this potential are

X
-:_" complex. For the ground state of atomic hydrogen « is 4.5a3 and AE is (18/43) ezaal.
Assuming a core radius of 1.0a,, the imaginary term in the optical potential introduces a
7%

:;3’ damping factor exp(=5.375) into all partial wave scattering matrix elements with /+1/2 less
‘N.

:«3 than kro. The resulting effective shadow in the forward direction is expected to produce a
4y,
-
LIg ;

-
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diffraction pattern similar to that derived for a complex square well model potential. 3% This

has not yet been verified by detailed calculations.

Both terms in Eq. (48) are quadratic in the transition amplitude, compatible with the
second Born approximaﬁon. However, the damping effect is so large in the shadow region
that a low-order Born approximation, essentially a power series expansion of an exponential
function with large negative argument, cannot be valid. Hence, specific effects of shadow
scattering, such as the forward diffraction pattern, cannot usefully be treated by a low-order

Born approximation.

H. Spin-Selective Electron Scattering by Magnetic Material

Spin-dependent elastic scattering of polarized electrons by an amorphous ferromagnetic
material has recently been observed.36 Spin asymmetry was measured in elastic
backscattering from NijgFe qB,, in its ferromagnetic state, and from a similar pure Fe

glass. The spin asymmetry is defined by
S=(,-i)/G1, +i), (49)

where i and i_ are, respectively, the intensities of elastically backscattered electrons with

spin parallel and antiparallel to the majority spin of the target. To avoid pure spin-orbit

scattering, incident electron spin is oriented to lie in the scattering plane. In the experiment

on a pure Fe glass, the spin asymmetry was found to vary with incident energy almost _'q
identically with the NiFe data. Thus, the observed strong energy dependence and sign

reversals must be attributed to Fe. As in scattering by liquid metals, the observed intensity is
proportional to oA, where o is an atomic elastic cross section and A is the mean free path,

determined by inelastic scattering.
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In a recent review article, Pierce and Celotta37 concluded that these data have no
satisfactory theoretical explanation. The fact that S changes sign as a function of energy
conflicts with energy dependence expected from current theory. Using ideas from the theory
of the electron-atom scattering, it has been shown (Section IV, Publications, No. 25) that
the energy dependence of the observed spin asymmetry is compatible with the onset of a
3p+3d excitation process, at 50 eV, and with a scattering resonance of the nature of an
inverse Auger process just below this excitation threshold. These inelastic and resonant
elastic scattering processes are spin-selective because of the ferromagnetic polarization of

3d states.

The proposed explanation of these data differs significantly from current spin-polarized
LEED theory,38 especially in considering spin-selective scattering effects of localized
excitations. By implication, an unpolarized electron beam incident on a magnetic target must
produce partially polarized scattered electrons. In this mode, these scattering effects are
spin-productive.

The observed asymmetry S changes sign from negative to positive near 50 eV (vacuum
energy). This can be accounted for by an inverse Auger resonance below the 3p+3d
localized excitation threshold. If the initial state of Fe is approximately 3p®3d®4s?, an
electron with sufficient energy can be captured temporarily into a resonance state of Fe" with
configuration 3p°3d%4s2. In a metal, the local charge imbalance would be compensated by
conduction electron relaxation. This resonance state could exist only if two localized hole
states are available. In Fe, this would be true only for minority spin electrons. The
resonance energy can be estimated from the MVV Auger line in Fe, centered at 43 eV above

the Fermi level.39 If the work function is 4.5 eV, elastic scattering of minority spin
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electrons should show resonance structure centered at 38.5 eV, contributing to the observed

negative spin asymmetry structure below 50 eV.

’ © The postulated MVV resonance is associated with a 3p+3d localized excitation. This
transition is observed?? at 54.4 eV in Fe, relative to the Fermi level. When corrected for

3 the work function, this places an inelastic threshold at 49.9 eV. Inelastic exchange scattering

A due to the excitation process is spin-selective to the extent that predominantly minority-spin

.; hole states are available for the final 3d state. Inelastic scattering of minority-spin electrons

‘. decreases their mean free path A and hence decreases their backscattered elastic intensity,
which is proportional to A. The net effect is a positive contribution to the spin asymmetry §,

§ commencing at the inelastic threshold energy.

i For Fe, an inverse Auger elastic scattering resonance below the 3p+3d threshold, : I

i accompanied by stronger inelastic scattering starting at that threshold, could cause the spin

% asymmetry for elastic backscattering to be negative at 38.5 eV and to change sign near

: 50.0 eV, in agreement with the observed data.

g A localized 3p+»3d2 resonance should not exist fo Ni, since two localized 3d hole states

g would not be compatible with the known atomic moment and band structure. However,

enhanced inelastic scattering of minority-spin electrons should occur above the 3p+3d

e \(;~

excitation threshold. The optical transition?0 is at 66.2 eV relative to the Fermi level, or

RSy

61.7 eV for electrons in vacuo. Comparison of the NiFe data36 with data for a pure Fe
glass shows a positive enhancement of the spin asymmetry above 60 eV due to Ni, but no

significant effect at lower energies. This behavior agrees qualitatively with the present
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TABLE 1

e"+H, Static Exchange, K-Matrix Elements in the 22;‘ Scattering State

Koo Ky K»
k(a'l) a b a b a b
0.1 =0.2172 -0.217 0.3589(<2) 0.39(-2) 0.2248(=2) 0.21(-2)
0.2 -0.4504 <0.451 0.7107(~2) 0.73(=2) 0.4346(-2) 0.45(=2)
0.3 -0.7227 -0.722 0.1038(-1) 0.11(-1) 0.7237(-2) 0.74(=2)
04 -1.0661 -1.07 0.1316(-1) 0.13(-1) 0.1107(-1) 0.11(-11)
a. Present resuits, R=1.402a,

b. Collins ef al., Reference 22.

c. 0.nx 10™™ is written as 0.n(~m).
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TABLE 2

e"+H, Polarized Pseudostate, K-Matrix Elements
and Eigenphase Sums in the 22:' Scattering State

. Ky Ky Ky Iy
k(ay) a b a b a b a b
0.1 0.2493-1 0.1123-2 0.1662-2 0.2659-1
02 0.9422-1 0.2391-2 0.4415-2 0.9836-1
03 0.2356 0.1827 0.3973-2 -0.1165-2 0.7688-2 0.1629-2 0.2391 0.18 23
0.4 0.4549 0.3885 0.6350-2 -07644-2 0.1111-1 0.6913-2 0.4380 037 74
0.5 0.7211 0.6225 0.9697-2 -0.2828-2 0.1632-1 0.1710-1 0.6410 0.57 39
0.6 0.9939 0.9455 0.1357-1 -0.1542-1 0.2451-1 0.3056-1 0.8068 0.78 78
0.7 0.1238+1 0.12204+1 0.1696-1 -0.3831-1 0.3261-1 0.4393-1 0.9236 0.9272
0.8 0.1400+1 0.1489+1 0.2263-1 -0.3023-1 0.3775-1 0.5358-1 0.9882 0.1033+1
0.9 0.1519+1 0.1673+1 0.2776-1 -0.1572-1 0.4304-1 0.6026-1 0.1031+ 1 0.1092+1
1.0 0.1591+1 0.3249-1 0.5196-1 0.1061+1

3Present results, R=1.402a,

YData from Klonover and Kaldor, Reference 19, R=1.40a,,
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] ' TABLE 3

e +H, Polarized Pseudostate, K-Matrix Elements in the 22
Scattering State, Dynamical Distorted Wave Approximation

k(ay) 03 06 09
a b c a b c a b <
Ky 0.1034 0.2356 0.1827 0.2050 0.9939 0.9455 0.2124 0.15194+1 0.1673+1

Kqy 0.3702-2 0.3973-2  -Q.1165-1 0.7313-2 0.1357-1  -0.1542-1 0.8816-2 0.2776-1 -0.1572-1
Ky 0.8445-2 0.7688-2 0.1629-2 0.2641-1 0.2451-1 0.3056~1 0.5377-1 0.4304-1  0.6026-1

Ky, 067295 09187-6  0.10314 070854 036444 0.2104-3
Ky; 010142 0.7265-6 022012 04707-4 034552 -0.2701-3
Ky 025342 03349-9  0.7575-2 0.9912-7  0.1519-1 0.2836-5
Ky  0.6075-9 03134-9 041428 011336  -08338-8 -0.8129-6
Ky 025477 01432-9  0.5732-6 02722-7  03702-5 0.5614-6
Kys 046893 06972-13  0.9930-3 09817-10  0.1573-2 ~0.1026-7
Ky  01160-2 0.1569-12  03313-2 0.1431-12  0.6476-2 04211-10
2Dynamical distorted wave approximation, present results, R=1.402a,,

bConverged variational calculations, present results, R=1.402a,,

“Data from Klonover and Kaldor, Reference 19, R=1.40a,,
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