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L INTRODUCTION AND BACKGROUND

This document is the final report on Contract N00014-79-C-0406, for the period

June 1979 through July 1983. Part of the work is continuous with that supported under

Contract N00014-72-C-0051, which terminated in March 1978 and under

Contract N00014-78-C-0447, which terminated in May 1979.

Research under this contract has been concerned with the theoretical study of

atom-molecule reactive collisions and of electron-molecule scattering. In both areas, the

p;inipal emphasis has been on the development of theoretical methods that are designed for

coniptatioal studies useful in interpreting or refining experimental results.

Principal publshed results of work supported by this contract over its four-year period

are summarzd in Section IL Work done in the most recent contract period, June 1982

through July 1983, is decrbed in Section IlL Results have been reported in thirty-one

pubicates listed in Section IV.

.. r .
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IL PRINCIPAL RESULTS

A. Studie of Surpuisal Theo"

Information theory has been used with considerable success to analyze molecular

colso pim*ese.l In many cases, final state population distributions of atom-molecule

collision products are closely approximated by a linear surprisal law. This implies that the

information content of the population distribution is minimal, subject to a single dynamical

straint condition

To examine the relationship of such results to the underlying collision dynamics, a

fognul1m was devised in which it is possible to study the evolution of internal state

poplations as a function of a colsion coordinate in a reactive collision. Dynamical entropy

Is defined as a statistical property of a dynamical scattering matrix, indexed by internal states

of a molecular collision system for a specified value of a reaction coordinate. Earlier studies

of coplaa H+H2 with this formalism were extended to the three-dimensional H+H 2

exchanp reaction (Section IV, Publications, No. 2), using the realistic potential

hypermrface of Porter and Karplus. The results confirm the earlier coplanar studies and

indicate that the formula of surprisal theory, appropriate to a single dynamical constraint

condition (specifying the partitioning of energy between translational and internal rotational

motion) holds accurately throughout the coordinate region of strong atom-molecule

interaction, not just in the asymptotic region.

Thm quantum dynamical results indicate that the empirical success of surprisal

avlyis follows from pure quantum collision dynamics, without invoking separate statistical

pAnmna. At prent, a valid derivation of surprisal theory from first principles appears to

be lakng Applications of surprisal theory were surveyed in a review article (Section IV,

W7J~S4~. . ...
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Publicatiom, No, 12), which discusses quantum dynamical studies analyzed by use of

surprial theory and examines implications for statistical theories of collision processes.

. Fourier Transform Method for Molecular Collisions

Recent developments in the mathematical theory of classical dynamics have revitalized

the long-dormant theory of semiclassical quantization. Practical semiclassical computational

methods have been developed for bound states of systems with several nonseparable degrees

of freedom. In particular, vibrational levels of triatomic molecules have been computed.

As discussed by Percival, 3 quantization conditions can be applied to an extended

classical trajectry characterized by definite action integrals. The locus of a trajectory in

phase space (coordinates and momenta as independent variables) is an invariant toroid,

whenever action integrals, constant on such a toroid, are well-defined. Corresponding to

action integrals as generalized momenta, the conjugate generalized coordinates are angle

variables. The original coordinates and momenta used to construct the system Hamiltonian

function can be represented as periodic functions of the angle variables for the trajectory

correponding to a given toroid. Percival considers constructing an invariant toroid directly

as a geometrical object in phase space, by solving the nonlinear partial differential equations

appopiate to this repesentation in action-angle variables. These equations can be solved

iteratively in a Fourier transform representation. By constructing an invariant toroid, action

integrals are computed as functons of energy. Semiclassical energy levels of a bound system

cor rspond tW quantized values of these action integrals.

Extension of this methodology to atom-molecule scattering problems might open up

new prospects for semiclauical or approximate quantum dynamical calculations, especially for

racti~e colisions. As originally formulated, the theory cannot be apoiled to collision
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problem. For unbounded motion, at least one of the frequency constants of the theory

vanishes, and Percival's equations cannot be solved. However, by reflecting the scattering

potential at an external boundary, inelastic scattering problems can be adapted to this

e o, and results for an inelastic scattering model were obtained (Section IV,

Publication, No. 1). This construction cannot be used for reactive problems, because more

than one reflection surface is required and the resulting potential function in general is not

single-vlued. In another application, the bound state formalim of Percival was used to

warametdze vibrational potential functions for triatomic molecules (Section IV, Publications,

No. 4).

An alternative method, suitable in principle for reactive collisions, was formulated and

appli to madel problem (Section TV, Publications, Nos. 7,8). An infinite potential barrier

i lnUrduued either to close aU entry channels In the asymptotic region or to separate

distinct potential wels. Tomlds obtained for each of the resulting single-well regions are

combined to describe motion In the original potential The required boundary constraint,

eqhlyamt to opecu reflection at the infinite barrier, is nonholoncmic, expressed as

lnoquMlu to be mtided by coordinate values. By augmenting the Fourier expansion with

fu1tki ashving Ulnmu derivatives, the linearized equations to be solved at each step

f teion wa rmd a a standard linear progamming problem. The dual simplex

umehaed4 at i e~pamlng theory was aapted for solving them (Section IV,

] lionm N06 20).

Am Joeavl potokl bure Is a comman feature of reactive collision. It is not

eeIIB olliM how to extend the concept of an Invariant toroid to such a system. A

Iooblem -ou for bound motion in a double potential well. For energies below the

m~il ldw1 , two idependen torida are required, but they must coalesce for energies
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above the barrier. Understanding the bound multiple-well problem is a prerequisite for

understanding the reactive collision problem. The technique of imposing confinement within

arbitrary boundaries makes it possible to consider such problems. The method was tested for

a double well potential constructed from two Morse functions. The dynamical problem was

solved as a single well with an infinite potential barrier at the internal potential maximum.

Converged results were obtained both above and below the potential barrier. In another

application, solutions were obtained separately for two unsymmetrical potential functions

defined by setting an infinite potential barrier at the minimum of a Morse potential. These

partial solutions were combined to produce accurate solutions of the Morse oscillator

Problem The boundary constraint method was also used to obtain scattering solutions for a

model problem with a positive Gaussian potential barrier. This made it possible to study the

qualitative behavior of an invariant toidd near an energy of stagnation, defined by total

enerU equal to internal barrier height. The conputational method was successful in

apprwAing this limit from both higher and lower energies (Section TV, Publications,

No. 21). In this work, a true second-order iterative method was introduced. All terms of

first order in the residual nonlinearity were included in the linear equaUons solved exactly at

each iteration. This made it possible to solve Percival's equations for bounded model

Problems with highly anharmonic potential functions.

A technical problem which has not yet been adequately solved for systems with more

than oe deree Of freedom is that the matching surface between arrangement channels or

distinct potential wells is not, in general, geometrically simple in both the natural coordinates

and the true angle variable coordinates of the Fourier transform method. Moreover, the

relationship between these two representations is not defined until a solution of the

dynmical equations has been obtained. Calculations on He+H 2 indicate that choosing a

V % , b%" ' -% " 5 * . ............ .. .. .. .. .. .. ..
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lna or planar surface, in the space of angle variables, to represent the matching surface is

et a uWul approximation. For further progress with this method, a self-consistent

definition of the matching surface must be incorporated into the iterative computation.

C. Theoretical Methods for Electron Scattering

1. Muitichewi vuritoul mahds. Electron scattering by atoms and molecules is

characterized by complex short-range interactions and by long-range potential functions of

simple known form. In order to exploit the simplicity of the long-range potentials, it is useful

to comide hybrid theoretical methods in which variational treatment of the short-range

Problem Is combined with eact numerical solution of the long-range problem. Exploratory

studies o( alternative methods have led to the adoption of a particular method for

eer-molecule scattering calculations which combines the most favorable aspects of

several earlier methods. Preliminary results obtained with this method are described in

Section m-A, below. Results of the exploratory studies are summarized here.

Two principal methods have been used for accurate electron-atom scattering

calklam The R-matrix method5 and the matrix variational method,6 based on the

Hulthdo-Kohn varlatioal principle. Methods based on the Lippmann-Schwinger integral

equation,7 or mor specifically on the Schwinger variational principle8 have more recently

been shown to be viable. All of thes methods can be applied to electron-molecule

sattering. The standard close-coupling method is less suitable for molecules because it

require. solution of coupled partial differential equations or, alternatively, strong mixing of

speial harmonics in a one-center expansion.

The R-matrix method exploits the applicability of different computational techniques

for large and nall radial coordinate r by explicitly introducing a boundary radius r1 . Basis

' '_ , ,';, ' , 'r" F ,,-:,,,:.. ;..* .. -.--.. ..-. * ,...-.* .-. ,?--.,7. .,'-- --- ;.---- --- "- ---. 7 -" ' . -



..V .. .'7 .P ,: ,' .- .. = . ... - .: . -, . . -. -

7

functions of the inner region are truncated at r, and asymptotic close-coupling equations are

solved outside rl. This method has been used successfully for electron-molecule scattering

calculation. 9

In the matrix variational method a basis set of localized (quadratically integrable)

functions Is augmented by auxiliary functions (continuum basis) that are oscillatory in the

asymptotic region. Spherical Bessel functions have been used in calculations of electron

Scttrng from neutral atm& 6

In a hybrid version of this method, continuum basis functions (numerical asymptotic

functions, or NAFs) are obtained by explicit integration of the asymptotic close-coupling

equations. 10 The NAP method has been used for accurate calculations of electron-atom and

electron-ion cr n sections.1 1 Assuming exact solution of the asymptotic equations, only the

residual HaWtonian, a short-range operator, contributes to the integrals used in the

Hultln-Kolm variational formulas. Siwilar integrals, defined within a fixed spherical or

pheroidal boundary, must be evaluated in the R-matrix method.

The common feature of hybrid methods, as this term is used here, is to use exact

solations of a model problem to simplify solution of the full physical scattering problem. The

phydcal Hamiltonlan operator is separated into a model part and a residual part. If model

alutwns are incorporated into a Green's function, the Schradinger equation can be

conerted to a n-S integral equation, which must be solved for the effects

of the residual Hm to As usually fornulated, the Ichwlnger variational principle is

deived krm a Lippmann-Schwinger equatior -_ -struAted from the free-particle Green's

function. Hes, the long-ranp multipole potentials typical of electron scattering by atoms

or miduiul are retained in the reidual Hamultonian. An alternative formalism, which

• ' -. . .... -. . ... . -= -. -." .'."- -:'. '. -.' . ,.' .':" .'"-''- - -.'.-.- .- ..-.'-



reduces the residual Hamiltonian to a true short-range operator, has been derived6 by

constructing the Green's function appropriate to exact solution of a multichannel model

problem, which could include all long-range multipole potentials (Section IV, Publications,

No. 9). This formalism should be competitive in efficiency to other hybrid methods

considered here. It has not yet been tested in calculations on atoms or molecules because it

cannot make use of existing bound-state computational methods and programs as readily as

do methods based on matrix representations of the Schrodinger equation.

In the matrix variational method,6 matrix equations for the full N+ 1 electron problem,

one electron scattered by an N-electron target atom or molecule, are replaced by an

equivalent formal structure: a matrix optical potential that acts on an orthogonalized

continuum wave function. A model study (Section TV, Publications, No. 19) showed that

introducit, t Bloch operator, at finite rI, into the reduced one-electron continuum equations,

valid R-matrix results can be obtained even though all the integrals used in defining the

matrix optical potential are carried out to r - ,,. This method becomes equivalent to the

R-matrix method, except for the specific variational principle used and for the range of

integration, if the continuum basis can represent an exact solution of the asymptotic

differential equations outside r1 .

Because the phase of an asymptotic solution of the scattering problem must be

determined by solving the variational equations, two oscillatory basis functions differing in

asymptotic phase must be included in the continuum basis set for each open channel. If this

is done in variational R-matrix calculations, an exact asymptot"- solution can be brought into

some radius r-r 0 , much smaller than the usual boundary at rl. The boundary radius r, must

be sufficently large to justify neglecting nonlocal potentials. The remaining

.=*Z**% %I......-
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energy-independent basis functions have only to represent the effects of deviations from the

asymptotic Hamiltonian in the intermediate range r0 <r<r .

This remark suggests that convergence of variational R-matrix calculations6 can be

facilitated by including two energy-dependent NAF basis functions for each open scattering

channeL As originally formulated,5 the R-matrix method for atoms and molecules uses basis

functions with a fixed boundary condition at r1. The resulting discontinuous slope at r, is

corrected by introducing an energy-dependent basis function inside r1 . 12 In a model study

(Section IV, Publications, No. 18), it was shown that calculations using either the matrix

variational method or the R-matrix method with one energy-dependent oscillatory basis

function per channel showed much better convergence, with respect to the number of bound

bas functions used, than did the unmodified R-matrix method. The best convergence was

found for the R-matrix method with two energy-dependent oscillatory functions per channel.

This method is being implemented for electron-molecule scattering calculations, as reported

in Section M-A, below.

2. Thwry of moauwe and thrahold effet. The theory of dynamical coupling between

electron scattering and nuclear motion in molecules is discussed in Section H-E, below. In

co mpting rovibrational transition effects from electron-molecule scattering matrices obtained

for fixed nuclei, the latter matrices must be analyzed in order to separate background

scattering from specific resonance effects. The formal theory of multichannel resonances is

well-known and can be used in this analysis. The corresponding theory of threshold

structures had not previously been developed in a form that allows the separation of

background scattering from the effects of singularities due to a Feshbach resonance,

auoclated with an excitation threshold, or due to a virtual state. It was found possible to

develop multichannel threshold theory in analogy to the theory of multichannel resonances,

' ,: ',:/,, .'..' ,, ~~~... ............,.......,...,....-. ...". . .........-..... "-
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making an explicit separation of background scattering from the effects of pole singularities

(Section IV, Publications, Nos. 10 and 11).

3. Algebraic an mewrical methods. A new iterative method for computing several

eigenvalues and the corresponding eigenvectors of large matrices has been proposed

(Section TV, Pulications, No. 15). The essential idea is to adapt the Jacobi algorithm to a

partitioned matrix, so that only the first n columns are transformed if n eigenvalues are

required. Test calculations indicate that for the lowest eigenvalue of a large matrix, this

method converges in time comparable to the successive relaxation method. It converges

equally efficiently for any specified number of eigenvalues, the computation time being
proportional to this number.

Methods for iterative solution of large systems of linear equations have also been

explored. Many variants of existing algorithms were tested on model problems. No single

algorithm was found to be both reliable (ensuring convergence) and rapidly convergent for

these test problems. However, a combination of two algorithms, both differing in detail from

prior methods, was found to be satisfactory. Details are given elsewhere (Technical

Proposal, this contract, April 1982).

In approximate treatments of electron impact excitation of molecular vibration or

disoclation, analytic models of resonance theory require knowledge of the fixed-nuclei

electronic resonance width as a function of electronic energy and of nuclear conformation. A

new numerical technique has been devised for calculations based on earlier work by Hazi,13

who used Stieltjes moment theory in the Feshbach resonance formalism. The new method is

a practical procedure for converting a discrete representation of a Green's function, with a

dene distribution of pole singularities, into a smooth approximation to the continuum limit of
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such a function (Section IV, Publications, No. 16). The new method uses a finite-element

repre ntation of the pole strength function, or resonance width as a function of real energy

* for a scattering problem. The method has been successfully tested in applications to a model

electron scattering problem, using the Feshbach resonance theory for a resonance phase shift.

In a second application, the Schwinger variational formula was used to compute the total

phase shift for the same model problem. The new numerical method was used to evaluate

the Green's function integral required in the Schwinger formalism. From these two

calculations, both resonance and background phase shifts are deduced, requiring only data

computed from a discrete spectral representation of the model Hamiltonian.

The proposed method represents the pole strength distribution function by a linear

spline function. This function is constructed from triangular finite elements. Correct

threshold behavior is built in by using momentum or wave number k as independent

variables, and by starting the first element at the continuum threshold. Since each triangular

element has a finite and continuous HUbert transform, a smooth fit is obtained to both real

and imaginary parts of the limiting complex-valued function, corresponding, respectively, to

the energy shift and width functions in the Feshbach resonance theory.

D. Electron Scattering by Atoms

Theoretical studies of low energy electron-atom scattering were supported by the

predecessor of this contract Methodology developed in this project was applied to

quantitative calculations of electron scattering by He, Li, Na, K, C, N, and 0 atoms. Theory

and computed results, and their experimental implications, were reviewed in a gener,1 survey

of progress in this field (Section IV, Publications, No. 22). More details are given in a

recently published book.6

U 4 %r4 **..K*.,,,. - . . - . . . -
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Because the electron-helium elastic scattering cross section can be used as a standard

for experimental calibration, accurate theoretical calculations are desirable. Variational

calculations of s- and p-wave phase shifts for energies up to 19 eV were carried out, in

calculations designed to give 1% accuracy for the differential elastic cross section

(Section IV, Publications, Nos. 3 and 5). Agreement with high-precision experimental data

from several laboratories is compatible with this level of accuracy, estimated from

convergence studies of the variational calculations. The computed differential cross section is

In current use as an experimental standard.

In the n-2 excitation region, e"+He scattering exhibits several structural features

associated with resonances, threshold effects, and with a virtual state.6 These

energy-dependent features of the cross section can be understood in terms of the eigenphase

sums for the three lowest symmetry states 2S, 2 p0, and 2D. Earlier variational calculations 14

were repeated with larger basis sets in an improved variational formalism (Section IV,

Publications, No. 24). The recomputed eigenphase sums agree in their principal qualitative

features with the earlier calculations, and are compatible with analytic structure expected

from multichannel threshold analysis (Section IV, Publications, No. 10). The 2 S eigenphase

sum shows structure associated with the well-known resonance at 19.37 eV and with a

virtual state at the 21S threshold. There is a single broad 2Po resonance, below the 2 1S

threshold, and a strong 2pO cusp at the 23P° threshold. A broad 2D resonance occurs below

the 23P0 threshold. Cusp or rounded step features occur at all thresholds in channels with

outgoing orbital s-waves.

L Nuclear Motion In Electron-Molecule Scattering

A fundamental difficulty in the quantitative theory of electron-molecule scattering is

the large number of internal states of the target system. Full close-coupling calculations in

t .- 47 * -------- -----------------.* .
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the basis of rovibrational states are not, in general, feasible, because of the large number of

coupled scattering channels. The EMA approximation 15 (Section IV, Publications, No. 6) is

intended to provide a practical solution to this problem, exploiting analytic scattering theory

and the Born-Oppenheimer approximation to extract detailed rovibrational excitation cross

sections from fixed-nuclei electron scattering calculations.

The energy-modified adiabatic approximation (EMA) can be described in terms of the

nuclear kinetic energy operator T. in the full molecular Hamiltonian. Fixed-nuclei electron

scattering calculations correspond to neglecting T., as in the Born-Oppenheimer limit of large

nuclear mass. This reduces the nuclear Hamiltonian Hn to the potential energy Vn, a

function of the internuclear coordinates. For a diatomic target molecule, the electronic wave

function for fixed nuclei would be computed for a range of values of two parameters:

internuclear distance R and electronic energy a. When the electronic Schr6dinger equation

solved for fixed nuclei is compared with the rovibrational close-coupling equations, it is

found that these systems of equations become formally identical if the parameter e is

replaced by the corresporing operator E--Hn . The electronic wave function, parametrically

dependent on e and P, becomes an operator (dependent on Tn) acting on rovibrational wave

functions.

Electron scattering is determined from the asymptotic form, for large electronic radius

r, of the electronic wave function. For fixed nuclei, this is specified by the scattering matrix

S(sR). The emential point of the EMA approximation is to replace S(eR) by an operator

S(E-.H,R), using forms of operator functions that are consistent with analytic scattering

theory. The rovibratonal scattering matrix is obtained by evaluating matrix elements of this

opeator in the basis o( rovibrational wave functions.
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When matrix elements of Tn can be neglected, the EMA approximation reduces to the

well-established adiabatic-nuclei approximation1 6 This is true generally for pure rotational

eaitaUM17 but not in the vicinity of excitation thresholds and not for long-lived electronic

resonance states The EMA approximation gives vibrational excitation structure for e'+N 2

in substantial areement with experiment. 15 The adiabatic-nuclei approximation is not valid

in this case bemuse of the dominant effect of an electronic resonance.

An important goal of electron-molecule scattering theory is to develop quantitative

methods for pro esses such as dissociation or chemical change induced by electron impact. A

typical process, disociative attachment, is

e- + AB A + B ()

The standard theory18 attributes this process to an electronic resonance state AB- with a

finite lifetime over same range of internuclear distance R, due to autodetachment. The AB-

potential curve Is assumed to be a complex-valued function

w(R) - v(R) - i r(R). (2)
2

A wave packet (in coordinate R) initiated in the Franck-Condon region by electron capture

lomes amplitude as it moves outward. The survival probability in the limit of dissociation is a

measure of the rate of dissociative attachment.

This theory runs into difficulties when there is relatively strong autodetachment, as

discussed in a review article (Section IV, Publications, No. 17). The postulatei

complex-valued function may not be well-defined, or it may be multivalued. Scattering

amplitudes computed by Klonover and Kaldor 19 for e'+H 2, which give good agreement with

experimental vibrational excitation cross sections, computed in the adiabatic-nuclei

*,e .... S-. • . . *5 -. . . . .
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approxmtion, were analyzed for the resonance functions V(R) and F(R) (Section IV,

Publicatiors No. 23). The usual resonance formalism was found to be inadequate. The

scattering amplitudes imply a strong energy-dependent nonresonant background.

A viable theory of dissociative attachment should be valid in the strong-coupling limit.

Such a theory, based on the EMA approximation, has been proposed (Section IV,

Publicatios, No. 13). This theory will be used for calculations on e'+H 2 , using scattering

matrices obtained from new variational calculations, described below (Section rn-A).

-I

Sf
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UI. RESEARCH ACCOMPLISHED, FINAL CONTRACT PERIOD

A. Variational Calculation of e+H 2 Scattering

Model studies show that variational R-matrix theory and hybrid versions of the Kohn

variational method can be organized so that principal computational steps are common to

both methods. In order to take advantage of these theoretical developments, a collaboration

has been initiated that includes P. G. Burke and C. J. Noble, at the Daresbury Laboratory,

England; L. A. Morgan, at Royal Holloway College, England; and the present project. The

general plan is to explore and design computational methods for electron-molecule scattering

that can be built onto the existing ALCHEMY system20 of bound state molecular wave

function programs. The programs are at present limited to diatomic target molecules, using

atomic basis orbitals of exponential form (STOs), augmented by continuum basis functions in

the form of spherical Bessel functions and by numerical asymptotic functions (NAFs).

Integrals required for calculations on polyatomic target molecules are currently being

programmed. This work is described in Sectior M-E, below.

Methods and programs are being tested in calculations of e'+H 2 scattering

(Section IV, Publications, No. 30). Variational R-matrix calculations were carried out

within the boundary radius r I- 10.0a0, then matched to external solutions of the asymptotic

coupled differential equations. The target H2 ground state, 11 +, is represented by the SCF

wave function of Fraga and Ransl,2 1 with a total of six a atomic basis orbitals. An

additioal six v STOs were added in calculations taking a-" polarizability into account.

In the static exchange approximation, only the target ground state is considered,

reprted by its static quadrupole potential in the asymptotic region. Converged results

were obtained for coupled s and d partial waves in the 21+ scattering state, using only eight
92

continuum basis functions in the form of NAFs and Bessel functions for k2 up to 0.36a02

.. ... .... . ... ... .. .. . ... . . . . . - .
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(Section IV, Publicatlons, No. 26). Earlier calculations, using only STOs on the scattering

CentW with no true continuum bass, had required 13 such basis functions for convergence.

Results for K-matrix elements, computed for the 21 scattering state, are listed in Table 1.

]zrl results of COMM@ aL22 are given for compariso Compared with typical accurate

bound state calculations, the orbital basis set used here is small, giving only 15 configuration

state functions for the variational R-matrix basis. all calculations here are for internuclear

separatio 1.40o

Exprience with electron-atom scattering calculations ir cates that the polarization

rponse of the target system to an Incoming electron can be taken into account by including

polariation p eudostates in the close-coupling formallunL6 The SCF ground state wave

function of H2 Is the single configuration (1 ob 1E Using methods described below, in

Section m-D, pseudoutate orbitals f. and i u were computed variationmly and were used to

construct two pseudostate wave functions

as or) Irlu, (I g)1z+. (3)

For calculations involving the ln pseudostate or manifold of virtual excitations, six basis

STOs of v symmetry were added to the Fraga-Ransil a orbital basis. The computed parallel

and transverse polarizabilities are respectively

a ."7.0149a° , a. - 4.9660a, (4)

to be compared with accurate values (at R-1.40a0 )2 3

3 3a 6.3 905 au0 , a.L - ..5777a0 (5)
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In order to include all components of the dipole transition moment from the I +

g

Found statc, the following scattering channels must be represented, if p and f partial waves

ae included in the gound state channels:

Target State Partial Wave Orbital

9g po u fo u

Ii u  di g g"g
I +

u sog d ag gag (6)

Thus, a 2-channel static exchange calculation must be extended to seven channels for a

co" I tent and comparable polarized pseudostate calculation. Calculations of this kind were

carried out at R-1.402ao. Results for open-channel K-matrix elements are summarized in

Table 2, and are compared with earlier calculations by Klonover and Kaldor,19 who

repeaeted dynamical polarization effects by a second-order optical potential. In the present

calculations, all components of dipole transition moments and of quadrupole moments were

compted for the three target states. This matrix of moments was used to construct the

saymptoc potential functions for integration of coupled equations outside the R-matrix

The continuum orbital basis in these calculations was carried to effective completeness

by successively adding Bessel functions in each of the partial wave channels.

Alternative ways of including numerical asymptotic functions in the orbital basis set

were tsted. While two independent NAFs per open channel must be used to represent

owillatory functions over an extended range of the radial variable, the values of k and ( in

the present calulations are such that the open-channel solutions of the asymptotic equations

have few if any oscillations inside rl, the R-matrix boundary. In order to avoid linear
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dependency problems one regular vector NAF per open channel is constructed as a linear

combination of the numerically integrated asymptotic functions by an algorithm described in

Section I-C, below. The diagonal component of this function is fitted to a regular spherical

Bessel function at a matching radius r0, 2.0a0 in the present case, and is used as a continuum

basis function. Completeness of the continuum basis inside r, is achieved by adding Bessel

functions that vanish at r1, with successively greater numbers of radial modes. Bessel

functions were added in each of the seven partial wave channels until effective convergence

to two or three significant decimals was achieved in the eigenphase sum. Convergence was

smooth and rapid, requiring only 42 configuration state functions for the results listed in

Table 2. Wave functions of the same structure were used over the full energy range studied.

The computed eigenphase sums shown in Table 2 are in good agreement with the

earlier work of Kionover and Kaldor, 19 although the individual K-matrix elements differ

more evidently. The systematic sign reversal of element K31 appears to be an artifact of a

phase convention. The present calculations confirm the general trend of the

Klonover-Kaldor eigenphase sums. This strengthens the argument,2 4 sketched in

Section I1-E, above, that the e+H 2 scattering resonance is mompanied by a strongly

energy-dependent background, not considered in the current theory of dissociative

attachment.

These results represent the achievement of a major goal of this project. These are the

first electron-molecule scattering calculations to include a full dynamical pseudostate model

of molecular polarization. Special methods were developed to solve many technical problems

associated with the asymptotic integration and construction of useable basis NAF Some of

these developments are discussed in Section M-C, below.

4d ". . 2 ; . - . . -. . . . - . - - . . -. . ... . -. . .. . . ..

.4' "' '''4i 
'

" ' ,'," r, . " :. $m ' kL . .- ' - - -. - .- Li ..
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5 Dynamical Distorted Wave Calculations

In oider to compute accurate differential scattering cross sections, the partial wave

representation must be summed to convergence. Long-range potentials lead to significant

contributions from high-order partial waves. Accurate variational calculations are feasible

only for a few low-order partial waves. Using the partial wave Born approximation,6 partial

wave phase shifts or K-matrix elements at any given energy can be estimated accurately for

sufficiently large angular momentum !. Following Thompson, 25 the Born scattering

amplitude can be corrected for short-range effects by adding a sum of low-order partial wave

carrectiom. The correction for each partial wave is computed by subtracting the partial wave

Born scattering amplitude from that computed variationally. This method has been used for

rare ps atorns to compute effects of the polarization potential -a/2r4 on the scattering

A similar oach can be used for molecules. The asymptotic potential, through

quadrupl terms for a diatomic molecule, is

V(r) = - (a 0 + a 2 P 2 (9))/2r - QP 2 (cosO)/r 3  (7)

N e terms here couple partial waves 2, I #2, but the fixed-nuclei scattering

amplitude and partial wave K-matrix can still be evaluated analytically for I >0 in the first

Barn approxmatioL Molecular rotation must be taken into account as discussed in

Section H-E, above.

Because of the difficulty of accurate variational calculations, it is desirable to limit such

calculations to the smallest possible number of partial waves. For this reason, in the present

work, a dyrnac distorted wave approximation has been introduced. This is implemented

by carying full solutions of the asymptotic differential equations into the matching radius r0 ,

" . . - I*I I. -. . . . . . . . . . . . . . . . . . . -
'

....
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then matching at r0 onto a diagonal R-matrix appropriate to regular free-wave functions in

all channels. This same construction, discussed in Section M-C, below, is used to define

open-channel NAFs, used as basis functions in the full variational calculations. Hence, the

dynanical distorted wave approximation should approach accurate variational results in the

limit of negligible short-range interactions. This approximation should become accurate as I

increases for fixed L Ultimately, it must also approach the Born limit, for large k, or, given

k, for large 1. The general approach to be followed is to use the first Born approximation

where Valid, as in Thompson's method, correcting low-order partial wave scatte.ing

amplitudes by use of the dynamical distorted wave approximation in its range of validity, in

tun corrected by accurate variational calculations for the lowest partial wave I-values.

The dynamical distorted-wave approximation should be valid for partial waves with

negligible amplitude inside the matching radius r0 , which is chosen as an approximate outer

radius for the charge density of the target molecule. For example, r0 -2.a 0 is used here for

H2 . Given k and 1, classical trajectories pan outside the impact parameter or classical

tnming-point radius

ro, (,+ k, (8)

unleu deflected strongly by the long-range scattering potential. This implies, unless the

phase shift or diagonal K-matrix element is very large, that the quantum mechanical wave

function is small inside this radius. Hence, a condition for validity of the dynamical distorted

wave approximation is

r rC >> r0 . (9)

..................... . . . . . .
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In the present calculations on H2 , for k-values up to 1.0a01 , this condition is

I >> 1.5 . (10)

Table 3 shows K-matrix elements from dynamical distorted wave calculations of e-+H 2

scattering, at R- 1.402ao, compared with converged variational calculations and with

K-matrix elements deduced from scattering amplitudes of Klonover and Kaldor. t 9 From

Eq. (10), the distorted wave approximation should be valid for 1>3, marginally valid for

I=3, but should fail for I -1. Comparing columns (a) and (b) in Table 3, matrix elements

KI are not a useful approximation to the variational values, but the elements K33 are

securte within 10-25%, in qualitative agreement with the argument leading to Eq. (10).

The relative error is largest for the K elements of largest magnitude, as expected. It can be

anticipated that elements with 1>3 are sufficiently accurate for use in Thompson's formula,

but this has not yet been checked by variational calculations.

For scattering by an istropic polarization potential, polarizability a in atomic units, the

partial-wave Born approximation formula for the diagonal K-matrix element in a channel

with partial wave orbital angular momentum I is

Kak
2

K -(21 + 3)(21 + 1)(21 - 1)

This formula is not exact in the present case, since it does not take into account the

anlmotropic polarization and static quadrupole potentials, Eq. (7). However, matrix elements

155 and K7 7 In Table 3, column (a), agree in magnitude with this formula. In contrast, the

Lorp Adtng matrix elements from Klonover and Kaldor are smaller by several orders of

manitude. Without closer examination of the original calculations,19 no explanation can be

........................
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uggested, but the long-range potentials do not appear to be correctly represented for higher

partial wave components of the scattering amplitude in these earlier calculations.

C. Improved Computational Methods for Coupled-Channel Calculations

Outside the target molecule, electron scattering is described by coupled ordinary

differential equations of the general form

(H(o) - E)pus(r) = - TqVpq(r)Uqs(r) , p = ,---,n (12)

where VNq(r) is a real symmetric matrix of asymptotic multipole potential functions.

Efficient and accurate solution of these equations is important in the present project. They

are used in at least three different contexts: first, inward integration from large r to the

R-matrix boundary at r1 , to match external partial waves with specified asymptotic forms to

a variational R-matrix; second, inward integration from r, to an inner matching radius r0 , to

define numerical basis functions (NAFs) for the variational calculation; third, direct inward

integration from large r to r0 in the dynamical distorted wave approximation. Here r, is a

radius beyond which nonlocal potentials can be neglected, and r0 is a much smaller radius,

beyond which the target multipole potentials are defined as inverse powers of r.

Integrations are done using a combination of methods. The Gailitis expansion 16 is used

in the far asymptotic region, into a Gailitis radius rG. Inside rG, integrations are done with

the R-matrix propagator method, 17 using a program described elsewhere. 28 The published

methods are modified in several ways, to be described here.

A particular problem, in the present work, is the presence of strongly closed channels,

due to the dynamical representation of the polarization response of a target molecule.

Because all channels are dynamically coupled, noise terms which build up exponentially in

either direction of propagation of clwed-channel wave functions can spread to the open

-7 -7 o
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channels, leading to severe loss of accuracy if functions are propagated over large coordinate

ranges. The detailed methods used here are designed to eliminate this problem as much as

possible.

In the far asymptotic region, solutions of Eq. (12) can be developed analytically. The

Ansatz used by Gailitis,26 following Burke and Schey, 29 is

up,(r) = ytps(r)w 5 (r), (13)

where all functions are complex, and ws(r) is a solution of the uncoupled equations for some

channel s. Since ws(r) is the same for all channel components u.s, and the multipole

potential functions are constants times inverse powers of r, the coefficient functions 7ps(r)

can be developed iteratively as series in inverse powers of r. In general, these are divergent

(asymptotic) series, and the Gailitis radius rG must be chosen sufficiently large to give

adequate accuracy when such a series is truncated at its term of least magnitude.

In the present project (C. J. Noble and R. K. Nesbet, manuscript in preparation) the

Gallitis power series is replaced by a continued fraction or Pade approximant. The effect is

to bring rG down to much smaller values in difficult cases, and also to take advantage of

higher terms in the Galitis series, beyond the truncation term of the asymptotic series. A

general algorithm for replacing a given power series by a continued fraction (or diagonal

Pad6 approximant) has been devised for this application (CFRACT algorithm:

R. K Nesbet, unpublished).

In order to describe the specialized integration methods used in the present project,

several definitions are needed. Equations (12), which are second-order ordinary differential

*-"- equations, have 2n independent vectorial local solutions at any given r where the potential

functions are not singular. It is convenient to use two indices to denote a particular vector

,;44.*.:,.--w- _..--...2 . . .:. .:- ',. . .. . . * - .. . .
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:' solution (replacing the single index s). Then for p-l,..,n; i=0,1; a=l,..,n, the function

upia(r) denotes the component in channel p of solution ia. Depending on context, index i

denotes one of two independent solutions associated with channel a by specified boundary

*.,i conditions. The multichannel Wronskian matrix is an invariant of integration. By a suitable

choice of boundary conditions, the Wronskian can be put into a canonical form,

wia= j (u*upjb - upuupjb)
P

( -i0 i 8iljo)8ab (14)

This is an elementary antisymmetric matrix

.1

If Eq. (12) are integrated between r, and r2 , values and derivatives of any vectorial

solution at the two boundaries are related by 2n linear equations:

u(1) - - R1 1(1,2)u'(1) + R12 (1,2)u'(2)

u(2) - - R2 1(1,2)u'(1) + R22(1,2)u'(2). (16)

The array of coefficients here,

rR11 (1.2) R12 (112)

-R 21(1,2) R22 (1,2)

defines the global R-matrix, which is a real symmetric 2n x 2n matrix. The conventional

definition of the R-matrix, denoted here as a local R-matrix, refers to a particular subset of n

solutions of Eq. (12) such that at r, and r2 ,

.. "
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'4. tu(1) - r1 R(rl)u'(1)

u(2) = r2R(r 2 ) u'(2) (18)

The local R-matrix is a real symmetric nxn matrix. Given R(rI) and the global R-matrix,

propagation equations for R(r 2) are obtained by substituting Eqs. (18) into Eqs. (16). In

the R-matrix prpagator method,17 this transformation is carried out for successive sectors of

a subdivided interval (rlr 2). In the method used here,28 global R-matrices are computed
variationally for each sector.

Regular boundary conditions at the origin of coordinates (r=O) define a subset of n
uohtlioas of Eq. (12). In conventional R-matrix calculations, a local R-matrix is computed

variationully at r1, then propagated out to rG where it is matched to asymptotic solutions to

obtain the scattering matrix or K-matrix. In the present work, adapting this method to

inward integration, the sectorial global R-matrices are combined in each propagation step to

form a global R-matrdx defined between current extreme boundaries, eventually building up

the global R-matrix ' r the full interval (r l ,rG ). This matrix is stored for subsequent use.

Inward Integration is continued, building up a global R-matrix for the interior interval (r0,r1 ),

which is used to construct NAFs These functions are used in the variational calculation of

the local matrix R(rj), which is propagated out to rG, using the previously stored global

R-matrix for the interval (rlrG). Matching to Gailitis solutions at rG completes the

cakulation.

It is convenient to define canonical solutions of Eq. (12) as those with canonical

-*;, Wronkian, W-J, and to define linear transformations that preserve the Wronskian, as

canonical tramnformation.6 If u (r) and u,(r) are combined to define a column vector

4 'J ' .K.. .. *-
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(n Components of u' followed by n components of u) the array of vectors uia defines a

2nx2n square matrix U. In this notation, Eq. (14) takes the simple form,

UtjU = J (19)

where notation (t) denotes the transpose of a real matrix. If solution vectors obtained by a

linear transformation are denoted by

V = UQ, (20)

then it follows from Eq. (19) that the defining condition for a canonical transformation is

Q!jQ - jQ . (21)

Canonical transformations form a group. In particular, local values of vector solutions as

represented by the array U belong to this group.

The Gailitis functions are defined to have canonical Wronskian W=J by requiring ws(r)

in Eqs. (13) to be Coulomb-Bessel functions with standard normalization, or appropriate

decreasing exponential functions for closed channels. An accurate Wronskian at finite r is a

necesary condition for the validity of the Gallitis expansion. When used as a test, this

shows, in general, a very great improvement at given r when the inverse power series of the

Gaflids expansion is replaced by a continued fraction representation. To reduce subsequent

eors, an algorithm has been devised which cleans up a given approximate solution matrix U

by enforcing certain internal symmetries that are a property of canonical transformation

matrices (FCANON algorithm: Section IV, Publications, No. 28). FCANON is routinely

applied to functions evaluated from the Gailitis expansion in the present work.

If wave functions are propagated through classically forbidden regions, small errors are

ampLfdWl by exponential factors. This can cause severe computational problems when closed
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channels are present in Eq. (12). This low of accuracy is a property of the system of

coupled differential equations, not of any particular method of integrating these equations.

These exponential factors do not occur if R-matrices are propagated rather than wave

function. Hence, propagation of functions should be avoided in favor of R-matrix

propagation whenever possible, as is done in the procedures described above.

It is not possible to avoid function propagation in constructing NAFs, which are used as

variational basis functionL In the present work, the global R-matrix for interval (ro,rl) is

built up from sectors without referring to the propagated functions, which are constructed at

sectorfboundaries from the global R-matrix and from initial values at ri. Within each sector,

each NAF is represented by an expansion in Legendre polynomials.

Coupling to strongly closed channels causes large errors to accumulate when functions

are propagated ova the external range (rlrG). From EqL (16), the crucial equation for

Inward Integration over an interval (rlr 2 ) is

R2 1u'(1) - R22u'(2) - u(2) (22)

which must be solved for u'(1). Then u(1) is obtained directly from Eqs. (16). It is

convenient to symmetrize the operator acting on u'(1) in Eq. (22), which becomes

R12R 21 u'(1) - R12 (R22 u'(2) - u(2)) , (23)

then to diagonalize the resulting matrix

R 12R21 - e et (24)

and to construct u'(1) for the solution vector indexed by (ia) in the form

# =1) (25)
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where

dj = . R12 (R222'a(2) - u(2)) (26)

In considering examples of closed-channel system, it is found that, in general, a number

of elgenvalues X , equal to the number of closed channels nd become very small if integration

is carried out over an extended range. The coefficients d,. also become small, but not

enough to remove the exaggerated effect of roundoff errors amplified by the factors X-1 in

Eq. (25). Using e'+H 2 scattering as a model problem, with polarization pseudostate
channels included, detailed calculations show that the X-1 factors can amplify roundoff

errors at ro enough to destroy the accuracy of functions at r, (Section IV, Publications,

No6 28). The proposed solution to this problem is to carry out a linear transformation of the

given functions at rO so that the coefficients d,,, of Eq. (26) are reduced to zero while

retaining the decoupling of unbounded closd-channel functions from all other functions, as

required by physical boundary conditions. In the PROJ algorithm (Section TV, Publications,

No. 28), this Is done by subtracting multiples of the bounded closed-channel function vectors

from the open-channel vectors at rG. Since there are n small eigenvalues XA, this gives nd

equations for nd unknowns, for both values of index i in EqL (26). The actual

translormatio of functions leads to very small changes at rG, since the correction terms are

demaing e- onential functions of r, but the induced effect at r, is large. This

tranfomatim can be justified by this observation: an adjustment at the noise level of

physial boundary conditions at rG Is used to eliminate terms which are clearly identified as

amplified nois at rl. Since the PROJ linear transformation is not canonical, it is followed

by the FCANON algorithm to produce functions at r, with a correct Wronskian. These

fMUctiM an propagated inwards to r0 , as described above, with no further auxiliary

....



30

.4

.

"" transformations. Numerical tests show that the accuracy of functions propagated over a large

interval is improved if the PROJ and FCANON algorithms are used as described here.

Partial wave solutions of a scattering problem must be regular at r=0 and bounded at

large r. For n channels, nop open and ncl closed, at arbitrary given energy or k-value, there

are only nop regular, bounded solutions. These solutions can be constructed as linear

combinations of 2 n-nd bounded functions obtained by inward integration, starting at large r

with functions that vanish in all but one asymptotic channel. The n unbounded asymptotic

.1 functions are to be excluded. In standard scattering theory, external solutions would be

.5 matched at some matching radius r0 to an internal R-matrix. A similar construction,

exprevd in the form of a canonical transformation of the integrated solutions, is used in the

present work to define NAFs, giving one regular bounded variational basis function for each

open channel Use of the remaining irregular functions will be discussed below.

Since the asymptotic potentials are not accurate inside some radius r0 , NAFs can be

matched at r0 to arbitrary regular functions. For convenience, a diagonal R-matrix is

constructed from the known logarithmic derivatives of Coulomb-Bessel functions for open

channels, or powers of r for closed channels. This diagonal R-matrix is matched to nOP

external functions of the form

fpN - Upo + 'qUplqKq' (27)

where pq-1,...,n; s-1... p, by solving for the K-matrix:

:.4

o . V . .
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lq(Uplq(ro) - roiPpupq(ro))Kq,

(upo(ro) - r0 Rppup ,(r 0 )) (28)

The Wroaskian condition ensures that the open-channel submatrix Kpq is symmetric, but the

elements K. for closed channels s are not determined. A full n x n symmetric matrix can be

defined by assigning values

- p open,

K =w = 0, p closed, (29)

It can easily be verified that if K is a full nxn symmetric matrix, as in Eq. (29), that the

2nx2n matrix

Q m [] 
(30)

satisfies the defining conditions for a canonical transformation, Eq. (21). This canonical

tn mantion of the integrated solutions is used to define regular NAFs for use as

variatimod bes function

When Irregular NAFs are needed to represent a phase-shifted continuum function, they

must be matched at some point to functions that are regular at small r. Consideration of

"typi functional forms indicates that this secondary matching point should be at

c ftrtely the fit zero of the corresponding regular function. In exploratory

calculation on e'+H 2 it was found for the range of energies and partial wave I-values

conideed (Section r1-A, above) that this secondary matching point was well outside r0 ,

and for alar part of the energy range, even outside r1 . Because of this, to avoid
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redundancy in the variational basis set, only regular NAFs were used for each partial wave,

and Bessel functions were added for completeness.

D. MoleCUlar Moments and Polarizablities

The ALCHEMY program system is designed for efficient calculations of individual

molecular electronic bound states. Reorganization of these programs was required in order

to compute transition multipole moments between different states, in general of different

total symmetry. This reosanization was carried out as part of the present project

(C. . Noble and R. L Nesbet, unpublished). The resulting program package computes

target state wave functions, energies, static moments, and transition moments in a single

computr job

Constructon of polarization pseudostates is an option of the revised program package.

Polhizabit is defined as an energy correction of second order in external electric field

Inten y, computed from the first-order perturbed wave function. Pseudostate orbital

functions can be deduced from the density matrix connecting the unperturbed and first-order

perturbed wave functioOL At present, construction of pseudostate orbitals has been

I only for single-configuration unperturbed wave function.

. Integrab for Polyatomic Molecular Scattering

Because multicenter Coulomb integrals can be evaluated in closed form, calculations of

bound-state electronic wave functions for polyatomic molecules are greatly facilitated by use

of Gaussian basis orbital functions. Since R-matrix calculations require integration over a

finite volume, this simplifying property of Gaussian orbitals is not directly useful in such

caulationg Polyatomic electron scattering calculations require new methods for simplifying

the multicenter Integral

i. * * i . .
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In the present project, the approach being followed is based on a translation theorem

for Gaussian functions. 30 ,31 This provides an analytic representation in the spherical polar

coordinates about a specified center of a solid harmonic Gaussian defined about another

center. The radial functions about the specified center can be evaluated as finite sums. For

certain ranges of the angular parameters, these sums are affected by severe numerical

cancellation. An alternative representation, a symmetric infinite series in both radial

coordinates has been derived and studied (R1. Seeger, unpublished notes). It is found that

this series can be summed readily by converting to a continued fraction or Pad6 approximant,

using the CFRACT algorithm (Section ffI-C, above). The radial functions can be evaluated

efficiently for arbitrary parameter values by use of one or the other of these two

represuntations.

Programs have been written and tested for all one-electron integrals involving a mixed

bass of Gaussian orbitals and continuum Bessel functions or NAFs. Kinetic energy integrals

are evaluated in a symmetric form appropriate to a generalization of variational R-matrix

theory to enclosed volumes of arbitrary shape, discussed in Section m-F, b-iow. Work on

two-electron integrals is in progress (Section IV, Publications, No. 31).

F. Extenslons of R-Matrix Theory

In considering variational R-matrix calculations for polyatomic molecules, it is

interemAig to exanne the possible adaptation of the theory to volumes enclosed by surface

" at irregular shape. Ultimately, such a development, valid for a Wigner-Seitz polyhedron or

for an Irregular cluster composed of an adsorbed molecule and several near-neighbor

substrate atoms, would open up new areas of quantitative theory in solid-state or surface

physi" The conceptual essence of the R-matrix theory is that the Schradinger equation is

solved In a strictly delimited closed volume, to obtain complete information required for
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matching wave functions on the surface of that volume. Techniques for eliminating a

common interface between two adjacent R-matrix cells can be extended indefinitely, so that

the global R-matrix for a larger cell of complex structure can be built up from modular units

correondig to subcells. A new variational principle, suitable for such applications, will be

described here.

The R-matrix theory is formulated for a multichannel one-electron Schradinger

equation. An N+ 1-electron problem can be reduced to this form by projecting onto

N-electron core or target states. The derivation here will be presented for the simplified case

of a single core state, or equivalently, for an effective one-electron Schrodinger equation

(h - e)# - 0 (31)

The ffneraization to multiple core states is immediate.

Consider solution of Eq. (31) in a volume 0 of arbitrary shape, enclosed by a

boundary surface -. In spherical polar coordinates, for a spherical surface, the global

R-matrlx is indexed by spherical harmonic functions on this surface. Here, this definition is

gPnealized to a linear integral R-operator whose kernel is defined in arbitrary coordinates by

(1) - f R(1,2) Vn4,(2)d 1 2  (32)

for pointa (1,2) on surface X. It is convenient to define a reciprocal operator, the

eneralized logarthin derivative A (1,2), such that

V0,(1) - f A(1,2) t,(2)dX2  (33)

for the norm'l gradient at point 1 on surface -.

-.. . .. , %,,, ,.. .. ,. .. -, ' . . . .. . - .. . - , . - . . . .. .. . .. . .' . i . . . . - .
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A variational principle for the logarithmic derivative of a radial wave function was

derived by Kohn. 32 [See References 6, p. 51]. The proposed variational principle for the

linear operator A follows essentially the same logic. The variational functional is

f (h - E)l', (34)

which vanishes if Eq. (31) is solved throughout the closed region U. Integrating the kinetic

energy matrix element by parts, this becomes

;. -A -- L VP*.VP + 0,*(V - e)o, dr

2

f f *(1)A(1,2)P(2)dX 2 d11 • (35)

Treating A as fixed, for an infinitesimal variation 80, the variation of - A is

a= A f 84'(h - e)d'r+-2 f- 80'(vn 4- f A dl)dl
(36)

+ complex conjugate.

This vanishes for u variations of 4 if and only if Eq. (31) is satisfied throughout

the interiom of 0 and If Eq. (33) holds on the boundary surface 2.

If is expanded as a linear combination of linearly independent basis functions aso

that

n
O - aca, (37)

a-I

then

A- labCa(Aab - Bab)Cb, (38)

' '',,' ' ' '.', . ' ,,- ," ." -',.".-, "4. -', , ',.''- . -- -.-.-.. ... "- .. -' ." .. .. ' . .. " - ,. -" "
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where

Aib - f (I- VO:aV~b + .(V - e)-O)dr (39)

and

B f f.0(1)A(12).b(2)dZ 2 dSl (40)

Varitio OCA with respect to the coefficients ca gives the system of linear equations

IbAabcb - bBabcb, (41)

-..f f ,(2) A(2,3) q,(3)dl~d' 2 . (42)

Solving Eqs. (42) for the coefficients %,i Eq. (37) becomes

*(1) -~ Zbb()(A ha f -0(2)A(2,3) 0(3)d' 3dZ.(3

CConecy Of these equations requIres the kernel of the Roperator, the reciprocal of A, to

be

R(1,2) - A-'(1,2) = b'Ob()(A)ba*a( 2 ) ' (44)
2

defined fcr Points (1,2) on surface 2. It should be noted that the matrix Aab is Hermitian in

oenr creal symmerc If the basis functionOa are real- It follows that the Aand R

operatorsare Hermitian, or symmetric if real-valued.

To use Eq. (44), a discrete representation of functions on surface 2 can be introduced.

In SeneraI, different representations can be used on different portions of the closed surface,

as might be convenient, for example, for different faces of a polyhedron. The R operators

for nonoverlapping but adjacent cells can be concatenated by solving algebraic equations
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indeed by the basis functions for a common representation on the surface of intersection.

If Eq. (44) is specialized to spherical geometry, it reduces to a variant of the usual

formula for the R-matrix. Conventional treatment of the radial Schr5dinger equation uses

r-multiplied radial functions rather than just the radial factors of three-dimensional functions.

This shifts an integrated radial term between Eqs. (39) and (40), altering both equations in a

consistent manner. The resulting R-matrix differs from the generalized R operator of

Eq. (32) for the same reason.

This geometrically covariant formalism was developed in the present project originally

to check kinetic energy integrals and surface terms for internal consistency. It is presently

being incorporated into new programs for electron scattering by polyatomic target molecules.

Possible applications in solid-state or surface physics are being investigated.

G. Optical Potential and Shadow Scattering

When many coupled channels must be considered, solution of the matrix Schr6dinger

equations can be simplified if the coupled equations are replaced by an optical potential in

each channel, such that

(H(O) - E) uS(r) - - Vctu (r) (45)
P SPS Ps'()

which replaces Eq. (12). In general, a true optical potential is nonlocal and energy

dependent. The Ansatz given by Eq. (13), due to Burke and Schey 29 and used by

GailWi26 was originally introduced to provide an analytic development of asymptotic

solutions of Eq. (12). Analysis of Eqs. (12) and (45) in terms of this Ansatz shows that it

4. provides an analytic development not only of asymptotic wave functions but also of the

optical potential (Section IV, Publications, No. 27).

.9 . . " " .. . ' " ' " ' -' i . - " . " , ." . - - , ' ' . "
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Substitution of Eq. (13) into Eqs. (12) and (45) gives

voPt

ps TpsWs = ZqVpqYqsWs (46)

If ws is a complex-valued Oscillatory solution of the uncoupled equations, Wronskian

conditions prevent both real and imaginary parts from vanishing simultaneously. Hence, this

function can be factored out of Eq. (46) to give

VM(r) - IqV (r) yqs(r)-j-'(r) . (47)

This is an optical potential expressed as a complex function of r, given wave vector k and

angular momentum I appropriate to channel p. For consistency, index s must be equated to

p by fbdng the asymptotic phase and normalization of functions ups(r) in a diagonal-channel

representation.

This construction of Vopt can be carried out as an expansion in powers of r- I for large

r or as a power series in r-ra about some ra. As an example of the method, a coupled

pseudostate model of scattering by a polarizable isotropic target gives

VO t(r) 1 1 a(- r 4 + (2ik/AE)r-5 + O(r6)) (48)
2

where a is the polarizability and AE is the pskudostate excitation energy. Equation (48)

adds an energy-dependent absorptive term to the well-known dipole polarization potential.

The derivation assumes that all channels are open, requiring E>AE.

This optical potential formalism has been developed to simplify calculations of

high-order partial wave terms in electron-molecule scattering. Equation (47) makes it

possible to consider shorter-range corrections to Eq. (7), in which the polarization potential

is the limiting asymptotic form of the optical potential due to closed pseudostate channels.
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Equation (48) has an immediate application in interpreting recent experimental data on

extreme forward scattering of 15-25 keV electrons by rare gas atoms (Section TV,

Publications, No. 29). A strong forward peak and rapid angular variation, essentially a

Fraunhofer diffraction pattern, were observed, 3 and were interpreted as a diffraction

pattern due to shadow scattering. The removal of forward electron flux due to inelastic
A scattering, which dominates elastic scattering by a factor k 2a2 in the forward direction, is

expected to affect the elastic cross section analogously to the scattering effect of a black disc,

whose shadow is described by a Fraunhofer pattern.

Despite this simple physical picture, no published theoretical work leads to such a

diffraction pattern for electron-atom scattering. The first Born elastic cross section is nearly

independent of angle in the range of interest (below 10 mrad). To simplify the theory, so

that exact results could be obtained for a realistic model, a pseudostate model was used,

giving exact target atom polarizability. The second Born scattering amplitude was computed

for e'+H atom scattering, using the exact I-I pseudostate. 34 The second Born elastic cross

section was found to have no strong forward peak and no oscillations at small angles. The

imaginary part of the forward scattering amplitude agrees in second order with the optical

theorem, in which it s determined by the large total inelastic cross section.

These results can be reconciled by considering the two leading terms of the complex

optical potential, given by Eq. (48). The WKB phase shifts due to this potential are

N3 2 -1complex. For the ground state of atomic hydrogen a is 4.5a0 and AE is (18/43) e a0 .

Assuming a core radius of 1.0a0 , the imaginary term in the optical potential introduces a

damping factor exp(-5.375) into all partial wave scattering matrix elements with 1 + 1/2 less

than kro, The resulting effective shadow in the forward direction is expected to produce a
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diffraction pattern similar to that derived for a complex square well model potential. 35 This

has not yet been verified by detailed calculations.

Both terms in Eq. (48) are quadratic in the transition amplitude, compatible with the

second Born approximation. However, the damping effect is so large in the shadow region

that a low-order Born approximation, essentially a power series expansion of an exponential

function with large negative argument, cannot be valid. Hence, specific effects of shadow

scatterig, such as the forward diffraction pattern, cannot usefully be treated by a low-order

Barn approximation.

IL Spln-Selective Electron Scattering by Magnetic Material

Spin-dependent elastic scattering of polarized electrons by an amorphous ferromagnetic

mat ril has recently been observed. 36 Spin asymmetry was measured in elastic

backscttering from Ni4oFe4oB20, in its ferromagnetic state, and from a similar pure Fe

gl.The spin asymmetry is defined by

S - (i+ - i)/(i+ + 1), (49)

where I+ and i. are, respectively, the Intensities of elastically backscattered electrons with

spin parallel and antiparallel to the majority spin of the target. To avoid pure spin-orbit

satear incident electron spin is oriented to lie in the scattering plane. In the experiment

on a pure Fe gks, the spin asymmetry was found to vary with incident energy almost

Identically with the NiFe data. Thus, the observed strong energy dependence and sign

reversals must be attributed to Fe. As In scattering by liquid metals, the observed intensity is

proportional to A?, where a s an atomic elastic cross section and A is the mean free path,

d etermied by inelastic cattering.

-..]. . .
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In a recent review article, Pierce and Celotta37 concluded that these data have no

satisactory theoretical explanation. The fact that S changes sign as a function of energy

conflicts with energy dependence expected from current theory. Using ideas from the theory

of the electron-atom scattering, it has been shown (Section IV, Publications, No. 25) that

the energy dependence of the observed spin asymmetry is compatible with the onset of a

3p.3d excitation process, at 50 eV, and with a scattering resonance of the nature of an

inverse Auger process just below this excitation threshold. These inelastic and resonant

elastic scattering processes are spin-selective because of the ferromagnetic polarization of

3d states.

The proposed explanation of these data differs significantly from current spin-polarized

LEE) theory,3 8 especially In considering spin-selective scattering effects of localized

excitation. By implication, an unpolarized electron beam incident on a magnetic target must

poduce prtally polarized scattered electrons. In this mode, these scattering effects are

n-prmductiv&

The observed asymmetry S changes sign from negative to positive near 50 eV (vacuum

energy). This can be accounted for by an inverse Auger resonance below the 3p.3d

localized excitation threshokL If the initial state of Fe is approdmately 3p6 3d 6 4s2 , an

et with sufficient energy can be captured temporarily into a resonance state of Fe- with

c ofigratlon 3pdsS4s2 . In a metal, the local charge imbalance would be compensated by

conduction electron relaxation. This resonance state could exist only if two localized hole

stats are available In Fe, this would be true only for minority spin electrons The

rson-nwe ergy can be estimated from the MVV Auger line in Fe, centered at 43 eV above

the Fermi leveL39 If the work function is 4.5 eV, elastic scattering of minority spin
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electrons should show resonance structure centered at 38.5 eV, contributing to the observed

negative spin asymmetry structure below 50 eV.

The postulated MVV resonance is associated with a 3p.3d localized excitation. This

transition is observed40 at 54.4 eV in Fe, relative to the Fermi level. When corrected for

the work function, this places an inelastic threshold at 49.9 eV. Inelastic exchange scattering

.4

due to the excitation process is spin-selective to the extent that predominantly minority-spin

hole states are available for the final 3d state. Inelastic scattering of minority-spin electrons

decreases their mean free path A and hence decreases their backscattered elastic intensity,

which Is proportional to A. The net effect is a positive contribution to the spin asymmetry S,

commencing at the inelastic threshold energy.

For Fe, an Inverse Auger elastic scattering resonance below the 3p3d threshold,

accompanied by stronger inelastic scattering starting at that threshold, could cause the spin

asymmetry for elastic c ttering to be negative at 38.5 eV and to change sign near

50.0 eV, in agreement with the observed data.

A localized 3p.3d2 resonance should not exist fo Ni, since two localized 3d hole states

would not be compatible with the known atomic moment and band structure. However,

enhanced inelastic scattering of minority-spin electrons should occur above the 3p.3d

excitation threshold. The optical transition40 is at 66.2 eV relative to the Fermi level, or

61.7 eV for electro in vacuo. Comparison of the iFe data36 with data for a pure Fe

glas shows a positive enhancement of the spin asymmetry above 60 eV due to Ni, but no

significant effect at lower energies. This behavior agrees qualitatively with the present
_UL
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TABLE 1

e H taicEchng, -atixElmnt i te21+ cteiga

k(a- 1) Ko b2 aKba 2

0.1 -0.2172 -0.217 0.3589(-2) 0.39(-2) 0.2248(-2) 0.21(-2)
0.2 -0.4504 -0.451 0.7 107(-2) 0.73(-2) 0.4346(-2) 0.45(-2)
0.3 -0.7227 -0.722 0.1038(-1) 0.11(-1) 0.7237(-2) 0.74(-2)
0.4 -1.0661 -1.07 0.1316(-1) 0.13(-1) 0.1107(-1) 0.11(-11)

a. Presnt. results, Ru1.402a0 .

b. Collins et aL, Reference 22.

c. 0.nx 10 "n is written as 0.n(-m).
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TABLE 2

e'+H 2 Polarized Pseudostate, K-Matrix Elements

and Elgenphase Sums in the 2 X+Scattering State

K11 K31  K33  211
k(a&) a b a b a b a b

0.1 0.2493-1 0.1123-2 0.1662-2 0.2659-1
0.2 0.9422-1 0.2391-2 0.4415-2 0.9836-1
0.3 0.2356 0.1827 0.3973-2 -0.1165-2 0.7688-2 0.1629-2 0.2391 0.18 23
0.4 0.4549 0.3885 0.6350-2 -07644-2 0.1111-1 0.6913-2 0.4380 0.37 74
0.5 0.7211 0.6225 0.9697-2 -0.2828-2 0.1632-1 0.1710-1 0.6410 0.57 39
0.6 0.9939 0.9455 0.1357-1 -0.1542-1 0.2451-1 0.3056-1 0.8068 0.78 78
0.7 0.1238+1 0.1220+1 0.1696--1 -0.3831-1 0.3261-1 0.4393-1 0.9236 0.9272
0.8 0.1400+1 0.1489+1 0.2263-1 -0.3023-1 0.3775-1 0.5358-1 0.9882 0.1033+1
0.9 0.1519+1 0.1673+1 0.2776-1 -0.1572-1 0.4304-1 0.6026-1 0.1031+ 1 0.1092+1
1.0 0.1591+1 0.3249-1 0.5196-1 0.1061+1

aPreent results, R=1.402a0

bData from Kionover and Kakldo, Reference 19, R- 1.40a0 .

.i
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TABLE 3

e'+H 2 Polarized Pseudostate, K-Matrix Elements in the 22 u
Scattering State, Dynamical Distorted Wave Approximation

MCI) 03 0.6 0.9
a b c a b C a b C

Kit 0.1034 0.2356 0.1827 0.2050 0.9939 0.9455 0.2124 0.1519+1 0.1673+1
F,11 03702-2 0.3973-2 -0.1165-1 0.7313-2 0.1357-1 -0.1542-1 0.8816-2 0.2776-1 -0.1572-1

K3 0.8445-2 0.7688-2 0.1629-2 0.2641-1 0.2451-1 0.3056-1 0.5377-1 0.4304-1 0.6026-1

K51  0.6729-6 0.9187-6 0.1031-4 0.7085-4 0.3644-4 0.2104-3
IL4  0.1014-2 -0.7265-6 0.2201-2 -0.4707-4 0.3455-2 -0.2701-3
K5 0.2534-2 0.3349-9 0.7575-2 0.9912-7 0.1519-1 0.2836-5
K?1  0.6075-9 -0.3134-9 0.4142-8 -0.1133-6 -0.8338.8 -0.8129-6
K73  02547-7 0.1432-9 0.5732-6 0.2722-7 03702-5 0.5614-6
K75  0.4649-3 -0.6972-13 0.9930-3 -0.9817-10 0.1573-2 -0.1026-7
K77  0.1160-2 0.1569-12 0.3313-2 0.1431-12 0.6476-2 0.4211-10

aDynamical distorted wave approination, present results, R,= 1.402a 0.

bConverged variational calculations, present results, R- 1.402a0.

CData from Klonover and Kaldor, Reference 19, R= 1.40a0
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