+1D-A134 883 COMPUTER PROGRAM DEVELOFMENT SPECIFICATION FOR ADA 1/1
INTEGRATED ENVIRONMENT. . (U) INTERMETRICS INC CAMBRIDGE
MA 22 MAR 83 IR-681-1 F3A6B2-80-C-8291

UNCLASSIFIED F/6 972 NL

AT oy I Y AN

I
22 s nis

l‘-‘m 2.5
e & 2
e —— E m L

-y 40
LR
"I.S

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

. . . G .
LA RACAEENIRIRAC LI AL AN IS AN

A

Y

-

A

AD-AI3yoos

CONTRACT F30602-80-C~0291

IR 681-1
COMPUTER PROGRAM
DEVELOPMENT SPECIFICATION
FOR
Ads INTEGRATED ENVIRONMENT:
PROGRAM INTEGRATION FACILITIES

TYPE BS
BS-AIE (1).PIF (1)

22 MARCH 1983 DTl C

ELECTE '
0CT 2 4 1983 3

B

PREPARED FOR: ROME AIR DEVELOPMENT CENTER
CONTRACTING DIVISION/PKRD
GRIFFISS AFB, N.Y. 13441

_

733 CONCORD AVE.
CAMBRIDGE, MA 02138

PREPARED BY: I INTERMETRICS, INC.

el

DISTRIBUTION STATEMENT A
Appeoved fox public roloaq 83
Distibution Unlimited

09 19 055

0 FILE coey

INTERMETRICS INCORPORATED ¢ 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 * (817)661.1840
TELEX NO. 710 320 7823 -

...............

BS-AIE(1l) .PIF (1)

This document was produced under Contract F30602-80-C-0291 for
the Rome Air Development Center. Mr. Donald Mark is the Program

Bngineer for the Air Porce. Mr. Mike Ryer is the Project Manager
for Intermetrics.

Accession ?or

TNTIS GRA&I ¥
DTIC TAB O
Unannounced O

© Justificatio

By
Distribution/
Availabili&y Codes
“fAvail ana/or
Special

'NTERMETRICS, INC. - 733 CCNCCSC AVENLE - CAMBRIDGE. vwASSaC-
TELSX NC. 7% 327 "gei

; e
i
i
X
3
CONTENTS
b
5 1.1 Identification 1
g 1.2 Punctional Summary 2
. 2. Applicable Documents 3
2.1 Program Definition Documents 3
2.2 1Inter-Subsystem Specifications 3
N 2.3 Military Specifications and Standards 3
. 2.4 Miscellaneous Documents 3
- 3. Requirements S
) 3.1 Introduction 5
3.1.1 General Description 5
i 3.1.2 Peripheral Equipment Identification 6
‘ 3.1.3 1Interface Identification 6
3.2 Punctional Description 7
3.2.1 Bquipment Description 7
3.2.2 Computer I/0 Utilization 7
3.2.3 Computer Interface Block Diagram 7
3.2.4 Program Interfaces 8
3.2.4.1 Program Library Structure
Interface 8
3.2.4.1.1 Ada Program Library
Representation 8
3.2.4.1.2 Ada Compilation Units --
’ Ident/Form 8
3.2.4.1.3 Initial Form and
. Consistency 9
3.2.4.1.4 Primary and Resocurce
Catalogs 10
,&» - i -
v 'NTERMETRICS, INC. * 733 CCNCCRD AVENUE © CAMERICGE. MAZSAC-L3Z™™3 2°13
B TELEX NC. T3 320 T5i3

3.2.4.1.5

3.2.4.1.6
3.2.‘.1.7

3.2.‘.]ﬂﬂ‘ol Uniﬂ?ﬂilﬂe

3.2.4.2 KAPSE Interface 16

3.2.4.3 VMM Interface 17

3.2.4.4 Object Nodule Format Interface 18

3.2.4.4.)
3.2.‘.‘.2
3.2.4.4.3
3.2.4.4.4
3.2.4.4.5

3.2.4.4.6

INTERMETRICS, INC. © 733 CONCCRC AVENLE -

Prefix Set

(of a

Resource

Catalog:® 10
3.2.4.1.4.2 Interfice

and

Implementation

Catalogs 10
Object Identification
and Catalog
Selection 11
Collections 12
Detailed Structure o 12
3.2.4.1.7.1 Catalog

Access List

(of a

Collection) 12
3.2.4.1.7.2 Collection

*ink List

{(of a

Collection) 13
3.2.4.1.7.3 Object

Reference

Table (of a

Catalog) 13
3.2.4.1.7.4 Resource

Catalog

Reference

List (of a

Catalog) 14
3.2.4.1.7.5 RCR Update

and Catalog

Derivation/Promotion
Control Sections 10
ENTRY definitions 20
EXTERN Reference
node 20
Bxternal Definitions and
References 2l
Storage Unit
Definitions 21
Link-Time Expression
Nodes (LTENs) 22
3.2.4.4.6.1 LOPR

node 22

TAMBRIDSEE. MASES 2= 32T U0 1

L Y9 TR
vk J whw

TELSX &C. T

pee

¥
o

)

WAy T
o e

L2
et .
t 2%l

3.2.4.4.6.2 LREF

node 22
3.2.‘.4.6’3 LLIT
?# node 23
3.2.4.4.6.4 LLEN
?; node 23
5(> 302.‘-‘06.5 Use Of
w3 link-time
expressions 23
T 3.2.4.4.7 Overall Object Module
L Organization 23
- 3.2.4.4.8 Run Time Routines 23
23
: 3.2.4.5 Compiler Interface 25
o 3.2.4.6 DBUG Interface 27
f% 3.2.4.7 Unit Lister Output Pormat 28
s 3.2.4.7.1 Source Text Listing 28
s 3.2.4.7.2 Symbol Table
N Attributes 29
. 3.2.4.7.3 Cross Reference 29
- 3.2.4.7.4 Assembly Listing 29
:3 3.2.% Function Description 30
% 3.3 Detailed Punctional Requirements 32

3.3.1 Program Library Interface Packages

f’\; (PLIF) 32
2 3.3.1.1 Library Object Identification 33
b3, 3.3.1.1.1 Objects And The
Catalog 33
pr 3.3.1.1.2 Object Information 34
F 3.3.1.1.3 Library Object
f Identification
43 Punctions 34
? 3.3.1.1.3.1 Object
- Addition 34
" 3.3.1.1.3.2 Accessing
Objects 36
3.3.1.1.3.3 Deleting
‘ And Saving
Catalog
Objects 37
& 3.3.1.2 Library Object Dependency
& Manager 38
& 3.3.1.2.1 Precursor List
2 routines 40
* 3.3.1.2.1.1 Input 40
. 3.3.1.2.1.2 Processing 40
b

- {ii -
'NTEAMETRICS, NC. © 733 CONCCRC AVEBMUE + CAMERIDGE, *4233A0~.88778 22° 22

TELE(NG 700 22C T2

CROE G YO Nk S Y SN J

INTERMETRICS. INC. - 733 CONCCRD aVENLE -
TELEX NG 78 225 TELs

3.3.1.2.2

3.3.1.2.1.3 Outputs
Library Object
Consistency

3.3.1.2.2.1 1Inputs
3.3.1.2.2.2 Processing
3.3.1.2.2.3 Outputs

3.3.1.3 Library Object Allocation

Package

3.3.1.3.1 Collection Segment
“"umbe

3.3.1.3.2

4
3.3.1.3.1.1 1Input
3.3.1.3.1.2 Processing
3.3.1.3.1.3 Output
Object Segment

Number

3.3.1.3.2.1 1Input
3.3.1.3.2.2 Processing
3.3.1.3.2.3 Output

3.3.1.4 Library Configuation Management
3.3.1.4.1 Collection Creation and

3.3.1.4.2

3.3.1.4.3

3.3.1.4.4

3.3.2 Program Builder
3.30 201 !Ilild.r

Deletion

3.3.1.4.1.1 1Inputs
3.3.1.4.1.2 Processing
3.3.1.4.1.3 Output
Catalog Creation and
Deletion

3.3.1.4.2.1 1Inputs
3.3.1.4.2.2 Processing
3.3.1.4.2.3 Output
Promoting a Resource
Catalog

3.3.1.4.3.1 Inputs
3.3.1.4.3.2 Processing

- 3¢3.1.4.3.3 Output

Linking to a Resource
Catalog

3.3.1.4.4.1 Inputs
3.3.1.4.4.2 Processing
3.3.1.4.4.3 Outputs

3.3.2,.1. Inputs

3.3.2.1. Processing

3.3.2.1. Outputs

3.3.2.1. Special Requirements
3.3.2.2 Preamble Generator

3.3.2.2.1 1Inputs

3.3.2.2.2 Processing

CAVBRTIE. s

43
43
43
43
44
44

44
44

45

45
45

45
43

- 45

45
46

46

46
46

46
46
46
47

48

48
48
48
49
50

Sl
Sl
sl

Vit R D F

WO

2¥LF

W3 i VLV

T LA AR

b3
*

.

FARLAPL AR

Laaat> ot

-
L, -

L W

o3 Y el Wee

3.3.3

'NTERMETRICS, iNC. -

-
{

3.3.2.3

3.3.2.4

3.3.2.9

Program
3.3.3.1

3.3.3.2

3.3.3.3

3.3'3.‘

3.3.3.5

3.3.3.6

3.3.2.2.3 Outputs

3.3.2.2.4 Special Requirements
Program Completeness Checker
3.3.2.3.1 1Inputs

3.3.2.3.2 Processing

3.3.2,3.3 Outputs

3.3.2.3.4 Special Requirements
Body Generator

3.3.2.4.1 Inputs

3.3.2.4.2 Processing

3.3.2.4.3 Outputs

3.3.2.4.4 Special Requirements
Linker

3.3.2.5.1 1Inputs

3.3.2.5.2 Processing

3.3.2.5.3 Outputs

3.3.2.5.4 Special Requirements

Library Tools

Program Library Manager
3.3.3.1.1 1Inputs and outputs
3.3.1.2 Processing

3.3.1.3 Outputs

3.3.1.4 Special Requirements

0 www

.1 Inputs

.2 Processing

«3 Outputs

.4 Special Requirements

lation Minimizer (MAP)
«1 Inputs
.2 Processing

3 Outputs
4 Special Requirements

[e ® o o o 8
o o o o 3
WWwiww e NN

W WWWWwWE Wwweww
WWWE Wwwwd WWwww

a
3.4.1 Inputs
3.4.2 Processing
3.4.3 Outputs
3.4

rce Reconstructor
3.5.1 1Inputs
3.%.2 Processing
3.5.3 Outputs

uwu(g W W W

Unit Lister

-v~

33 CONCCRD ALENUE © CAMBRICGE, WMAS3AZ-L%873 12 I3

- ey~ ~A mman
CLZN NG, 710 222 T8l

................
..................

52
52

53
53
53
53
53

S4
Sé
54
S4
S4

SS
$S
55
56
57

58

58
58
58
S8
S8

s9
59
59
60
60

61
61
61
61
61

62
62
62
62
62

63
63
63
63

64

<
3.3.3.6.1 Inp\lts 64
r 3.3.3.6.2 Processing 64
3.3.3.6.3 Outputs 65
“ 3.3.3.7 Poreign Object Module Importer 66
¥ 3.3.3.7.1 1Inputs 66
A 3.3.3.7.2 Processing 66
b 3.3.3.7.3 Outputs 66

3.4 Adaptation 67
. 3.5 Capacity 68
” 4. Quality Assurance 69

) 5B T R

b LYY

SR LR

€ I

g ¢
PRS- A ey

»

5
:
i1
.
g
y, - -
x vl
i . Ve qomom - - - - -

INTERMETRICS, INC. * T33 CONCCRD 8/BNUZE » CAMERLGE '-33-.-.33778 ¢
\d4

TBLBANC. T Sl Tl

ks
. ¢
3
R) o ~ b » E - “l 2) Bl e S a® gt a0 s vy e e e K3 PR P e M S e b B A" e 4" ata

Wy o e

a_pa D g o,

s metalal gl

L2}

B O RS

R e

Sy gy g g LY

— T - b el MM 3 L iandh Lindh ad T - N @ Ve WgW LW T 4T e T e e T et T T &
B e Wa T Za®s Ta P AW T T "7 RSEMARA DA AN RSN NAA LALLM ML AL AR DA A R AR S A

PIGURES

3~1 Program Integration Facility Interfaces 6
3-2 Overview of Program Library Structure 9
’ 3-3 Object Reference Table 14
3-4 RCR List with Prefix Index 15

3-S5 Library Object 34
NTESMETRICS. INC. * T3 CONCCRD AVENLE ¢ CAMBRIZ3Z, w-33~J-327 3 200K
TELIX NO. TUC 227 iz
B N T e I T T T T T T T T L T e S L e e

E BS-AIE (1) .PIF(1)
%5 1. Scope

l

;; \\\\\\\\i;i- Identification jriﬁr*&‘&
% > This document establishes the

rformance, design, test, and

bY) qualification requirements for the Program Integration Pacilities
. for the Ada Integrated Enyironment. These facilities

. include the Program Library Packages, the Program
kY Builder and the Program Library Support Tools. This document
K3 also includes requirements for the design of the Ada program

library, the environment within which program integration °°°°'s'(f'

The CPCI°s that comprise the PIF are listed below, along.*
with their component CPC’s.

- ceex cee
A ..'
2 Program Library Interface Packages (PLIF)
ks Library Object Identification (A)
~ Library Object Dependency Manager (B)
Xy Library Object Allocation Package (C)
= Library Configuration Management (D)
? Program Builder (PBUILD)
b ' Builder (A)
Preamble Generator (B)
a Program Completeness Checker (C)
’q Body Generator (D)
2 Linker (B)
« ﬁ‘
ﬁ Program Library Tools (PLTOOLS)
i Program Library Manager (A)
. Change Analyzer (B)
o Recompilation Minimizer (C)
) Link Map/X-Ref Lister (D)
£ Source Reconstructor (E)
- Onit Lister (F)
:: Poreign Object Module Importer (G)
N
o
9

e

0
4
N INTERMETRICS. NC. + 733 CONCCAC AVENLE - CAMBRICSE. A33:1-3371:0 10

— =, Yem 2am ~zan
LS NC. 72 32T k2

" Y

.............................
et S e e"a" A T T O e St
.....................................
.....................
R R R T P T Tty - MRS P I S I I) Ste te et et

i pe e SR B M S eI Ao A A A A S RS e i i B iaie Je St RO LA Bt Ay SR e .-‘\-1_
P R T TN A A A L N . . A . . - B .

WY BS-AIE (1) .PIF(1l)

1.2 PFunctional Summary

The Program Integration Facilities provide a complete set of

o functions used to create and manage Ada program libraries, as
o well as functions used by any program which requires access to
Y information in a program library. These facilities are broken

down into three CPCI“s: the Program Library Interface Packages
(PIFP.PLIF), the Program Builder (PIF.PBUILD), and the Program
Library Tools (PIF.PLTOOLS).

PLIF defines the physical structure of the program library
and provides a complete set of functions which can be used by any
program which requires access to such a library, including the

T compiler, the program builder, and the program library tools.

. PBUILD is analogous to the linker in a conventional

3| programming system: it is invoked by a user in order to create an
2 executable program. PBUILD operates in two phases. The first
a phase, program completeness, guarantees that the program is
4 complete and consistent before the second phase, the linker,

assembles an executable program from a collection of compiled

units in the program library and binds relocatable symbols to
their load-time values.

- PLTOOLS is a collection of programs which provide the
o functions users need in order to manage a program library.

“nana . s o~ otz
e . -

PRI G U RN G TP P -SSP

BS-AIE(1l) .PIF (1)

2. Applicable Documents

2.1 Program Definition Documents

. Regquirements for Ada Programming Support Environments,
STONEMAN," Department of Defense, February 1980.

. Revised Statement of Work, 15 March 1980.

Reference Manual for the Ada Programming Language, Draft Standard
Document, U.S. Department of Defense, July 1982.

\ 2.2 Inter-Subsystem Specifications

3 System Specification for Ada Integrated Environment, AIB(l).

Computer Program Development Specifications for Ada Integrated
Environment (Type BS):

Ada Compiler Phases, AIE(1l).COMP(l).

Vs L

MAPSE Command Processor, AIE(l) .MCP(l).

e

KAPSE/Database, AIE(l) .KAPSE(l).

5 MAPSE Generation and Support, AIE(l) .MGS(l).
MAPSE Debugging FPacilities, AIE(1l) .DBOUOG(l).

! MAPSE Text Editor, AIE(l).TXED(1).

Virtual Memory Methodology, AIE(l) .VMM(2).

Technical Report (Interim) IR-684.
2.3 Military Specifications and Standards

i

STy

Data Item Description DI-E-30139, USAF, 14 July 1976.

2.4 Miscellaneous Documents

An Incremental Programming Environment, Peter B. Feller and Raul

-3-

NTZRMETRICS. NC. * 7353 CONCCRD AVENLE » CAMERIZZE -ia83s2-.237 2 12012 -

, men tma mman
TELSX MG, TeC IO Tsls

......................................
.....................................

.............
...................

wils
.

B5-AIE(1l) .PIF (1)

Medina-Mora, Department of Computer Science,

Carnegie-Mellon
University, April 1980.

DIANA Reference Manual, G. Goos and Wm. A. Wulf, editors,
Institute Puer Informatik II Universitaet KXarlsruhe and
Carnegie-Mellon University, March 1981.

-‘-

INTERMETRICS. INC. + 733 COCNCCTRZ AVENUE © CAMBRIDGE. ;ET iz i

“.g~~,v iz Q = - ta

LEX NC. T1g 220 T8l

- - eo o o - -

S
PR S

LAy SR,

.
' N

"
%

ORAOEH Y - ol

1

'ff.‘

r",‘ﬁ_'u E R R

[

e

AR

A
LIS

. 1 AL,

T

NTEARMETRICS. NC. + 7SI COMCCRD AWENLE -

o — - ——— e - R T W T aYa YR Y W YT W W T T ~ e T ™. . w e
PO wierd s e Sl el R M A S R AR TR TN YT YN YN TR R LY TR S TR T -~

_________ Le e T et e IR R AU A R I S I SR R A

BS=-AIE(l) .PIF(1)
3. Requirements

3.1 Introduction

This section provides the set of requirements for the AIE
Program Integration Pacilities. This includes the performance
and interface specifications to which they must comply.

3.1.1 General Description

Program integration occurs in two phases. During
compilation, it is the process of analyzing a single compilation
unit in the context of a number of compilations which have come
before. During program building, it is the process of assembling
a number of separately compiled program units into a complete
executable program. Program integration occurs within a program
library.

The Program Integration Facility allows the compiler to
perform the first phase of program integration. While processing
a given compilation unit, call it P, the compiler will access the
program library in order to obtain information about the
separately compiled program units used by P. If the compilation
is successful, the compiler will update the library with the new
information which resulted from <compiling P. This new
information will include the abstract syntax tree of P, a DIANA
tree, a "compiled unit®™ (including relocatable object code), as
well as some new dependencies between P and program units already
in the library. The program integration facility must provide
functions which allow the program library to be used in this way.

The Program Builder performs the second phase of program
integration, where a complete executable program is constructed
from the separately compiled pieces stored in the program
library. This requires access to compiled program units stored
in the library and the dependency information stored with them.

The Program Library 1Interface Packages (PIF.PLIF) is
provided to address these requirements.

A minimal set of tools must be provided to users for
creation and management of program libraries. These tools
(PIF.PLTOOLS) provide the mechanism through which users create,
copy, and delete program libraries, as well as a means by which
the contents of a library may be examined or analyzed.

N1

——
-

-

[

N

O m
b

[33N]
i
()

y 1IN
.
)
)
)
1
1]
4
'

-
Py
1 NC.

E}i,‘-v‘n‘.ﬂa-n':"" AP i i B WA s B e b R R B i s R R SR SR S TR B i i n it At e e

BS-AIE(1l) .PIF (1)

3.1.2 Peripheral Bquipment Identification
Not applicable.

N 3.1.3 Interface ldentification

% Figure 3-1 shows the relationships of the PIF to other parts
of the AIE. Program interfaces are described in detail in
"'Ai "ctioﬂ 3 ° 2 () ‘ b’lo' L3

X |

PBUILD PLTOOLS
Program Library
Builder Tools

PLIF
Library Interface COMPILER

Dl S p——]

!
[
!
|
l
!
{
[
|
I
|

DEBUGGER

M KAPSE

A Y

32183447-3

.A
. o". L
AL YRRV

§ XA

Pigure 3-1. Program Integration Facility Interfaces

F AL R s g

b Y ARASS

—6-
INTERMETRICS, INC. + 733 CONCCRD AVENUE + CAMEBSICEGES, a88al- 2273 12 T8+ 407 1% - 1.7

TELAX NC. 70 320 TEIT

Ba A a 08, Yy

N
4
..
L d

PR WA VAR WP P P

A, TR e ALTE SR AL g S A £ SO Sl W LR S P N B i Ml e i Al MRty S S A A SRR e S i S R

BS-AIE(1l).PIF(l)

3.2 Punctional Description

Ly 3.2.1 EBquipment Description

L Not applicable.

3.2.2 Computer I/0 Utilization

Not applicable.

3.2.3 Computer Interface Block Diagram

- Not applicable.

Ay

R

#

& o ".‘ s -
$2 20 20

AN A

SR

-
e,

bt s

\ SAEEAS)

(%

S
[]

-3

[]

A . - . - - I

AN NTESMETSICS, 'NC. + T33 CONCCFRD AVENLE ¢+ CAVERICGE 'A33-t-_.3277F (I .:

- TELEX NQ. T4 300 T2

A ’ - - -
7 =

)

. -
I "‘.-‘..(- TR e N T ut, P o e e T e T AT et el el e T T S PP
T e A L e LT e e e ISR
4 el hd b/ RS S e S W SRS D o ._'u’-_'.s_‘;.’.-':;' - 'g"s—"\' L T '.J;’ '.\' Stan e

.............

BS-AIE(l) .PIF(1)

3.2.4 Program Interfaces

3.2.4.1 Program Library Structure Interface

The Program Library Structure is designed to support the
development and maintainance of very large software systems. The
design anticipates the problems inherent in managing a 1large
system in the face of constant modifications and revisions to its
components as well as tracking the, perhaps many, total system
versions over a long period of time.

3.2.4.1.1 Ada Program Library Representation

Conceptually, an Ada program library is a totally isolated set of
interrelated compilation units. Bowever, to allow more sharing
of units across libraries, without violating the defined
semantics for Ada program libraries, the PIF represents each
program library using a "primary catalog® with 1links to other
objects which serve as ‘"resource catalogs®™ to this primary
catalog. Bach “"catalog” contains an Object Reference Table

providing access by unit name to the database objects used to
repregsent the coapilation units.

Resource catalogs are sets of units which represent the
traditional notion of a "library,® like a math library, or an I/0
library. It is anticipated that the units of a resource catalog
are relatively stable, while the primary catalog is in flux as
new source is compiled.

Pigure 3-2 provides an overview of the program library
structure. Bach of the structures in the figure will be
discussed in more depth in the following sections.

3.2.4.1.2 Ada Compilation Units -- Ident/Fora

In general, an Ada compilation unit can be distinguished by
its 1library unit name, its subunit simple name (if any), and a
spec vs. body indicator. This group of information we call the
"Ident" of the unit.

PFor example:
Pull OUnit Name 8Spec vs.. Body Ident
A.B.C.D Body A.D
P Spec P.IS=-SPEC
P Body P
P.Q Body P.Q
-s-
INTERMETRICS. INC. - T33 CONCORD AVEMUE - CAMBRICGE '428SACl=_33773% 2l (& - -
"ELEX NC 712020 TEil

..........

T N -y L k. 2o od Yhall Sudl oy W e Ty
s T O P O T TR TR 0 DA B e Aot Jhen Jas ATk TRt v It M Ryt i AR Bl S e gt Vil A) ARADACASADRA NS

3 BS-AIE(1).PIP(1)

LY
. CLL Yink
: Collection /—\ Collection
¥
3
reference
:
b3
. 32183447-4
‘ CAL - Catalog Access List
' AT - Catalog
o oL - Cotlection Link List
0bj - Library Object
; RCAT - Reference Catalog
RCR - Resource Catalog Reference
‘?
Pigure 3-2. Overview of Program Library Structure

;f A particular unit might also appear in a 1library in various
L, processing stages or "forms," such as "source,” "abstract syntax
3 tree (AST) ," "DIANA," *"object module,” "executable,"
L "documentation,” etc. The combination of the Ident and the Form

is sufficient to uniquely identify a current member of a library.
b 3.2.4.1.3 Initial Form and Consistency
/ For every unit (specified by some Ident), there is required
. to be some form which is independent of all other objects within
$ -o-

‘NTEAMETRICS, NC. © T3 SONCCRC ALENLE ¢ JANZRTIZ - :33-0-.313772 1207

ﬁﬂ??iw“fvﬁ'ﬁEﬁ"ﬁ‘*Fﬂﬂﬁ?#iﬁ“ufﬁyﬂiﬁﬁﬁvs"aﬁsrc:sra“sianﬁ;d-plaa;uﬁ~‘

B3=AIEB(1) .PIP(])

the library. Por this Ident, this is considered its “"initial®

20fn. In general, this will be the AST for Ada compilation
units.

Library consistency is defined in terms of initial forms.
Every object maintains a complete list of all initial forms from
which it was built (The "initial form precursor list"). If any
of these initial forms have been replaced in the catalog, the
derived form is considered out-of-date.

The advantage of relying on initial forms is that
intermediate forms (such as object modules) may be deleted from
the program library (to conserve space, presumably), without
affecting the “"up-tQg-date-ness®” of the final, most useful form
(such as an executable).

3.2.4.1.4 Primary and Resource Catalogs

As nentioned above, rather than referencing all the
compilation units of an Ada program library from a single
directory-like database object, references to the units are
spread among a primary catalog, and a set of relatively stable
resource catalogs.

Because of the heavy inter-dependence of units within an Ada
program library, it is not practical to do version/revision
selection on a unit-by-unit basis. Instead, the PIP library
structure supports versions and revisions of catalogs. Two
versions or revisions of a catalog may refer to many of %ge same
units, with only small differences in the source submitted to the
two. HBowever, the DIANA and Object Modules produced £from even
unchanged source will generally be different if some depended-on
unit has been changed. Thus, it makes mnore sense to ¢treat a
revision on a catalog basis, even if the change has been
restricted to the sources of a small set of units.

3.2.4.1.4.1 Unit-name Prefix Set (of a Resource Catalog)

To limit the number of cataloi; in which a unit might
appear, each resource catalog defines a small set of unit-name

prefixes, such as "IO_", “INPUT_ ", "“OUTPUT_ " . All units
associated with the rcsourcc catalog are r ired to have Idents

wvhich conform to the <catalog’s ©prefix set, such as
I0 EXCEPTIONS", ® INPUT_OPERATIONS.SUB_PACKAGE", "INPUT_DEFS®,
*ov¥poT_ PORMATTING .BODY" , ~etc.

3.2.4.1.4.2 Interface and Implementation Catalogs

A further distinction is made between "interface™ catalogs
containing units needed for compile-time reference (specs and
in-line bodies), and “implementation®™ catalogs containing units

INTERMETRICS. INC. * 723 CONCCRD AVENUE « CAMBRIDGE WASSAZR.SE™T T t2-2: + 17 48 .~

> = Q. =en ann ez2n
TemaX NG v‘g 55-

...........................
....................

.......................

o . -

“ A

se
Sl

w i dn Bas 2ot e Th/8 T4 4 At hae Riie St i Bie Wder "B A Anf Sl Ml s i S sl M S B M

............
AR A S Rt DR e P e I

- Cy . WL e v e, v,

BS-AIE(1l) .PIF(1)

needed only at program build time (non-in-line bodies, and svecs
and bodies of “"implementation-specific® units). A resource
implementation catalog must specify its interface catalog, and
must restrict its own units to the same unit-name prefix-set as

its interface, to avoid colliding with names used in other
catalogs.

To provide implementation independence at compile time,
resource interface catalogs may only be linked to other resource
interface catalogs (to avoid *indirect" implementation
dependencies). Resource implementation catalogs ma¥ also only be
linked to resource interface catalogs. Only a primary catalog
may be linked to resource implementation catalogs (as well as to
any interface catalogs).

The benefit of these restrictions is that, as 1long as a
resource interface catalog remains stable, multiple
implementations may exist for it (both over time, and simply as
different co-existent versions), without repeatedly making
obsolete compiled units within user®s libraries. Only executable
load modules become dependent on the particular resource
implementation catalog chosen, meaning that only a re-Build
rather than a complete recompilation is needed to track updates
to the resource implementation.

3.2.4.1.5 Object Identification and Catalog Selection

A primary catalog may only link to resource interface
catalogs with non-overlapping unit-name prefix-sets. Also, for

each resource interface catalog, the primary catalog may link to
one implementation of it.

8ence, given the Ident/Form for a unit, at most two
catalogs, accessible from the primary catalog of a library, could
hold it,. If the Ident falls within the prefix set of a
particular resource interface catalog, then either that catalog,
or the implementation of it would have to contain the unit. If
the Ident falls within the prefix set (if present) of the primary
catalog then either that catalog or its interface (if any) would
have to have the unit. Note that if the primary catalog does not
specify a prefix set, it contains (by definition) anything not
iont:incd in the prefix sets of the resource catalogs to which it

$ linked.

If both an interface and implementation catalog might
contain a unit, the interface catalog is always searched first.
When a unit is found in a catalog other than the primary catalog,
the unit is considered "read-only,"” and may not be replaced or
updated. Any new submission to the compiler, or new forms
produced as a side effect of compiling or linking, must all go
into the primary catalog, and must abide by the unit-naming
restrictions implied by the prefix sets.

NTESMETRIC3. MC. - TZ3 CONCCARC avENLE - T...8R T3z w3382~ .33778 72 1L

Mk DRl e e i i SRR R Rl 4 bt

" IITTRAKK {0k

Lt L

' o, R
Il el

g e
N A D

.
—

Y2 iy

e 37a e a2

AT Ak

*

»
L 4
¥

YA
M
A R e R h S T A AT

BS=-AIE(l) .PIF(1)
3.2.4.1.6 Collections

To provide a convenient unit for resource allocation, access
control, and revision maintenance, the available database storage
may be organized into "collections."™ A collection is simply a
set of database objects, each object uniquely identifed by a
never-reassigned key, called the ObJID, that represents a
particular revision of a particular object within the collection.

Catalogs are themselves represented as objects within a
collection, and a restriction is made that all units referred to
directly by a catalog”s Object Reference Table also be objects
within the same collection. Thus the only way to make cross-
collection references is via a cross-collection catalog link. .

To aid in catalog management, all catalogs of a collection
to be available as resource catalogs must be entered ("promoted®)
into a master "Catalog Access List®™ (CAL) associated with the
collection. The catalog”s entry in the CAL defines the
name/version/revision of the catalog.

For a particular name and version, all revisions of the
catalog are limited to the same unit-name prefix set. The latest
revision is the one normally used, although it is possible to
specify an older revision explicitly. When a resource catalog is
to be updated, a private catalog is “"derived” from the old
revision, <corrécted or enhanced as appropriate, and then
*promoted” as the new revision.

Because many of the objects in the PIPF library structure are
implemented using VMM primitives, the collection is a convenient
level at which to assign VMM segment numbers, which must be
unigque across all VMM subdomains simultanecusly addressable
within the same domain (see AIE(1l).VMM(2)).

3.2.4.1.7 Detailed Structure

3.2.4.1.7.1 Catalog Access List (of a Collection)

A Catralog Access List (CAL) provides linkages to all resource
catalogs available in a collection. PFor each catalog which has
been promoted, an entry exists in the CAL containing:

1. the catalog name;

2. 1its list of prefixes;

3. a list of revisions for that name (including revision number
and ObjId);

''''''

......

A e e R i N e R N R A R |

{a

X

x BS-AIE(1l) .PIF (1)

N 4. an indication of whether it is an interface or

’H implementation catalog;

3 S. either the name of the default inplementation catalog (if

et interface) or the name of the related interface catalog (if

! _ implementation).

i 3.2.4.1.7.2 Collection Link List (of a Collection)

_; Also associated with each collection is a Collection Link List

3 (CLL) which is a list of all collections that are available for

B reference from catalogs within this collection. This includes

% the identifications of these collections and a list of the ObjIds

: of the catalogs that make references.

ot Bach collection also has an associated list of rules which

o define how a particular form of a library object is derived from

& other forms of the same object. Bach rule identifies the

3 precursor form, the target form, and the tool which is used to

N transform it (e.g. AST -> FE_DIANA:Compiler_ Sem_Phase). These
rules are referenced by the bring_up_to_date function invoked by

& tools which require the existence of certain forms (e.g. the

& Linker requires one or more object modules).

'3 Bach collection also maintains information regarding the VMM

J segment numbers which have been assigned to it. This includes a
list of free segment ranges.

N

o 3.2.4.1.7.3 Object Reference Table (of a Cataloq)

;} Bach catalog includes an Object Reference Table, which can
w be viewed as an ident/form matrix referencing program library
units (Idents) in various processing stages (Forms).

: FPigure 3-3 is an example of an Object Reference Table viewed
= as a matrix in which the rows are the Idents of the units, and

v the columns are the Forms of the units:

-.e

x

¢

3

X

g NTERMETRICS, NC. + 733 CONCSAC 4L ThoE + SAMEFTIE 123I1:7- 9177101

TILINNC St ollnotEld

A SR WP W YV TIOY Y YL Sy 4,\.*

b e s
2 s,

LI,

%8S,
P

it

)
PF A i

JBP;

LAL

" 'u?a'-t' o

AN

BS=-AIE(1) .PIF(1)

Initial o o o DIARA e o o Executable
I ident 1 obj 11 o o o obj 1i « o o obj 13
D
B ident 2 obj 21
N
T ident 3 obj 31 o o o obj 31
[

Figure 3~3. Object Reference Table

3.2.4.1.7.4 Resource Catalog Reference List (of a Catalog)

Also associated with each catalog is a Resource Catalog
Reference (RCR) list which is used to provide linkages to
resource catalogs. This list also contains "indirect 1links" to
resource interface catalogs. "Indirect links®" are recorded in a

primary catalog to all of the resource (interface) catalogs ¢to
which any directly linked resource catalog itself is linked.

The RCR contains for each catalog
l. collection identification,
2. catalog Obj14,
3. catalog name/version,

4. revision number,

S. indication of whether tied to specific revision, or wish to
track new revisions on "update” (see below),

6. list of prefixes,

7. 1indication of whether implementation or interface,

8. 1indication of whether directly or indirectly 1linked (only
units of directly linked catalogs are available to Ada WITB
clauses).

To provide efficient access, based on the prefix of the unit
name, a secondary index to the RCR is provided (the "prefix

INTERMETRICS. INC. + 723 CONCORD AVENLE + CAMBRICGE. '‘taS3Al-L8E™ 3 22723 - 2+7 137- 7
TELEX NC. 770 332 7€

"~

LIRS A M e ar e Fu e - Srdl Aret U JIe A Iaete Sved SIGEL St S Aelin e hier aiel i il LR et E i S ST W T
Pt N S A A A AT NP Ar P . SRR AT &

BS-AIE(1l) .PIF (1)

index"), keyed off of the prefixes, providing direct access to
the RCR entries for the interface and implementation catalogs
associated with a particular prefix. Pigure 3-4 is a user’s view
of an RCR list with prefix index.

RCR list
Resource Catalog Reference

refi ——p resource
prefix catalog
prefix resource

-3 catalog

Pigure 3-4. RCR List with Prefix Index

3.2.4.1.7.5 RCR Update and Catalog Derivation/Promotion

Periodically, a user may wish to "update"™ the 1links in a
catalog”s RCR. At this time, an entirely new RCR (and prefix
index) is built, attempting to re-link to the latest revision of
each resource catalog (unless specifically tied to an older
revision). If this can be done consistently (i.e. no indirect
links to interface catalogs refer to a different revision than
the new direct link), then the new RCR replaces the old. At this
point, many of the units within the primary catalog may have
become ocut-of-date with respect to the updated resource catalogs.

To make a catalog accessible to other catalogs as a
resource, it must be promoted into thc CAL of its associated
collection, under a particular name/version. At this time it |is
specified to be either an interface or an implementation catalog
and {s assigned a revision number. A new revision of a catalog
is created by deriv!_§ a new catalog from a previously promoted
one, modifying some o ts units and promoting this new catalog.

NTESMETRICS. NC. + 723 CONCCAC AW BNLE \EF':C: MA3ZAl- 3T 0 E

DI R |

BS-AIE(1).PIF(1)

f_ 3.2.4.2 KAPSE Interface

{’ The Program Integration Pacility uses the KAPSE database

- facility in order to represent the objects and their attributes

= in the_ program library and, like any Ada program, the programs

o that make up the PIF require use of the KAPSE for program’
invocation and run-time support (KAPSE.MULTPROG and KAPSE.RTS).
These are the only functions required from the KAPSE.

- In addition, the Linker (PIP.PBUILD.E) is required to

3 conform to the load module format specified by the KAPSE.

-

14

ke

F:

i.

Y; SRR -)] 'v-?rfr&-

AN W -

'\‘:';'o LY

INTERMETRICS. INC. + 733 CCNCORD AVENLE - CAMEBR'CGE. M-33AZ-U

TELEXANC. 770 223 T2t

W
(4]

L]

‘e

o
'
)

Il
[
L)
*
’
D)
.
[
L
a,
.
+
i

~
LA A

% |

“ BS~AIE(l) .PIF (1)

iy
-

3.2.4.3 VMM Interface

* ey
AR

The PIPF stores information in the Program Library in data
& structures defined using Virtual Memory Methodology (AIE.VMM).

ﬁ: This enhances portability (rehosting) of the PIF, and provides
;Q convenient access to these structures.

'!:\

BN The basic VMM addressing elements are:

?i Domain The largest unit of data in VMM, defined by a
P collection of Subdomains for the duration of program
.;1 execution.

)

oy Subdomain Defined before and after program execution by a KAPSE
N database resident external page file. Each subdomain
é% consists of some number of data segments.

‘

o Segment A logistic device to facilitate flexible VMM Locator
- addressing.

o

s

é: Page Bach segment is composed of 32 or fewer pages, of
N 2048 bytes each. Software paging is done at this
-~ level.

& Locator A locator is a pointer into the VMM data structure.
. It consists of a segment number, a page number, and
> page offset.

" Program integration occurs completely within a single VMM domain,
x where each Ada program unit in the library is assigned a segment
Ay number. The number of segments available in a VMM domain is
N limited, making it necessary to reuse segments when the

information contained in them becomes obsolete. Por this reason,
a map of segment numbers currently in use is kept in each

_ "collection” managed by the PIF Library Configuration Management
g CPC -

) v‘;;'t.;.v)“z‘;';'- S

P ’“ ‘.“ni“:".'l i) ":':'09

.‘
]

)

N
]

.
)
X

z
o
4
ﬁ
2
w
2
o
”
6
(9]
0
Z
O
O
p i
0
s
m
(‘:
n

gy T i SEvt Suan dino hge Sinde Sheit Sner Mt Siest Siatiigs Saar Bast Bhase Tk it SRl ST I S AR SN
. . AR Lo e RS S .

y o rad & ¢ ol adb vt euhndl- ddite SV ACIMOANAENECI AT RO HERAE

. BS-AIE (1) .PIF (1)

3.2.4.4 Object Module Format Interface

This section defines the format of the object module
associated with each compilation unit. An object module defines
machine instructions and initial values for data needed to
implement a particular Ada compilation unit, as well as
definitions and references to entities accessible across
igmpilgtion units, whose addresses are typically unknown until

nk-time.

An object module is implemented as a single VMM subdomain,

with each construct within it implemented in terms of VMM virtual
records, called nodes, as described in the following sections.

3.2.4.4.1 Control Sections

The construct of primary concern both to the code generator
and the linker is the “"control section® (CSECT). A CSECT is a
) block of storage units that are to be allocated contiguous space
- in memory by the linker. The code generator defines the size and
» external name of each CSECT, and also defines any or all of the
storage units within. The storage unit is as defined in package
SYSTEM for the target machine. PFor example, on both the 4341 and
8/32 target machines, STORAGE_UNIT:=8 defines the storage unit as
8 bits. The term "SU" will be used in the following sections to

mean:

Type SU is 0..2**STORAGE_UNIT-1; «= defines a byte for

4341, 8/32 ?
g Por SU“SIZE use STORAGE_UNIT; -= length specification
N
N The node defining a CSECT is uniquely identified by the following
N attributes:
y 1. the VMM locator for the associated DIANA construct (will

refer to the spec rather than the body, because only that is
known to its users); and

2. a CSECT "selector" (spec elaboration, body elaboration, body
call, etc.), .to distinguish among the multiple CSECTs
- associated with a single DIANA construct.

These two attributes effectively represent the external “"name® of
the CSECT.

INTERMETRICS. INC. © 733 CONCORD AVENLE - CAMEBRICGE “ASSaC-USE7T 3 11003 - 377 50 7«
TELEX NC. 710 320 "Izl

vondioames - Bl okl

BS-AIE(1l) .PIF(1)

The node defining a CSECT has the following additional
attributes:

1. A Global vs. Local flag =-- this determines whether this
CSECT definition 1is directly accessible outside of this
object module;

2. a list of compile-time SU definition (CSUD) nodes;

3. a list of link-time SU definition (LSUD) nodes;

4. the size of the CSECT (in SUs);

S. the default fill-value for the CSECT (for otherwise
uninitialized SUs);

6. an alignment (in SUsS) -- the linker will place the CSECT at
an address divigsible by this number;

7. a pure vs. impure indicator (pure CSECTs are subject to
memory protection and sharing at 1load time). For pure
CSECTs, an additional attribute indicates whether the CSECT
is data-only, instructions-only, or a combination (affects
memory descriptor set-up on some machine architectures);

8. an optional address specification -- the linker will place
the CSECT at the designated address;

9. an optional group CSECT specification =-- the 1linker will
place this CSECT and all others with the same group CSECT
contiguous in storage after the group CSECT (this allows a
primitive grouping of CSECTs). The length (see LLEN below)
of the group CSECT is considered to be the sum of the
directly-defined size of the group CSECT plus the sum of all
of the lengths of the CSECTs specifying it as their group
CSECT (this is intentionally a recursive definition);

10. an optional overlay root CSBECT specification -- the 1linker
will place this CSECT and all others with the same overlay
root CSECT at the same address, immediately after the root
CSECT, effectively overlaying one another. The length (see
LLEN below) of the root CSECT is considered to be the sum of
the directly-defined size of the root, plus the maximum of
the lengths of the CSECTs specifying it as their overlay

-]l9=
INTESMETRICS. INC. + 733 CONCCRD AVEMUE + ZAMWERDCE. 18233-07-.3T78 71072 -

P

.= A 323
e elaw el w

.........................
.........................
..........

.....
......

B O S S S NI SN

PRV VNP [T IPURIPA DTN VAR AT SIS WAL Ty Wity S Wy Ui T\

7

”
e BS=-AIE(l) .PIF(1l)
.rf -
?f; root CSECT (this is intentionally a recursive definition);
{

3 The PIF does not support the definition of storage units for a
ji single CSECT from more than one object module. 1Instead group and
N overlay root CSECT specifications are used to control cross-
NS object-module CSECT contiguity.

3.2.4.4.2 ENTRY definitions

: An ENTRY definition node is used to define other 1link-time
AN values, usually as an offset with respect to some other CSECT or
Tl ENTRY. ENTRYs are used in a situation where reference to a DIANA
construct may occur from another compilation unit, but the
reference is to an unknown CSECT or unknown offset within a

?& CSECT. The referencing unit does not know the displacement
- within the CSECT, so the EXTERN reference (see below) to an ENTRY
5§ node serves as 2a place holder. BEach ENTRY is associated with
D% some DIANA construct.
An ENTRY definition node is uniquely identified by the
N following attributes:
A,
2% 1. the VMM locator of the associated DIANA construct;
e 2. an ENTRY selector (analogous to a CSECT selector), to
o2 distinguish the ENTRY from other ENTRYs or CSECTs associated
:y' with the same DIANA construct.
iv These two attributes represent the external "name" of the ENTRY.
?ﬁ The following additional attributes are associated with each
o entry:
-J:‘
N 1. Global vs. Local flag -- This determines whether this ENTRY
is accessible outside of this object module; and

5 2. the link-time value of the ENTRY node, defined in general in
T terms of other ENTRYs or CSECTs, as a single “"link-time
) expression node® (LTEN -- see below).
o
3& 3.2.4.4.3 BXTERN Reference node
Qﬁ An EXTERN reference node represents the value of some
sy externally-defined CSECT or ENTRY, It is not required to
‘ distinguish between EXTERNs referring to CSECT addresses and
55
3
2 -20-

INTERMETRICS. INC. + 733 CONCCOPD AVENUE « CAMBRICGE. W228A2~USET"8 22723 - 207 32 . 1.t

A TELEX NC. T1C 323 TE823

S0 3 AN

N T s e M m L e . mme e M AL e e o vm W e e e em o e m e a e Mt e e

... -

et e A T TN e e e A e e e S e Y T e T T T T T T T T T T T T T e -
At e tetaw’ paly ¢ LR LR « E T e TP N S TP I P P L AR ST AU
- S 3 A

N

) BS-AIE(l) .PIF(1l)
-3 EXTERNS referring to ENTRY values.
An BEXTERN reference node consists of the "name® of the

externally-defined CSECT/ENTRY, which include a DIANA VMM
locator, and a CSECT/ENTRY selector. .

3.2.4.4.4 RBxternal Definitions and References

Taken together, the set of CSECT definition nodes, ENTRY
L3 definition nodes, and EXTERN reference nodes represent what is
3 conventionally the "symbol table" of the object module.

A CSECT or ENTRY definition is always associated with some
DIANA construct, whose VMM locator forms part of its "name." The

x rules of Ada guarantee that the CSECT or ENTRY is defined either
v, within the object module associated with the unit in which the
< DIANA construct appeared, or within an object module associated
iy with some secondary unit of the same library unit. It is not
7 necessary to search the entire program library to determine where
i & CSECT/ENTRY will be defined. It is determined fully by the

DIANA VMM locator, the selector, and the set of secondary units
associated with the unit in which the DIANA construct appeared.

'.l.u‘.v-' o

3.2.4.4.5 Storage Unit Definitions

A CSUD (compile-time SU definition) node is used to define
the compile-time values of a contiguous array of storage units
within the CSECT to which it is attached. (This corresponds to
the .TXT record of a 4341 object module.) It has the following
components:

- 2 e
I SRS Ly

l. a displacement (in SUs) within the CSECT; and

iy

2. ;n array of SUs containing the machine instructions and/or
ata.

',,. Iy
«Pula" s’ n

The conpilbt may define the storage units of a CSECT with one or
more CSUD nodes. Some or all of the storage units of a CSECT may
be left undefined, in which case a specifiable fill-value will be
used.

~ IALHLA

An LSUD (link-time SU definition) node is used to define the
link-time values of storage units in the CSECT to which it is
attached. (This corresponds to the .RLD record of a 4341 object
module, which defines relocation data.) The value is specified
with an arbitrary expression containing a limited set of
operators and operands as described below. An LSUD node contains
the following attributes:

XN

F
'

BS-AIE(1) .PIF(1)

1. A displacement (in SUs) within the CSECT where the link time
value should be deposited;

. 2. A size (in SUs) of the link time value (right adjusted in
- the field):;

3. A locator of a link-time expression node (LTEN) defining how
the linker is to compute the value.

% The link-time value is typically 1 to ¢ storage units in size,

) and typically contains an address. Bowever, the linker will also
assign values representing Ada exception identities, stack frame
sizes, and other entities which the compiler cannot reasonably
compute (due to separate compilation).

3.2.4.4.6 Link-Time Expression Nodes (LTENS)

The link-time expression nodes, LOPR, LREP, LLIT, LLEN, are
used to represent the definition or computation of a link-time
value. The value is referenced by an LSUD node or an ENTRY
definition. A value of arbitrary complexity may be represented
by a tree structure with LOPR branch nodes and LREF, LLIT, and
LLEN leaf nodes. A simple value may be represented with a single
leaf node. Thus complex address constants or other link-time
values may be defined by the compiler and computed by the linker.

N 3.2.4.4.6.1 LOPR node
An LOPR node represents an operation. It has the following
components:
5
% 1. a binary operator (plus,minus,times,divide);
4

2. a VMM locator for the left operand LTEN;

3. a VMM locator for the right operand LTEN.

3.2.4.4.6.2 LREP node

An LREPF node represents the value of a link-time symbol,
consisting of a VMM locator to the CSECT, ENTRY, or EXTERN node
within the object module "symbol table.”

-22-
NTEAMETRICS. INC. + 723 CONCCRC AVENLE + CAMSRILGE wa88ACl-L8E7 8 0707

—— .. . - ~n meen
"=LSX NG, T2 320 TEl

B . A

B5-AIE(l) .PIF (1)
3.2.4.4.6.3 LLIT node

An LLIT node represents a literal. It contains the 1literal

value as an implementation-defined integer type as its only
attribute.

3.2.4.4.6.4 LLEN node

An "LEN node represents the "length"” of a CSECT. 1Its value
is, 1in general, the same as the "size" of the CSECT as specified
in the CSECT definition. However for CSECTs referred to as a
group CSECT or as an overlay root CSECT, the length is extended
to include other CSECTs made contiguous with the CSECT.

An LLEN node consists of a VMM locator to a CSECT or EXTERN
node within the object module symbol table. It is a link-time
error if the BXTERN node actually refers to an ENTRY rather than
a CSECT. (i.e. its VMM DIANA pointer, and its selector).

3.2.4.4.6.5 Use of link-time expressions

Traditional 1linkers support only limited operations on
addresses (such as the addition of a signed constant). By
providing for more general link-time expressions, the PIF object
module format allows for the creation at link-time of more
complicated values, such as a byte pointer to the odd byte of a
word, on an otherwise word-addressed machine. The word address
for this hypothetical example is represented by an LREF node; an
LOPR node (times) points to the LREF node and to an LLIT node
(value 2), instructing the linker to double the word address;
another LOPR node (plus) points to the LOPR (times) node and to
an LLIT node (value 1 for the odd byte).

This generality ensures that the linker will be suitable for
handling code generated for various target machine architectures.

3.2.4.4.7 Overall Object Module Organization

The root node for each object module contains a list of all
CSECT definition nodes, a list of all ENTRY definition nodes, and
a list of all EXTERN reference nodes. From the list of LSUDs
associated with each CSECT, the linker can determine all cross-
CSECT references (LREFs and LLENs).

3.2.4.4.8 Run Time Routines

The Ada compiler generates code that calls run time routines
for certain language constructs (allocators, tasking, exception
raising, etc). These routines must be available to the linker,

NTERMETRIC3. NC. - T3 CONCCRC “BNLE » CAMES®IZE M-I3.7-.22770 10 5

....... . . i
EP A R T P o R P O . E e T P L L R R T S S PO PR
< A LRI T % e e v AP O D VT WAERE WAL PO TPU W UL VR WARE I WAl TP WL D W

w AN et N st RA) T s L s T T T TR ————— - o
atar A - B . . .

BS-AIE(1l) .PIF (1)

and there must be a convention for the compiler to use for the
run time routine CSECT references., It is desirable to code as
much of these routines in Ada as possible, yet not allow direct
reference t0 them by Ada source code. (For example, if an
allocator °"NEW ¢t" were translated by the code generator into a
call on a function "alloc_storage(t“size)” defined in the run
time library, the Ada specification must be defined in such a way
as to prevent a programmer from calling "alloc_storage”
directly.)

This problem is resolved by placing the specifications of
the run time library in the private part of a predefined package
specification (for example package SYSTEM). Thus, only the
compiler itself will have visibility to the run time routines.
This solution adds no additional complexity to the linker, since
the reference mechanisms are the same as to user-compiled Ada
programs.

INTERMETRICS, INC. * "33 CONCORD AVENUE * CAMEBR'CGIE. #4238aC-_8273 11°01%

—r = e ams =ma
=X NC. T2 221 TEX2

................

BS-AIE(l) .PIF(])

3.2.4.5 Compiler Interface

The proper context for the current compilation unit is
established by the compiler through calls to the program library
interface packages, which will perform the analysis to determine
if the needed library objects are up-to-date with respect to the
most recent submittals to the program library. If the needed
library objects are not in a consistent state, the program
library manager can optionally invoke the necessary compiler
phases to bring the needed library objects up to date.

hely SATAT L

Ay

As a result of the lexical/syntactic phase of the Pront End
(COMP.PE) of the compiler, the abstract syntax tree (AST) of a
compilation unit |is entered into the progranm library.
Compilation can be suspended at this time, and the compiler can
be called subsequently to complete the compilation from this AST.

A2

-3 The source submitted for compilation may consist of several

compilation units. The LexSyn phase splits a submittal into
individual compilation units.

The Sem phase of COMP.FE performs semantic analysis which
= results in a DIANA tree, which is further attributed by the
7N Middle part (COMP.MID), and entered in the program library. The
< DIANA representation of a unit in the program library may become
outdated if a unit it is built from is re-submitted,

Both COMP.PE and COMP.MID refer to other compilation units
q during the creation of a 1library object, and thereby create
, dependencies which must be recorded in the program library.

The PIF allows multiple instances of the compiler to process
program units in a single program 1library at one time. A
primitive locking mechanism is provided automatically to insure
that concurrent processing can be supported.

For each compilation unit processed, the Back End (COMP.BE)
produces an "object module,” which includes both relocatable
object code, organized as several “"control sections,” and a
symbol table for externally defined or referenced addresses and

values. In general, a single compilation unit may contain a
number of nested Ada program units.

‘. In order to allow for sharing of late-supplied generic body
e templates, units with generic instantiations have an additional
object module created within the program 1library, defining
. entries from the generic instantiation in terms of entries into a
T, specific implementation of the generic body.

: Units with generic templates alsc have an additional set of
. object modules, one for each implementation of the template.

9! -2%=-

. NTERMETRICS. INC. + 733 SONCCAT AVENLE ¢ ZAMER'ICCE wA3ZAl= 32771 10 [T

- BS-AIE(1) .PIP(1)

> The phases of the compiler will be entered as tools in the
‘ rules associated with a collection used for Ada program
libraries, and must conform to the parameter interface associated
with the Rules Interface.

3 2;}‘)‘.’ 2 &

)
a»

-J'l"
2 o0 s

45

s,

o

w iz
N o

- P

PRt o
AR et

INTERMETRICS. INC. + 733 CONCCRD AVENUE - CTAMBRICGE ‘“MASSACAUSE™TS 10°732 TR

TELEX NC. 70 220 "s22

‘ SN R Y Y b

- . P SR e - .
L P R R P L
....... e N e e T e e
- - - . « IR I
2 a e me a* ‘...._.‘ it dsndemaboan i PN

BS-AIE(1l) .PIF(1l)

3.2.4.6 DBUG Interface

DBUG requires the following information:

1. Relocation Map: records the placement of each compiled unit
in the program image;

2. The compiler generated statement table.

The Relocation Map gives the base address of each compiled unit
in the executing program. This map is created by the Linker. DBUG
uses this to determine the new scope when the user gives a SCOPE
ENCLOSING or SCOPE TO command.

A statement number table is created by the compiler, and
stored as a CSECT within the object module. DBUG uses this
table, in conjunction with the Relocation Map produced by the
Linker, when directing the run time system to activate or
deactivate specific breakpoints.

-27-
NTEEMETRICS, NC. + T23 CONCSRC 2.ENwE - TAMSRICEE Wa33:l-.3T771 71073
“ELIN NG TUS 300 tEit

......

— v — P —— Pl ST S- e TV, v
A ot e LA e Rt e I R S et e 2o i e AT A AR A R Al 8 .
IR e e e T e T ’

BS=AIE(1l) .PIF(1)

3.2.4.7 Unit Lister Output Format

The Unit Lister Output Format is the standard interface for
human-readable compiler and cross-reference 1listings. Onit

Lister Output may include source text, symbol table attributes, a
cross reference, and an assembly listing.

3.2.4.7.1 Source Text Listing

E;c?dline of the source text listing includes the following
fields:

1. The counts of the nesting depth. There are two counts, the
nesting depth of the current program unit and the nesting
depth of the current statement.

2. The statement number. Numbering starts from the beginning
of each subprogram, task, generic unit, and package in the

compilation unit. Both statements and declarative items are
numbered.

3. The source program text.

j 4. The current scope. This field contains the current program
. unit name, truncated if necessary.

S. A cross reference for identifiers in the source text. Each
occurrence of an identifier in a line of source text has a
corresponding cross reference entry in this field. If the
identifier is being declared on this 1line, the cross
reference entry is an "=" character. If the identifier was
declared previously within the compilation unit, the cross
reference entry is the listing page number at which it was
declared. If it is declared later in the compilation unit,
the entry is a "?" character. Otherwise, the entry is a
letter which corresponds to a WiTHBed library unit. This
field is continued on succeeding 1lines if necessary. A
legend of the withed 1library unit 1letters and names is
supplied in the listing.

Messages generated from processing errors are formatted within
5 the source lines. If the precise location of the error is known,
A a line containing the single character """ is printed under the
. line producing the error, with the pointer beneath the leading
\ error term. The error message is then printed, with the severity

and the statement number incorporated. A line is also included
3 which indicates the page and statement number of the previous
Y error.

The listing includes a final section which gives an error
summary and a tally of compilation statistics.

INTERMETRICS, INC. « 732 CONCCRD AVENUE + SAMBRIDGE. MASSAC-U3ZT 3 22 12 - 07 #8777
TELSX NC. 710 32C “&2C

WA VWAL WA S S WA S

et e e Wa? a¥VuTaTa®s

%]
~

- BS-AIE(1) .PIF(])

N 3.2.4.7.2 Symbol Table Attributes

-

{ .

% The symbol table attributes listing is an alphabetic list of all
] the identifiers explicitly or implicitly declared in the unit.

ks Bach identifier is listed with the statement number of its
S declaration, the name of its immediate scope, 1its type
-t information and other information specific to the identifier.

If the type is not an identifier, the type information will
be a description such as Type, Task, Punction, Block name, Label
name or Exception. Types declared in other 1library units will
have a flag. Other information may be supplied depending upon
the identifier. The base type is given for subtype and derived
type entries. Mention is made if the jdentfier is a constant or
declared a number, has a representation clause, is a private type
or a generic instance, etc.

.'..a)

MNAFEAAY

3.2.4.7.3 Cross Reference

The cross reference is similar in format to the symbol table.
Its header includes the same fields as the symbol table:
identifier, statement number of the identifier”“s declaration,
immediate scope, type and additional information. If the type or
immediate scope is declared in another compilation unit, the name
is flagged as it was in the symbol table.

T Yesch

Fon - o
1 T VA

Pollowing the header, the cross references are listed. The
name of each program unit which contains references to the
identifier is followed by the statement numbers of the
references, Statement numbers at which the identifier is written
to or appears as an out parameter are flagged with an asterisk.

Sarat A LAY

o
ﬁ 3.2.4.7.4 Assembly Listing
: The assembly listing is similar to the listing produced by the
4341 assembler. It contains relative location and object code
3 fields to the left of basic assembly language mnemonics and
Xy operands. If the source text listing is also generated, the
. assembly and source text listings will be intermixed.
>
»
’
N
)
N -29-
NTESMETRICS, iNC. + 733 CONCCAD AVENLE + SAMSRICAE W2 38-2-038772 12!
N TELINONG Tl 2% sz

s

BS-AIE(1l) .PIF (1)

3.2.5 PFunction Description

The Program Library Interface Packages CPCI consists of the

following components:

1.

2.

Library Object Identification: This CPC provides the means
by which a representation of a compilation unit (eg.
Abstract syntax tree, DIANA tree, or Object Module) is
identified and retrieved from a program library.

Library Object Dependency Manager: This component tracks all
dependencies between objects in the program library.

Library Object Allocation Package: This component is used to
allocate and reclaim VMM segment numbers for library
components.

Library Configuration Management: This component provides

primitives for the creation, manipulation, and deletion of
catalogs and collections.

The Program Builder CPCI consists of the following components:

1.

2.

3.

4.

Builder: Calls the Program Completeness Checker, Body
Generator, the Preamble Generator, and the Linker as
necessary in order to create an executable program.

Preamble Generator: Builds a subprogram body which
interfaces the main subprogam unit to the KAPSE.

Program Completeness Checker: Checks that all bodies
required by specs or stubs accessible from a main program
unit, have been provided. A list of the names of those
bodies that are nmissing is produced as its output. This
list is used to drive Body Generation, as part of the (first
phase of program building.

Body Generator: Creates a null body when a agec or stub
exists but a body does not. This subprogram will be invoked
by the Builder, as well as recursively to generate null
bodies for components of missing package bodies.

INTERMETRICS, INC. + 733 CONCORD AVENUE -+ CAMBRIDGE. MASSACWLSETS 20722 » 277 i27- T
TELEX NC. 799 320 7523

BS-AIE(1l) .PIF (1)

S. Linker: Combines object modules into a single 1locad module,
and evaluates link-time addresses, to within a single
relocation constant for the entire pure and impure parts of
the program.

The third CPCI making up the Program Integration Facility
consists of the following Program Library Tools:

l. Program Library Manager: This program provides access for
the interactive user to the various primitives of the
Program Library Interface Packages. It allows the user to
create, manipulate, display, and delete the various objects
forming a program library.

2. Change Analyzer: This program computes the differences
between different versions of the same program unit, by
walking the two DIANA representations, and creating a VMM
locator mapping set.

3. Recompilation Minimizer (MAP): This program uses the Change
Analyzer and the Dependency Manager to mark DIANA and object

modules as up-to-date, without re-compilation, if
sufficiently minor changes have occurred in units they
depend on.

4. Link Map/X-Ref Lister: Produces a human readable 1link map,
including 1linker error messages (if any) and global cross
reference information.

S. Source Reconstructor: Reconstructs source listings from the
DIANA or AST representation of a program.

6. Unit Lister: Produces source, symbol table, and cross-
reference listings from information in the DIANA for a
compiled unit. This program is invoked from the compiler if
an immediate 1listing is requested, and may also be invoked
later by the user for new or additional 1listings without
requiring re-compilation.

7. Poreign Object Module Importer: Installs object modules from
systems other than the AIE into the program library.

- NTEEMETRICS. 'NC. * T23 SONCCRD 2L 8NLE - Z&WESIDIZ

e ta MW %

- T—— T L e e e e e B b anCHe ihdn Bdin Sine AR Sea s Bt Tt IlC il e AP Ean
DA e et e et et M e LAt SNSRI e I CR R SR L O A SRS R GG g RS

BS-AIE(1).PIF(1)
: 3.3 Detailed Punctional Requirements
3.3.1 Program Library Interface Packages (PLIF)

The PLIF consists of four components: Library Object
: Identification, Library Object Dependency Manager, Library Object
N Allocation Package, and Library Configuration Management, and
- provides all of the primitives for access to the library data
. structures, as a set of Ada packages.
i
‘
:;.
.
2z
4
g
4
.
)
,j -32-
INTERMETRICS, INC. *+ 733 CONCORD AVENUE © CAMBRICGE. WA33-Cl-.82773 12712 R
v _ TELEX NC. T3 327 82
A - -
T AR e T N L e e e e e L'-fli‘.:};‘;-'-;;?-

..........................

BS-AIE(1l) .PIF (1)

3.3.1.1 Library Object Identification

This CPC is provided for users of the program integration
facility: to access, create, save or delete an object in the
catalog. Library object identification allows the user to
specify which object to reference or utilize from his catalog or
linked catalogs. Information about objects is stored either in a

catalog or with the object, depending upon the uses of the
information.

3.3.1.1.1 Objects And The Catalog

The catalog refers to compilation unit objects which can be
distinguished by their identification (name of
subunit/libunit/is_spec) and by their form (AST, DIANA trees,
cee)e An object is referenced by using its ident/form. 1If an
object is from another catalog linked to this catalog (determined
from the prefix index associated in the resource catalog
reference, RCR list), the specification of a collection and
catalog is needed in addition to the ident/form.

Besides containing a table matching ident/forms to their
corresponding objects, the catalog also contains information
needed to identify itself and the catalogs it refers to. The
collection also provides for each object a unique object id,
ObjId, to allow locating and referencing objects, even if no
longer up-to-date, and to determine whether a given object is the
same as the one stored under ident/form. Revisions of an
ident/form in a catalog will have different ObjIds. The object
table in the catalog has one, if it exists, up-to-date ObjId per
ident/form. Every object that is created in the collection has a
distinct Objid and the ObjId is never reused in the collection.
The collection and ObjId uniquely identifies any object under the
program integration facility. The user has no access to the
unique object id.

The catalog®s object table contains the 1list of the most
current ident/forms along with their ObjIds. In addition, each
object in the catalog has a backup form , which is used in
consistency checking. According to the Ada LRM, any
compilation/recompilation that detects errors must have no effect
- on the program library. In an AIE library , whenever a unit is
= successfully compiled through all phases of the compiler and all
. objects it depends on have also been successfully compiled, the
currently successful object is entered both as the current state

gi of that object, but also as the backup of it as well, 1If
) compilation is unsuccessful, then only the current state of the
?’ object is updated and the backup left untouched.

The collection also maintains a state variable for each
object in the collection, to distinguish objects in the process
of being created from those that have completed. Thus if, for

ax

;i example, the compiler front end might ask the library to create a
X -33-

fﬂ NTZAMETRICS, NC. © “I3 SCNCCZARD ALENLE « TAVESTEI 4233-7- 13777 110

- ¢ O =+t 1me =zan
LI NG T 220 TIC

PN W P PR L. AA__._‘;_J

g M M M e e~ A e e A N atia -, &, i e s Jkase Davd it S St JhaiC il Bt S et dr i e i Ar S G
. e AR ARSI S A i A A AN LA M) . “

.....................

BS-AIB(1l) .PIF(1)

DIANA object by copying the AST and then allowing the compiler to
work on the copy. While the compiler is working on the AST copy.
it will be marked in the collection a8 "in process®™, and only

when it is complete will it be fully accepted into the
collection.

Consistency checking uses the backup state information on an
object, thus restricting it to successful compilations in
conformance with Ada rules. All other references to an object in
a catalog use the current state information. This enables the
lister to find the most recent listing information.

3.3.1.1.2 Object Information

An object is accessed via a handle which is returned by the
routine to open an object. A handle is more than just the ObjId,
because the ObjId may be contained in more than one catalog. This
would be true, for example, if a catalog was copied from another
catalog. The specific content of a handle is implementation
dependant and not described here. Whenever the term object is
used in conjunction with a routine either as an input parameter

or as an output result, what is actually being referred to is
this handle.

An object has a variety of information associated with it.
It has three precursor lists, one for its direct precursors, one
for VMM references and one for deciding whether the object is
up-to-date. It also has user parameter information (such as
whether optimized code is to be produced), and the MM
information about segment numbers. Figure 3-5 is a schematic
view of a library object.

3.3.1.1.3 Library Object Identification PFunctions

The main functions involved in the library object
identifications are addition into, accessing of and upkeep of a
library object.

3.3.1.1.3.1 Object Addition

An object may be added into a catalog either by submitting
its initial form, creating an "empty” object to be filled in, or
copying an object already in the catalog. The object is added
using the tool specified in its collection’s rules.

3.3.1.1.3.1.1 Inputs

In order to add an object into a catalog, the catalog and
the target 1ident/form in the catalog must be specified. Por
objects that are copied into a catalog, the object to be copied
from must also be specified. If the object is "submitted® into

INTERMETRICS, INC. + 733 CONCORD AVENUE ¢+ JAEST2E wAS3AC-.88773 22727 - 7 7 isr- L.

\

WU T YW AP BF Tl YT S SV Sy

-.‘.

;’_/"0"1’ ;

AP)

BS-AIE(1l) .PIF (1)

n "
NORE RS
Vet et

e
RPN
LA

r
o~
b

:3 VMM Reference List

‘; ident/form-s-col, Objld.
£..2 object °
2 content °

®

- Ofrect Precursor List Initial Form Precursor List
-~ Tdent/form—ecol, ObjId, Tdent/formacol, 0bj 1d
v extra info

o .

.:_'v [) ®
T s

.
‘."'
N 32183447-1
152
ad

B
. Pigure 3-5, Library Object
A%
j? the catalog, the form becomes the initial form, a form that does
55 . not depend on any other ident/form in the catalog.
e . 3.3.1.1.3.1.2 Processing

0

YRR YR DOGea:

Any ident/form that is added into the catalog must conform
to the rules of the catalog”s collection., When an initial form
is submitted into a catalog, the tool used to add the object must
conform to the tool specified in the collection®s rules for
initial forms. If conformance is established, then the

-35-
INTESMETRICS. NC. © "23 CONCCRD 4VENLE » TAWESTZE w-33.1-.727% 1 0
TELEO NG, T 2T TELL

Wl

...............
.......................
......

-

INTERMETRICS, INC. + 733 CCNCCRD AVENLUE + ZAMBFICGE. MAZSAC~.327 8 G

BS-AIE(1l) .PIF(1)

ident/form’s ObjId is added to the object table of the catalog.

Normally, when an ObjI4 is created in a catalog, its
precursor lists are initialized to null. Bowever, when an object
is copied into a catalog, its initial form 1list, used to help
decide whether the object is up~-to-date, is also copied from
original object’s initial form list. Other information relating
to the new object is filled in if known depending on whether the
object was created by submittal, copied or just simply created.

3.3.1.1.3.1.3 Outputs

A new object is created with its new ObjId after the
creation of the new ident/form. The new Objld is added into the
catalog’s object table. Initial and default information about the
object is attached to the object depending on how it was added.

3.3.1.1.3.2 Accessing Objects

Objects can be accessed in the catalog by opening the
object, which returns an object handle (a way to refer to the
object). If an ident/form exists in the catalog, but the
corresponding object does not, the ident/form can be explicitly
brought up-to—-date. When an object is opened, all the
information associated with the object is made accessible.

If an ident/form does not exist directly in the catalog,
there are ¢two ways to access an object in other catalogs. One
way is by using the direct link in the RCR of the mnain catalog
and the other is by using the indirect links to resource catalogs
referenced by other direct resource catalogs.

Objects once opened can be closed.
3.3.1.1.3.2.1 Inputs

TO open an object, the catalog and its ident/forma are
needed. To close an object, the object handle is provided. 1If
the ident references a resource catalog, how the ident is to be
reached, directly or indirectly, must also be specified.

3.3.1.1.3.2.2 Processing

Por an object to be opened, its object handle must be found.
If the compilation unit name of an object begins with a prefix
reserved to a particular (direct or indirect) resource catalog,
then that catalog referenced in the RCR, resource catalog
reference list, is the one to consult. Otherwise, the current
catalog’s object reference table is the place to start. 1In the
resource catalog, the resource interface catalog is referenced

[}
t
[¢])

TELEXNC. TUo cat Tels

........................

AR Ll vt Sl S0 e b iut Ml Wt Al T ad et it Wl e R KNSR DA AT R

P,
3

BS~AIE(1l) .PIF(1)

first and the resource implementation catalog second. 1If the
resource catalogs are to be reached directly, then if the object
is not found, the object can not be opened. If the resource
catalog is to be opened indirectly, the catalogs referenced by
the resource catalogs are also searched if need be.

a0 g Y
SRy :-0."5:ﬂ'

AT

An object is closed when no more references to that object
are necessary; the object handle to the object is released.

L4

B 3.3.1.1.3.2.3 Outputs

¥

2 If the ident/form is opened, the handle to the object |is

- returned. If the ident/form is not found in the catalogs

- specified, the appropriate message is returned. If the object
does not exist in that catalog, the catalog may be brought up-
to-date; and if the object was brought up-to-date successfully
the object can be opened. The object can be closed after all

" references to it are complete.

= 3.3.1.1.3.3 Deleting And Saving Catalog Objects

@ A routine is provided to delete or save a catalog object.

3 Deleting is desirable if an object becomes inaccessible because

‘ its ObjId is not known to anyone or if an old ObjId is to be

X withdrawn from the user”s view. Deleting is a permanent erasure
of the object. Saving, (because of archiving, saving space, etc.)

5, involves moving the actual object contents somewhere else, thus

% making them recoverable.

3

{ 3.3.1.1.3.3.1 Inputs

" The object must be located, its Ob3jId known before it can be

. removed,

3 3.3.1.1.3.3.2 Processing

N If the ObjId is to be deleted, it is completely removed.

~ ¥When other objects or catalogs reference this object they will

} not find it. +When the object is to be saved, a stub is left such

N that it can be retrieved again.

o

“«

3.3.1.1.3.3.3 OQutputs

If the ObjId is to be deleted, the object referenced by the
ObjId is not accessible to anyone. If the object is saved, it
can retrieved at later date.

PRI

-3?=
IMTERMETRICS, NC. - TI3 CCONCIRC A/EMLE - CAMBRITIE MAS3al-L33272 12002 4T

- mm cman
Seat NQ. 70D 320 T3el

.

-------- 2 2k A G SR guaEr b e aras A gt Yl A S U YAdic SR Al Sk AT AE - S S Mk Jadl Seud i Aad R adiC A g i Al
... .. et

B5-AIE (1) .PIF(1)

3.3.1.2 Library Object Dependency Manager

This CPC is the set of routines necessary to keep the
library in a consistent state, as defined by the Ada LRM.
Precursor lists attached to catalog objects and rules attached to
the catalog”s collection are essential in maintaining the library
in a consistent state. Precursor lists are used to check whether

an object is up-to-date. Rules are used to create/recreate
objects that are needed in order to bring the library up-to-date.

The rules are attached to a collection and govern the
generation of any library object within that collection, assuming
that all its precursors are present. The rules specify how one
form can be transformed into another form and what tool performs
<he transformation. Only the tools 1listed in the rules are

allowed to directly update objects within the catalog. Rules are
of the form:

precursor_form -> target_form : tool.

The rules are general enough to be able to incorporate foreign
language modules, e.g.

pascal_source -> pascal_object_code : pascal_compiler

pascal_object_code ~> ada_object_code :
pascal_object_module_converter.

An initial form object referenced in the catalog is an object
wvhich has no precursors. There is a set of initial form rules

which can be used to submit initial forms to the catalog. These
rules are of the form:

® ® => initial_form : tool

The catalog contains a list of references to objects in the
catalog with their ident/form and a unique object id, the most
recently generated object of the given ident/fornm. An object
referenced in the catalog is generated only if it is requested
and is not up=-to-date.

Associated with each object in the 1library are three
precursor lists: the direct precursor 1list, the initial form
precursor list, and the VMM reference list. Each element of a
precursor list refers to an object. The object can be
referenced either by its collection and Ob3jId at the time it was
added to the list or by its ident/form (if it needs to be added

-38-

IS I PO SINE L WOt W ST Y W SRRy

T 7

INTERMETRICS. INC. * 733 CONCCZRD AVENLE - CAMEBRICGE WA3SAZ-LITT S 2008 - 37 -2 - 0.7

TELEX NC. 7°C 22¢C TEz32

L -7,

.é BS-AIE(1l) .PIF(1l)

to the list again). An initial form object referenced in a
catalog is an object whose precursor lists are null.

. An object’s direct precursor list contains the ident/form
1 elements which were used directly in order to generate the
- object. The entries of the direct precursor 1list contain the
X information:

~ I (ident/form, collection, ObjId , extra_information)

The collection and ObjId locates which object was used when the
T element was added to the list, The ident/form is used to check
for consistency and refers to the object’s ident/form at the
time of insertion into the 1list. The extra_information may
include how the ident/form in the direct precursor list is used
in relation to the new object(e.g. whether it utilizes the
ident/form on the list or whether the new object was transformed
from the ident/form on the list). The direct precursor list is
used for historical purposes.

SOOI,

}

The entries in the initial form precursor list contain all
the initial form objects which this object depends on; i.e. what
was the snapshot of the world it depended upon when this object
was generated. This list is used to check whether the catalog is
consistent in relation to the object requested. The entries in
the initial form precursor list consist of:

-
Atigh p 2L

(ident/form, collection, ObjId).

AL
el LT

The initial form precursor list content is similar to that of .the
direct precursor 1list except that the ident/form is the initial
form itself. The extra_information is not needed. The ident
must be checked so that the initial form in the catalog is the
form specified in the initial form precursor list.

L ECan Gt s

After the VMM reference 1list is built, it contains a
complete list of the ident/forms referenced to VMM via cross file
pointers and is needed by the object for establishing VMM
agd:cssability. The entries in the VMM reference list consist
of:

-
4«'- -‘..-’Ana

§ A

(ident/form, collection, 0bjId).

e la e CuTalatt

The functions provided by the library object dJdependency manager
are precursor list routines and object consistency routines,
which are described below.

'NTERMETRICS, iNC. * 733 CONCCTRC aVvEMLE -

TR L e e

1 It

g

FP L et Ve (o)

IR PN

~ .

''''''''''''''

BS-AIE(1l) .PIF(1)

3.3.1.2.1 Precursor List routines

Routines are provided to get a precursor list, to obtain an

element from a precursor 1list, and to add an element to a
precursor list.

3.3.1.2.1.1 1Input

In order to access the precursor lists of an object, the
catalog object must be opened. The inputs to the precursor list
must specify the object and which precursor 1list is desired
(direct, initial form, or VMM reference). To retrieve a list
element one must specify its ident/form. To add an element to a
precursor 1list, the input must also include the collection and
Objid. If the list is a direct precursor list, how the element
is used will also need to be recorded when the element is added.

3.3.1.2.1.2 Processing

Normally an object is generated in the catalog with its
three precursor 1lists empty. Bowever, if one object was copied
from another object, the new object’s initial form precursor list
and its VMM reference list are copied from the old object, but
the direct precursor list is not. Instead, it contains only the
object it was copied from.

As objects are referenced , they are added to the particular
new object’s precursor list. When a new object is derived from
information in another object, the referenced object’s
ident/form, collection and Ob3JId are added to the direct
precursor list of the new object. Then the initial form
precursor list of the referenced object is merged into the new
object’s initial form precursor 1list. If the initial form
precursor list of the referenced object 1is empty, then the
teferenced object itself is added into the new object”s initial
form precursor list. The VMM reference list of the referenced
obgcet is then merged with the VMM reference list of the new
object.

3.3.1.2.1.3 OQutputs

The precurser 1list routines obtain an element from a
precursor 1list or add new slements onto a precurser list. When
elements are added to the direct precursor 1list, the elements

initial form precursor list may be wmerged onto the current
object’s initial form precursor list.

TELEX NC. T1C 320 7522

...............

INTERMETRICS, INC. *+ 733 CONCCRD AVENUE *© CAMBRICGE. MASSACALEE™TS3 72-2% - 207 13- 1.7

P P A N T A L i T T e VA T Vi T

&

a s &

ot i P

. e
P-¥ >4

'y A N)
L PR

L P

-

& sl

Rttt e

ey e i,

B5=-AIB(l) .PI® (1)
3.3.1.2.2 Library Object Consistency

An object referenced in a catalog is considered up-to-date
1f its initial form precursors are all still listed as current in
their catalogs.

Routines are provided to check whether an object referenced
in a catalog 1is up-to-date and, if not, to try to bring the
object up~to-date.

3.3.1.2.2.1 Inputs

An ident/form from a catalog object reference table is
checked to see if the ObjId associated with it is up-to-date and
if not, optionally bring the ident/form up to date. The catalog
and the ident/form must be specified in order to carry out the
request.

3.3.1.2.2.2 processing

B.P An ident/form in a catalog is up-to-date if its initial form
precursor list“s ObjIds are the same as those in its catalog’s
object reference table. If the prefix to the ident is in the
resource catalog reference list, the ident/form must be the same
as those in the corresponding resource catalog. The resource
catalog reference 1list 1is checked before the catalog reference
table since there are usually fewer resource prefixes than
idents, thus speeding up 1lookup. If an ident/form from a
resource library is out-of-date, i.e., does not match the one in
the resource catalog, a message is issued. Any request to update
the object will be ignored if not issued by the owner of the
resource catalog, since only the owner may bring the objects
referenced in that catalog up-to-date. If any ObjId does not
match the catalog”s, direct or indirect, then the object is not
up~to-date.

In bringing an ident/form from a catalog up~-to-date, the
object is first checked to see if it is up-to-date, and if it is,
nothing else need be done. If the object does not exist or is
not up-to-date, the tools mentioned in the set of rules
associated with the catalog”s collection are used to try to
generate an up=to-date ident/form. The most up-to-date
ident/form is used as a starting point. If there are any errors
in generating new objects following the rules, the catalog is
left and marked as in error. The backup catalog (before any
objects were changed) can be obtained if requested. Otherwise,
the side effect of using the bring up-to-date routine is that the
ident/form in the current catalog becomes up-to-date.

-§l-
'NTSAMETRIC3, ‘MNC. + 733 CONCCRC AVENLE + CAVESIDGE, Ma3347-.237 7 12702 -

-,
~

% BS-AIE(1) .PIF(1)
":. 3-3.1.2.2.3 Outeuts

{{ The object referenced in the catalog is either up~-to-date or
not and the answer is returned.

A bring-up-to-date call will result either in an object
o becoming consistent in the catalog, or in the issuing of an error
message. EPErrors can result from the tools used in the rules to
generate the object or from a version skew. A version skew
happens when a resource is used by two different catalogs through
a two different paths and each path uses a different version of the
i resource.

When an error occurs, the catalog is left as it was and a
backup may be obtained of reflecting the state of the catalog
before object updating was tried. Bringing an object up-to-date
) may have the side effect of changing some of the Obilds

N associated with the ident/forms in the catalog object reference
"” tlble.

DR W
A‘.~

CaA Lt et

4 5%

.
k!
30

.".-; s

L 58N

INTERMETRICS, INC. - 733 CONCORD AVENLE -+ CAMBRIDGE. MASSACALUSET S 072
TELEX NO. 710 320 7822

(A0
3
»
37

o Y OEONMYY YR

BS=-AIE(l) .PIF (1)
3.3.1.3 Library Object Allocation Package

All library objects in a catalog referenced directly or
indirectly, must have non-overlapping VMM segment number ranges.
This CPC provides the routines needed to coordinate segment
number usage. By default, when a catalog is created, it will be
given the lower half of the VMM segment number "address space"
{i.e. ¢ .. 32767). Catalogs to be used for resource catalogs
should instead be created with a VMM segment number range shifted
to some part of the upper half of the segment number address
space. Note that man¥ catalogs may use the same collection, and
hence will automatically have no conflicts over segment numbers
(since they are all assigned out of the same pool).

Associated with the collection is a list of segment numbers
that can be allocated to any object in its collection. The
routines provided in this package handle an object”s use of
segment numbers., They can be divided into those that pertain to
collection segment numbers and those that pertain to object
segment numbers, Allocation of segment numbers proceeds in two
steps. First, a range of segment numbers certain to be sufficient
is reserved for an object. Second, those numbers actually used
are "kept", and cross-indexed with the object, while those
numbers found to be unnecessary are returned to the collection
for reuse,

3.3.1.3.1 Collection Segment Number

The routines which handle obtaining segment numbers from the

collection reserve a set of segment numbers or release a set of
segment numbers,

3.3.1.3.1.1 1Input

To reserve a set of segment numbers, the collection and the
number of segments wanted must be specified. To release unused
or no-longer-used segment numbers, the collection and 1list of
segment numbers to be returned must be specified.

3.3.1.3.1.2 Processing

The collection keeps a list of segment numbers which are not
used, called the free list. As segments are requested, the
segment numbers are removed from the free 1list, When segments
are released, the segment numbers are added back onto the free
list.

-43-

INTEAMETRICS. NC. + TAZ CONCCRD ALSNLE + CSAMBSCGEE VAS3al- 323773 12702 -

= T NG TR a2 T2l
Sea N

. v dme vew

L e e g

L . -

BS=-AIE(l) .PIP (1)
3.3.1.3.1.3 Output

A list of segment numbers is returned from ®“reserve®. The
free list is updated.

3.3.1.3.2 Object Segment Number

When a tool actually allocates a segment number to an object
from a pre-reserved segment number list, the segment number is
added to the segment number list of the object. The segment
number list of the object can be retrieved on request. If an
object is deleted, its segment number list will be released.

3.3.1.3.2.1 Input

To allocate a segment number, the segment number and the
object must be specified. To release all the segment numbers of
the object or to ‘access all the segment numbers of the object,
only the object is specified.

3.3.1.3.2.2 Processing -

When a segment number is allocated to an object, the segment
number is added to the segment number list associated with the
object. When the object’s segment number list is to be released,
the entire 1list is released to the collection. When a tool
requests a segment number list, the list is returned.

3.3.1.3.2.3 outegt

The output of obtaining the object’s segment number list is
the segment number 1list. The effect of allocation is that a
segment number is added to an object’s segment number list. The
effect of releasing is that the segment numbers associated with
the object are now in the general collection pool for use by
other objects.

-td-

INTERMETRICS, INC. * 733 CONCORD AVEMLE * CAMBRICGE. MASSACALSE™™S 22728 - &7 %1 - o
TELEX NO. =10 320 "8C2

—m v " o R MCRSUIMILE - A PRt e PENaM L
(i TP A W A adk ad SR a tS Sa S CIC JE RSO SCRE S SC o K I R Rt R LS

BS-AIE(1l) .PIF(1)

3.3.1.4 Library Configuation Management

This CPC defines primitives to allow tools to create and

maintain program libraries that may or may not utilize components
residing in other libraries.

The main functions of this CPC are the creation and deletion

of collections, the creation and deletion of catalogs, promoting
a resource catalog and creating a link to a resource catalog.

3.3.1.4.1 Collection Creation and Deletion

3.3.1.4.1.1 Inputs

The creation or deletion of a collection requires a
collection identification. An initial range of VMM segment
numbers to be associated with the collection are also required
for creation.

3.3.1.4.1.2 Processging

When a collection is created, the CLL and the CAL are
initialized to null, The initial range of VMM segment numbers is

associated with the collection. After deletion a collection is
inaccessible.

3.3.1.4.1.3 Output
The data structures associated with a collection are created

(deleted).

3.3.1.4.2 Catalog Creation and Deletion

3.3.1.4.2.1 1Inputs

For the creation or deletion of a catalog requires the catalogs
ObjId and the identification of the collection it resides in. For

creation by copy, the ObjId of the original catalog is also
required.

3.3.1.4.2.2 Processing
The object table, the RCR and the prefix index of the

catalog are created. For a c¢reation by copy these data
structures are copied exactly; otherwise they are set to null.

NTZAMETAICS, INC. + TS COMCCRD 2,8NUE + ZAWEBRTGRE. wal&-2-.327°C 12 1% -
- . men -
- o

...

L B .y ‘ N - oL W
. et Y e - - U I S G ‘et ety tet. " A R T S S I SR - - ¢ -
PLRE SR <P SORPCIRE T T w Wl wF SPUE SPOL WP WA WUl WA Y PP P wilP AP v ST WP W I WA T WP A SR Wl ST Y R, ® e B ®

A P e A S Lraai - e St i SSan vl rdE-edh i eeli-tu it S e St M dia Bt Sttt et S dC I RS e S SR S B MO A Tt e e i S e Nt e S A A S P P

3 BS-AIE (1) .PIF(1)
3.3.1.4.2.3 Output

(. The data structures associated with the catalog are created.

3.3.1.4.3 Promoting a Resource Catalog

Catalogs may be made accessible to other catalogs as
resources by promoting them to the Catalog Access List in their
collection.
3.3.1.4.3.1 Inputs

b In order to promote a catalog, the identification of the

- collection and the catalog name must be specified. Also, the
e catalog must be identified as either an interface of an
*32 implementation catalog. In the case of an implementation

catalog, its related interface catalog must also be identified.

M,
i."-"

oy 3.3.1.4.3.2 Processing

e When a catalog 1is promoted, an entry is made to its
-0 collection®s CAL. For a catalog with no previous revisions, an
X entry is made in the CAL which includes the name of the catalog,
- its set of oprefixes, the catalog”s ObjId, an indication of
whether it is an implementation of a resource catalog, and an
indication of its related interface/implementation catalog (if

- one exists). 1If previous revisions of the catalog exist, the
- newly promoted revision is assigned a new revision number. If
R the new revision contains prefixes not contained within other

revisions, the prefix list is updated.

3.3.1.4.3.3 Output

o 4

An update is made into the CAL of the catalog”’s collection

;f contain the information specified above.

~ 3.3.1.4.4 Linking to a Resource Catalog

'::j 3.3.1.‘.‘.1 IﬂE!t'

‘A
'ﬁj In order to create a link from a primary catalog to a resource
o catalog, the following information must be specified: the primary
3 catalog”s name and collection, the resource catalog”s name and
s s collection and the revision of the resource catalog (this
T defaults to the most recent).
- 3.3.1.4.4.2 Processing

éﬁ Once it has been established that a 1link exists between the
; present collection and the target collection and that the target
.::n'

- \1

Y

oY ~-46-

INTERMETRICS. 'NC. + 733 CCNCCRD AVENUE + CTAMBRICGE M28842-0SETT8 22028 - 17 L

TELEX NC. T2 32 T8Il

o wew - -
-

-

PO SR DU SN DGR ST Y W G U ST RPN et s e v e B B e, s B, I

BS-AIE (1) .PIF (1)

catalog exists in the target collection”s CAL, the oprefix index
of the target catalog will be checked against the present
catalog”s prefix index to determine if there are any overlapving

. prefixes. If there are, an error message will be generated.
7 Otherwise, the target collection identification and catalog name,
g the

revision number of the catalog and its ObjId will be entered
into the present catalog”s RCR. The entries of the target

catalog®s RCR will be entered into the present RCR and will be
flagged as indirect resource links.

_-" | 3-301.4.4.3 outeg_t_-s-

The primary catalog®s RCR will be wupdated as described
above,

. TAn mALAsEs
- W e e T

e CE- AT AR WS P P

i -y i | <’ (2l - 0 - P g T ™ . . . T T W
A A it R s i et e St SnCiaC i By Sk IS UMM SR o S ek A TR OISR A LI TPt SR A SR SR SRR SRR
«*

r
E BS-AIE (1) .PIF(1)

N 3.3.2 Program Builder
f
N The primary program integration tool is called the Program
~ Builder. It is invoked by a user in order to create an
2y executable program. The Program Builder consists of five
i components, described in detail below.
o

_ 3.3.2.1 Builder

.

T The term "building"™ refers to the processing performed by
- the Builder on a program library to produce an executable
. program.

o
. ° The Builder operates in two phases. The first phase,
oy Program Completion, guarantees that the program is complete and
., consistent before the second phase, the Linker, binds symbols to
N their load-time values. The first phase may invoke the Body
¥ Generator, to create null bodies for specifications in the

program library which have yet to be implemented. It may invoke
the Preamble Generator, if the main program requires parameters.
Finally, it may cause the invocations of phases of the compiler
as a side effect of requests that object modules be brought up-
to-date (see the Library Object Dependency Manager CPC).

i

Y
re."a"a¥ 0 Kru,

The second "Linker" phase performs the traditional 1linking
function. It binds all undefined symbols and produces an output
load module in the format required by the KAPSE loader.

3.3.2.1.1 Inputs

e Y%Al

Inputs to the Builder are the name of a primary catalog and
the MAIN ident, which is the name of a "main program® unit, as
vell as other parameters which are simply passed on to the
Linker. The ident must refer to a library unit. If the main

unit was a subprogram with parameters, a preamble will be built
to process them.

o e

;; 3.3.2.1.2 Processing

The Builder first calls the Program Completeness Checker.
Por each body found to be missing, the Body Generator is invoked
to produce the source for the body, and then a request is made to
bring the new body”s object module up-to-date, thereby causing
the compiler phases to be invoked.)

-

If necessary, the Preamble Generator is invoked, again
producing source, this time for the preamble subprogram, which is
then compiled as a side effect of a bring-up-to-date request.

ML Aok, S A A A

v 4
,I
W%

-

o
-
£

-48-

..——'_-:._1.:7

BS-AIE(l) .PIF(1)

o Next, an object module with an elaboration CSECT and a map
VR CSECT 1is created (acting much 1like an object module for the
hypothetical body of package STANDARD). The set of library units

L accessible from the main unit must be elaborated in the correct
LN order when the program is executed. The elaboration order is
A computed using the dependency relations of library units, and
N ELABORATE pragma specifications. The order chosen is recorded in
- this elaboration CSECT. This CSECT is defined by a list of LSUD
nodes, referring via EXTERN reference nodes to either CSECTs or

SR ENTRYs defined in the variocous object modules making up the
Ny program. For all but the last entry, the "selector" portion of
- the external name identifies either the spec or body elaboration
: procedure associated with each library unit. The last reference

specifies the "body-call® selector for the parameterless main
unit which will receive control immediately after library unit
: elaboration (either the preamble or a user-written parameterless
- main procedure). The Ada runtime 1library contains a startup
~e routine which uses the elaboration CSECT to sequence the library
unit elaborations. The address of the startup routine is made

%: the initial program counter or "PSW" for the executable program
o load module.

In addition to the elaboration CSECT, the Builder creates a
null statement map "group” CSECT which allows the run time

. system”“s debugging support routines to locate the statement
o tables of each compilation unit, as part of a contiguous CSECT
" group.

N Finally, the Linker is invoked, to combine the object
o modules and resolve link-time addresses, and produce the
. executable program load module.

3.3.2.1.3 Qutputs

- The primary output of the Builder is an executable Ada program.
. The builder may also have the following side effects:

1. Unit recompilation, if necessary, as a side effect of a
bring-up-to-date request.

2. Preamble Generation, which involves the automatic
construction of a main program unit when the main unit is a
function or a procedure with parameters. The Preamble
Generator is invoked to analyze the DIANA of the main
subprogram and generate source code for the preamble. The
preamble is compiled, creating a unit which now acts as the
main unit. When the preamble executes, it converts the
string values of parameters from the RAPSE, to the internal
representations used in the parameters of the subprogram,

INTERMETRICS. NC. ¢ "33 CONCCRD .ENLE -+ IAWERTGE waiial- ITTI ol

PPN T Y LI DAY S P

- B5-AIE(1) .PIP(1)

and then invokes the subprogram.

- 3. Body Generation, which involves the creation of null bodies
- for referenced specifications whose corresponding bodies
5 have yet to be defined.

4. Elaboration/Map Object Module Creation, which involves the

creation of an object module with references toc the various

N library unit elaboration routines, the main unit body, and
~ the group CSECT base for statement tables.

3.3.2.1.4 Special Requiremenis

=80~
INTESME™SICS, INC. - 723 CONCORD AVENUE + CAMIRICGE. VASSASWLIE™™S 12 13 - % = :i.
TELE.(NG TCC 222 Tell

BS-AIE(l) .PIF(1)

3.3.2.2 Preamble Generator

This CPC creates source code for a driver routine for the

main subprogram which was written as a function or procedure with
parameters. The Preamble Generator may be invoked by the
Builder, or by the user directly.

3.3.2.2.1 1Inputs

The name of the catalog, and the "Ident"” of the main library
unit subprogram must be specified.

3.3.2.2.2 Processing

Assuming the specified main unit is named P, the new source
for the preamble unit (named DRIVER_P):

1. has a WITH P statement which names the original main unit,
as well as all of the units named in its WITHB statements (so

that subprogram parameter types are visible to the
preamble);

2. declares a local variable for each parameter;

3. calls the KAPSE to get the string value for the actual
PARAMETERS of the program invocation;

4. for each IN or INOUT parameter, uses the KAPSE function
PICK_PARAM to locate either a named parameter-value pair, or
the correct positional argument;

S. if a value is found, it is converted to the internal
representation for the type using the VALUE attribute of

Ada; the value is stored in the corresponding local
variable;

6. if the value is not found, a default value is assigned ¢to
the 1local variable; (the normal default mechanism of the
compiler cannot be used, since it is not known whether the
user will supply a value or not):;

7. the main program P is called, passing the local variables as
arguments;

NTERMETRICS, NC, + 733 TCNCTRD AVBNUE + CSAVEBRTZE ~'233870-03372 120072
PR

BS-AIE (1) .PIF(1)

8. the inverse conversion is performed (using the IMAGE
attribute of Ada) for INOUT or OUT parameters or function
value;

9. the KAPSE is called to record the string values of the

inverse conversions as the RESULTS of the program
invocation.

For each value found in (3) above, if the value is ®"?®* or ":",

! the preamble writes to standard output the type name expected,

‘ along with the enumeration 1literals if the type is an
enumeration, or a range if the type is numeric. This gives a .
default help capability. If any value is specified in this way,

the main program P is not called; instead, a message is written

to standard output requesting re-invocation of the progranm.

The Preamble Generator is invoked by the Program Builder if
the main unit is a function or has parameters. The preamble
generator may also be invoked explicitly, and the text output may
be saved and modified. Thus a standard user interface is ensured

. for all user-written programs, while, in the presence of special
3 requirements, the normal conventions may easily be overridden.
LY

3.3.2.2.3 Outputs

The Preamble Generator writes the source for the preamble to
! standard output, with the unit name formed by prepending
"DRIVER_" to the name of the specified main subprogram.

3.3.2.2.4 Special Requirements

-82-
‘NTERAMETRICS, INC. «+ 733 CCNCCRD AVENLE © CAMBRICGE, w2884

TEBLEA NC. 715 2T Te2l

(9]

- Q2
T <

-
[}
¥
.
»
.
-
[t
.
.
.
-
N
f
.
.
»

.
N
”
'
'
-
”
!
x

{ e

A

Lol

BS-AIE(l) .PIF (1)

3.3.2.3 Pprogram Completeness Checker

\ v
S ol

The Program Completeness Checker identifies all units
reachable from a specified main library unit which lack bodies
within the program library.

oo

3.3.2.3.1 Inputs

The inputs are the primary catalog and the name of the main
library unit.

JROEE |

3.3.2.3.2 Processing

The Program Completeness Checker works in two stages.
Pirst, all units accessible from the main 1library unit are
located. Second, for each of these units, any specs without
bodies are identified and the names given as library unit/subunit
are added to a single output list.

iy

3.3.2.3.3 OQutputs

The output is a list of compilation unit names of missing
§ bodies.

3.3.2.3.4 Special Requirements

At

»,

T

4 o

.

b

bl

Y

¥

t 4

."'

Al

N -8 3=

f

NTEAMETRICS, 'NC. « T33 SONCCORD AVENLE » DAMES ZZE w3322~ 3277 707 .

- =T C mes int -Ean
- e 1 - - - - L

{

AT Ay 1$- .'!"'h..*! v\‘\.,-x ,. . - .-. e Lt et e e e e

DA A . ¢ ot o ettt e T e T T et et et

BS-AIE(1l) .PIF(1)

3.3.2.4 Body Generator

This subprogram creates the source form for a null
A subprogram, package, or task body corresponding to a given
»{ specification, which may be a library unit or a subunit stub.

3.3.2.4.1 1Inputs

Q There are two inputs to this subprogram: a pointer to the
. DIARA representation of a specification which lacks a body, and
B the catalog in which that specification resides.

#

: 3.3.2.4.2 Processing

"

3 Processing the specification depends on the kind of unit
% being generated.

S In the case of a subprogram, the DIANA form of the
~ specification is first converted back to source text. If the
& subprogram is a subunit, the specification is preceded by the
- appropriate SEPARATE statement. A null body (BEGIN NULL; END;)
- is generated in place of the semi-colon at the end of the
1% specification. In the case of a function or a procedure with OUT

parameters, the value computed by the null body is undefined.

In the case of a package, a package body skeleton 1is
o generated, preceded by a SEPARATE statement if it is a subunit.
’ The DIANA for the package specificatior is scanned for subprogram
s and package specifications. For each subprogram specification
b 2 found, a subprogram body is generated as above. Por each
3+ package, the routine that is handling the package is recursively
invoked. Pollowing the declarations of nested subprogram and
package bodies, a null body for the outer package is generated.

q
Q In the case of a task body, the null body is generated,
fi without accept statements.

3.3.2.4.3 Outputs

Source for the generated body is written to standard output.

3.3.2.4.4 Special Requirements

Rt
()

S}

-
——

ot

;)

o =S54~

)

M INTERMETRICS, NC. *+ 733 CONCCRD AVENUE *+ CAMEBRD3IE “\a883aAC~U38T73 227t - 3 78 o
" TELEXX NG. 7120 222 7822 —

‘l

2 20 T Gan S W 2 A hew e B2 At)i S it N it e A

AN BS-AIB(l) .PIF (1)
3.3.2.5 VLinker

3.3.2.5.1 Inputs

The input program library is identified to the Linker
through the LIB parameter. This library (specified by the name
of its primary catalog) contains one or more compilation units
which are to be included in the executable result.

VNN

)
CRTRRR WA,

The object module which contains the elaboration CSECT is
specified with the ELAB parameter. The external name where
execution is to begin is specified by the START parameter.

.
R Y

The name of the "main subprogram®™ identified in the call to
the Builder 1is specified with the MAIN parameter. The optional
CALL parameter is used to specify the filename where the
executable program load module should be created. If not
specified, the load module is created within the primary catalog,
as the "executable" Form under the Ident for the body of the MAIN

subprogran.

The OPTIM parameter may be either SPACE or TIME, and
determines whether unreference CSECT elimination is performed
(only performed if OPTIMs>SPACE).

MRy | PPN

P

i)
at

-

3.3.2.5.2 Processing
Linker processing occurs in the following stages:

Svinl W 1y

1. optional unreferenced CSECT elimination;

2. CSECT placement;

§ L OREONRL 5

3. memory image creation.

1. Optional Unreferenced CSECT BElimination. The use of
packages and generics in Ada 1is likely to result in
unreferenced subprograms, as are certain large vyet rarely
referenced attributes (in particular, the "image" table for
enumeration types). Since the compiler generates a CSECT
for each subprogram body, and other separable constructs

- such as an "image"™ table, an unreferenced subprogram or

Y attribute results in an unreferenced CSECT. This processing

.ﬁ stage identifies which CSECTs are not referenced by any LREF

nodes and excludes them from placement in memory. This

2alatatl s

ey

‘.
* INTEAMETRICS, NC. + 733 CONCCAC AVENLE + SAMISICGE W23347-.33771 70l 0 4
v - -~ -

B5-AIE(1l) .PIF(1)

requires a pass over the LREF nodes prior to CSECT
Placement, and is only executed if the caller has specified
OPTIM=>SPACE as a parameter to the Linker (Builder).

2. CSECT Placement. This processing stage assigns relative
locations to all of the CSECTs not excluded by the previous
stage. Pure and impure CSECTs are grouped in two separate
segnents. BEach CSECT in turn is placed following the
previous CSECT in the appropriate segment, with the
alignment as specified in the CSECT node.

3. Memory Image Creation. This processing stage allocates pure
and impure memory image arrays (VMM variable length arrays)
and defines the contents using the CSUD nodes of each CSECT.
A storage unit "fill" value is defined for storage units not
specified in CSUD nodes or skipped because of CSECT
alignment. After all the CSUD nodes for a CSECT have been
processed, the LSUD nodes are used to assign the 1link time
values.

As a result of CSECT placement, all components of link-time
expression nodes have associated values. Each LSUD node causes a
link-time computation to be performed and a value stored into the

pgse or impure memory image at the location defined in the LSUD
node.

3.3.2.5.3 Outputs

There are two outputs from the Linker: an executable program
locad wmodule, and a relocation map. A human-:eadable output is
available by using the "Link Map/X-Ref Lister" (a CPC of
PLTOOLS) .

The load module is an attributed database object, including
the following information:

1. The pure and impure memory images, with a start address.

2. The relocation map as an attribute, recording the placement
of each global CSECT in the program.

3. A window attribute providing access back to the primary
catalog of the prograam library which provides the debugger

or any other program analyzer with access to the 1library
units which generated the program.

The relocation map is a VMM file containing a mapping set from
external symbol name (i.e. VMM locator plus selector), to the
value determined by the Linker, and the 1length if the symbol
refers to a CSECT.

-86-
NTERAMETRICS, INC. + 733 CONCORE AVENLE - CAMBRIDGE, “MASSAC-LIZTZ 2728 » 207 -3 - 7.7

TELZX NC. 710 322 "EZ3

TSP TN AP . P I .

f"“u RO TR N A AL Dy R an T4l WAL ACIMSAAEE A AR SR At S PRt M Mg gl B A M Al A Mugh S g A/ A
A

o

4 -
L

BS-AIE(1l) .PIF(1)

AN L

3.3.2.5.4 Special Requirements

"
.as &

ALY

R F8)LaT o

4Pt}

RO R RY

) P

4

TRt g

Pl S PRt 50, &

SR

T AN T H Y e T |

e g

INTERMETRICS, 'NC. © 733 CONCCAC AVENLE - CAMGRIDGE waiges- 3371 52 .3 - 2 -

TTLEX NG T

N BS~AIE(1) .PIF (1)

R 3.3.3 Program Library Tools

= The Program Library Tools are a set of Ada programs vwhich can
T manipulate, display, or extract information from the program
a library, plus tools to aid in the minimization of re-compilation
o 3.3.3.1 Program Library Manager

S

¥

Y

Program Library Manager: This program provides access for the
interactive user to the various primitives of the Program Library
Interface Packages. It allows the user to create, manipulate,
display, and delete the variocus objects forming a program

&
b o library.
X1
&
Lo 3.3.3.1.1 Inputs and outputs
o~ The inputs include a specification of the catalog or
fﬁ collection, plus an optional specification of the library unit of
N% interest (as Ident/Porm). The input must specify the operation,
oy either create, copy, link, delete, or display.
. In the case of display, the input must select the various
- attributes of the specified collection (CLL or CAL), catalog
-, (Object Reference ™able or RCR), or unit (Precursor lists, Size,
;; Date created, whether Up-to-date, etc.) for display.
N : '
0ty
L 3.3.3.1.2 Processing
:3 The processing for this CPC consists entirely of invoking
e the primitives available within the Program Library Interface
| Packages (PIP.PLIF), and then if appropriate, formatting the
=3 output for display.

3.3.3.1.3 Outputs
‘?& For all but the display operations, the outputs are simply
g an update collection/catalog/unit.

¥ Por display operations, no changes are made to the program
> library components, but rather the information regquested is
. displayed on the standard output.

3.3.3.1.4 Special Requirements

u

e

i

&

b

% -58-

1%, .)
v- INTERMETRICS, INC. * 733 CONCCTRD AVENUE *+ CAMBRICGE. dASSATALUSETTS 22722 ¢+ 377 =8°- 1

TELEX NO. 7*C 222 TEZZ

o
1 \a
B

LVRE NG WU Wi WA P W

W AT E T

.I“l °

3

&8 md mbua vl

e s e

Ty

YRS

N

.....................

85-AIE(1l) .PIF(]l)
3.3.3.2 Change Analyzer

This program takes two revisions of a unit (U and U°) and
compares the DIANA trees,

3.3.3.2.1 1Inputs

Two DIANA trees, U and U”,

3.3.3.2.2 Processing

The DIANA tree of U is walked in a recursive algorithm which
visits each construct. Two techniques for comparision are used.

1. If the DIANA construct in U is the defining occurrence of an

identifier, the same identifier is looked up by name in the
corresponding scope of U”.

2. Otherwise, a structural tree comparison is performed,
stopping at the first unequal comparision.

The output of the comparison is a VMM subdomain that contains a
mapping set. EBach element of the set is a comparision node, with
its membership testing criterion being the VMM 1locator of the
node in U. The comparison node contains the VMM locator of the
corresponding node in U°, If the comparison node represents the
defining occurrence of an identifier, the comparison node records
the result of the comparison (equal, not equal, not found).
Nodes compared as a result of structural tree comparison are in
the set only if they compared equal. Nodes are considered equal
if all semantic and storage allocation "attributes™ are equal.

After the mapping set is built, an inverse set is constructed
with the membership criterion being the VMM locator of the node
in U°. Then a structural walk of the DIANA tree of U° |is
performed, checking that each node representing a defining
occurrence of an identifier is in the inverse set. If not, a new
member of the set is created indicating that the corresponding
node in U is not found. (Thus adding a new identifier in U”° is
properly represented in the inverse set.)

The mapping sets are used by the MAP program to determine which
units need recompilation.

TERMETRICS. NC. + T3 CONCCRD A4V EMUE + TABR 27 Ma33:-7-2272 12 1.

R T T TR T T P R,

~~~~~~~




..............
............................

B5-AIE(l) .PIF(1l)
3.3.3.2.3 Outputs

A VMM subdomain is produced with the forward and reverse mapping
sets, a flag indicating whether all comparisons succeeded, and a
flag indicating whether every pair of VMM locators in U and U°
have identical subdomain offsets. The last flag allows the MAP
program to optimize the mapping by instructing the VMM system to
substitute only the subdomain number part of a VMM locator.

The program optionally produces a human-readable output showing
the differences found by the comparison.

3.3.3.2.4 Special Requirements

VA MRS LSS S

B Y eV ata

Ut Sl

A PSR i 4

> 2 ¥

-60-

INTEPMETRICS. INC. * 733 CCNCORC AVENLE - CAMERIDGE. MASSAZHLSE™2 22722 - & 7 -2 -
TELEXNC. =+ 7 222 7235

P ST aa s e A
ot

...............
...................................
................




o PRI A S i e e i A inc i e et A -p A e i i B A Ay
>

B5-AIE(l) .PIF(1l)

o
B
PR IN

;d3 3.3.3.3 Recompilation Minimizer (MAP)

| The user invokes this program to minimize the impact of the
5 submittal of an updated unit to a catalog. By so doing, the user
o) is asserting that the new unit is nearly identical, or at least
= similar enough so that some or all of the referencing units do
N not need recompilation.

3.3.3.3.1 Inputs

- ' A catalog, and the 1Ident/Form of the new unit recently
- submitted.

b 3.3.3.3.2 Processing
Assuming the backup object for the given Ident/DIANA is "OU,"

i and the new Ident/DIANA is "U’," the Change Analyzer program is

™ invoked to produce the mapping sets between the two units, U and

2 U“°. EBach unit in the library is inspected to see if it refers to

7 unit U. If it does, the global cross reference set in the unit

P is inspected for individual references to identifiers in unit U.

‘ For each identifier used, the mapping set produced by the Change

2 Analyzer program is checked to see if the identifier is identical

s in U°. 1If all identifiers used in U” are found to be identical

) U°, the unit does not need recompilation. Note that if U is a

] package and the referencing unit has a USES statement, U and U”

7 must be identical for all identifiers, not just the referenced
ones.

e If any used identifers are found to be changed or deleted in

~ U°, the unit must be recompiled. If not, the unit®s precursor

. lists are adjusted to refer to the new unit, along with the

oy mapping set.

be 3.3.3.3.3 OQutputs

A

N After all referencing units have been checked, if any have

' created references to the mapping set built by the Change

L Analyzer, it is saved as a VMM locator association set. The VMM
system will then map any references to nodes in U with the

. identical nodes in U~.

v 3.3.3.3.4 Special Regquirements

e

-

z*

k)

PR

<M

paJ

o

3

. :1

B+ -§1l-

INTERMETRICS. NC. + 733 CONCCRC v 3LE - SAMBRICGE, wa33-1~.3872 127 02

-7 ‘JC SeA smA wgnea
—mat - e tmw  wlw




A% 5 2} & N Nl S el
L)

-
w,
Q‘..

L]
%

SRS NI

sy

A4 T NN
”

o LTt

XA

o

——y A L 2tk il el Sne 2 e Sthes it dhast dhaiet Shese Nhae et Aot Rhal i By 1 T v e
ORI A I AR bR AR S AR A AR AR s

BS=-AIE (1) .PIF(1)
3.3.3.4 Link Map/X-Ref Lister

Link Map/X-Ref Lister produces a human readable 1link map,
including 1linker error messages (if any) and global cross
reference information.

3.3.3.4.1 Inputs
The primary inputs are the name of the catalog, and the

Ident/Form of the 1link map. The caller may specify listing
options: '

1. ONITS == All CSECTs for unit specs and bodies.
.2. GLOBALS == All global CSECTS/ENTRYS

3. ALL == All local or global CSECTs/ENTRYS.

4. XREP == Cross reference for symbols listed.

3.3.3.4.2 Processing

The relocation map is scanned for symbols satisfying the
listing options (UNITS is the default). The DIANA in which the
definition occurs, as determined by the VMM reference list of the

map, provides the necessary human-readable representation of the
symbol and its value.

If a cross~reference is desired, the output is stored on a
file, and then sorted by a second phase of processing before
being output.
3.3.3.4.3 Outputs

The listing is produced on the standard output.

3.3.3.4.4 Special Requirements

-62-
INTERMETRICS, "NC. + 733 CONCCRD AVENLE * CAMBRICGE WAISAT=

TELEX NC. 72 28 Tsll

O P




BS-AIE(1l) .PIF (1)

3.3.3.5 Source Reconstructor

This program extracts a text file associated with a
compilation unit from a program library.

3.3.3.5.1 Inputs

The input includes the name of the catalog, and the
ident/form of the compilation unit from which the source is to be
reconstructed. Either an AST form or a DIANA form may be
specified (AST 1is the default), An optional parameter may
specify verbatim reconstruction, or a reformatted reconstruction
with a standardized indenting and commenting convention.

3.3.3.5.2 Processing

The AST or the DIANA, as specified, is walked, following the
abstract structure attributes and the lexical attributes of each
node, producing the expanded output on standard output. When
walking DIANA, it may Dbe necessary to remove certain
canonicalizations.

3.3.3.5.3 OQutputs

The formatted listing is written to standard output.

INTERMETRICS, NC. ¢+ T3S CONCCAC 3L ENMUE + ZANERID3E v233-1-_3377% 12

w— ey am mie e mmaa
=REA NG Tl 32T TR

X R S A R o T N S I W
~'~".‘!ﬁ0 \f..‘. ".' -y v



BS-AIE(1l) .PIF(})

3.3.3.6 Unit Lister

The Unit Lister produces listings of the source text, symbol
table attributes, cross reference and assembly code for the
compiler. The COMPILE request may be specified with LIST option.
Alternatively, because all the information that the lister needs
to generate a listing (except for the assembly 1listing) has
already been permanently saved, the compiler may be run with the
LIST option turned off and at a later time the Unit Lister may be

run separately to produce a 1listing. The user’s request to
produce listing is represented as:

LISTER UNIT=>unit _name LIB=>1ib name [options]
3.3.3.6.1 Inputs

Inputs to the Unit Lister are the library, the name of the unit
to be listed, and a set of options.

3.3.3.6.2 Processing

The compiler invokes the Unit Lister if the LIST option is
specified in the COMPILE request. The Unit Lister gets LIST
values from the string that is saved as OPTIONS attribute of the
compilation unit. When 0Unit Lister is called by a user, values
are taken from the user’s specified option list. The options ¢to
the lister and their values are specified below.

LIST=> {ON, OFP, SOURCE, NOSOURCE, ATTRS, NOATTRS, XREF, NOXREF,
ASSEMBLY, NOASSEMBLY!
SOURCE, NO-values and OFF are default.

ON produces a full listing with all Unit Lister options present.

OFP produces no listing; a listing may be requested at a later time.

SOURCE controls listing of the source text. The source text is
teconstructed from information stored in the lexical attributes
of the DIANA. The DIANA is also referenced to generate the
nesting counts, the statement numbers, the name Of the current
scope and the line cross reference.

ATTRS controls 1listing of symbol table attributes of
identifiers. The symbol table is a permanent DIANA data
structure for each compilation unit and as such is stored in the
library. The symbol table in the 1library is the name table
augmented with the DIANA DEF ID nodes that are the corresponding
definitions for the identifler. The name table defines a mapping
between identifiers and DIAMA DEP_ID nodes contained within the
DIANA tree.

-6d=
INTERMETRICS, INC. © 723 CONCCRD AVENLUE - CAMBRIDGE. WASIACHLEET S T1-0I -+ 77 ei7- L.

TELEX NC. 7°3 320 7823

\ EPRE"IPG. e RN WL N )
'\-.\ AT St B




BS=-AIE(1l).PIF(1)

XREF controls listing of cross~reference for all
1 identifiers. The LIST XREF option causes Statinfo, during the
Middle Phase of the Compiler, to collect cross reference
information and save it in DIaNA. The cross reference
information is then used to locate all of the compilation unit’s
uses of DEF_ID nodes. Many of the symbol table attributes are
also listed in the cross reference.

ASSEMBLY controls 1listing of generated code. Assembly

listing lines are generated during the FINAL phase of the Back
End of Compiler.

3.3.3.6.3 OQutputs

The output of the Unit Lister depends upon the values of the LIST
option. See Section 3.2.4.7 for the description of the Unit
Lister Output Format.

NTESEMETSICS, NC. ¢ TSI CONCIRD AENLE - 247033722 s

i PRI S G R W P S YO -G I 3 "'j




0
- Foddtaiy

14,

A Ayt

ka,

2 T R A

g o o okt el I

A AL AR R

1 = By, W ey

~ 1y Tl - Piaein Wie i) SN S B Rt At RSCIRS Y > L e LT,

BS-AIE(l) .PIP (1)

3.3.3.7 Poreign Object Module Importer

The Poreign Object Module 1Importer converts non-standard
object mocdules formats to the PIF Object Module Format.

Plexibility is provided by the general rule-based 1library
definition to incorporate foreign languages and their
transformation within the context of the PIF.

3.3.3.7.1 Inputs

The inputs required are the name of the catalog, the name of
the foreign object module, the “"form® of the foreign object
module, and the Ident of an Ada spec or stub already in the
:;:aiog whose body is to be implemented using the foreign object

ule.

3.3.3.7.2 Processing

Bach distinct type of foreign object module may require a
separate tool to do the conversion. This tool must appear in the
rules list associated with the catalog’s collection, as a tool
which can transform some foreign object module form into the
standard object module form. The general Poreign Object Module
Importer simply copies the specified foreign object module into
the library under the "fora" name supplied as argument (which it
must be allowed ¢to do in the rules list), and then uses the
general bring-up-to-date function to run the object module
importer specific to the foreign form provided.

3.3.3.7.3 Outputs

The catalog is updated to include the foreign object module,
and its conversion into standard object module form.

INTERMETRICS, iNC. *+ 733 CONCORE AVENUE + CAMBPRICGE. “~38A0=LEET S 22728 » 377 180

=23 NC. T:0 322 ~s22

v whw . wew




ef BIE 230 okt O S AR P A MM A P ot it SR ST ST I IS ik SRR S SN MR SO ) -0 SACIN A
.
.
.
X
L '
AY
o
x«‘,l‘

& | BS-AIE (L) .PIF(1)
4 3.4 Adaptation

A

ja

¥

RET E8 oy A,
"_lxl’_,ﬁ\l"’w(‘ .

B

‘

234588

TR

t

& 'NTERMETRICS, INC, + 733 COMCCTED AYENUE « JAMBRIDIE »233-0-.332

—ymy =y : B4 CAaN amaa
” NC. T2 3

R =

v was waw




ey

“«s

)

ama.m-
vid -

-
)

-68-
, INC. - 733 CONCORC AVENUE + CAMBRIDGE. MASSACRUSE™

DA SR

it

L)

BS=AIE(1l) .PIF (1)

3.5 Ca

[
|
N SR g e ey e

Y LY A Pl WSRO 2 PR f >t & il A A ] i p SETYRew ey - g
DOLTH | ARSI CADLAERY  MREIPNR LIRS SRRSO Y OEOAN0L ) IR TERENNRT . OO




o s b e W I oA aay Wity £ Wil i =il il SRS M AV A AT EAC AR N e et D T A S

" 2

,» : B5-AIE(l) .PIF(1)
4. Quality Assurance
(To be specified)

ir .0 St

-

2

Pl g ol T alad 0.t

©FE g g

&

[ g i

Lyt ss Y A B

; ~§0=
INTZERMETRIC3. NC. © 733 CONCCRD AVENUE + JALBRIC3S, MA33AT~_ 32773 32 3 e

TELS( NG, °2 220 "se

e P 2 W WATN LT W W Y Lt M T L L e e . MR
e . ﬁ: e ;~¢ .r < .r.,_r"a .__.-_',__... '~




-56-
733 CONCCRC AVENLE © CTAMBRICGE. “iASSA
TELIXNC. 710 227 "5z

o o epas g Sl
fra g

I
I

2 9

o .

v

=

3
;
i
i

5




