
"D-fl134 003 COMPUTER PROGRAM DEVELOPMIENT SPECIFICATION FOR ADA i/i
INTEGRATED ENVIRONMENT..U) INTERMETRICS INC CAMBRIDGE
MA 22 MAR 83 IR-681-1 F3068 88 -C 8 91

UNCLASSIFIED F,'G 91'2

EEE 0 0EEEE110iE
smhohhhhEEshh
EhmhhEEEEohmhE
A EhEEEEEmhhmhh

II..l ,1 -"%~. - -.~..

NAIOA
LUEA LFSTNA 0S1-

1.25 1-Q 1 w1
111WII

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

r-~~~ N ~rywrq- i ' r n -- -- .-

o

CONTRACT F30602-80-C-0291

4%.

€ I~~R 661-1. -.-

COMPUTER PROGRAM
DEVELOPMENT SPECIFICATION

FOR a-v

Ada .INTEGRATED ENVIRONMENT:
PRQGRAM INTEGRATION FACILIES

TYPE B5

5-AI ().PIF (1)

22 MARCH 1963D lC" '""DTIC
S ELECTE

OCT 24

B ,,

PREPARED FOR: ROME AIR DEVELOPMENT CENTER
CONTRACTING DIVISION/PKRD
GRIFFISS AFB, N.Y. 13441

PREPARED BY: i NTERMETRICS, INC.4~I 733 CONCORD AVE.
CAMBRIDGE, MA 02138

J" [3W3 STATEMEN , A
83 09 19 055

INTUERMUrICS INCORPORATED M 733 CONCORO AVENUE * CAMBRIDGE. MASSACHUSrrrS 02138 (617)661.1840
TL ,.NO. 710 320- " --

-- . .

BS-AIE (1) .PIF (1)

This document was produced under Contract F30602-80-C-029. for
the Rome Air Development Center. Mr. Donald Mark is the Program
Engineer for the Air Force. Mr. Mike Ryer is the Project Manager
for Intermetrics.

Accession ?or

NTIS GRA&I
DTIC TAB 0
Unannounced
Juztificatio

By
Distribution/
Availability Codes

Aviiand/or

ist Special

'.4,ERt.ETICS, INC. 733 CCNCC.C AvENLE CA.BR''GE. ,SSa.-SE- :: -":. -...-

-L.x NO. 'C. "'2: -

.. ..~ ~ ~~~ ~~~ .. .- . .1 .iili :Ii i ' - i i • •

CONTENTS

1. Scope .

1.1 Identification I

1.2 Functional Summary 2

2. Applicable Documents 3

2.1 Program Definition Documents 3

2.2 Inter-Subsystem Specifications 3

2.3 Military Specifications and Standards 3

2.4 Miscellaneous Documents 3

3. Requirements 5

3.1 Introduction 5

3.1.1 General Description S

3.1.2 Peripheral Equipment Identification 6

3.1.3 Interface Identification 6

3.2 Functional Description 7

3.2.1 Equipment Description 7

3.2.2 Computer I/O Utilization 7

3.2.3 Computer Interface Block Diagram 7

3.2.4 Program Interfaces a

3.2.4.1 Program Library Structure
Interface 8
3.2.4.1.1 Ada Program Library

Representation 8
3.2.4.1.2 Ada Compilation Units --

Ident/Form 8
3.2.4.1.3 Initial Form and

Consistency 9
3.2.4.1.4 Primary and Resource

Catalogs 10

,NTEAMr1C$, INC. 733 CCNCZFl AVENUE • C. ! -. ," :Z - "
,ELZX .40. 7*:

3.2.4.1.4.1 Unit-name
Prefix Set
(of a
Resource
Cataloq'- 10

3.2.4.1.4.2 Interfa. e
and
Implementation
Catalogs 10

3.2.4.1.5 Object Identification
and Catalog
Selection 11

3.2.4.1.6 Collections 12
3.2.4.1.7 Detailed Structure * 12

3.2.4.1.7.1 Catalog
Access List
(of a
Collection) 12

3.2.4.1.7.2 Collection
'ink List
(of a
Collection) 13

3.2.4.1.7.3 Object
Reference
Table (of a
Catalog) 13

3.2.4.1.7.4 Resource
Catalog
Reference
List (of a
Catalog) 14

3.2.4.1.7.5 WR Update
and Catalog
Derivation/Promotion 1

3.2.4.2 KAPSI Interface 16

3.2.4.3 VIM Interface 17

3.2.4.4 Object Nodule Format Interface 18
3.2.4.4.1 Control Sections 18
3.2.4.4.2 NTOT definitions 20
3.2.4.4.3 RITZR Reference

node 20
3.2.4.4.4 Uzternal Definitions and

References 21
3.2.4.4.5 Storage Unit

Definitions 21
3.2.4.4.6 Link-Time Expression

Nodes (LT29s) 22
3.2.4.4.6.1 LOPR

node 22

'METWI, NC. 733 VZNC: AVE1 ZVSF. 'A,.a.: E. :

7!LZX NC. 7'Z US

3.2.4.4.6.2 LREE
node 22

3.2.4.4.6.3 LLIT
node 23

3.2.4.4.6.4 LLEN
node 23

3.2.4.4.6.5 Use of
link-time
expressions 23

3.2.4.4.7 Overall Object Module
Organization 23

3.2.4.4.6 Run Time Routines 23

3.2.4.5 Compiler Interface 25

3.2.4.6 DBUG Interface 27

3.2.4.7 Unit Lister Output Format 28
'" 3.2.4.7.1 Source Text Listing 28

3.2.4.7.2 Symbol Table
Attributes 29

3.2.4.7.3 Cross Reference 29
3.2.4.7.4 Assembly Listing 29

3.2.S Function Description 30

3.3 Detailed Functional Requirements 32

3.3.1 Program Library Interface Packages
(PLIF) 32

3.3.1.1 Library Object Identification 33
3.3.1.1.1 Objects And The

Catalog 33
3.3.1.1.2 Object Information 34
3.3.1.1.3 Library Object

Identification
Functions 34
3.3.1.1.3.1 Object

Addition 34
3.3.1.1.3.2 Accessing

Objects 36
3.3.1.1.3.3 Deleting

And Saving
Catalog
Objects 37

3.3.1.2 Library Object Dependency
Manager 38
3.3.1.2.1 Precursor List

routines 40
3.3.1.2.1.1 Input 40
3.3.1.2.1.2 Processing 40

!N,3M2 ,iC^, ;NC. 733 Cv,0NCZqC A=e Ju5S CA'.ECGE. -a .- ,-S "
/ 7 .' B,=,V ;C. 710 =C -! :3

1 , .- .. ,.. . ,- . ,... . ,.,- .,.,...*.. - -... .

3.3.1.2.1.3 Outputs 40
3.3.1.2.2 Library Object

Consistency 41
3.3.1.2.2.1 Inputs 41
3.3.1.2.2.2 Processing 41
3.3.1.2.2.3 Outputs 42

3.3.1.3 Library Object Allocation
Package 43
3.3.1.3.1 Collection Segment

w'umber 43
3.3.1.3.1.1 Input 43
3.3.1.3.1.2 Processing 43
3.3.1.3.1.3 Output 44

3.3.1.3.2 Object Segment
Number 44
3.3.1.3.2.1 Input 44
3.3.1.3.2.2 Processing 44
3.3.1.3.2.3 Output 44

3.3.1.4 Library Configuation Management 45
3.3.1.4.1 Collection Creation and

Deletion 45
3.3.1.4.1.1 Inputs 45
3.3.1.4.1.2 Processing 45
3.3.1.4.1.3 Output 45

3.3.1.4.2 Catalog Creation and
Deletion 45
3.3.1.4.2.1 Inputs 45
3.3.1.4.2.2 Processing 45
3.3.1.4.2.3 Output 46

3.3.1.4.3 Promoting a Resource
Catalog 46
3.3.1.4.3.1 Inputs 46
3.3.1.4.3.2 Processing 46

- 3.3.1.4.3.3 Output 46
3.3.1.4.4 Linking to a Resource

Catalog 46
3.3.1.4.4.1 Inputs 46
3.3.1.4.4.2 Processing 46
3.3.1.4.4.3 Outputs 47

3.3.2 Program Builder 48

3.3.2.1 Builder 48
3.3.2.1.1 Inputs 48
3.3.2.1.2 Processing 48
3.3.2.1.3 Outputs 49
3.3.2.1.4 Special Requirements 50

3.3.2.2 Preamble Generator 51
3.3.2.2.1 inputs 51
3.3.2.2.2 Processing 51

- iv -
;NTERbT C INC. 7 33 CCNCCEO AVLE • C,. 'BC3E. '., - :- .3 -:" -

t',',., ./ .'.: ., ,, , v .. ,"." / ,\," ."., . ." ." " .'.. ." ."L. .X .".N ,".. ." ." ," , . .3 ', .. -.," .''.S-. .

3.3.2.2.3 Outputs 52
3.3-2-2.4 Special Requirements 52

3.3.2.3 Program Completeness Checker 53
3.3.2.3.1 Inputs 53
3.3.2.3.2 Processing 53
3.3.2.3.3 Outputs 53
3.3.2.3.4 Special Requirements S3

3.3.2.4 Body Generator 54
3.3.2.4.1 Inputs 54
3.3.2.4.2 Processing 54
3.3.2.4.3 Outputs 54
3.3.2.4.4 Special Requirements S4

3.3.2.5 Linker 55
3.3.2.5.1 inputs S5
3.3.2.5.2 Processing 55
3.3.2.5.3 Outputs 56
3.3.2.5.4 Special Requirements 57

3.3.3 Program Library Tools so

3.3.3.1 Program Library Manager so
3.3.3.1.1 Inputs and outputs so
3.3.3.1.2 Processing so
3.3.3.1.3 Outputs S
3.3.3.1.4 Special Requirements so

3.3.3.2 Change Analyzer 5
3.3.3.2.1 Inputs 59
3.3.3.2.2 Processing 59
3.3.3.2.3 Outputs 60
3.3.3.2.4 Special Requirements 60

3.3.3.3 Recompilation Minimizer (MAP) 61
3.3.3.3.1 inputs 61
3.3.3.3.2 Processing 61
3.3.3.3.3 Outputs 61
3.3.3.3.4 Special Requirements 61

3.3.3.4 Link Kap/X-Ref Lister 62
3.3.3.4.1 Inputs 62
3.3.3.4.2 Processing 62
3.3.3.4.3 Outputs 62
3.3.3.4.4 Special Requirements 62

3.3.3.S Source Reconstructor 63
3.3.3.5.1 Inputs 63
3.3.3.5.2 Processing 63
3.3.3.5.3 Outputs 63

3.3.3.6 Unit Lister 64

-NVPUIWC3 INC. 733 "ZCNCCF V- A.LE A~C-.'.~ --

C. .. 3 Z. * *

43.3.3.6.1 Inputs 64
3.3.3.6.2 Processing 64
3.3.3.6.3 Outputs 65

3.3.3.7 Foreign object Module Importer 66
3.3.3.7.1 Inputs 66
3.3.3.7.2 Processing 66
3.3.3.7.3 Outputs 66

3.4 Adaptation 67

3.5 Capacity 68

4. Quality Assurance 69

iv

;NT EPMETWI& INC. 7W CONCCRC AJENUE E~.2 '&--

a. ~ ~ *. *, . . .

FIGURES

3-. Program Integration Facility Interfaces 6

3-2 Overview of Program Library Structure 9

3-3 Object Reference Table 14

3-4 RCR List with Prefix Index 15

3-5 Library Object 34

:N'"MFh1"RCS. NC. 733 C^WNCCRO VfENLESZMP3. ~ 2
-ELX NO. 7!*C 12:^. 7523

...-. %:* * V~*- ; ; ' - : - . . - * . . - - '

BS'-AIB (l) .PIF(l)

1. f

1.Identification

) This document establishes the $rformance, design, test, and
qualification requirements for the *rogram Integration Facilities

for the Ada Integrated Bn ironment. These facilities
"include the Program Library im Packages, the Program

Builder and the Program Library Support Tools. This document
also includes requirements for the design of the Ada program
library, the environment within which program integration occurs.,-.

The CPCI's that comprise the PIP are listed below, along
with their component CPC0s.

cl CPC

Program Library Interface Packages (PLIF)
f. Library Object Identification (A)

Library Object Dependency Manager (B)
Library Object Allocation Package (C)
Library Configuration Management (D)

Program Builder (PSUILD)
Builder (A)
Preamble Generator (B)
Program Completeness Checker (C)
Body Generator (D)
Linker (2)

Program Library Tools (PLTOOLS)
Program Library Manager (A)
Change Analyzer (B)
Recompilation Minimizer (C)
Link Map/X-Ref Lister (D)
Source Reconstructor (2)
Unit Lister (F)
Foreign Object Module Importer (G)

:NT"'-ME t s..:NC. 733 C /- " . iS,. S - . '.' . . -
• - C ,-- -

:"- " "'-:-<-' ".-. . " .-- ''." ./ - " .-":"-: - '--5.:--"''i-. 9."-. .-.- "-"-,- -.- -- '-- - -.- -.--.--.-.--- ,.----- -

ii! B5-ATE Il) .PIF Il)

1.2 Functional Summary

The Program Integration Facilities provide a complete set of
functions used to create and manage Ada program libraries, as
well as functions used by any program which requires access to
information in a program library. These facilities are broken
down into three CPCI's: the Program Library Interface Packages
(PIF.PLIF), the Program Builder (PIF.PBUILD), and the Program
Library Tools (PIF.PLTOOLS).

PLIF defines the physical structure of the program library
and provides a complete set of functions which can be used by any
pcogram which requires access to such a library, including the
compiler, the program builder, and the program library tools.

PBUILD is analogous to the linker in a conventional
programing system: it is invoked by a user in order to create an
executable program. PBUILD operates in two phases. The first
phase, program completeness, guarantees that the program is
complete and consistent before the second phase, the linker,

4assembles an executable program from a collection of compiled
units in the program library and binds relocatable symbols to
their load-time values.

*' PLTOOLS is a collection of programs which provide the
functions users need in order to manage a program library.

-2-

NTERMETRICS, NC. •33C.WNCRC AIENIE CA* - -'_ . V C ----

.-..

B5-AIE (L) .PIF (1)

2. 2 licable Documents

2.1 program Definition Documents
Requirements for Ada Programming Support Environments,

"STONEMANI, Department of Defense, February 1980.

Revised Statement of Work, 15 March 1980.

Reference Manual for the Ada Pr gr ammingLa La, Draft Standard
Document, U.S. Department of Defense, July 1982.

2.2 Inter-Subsystem-Specifications

System Specification for Ada Integrated Environment, AIE(1).

Computer Program Development Specifications for Ada integrated
Environment (Type B5):

Ada Compiler Phases, AIE(l).COMP(1).

MAPSE Command Processor, AIE (1) .KCP (1).

KAPSE/Database, AIE(1).KAPSE(1).

MAPSE Generation and Support, AIE(1).MGS(1).

MAPSE Debugging Facilities, AIE(l).DBUG(1).

MAPSE Text Editor, AIE(i).TXED(1).

Virtual Memory Methodology, AIE (1) .VMM(2).

Technical Report (Interim) IR-684.

2.3 Military Speclfications and Standards

Data Item Description DI-E-30139, USAF, 14 July 1976.

2.4 Miscellaneous Documents

An Incremental Proqramming Environment, Peter S. Feller and Raul

-3-
-N =.cnEnbC3, ,NC. 73:3 C,.NCC , ,,,.,,LnE

-S-= %1C.

BS-AIE(l) .PIF(1)

*: Medina-Mora, Department of Computer Science, Carnegie-Mellon
University, April 1980.

DIANA Reference Manual, G. Goos and Wm. A. Wulf, editors,
Institute Fuer Informatik II Universitaet Karlsruhe and
Carnegie-Mellon University, March 1981.

-S

.4

*5 -4-

INTE0MET"ICS. INC. 733 CC.NC~wPZ A'vEUL4E CANMERDGS. -

T NC. 7 S 75Z-

' BS-AIE (l) .PIF (l)

3. Requirements

3.1 Introduction

This section provides the set of requirements for the AIE
Program Integration Facilities. This includes the performanceand interface specifications to which they must comply.

3.1.1 General Description

Program integration occurs in two phases. During
compilation, it is the process of analyzing a single compilation
unit in the context of a number of compilations which have come
before. During program building, it is the process of assembling
a number of separately compiled program units into a complete
executable program. Program integration occurs within a program
library.

The Program Integration Facility allows the compiler to
perform the first phase of program integration. While processing
a given compilation unit, call it P, the compiler will access the
program library in order to obtain information about the
separately compiled program units used by P. If the compilation
is successful, the compiler will update the library with the new
information which resulted from compiling P. This new
information will include the abstract syntax tree of P, a DIANA
tree, a Ocompiled unit" (including relocatable object code), as
well as some new dependencies between P and program units already
in the library. The program integration facility must provide
functions which allow the program library to be used in this way.

The Program Builder performs the second phase of program
integration, where a complete executable program is constructed
from the separately compiled pieces stored in the program
library. This requires access to compiled program units stored
in the library and the dependency information stored with them.

The Program Library Interface Packages (PIF.PLIF) is
provided to address these requirements.

A minimal set of tools must be provided to users for
creation and management of program libraries. These tools
(PIP.PLTOOLS) provide the mechanism through which users create,
copy, and delete program libraries, as well as a means by which
the contents of a library may be examined or analyzed.

J
'" -5-

" ;NI _R.;--- 'CS. "NC. " 7Z3 CNICZO 'E"' *.':.'G- ." Z", .' -- . .:

..- '

*,

a5-AI (1) .PIF (1)

*'! 3.1.2 Peripheral Squipment identification

Not applicable.

3.1.3 Interface Identification

Wigure 3-1 shows the relationships of the PIT to other parts
of the AZE. Program interfaces are described in detail in
section 3.2.4 below.

-5,

Irne - -- -- -- -- -- ----

PBUILD PLTOOLS
Program Library

, Builder Tools
.5 I ,

I Library Interface -- COMPLER

,DEB

~32183447-3
.

Figure 3-1. Procram Integration Facility Interfaces

'. -6-

d INTU RETRICS, iC. 733 CCNC.D AVENUE z c . '. SS-S .

"- - ,. - %," "lI 2 23

.

B5-AIZ(1) .Pit (L)

3.2 Functional Description

3.2.1 Iquipuent Description

Not applicable.

3.2.2 Computer 1/O Utilization

Not applicable.

3.2.3 Computer Interface Block Diagram

Not applicable.

"-:

"S

*

--7-

.NTEMEMICS. "NC. 733 CZNCPCAI ,NLE."E " " .

=X'C.7,^ C 7-- -1

3S-ALE (1) .PIF (1)

3.2.4 Prq.am Interfaces

3.2.4.1 Program Library Structure Interface

The Program Library Structure is designed to support the
development and maintainance of very large software systems. The
design anticipates the problems inherent in managing a large
system in the face of constant modifications and revisions to its
components as well as tracking the, perhaps many, total system
versions over a long period of time.

3.2.4.1.1 Ada Program Library Representation

Conceptually, an Ada program library is a totally isolated set of
interrelated compilation units. However, to allow more sharing
of units across libraries, without violating the defined
semantics for Ada program libraries, the PIF represents each
program library using a *primary catalog* with links to other
objects which serve as *resource catalogsw to this primary
catalog. Bach Ocatalogm contains an Object Reference Table
providing access by unit name to the database objects used to
represent the compilation units.

Resource catalogs are sets of units which represent the
traditional notion of a "library,* like a math library, or an I/O
library. It is anticipated that the units of a resource catalog
are relatively stable, while the primary catalog is in flux as
new source is compiled.

Figure 3-2 provides an overview of the program library
structure. Each of the structures in the figure will be
discussed in more depth in the following sections.

3.2.4.1.2 Ada Compilation Units - Ident/Form

In general, an Ada compilation unit can be distinguished by
its library unit name, its subunit simple name (if any), and a
spec vs. body indicator. This group of information we call the
"ldentw of the unit.

For example:

Full Unit Hame Spec vs..Body Ident

A.B.C.D Body A.D
P Spec P.IS-SPEC
P Body P
P.Q Body P.0

* NTWEWTICS. MN. 733 CONCORD AVENUE C1106SCZGE . ;-~. -Z

.. X NC N : 12 "52

76AB~).PPL

CLL Ilink

2 Col lectiont Collection

CLCAT in CatAL Accss is

CAL - CatalogAcesLt

UCAT - Reference Catalog
RDR Resource Catalog Reference

Figure 3-2. Overview of Program Library Structure

* A particular unit might also appear in a library in various
* processing stages or 'forms,' such as 'source,* "abstract syntax

tree(AST), *DIANA,* gobject module,* "executable,*
* '*documentation' etc. The combination of the Ident and the Form

is sufficient to uniquely identify a current member of a library.

3.2.4.1.3 Initial Form and ConsistencX

For every unit (specified by some Ident), there is required
to be some form which is independent of all other objects within

-9-

4:o,- .- -

" B~S-AIB (l1 .PIF (1)

the library. For this Ident, this is considered its *initial*
form. In general, this will be the AST for Ada compilation
units.

Library consistency is defined in terms of initial forms.
Every object maintains a complete list of all initial forms from
which it was built (The "initial form precursor list'). If any
of these initial forms have been replaced in the catalog, the
derived form is considered out-of-date.

The advantage of relying on initial forms is that
intermediate forms (such as object modules) may be deleted from
the program library (to conserve space, presumably), without
affecting the sup-tg-date-ness of the final, most useful form
(such as an executable).

3.2.4.1.4 Primary and Resource Catalogs

As mentioned above, rather than referencing all the
compilation units of an Ada program library from a single
directory-like database object, references to the units are
spread among a primary catalog, and a set of relatively stable
resource catalogs.

Because of the heavy inter-dependence of units within an Ada
program library, it is not practical to do version/revision
selection on a unit-by-unit basis. Instead, the PIP library
structure supports versions and revisions of s. Two
versions or revisions of a catalog may refer to many o me se

4 units, with only small differences in the source submitted to the
two. Bowever, the DIANA and Object Modules produced from even
unchanged source will generally be different if some depended-on
unit has been changed. Thus, it makes more sense to treat a
revision on a catalog basis, even if the change has been
restricted to the sources of a mall set of units.

3.2.4.1.4.1 Unit-name Prefix Set (of a Resource Catal~o)

To limit the number of catalogs in which a unit might
appear, each resource catalog defines a small set of unit-name
prefixes, such as 0100g, INPUT_0, *OUTPUT- . All units
associated with the resource catalog are required to have Idents
which conform to the catalog s prefix set, such as
010 XCEPTIONS', OINPUT OPERATIONS.SUB PACKAGE', 'INPUTDEFS',
sOUTPVTFORNATTING .BODY .- etc.

3.2.4.1.4.2 Interface and Implementation Cataloqs

A further distinction is made between "interface" catalogs
containing units needed for compile-time reference (specs and
in-line bodies), and *implementation* catalogs containing units

-10-

INTEMECS. NC. 723 CONCCRD ALE '%. A E AS -. C.- VA
TELEX NC .- Is:,;

,WB.-AIZ1 .PIF.("1

needed only at program build time (non-in-line bodies, and s.ecs
and bodies of *implementation-specific* units). A resource
implementation catalog must specify its interface catalog, and
must restrict its own units to the same unit-name prefix-set as
its interface, to avoid colliding with names used in other
catalogs.

To provide implementation independence at compile time,
resource interface catalogs may only be linked to other resource
interface catalogs (to avoid Oindirect" implementation
dependencies). Resource implementation catalogs may also only be
linked to resource interface catalogs. Only a primary catalog
may be linked to resource implementation catalogs (as well as to
any interface catalogs).

The benefit of these restrictions is that, as long as a
resource interface catalog remains stable, multiple
implementations may exist for it (both over time, and simply as
different co-existent versions), without repeatedly making
obsolete compiled units within user's libraries. Only executable
load modules become dependent on the particular resource
implementation catalog chosen, meaning that only a re-Build
rather than a complete recompilation is needed to track updates
to the resource implementation.

3.2.4.1.5 Object Identification and Cataloq Selection

A primary catalog may only link to resource interface
catalogs with non-overlapping unit-name prefix-sets. Also, for
each resource interface catalog, the primary catalog may link to
one implementation of it.

gence, given the Ident/Porm for a unit, at most two
catalogs, accessible from the primary catalog of a library, could
hold it. If the Ident falls within the prefix set of a
particular resource interface catalog, then either that catalog,
or the implementation of it would have to contain the unit. If
the Ident falls within the prefix set (if present) of the primary
catalog then either that catalog or its interface (if any) would
have to have the unit. Note that if the primary catalog does not
specify a prefix set, it contains (by definition) anything not
contained in the prefix sets of the resource catalogs to which it
is linked.

If both an interface and implementation catalog might
contain a unit, the interface catalog is always searched first.
When a unit is found in a catalog other than the primary catalog,
the unit is considered wread-onlym and may not be replaced or
updated. Any new submission to the compiler, or new forms
produced as a side effect of compiling or linking, must all go
into the primary catalog, and must abide by the unit-naming
restrictions implied by the prefix sets.

-11-

NTi.ME-rIC3. NC. ,_3 CCNC%.C. _ . . . -. E -_ ;

.~~~ ~ Z 7..2

5"-AXE (l) .IF (l,)

3.2.4.1.6 Collections

To provide a convenient unit for resource allocation, access
control, and revision maintenance, the available database storage
may be organized into "collections.0 A collection is simply a
set of database objects, each object uniquely identifed by a
never-reassigned key, called the ObjID, that represents a
particular revision of a particular object within the collection.

Catalogs are themselves represented as objects within a
collection, and a restriction is made that all units referred to
directly by a catalog's Object Reference Table also be objects
within the same collection. Thus the only way to make cross-
collection references is via a cross-collection catalog link.,

To aid in catalog management, all catalogs of a collection
to be available as resource catalogs must be entered (*promoted')
into a master "Cataloq Access List = (CAL) associated with the
collection. The catalog s entry in the CAL defines the
name/version/revision of the catalog.

For a particular name and version, all revisions of the
catalog are limited to the same unit-name prefix set. The latest
revision is the one normally used, although it is possible to
specify an older revision explicitly. When a resource catalog is
to be updated, a private catalog is =derived" from the old
revision, corr6cted or enhanced as appropriate, and then
Opromoted' as the new revision.

Because many of the objects in the PIP library structure are
implemented using VMM primitives, the collection is a convenient
level at which to assign Vio segment numbers, which must be
unique across all VK subdomains simultaneously addressable
within the same domain (see AIZ(1).VNM(2)).

3.2.4.1.7 Detailed Structure

3.2.4.1.7.1 Catalog Access List (of a Collection)

A Catalog Access List (CAL) provides linkages to all resource
catalogs available in a collection. For each catalog which has
been promoted, an entry exists in the CAL containing:

1. the catalog name;

2. its list of prefixesi

3. a list of revisions for that name (including revision number
and Objld)

1

-12-

WNT7E-RC$, :NC. • 733 CONCORDA AVENUE ... IDGE, MAS.-_-. " -

,- - C. ": 2 ,.. = *. *

BS-AIE (l) .PIF (1)

4. an indication of whether it is an interface or
implementation catalog;

S. either the name of the default inplementation catalog (if
interface) or the name of the related interface catalog (if
implementation).

3.2.4.1.7.2 Collection Link List (of a Collection)

Also associated with each collection is a Collection Link List
(CLL) which is a list of all collections that are available for
reference from catalogs within this collection. This includes
the identifications of these collections and a list of the ObjIds
of the catalogs that make references.

Bach collection also has an associated list of rules which
define how a particular form of a library object is derived from
other forms of the same object. Bach rule identifies the
precursor form, the target form, and the tool which is used to
transform it (e.g. AST -> FZDIANA:Compiler_ Sem Phase). These
rules are referenced by the bring up to date function invoked by
tools which require the existence -of- certain forms (e.g. the
Linker requires one or more object modules).

Bach collection also maintains information regarding the VMM
segment numbers which have been assigned to it. This includes a
list of free segment ranges.

3.2.4.1.7.3 Object Reference Table (of a Catalog)

Bach catalog includes an Object Reference Table, which can
be viewed as an ident/form matrix referencing program library
units (Idents) in various processing stages (Forms).

• Figure 3-3 is an example of an Object Reference Table viewed
as a matrix in which the rows are the Idents of the units, and
the columns are the Forms of the units:

,~ ~N.I E R . E T IC S , :P IC . ' 7 3 3 - C N C C ,; , , .C' = * : " T - . : = -

'a-

AA

IC, '.'.'". "'." '/ . " . " " ". " " "" " ' " " "" - " " - " .
i(.. . .. C- " '" " , " , " ": .' - ,,.;, . . i . , ,", & , ,,. ,_ . _ , ;

-. A---~Y 71.--

9S-AIZ (1) .PIF (1)

<--- For s --- >

Initial . . . DIANA . . . Executable

I ident I objil . . . obj li . . . obj lj
D
B ident 2 obj 21
N
T ident 3 obj 31 obj 3i
S

Figure 3-3. Object Reference Table

3.2.4.1.7.4 Resource Cataloq Reference List (of a Cataloq)

Also associated with each catalog is a Resource Catalog
Reference (RCR) list which is used to provide linkages to
resource catalogs. This list also contains windirect links* to
resource interface catalogs. ulndirect links* are recorded in a
primary catalog to all of the resource (interface) catalogs to
which any directly linked resource catalog itself is linked.

The RCR contains for each catalog

1. collection identification,

2. catalog Objld,

3. catalog name/version,

4. revision number,

S. indication of whether tied to specific revision, or wish to
- track new revisions on Oupdatem (see below),
'

,' 6. list of prefixes,

7. indication of whether implementation or interface,

8. indication of whether directly or indirectly linked (only
units of directly linked catalogs are available to Ada WITB
clauses).

To provide efficient access, based on the prefix of the unit
nme, a secondary index to the RCR is provided (the "prefix

-14-

; !NTEME7 . NC. * 733 CONCORD AVENUE • CAMBFICGE. 'ASS.C-1.S -- "" - .
TI,-LEX 4C ?.0 323 7523

". . * - , -* , 4 -. -- ** . - % ..- - -*- ". ".'.-*~ .'.7, 7 .. , -. . . -". i

B5-AIB (l) .PIF (l)

index'), keyed off of the prefixes, providing direct access to
the RCR entries for the interface and implementation catalogs
associated with a particular prefix. Figure 3-4 is a user's view
of an RCR list with prefix index.

RCR list

Resource Catalog Reference

prefix resource
catalog

prefix resource
re--x catalog

q0

Figure 3-4. RCR List with Prefix Index

3.2.4.1.7.5 RCR Update and Catalog Derivation/Promotion

Periodically, a user may wish to "update" the links in a
catalog's RCR. At this time, an entirely new RCR (and prefix
index) is built, attempting to re-link to the latest revision of
each resource catalog (unless specifically tied to an older
revision). If this can be done consistently (i.e. no indirect
links to interface catalogs refer to a different revision than
the new direct link), then the new RCR replaces the old. At this
point, many of the units within the primary catalog may have
become out-of-date with respect to the updated resource catalogs.

To make a catalog accessible to other catalogs as a
resource, it must be promoted into the CAL of its associated
collection, under a particular name/version. At this time it is
specified to be either an interface or an implementation catalog
and is assigned a revision number. A new revision of a catalog
is created by derivinq a new catalog from a previously promoted
one, modifying some-o-ts units and promotinq this new catalog.

-15-

:NWERM IC3. NC. '33 CC-NCCPC . A :.G-' - -- _ -
?" - N< > C 7" C ' C

...

- BIS-AIR (1) .PIF (L)

3.2.4.2 KAPSE Interface

The Program Integration Facility uses the KAPSE database
facility in order to represent the objects and their attributes
in the.program library and, like any Ada program, the programs
that make up the PIP require use of the KAPSE for program
invocation and run-time support (XAPSE.MULTPROG and KAPSE.RTS).
These are the only functions required from the KAPSE.

In addition, the Linker (PIF.PBUILD.E) is required to
conform to the load module format specified by the KAPSE.

-16-

!N7-PMETRICS. :NC. 733 CCNCORD A'.'SNU- CAM 'E'C3E. S4,-A--- " . -

TE'LEX NC. 7" 223 ,"2

: .,', "-. .?.? ., ., . -.N , . " . . . i ,

BS-AIE(l) .PIF(l)

3.2.4.3 VMM Interface

The PIP stores information in the Program Library in data
structures defined using Virtual Memory Methodology (AIE.VMM).
This enhances portability (rehosting) of the PIP, and provides
convenient access to these structures.

The basic 7MM addressing elements are:

Domain The largest unit of data in VMM, defined by a
collection of Subdomains for the duration of program
execution.

Subdomain Defined before and after program execution by a KAPSE
database resident external page file. Each subdomain
consists of some number of data segments.

Segment A logistic device to facilitate flexible VMM Locator
addressing.

Page Each segment is composed of 32 or fewer pages, of
2048 bytes each. Software paging is done at this
level.

Locator A locator is a pointer into the VMM data structure.
It consists of a segment number, a page number, and
page offset.

Program integration occurs completely within a single VMM domain,
where each Ada program unit in the library is assigned a segment
number. The number of segments available in a VMM domain is
limited, making it necessary to reuse segments when the
information contained in them becomes obsolete. For this reason,
a map of segment numbers currently in use is kept in each
Ocollection" managed by the PIF Library Configuration Management, . CPC.

i.c

-17-
.N'!..%M4E7CS. 'NC. 731 CCNC+". C A' ' .'C E. " -- .

- - E C. -2 C

,,' :, ~~~~~~~...,. . . .+.. ...-. ,.............-.......-.......-.............

B5-AIE(l) .PIP(1)

3.2.4.4 Object Module Format Interface

This section defines the format of the object module

associated with each compilation unit. An object module defines
machine instructions and initial values for data needed to
implement a particular Ada compilation unit, as well as
definitions and references to entities accessible across
compilation units, whose addresses are typically unknown until
link-time.

An object module is implemented as a single VMM subdomain,
with each construct within it implemented in terms of VMM virtual
records, called nodes, as described in the following sections.

3.2.4.4.1 Control Sections

The construct of primary concern both to the code generator
and the linker is the 'control section" (CSBCT). A CSECT is a
block of storage units that are to be allocated contiguous space
in memory by the linker. The code generator defines the size and
external name of each CSECT, and also defines any or all of the
storage units within. The storage unit is as defined in package
SYSTEM for the target machine. For example, on both the 4341 and
8/32 target machines, STORAGE UNIT:-8 defines the storage unit as
8 bits. The term OSUO will be used in the following sections to
mean:

Type SU is O..2**STORAGZUNIT-I; -- defines a byte for
4341, 8/32

For SU'SIZE use STORAGEUNITI -- length specification

The node defining a CSECT is uniquely identified by the following
attributes:

1. the Vim locator for the associated DIANA construct (wili
refer to the spec rather than the body, because only that is
known to its users); and

2. a CSBCT Oselector" (spec elaboration, body elaboration, body
call, etc.), to distinguish among the multiple CSECTs
associated with a single DIANA construct.

These two attributes effectively represent the external "name* of
the CSBCT.

INTZ.AMFTRICS. INC. •733 CONCORD A',/ENLE CAMSP.GE v :--3'- " -

7EJ.X NC. 32

BS-AIR(I1 .PIF(1

The node defining a CSECT has the following additional
attributes:

1. A Global vs. Local flag -- this determines whether this
CSECT definition is directly accessible outside of this
object module;

2. a list of compile-time SU definition (CSUD) nodes;

3. a list of link-time SU definition (LSUD) nodes;

4. the size of the CSSCT (in SUs);

S. the default fill-value for the CSECT (for otherwise
uninitialized SUs);

6. an alignment (in SUs) -- the linker will place the CSECT at
an address divisible by this number;

7. a pure vs. impure indicator (pure CSECTs are subject to
memory protection and sharing at load time). For pure
CSBCTs, an additional attribute indicates whether the CSECT
is data-only, instructions-only, or a combination (affects
memory descriptor set-up on some machine architectures);

8. an optional address specification -- the linker will placethe CSSCT at the designated address;

9. an optional group CSZCT specification -- the linker will
place this CSOCT and all others with the same group CSZCT
contiguous in storage after the group CSECT (this allows a
primitive grouping of CSECTs). The length (see LLEN below)
of the group CSECT is considered to be the sum of the
directly-defined size of the group CSECT plus the sum of all
of the lengths of the CSZCTs specifying it as their group
CSZCT (this is intentionally a recursive definition);

10. an optional overlay root CSECT specification -- the linker
will place this CSECT and all others with the same overlay
root CSZCT at the same address, immediately after the root
CSECT, effectively overlaying one another. The length (see
LLEN below) of the root CSBCT is considered to be the sum of
the directly-defined size of the root, plus the maximum of
the lengths of the CSECTs specifying it as their overlay

-19-

N T ..ME..ICS. :NC. 733 CCNCC 'i. :. 3. - ;. . . .
NC Z.Z 3

.5-AE (I) .PIF (1)

root CSECT (this in intentionally a recursive definition);

The PIP does not support the definition of storage units for a
single CSECT from more than one object module. Instead group and
overlay root CSECT specifications are used to control cross-
object-module CSECT contiguity.

3.2.4.4.2 ENTRY definitions

An EN TRY definition node is used to define other link-time
values, usually as an offset with respect to some other CSECT or
ENTRY. ENTs are used in a situation where reference to a DIANA
construe% may occur from another compilation unit, but the
reference is to an unknown CSECT or unknown offset within a
CSBCT. The referencing unit does not know the displacement
within the CSECT, so the EXTERN reference (see below) to an ENTRY
node serves as a place holder. Each ENTRY is associated with
some DIANA construct.

An ENTRY definition node is uniquely identified by the
following attributes:

1. the VIU locator of the associated DIANA construct;

2. an ENTRY selector (analogous to a CSECT selector), to
distinguish the ENTRY from other ENTRYs or CSECTs associated
with the same DIANA construct.

These two attributes represent the external Onamem of the ENTRY.

The following additional attributes are associated with each
entry:

1. Global vs. Local flag -- This determines whether this ENTRY

is accessible outside of this object module; and

2. the link-time value of the ENTRY node, defined in general in
terms of other ENTRs or CSBCTs, as a single *link-time
expression node" (LTEN - see below).

3.2.4.4.3 EXTERN Reference node

An LXTtl reference node represents the value of some
externally-defined CSBCT or ENTRY. It is not required to
distinguish between EXTZRNs referring to CSECT addresses and

-20-
INTERME-ICS. INC. 733 CONCCPD AVENL-• CAMBRIGE. '.$5A:---E-- :-

~ELEX NC. 71C 32^d 7!2

r. ~ ~ ~ ~ ' 7-, -Z7 * . .------

B5-AIE(1) .PIF(l)

EXTERNs referring to ENTRY values.

An EXTERN reference node consists of the "name* of the
externally-defined CSECT/ENTRY, which includes a DIANA VMM
locator, and a CSECT/ENTRY selector.

3.2.4.4.4 External Definitions and References

Taken together, the set of CSECT definition nodes, ENTRY
definition nodes, and EXTERN reference nodes represent what is
conventionally the Osymbol tablew of the object module.

A CSECT or ENTRY definition is always associated with some
DIANA construct, whose VNM locator forms part of its "name.' The
rules of Ada guarantee that the CSECT or ENTRY is defined either
within the object module associated with the unit in which the
DIANA construct appeared, or within an object module associated
with some secondary unit of the same library unit. It is not
necessary to search the entire program library to determine where
a CSZCT/ENTRY will be defined. It is determined fully by the
DIANA VM locator, the selector, and the set of secondary units
associated with the unit in which the DIANA construct appeared.

3.2.4.4.S Storage Unit Definitions

A CSUD (compile-time SU definition) node is used to define
the compile-time values of a contiguous array of storage units
within the CSBCT to which it is attached. (This corresponds to
the .TXT record of a 4341 object module.) It has the following
components:

1. a displacement (in SUs) within the CSECT; and
*1

2. an array of SUs containing the machine instructions and/or
data.

The compiler may define the storage units of a CSECT with one or
more CSUD nodes. Some or all of the storage units of a CSECT may

Sbe left undefined, in which case a specifiable fill-value will be
used.

An LSUD (link-time SU definition) node is used to define the
link-time values of storage units in the CSECT to which it is
attached. (This corresponds to the .RLD record of a 4341 object
module, which defines relocation data.) The value is specified
with an arbitrary expression containing a limited set of
operators and operands as described below. An LSUD node contains
the following attributes:

-21-

N-PAME71C3. NC. 733 C-NCZC * ;

S-.

.- * * . . .* , . * *

-'. *7. - - 2. . . .

3S-AID (I) .P!FP(l)

1. A displacement (in SUs) within the CSBCT where the link time
value should be depositedl

2. A size (in SUs) of the link time value (right adjusted in
the field)i

3. A locator of a link-time expression node (LTBN) defining how
the linker is to compute the value.

The link-time value is typically 1 to 4 storage units in size,
and typically contains an address. However, the linker will also
assign values representing Ada exoeption identities, stack frome
sizes, and other entities which the compiler cannot reasonably
compute (due to separate compilation).

3.2.4.4.6 Link-Time Sxpression Nodes (LTSNs)

The link-time expression nodes, LOPR, LRUE, LLIT, LLEN, are
used to represent the definition or computation of a link-time
value. The value is referenced by an L8UD node or an ENRY
definition. A value of arbitrary complexity may be represented
by a tree structure with LOPR branch nodes and LE?, LLIT, and
LLEN leaf nodes. A simple value may be represented with a single
leaf node. Thus complex address constants or other link-time
values may be defined by the compiler and computed by the linker.

3.2.4.4.6.1 LOPR node

An LOPR node represents an operation. It has the following
Scmoentst

I. a binary operator (plus,minus,tinesdivide)y

2. a VNK locator for the left operand LTENj

3. a VDU locator for the right operand LTBN.

3.2.4.4.6.2 L M node

An LRBE node represents the value of a link-time symbol,
consisting of a VEX locator to the CSECT, ENTRY, or EXTER node
within the object module "symbol table.0

-22-

NT!MER C8. !N. -733 CCNCCJC A'-ENV.E .SS-- -

S -. 29* "L-

BS-AIEM1 .PIF(l)

.. 3.2.4.4.6.3 LLIT node

An LLIT node represents a literal. It contains the literal
value as an implementation-defined integer type as its only
attribute.

3.2.4.4.6.4 LLEN node

An 1LEN node represents the *length* of a CSECT. Its value
is, in general, the same as the "size* of the CSECT as specified
in the CSBCT definition. However for CSECTs referred to as a
group CSECT or as an overlay root CSECT, the length is extended
to include other CSECTs made contiguous with the CSECT.

An LLEN node consists of a VMM locator to a CSECT or EXTERN
node within the object module symbol table. It is a link-time
error if the EXTERN node actually refers to an ENTRY rather than
a CSECT. (i.e. its VMM DIANA pointer, and its selector).

3.2.4.4.6.5 Use of link-time expressions

Traditional linkers support only limited operations on
addresses (such as the addition of a signed constant). By
providing for more general link-time expressions, the PIP object
module format allows for the creation at link-time of more
complicated values, such as a byte pointer to the odd byte 'of a
word, on an otherwise word-addressed machine. The word address
for this hypothetical example is represented by an LRET node; an
LOPR node (times) points to the LREF node and to an LLIT node
(value 2), instructing the linker to double the word address;
another LOPR node (plus) points to the LOPR (times) node and to
an LLIT node (value I for the odd byte).

This generality ensures that the linker will be suitable for
handling code generated for various target machine architectures.

3.2.4.4.7 Ovrall Obict Module Orgganization

The root node for each object module contains a list of all
CSUCT definition nodes, a list of all ENTRY definition nodes, and
a list of all SXTEPE reference nodes. From the list of LSUDs
associated with each CSRCT, the linker can determine all cross-
CS CT references (LREFs and LLZNs).

3.2.4.4.8 Run Time Routines

The Ada compiler generates code that calls run time routines
for certain language constructs (allocators, tasking, exception
raising, etc). These routines must be available to the linker,

* -23-

S--E ,IC3. NC. 33 CNCCZ;C .S'A.u a . 7:

.. . .: . .

B S-AIB (1) .PIF (1)

and there must be a convention for the compiler to use for the
run time routine CSBCT references. It is desirable to code as
much of these routines in Ada as possible, yet not allow direct
reference to them by Ada source code. (For example, if an
allocator ONEW ts were translated by the code generator into a
call on a function 'alloc storage(t'size)" defined in the run
time library, the Ada specification must be defined in such a way
as to prevent a programmer from calling "allocstorages
directly.)

This problem is resolved by placing the specifications of
the run time library in the private part of a predefined package
specification (for example package SYSTSN). Thus, only the
compiler itself will have visibility to the run time routines.
This solution adds no additional complexity to the linker, since
the reference mechanisms are the same as to user-compiled Ada
programs.

-- N .

4NEMTIS:C "3COCMAEUE 'AC;'"E

::.-. 85-AIE (l) .PIF (l1

3.2.4.5 Compiler Interface

The proper context for the current compilation unit is
established by the compiler through calls to the program library
interface packages, which will perform the analysis to determine
if the needed library objects are up-to-date with respect to the
most recent submittals to the program library. If the needed
library objects are not in a consistent state, the program
library manager can optionally invoke the necessary compiler
phases to bring the needed library objects up to date.

As a result of the lexical/syntactic phase of the Front End
(COMP.FE) of the compiler, the abstract syntax tree (AST) of a
compilation unit is entered into the program library.
Compilation can be suspended at this time, and the compiler can
be called subsequently to complete the compilation from this AST.

4 , The source submitted for compilation may consist of several
compilation units. The LexSyn phase splits a submittal into
individual compilation units.

The Sem phase of COMP.FZ performs semantic analysis which
results in a DIANA tree, which is further attributed by theMiddle Part (CORP.MID), and entered in the program library. The

DIANA representation of a unit in the program library may become
outdated if a unit it is built from is re-submitted.

Both COMP.rF and CORP.MID refer to other compilation units
during the creation of a library object, and thereby create
dependencies which must be recorded in the program library.

The PIP allows multiple instances of the compiler to process
program units in a single program library at one time. A
primitive locking mechanism is provided automatically to insure
that concurrent processing can be supported.

For each compilation unit processed, the Back End (COMP.82)
produces an *object module," which includes both relocatable
object code, organized as several "control sections,* and a
symbol table for externally defined or referenced addresses and
values. In general, a single compilation unit may contain a
number of nested Ada program units.

in order to allow for sharing of late-supplied generic body
templates, units with generic instantiations have an additional
object module created within the program library, defining
entries from the generic instantiation in terms of entries into a
specific implementation of the generic body.

Units with generic templates also have an additional set of
object modules, one for each implementation of the template.

-25-

4. - .SAME. F- ." -N-. 73

7 .. 7 •:_ ~- . . . _ . .

BS-AIZ (1) .PIF (1)

The phases of the compiler will be entered as tools in the
rules associated with a collection used for Ada program
libraries, and must conform to the parameter interface associated
with the Rules Interface.

,4

.!:

4

4.

Ci

-26-

INTIMErRICS. !NC. 733 CCNCCRD AVENUE 3AMI=C,3E. YASSA-.' - "" - -

,EL!EX NC. ,"3 320 -52

oWh

;W .B5-A() .PIF()

3.2.4.6 DBUG Interface

DBUG requires the following information:

1. Relocation Map: records the placement of each compiled unit

in the program imagel

2. The compiler generated statement table.

The Relocation Map gives the base address of each compiled unit
in the executing program. This map is created by the Linker. DBUG

-. uses this to determine the new scope when the user gives a SCOPE
ENCLOSING or SCOPE TO command.

A statement number table is created by the compiler, and
Sstored as a CSECT within the object module. DBOG uses this

table, in conjunction with the Relocation Map produced by the
Linker, when directing the run time system to activate or
deactivate specific breakpoints.

.- 7
..

•.4

,. ;~N, RIVE7R:ICS. NC.' 723 = CC,",C PC E' : = " .:.=.G .. -.B.' -"._-. '-;". "

z:-- 0 S Z -

+; "o+. , ,, ++. -' •.- - -- +- -- +.. .. .---. ".. . .".-.. -+ .- _... ... " - ,

BS-AIZ (1) .PIP ()

3.2.4.7 Unit Lister Output Format

The Unit Lister Output Format is the standard interface for
human-readable compiler and cross-reference listings. Unit
Lister Output may include source text, symbol table attributes, a
cross reference, and an assembly listing.

3.2.4.7.1 Source Text Listing

Each line of the source text listing includes the following
fields:

1. The counts of the nesting depth. There are two counts, the
nesting depth of the current program unit and the nesting
depth of the current statement.

2. The statement number. Numbering starts from the beginning
of each subprogram, task, generic unit, and package in the
compilation unit. Both statements and declarative items are
numbered.

3. The source program text.

4. The current scope. This field contains the current program
unit name, truncated if necessary.

5. A cross reference for identifiers in the source text. Each
occurrence of an identifier in a line of source text has a
corresponding cross reference entry in this field. If the
identifier is being declared on this line, the cross
reference entry is an "- character. If the identifier was
declared previously within the compilation unit, the cross
reference entry is the listing page number at which it was
declared. If it is declared later in the compilation unit,
the entry is a 0?0 character. Otherwise, the entry is a
letter which corresponds to a WITHed library unit. This
field is continued on succeeding lines if necessary. A
legend of the withed library unit letters and names is
supplied in the listing.

Messages generated from processing errors are formatted within
the source lines. If the precise location of the error is known,
a line containing the single character 0*" is printed under the
line producing the error, with the pointer beneath the leading
error term. The error message is then printed, with the severity
and the statement number incorporated. A line is also included
which indicates the page and statement number of the previous
error.

The listing includes a final section which gives an error
summary and a tally of compilation statistics.

-28-

1NTERMrTRICS. :NC.. 732 CCNCCPD AVENUE . CAMR!CE. ',i,-, - - "-:
, -LEX 4C. 710 Z20

B5-AIE (1) .PIF (1)

3.2.4.7.2 Symbol Table Attributes

The symbol table attributes listing is an alphabetic list of all
the identifiers explicitly or implicitly declared in the unit.
Each identifier is listed with the statement number vf its
declaration, the name of its immediate scope, its type
information and other information specific to the identifier.

If the type is not an identifier, the type information will
be a description such as Type, Task, Function, Block name, Label

,* name or Exception. Types declared in other library units will
have a flag. Other information may be supplied depending upon
the identifier. The base type is given for subtype and derived
type entries. Mention is made if the identfier is a constant or
declared a number, has a representation clause, is a private type
or a generic instance. etc.

3.2.4.7.3 Cross Reference

The cross reference is similar in format to the symbol table.
.* Its header includes the same fields as the symbol table:
* identifier, statement number of the identifier's declaration,
* immediate scope, type and additional information. If the type or

immediate scope is declared in another compilation unit, the name
is flagged as it was in the symbol table.

Following the header, the cross references are listed. The
,4 name of each program unit which contains references to the
. identifier is followed by the statement numbers of the

references. Statement numbers at which the identifier is written
to or appears as an out parameter are flagged with an asterisk.

3.2.4.7.4 Assembly LiSting

The assembly listing is similar to the listing produced by the
4341 assembler. It contains relative location and object code
fields to the left of basic assembly language mnemonics and
operands. If the source text listing is also generated, the
assembly and source text listings will be intermixed.

-29-

,. '.1 g: -

BS-AIE (1) .PP (1)

3.2.5 eunctionDesc3iption

The Program Library Interface Packages CPCI consists of the
following components:

1. Library Object Identification: This CPC provides the means
by which a representation of a compilation unit (eq.
Abstract syntax tree, DIANA tree, or Object Module) is
identified and retrieved from a program library.

2. Library Object Dependency Manager: This component tracks all
dependencies between objects in the program library.

3. Library Object Allocation Packages This component is used to
allocate and reclaim VUM segment numbers for library
components.

4. Library Configuration Management: This component provides
primitives for the creation, manipulation, and deletion of
catalogs and collections.

The Program Builder CPCI consists of the following components:

1. Builder: Calls the Program Completeness Checker, Body
Generator, the Preamble Generator, and the Linker as
necessary in order to create an executable program.

2. Preamble Generator: Builds a subprogram body which
interfaces the main subprogam unit to the LAPSE.

3. Program Completeness Checker: Checks that all bodies
required by specs or stubs accessible from a main program
unit, have been provided. A list of the names of those
bodies that are missing is produced as its output. This
list is used to drive Body Generation, as part of the first
phase of program building.

4. Body Generator: Creates a null body when a spec or stub
exists but a body does not. This subprogram will be invoked
by the Builder, as well as recursively to generate null
bodies for components of missing package bodies.

-30-

INTERMF-C, INC. • 733 CONCORD AV UE • CA,',SPICGE. 'AASSA - "
'r= -'.X NO. 7*0 320 752'

85-AIE.(l) •PI? (l)

5. Linker: Combines object modules into a single load module,
and evaluates link-time addresses, to within a single
relocation constant for the entire pure and impure parts of
the program.

The third CPCI making up the Program Integration Facility
consists of the following Program Library Tools:

1. Program Library Manager: This program provides access for
the interactive user to the various primitives of the
Program Library Interface Packages. It allows the user to
create, manipulate, display, and delete the various objects
forming a program library.

2. Change Analyzer: This program computes the differences
between different versions of the same program unit, by
walking the two DIANA representations, and creating a VMM
locator mapping set.

3. Recompilation Minimizer (MAP): This program uses the Change
Analyzer and the Dependency Manager to mark DIANA and object
modules as up-to-date, without re-compilation, if
sufficiently minor changes have occurred in units they
depend on.

4. Link Map/X-Ref Lister: Produces a human readable link map,
including linker error messages (if any) and global cross
reference information.

5. Source Reconstructor: Reconstructs source listings from the
DIANA or AST representation of a program.

6. Unit Lister: Produces source, symbol table, and cross-
reference listings from information in the DIANA for a
compiled unit. This program is invoked from the compiler if
an immediate listing is requested, and may also be invoked
later by the user for new or additional listings without
requiring re-compilation.:4

7. Foreign Object Module Importer: Installs object modules from
systems other than the AIE into the program library.

-31-

Nr.ME ICS, NC. 733 . C. NCC. ..

:,- ,-., .. , .,: . .. -.-. % . ..: - .+ ,. .-.-.. .. -. :. .> 2: : - . _ .

B5-AIB (1) .PIPF(1)

3.3 Detailed Functional Rleqirements

3.3.1 Program Library interface Packages (PLIF)

The PLIF consists of four components: Library Object
identification, Library Object Dependency Manager, Library Object
Allocation Package, and Library Configuration Management, and
provides all of the primitives for access to the library data
structures, as a set of Ada packages.

-32-

.wN7EAMETRCS, NC. -,33 CONCORn AVENUE C.?-ABCGF. ~c~SS:
72LEX 14C. -1 5.1

"': B5-AIE (l) .PIP (l)

3.3.1.1 Library Object Identification

This CPC is provided for users of the program integration
facility: to access, create, save or delete an object in the
catalog. Library object identification allows the user to
specify which object to reference or utilize from his catalog or
linked catalogs. Information about objects is stored either in a
catalog or with the object, depending upon the uses of the
information.

3.3.1.1.1 Objects And The Catalog

The catalog refers to compilation unit objects which can be
distinguished by their identification (name of
subunit/libunit/is spec) and by their form (AST, DIANA trees,
...). An object- is referenced by using its ident/form. If an
object is from another catalog linked to this catalog (determined
from the prefix index associated in the resource catalog
reference, RCR list), the specification of a collection and
catalog is needed in addition to the ident/form.

Besides containing a table matching ident/forms to their
corresponding objects, the catalog also contains information
needed to identify itself and the catalogs it refers to. The
collection also provides for each object a unique object id,
Objld, to allow locating and referencing objects, even if no
longer up-to-date, and to determine whether a given object is the
same as the one stored under ident/form. Revisions of an
ident/form in a catalog will have different ObjIds. The object
table in the catalog has one, if it exists, up-to-date Objld per
ident/form. Every object that is created in the collection has a
distinct Objld and the ObjId is never reused in the collection.
The collection and Objld uniquely identifies any object under the
program integration facility. The user has no access to the
unique object id.

The catalog's object table contains the list of the most
current ident/forms along with their Objlds. In addition, each
object in the catalog has a backup form which is used in
consistency checking. According to the Ada LRM, any
compilation/recompilation that detects errors must have no effect
on the program library. In an AIE library , whenever a unit is
successfully compiled through all phases of the compiler and all
objects it depends on have also been successfully compiled, the
currently successful object is entered both as the current state
of that object, but also as the backup of it as well. If
compilation is unsuccessful, then only the current state of the
object is updated and the backup left untouched.

The collection also maintains a state variable for each
object in the collection, to distinguish objects in the process
of being created from those that have completed. Thus if, for
example, the compiler front end might ask the library to create a

-33-
N ' ,z ME'T P!C3. C. N C CPC -%,SE 2"-

.-.2('.C

B 5-AI (1) .PIF (l)

DIANA object by copying the AST and then allowing the compiler to
work on the copy. While the compiler is working on the AST copy,
it will be marked in the collection as "in process', and only
when it is complete will it be fully accepted into the
collection.

Consistency checking uses the backup state information on an
object, thus restricting it to successful compilations in
conformance with Ada rules. All other references to an object in
a catalog use the current state information. This enables the
lister to find the most recent listing information.

3.3.1.1.2 Object Information

An object is accessed via a handle which is returned by the
routine to open an object. A handle is more than just the Objld,
because the ObjId may be contained in more than one catalog. This
would be true, for example, if a catalog was copied from another
catalog. The specific content of a handle is implementation
dependant and not described here. Whenever the term object is
used in conjunction with a routine either as an input parameter
or as an output result, what is actually being referred to is
this handle.

An object has a variety of information associated with it.
It has three precursor lists, one for its direct precursors, one
for VMI references and one for deciding whether the object is
up-to-date. It also has user parameter information (such as
whether optimized code is to be produced), and the VXK
information about segment numbers. Figure 3-5 is a schematic
view of a library object.

3.3.1.1.3 Library Object Identification Functions

The main functions involved in the library object
identifications are addition into, accessing of and upkeep of a
library object.

3.3.1.1.3.1 Object Addition

An object may be added into a catalog either by submitting
its initial form, creating an Nempty= object to be filled in, or
copying an object already in the catalog. The object is added
using the tool specified in its collection's rules.

3.3.1.1.3.1.1 Inputs

.- In order to add an object into a catalog, the catalog and
the target ident/form in the catalog must be specified. For
objects that are copied into a catalog, the object to be copied
from must also be specified. If the object is "submitted" into

-34-
.N-IPMETRICS, !NC. 733 CONCOO AvENUE • :". • . -

'M-LEX NC. " . ."2Z

[i . .* ... * . * . . " *-. ** .*. ** *. .. *

*171

,.-;-,, B 5-AIrE(1) .PIF (1)

VW4 Reference List

ident/form-.col, Ob Id.
object
content

Direct Precursor List Initial Form Precursor List

ident/for.-'-col, Obid;, ident/form..wcol, Objld
extra info

32183447-1

Figure 3-5. Library Object

the catalog, the form becomes the initial form, a form that does
not depend on any other ident/form in the catalog.

3.3.1.1.3.1.2 Processing

Any ident/form that is added into the catalog must conform
to the rules of the catalog's collection. when an initial form
is submitted into a catalog, the tool used to add the object must
conform to the tool specified in the collection's rules for

initial forms. If conformance is established, then the

-35-

.NTzM3E734C3.NC. -3 ZCNCZ'.E

3. BS-AIE (l) •PIF (1)

ident/form's Objld is added to the object table of the catalog.

normally, when an Objld is created in a catalog, its
5 precursor lists are initialized to null. Bowever, when an object

is copied into a catalog, its initial form list, used to help
decide whether the object is up-to-date, is also copied from
original object's initial form list. Other information relating
to the new object is filled in if known depending on whether the
object was created by submittal, copied or just simply created.

.5. 3.3.1.1.3.1.3 Outputs

A now object is created with its new Objld after the
creation of the now ident/form. The now Objld is added into the
catalog's object table. Initial and default information about the
object is attached to the object depending on how it was added.

3.3.1.1.3.2 Accessing Objects

Objects can be accessed in the catalog by opening the
object, which returns an object handle (a way to refer to the
object). If an ident/form exists in the catalog, but the
corresponding object does not, the ident/form can be explicitly
brought up-to-date. When an object is opened, all the
information associated with the object is made accessible.

If an ident/form does not exist directly in the catalog,
there are two ways to access an object in other catalogs. One
way is by using the direct link in the RCR of the main catalog
and the other is by using the indirect links to resource catalogs
referenced by other direct resource catalogs.

Objects once opened can be closed.

3.3.1.1.3.2.1 Inputs

To open an object, the catalog and its ident/form are
needed. To close an object, the object handle is provided. If
the ident references a resource catalog, how the ident is to be
reached, directly or indirectly, must also be specified.

3.3.1.1.3.2.2 Processing

For an object to be opened, its object handle must be found.
If the compilation unit name of an object begins with a prefix
reserved to a particular (direct or indirect) resource catalog,
then that catalog referenced in the RCR, resource catalog
reference list, is the one to consult. Otherwise, the current
catalog's object reference table is the place to start. In the
resource catalog, the resource interface catalog is referenced

,

5' -36-

IWNTE TWRICS, !C. 733 CCNCCRD AENUS AB=GE. $.,-s.= --"
,. t:- -=X 'NiC. " W! -"2l

...L• . . . • • - . .- ..-.-. .-. - .

BS-AIE (1) .PIF (1)

first and the resource implementation catalog second. If the
resource catalogs are to be reached directly, then if the object
is not found, the object can not be opened. If the resource
catalog is to be opened indirectly, the catalogs referenced by
the resource catalogs are also searched if need be.

An object is closed when no more references to that object
are necessary; the object handle to the object is released.

3.3.1.1.3.2.3 Outputs

If the ident/form is opened, the handle to the object is
returned. If the ident/form is not found in the catalogs
specified, the appropriate message is returned. If the object
does not exist in that catalog, the catalog may be brought up-
to-date; and if the object was brought up-to-date successfully
the object can be opened. The object can be closed after all
references to it are complete.

3.3.1.1.3.3 Deleting And Saving Catalog Objects
A routine is provided to delete or save a catalog object.

Deleting is desirable if an object becomes inaccessible because
its Objld is not known to anyone or if an old Objld is to be
withdrawn from the user's view. Deleting is a permanent erasure
of the object. Saving, (because of archiving, saving space, etc.)
involves moving the actual object contents somewhere else, thus
making them recoverable.

3.3.1.1.3.3.1 Inputs

The object must be located, its ObjId known before it can be
removed.

3.3.1.1.3.3.2 Processing

If the Objld is to be deleted, it is completely removed.
When other objects or catalogs reference this object they will
not find it. When the object is to be saved, a stub is left such
that it can be retrieved again.

If the ObjId is to be deleted, the object referenced by the
ObJId is not accessible to anyone. If the object is saved, it
can retrieved at later date.

- 37-
WI, I E7FICS. :NC. •73 CCNC,,C , . •5.LE:3E. , -.. ,= . ;

BS-AIB (1) .PIP (1)

3.3.1.2 Library Object Dependency Manager

This CPC is the set of routines necessary to keep the
library in a consistent state, as defined by the Ads LRM.
Precursor lists attached to catalog objects and rules attached to
the catalog's collection are essential in maintaining the library
in a consistent state. Precursor lists are used to check whether
an object is up-to-date. Rules are used to create/recreate
objects that are needed in order to bring the library up-to-date.

The rules are attached to a collection and govern the
generation of any library object within that collection, assuming
that all its precursors are present. The rules specify how one
form can be transformed into another form and what tool performs
-the transformation. Only the tools listed in the rules are
allowed to directly update objects within the catalog. Rules are
of the form:

precursor-form -> target form : tool.

The rules are general enough to be able to incorporate foreign
language modules, e.g.

pascalsource -> pascalobject code : pascalcompiler

pascal object code -> ada object code :
piscal_oj ectmodule converter.

An initial form object referenced in the catalog is an object
which has no precursors. There is a set of initial form rules

*which can be used to submit initial forms to the catalog. These
rules are of the form:

J.

" -> initial form : tool

The catalog contains a list of references to objects in the
catalog with their ident/form and a unique object id, the most
recently generated object of the given ident/form. An object
referenced in the catalog is generated only if it is requested
and in not up-to-date.

Associated with each object in the library are three
precursor lists: the direct precursor list, the initial form
precursor list, and the VDU reference list. Each element of a
precursor list refers to an object. The object can be
referenced either by its collection and Objld at the time it was
added to the list or by its ident/form (if it needs to be added

-38-

iNT,-RME7FICS, ;NC. 733 CONC.RC AV.NLUE CAMEGE. A 'A . 1

TL.E"-X .CC.

-t

85-AIZ (1) .PIP (1)

to the list again). An initial form object referenced in a
catalog is an object whose precursor lists are null.

An object's direct precursor list contains the ident/form
elements which were used directly in order to generate the
object. The entries of the direct precursor list contain the
information:

(ident/form, collection, ObJld , extra-information)

The collection and ObjId locates which object was used when the
element was added to the list. The ident/form is used to check
for consistency and refers to the object's ident/form at the
time of insertion into the list. The extra information may
include how the ident/form in the direct precursor list is used
in relation to the new object(e.g. whether it utilizes the
ident/form on the list or whether the new object was transformed
from the ident/form on the list). The direct precursor list is
used for historical purposes.

The entries in the initial form precursor list contain all
the initial form objects which this object depends on; i.e. wiaE
was the snapshot of the world it depended upon when this object
was generated. This list is used to check whether the catalog is
consistent in relation to the object requested. The entries in
the initial form precursor list consist of:

4* (ident/form, collection, Objld).

The initial form precursor list content is similar to that of .the
direct precursor list except that the ident/form is the initial
form itself. The extra information is not needed. The ident
must be checked so that the initial form in the catalog is the
form specified in the initial form precursor list.

After the VMM reference list is built, it contains a
complete list of the ident/forms referenced to VMM via cross file
pointers and is needed by the object for establishing VMM
addressability. The entries in the VMM reference list consist
of:

(ident/form, collection, Objld).

The functions provided by the library object dependency manager
are precursor list routines and object consistency routines,
which are described below.

-39-

•.oNrRM . . NC. 7 CCNC .C A - . -- - .

**o' .4* 1 * -..-

BS-AIB 1l1 .IPI(l)

3.3.1.2.1 Precursor List routines

Routines are provided to get a precursor list, to obtain an
element from a precursor list, and to add an element to a
precursor list.

3.3.1.2.1.1 Input

In order to access the precursor lists of an object, the
catalog object must be opened. The inputs to the precursor list
must specify the object and which precursor list is desired
(direct, initial form, or VNU reference). To retrieve a list
element one must specify its ident/form. To add an element to a
precursor list, the input must also include the collection and
Objld. if the list is a direct precursor list, how the element
is used will also need to be recorded when the element is added.

3.3.1.2.1.2 Processing

Normally an object is generated in the catalog with its
three precursor lists empty. However, if one object was copied
from another object, the new object's initial form precursor list
and its VUS reference list are copied from the old object, but
the direct precursor list is not. Instead, it contains only the
object it was copied from.

As objects are referenced , they are added to the particular

new object's precursor list. When a new object is derived from
' information in another object, the referenced object's
* ident/form, collection and Objld are added to the direct

precursor list of the new object. Then the initial form
precursor list of the referenced object is merged into the new
object's initial form precursor list. if the initial form

* precursor list of the referenced object is empty, then the
referenced object itself is added into the new object's initial
form precursor list. The VI reference list of the referenced
object is then merged with the VNK reference list of the new
object.

3.3.1.2.1.3 Ouug

The precursor list routines obtain an element from a
precursor list or add new elements onto a precurser list. When
elements are added to the direct precursor list, the elements
initial form precursor list may be merged onto the current
object's initial form precursor list.

-40-

WNT!RPAETFICS. WNC. 7W3 CONCORD AVENUE - CA~MESIGE. MASSACSE3
TL;-(NC. 71C 320 7522

B5-AIEC() .PIF(1)

3.3.1.2.2 Library Object Consistency

An object referenced in a catalog is considered up-to-date
if its initial form precursors are all still listed as current in
their catalogs.

Routines are provided to check whether an object referenced
in a catalog is up-to-date and, if not, to try to bring the
object up-to-date.

3.3.1.2.2.1 Inputs

An ident/form from a catalog object reference table is
checked to see if the ObjId associated with it is up-to-date and
if not, optionally bring the ident/form up to date. The catalog
and the ident/form must be specified in order to carry out the
request.

3.3.1.2.2.2 Processing

B.P An ident/form in a catalog is up-to-date if its initial form
precursor list's ObjIds are the same as those in its catalog's
object reference table. If the prefix to the ident is in the
resource catalog reference list, the ident/form must be the same
as those in the corresponding resource catalog. The resource
catalog reference list is checked before the catalog reference
table since there are usually fewer resource prefixes than
idents, thus speeding up lookup. If an ident/form from a
resource library is out-of-date, i.e., does not match the one in
the resource catalog, a message is issued. Any request to update
the object will be ignored if not issued by the owner of the
resource catalog, since only the owner may bring the objects
referenced in that catalog up-to-date. If any ObjId does not
match the catalog's, direct or indirect, then the object is not
up-to-date.

In bringing an ident/form from a catalog up-to-date, the
object is first checked to see if it is up-to-date, and if it is,
nothing else need be done. If the object does not exist or is
not up-to-date, the tools mentioned in the set of rules
associated with the catalog's collection are used to try to
generate an up-to-date ident/form. The most up-to-date
ident/form is used as a starting point. If there are any errors
in generating new objects following the rules, the catalog is
left and marked as in error. The backup catalog (before any
objects were changed) can be obtained if requested. Otherwise,
the side effect of using the bring up-to-date routine is that the
ident/form in the current catalog becomes up-to-date.

-41-

'NI .?METRIC3.;NC. ' 733 CONCCPC A', .E .:,y,:3. . .3..'.
rZ .' X NC. i'. __":3

"" B55-A11(1) .PIF (l) W'

3.3.1.2.2.3 Outputs

The object referenced in the catalog is either up-to-date or
not and the answer is returned.

A bring-up-to-date call will result either in an object
becoming consistent in the catalog, or in the issuing of an error
message. Errors can result from the tools used in the rules to
generate the object or from a version skew. A version skew
happens when a resource is used by two different catalogs through
two different paths and each path uses a different version of the
resource.

When an error occurs, the catalog is left as it was and a
backup may be obtained of reflecting the state of the catalog
before object updating was tried. Bringing an object up-to-date
may have the side effect of changing some of the Objlds
associated with the ident/forms in the catalog object reference
table.

I"

.*1

'

-42-

INTERMETRICS. 'NC. 733 CONCOP AVENUE CMBMPCGE. ,.1ASC:-SE- :: -

".LEX NO. "'0 320 7523

-' - - - - - . -

7 76

B5-AIE(l) .PIF(1)

3.3.1.3 Library Object Allocation Packaje

All library objects in a catalog referenced directly or
indirectly, must have non-overlapping VMM segment number ranges.
This CPC provides the routines needed to coordinate segment
number usage. By default, when a catalog is created, it will be
given the lower half of the VMM segment number "address space"
(i.e. 0 .. 32767). Catalogs to be used for resource catalogs
should instead be created with a VMM segment number range shifted
to some part of the upper half of the segment number address
space. Note that many catalogs may use the same collection, and
hence will automatically have no conflicts over segment numbers
(since they are all assigned out of the same pool).

Associated with the collection is a list of segment numbers
that can be allocated to any object in its collection. The
routines provided in this package handle an object's use of
segment numbers. They can be divided into those that pertain to
collection segment numbers and those that pertain to object
segment numbers. Allocation of segment numbers proceeds in two
steps. First, a range of segment numbers certain to be sufficient
is reserved for an object. Second, those numbers actually used
are "kept", and cross-indexed with the object, while those
numbers found to be unnecessary are returned to the collection
for reuse.

3.3.1.3.1 Collection Sequent Number

The routines which handle obtaining segment numbers from the
collection reserve a set of segment numbers or release a set of
segment numbers.

3.3.1.3.1.1 Input

To reserve a set of segment numbers, the collection and the
number of segments wanted must be specified. To release unused
or no-longer-used segment numbers, the collection and list of
segment numbers to be returned must be specified.

3.3.1.3.1.2 Processing

The collection keeps a list of segment numbers which are not
used, called the free list. As segments are requested, the
segment numbers are removed from the free list. When segments
are released, the segment numbers are added back onto the free
list.

-43-

i -MNr 1t7CS. IC 733 l-NCZ CqmCA .,C 'A . , -Z, ,: , ' -

!*.7 ." W,.-.-

BS-AZB(l) .PIP(1)

3.3.1.3.1.3 Otu

A list of segment numbers is returned from "reserve'. The
free list is updated.

3.3.1.3.2 Object Sequent Number

When a tool actually allocates a segment number to an object
from a pre-reserved segment number list, the segment number is
added to the segment number list of the object. The segment
number list of the object can be retrieved on request. If an
object is deleted, its segment number list will be released.

3.3.1.3.2.1 Inpu

To allocate a segment number, the segment number and the
object must be specified. To release all the segment numbers of
the object or to access all the segment numbers of the object,
only the object is specified.

3.3.1.3.2.2 Processin "

When a segment number is allocated to an object, the segment
number is added to the segment number list associated with the
object. When the object's segment number list is to be released,
the entire list is released to the collection. When a tool
requests a segment number list, the list is returned.

3.3.1.3.2.3 Output

The output of obtaining the object's segment number list is
the segment number list. The effect of allocation is that a
segmnt number is added to an object's segment number list. The
effect of releasing is that the segment numbers associated with
the object are now in the general collection pool for use by
other objects.

-44-

INTERMETR1CS, INC. • 733 CONCORD AENUE 'OAMB;;ICGE. M.,SSACo.$ 2
TLEX NO. '0 320 7522

: "* **t*. *", ," > ' '" ' ' ' : * * """ ' " " '."" . - - -
' " " " ." "" ' - A " "" """" " " " " "s .4 . .

"
" "* " .. " '

BS-AIE (1) PIF (1)

3.3.1.4 Library Configuation Management

This CPC defines primitives to allow tools to create and
maintain program libraries that may or may not utilize components
residing in other libraries.

The main functions of this CPC are the creation and deletion
of collections, the creation and deletion of catalogs, promoting
a resource catalog and creating a link to a resource catalog.

3.3.1.4.1 Collection Creation and Deletion

2 3.3.1.4.1.1 Iu

The creation or deletion of a collection requires a
collection identification. An initial range of VMM segment
numbers to be associated with the collection are also required
for creation.

3.3.1.4.1.2 Processing

When a collection is created, the CLL and the CAL are
initialized to null. The initial range of VMM segment numbers is
associated with the collection. After deletion a collection is
inaccessible.

3.3.1.4.1.3 Output

The data structures associated with a collection are created
(deleted).

3.3.1.4.2 Catalog Creation and Deletion

3.3.1.4.2.1 Inputs

For the creation or deletion of a catalog requires the catalogs
ObJId and the identification of the collection it resides in. For
creation by copy, the ObjId of the original catalog is also
required.

3.3.1.4.2.2 Processing

The object table, the RCR and the prefix index of the
catalog are created. For a creation by copy these data
structures are copied exactly; otherwise they are set to null.

-45-
:NERMET-.C3. INC. 733 CdCJCP:FO -,S:4 " . , .- - - -

. p*..

BS-AIZ (1) .PIF (1)

3.3.1.4.2.3 Output

The data structures associated with the catalog are created.

3.3.1.4.3 Promoting a Resource Catalog

Catalogs may be made accessible to other catalogs as
resources by promoting them to the Catalog Access List in their
collection.

3.3.1.4.3.1 Inputs

In order to promote a catalog, the identification of the
collection and the catalog name must be specified. Also, the
catalog must be identified as either an interface of an
implementation catalog. In the case of an implementation
catalog, its related interface catalog must also be identified.

3.3.1.4.3.2 Processing

When a catalog is promoted, an entry is made to its
collection's CAL. For a catalog with no previous revisions, an
entry is made in the CAL which includes the name of the catalog,
its set of prefixes, the catalog's Objld, an indication of
whether it is an implementation of a resource catalog, and an
indication of its related interface/implementation catalog (if
one exists). If previous revisions of the catalog exist, the
newly promoted revision is assigned a new revision number. If
the new revision contains prefixes not contained within other
revisions, the prefix list is updated.

3.3.1.4.3.3 Output

An update is made into the CAL of the catalogs collection
contain the information specified above.

3.3.1.4.4 Linking to a Resource Catalog

3.3.1.4.4.1 Inputs

In order to create a link from a primary catalog to a resource
catalog, the following information must be specified: the primary
catalog's name and collection, the resource catalog's name and
collection and the revision of the resource catalog (this
defaults to the most recent).

3.3.1.4.4.2 Processing

Once it has been established that a link exists between the
present collection and the target collection and that the target

-46-

IW!NME1RICS. INC. 733 CCNCCORD AVEP4'E CM.-IC13E. 5$,S.- s : . - . -

. . . " . - • - " .
_, . ', ,-'*...r, *.*', ... ,,,, ,,-. , , . . -; -

7m

B5-AIE (l) .PIF (l)

catalog exists in the target collection's CAL, the prefix index
of the target catalog will be checked against the present
catalog's prefix index to determine if there are any overlapping
prefixes. If there are, an error message will be generated.
Otherwise, the target collection identification and catalog name,
the revision number of the catalog and its ObjId will be entered
into the present catalog's RCR. The entries of the target
catalog's RCR will be entered into the present RCR and will be
flagged as indirect resource links.

3.3.1.4.4.3 Outputs

The primary catalog's RCR will be updated as described
above.

-47-

*~ ~ ~ Y '%E7 C3. .C. *-5-

BS-AI (1) .PIF (1)

3.3.2 Program Builder

The primary program integration tool is called the Program
Builder. It is invoked by a user in order to create an
executable program. The Program Builder consists of five
components, described in detail below.

3.3.2.1 Builder

The term *building* refers to the processing performed by
the Builder on a program library to produce an executable
program.

The Builder operates in two phases. The first phase,
Program Completion, guarantees that the program is complete and
consistent before the second phase, the Linker, binds symbols to
their load-time values. The first phase may invoke the Body
Generator, to create null bodies for specifications in the
program library which have yet to be implemented. It may invoke
the Preamble Generator, if the main program requires parameters.
Finally, it may cause the invocations of phases of the compiler
as a side effect of requests that object modules be brought up-
to-date (see the Library Object Dependency Manager CPC).

The second *Linker* phase performs the traditional linking
function. It binds all undefined symbols and produces an output
load module in the format required by the APSZ loader.

3.3.2.1.1 Inputs

Inputs to the Builder are the name of a primary catalog and
the MAIN ident, which is the name of a smain program' unit, as
well as other parameters which are simply passed on to the
Linker. The ident must refer to a library unit. If the main
unit was a subprogram with parameters, a preamble will be built
to process them.

3.3.2.1.2 Processing

The Builder first calls the Program Completeness Checker.
For each body found to be missing, the Body Generator is invoked
to produce the source for the body, and then a request is made to
bring the new body's object module up-to-date, thereby causing
the compiler phases to be invoked.

If necessary, the Preamble Generator is invoked, again
producing source, this time for the preamble subprogram, which is
then compiled as a side effect of a bring-up-to-date request.

.q" -40-

7 E MET NC . • 733 CCNCCC 0AVENUE •.;E53-" ' : : -

- EXN. C,

B5-AIE(l) .PIF(l)

Next, an object module with an elaboration CSECT and a map
CSECT is created (acting much like an object module for the
hypothetical body of package STANDARD). The set of library units
accessible from the main unit must be elaborated in the correct
order when the program is executed. The elaboration order is
computed using the dependency relations of library units, and
ELABORATE pragma specifications. The order chosen is recorded in
this elaboration CSECT. This CSECT is defined by a list of LSUD
nodes, referring via EXTERN reference nodes to either CSECTs or
ENTRYs defined in the various object modules making up the
program. For all but the last entry, the "selector" portion of
the external name identifies either the spec or body elaboration
procedure associated with each library unit. The last reference
specifies the "body-call" selector for the parameterless main
unit which will receive control immediately after library unit
elaboration (either the preamble or a user-written parameterless
main procedure). The Ada runtime library contains a startup
routine which uses the elaboration CSECT to sequence the library
unit elaborations. The address of the startup routine is made
the initial program counter or "PSW" for the executable program
load module.

In addition to the elaboration CSECT, the Builder creates a
null statement map "group" CSECT which allows the run time
system's debugging support routines to locate the statement
tables of each compilation unit, as part of a contiguous CSECT
group.

Finally, the Linker is invoked, to combine the object
modules and resolve link-time addresses, and produce the
executable program load module.

3.3.2.1.3 Outputs

The primary output of the Builder is an executable Ada program.
The builder may also have the following side effects:

1. Unit recompilation, if necessary, as a side effect of a
bring-up-to-date request.

2. Preamble Generation, which involves the automatic
construction of a main program unit when the main unit is a
function or a procedure with parameters. The Preamble
Generator is invoked to analyze the DIANA of the main
subprogram and generate source code for the preamble. The
preamble is compiled, creating a unit which now acts as the
main unit. When the preamble executes, it converts the
string values of parameters from the KAPSE, to the internal
representations used in the parameters of the subprogram,

-49-

'N7."P. E .!C. NC. '.3 C C- C ":.

,,';',',?.'..'... ' " "- " ."-; -.,.'.. \C.

.

BS-AIE(1) .PIP (1)

and then invokes the subprogram.

3. Body Generation, which involves the creation of null bodies
for referenced specifications whose corresponding bodies
have yet to be defined.

4. Elaboration/Map Object Module Creation, which involves the
creation of an object module with references to the various
library unit elaboration routines, the main unit body, and
the group CSECT base for statement tables.

3.3.2.1.4 Special Requiremen.s

+-.7

'p

a

..

INT!,.MF't ICS. :NC. 7"33 CCNCORO +A'¢EN.UE ' CAM,3- tGE. 1. "A -..,. 2 :2 + 1

If' - , . .

B5-AIE(1) .PIF(1)

3.3.2.2 Preamble Generator

This CPC creates source code for a driver routine for the
main subprogram which was written as a function or procedure with
parameters. The Preamble Generator may be invoked by the
Builder, or by the user directly.

3.3.2.2.1 Inputs

The name of the catalog, and the "Ident" of the main library
unit subprogram must be specified.

3.3.2.2.2 Processing

Assuming the specified main unit is named P, the new source
for the preamble unit (named DRIVERP):

1. has a WITS P statement which names the original main unit,
as well as all of the units named in its WITS statements (so
that subprogram parameter types are visible to the
preamble);

2. declares a local variable for each parameter;

3. calls the KAPSE to get the string value for the actual
PARAMETERS of the program invocation;

4. for each IN or INOUT parameter, uses the KAPSE function
PICK PARAK to locate either a named parameter-value pair, or
the correct positional argument;

5. if a value is found, it is converted to the internal
representation for the type using the VALUE attribute of
Ada; the value is stored in the corresponding local
variable;

6. if the value is not found, a default value is assigned to
the local variable; (the normal default mechanism of the
compiler cannot be used, since it is not known whether the
user will supply a value or not);

7. the main program P is called, passing the local variables as
arguments;

-51-

NTE!EMEFIC3. NC. - 73 ErC~ .NUS :'.E ~
' . ".3.. ,.• 7 a, - 1 . -

BS-AIE (1) .PP (1)

8. the inverse conversion is performed (using the IMAGE
attribute of Ada) for INOUT or OUT parameters or function
valuei

9. the KAPSE is called to record the string values of the
inverse conversions as the RESULTS of the program
invocation.

For each value found in (3) above, if the value is 0?" or ":a,
the preamble writes to standard output the type name expected,
along with the enumeration literals if the type is an
enumeration, or a range if the type is numeric. This gives a
default help capability. If any value is specified in this way,
the main program P is not called; instead, a message is written
to standard output requesting re-invocation of the program.

The Preamble Generator is invoked by the Program Builder if
the main unit is a function or has parameters. The preamble
generator may also be invoked explicitly, and the text output may
be saved and modified. Thus a standard user interface is ensured
for all user-written programs, while, in the presence of special
requirements, the normal conventions may easily be overridden.

3.3.2.2.3 Oututs

The Preamble Generator writes the source for the preamble to
standard output, with the unit name formed by prepending
*DRIVER to the name of the specified main subprogram.

3.3.2.2.4 Special iequirements

-52-

!NT!RMETRICS, INC. 733 CONCC AV4ENUE - ANTSVI;E. %~S~ ~ - - - -

-E-.EX NC. ;: Z'., "U"22

' ;., ,:,; . ,. ., ~ ~ ~ ~ ~ ~ --,.. ,......,.. .. •........... ,•... ...-.

.4

85-AIE(l) .PIF(l)

3.3.2.3 Program Completeness Checker

The Program Completeness Checker identifies all units
reachable from a specified main library unit which lack bodies
within the program library.

3.3.2.3.1 Inputs

The inputs are the primary catalog and the name of the main
library unit.

3.3.2.3.2 Processing

The Program Completeness Checker works in two stages.
First, all units accessible from the main library unit are
located. Second, for each of these units, any specs without
bodies are identified and the names given as library unit/subunit
are added to a single output list.

3.3.2.3.3 Outputs

The output is a list of compilation unit names of missing
bodies.

3.3.2.3.4 Special Requirements

i.

-53-
N='-! EE7IC3,:NC. -73 .:,NCCr-O= ' C'. . -

-, --,, t i-u f - .- ,* --_

'.4
B~S-Alz (1) .PIP (1)

3.3.2.4 Body Generator

This subprogram creates the source form for a null
subprogram, package, or task body corresponding to a given
specification. which may be a library unit or a subunit stub.

3.3.2.4.1 Inputs

There are two inputs to this subprogram: a pointer to the
DIANA representation of a specification which lacks a body, and
the catalog in which that specification resides.

3.3.2.4.2 Processing

Processing the specification depends on the kind of unit
being generated.

In the case of a subprogram, the DIANA form of the

specification is first converted back to source text. If the
subprogram is a subunit, the specification is preceded by the
appropriate SEPARATE statement. A null body (BEGIN NULL; END;)
is generated in place of the semi-colon at the end of the
specification. In the case of a function or a procedure vith OUT
parameters, the value computed by the null body is undefined.

In the case of a package, a package body skeleton is
generated, preceded by a SEPARATE statement if it is a subunit.
The DIANA for the package upecificatio is scanned for subprogram
and package specifications. For each subprogram specification
found. a subprogram body is generated as above. For each
package, the routine that is handling the package is recursively
invoked. Following the declarations of nested subprogram and
package bodies, a null body for the outer package is generated.

In the case of a task body, the null body is generated,
without accept statements.

3.3.2.4.3 Outputs

Source for the generated body is written to standard output.

3.3.2.4.4 Special euirements

4-S4

INMMETRICS, 'NC. ,33 CCNCCP AVENUE 3E.A
0 P*'; . -- . - -C-

.E.L.E.X NC . C,

B5-AIE 11) .PIFP()

3.3.2.S Linker

• 3.3.2.5.1 Inputs,

NThe input program library is identified to the Linker
through the LIB parameter. This library (specified by the name
of its primary catalog) contains one or more compilation units
which are to be included in the executable result.

The object module which contains the elaboration CSECT is
specified with the ELAB parameter. The external name where
execution is to begin is specified by the START parameter.

The name of the *main subprogram" identified in the call to
the Builder is specified with the MAIN parameter. The optional
CALL parameter is used to specify the filename where the
executable program load module should be created. If not

- specified, the load module is created within the primary catalog,
as the *executable* Form under the Ident for the body of the MAIN
subprogram.

The OPTIM parameter may be either SPACE or TIME, and
determines whether unreference CSECT elimination is performed
(only performed if OPTIM->SPACE).

3.3.2.5.2 Processing
Linker processing occurs in the following stages:

1. optional unreferenced CSECT elimination;

2. CSECT placement;

3. memory image creation.

1. Optional Unreferenced CSECT Elimination. The use of
packages and generics in Ada is likely to result in
unreferenced subprograms, as are certain large yet rarely
referenced attributes (in particular, the *image" table for
enumeration types). Since the compiler generates a CSECT
for each subprogram body, and other separable constructs
such as an *image" table, an unreferenced subprogram or
attribute results in an unreferenced CSECT. This processing
stage identifies which CSECTs are not referenced by any LREF
nodes and excludes them from placement in memory. This

14NERMFFIC.. :%C. 7?3 CCNCCPC A1'ENL-S-.-.

'4

*1ss

BS-AI (1) .PIF (1)

requires a pass over the LREF nodes prior to CSECT
placement, and is only executed if the caller has specified
OPTIM->SPACE as a parameter to the Linker (Builder).

2. CSZCT Placement. This processing stage assigns relative
locations to all of the CSECTs not excluded by the previous
stage. Pure and impure CSECTs are grouped in two separate
segments. Each CSECT in turn is placed following the
previous CSECT in the appropriate segment, with the
alignment as specified in the CSECT node.

3. Memory Image Creation. This processing stage allocates pure
and impure memory image arrays (VMI variable length arrays)
and defines the contents using the CSUD nodes of each CSECT.
A storage unit fill value is defined for storage units not
specified in CSUD nodes or skipped because of CSECT
alignment. After all the CSUD nodes for a CSBCT have been
processed, the LSUD nodes are used to assign the link time
values.

As a result of CSECT placement, all components of link-time
expression nodes have associated values. Each LSUD node causes a
link-time computation to be performed and a value stored into the
pure or impure memory image at the location defined in the LSUD
node.

3.3.2.5.3 Outputs

There are two outputs from the Linker: an executable program
load module, and a relocation map. A human-readable output is
available by using the "Link Map/X-Ref Lister" (a CPC of
PLTOOLS).

The load module is an attributed database object, including
the following information:

1. The pure and impure memory images, with a start address.

2. The relocation map as an attribute, recording the placement
of each global CSBCT in the program.

3. A window attribute providing access back to the primary
catalog of the program library which provides the debugger
or any other program analyzer with access to the library
units which generated the program.

The relocation map is a VlS file containing a mapping set from
external symbol name (i.e. VMN locator plus selector), to the
value determined by the Linker, and the length if the symbol
refers to a CSBCT.

-56-

,NTERME7MICS, INC. 733 CCNCORD AVE'ILE " YBUt GE. - -

- NC. 74 120 -5-3

C % o*. * ~ . ; * " C .-.. . . C

* 3.3.2.5.4 Special Req irements

-57-
NTERM67RICa.NC. 733 CCNCV-C X.SNUE A

VS7;

BS-&iB (1) .PIF (1)

3.3.3 Program Library Tools

The Program Library Tools are a set of Ada programs which can
manipulate, display, or extract information from the program
library, plus tools to aid in the minimization of re-compilation
costs.

3.3.3.1 Program Library Manager

Program Library Manager: This program provides access for the
interactive user to the various primitives of the Program Library
Interface Packages. It allows the user to create, manipulate,
display, and delete the various objects forming a program
library.

3.3.3.1.1 Inputs and oututs

The inputs include a specification of the catalog or
collection, plus an optional specification of the library unit of
interest (as Ident/Form). The input must specify the operation,
either create, copy, link, delete, or display.

In the case of display, the input must select the various
attributes of the specified collection (CLL or CAL), catalog
(Object Reference -able or RCR), or unit (Precursor lists, Size,
Date created, whether Up-to-date, etc.) for display.

3.3.3.1.2 Processing
The processing for this CPC consists entirely of invoking

the primitives available within the Program Library Interface
Packages (PII.PLIP), and then if appropriate, formatting the
output for display.

3.3.3.1.3 Outputs

For all but the display operations, the outputs are simply
an update collection/catalog/unit.

For display operations, no changes are made to the program
library components, but rather the information requested is
displayed an the standard output.

3.3.3.1.4 Bpecial Requirements

WTEFMIICS. WC. 733 CONCCRt AVEIUE -CAM : GE. -

TELEX 140. "14C 32r,5

35-AIE (1) .PIP (1)

. 3.3.3.2 Chane jalyzer

This program takes two revisions of a unit (U and UO) and

compares the DIANA trees.

3.3.3.2.1 Inputs

Two DIANA trees, U and U0.

3.3.3.2.2 Processing

The DIANA tree of U is walked in a recursive algorithm which
visits each construct. Two techniques for comparision are used.

1. If the DIANA construct in U is the defining occurrence of an
identifier, the same identifier is looked up by name in the
corresponding scope of U'.

2. Otherwise, a structural tree comparison is performed,
stopping at the first unequal comparision.

The output of the comparison is a VMM subdomain that contains a
mapping set. Each element of the set is a comparision node, with
its membership testing criterion being the VMM locator of the
node in U. The comparison node contains the VMM locator of the
corresponding node in U'. If the comparison node represents the
defining occurrence of an identifier, the comparison node records
the result of the comparison (equal, not equal, not found).
Nodes compared as a result of structural tree comparison are in
the set only if they compared equal. Nodes are considered equal
if all semantic and storage allocation "attributes" are equal.

After the mapping set is built, an inverse set is constructed
with the membership criterion being the VMM locator of the node
in U'. Then a structural walk of the DIANA tree of U' is

* performed, checking that each node representing a defining
occurrence of an identifier is in the inverse set. If not, a new
aember of the set is created indicating that the corresponding
node in U is not found. (Thus adding a new identifier in U' is
properly represented in the inverse set.)

The mapping sets are used by the MAP program to determine which
units need recompilation.

-S9-

NI MP~EiRIC. NC. 33 -CNC"qC A', .E :. :.

- ,. ,, .,. '., ..'....-.. ,. .

B S-AIB(1) PIP(1)

3.3.3.2.3 Outputs

A VMM subdomain is produced with the forward and reverse mapping
sets, a flag indicating whether all comparisons succeeded, and a
flag indicating whether every pair of VMK locators in U and U'
have identical subdomain offsets. The last flag allows the MAP
program to optimize the mapping by instructing the VMM system to
substitute only the subdomain number part of a VMM locator.

The program optionally produces a human-readable output showing
the differences found by the comparison.

3.3.3.2.4 Special Requirements

4,

d

I

-60-

INTERERICS. !NC. 7 W CCNCOPC AVE. .E E 1,AS$'.--2" ". -

TELS: NC. 2'23

-t .,* - , a ,- , . .,.,. .,.., , • .-.- ' -- ". ,... .- -". -.-. --- -: .. "."-
C - I ".".%, 9l. 4*i ****** ds* . .9. -i.... ==.-,. ,,.,..... --.- -

BS-AIEM() .PIF(l)

3.3.3.3 Recompilation Minimizer (MAP)

The user invokes this program to minimize the impact of the
submittal of an updated unit to a catalog. By so doing, the user
is asserting that the new unit is nearly identical, or at least
similar enough so that some or all of the referencing units do
not need recompilation.

3.3.3.3.1 Inut

A catalog, and the Ident/Form of the new unit recently
submitted.
3.3.3.3.2 Processing

Assuming the backup object for the given Ident/DIANA is OU,"
and the new Ident/DIANA is "U',w the Change Analyzer program is
invoked to produce the mapping sets between the two units, U and
U'. Each unit in the library is inspected to see if it refers to
unit U. If it does, the global cross reference set in the unit
is inspected for individual references to identifiers in unit U.
For each identifier used, the mapping set produced by the Change
Analyzer program is checked to see if the identifier is identical
in V. If all identifiers used in U are found to be identical
U', the unit does not need recompilation. Note that if U is a
package and the referencing unit has a USES statement, U and UO
must be identical for all identifiers, not just the referenced
ones,

If any used identifers are found to be changed or deleted in
U', the unit must be recompiled. If not, the unit's precursor
lists are adjusted to refer to the new unit, along with the
mapping set.

3.3.3.3.3 Outputs

After all referencing units have been checked, if any have
created references to the mapping set built by the Change
Analyzer, it is saved as a VMM locator association set. The VMM
system will then map any references to nodes in U with the
identical nodes in U.

,"

3.3.3.3.4 Special Requirements

-'-

* -61-

:NT NtE I *. *.• ;-N C -',.U
.

• A ,;. . .- S--. -- i ;2" " 1.

85-AI(l) .PIF(l)

3.3.3.4 Link Map/X-Ref Lister

Link Map/X-Ref Lister produces a human readable link map,
including linker error messages (if any) and global cross
reference information.

3.3.3.4.1 Inputs

The primary inputs are the name of the catalog, and the
Ident/Form of the link map. The caller may specify listing
options:

1. UNITS -- All CSBCTs for unit specs and bodies.

2. GLORALS - All global CSBCTs/ENTRYs

3. L - All local or global CSBCTs/ENTRYs.

4. xKIT -- Cross reference for symbols listed.

3.3.3.4.2 Processina

The relocation map is scanned for symbols satisfying the
listing options (UNITS is the default). The DIANA in which the
definition occurs, as determined by the VDM reference list of the
map, provides the necessary human-readable representation of the
symbol and its value.

If a cross-reference is desired, the output is stored on a
file, and then sorted by a second phase of processing before
being output.

The listing is produced on the standard output.

3.3.3.4.4 Special Requirements

* .,

-. 62

INTERM M'ICS. N.C. •733 'W'^NCCPD A'VENU E •CAM4BIR, GE lo, SBA ^-L SE-S "2". •B , " .

aE; .. O. T Z _5z'

m i ia.: d d~ ~ f..,d ,w- ,.,.
- -

BS-AIE (1) .PF(1)

3.3.3.5 Source Reconstructor

This program extracts a text file associated with a
compilation unit from a program library.

3.3.3.5.1 inputs

The input includes the name of the catalog, and the
ident/form of the compilation unit from which the source is to be
reconstructed. Either an AST form or a DIANA form may be
specified (AST is the default). An optional parameter may
specify verbatim reconstruction, or a reformatted reconstruction
with a standardized indenting and commenting convention.

3.3.3.5.2 Processing

The AST or the DIANA, as specified, is walked, following the
abstract structure attributes and the lexical attributes of each
node, producing the expanded output on standard output. When
walking DIANA, it may be necessary to remove certain
canonicalizations.

3.3.3.5.3 Outputs

The formatted listing is written to standard output.

-63-

-NT1-.qME-- CS,. NC. 7 .-33 c -..NC:CP. A.....

BS-AIl (l) PIF ()

3.3.3.6 Unit Lister

The Unit Lister produces listings of the source text, symbol
table attributes, cross reference and assembly code for the
compiler. The CONPIL3 request may be specified with LIST option.
Alternatively, because all the information that the lister needs
to generate a listing (except for the assembly listing) has
already been permanently saved, the compiler may be run with the
LIST option turned off and at a later time the Unit Lister may be
run separately to produce a listing. The user's request to
produce listing is represented as:

LISTZR UWITo-unit name LIDm>lib name roptionsi

3.3.3.6.1 Inputs

Inputs to the Unit Lister are the library, the name of the unit
to be listed, and a set of options.

3.3.3.6.2 Processing

The compiler invokes the Unit Lister if the LIST option is
specified in the COPILB request. The Unit Lister gets LIST
values from the string that is saved as OPTIONS attribute of the
compilation unit. When Unit Lister is called by a user, values
are taken from the user's specified option list. The options to
the lister and their values are specified below.

LISTs> lON, 0? soc NOsOUC. TT, NOATRS, XRF, . 0 ,
ASSUNLY, NOASINMLY I

SOUlC, NO-values and OFF are default.
ON produces a full listing with all Unit Lister options present.
OFF produces no listingl a listing may be requested at a later time.

SOUgiM controls listing of the source text. The source text is
reconstructed from information stored in the lexical attributes
of the DIANA. The DIANA is also referenced to generate the
nesting counts, the statement numbers, the name of the current
scope and the line cross reference.

ATTM controls listing of symbol table attributes of
identifiers. The symbol table is a permanent DIANA data
structure for each compilation unit and as such is stored in the
library. The symbol table in the library is the name table
augmented with the DIANA US? ID nodes that are the corresponding
definitions for the identifier. The name table defines a mapping
between identifiers and DIANA DWFID nodes contained within the
DIANA tree.

-64-

INTWRMTIrCS INC. 733 CONCORD AVNUE CAM9RDG=. "AASSZiLSE- . -

7 B"CX "IIC. 3 32652 S3
. . . .

.%" , 5- ° +,%, . a * ,, -, *.. 4" -I.. ",-% . - -.. ,.. t *.-.-.-..-...+..+...-.. .".....".".....' -....

* 3-AIE (l,) .PIF Il)

XREF controls listing of cross-reference for all
identifiers. The LIST XREF option causes Statinfo, during the
Middle Phase of the Compiler, to collect cross reference
information and save it in DIANA. The cross reference
information is then used to locate all of the compilation unit's
uses of DEP ID nodes. Many of the symbol table attributes are
also listed in the cross reference.

ASSEMBLY controls listing of generated code. Assembly
listing lines are generated during the FINAL phase of the Back
End of Compiler.

3.3.3.6.3 Outputs

The output of the Unit Lister depends upon the values of the LIST
option. See Section 3.2.4.7 for the description of the Unit
Lister Output Format.

* -65-

ISNC. 7 3 C",CNCS " : -

Z

d

?.,, -.- .. , ,. ,. ., ' -..-. , - ., .. .,...- ,," - ..- , . . -. ,.- .- •:. ' -- -": .t

BS-AZB (.) .PIP (1)

3.3.3.7 Foreign Object Module Importer

The Foreign Object Module Importer converts non-standard
object modules formats to the PIP Object Module Format.

Flexibility is provided by the general rule-based library
definition to incorporate foreign languages and their
transformation within the context of the PIP.

3.3.3.7.1 Inputs

The inputs required are the name of the catalog, the name of
the foreign object module, the Oform= of the foreign object
module, and the Ident of an Ada spec or stub already in the
catalog whose body is to be implemented using the foreign object
nodule.

3.3.3.7.2 Processing

Bach distinct type of foreign object module may require a
separate tool to do the conversion. This tool must appear in the
rules list associated with the catalog's collection, as a tool
which can transform same foreign object module form into the
standard object module form. The general Foreign Object Module
importer simply copies the specified foreign object module into
the library under the *form' name supplied as argument (which it
must be allowed to do in the rules list), and then uses the
general bring-up-to-date function to run the object module
importer specific to the foreign form provided.

3.3.3.7.3 Outputs

The catalog is updated to include the foreign object module,
and its conversion into standard object module form.

-66-

INTLR ,iC. ,NC. • 733 CONCO D AV."E • CAM' E. , .' -E. .
7LEX NC. --c 1=111.1

, , , , ..,,,,... -,. -. -... :, . . :. ,...o. - .:.. , * .- . .,- , ,.,,

3.4 Adaptation

-67-
'Ni .*-""i!C3. INC. 733 CZNCZD %-,SMUE 6WZE..>

T!L(N.

35-AI (1) .PI (1)

3.S Capaity

J
-1-

= I ¢ 'r N /JL , t N C . • ,"3 C O N C OM A V E N U E C A M B R ID G E . M A S S A C .U E - ". .: 2 " "' " I. " - -
=_ 'TELEX NO . 71-C 32., 7 -,523

.4

m4

C.5

4. Quality Assurance

(To be specif ied)

-69-
N11~ET~C3~NC.733 CCNCCRD 44SINUE -- '

-56-

,N!M~IC C 3 CNOFIE~EZ~8tG..SL E D~~

'evXNC 2i 2

