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Preface
/

Z*This paper has been prompted by the need, in war games, for a stochastic

model of the sequence of weather conditions as they might impinge on air/ground
combat operations, Such a time sequence of weather, including ceiling, visibility,
and cloud cover, for one or more stations, has been perceived as inadequately
modeled, so far.

The present work is based on previously developed sequences in the Ornstein-
Uhlenbeck process., Joint sequenc?s call Ior a modification, but still basically
comprise a Markov process, — /cv>" / /9 Qi

The effort described in this paper has been both encouraged and critically
reviewed by Branch Chief, Donald D. Grantham, Tropospheric Structure Branch,
Meteorology Division. The writer is grateful to his Branch peers for helpful
suggestions. The author also wishes to express his appreciation to Mrs. Helen

Connell for her cooperation in typing several drafts of the text and tables for this
report,
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Interrelated Weather Conditions
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1. INTRODUCTION

.
)

Climatic records give the frequencies of weather elements such as ceiling and _j
visibility, showing the cyclic variations with time of day and season of the year.

o Weather records of hourly observations provide sequences of events or of temporal

s s

N changes of ceiling and visibility., However, there is a need for simulation of these
Ba events as a stochastic process that takes into account such attributes of the weather
as the association of the visibility with the ceiling and the degree of persistence of

".'n I Y

£,

both elements from hour to hour.
Figure 1 is a graphical record of actual Boston ceiling and visibility from

- o
f midnight (Z), 22 Dec 1982 to midnight (Z) 48 h later. The first day was cloudless r:
f‘* and clear, with both ceiling and visibility "unlimited." On the second day clouds '-_'j‘
moved in, the ceiling lowered, and visibility decreased, s
o, Figure 2 shows the same information for the ceiling on normal probability i
2 ( paper. There are several advantages in plotting the sequence of cloud ceilings on :
‘\,{ Figure 2 rather than Figure 1. The dashed lines in Figure 2 show the climatic :::
3 cumulative frequencies throughout the day of ceilings from 500 ft to above 30, 000 ft. ::
-— This graph provides the additional information that the low ceilings of 500 ft or less ‘-
. have an a priori probability of 2 to 3 percent in December, which is roughly for .
':: 20 h during the month. Likewise, Figure 3 shows the climatic frequencies for

o

3.'1 (Recelved for publication 19 May 1983)
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Figure 1. The Hourly Sequence of Ceiling Height and Visi- "“’1

bility at Boston, Mass., From 1900 EST, 21 Dec 1982 to

1900 EST, 23 Dec 1982 4
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Figure 2. The Hourly Sequence of Ceiling Height at Boston,
Mass,, From 1900 EST, 21 Dec 1982 to 1900 EST, 23 Dec
1982. Dashed lines give the climatic frequencies of ceiling
as a function of time of day
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Figure 3. The Hourly Sequence of Visibility at Boston,
Mass., From 1900 EST, 21 Dec 1982 to 1900 EST, 23 Dec
1982. Thin dashed lines give the climatic frequencies of
visibility as a function of time of day

visibility, in comparison with the actual sequence during the 2-day period. As
may be seen in subsequent examples in this paper, an improvement or a deteriora-
tion in the .'eiling and visibility could be a function of the time of day.

The kind of record just described is not readily available, Even if it were,
using it in tests to provide a realistic sequence of events would still be difficult.
During a period as long as 50 years, many meteorological situations arise, yet
they do not exhaust all the possibilities.

This report presents a stochastic procedure for simulating the changes over
time in ceiling and visibility that are characteristic of a real climate, It is
assumned that the changes in ceiling and visibility are a Markov process (as de-
scribed in Section 3). There is a significant correlation between present ceiling
and present visibility, When there is a time lag between the observations of
ceiling and visibility, the correlation coefficient is reduced. The effect is explored
in this report,

11
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2. EQUIVALENT NORMAL DEVIATES (END)

Many weather elements, such as ceiling and visibility, have distributions that
are difficult to treat statistically. Ceiling frequencies are usually given in terms
of categories of height above the ground, and there is usually a substantial prob-
ability of occurrence of "unlimited" ceiling; that is, clear sky or scattered clouds.
Modeling, however, has been reasonably successful. Bean et all have used Burr
curves for the cumulative distribution of ceiling heights in the form

.1-b
Fx)=1 - [1+ (%) ] a, b, ¢> 0 (1)

where x is ceiling height, in feet or meters, F(x) is the cumulative probability of
ceiling equal to, or less than, x, and a, b, and c are model parameters estimated
to provide the best least squares fit, For Bedford, Mass., for example, in
January, from 12 to 14 LST, the values, as given by Bean, are

a=1,16779
b = 0,192682
c = 1000 ,

which give the solid curve plotted in Figure 4. The RUSSWO" informati n on the
cumulative frequencies of ceiling height are shown (by x's) on Figure 4. The
model fits well, but requires some caution in application, because unless it is the
right tool for the problem, the answer it gives might be misleading. For example,
the ceiling is unlimited with an observed frequency of 0. 445. This is comparable
to the formula estimate of probability of ceiling above 32, 000 ft, Ceiling less than
100 ft should be categorized with a probability of 0. 005.

Visibility frequencies, likewise, have been fitted by an idealized model.
Somerville et al2 use the Weibull distribution to give the cumulative probability
of visibility (x) as

F(x) = 1 - exp (~xP) (2)

*RUSSWO stands for ""Revised Uniform Summaries of Surface Weather Obser-
vations, " published by USAF Environmental Technical Application Center for
several hundred stations around the worild.

1. Bean, S.J., Somerville, P, N., and Heuser, M. (1979) Some Models for
Ceillng, Scientific Report No. 7, Contract F19628-77-C-0080, AD A(078033.

2, Somerville, P.N., Bean, S.J., and Falls, F. (1979) Some Models for Vis-
ibility, Scientific Report No. 3, Contract F19628-77-C-0080, AD A075490.
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where a and 8 are parameters. For Bedford, Mass,, in January, from 12 to 14
LST, the values are:

0.06906

~)
"

B =0,8186

which give the curve as plotted in Figure 5. The RUSSWO data again reveal that
the model fits well, but visibility less than 1/4 mile should be categorized with a
probability of 2 percent. Visibility greater than 10 miles should be categorized
with a probability of 62 percent.

Any probability F(x) as given in Eq. (1) or (2), corresponds to an equivalent
normal deviate (END), symbolized by y(0, 1). The latter is a variable with
Gaussian distribution, mean value of 0, and standard deviation 1.0, Symbolically,
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) , 3 12
e F(x) = f exp - & dy , 3)
o ver 2
‘-:3 which thus defines the END (y). The latter is implicitly found for each x. N
-::: To a highly satisfactory approximation, 8 (error < 0.003) .
-.; :.
- t .
g a_+a,t »
y=k [t-—2—L -
py 1+ blt + bzt :
= .
- where v
.J,‘Q .t
e a, = 2.30753 o
’
A a, = 0.27061
.
b 3. NBS (1964) Handbook of Mathematical Functions, Applied Mathematics Series, o
‘,3_‘ No. 55, Government Printing Office, Washington, D.C. o
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: b, = 0.99229
| b, = 0.04481

Wil 2 *

5 and

when p = F(x) < 1/2 .

[
t
-
ad
"
—
=]
bl

or (4)

1

t In———5
1 - p2)

when p = F(x)> 1/2 .

A scale of END, (y) appears alongside the scale of F(x) in both Figures 4 and 5.
- In this report, ceiling height and visibility are modeled in terms of ENDs
because they have varying averages and medians throughout the day, and will have

O “-
L

generally uneven distributions. But the END of the ceiling or visibility will have

-:: a symmetrical Gaussian distribution with a constant mean or median of zero. In
3 Figure 3 it can be seen how, for example, visibility less than 5 miles has varying
} probability throughout the day. The END varies directly with this probability.
N Correlations in this paper are found between the END's of ceilings at differing
.:'_‘ times of day, or between the END's of ceiling and visibility, with or without time
.:. lag,
B
'\.

3. THE ORNSTEIN-UHLENBECK (0-U) PROCESS
,f' A Markov process is defined as ''a stochastic process such that the conditional
':.; probability distribution for the state at any future instant, given the present state,
o is unaffected by any additional knowledge of the past history of the system". 4

The Ornstein-Uhlenbeck (O-U) process is one kind of Markov process in which
:- the value at a future instant t + 6t, of a normally distributed variable y is linearly
‘..: related to the value at the present instant t, and the correlation coefficient between
::5 present and future values decays exponentially with the time interval 6t between
.' them, DMathematically, this may be stated as follows:
b7 4, Kendall, M.G., and Buckland, W.R, (1971) A Dictionary of Statistical Terms,
..” Hafner Publishing Co., New York,
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..‘3 -
‘:4 where the correlation coefficient p is given by -4
N :
A -
2 p = exp (-6t/T) (6) -
L] "-;
: where T is a parameter with the dimension of time, named the Relaxation Time, X
':} by Keilson and Ross, 5 and described by Gringorten. 6 The random number 7 is ..
- normally distributed and is the random contribution to the process of change. «
a A time sequence of y's at regular intervals (6t), generated by the model of
.-
Y Eq. (5), will simulate the conditions of a weather element in terms of its END, R
Y A step-by-~step program to accomplish this is given in Appendix A. .
X
: Figure 6a was drawn for a relaxation time t of 20 h, which corresponds to a o
m realistic hour-to-hour correlation coefficient of 0.95. Figure 6a presents the 5
2N 3
simulation of sky cover for a partly cloudy to overcast 48-h period. The dashed -
p s lines show climatic frequencies of clear, scattered, broken and overcast through- ‘
'j out a day in August at Bedford, Mass,., deliberately chosen because of a large _ﬂ
'~:j diurnal effect. Figure 6b illustrates a sequence in which serial correlation is
-: weaker (0.82) with 7 = 5h, Still, with this much persistence an overcast might =
¥ remain, with few breaks, for 20 h. There is a clearing at the most likely time of :
4 the 24-h period. Figure 6c illustrates a sequence in which serial correlation is -
‘, stronger (0,98) with T = 50 h. Finally, Figure 6d illustrates a sequence in which '.;
'5:'3 hour-to-hour correlation is reduced virtually to zero, with T = 0.1 h, producing ::
:\, rapid changes and short periods of all sky-cover conditions. N
: -
+ L .
N !
.\ -<
2] L
- g ;:
o)
." |‘.
e
a0 .
~ -
1 .
5
M
Lal 5. Keilson, J., and Ross, H.F. (1979) Gaussian Markov Related Variates for b
" Meteorological Planning, Final Report, Contract F19628-78-C-0158,
AD AGBI3Z. o
'l‘.._- 6. Gringorten, 1.1, (1982) The Keilson-Ross Procedure for Estimating Climatic ;::
A Probabilities of Duration of Weather Conditions, AFGI.-TR-82-01186, -
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Figure 6a. Simulation of a 48-h Sequence
of END's in an O-U Stochastic Process,
With a 20-h Relaxation Time. The dashed
lines show climatic frequencies of clear,
scattered, broken, and overcast through-
out a day in August at Bedford, Mass,
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' ) 4. TWO END'S IN A JOINT MARKOV PROCESS

:‘:j The above procedure gives a time lapse simulation of a single weather ele- :
:-: ment. The next task is to provide the algorithms for time lapse simulation of two A i
i-: elements that are interrelated. Two such weather conditions (X, X,) may be the N
A two sky covers at two neighboring stations, or they may be ceiling and visibility 3
o at one station. Whatever they be, in this paper they are represented by their :
'\': END!s (}-i, y].), each of whose means is zero, standard deviation 1.0, and whose .
;: probability distribution is Gaussian, 1
:; The two END's, yi(t) and yj(t) corresponding to the two events (Xi' Xj) at time

. (t) are subject to change in the time interval (6t) in a Markov process, given as

. follows:

yi(t + 6t) = a; ¢ yi(t) + aij . yj(t) + bi . ni(t + 6t)

s 4

' yilt + 80 = agi - Yy + a0+ by e 0yt +6)

b

:: where g nj are normally distributed and random, except for their interrelation-

fj ship. The a's are partial regression coefficients and the b's are of such magni-

j tude that the normality of Vi ¥ is preserved, The a's and b's need to be deter-

mined in terms of correlation coefficients, which are derivable from the

3 climatology of the station or stations.

:{a' Because of the normality of the END's the correlation coefficients, by

‘: definition, are:

) ryg * By + y0] = B[yt + 8 « yy(t + 61)]

\4

}“ where the symbol E[ ] denotes the expected value of the quantity in brackets, and

:E* r; is the correlation coefficient between the elements without time lag. For time

lag (6t):

::; pii = Elyy(®) - y,(t +60)]
b: = Ely,(t) . y.(t +81)]

'::: pij yi yj

: pji = E[yj(t) -yt + 1)

1 pjj = E[yj(t) . yj(t+8t)] (9)

b2
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Also, the variances are: ) 1
2., _ 2 _ 2 _ 2 _ by
E yi(t) = E yj(t) =En=E ny = 1 . o
s
The mean and variance of each END do not vary with time. -j.'_«j
From Eqs. (7) and (8), after squaring both sides of each equation: :;-::7-
1 =az+a.2+2a a..r ~4~b2 :":-4
i " 2 ii2i iy T P X
2 2 2
1 = a;, +a;,.+a..a,.r.. + b 10
i TR Bl T VB (10)

The derivation of these equations takes advantage of the fact that n and nJ. are

obtained independently of y; and Yse

Again, from Egs. (7) and (9):

Pii it 7 % iy
Pij T it 5 Ty
pji 21 Mij + alJ
P57 Ty T an

Solving for the a's:

_ 2
a; = oy - Pii rij)/(l rij)
2
- - 1 -
i (pji i rij)/(l rij)
a.. = (poe = pos r) /(1 = r2)
it P TP Ty ij
a..—(p..-p..r.,)/(l-r.z.) (12)
AR Ji 0o 1 )
From Fq. (10):
h.:J l-{a.2.+:1'.2.+2n..a..r..}
i ii i IR A IR
= 2 + 2 L9 . r ‘ ‘“:‘
b; \[ b dagpeagg - 2o a5 ry ! (13) A
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There remains the question of the interrelation of the stochastically produced
values, nl(t + &t) and n,(t + 5t). Symbolizing the correlation coefficient between
them as h, we find from Eq. (7):

bibj +h=E {yi(t + &t) - aj; ¢ yi(t) - aij . yJ(t)} .

{3yt + 88) - ajy + 7,0 = a5+ yi(0)]

Hence,

h = {r.lj(l -a ) -(a + a5 a; ) }/b; bj (14)

i %5 7 3 % T R i i

If two random, normal numbers ni(t + &§t), nJ!(t + 6t) are selected, then:

2

nj(t+6t) =h. ni(t+6t)+ 1-h" - nJ!(t+6t) (15)

Thus, all the values are obtainable for the solution of Eq. (7) if the correlation
coefficients are provided. By substitution of yi(t + 5t), yj(t + 6t) for yi(t), yj(t)
the equations can be solved for the next pair of ¥i and y.. By such iteration, the
simulation of a joint sequence of values of Yir y:i is obtainable. The computer
programming of this process is given in Appendix B,

A variation of the above solution was obtained by Maj. R. C. Whiton7 at
USAF/ETAC, Scott AFB, 1l1l. Whereas Eq. (7) presupposes that the later value
of each of the ceiling and visibility is dependent on both the previous ceiling and
the previous visibility, Whiton's equation for the later ceiling assumed its
dependence on the current ceiling, but not on the current visibility; likewise for
the later visibility, Thus the process of change in either ceiling or visibility
satisfies the definition of an O-U process. This is equivalent to setting the lag

correlation equal to the product:

Pij = ij " Py

pji = rij * P (16)
Whiton's simplification will often prove effective. However, for generality it

might be better to avoid this assumption and let the climatic data provide numbers
for Piir Pije Some sources of the correlation coefficients are given and discussed

in the following sections,

7. Whiton, R.C. (1982) Environmental Simulation Modeling, AWS/ETAC,
Scott AFB, Ill.
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S. ESTIMATING CORRELATION COEFFICIENTS BETWEEN CEILING AND VISIBILITY
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A measure of the intercorrelation, without time lag, between ceiling and

"y
.

. -
RN

'?f} visibility is obtainable from a RUSSWO. Table 1, for example, presents the
.~::.;_ joint probabilities (P(= C, =V)), as interpolated from the RUSSWO tables for ‘."-_
-;,' Bedford, MA, midnight, in January, April, July, and October. The probabili- __j

ties, as selected, are the same, in pairs, for ceiling and for visibility. The .;

o corresponding END's are also shown in Table 1. ''Tables of the Bivariate Normal o
:"-\ Distribution™® (NBS, 1957) make it possible to find, by interpolation, the inter- e
‘?" correlation coefficient (¢), given the probabilities P(= C), P(= V), or their .:{1'.
Brk END's, together with their joint probability P(= C, =V). Correlation that is
’ estimated from these probabilities is known as tetrachoric correlation. 9 :-?
3 oy
L3 3
2 Table 1. Estimates of the Joint Cumulative Probability of Ceiling, P(= C), .
) and Visibility, P(=V), at Bedford, Mass., at Midnight. The conditions of )
o ceiling and visibility are those corresponding to their percentiles: 60, 70, .
- 80, and 90 percent £
bt )
;'I f-_'J
& P(=C) Month o

5 = .
N P(=V) END January April July October
) 0.6 0.25 0.47 0.48 0.43 0.42 "
= 0.7 0.53 0. 60 0. 60 0. 56 0.54 '7_-_4
v, =0
v, 0.8 0.84 0.75 0.74 0.70 0.73 R
3'. 0.9 1.28 0.88 0.86 0.85 0.86 N
Wi i
X A computerized solution of the intercorrelation coefficient may be found to .?
X satisfy the relation upon which the NBS tables are based: ‘_.'::
b o oo 5t -20nE :

°, 2

Pizx, =y) = —=—0H f/ e 21-0T) g an . (17)
- 214 1 - p2 Xy

YO
atta

Programming such an equation on a desk~top computer is difficult and provides

)
-

::- only approximate solutions. The computer operation is slow because it requires
- trial-and-error iterations.

A 8. NBS (1957) Tables of the Bivariate Normal Digtribution Function, Applied

¢ Mathematics Series, No. 50, Government Printing Office, Washington, D.C.
;{‘ 9. Brooks, C.E.P., and Carruthers, N. (1953) Handbook of Statistical Methods
3 in Meteorology, Her Majesty's Stationery Office, London.
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i A reasonable estimate of the tetrachoric correlation coefficient has been S

e

.

presented, s as follows:

i T
4 L ]
:‘i rx = gin 'g—_ad-_l£ (18) .'_:.
A y V/ad +/bc o
)
- ]
y where N ]
-; a=P=X,z2Y) .
j b=PzX)-a 4
] c=P=Y)-a "...-:‘
4 d=1-a~-b-~-c
2" The results of using this formula are shown in the parentheses (Table 2), for
.\' easy comparison vwith the results of applying a computerized approximation of
3]
3 the bivariate normal distribution. Since there is little or no significant differ-
2 ence in the results, Eq. (18) is favored because it is a simpler method for find-
ot ing the correlation coefficient (rxy).
-
-
L4
) Table 2. Bivariate Normal Distribution Estimates of (rcy), the Tetrachoric
S Correlation (Zero Time Lag) Between Ceiling and Visibility, at Several END
Wi Levels, for Bedford, Mass. Midnight Values. Figures in parentheseg were
obtained by using the model of Eq. (18), from Brooks and Carruthers
X
A P(=C) Month
j P(=V) END January April July October
- 0.6 0.25 0. 66 0.72 0. 47 0.40
- (0.67) (0.72) (0. 45) (0.39)
¥
s 0.7 0.53 0.78 0.78 0.50 0.40
] (0.76) (0.76) (0. 54) (0.40)
> 0.8 0.84 0.91 0.84 0.59 0. 84
(0.92) (0.88) (0. 65) (0. 84)
¥ 0.9 1.28 0.93 0.90 0. 80 0. 85
4 (0. 98) (0.89) (0.82) (0.89)
o
A
#
f Using the formula of Eq. (18), the tetrachoric correlation coefficient was
¥ found for the RU3SWO frequencies of ceiling (C) and visibility (V) and joint fre-
% quencies at Bedford, Mass., in January, at midnight and at 12 noon (Table 3).
) There are no entries for ceiling less than 2, 000 ft or for visibility less than 2
1} miles because the samples were too small to give meaningful figures.
L4
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Table 3. Non-Lag Tetrachoric Correlation Coefficients Between the END's of
Ceiling (C) and Visibility (V) at Bedford, Mass., in January, Derived From
RUSSWO Tables. In each box the upper figure is the midnight value, the lower
figure the noontime value

\' = 10 =6 =4 =2

0.592 0.735 0.831 0. 887

C P(=C) PEV) 0.623 0.746 0.818 0.884
= 30,000 0.507 0.64 0.72 0.81 0.82
0.445 0.78 0.89 0.94 1.00
= 10,000 0.597 0.70 0.76 0.84 0.84
0.599 0.80 0.87 0.94 1.00
= 5,000 0.684 0.75 0.82 0.86 0. 88
0.675 0.80 0.886 0.92 0.98
= 2,000 0.805 0.92 0.91 0.92 0.94
0.805 0.95 0.93 0.94 0. 97

Unfortunately, the tetrachoric correlation coefficient shows considerable
dependence on the specific values of ceiling and visibility, or alternatively on
the probabilities of the events. It can be expected that low ceilings and visibili-
ties will be highly correlated, both having low probabilities of occurrence. We
next examine this effect further.

6. TWO JOINT WEATHER SEQUENCES

By the procedure of Section 4, we are able to generate pairs of values of
END's, for example, one for ceiling and one for visibility. For practical pur-
poses these should be transformed into units of ceiling and visibility at one sta-
tion, or into the units of ceiling at two neighboring stations.

An END (y) can be transformed into its probability, 8 which is also the
probability of the original variable (X). Thus, using the notation P(=X) for the
cumulative probability of X, we are given (with 3-decimal accuracy):

2 3 4.4 "1
P(=X)=P(=y) =1 +m [2(1 + c ly] + c¥" + cgly" | + ¢,57)%)
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where

c, = 0. 196854 e

% 0.115194

Cq 0.000344

0.019527

4

£t =1, m=-1fory=0

1t =0, m=1fory<0 .

If the Burr curve1 is accepted as the model for the distribution of ceiling height
(C) then C is given by

he

C = cl1- p)"/b - 1]1/a (20)
where p = P(= C); a, b, and c are parameters. Bean et al1 give tables of values
for these three parameters to yield answers for ceiling heights in feet. het
If the Weibull distribution? is accepted as the model for visibility (V) then ::

V is given by ‘:‘-:.
o

. 1/8 S
ve[tma-n] @ o
where p = P(= V), and o and 3 are parameters. Somerville et al2 give tables of :-'-;::
values for these two parameters to yield visibility in miles. "'.':
The procedure for generating a stochastic sequence of joint events is linked

to the previously outlined procedure (Section 4) in the following order: '
At each step in the sequence, pairs of random normal numbers are selected _

and used with the known correlation coefficients for the determination of the g
END's {Eq. (7)]. Each END (y) is then transformed into the corresponding :-::i

probability p = P(= y) by Eq. (19). Then each p is transformed into the weather T e
element itself, into ceiling height by Eq. (20), or into visibility by Eq. (21).

The computer program is in Appendix C.
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7. MULTIPLE JOINT EVENTS IN A MARKOV PROCESS
\ The above derivation could be generalized for n weather elements in the
' form:
' ¥ =Zaij xj+bi- n fori=1,n (22)
¥ J
:‘ where the y's are the predictands and the x's are the predictors. Where Ai is a
\: column vector, A;r is a row vector of n coefficients:
Jd
. T .
N Al = (ail, Bigs cues ain) . (23) =
N Squaring Eq. (22) and taking expected values: ;
ey ...

= b, = Jl -A;r CA fori=1,n (24)

>

<!

3 where C is the matrix of correlation coefficients (rij) between the n predictors

. without lag:

: €= [Lirpge vy

N T21

' . . -
) . . (25)
- . .

Tn1’ > 1

-

¢

5 Eq. (22) represents n equations, each of the form
i

ai1x1+"'+ainxn+bini=yi fori=1,n . (26)

: : To solve for the n coefficients (ail’ ceas ain) we find n equations by multiplying
> Eq. (26) successively by Xpp eoes X and then taking expected values. This pro-
f: cedure introduces the correlation coefficients (ri.) between the predictors without
fa time lag, and the correlation coefficients (p ij) between the predictand (y,) and
x each of the predictors (xj. j = 1,n)., Thus the n equations become

N

-
'@

T 26

)}

=

A

Jl

.
- * ® . PR IR I A - - ~ . . - . T ™ n . . - -~ " a " . .t - Y N
Rl bakad aln 28w e ontn e wna Al a8 A8 [TVl TN Suir YO W VO AR AT W v




+ ~ =
31 Y2 T2 “inT1n T Pu1
+ + ...+ a, =
Bi1 721 T %2 %inT2n T Pi2 @7)
8101 T B2 Tn2 Yo T 84y TPy -
In matrix form:
CA. =R,
i i
to give A, = C*IR, @8)
where Ri is the column vector of the lag correlation coefficients between the -

predictand (y.) and each of the predictors (x.., ..., x. ). Thus,
i p il in

AR

SR

i
0
o,

. 29)

P
[
-
[

©
i b
’

)

.
o O

and ¢! is the inverse matrix of C,

cl=¢/lc) (30)

where |C| is the determinant of C, C is the adjoint matrix of C, that is, the
matrix of cofactors (pij)'

P .
Pij = (-1)1 J IMiJ.I 1=<i= n, (31)

1A
IA
=]

and Mij is the submatrix of order (n - 1) obtained by deleting the ith row and the ]
jth column of C.
After the a's are solved in terms of the correlation coefficients, and the b's
are solved by Eq. (24), there remains the problem of finding the interrelation of
the random components (ni) for use in Eq. (22), such that the a priori correlation p
coefficient between future values of ¥; is preserved. ""‘
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From Eq. (22):
i
o
e DMy = ¥ T 31% 00 Bin¥*n
'-‘
= =y, - -
= bj nj yj 8%y ajn X,
If hij is the correlation cuefficient between n; and " then
o )
o n n
bibihis = Ty D0 AucPt D0 B Pt X Bt 3 Tt (33)
k=1 k=1 k, 1
2
:j which defines the ( g ) correlation coefficients between the n's. [( g ) represents
-_7: the number of possible combinations of n things, taken two at a time.] To find
<.J values for n;s (j = 1,n), for use in Egs. (19), first choose n random, independent
':. numbers
o
N €.,i=1,n)
N i
4
2 The relations of the n's to the {'s are of the form:
5. + .00 F =
B @115 % “mSn =M
\.. 021§1+ +02n§n = Ny (34)
'1 an§1 + +anngn U
i
1
:2 The task, now, is to find suitable values for the a's. There are n2 values for
.:..‘.' the a's but only n + ( g ) equations are obtainable by setting En? = 1, and by
finding the ( g ) values of hij from Eq. (33). A certain arbitrariness, therefore,
o is preserved in assigning values to some of the a's.
For n = 2, or for only two weather elements, as seen previously, if we can
; seta,, =1, it follows:
A
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i ) 2 4
e ®22 = N1 "Ry 3
'_:'Q For n = 3, from Eq. (31), six equations can be written:
3
P 2 2 2
¢ ¥ =
N @pp tep teg T 1
2 2 2 _
& @91 Togp tagy =1
3 2 2 2
o + o + o =1
- 31 32 33
a2 (36)
g @11%1 T @yp %99 T 13953 = Ry
& @py @3y * gy @3y Tag3 33 = Mgy
¥ @31%11 " @32 %12 Y @33 %13 = B3y
< It‘oz11 = 1, then it follows thata(12 Tagq T 0, agy = h12’ @gq ® h31. Ifaz23 =0,
- then:
" . 2
~ ?22 "N 1 -Pypp
s @ = (b, = hy b )/ f1 - B2
32 23 12 731 12
) 2 2 2 2
- @33 = \/(1 hia” ~hp3” =hgy" ¥ 2hyp by hy )1 -hyp")
< to complete values for all nine o's.
b This aspect of time lapse simulation, of simultaneous sequences of three or
,. more interrelated weather conditions in an area, is not pursued further, in the
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belief that modeling the probability of fractional cover of areas of varying sizel®

will provide a more descriptive mechanism for simulation of multiple (= 3) condi-
tions.
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8. SAMPLE SEQUENCES OF TWO INTERRELATED WEATHER CONDITIONS

PSSO

L

8.1 A 48-h Sequence of Ceiling and Visibility

In temperate latitudes and continental regions, the hour-to-hour correla-

IR §

tion coefficient, in January, has been found to be approximately p~ = 0. 95 for
ceilings, Ay = 0. 92 for visibilities. 1 The correlation coefficients between
ceiling and visibility without time lag have been found to vary significantly with
the specific values of ceiling and visibility (Table 3). This effect on the simula-
tion process is examined in this section. Additionally, since the lag correlation . ;: “
coefficients between ceiling and visibility should be smaller than the non-lag .«.,f?:
correlation coefficients, it is desirable to see what happens when these lag s

correlation coefficients (pCV‘, pVC) are less than, or greater than, the values
given by the Whiton limitation (Eq. (16)].

Figure 7a shows the changes in END of ceiling height for 48 consecutive
hours. They were generated stochastically by use of the above equations, when
the intercorrelation (rcv) between ceiling and visibility was set at zero. That
is, ceiling and visibility are represented as changing independently of one
another. Figure 7Tb shows the corresponding changes of visibility. The dashed
lines on Figures 7a and 7b are based on Bedford, Mass. RUSSWO data for the
month of January. They indicate that, climatically speaking, ceiling is unlimited
about 50 percent of the time, and visibility is unlimited approximately 60 percent
of the time, varying little with time of day. As long as the END is greater than
that shown by the upper dashed line, ceiling or visibility is unlimited. The
imaginary sample of Figures 7a and 7b is such that the ceiling was virtually
unlimited throughout the 2 days, but visibility was frequently restricted to less
than 10 miles.

Figure 7c shows joint variations of ceiling and visibility when there is a
relatively small non-lag correlation coefficient of 0.4 between the END's of
ceiling and visibility and lag correlation coefficients of 0.34 and 0.35. They
were produced by the same random numbers as were used in Figures 7a and 7b.

Figures 8(a), 8(b), and 8(c) show a stochastic 48-h sequence of Bedford,
Mass., January ceiling and visibility when there was supposedly a non-lag
10. Gringorten, 1.1. (1979) Probability models of weather conditions occupying

a line or an area, J. Appl. Meteorol. 18(No. 8):957-977.

11. Gringorten, L.I. (1966) A stochastic model of the frequency and duration of
weather events, J. Appl. Meteorol. 5(No. 5):606-624.
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slightly less (o, = 0.3+ -, = 0.35). InFigure 8() lw lag coireiotion coet-
ficients were made slightly greater (pCV =Pyc =0 335). Ironicaily, the.ceiling
and visibility were coupled together most closely when the lag correlation coef-
ficients were the smallest, but this result was not consistently repeated in other
trials.

Figures 9{a), 9(b), and 9(c) show the 48-h sequence of Bedford, Mass.,
January ceiling and visibility, stochastically produced with the same random
numbers as in Figures 8(a), 8(b), and 8(c). This time there was supposedly a
non-lag correlation coefficient of 0. 95 between the END's of ceiling and visibility.
The lag correlation coefficients (p cv’ pVC) were as low as they could be, for
practical solution, in Figure 9(a). The Whiton values were used in Figure 9(b),
and relatively high values in Figure 9(c). It appears that the correlation coef-
ficient (rCV) between ceiling and visibility made its greatest difference on the
rare events, close to zero ceiling and/or zero visibility, when the intercorrela-
tion is, in fact, the highest.

Faced with an array of correlation coefficients, such as in Table 3, the
easiest single value to obtain is the average. In Table 3, the average is rey =
0. 86 with standard deviation 0.09. For

rey © 0. 86
Pey = (0.86)(0.92) = 0.791

(0. 86)(0. 96) = 0.826

Pvc
the stochastic generation of the sample sequence, with the same random numbers
as in Figures 8 and 9, produced the sequence in Figure 10.

The inference to be drawn, in the comparison of Figures 8, 9, and 10, is
that the average intercorrelation rey = 0. 86 is an acceptable compromise, to be
used instead of an assortment of values (Table 3). If, however, the non-lag
correlation coefficient (rCV) is reduced to a single value, then the lag correla-
tion coefficients (pCV’ Py C) also should be chosen for simplicity, thus the
Whiton assumption (Eqs. 16).

8.2 Simulation of a Two-Station 48-h Sequence of Sky Covers

Suppose that the requirement is to simulate time changes of sky cover at two
neighboring stations, like Boston and Bedford, Mass. in August when the diurnal

effect is large. Each autocorrelation, per hour is,
Oll = 022 = 0.95
Suppose the intercorrelation is high, as it probably is:

33

e

.
-
v



Do T 4 i LA St e AR N AP LA A S eEa S T SR s St e, R TR Bl
‘ -
~ 23
- J
o <4
ol
- o
! .
. < roy*095  pcy0872  pyc=0920 F 3
'8 30 rmsd =0.091 1415 & r
5 4
- 9 ] v.:
§ 7 20 1oz ]
- -
N Z 0 A5 3 N
<M ﬁ [ D J
) w \\”',\ a ! = o
.u‘\ [&] o . 'y A e > ."*
& 00 04 08 12 16 20 00 04 08 12 16 20 OO sl
(a) LOCAL TIME ;4
5 . "q
o - - N
2 z rey*095  pcy=0.874  p=0.9025 s od
" ® = -
s, ‘8 30 rmsd=0.104 115 €
o K <
:.; 20 1oz u
N S .
o 20 \ 45 o :
> = ""\\ ] a
=~ w s ] 2
N [&] 1 L L RN\ Y JRL R ap > |
. 00 04 08 12 6 20 00 04 08 12 16 20 OO )
N (b) LOCAL TIME
" S 1oy=095  poyt09I5  py 0915 T a
¥ 5 30 rmsd=0.029 115 € R
) 8 T -._-a
.~J' o 3 _‘-
; z 20 1o > o
% 2 2 =
N 510 [FAN 1°2
] \ A CE TP T YUOr S >
b~ 00 04 08 12 16 20 00 04 08 12 6 20 0O S
. (c) LOCAL TIME
.. Figure 9. Similar to Figure 8 With Stronger Intercorrelations "',.:-
A)
. T2 = 0.95 5
‘ P 1o = (0.95) (0.95) = 0.9025 =3
4 o
Pl = = R
: Pyy = (0.95)(0.95) = 0.9025 =
Somerville and Bean'? have provided values for the two parameters (o, B) in the e
_‘ S-distribution of the cumulative probability, F{x), of the sky cover x = 0.0(0. 1) !
N 1.0. The formula is -
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Fx)=1-(1-xPF . (37)

With the Somerville and Bean values used in the program (Appendix C), several
48-h sequences were obtained. Figure 11 depicts a close relationship of the two
sky covers that remain broken to overcast during most of the 2-day period,
yielding to scattered conditions during the most likely time of the evening.
Figure 12, with another sequence of random numbers, depicts clear to scattered
clouds in the first day, with the likely development of cloud in the afternoon.
Figure 12 also depicts a 10-h interval when the sky cover differed markedly
between stations. For the most part, however, the changes are concurrent.
Figures 11 and 12 should be compared with Figure 6. While Figures 11 and
12 give direct information on sky cover, the plot of Figure 6, on Normal
Probability Paper, enables us to plot the climatic frequencies for comparison
with the synoptic events. However, this is only a visual aid. For gaming
purposes, the direct amount of sky cover may be desired as the product of the

computer exercise.

9. DISCUSSION AND CONCLUSIONS

The simulation of a time sequence of changes of two interrelated variables
is accomplished by using generating equations, basically Eq. (7). The coef-
ficients (a's and b's) are determined in terms of correlation coefficients [Egs.
(12) and (13)]. The terms symbolized by r are the correlation coefficients
between the variables without time lag, those symbolized by p are correlation
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coefficients with time lag. The term Pec? for example, is the autocorreclation
of ceiling with itself in time lag 1 h.

Unfortunately the correlation coefficients, lag correlations, or intercorrela-
tions between variables, are not readily available, especially between END's,
Special studies, using the hourly sequences of many years (10 or more) in each
month need to be undertaken, to find such correlation coefficients. A measure
of the intercorrelation, without time lag, between ceiling and visibility is obtain-
able from a RUSSWO.

1 published hour-to-hour autocorrelations of END's for ceilings,

Gringorten
visibilities and other weather elements at Minneapolis, Minn. (Table 4). There
were two estimates for each correlation; the first estimate was best for the
duration of the weather element above a certain minimum, the second estimate
was best for the duration of the weather element below a certain maximum.
Generally speaking, the hour-to-hour correlation coefficient was higher for
ceiling than for visibility. Other studies have indicated higher autocorrelation
in winter than in summer although the figures for Minneapolis, Minn. do not
support this conclusion. A "best" a priori approximation for hour-to-hour cor-

relation is estimated to be 0. 95.

Table 4. Estimates of Hour-to-Hour Autocorrelations of END's for Ceil-
ings and Visibilities at Minneapolis, Minn., in Four Mid-Season Months

Element Month
January April July October
Ceiling 0.95 0. 96 0.90 0.96
0. 95 0. 97 0. 92 0. 97
Visibility 0. 90 0. 92 0.90 0. 92
0. 94 0.95 0.95 0.95

Table 2 supports previous conclusions that correlation coefficients are lower
in summer than in winter. Tables 2 and 3 reveal a regrettable dependence of
the tetrachoric correlation coefficient on the measure of the ceiling and visibility.
An overall average correlation coefficient, however, works well, to stochastical-
ly generate a sequence of values of two interrelated variables. Additionally, a
time lapse simulation is well served by the Whiton estimates [Eqs. (16)}] of lag
correlations.
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k.

) Procedure to Generate a Simulated Sequence of
END’s in an O-U Process
-
¢ Step 0. Begin with an arbitrary initial END, [y(t)]. Choose a value for the basic

i time interval (6t hours). Fix on the parameter: Relaxation Time ( T hours).

Decide on the size, or the number of END-values in sequence (N). e
2 Find o
N
‘N -
< 4 ..

o p = exp (-6t/T) L

N .

Initialize n = 0. .
N Step 1. Forn =0, N-1 %

v Increase n by 1. Use Subroutine (A) to find a random normal number, K

i -
% nit + 6t). s
N Find o
. \‘ .i.:
: ylt+6t) =p - y(t) + Jl -0% . e+ ov) ':?::‘-
o R
bl If n <N, replace y(t) with y(t + 6t) and repeat Step 1.

! If n = N, the sequence is completed. -
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Subroutine A: For generating a random normal number.
(Note: This is only a simple suggested routine. There are others that are
better.)

Step A. Begin with an arbitrary random number (0 < Xy = 1) or the last number
in the memory.
SetJ = 12

.= 0.
X

Step B. Forj=o0, J-1
Increase j by 1

x, = G, +m8 int CAE

: A A

A

3 Add x, to ¥ x.

= Mo 2

- If j < J replace Xia1 with xj, and repeat Step B

For j = J, find n(t + 6t) = ij-G

RETURN to Step 1.

T

int is the integral part of a number, for example, int (12.375) = 12
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Appendix B

Procedure to Generate a Simulated Sequence of Two
Interrelated END’s (y1, y2) in a Markov Process

Step 0. Assign:

The non-lag correlation coefficient between Yy and Yoi Ty

The autocorrelation between yl(t) and yl(t + 6t): P11

The lag correlation coefficient between yl(t) and y, (t +6t): p 12

The lag correlation coefficient betwcen y, (t) and yl(t + 5t): Paq
The autocorrelation between y, (t) and y, {t + 6t): o,

Choose a value for the time interval: 4t
Decide on the number of, pairs (yl,yz) in sequence: N,
Find:

(2

n

a

IRt L T LA T

a9 =Py, - rip e V- rio

g1 7 g =g Pl 1 =1 ")

99 = (922 STy 012)/(1 - T

) 2 2 . E
hl'\/l Py *ogy” = 2ryp )/ (-1 %)
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e
=N 2 2 2

= - + - -

( by \/1 gy * Py 2.r12021922)/(1 rig’)

4 -
", h = [rp1 - ayqapy - a5y ) = (g8, *aj5895)1/byby

M .
::q Begin with an arbitrary pair of initial random END's: yl(O). Yo 0). 1
!

= Initialize n = 0 ]

<4

S Step 1. For n =0, N-1 s
- h
.A: Increase n by 1. : ]
58 i
i Use subroutine (A) to find a random normal number: n,(t + &t) T
- Use subroutine (A) to find a random normal number: n%(t + 6t). .;.41‘
B Find:
nz(t +6t)=h- nl(t +o6t) + 1 - n? . nzl(t + 6t) ~_<'_Z_~

._3 Find: ?:«;
2 7
- yl(t+ 6t) = aj, - yl(t) tag, - Yo (t) + b, - nl(t+ &t) 1
3 -]
(t+6t) = a, -y +a,, « y, (&) +b, - n(t+st) o
} p) 21° Y1 22 ° Y2 2" M P
A - -]
e If n <N, replace y,{t) with y (t + 6t) e
Yo (t) with Yy (t + 5t) and repeat Step 1. "_-t X
If n = N, the sequence is completed. ;b;
4 Rex
p Subroutine A: For generating a random normal number (the same as in Appendix e
» A). -]
v
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Appendix C

Procedure to Generate a Simulated Sequence of Two Inter-
relatad Weather Elements (X4, X3) in a Markov Process

Step 0. (Same as in Appendix B)

Step 1. Forn =0, N-1
Increase n by 1.
Find a random normal number: nl(t + 6t)

Find a random normal number: n21 (t + 6t).

Find:
Myt +8t) = h - n (t+6t)+ \/1 -b? -+ nle+ v
-+ = . + . .
yl(t 6t) a5, yl(t) a5, Yo (t) + by nl(t+ 6t)
Yyt + 6t) = ag, * yl(t) tag, t Yalth by - mylt+6t) .

Step 2. Use Subroutine (B) to find the probability (pl) corresponding to yl(t + 6t)
Use Subroutine (B) to find the probability (p,) corresponding to y, (t + 6t)
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( Find the hour of the day (L): —
N L = 24 {tra (n/24)} T ‘]
) 2,:
:::;: Find the hourly group (g): o
-« d v .
5L g = int(L/S)TT a
Use Subroutine (C) to find Xl(t + 6t) corresponding to Py b
" l:"
::. . Use Subroutine (D) to find X, (t + 6t) corresponding to Py
r ) .
-::: If n <N, replace y (t) with y, (t + 6t) -
O .-
2 replace y, (t) with Yo (t + 6t) and repeat Steps 1,2. :..4
o If n = N, the sequence is completed. ;!
:-°‘ Subroutine A: For generating a random normal number (the same as in Appendix :“ij
N A). R
e =4
Bt e Subroutine B: For transforming an END (y) into probability, p = P(< y) -

" Assign:
f:_.'; ¢, =0.196 854
XN cy = 0.115 194
e
oo cg = 0.000 344
~ Cq = 0.019 527
';;E Sett=1, m=-1fory=0 X
CaX] -
T Set£=0, m=1fory <O0. 3
3 2 3 44171 5
Findp=!+m{2(1+clly|+02y +c3|y |+c4y) } g
%
20 RETURN, o]
A‘s -
.;:-" Subroutine C: For ceiling height (C), given P (= C) :
A
Find, from computer memory, the values a, b, c¢ for the hourly group (g).
5] Where p = P(= C)
:5-:
:;-’ Find
P §-‘
i) C=c[(1-p)l/b - 1] l/a
-
-:._1 RETURN or alternative.
i S —
==ls Ttra is the fractional part of a number, for example, fra(12.375) = 0.375
:r_‘: Tint is the integral part of a number, for example, int(12.375) = 12 4
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Subroutine C: For cloud cover (x), given P(= x)
Find, from computer memory, the values «, f for the hourly group (g)
Where p = P(= x)
Find
x=[1 - -p)l/B]l/a

RETURN.,

Subroutine D: For visibility (V) given P(= V)
Find, from computer memory, the values a, 8 for the hourly group (g)
Where p = P(=x V)

Find

V=|:al-!n (lip:] e

RETURN, or alternative.

Subroutine D: For cloud cover (same as for Subroutine C for cloud cover).
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