
1D-fli33 999 TIME LAPSE SIMULATION OFINTERRELATED WEATHER
CONDITIONS(U) AIR FORCE GEOPHYSICS LAB HANSCOM AFB MR
I I GRINGORTEN 20 MAY 83 AFGL-TR-83-0141

UNCLRSSIFIED F/G 4/2 NL

EMELhE|h|hiImEEEEEElhhhhEE
ElhlhElhhhhhEE
EEELl



111118 II5
. ; a -T--- -.. ; o.............. ,.... .. , . .-.. *-. -,. ,,.- .. ,, S -' - .. ,, , '_! . '.'.*,'. . . ".':e" , ',',,-

o_-m

1IIIIIL----  L -

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS-1963-A



AFGL-TR-83-0141
ENVIRONMENTAL RESEARCH PAPERS, NO. 839

[ Time Lapse Simulation of Interrelated

• Weather Conditions

44 IRVING I. GRINGORTEN

DTIC
S E LECTE

20 May 1983 OCT 2 5 W j

B

Approved for public rlease; distribution unlimited.

.4i

METEOROLOGY DIVISION PROJECT 6670

AIR FORCE GEOPHYSICS LABORATORY
HANSCOM AF1, MASSACHUSETTS 01731

AIR FORCE SYSTEMS COMMAND, USAF

83 I0 24 046

r



7W. 7. 7 7.

TU* report has been reviewed by the ESD Public Affairs Office (PA) and
In releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and Is approved for publication

FOR THE COMMANDER

0130 .BT A. McCLATCHEY
C ilef, Tropospheric Structure Branch Director, Meteorology Division

QualUied requestors may obtain additional copies from the Defense Technical -
lUfacmtion Cemter. All others should apply to the National Technical
lmftemtlon service.

"4

If your address has changed, or if you wish to be removed from the mailing
lst, or if the addressee Is no longer employed by your organization, please
notify AVCL/DAA, Hanscom Afl, MA 01731. This will assist us in maintaining a
current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

l..'° 1



Uneliassifiod-
SECURITY CLASSIFICATION OF TIS P-AGE (ften D08,80a.d

REPORT DOCUMENTATION PAGE ______________________

1.RNTNUMIUR GOVT ACCESION40. ECPEN' CATALOG UMBER:1 ~~AFGL-TR-83-01411DA04 cc,
4. TITLE (ind 111"Ne.) S. TYPE OF REPORT A PERIOD COVERED

INTERRELATED WEATHER CONDITIONS Sinii. Itrm
.46. PERFORMING 01G. REPORT mNgUMBEI

7. AUTUOR(s) a. CONTRAO.RATNMB9~

Irving 1. Gringorten_ _ _ __1

9. PERFORMING ORGANIZATION NAME AND ADORESS 0M PRGA LMN.POET. TASK
Air Force Geophysics Laboratory (LYT) ARE 0 2OI at UNfte .ITZ NUMBER.S

Hanscom AFB 62101F
Massachusetts 01731 66700910

11. CONTROLLING OFFICE NME AND ADDRESS IS. REPORT DATE

Air Force Geophysics Laboratory (LYT) 20 May 1983
Hanscom AFB Is. NUMIER of, PAGES

Maksachusetts 0731 46
I.MITORING AGENCY MAEaADESS(II dH~f I front Cotroingd Officeo) IS. SECURITY CLASS. (of this repoit)

Unclassified
IS.. DEC ASFIC ATI OI/DOWN GRAING

1S. DISTRIBUTOON STATEMEINT (.1 this Repair)

Approved for public release; distribution unlimited.

17. DISTRIDUTION STATEMENT (of th abstract eted in. Stock 20, It different INOr Ral)

Ill. SUPPLEMENTARY NOTES

19. KEY WORDS (Cafttimmiet onft~&* side It nocaew mid Idmtfr by bloch nuinbet)

Ceiling and visibility Climatic probability
Cloud cover Markov process
Simulation
Time sequence

20. ABISTRACT (C.........on.......side It neo..wvr mid idffiitf by block rnmibe) 4

-Formulas or algorithms have been developed for the joint occurrence of
two Interrelated events changing simultaneously in a Markov time sequence.
The model process is particularly applicable to a changing combination of
ceiling and visibility at one station, or to the changing combination of cloud
cover at two adjacent stations. A brief examination of the time sequence of
three simultaneous events reveals a rapidly increasing complication of
solution, making an alternative study of a real coverage of weather conditions
more acceptable when more than two variables are involved.

DO ', O. 7 1473 EDITION OF I NOV 651 ISO8SOLETE UcasfeI SECURITY CLASSIFICATION Of THIS PAGE (ft. Datale o.0o



°.°.

Ioo,

Preface
/--

. This paper has been prompted by the need, in war games, for a stochastic

model of the sequence of weather conditions as they might impinge on air/ground

combat operations. Such a time sequence of weather, including ceiling, visibility,

and cloud cover, for one or more stations, has been perceived as inadequately

modeled, so far.

The present work is based on previously developed sequences in the Ornstein-

Uhenbeck process. Joint sequenc s call for amoi ton but still basically

comprise a Markov process. - -" ' / L"'

The effort described in this paper has been both encouraged and critically

reviewed by Branch Chief, Donald D. Grantham, Tropospheric Structure Branch,

Meteorology Division. The writer is grateful to his Branch peers for helpful

,0 suggestions. The author also wishes to express his appreciation to Mrs. Helen

I Connell for her cooperation in typing several drafts of the text and tables for this

report.
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Time Lapse Simulation of
Interrelated Weather Conditions

1. INTRODUCTION

Climatic records give the frequencies of weather elements such as ceiling and

visibility, showing the cyclic variations with time of day and season of the year.

Weather records of hourly observations provide sequences of events or of temporal

changes of ceiling and visibility. However. there is a need for simulation of these

events as a stochastic process that takes into account such attributes of the weather

as the association of the visibility with the ceiling and the degree of persistence of

both elements from hour to hour.

Figure 1 is a graphical record of actual Boston ceiling and visibility from

midnight (Z), 22 Dec 1982 to midnight (Z) 48 h later. The first day was cloudless

and clear, with both ceiling and visibility "unlimited." On the second day clouds

moved in, the ceiling lowered, and visibility decreased.

Figure 2 shows the same information for the ceiling on normal probability

paper. There are several advantages in plotting the sequence of cloud ceilings on

Figure 2 rather than Figure 1. The dashed lines in Figure 2 show the climatic

cumulative frequencies throughout the day of ceilings from 500 ft to above 30. 000 ft.

This graph provides the additional information that the low ceilings of 500 ft or less

have an a priori probability of 2 to 3 percent in December, which is roughly for

20 h during the month. Likewise, Figure 3 shows the climatic frequencies for

(Received for publication 19 May 1983)
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Figure 1. The Hourly Sequence of Ceiling Height and Visi-
bility at Boston, Mass., From 1900 EST, 21 Dec 1982 to
1900 EST, 23 Dec 1982
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Figure 2. The Hourly Sequence of Ceiling Height at Boston,
Mass., From 1900 EST, 21 Dec 1982 to 1900 EST, 23 Dec
1982. Dashed lines give the climatic frequencies of ceiling
as a function of time of day
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Figure 3. The Hourly Sequence of Visibility at Boston,
Mass., From 1900 EST, 21 Dec 1982 to 1900 EST, 23 Dec
1982. Thin dashed lines give the climatic frequencies of
visibility as a function of time of day

visibility, in comparison with the actual sequence during the 2-day period. As

may be seen in subsequent examples in this paper, an improvement or a deteriora-

tion in the . eiling and visibility could be a function of the time of day.

The kind of record just described is not readily available. Even if it were,

using it in tests to provide a realistic sequence of events would still be difficult.

During a period as long as 50 years, many meteorological situations arise, yet

they do not exhaust all the possibilities.

This report presents a stochastic procedure for simulating the changes over

time in ceiling and visibility that are characteristic of a real climate. It is

assumed that the changes in ceiling and visibility are a Markov process (as de-

scribed in Section 3). There is a significant correlation between present ceiling

and present visibility. When there is a time lag between the observations of

ceiling and visibility, the correlation coefficient is reduced. The effect is explored

in this report.

11
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2. EQUIVALENT NORMAL DEVIATES (END)

Many weather elements, such as ceiling and visibility, have distributions that

are difficult to treat statistically. Ceiling frequencies are usually given in terms

of categories of height above the ground, and there is usually a substantial prob-

ability of occurrence of "unlimited" ceiling; that is, clear sky or scattered clouds.

Modeling, however, has been reasonably successful. Bean et al have used Burr

curves for the cumulative distribution of ceiling heights in the form

F(x)=1- I1+ ( a, b, c>0 ()

where x is ceiling height. in feet or meters, F(x) is the cumulative probability of

ceiling equal to, or less than, x, and a, b, and c are model parameters estimated

to provide the best least squares fit. For Bedford, Mass., for example, in

January, from 12 to 14 LST, the values, as given by Bean, are

a = 1. 16779

b = 0. 192682

c = 1000

which give the solid curve plotted in Figure 4. The RUSSWO informat' n on the

cumulative frequencies of ceiling height are shown (by x's) on Figure 4. The

model fits well, but requires some caution in application, because unless it is the

right tool for the problem, the answer it gives might be misleading. For example,

the ceiling is unlimited with an observed frequency of 0. 445. This is comparable

to the formula estimate of probability of ceiling above 32, 000 ft. Ceiling less than .-

100 ft should be categorized with a probability of 0. 005.

Visibility frequencies, likewise, have been fitted by an idealized model.

Somerville et al 2 use the Weibull distribution to give the cumulative probability .-

of visibility (x) as

F(x) = 1- exp (.Ox) (2)

• RUSSWO stands for "Revised Uniform Summaries of Surface Weather Obser-
vations," published by USAF Environmental Technical Application Center for
several hundred stations around the world.

1. Bean, S.J., Somerville, P. N., and Heuser, M. (1979) Some Models for
Ceiling, Scientific Report No. 7, Contract F19628-77-C-0080, AD A078033.

2. Somerville, P. N., Bean, S.J., and Falls, F. (1979) Some Models for Vis-
ibilit, Scientific Report No. 3, Contract F19628-77-C-0080, AD A075490.
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Figure 4. The Cumulative Climatic Frequency
of Ceiling Height at Bedford, Mass., in the
Month of January, 12-14 EST. The X's mark
the frequencies as given in RUSSWO tables.
The solid line is the "best" model fit by a Burr
curve

where a and i are parameters. For Bedford, Mass., in January, from 12 to 14
LST, the values are:

a 0. 06906

0.818r,

which give the curve as plotted in Figure 5. The RUSSWO data again reveal that
the model fits well, but visibility less than 1/4 mile should be categorized with a
probability of 2 percent. Visibility greater than 10 miles should be categorized

with a probability of 62 percent.

Any probability F(x) as given in Eq. (1) or (2), corresponds to an equivalent
normal deviate (END), symbolized by y(0, 1). The latter is a variable with

Gaussian distribution, mean value of 0, and standard deviation 1.0. Symbolically,

.- 5
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Figure 5. The Cumulative Climatic Fre-
quency of Visibility at Bedford, Mass.,* in
the Month of January, 12-14 EST. The X's
mark the RUSSWO frequencies. The solid
curve is the "best" model fit by a Weibul
distribution

F~x 1 y 2
F~~x) exp - 2 -- dy(3

1 2

* which thus defines the END (y). The latter is implicitly found for each x.
-, 3To a highly satisfactory approximation, (error < 0. 003)

a 0 + alt

where

ao = 2. 30753

a 1 = 0. 27061

3. NBS (1964) Handbook of Mathematical Functions. Applied Mathematics Series.
No. 55, Go-vernment Printing Office, Washington. D. C.

14



bi = 0. 99229

b2 = 0.04481
2

and

k 1 , t = In when p =Fix) :5 1/2 "'2

p-

g r or (4) "la

k =-l,t tIIn 1 2) when p =F(x) > 1/2 -

• ",(1 - p')

A scale of END, (y) appears alongside the scale of F(x) in both Figures 4 and 5.

In this report, ceiling height and visibility are modeled in terms of ENDs
because they have varying averages and medians throughout the day, and will have

generally uneven distributions. But the END of the ceiling or visibility will have"

a symmetrical Gaussian distribution with a constant mean or median of zero. In .

~~Figure 3 it can be seen how, for example, visibility less than 5 miles has varying i

probability throughout the day. The END varies directly with this probability.

Correlations in this paper are found between the END's of ceilings at differing

times of day, or between the END's of ceiling and visibility, with or without time

- lag.

3. THE ORNSTEIN.UHLENBECK (O-U) PROCESS

A Markov process is defined as "a stochastic process such that the conditional

probability distribution for the state at any future instant, given the present state,
". -4is unaffected by any additional knowledge of the past history of the system".

The Ornstein-Uhlenbeck (O-U) process is one kind of Markov process in which

"". the value at a future instant t + 6t, of a normally distributed variable y is linearly

" related to the value at the present instant t, and the correlation coefficient between

present and future values decays exponentially with the time interval 6t between

them. Mathematically, this may be stated as follows:

t*" 4. Kendall, M. G., and Buckland, W. R. (1971) A Dictionary of Statistical Terms,

lafnnr Publishing Co., New York.
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y(t + 6t) =P •y(t) + r- 2 (t + 6t) (5) ..

where the correlation coefficient p is given by

p = exp(-6t/) (6)

where T is a parameter with the dimension of time, named the Relaxation Time," '5 6
by Keilson and Ross, and described by Gringorten. The random number rn is

normally distributed and is the random contribution to the process of change.

A time sequence of y's at regular intervals (6t), generated by the model of

Eq. (5), will simulate the conditions of a weather element in terms of its END.

A step-by-step program to accomplish this is given in Appendix A.

Figure 6a was drawn for a relaxation time T of 20 h, which corresponds to a

realistic hour-to-hour correlation coefficient of 0.95. Figure 6a presents the

simulation of sky cover for a partly cloudy to overcast 48-h period. The dashed

lines show climatic frequencies of clear, scattered, broken and overcast through-

out a day in August at Bedford, Mass., deliberately chosen because of a large
". diurnal effect. Figure 6b illustrates a sequence in which serial correlation is

weaker (0. 82) with T = 5 h. Still, with this much persistence an overcast might

remain, with few breaks, for 20 h. There is a clearing at the most likely time of

the 24-h period. Figure 6c illustrates a sequence in which serial correlation is

stronger (0. 98) with T = 50 h. Finally, Figure 6d illustrates a sequence in which
hour-to-hour correlation is reduced virtually to zero, with T 0. 1 h, producing

rapid changes and short periods of all sky-cover conditions.

5. Keilson, J., and Ross, 1. F, (1979) Gaussian Markov Related Variates for
Meteorological Planning, Final Report, Contract F19628-78-C -0158,
AD A081382.

6. Gringorten, 1. 1. (1982) The Keilson-Ross Procedure for astimating Climatic
Probabilities of Duration of Weather Conditions, AFGL-TR-82-Ollf,
AD A119860.
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Figure 6a. Simulation of a 48-h Sequence 6
of END's in an 0-U Stochastic Process,
With a 20-h Relaxation Time. The dashed
lines show climatic frequencies of clear,* scattered, broken, and overcast through-
out a day in August at Bedford, Mass.
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4. TWO END'S IN A JOINT MARKOV PROCESS

The above procedure gives a time lapse simulation of a single weather ele-

ment. The next task is to provide the algorithms for time lapse simulation of two

elements that are interrelated. Two such weather conditions (Xi, X. may be the

two sky covers at two neighboring stations, or they may be ceiling and visibility

at one station. WVhat ever they be, in this paper they are represented by their

END's (.v.), each of whose means is zero, standard deviation 1. 0, and whose

probability distribution is Gaussian.

'rhe two END's, y (t) and yjt) cot-responding to the two events (X. X.) at time

Mt are subject to change in the time interval (6t0 in a Markov process, given as

follows:

y1(t + 60t= a~ Mt + a . Mt + b. . .(t + 6 t)

(7)

y j(t + 60t= a. y.(t) + a..j y.(tM + b. . rj(t + 6 t)

where ni,. r~ are normally distributed and random, except for their interrelation-

4 ship. The a's are partial regression coefficients and the b's are of such magni-

tude that the normality of y, y. is preserved. The a's and b's need to be deter-

mined in terms of correlation coefficients, which are derivable from the

climatology of the station or stations.
*1 Because of the normality of the END's the correlation coefficients, by

a'* definition, are:

r i E~y.(t) y.j(t0] =E[y.(t + 6t0 y(t +601

where the symbol E[ ]denotes the expected value of the quantity in brackets, and

r. is the correlation coefficient between the elements without time lag. For time13
lag (6t0:

NPui E [y 1 (t) yi(t + SO]

p1 t= E [yi(t) .yj(t + t0t]

4 ,

= E[y ()M y1 (t + 60j

Ejj y.jtM y.j(t +bt)] (9)

19
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Also, the variances are:

2 2 2= 2 L.

E1. EY E Y1 E3

The mean and variance of each END do not vary with time.

From Eqs. (7) and (8), after squaring both sides of each equation:

=2 2 2a. + a. + 2a. a.j r.. + b.

1=a2 + a. + a.. a.. r + b2  (10)

The derivation of these equations takes advantage of the fact that ni and n j are

obtained independently of yiandy
Again, from Eqs. (7) and (9):

p = aj, +ajj rij

pj = i ri. + a.j

p.. a.. r.. + a.. 11

Solving for the a's:

ii (Pi 1j

2

aI 12 211 l ' I

2
a. j (p.. -p.. r..)/(l r..) (12)

F romi Kq. (10):

b. 1 1,- 2 a.a.. r..}(3

2.

20
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There remains the question of the interrelation of the stochastically produced

values, Y1(t + 60 and Y~j(t + 60. Symbolizing the correlation coefficient between

them as h, we find from Eq. (7):

bib • h E Eyi(t + 60 aii. Yi(t) aij yj(t)

{y.(t + 60 - a.. yi(t) - jj yj(t)

Hence,

h= (rij(1 -aia - a a.i -(a.. a. + aj ajj) }/b b. (14)
13 31ii J 11 31 13 3

If two random, normal numbers Yi.(t + 6t), r(t + 60 are selected, then:

2

7.(t + 6t) = h Yli(t + At) + 1 -h 2  I (t + 6t) (15)
3 3

Thus, all the values are obtainable for the solution of Eq. (7) if the correlation
coefficients are provided. By substitution of y1 (t + 60, yj(t + 60 for yi(t), yj(t)

the equations can be solved for the next pair of yi and y.. By such iteration, the
j

simulation of a joint sequence of values of yi, Yj is obtainable. The computer

programming of this process is given in Appendix B.
7

A variation of the above solution was obtained by Maj. R. C. Whiton at

USAF/ETAC, Scott AFB, Ill. Whereas Eq. (7) presupposes that the later value

of each of the ceiling and visibility is dependent on both the previous ceiling and

the previous visibility, Whiton's equation for the later ceiling assumed its

dependence on the current ceiling, but not on the current visibility; likewise for

the later visibility. Thus the process of change in either ceiling or visibility

satisfies the definition of an O-U process. This is equivalent to setting the lag - -

correlation equal to the product:

pij = rj pjj

-- i r .. • i (16)

Whiton's simplification will often prove effective. However, for generality it

might be better to avoid this assumption and let the climatic data provide numbers

for pij, pji. Some sources of the correlation coefficients art- given and discussed

in the following sections.

7. Whiton, R.C. (1982) Environmental Simulation Modeling, AWS/ETAC,. "
Scott AFB, Ill.
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5. E.IMATING CORRELATION COEFFICIENTS BETWEEN CEILING AND VISIBILITY

A measure of the intercorrelation, without time lag, between ceiling and

visibility is obtainable from a RUSSWO. Table 1, for example, presents the

joint probabilities (P(: C, _V)), as interpolated from the RUSSWO tables for

Bedford. MA, midnight. in January, April. July, and October. The probabili-

ties, as selected, are the same, in pairs, for ceiling and for visibility. The

corresponding END's are also shown in Table 1. "Tables of the Bivariate Normal

Distribution" 8 (NBS, 1957) make it possible to find, by interpolation, the inter-

correlation coefficient (p), given the probabilities P(a C), P(Z V), or their

END's, together with their joint probability P(-t C, 2V). Correlation that is

estimated from these probabilities is known as tetrachoric correlation.

Table 1. Estimates of the Joint Cumulative Probability of Ceiling, P(- C),
. and Visibility, P(V), at Bedford, Mass., at Midnight. The conditions of

ceiling and visibility are those corresponding to their percentiles: 60, 70,
80, and 90 percent

P(_ C) Month

P(--V) END January April July October

0.6 0.25 0.47 0.48 0.43 0.42

0.7 0.53 0.60 0.60 0. 56 0.54

0.8 0.84 0.75 0.74 0.70 0.73

0.9 1.28 0.88 0.86 0.85 0.86

A computerized solution of the intercorrelation coefficient may be found to

satisfy the relation upon which the NBS tables are based:

. 2 + 2 2 rT ".
2 21 3oO/ 2(1 -p"

P(_x, -y) = - " f e 1-2) d• dr 7 (17)

x y

Programming such an equation on a desk-top computer is difficult and provides

only approximate solutions. The computer operation is slo, because it requires

trial-and-error iterations.

8. NBS (1957) Tables of the Bivariate Normal Distribution Function, Applied
Mathematics Series, No. 50, Government Printing Office, Washington, D.C.

9. Brooks, C. E. P., and Carruthers, N. (1953) Handbook of Statistical Methods
in Meteorology, Her Majesty's Stationery Office, London.
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A reasonable estimate of the tetrachoric correlation coefficient has been
9presented, as follows:

rxy sin L(18)
/d.b

where

a = P( X, L- Y)

b P(2 X) a

c P(2! Y) -a

d= 1-a-b-c

The results of using this formula are shown in the parentheses (Table 2), for

easy comparison with the results of applying a computerized approximation of

the bivariate normal distribution. Since there is little or no significant differ-

ence in the results, Eq. (18) is favored because it is a simpler method for find-
ing the correlation coefficient (r

xy

Table 2. Bivariate Normal Distribution Estimates of (rcI, the Tetrachoric
Correlation (Zero Time Lag) Between Ceiling and Visibility, atSeveral END
Levels, for Bedford, Mass. Midnight Values. Figures in parenthese were
obtained by using the model of Eq. (18), from Brooks and Carruthers9

I'm

P( C) Month

P(_V) END January April July October

0.6 0.25 0.66 0.72 0.47 0.40
(0.67) (0.72) (0.45) (0.39) 7,7

0.7 0.53 0.78 0.78 0.50 0.40
(0.76) (0.76) (0.54) (0.40)

0.8 0.84 0.91 0.84 0.59 0.84
(0.92) (0.88) (0.65) (0.84)

0.9 1.28 0.93 0.90 0.80 0.85
(0.98) (0.89) (0.82) (0.89)

Using the formula of Eq. (18), the tetrachoric correlation coefficient was

found for the RUSSWO frequencies of ceiling (C) and visibility (V) and joint fre-

quencies at Bedford, Mass., in January, at midnight and at 12 noon (Table 3).
* There are no entries for ceiling less than 2, 000 ft or for visibility less than 2

miles because the samples were too small to give meaningful figures.
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Table 3. Non-Lag Tetrachoric Correlation Coefficients Between the END's of -

Ceiling (C) and Visibility (V) at Bedford, Mass., in January, Derived From
RUSSWO Tables. In each box the upper figure is the midnight value, the lower
figure the noontime value

V l10 6 2t 4 2 2

0.592 0.735 0.831 0.887
C P(2 C) P(2t V) 0.623 0.746 0.818 0.884

__ 30, 000 0.507 0.64 0.72 0.81 0.82

0.445 0.78 0.89 0.94 1.00

2! 10,000 0.597 0.70 0.76 0.84 0.84

0.599 0.80 0.87 0.94 1.00

--! 5,000 0.684 0.75 0.82 0.86 0.88

0.675 0.80 0.86 0.92 0.98

> 2, 000 0.805 0.92 0.91 0.92 0.94

0.805 0.95 0.93 0.94 0.97

Unfortunately, the tetrachoric correlation coefficient shows considerable

dependence on the specific values of ceiling and visibility, or alternatively on

the probabilities of the events. It can be expected that low ceilings and visibili-

ties will be highly correlated, both having low probabilities of occurrence. We

next examine this effect further.

6. TWO JOINT WEATHER SEQUENCES

By the procedure of Section 4, we are able to generate pairs of values of
END's, for example, one for ceiling and one for visibility. For practical pur-
poses these should be transformed into units of ceiling and visibility at one sta-

tion, or into the units of ceiling at two neighboring stations.

An END (y) can be transformed into its probability, which is also the

probability of the original variable (X). Thus, using the notation P(S X) for the

cumulative probability of X, we are given (with 3-decimal accuracy):

P(--X) = P(S y) I + m [2(1 + cllyj + c 2 y2 + c3 y
3 1 + c4y

4)4]- (19)
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where

c 0. 196854

c = 0.115194
2

c= . 000344

c= 0.019527

f = 1, m = -1 for y > 0

f 0 m =I fory<O

If the Burr curve is accepted as the model for the distribution of ceiling height

(C) then C is given by

1/a
S p)-/b (20)

where p = P( C); a, b, and c are parameters. Bean et alI give tables of values

for these three parameters to yield answers for ceiling heights in feet.

If the Weibull distribution is accepted as the model for visibility (V) then

V is given by

V= [ n (1 - p) (21)

2
where p = P(C V), and a and 1 are parameters. Somerville et al give tables of

values for these two parameters to yield visibility in miles.

The procedure for generating a stochastic sequence of joint events is linked

to the previously outlined procedure (Section 4) in the following order:

At each step in the sequence, pairs of random normal numbers are selected

and used with the known correlation coefficients for the determination of the

END's [Eq. (7)]. Each END (y) is then transformed into the corresponding

probability p = P(-> y) by Eq. (19). Then each p is transformed into the weather

element itself, into ceiling height by Eq. (20), or into visibility by Eq. (21).
The computer program is in Appendix C.
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7. MULTIPLE JOINT EVENTS IN A MARKOV PROCESS

The above derivation could be generalized for n weather elements in the

form:

Yi z E a x + b i I i  for i l.n (22)

where the y's are the predictands and the x's are the predictors. Where A. is a
T.column vector, A. is a row vector of n coefficients:

T (3
A. (a a a) (23)

il i2'"'* in

Squaring Eq. (22) and taking expected values:

b, = 1- A C A for i n (24)
1- 1

where C is the matrix of correlation coefficients (rij) between the n predictors

without lag:

C = 1[ , r1. .. rin .

12' ~ri
(25)

Lrnl , '

Eq. (22) represents n equations, each of the form

a. x + +. ~a x + b. y forii1, n .(26)
il 1 in n = 1 Y.

To solve for the n coefficients (all ... , a. ) we find n equations by multiplying

• " Eq. (26) successively by x 1 , ... I x and then taking expected values. This pro-

cedure introduces the correlation coefficients (rij) between the predictors without
.4 time lag, and the correlation coefficients (P..) between the predictand (yi) and

each of the predictors (x., j 1,n). Thus the n equations become

2(,

2'S.
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ail + ai2 r 12 '+ in In il'

a1 1 r 2 1 +a + "'" +an r 2 n Pi2 (27)

al rnl+ ai2 rn2 +... + ain = in

In matrix form:

CA. = R.

to give A =C- 1 R. (28)

where R. is the column vector of the lag correlation coefficients between the

predictand (yi) and each of the predictors (xil ..... ). Thus,

= Oil 
''

(29)

n.

and C 1 is the inverse matrix of C(

c-  / c , (30) -

where CI is the determinant of C, C is the adjoint matrix of C, that is, the

matrix of cofactors (p..)

" I~~~~~i + j  I Mij( ):-
1)1 = ( 3- n, )j n ,

and Mij is the submatrix of order (n - 1) obtained by deleting the ith row and the

jth column of C.
After the a's are solved in terms of the correlation coefficients, and the b's

are solved by Eq. (24), there remains the problem of finding the interrelation of

the random components (ri) for use in Eq. (22), such that the a priori correlation

coefficient between future values of Yi is preserved.

A27,..: '

'-4°

is2 -
" A. .. -.



From Eq. (22):

If f
J""~ bi rli -- Yi -ailXl ""-a. n ..

(32)

Sbj Y = yj = ax I -ajn x n

If hij is the correlation coefficient between ni and nj then

n n

bibh = rij" aik 9jk- a Pik
+  a k a r

k=l k=l k, f

whch dfine theI n2) correlation coefficients between the rl's. 2)represents.-_

which defines the 2nente. 2rpeet

the number of possible combinations of n things, taken two at a time. I To find

values for 1 j, (j = 1, n), for use in Eqs. (19), first choose n random, independent

numbers

( " i ln)

The relations of the 's to the 's are of the form:

a 1 + "+ a l-
11 1 In n 1

a + + a n2 (34)

a n 1 nn n n

The task, now, is to find suitable values for the a's. There are n2 values forare obanal hbettingusfo

the a's but only n + equations are obtainable by setting En = 1, and by

finding the ( n ) values of hij from Eq. (33). A certain arbitrariness, therefore,

is preserved in assigning values to some of the a's.

For n = 2, or for only two weather elements, as seen previously, if we can

setall 1, it follows:

S28 -



a 12  0

h- (35)021 =  12 (5

0 2 2 = 1 -h 1 2
2

For n 3, from Eq. (31), six equations can be written:

2 + a122 +a 12
11 12 13 1

2 2 2
+ 4 a +a =

a% +a +a322

2 2 2

"" 11 21+012 022 +13 23 =  12

•a: + + h2,? 21 31 022 032 23 33 = 23

, 3 1 1 1 + 3 2 a 1 2 + 3 3 1 3 = h31

Ifa11 = 1, then itfollows thata 12 = 13 = 0, a2 1 =h 1 2 a 3 1 =h 3 1  Ifa 2 3 =0,

then:

a 2 2  1-h 12
2

032 (h2 3 - h 1 2 h 3 1 ) 12

1 2 2 2+ 2
"33 4 h12 2 3  h 3 1  12 31 12

.7,

to complete values for all nine a's.

This aspect of time lapse simulation, of simultaneous sequences of three or

more interrelated weather conditions in an area, is not pursued further, in the

29
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belief that modeling the probability of fractional cover of areas of varying size1 0

will provide a more descriptive mechanism for simulation of multiple (2- 3) condi-

tions.

%8. SAMPLE SEQUENCES OF TWO INTERRELATED WEATHER CONDITIONS

8.1 A 48-h Sequence of Ceiling and Visibility

In temperate latitudes and continental regions, the hour-to-hour correla-

tion coefficient, in January, has been found to be approximately PCC = 0. 95 for
11 •,

ceilings, Pvv = 0. 92 for visibilities. The correlation coefficients between

ceiling and visibility without time lag have been found to vary significantly with

the specific values of ceiling and visibility (Table 3). This effect on the simula-

tion process is examined in this section. Additionally, since the lag correlation

coefficients between ceiling and visibility should be smaller than the non-lag

correlation coefficients, it is desirable to see what happens when these lag

correlation coefficients (Pcv, PVC ) are less than, or greater than, the values

given by the Whiton limitation [Eq. (16)].
Figure 7a shows the changes in END of ceiling height for 48 consecutive

hours. They were generated stochastically by use of the above equations, when

the intercorrelation (rcv) between ceiling and visibility was set at zero. That

is, ceiling and visibility are represented as changing independently of one

another. Figure 7b shows the corresponding changes of visibility. The dashed

lines on Figures 7a and 7b are based on Bedford, Mass. RUSSWO data for the

month of January. They indicate that, climatically speaking, ceiling is unlimited

about 50 percent of the time, and visibility is unlimited approximately 60 percent

of the time, varying little with time of day. As long as the END is greater than

that shown by the upper dashed line, ceiling or visibility is unlimited. The

imaginary sample of Figures 7a and 7b is such that the ceiling was virtually

unlimited throughout the 2 days, but visibility was frequently restricted to less

than 10 miles.
Figure 7c shows joint variations of ceiling and visibility when there is a

relatively small non-lag correlation coefficient of 0. 4 between the END's of

ceiling and visibility and lag correlation coefficients of 0. 34 and 0. 35. They

were produced by the same random numbers as were used in Figures 7a and 7b.

Figures 8(a), 8(b), and 8(c) show a stochastic 48-h sequence of Bedford,
Mass., January ceiling and visibility when there was supposedly a non-lag

10. Gringorten, 1.1. (1979) Probability models of weather conditions occupying
a line or an area, J. Appl. Meteorol. 18(No. 8):957-977.

11. Gringorten, I. I. (1966) A stochastic model of the frequency and duration of
weather events, J. Appl. Meteorol. 5(No. 5):606-624.
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Figure 7a. Simulation of END's of Figure 7b. Simulation of VisibilityCeiling Heights in a 48-h Sequence, in a 48-h Sequence, When There isWhen There is Zero Correlation Zero Correlation With Ceiling (rCViWith Visibility (rCV = 0). Dashed 0). Dashed lines show climaticlines show climatic frequencies of frequencies of visibility at Bedford,ceiling heights at Bedford, Mass. Mass. in January. Autocorrela-4in January. Hour-to-hour autocor- tions are as in Figure 7a
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Figure 7 c. Simulation of Ceiling (Sol-
id Curve) and Visibility (Broken
Curve) When the Intercorrelation is
rC-V = 0.4 Without Lag, pCV 0. 34,

pC=0.35 With I-h Lag. Lines for
th climatic frequencies are omitted;
they would be identical to those in
Figures 7a and 7b
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Figure 8. Simulation of a 48-h Sequence of Ceiling (Solid
Curves) and Visibility (Dashed Curves), When Autocor-
relations are 0. 95 and 0. 92, Inter correlations as Shown.
The curves are intended to simulate Bedford, Mass. Jan-
uary ceilings and visibilities

correlation coefficient (rCV of 0. 4 between their END's. The auto correlations

were the same as in Figure 7 (pCC = 0. 95, PV 2 0. 92). The ceiling and visibil-

ity, in Figure 8 are plotted directly in feet and miles by the method of Appendix

C. In Figure 8(b) the curves were generated when the lag correlation coefficients

were made subject to the Whiton limitation, and given by Eq. (16), thus (P~
0. 368, pV = 0. 38). In Figure 8(a) the lag correlation coefficients were made
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slightly less (p = 0.34 ( -- 0.35). In FigUrC 8(1) ) lag ,-ti - 'on coef-

ficients were made .lightly grd2ater (Pcv = PVC 0. 3,). Tronicaiv, the-ceiling

and visibility were coupled together most closely when the lag correlation coef-

ficients were the smallest, but this result was not consistently repeated in other
'.: trials.

Figures 9(a), 9(b), and 9(c) show the 48-h sequence of Bedford, Mass.,

January ceiling and visibility, stochastically produced with the same random

numbers as in Figures 8(a), 8(b), and 8(c). This time there was supposedly a

non-lag correlation coefficient of 0. 95 between the END's of ceiling and visibility.

The lag correlation coefficients (OCV, PVC) were as low as they could be, for

practical solution, in Figure 9(a). The Whiton values were used in Figure 9(b),

and relatively high values in Figure 9(c). It appears that the correlation coef-

ficient (rv) between ceiling and visibility made its greatest difference on the

rare events, close to zero ceiling and/or zero visibility, when the intercorrela-

tion is, in fact, the highest. e.

Faced with an array of correlation coefficients, such as in Table 3, the

easiest single value to obtain is the average. In Table 3, the average is rV =

0. 86 with standard deviation 0. 09. For

rCV = 0.86

PCT f= (0. 86)(0. 92) = 0.791

PVC = (0. 86)(0. 96) = 0. 826

the stochastic generation of the sample sequence, with the same random numbers '"
0

as in Figures 8 and 9, produced the sequence in Figure 10.

The inference to be drawn, in the comparison of Figures 8, 9, and 10, is

that the average intercorrelation rCV = 0. 86 is an acceptable compromise, to be

used instead of an assortment of values (Table 3). If, however, the non-lag

correlation coefficient (rcv) is reduced to a single value, then the lag correla-

tion coefficients (P also should be chosen for simplicity, thus the

Whiton assumption (Eqs. 16).

8.2 Simulation of a Two-Station 48-h Sequence of Sky Covers

Suppose that the requirement is to simulate time changes of sky cover at two

neighboring stations, like Boston and Bedford, Mass. in August when the diurnal

effect is large. Each autocorrelation, per hour is,

P 0. 95

Suppose the intercorrelation is high, as it probably is:
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Figure 9. Similar to Figure 8 With Stronger Inter correlations

r 1 2 =0.95

p = v(0.95) (0.c95) 0. 9025

p 1 = (0. 95)(0. 95) 0. 9025

Somerville and Bean 1 2 have provided values for the two parameters (a,.~ in the

S -distribution of the cumulative probability, F W), of the sky cover x r.0. 0 (0. 1)

1.0. The formula is

12. Somerville, P. N., and Bean, S. J. (1979) A New Model for Sky Cover
Scientific Report No. 5, Contract F19628-77-C-0080, AD 078368.
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Figure 10. Similar to Figure 8 With Average Inter correlations

'a..

F(x)1 Q .x) (37)

With the Somerville and Bean values used in the program (Appendix C), several

48-h sequenc s were obtained. Figure 11 depicts a close relationship of the two

sky covers that remain broken to overcast during most of the 2 -day period,

* yielding to scattered conditions during the most likely time of the evening.

Figure 12, with another sequence of random numbers, depicts clear to scattered

clouds in the first day, with the likely development of cloud in the afternoon.

Figure 12 also depicts a 10-h interval when the sky cover differed markedly

between stations. For the most part, however, the changes are concurrent.
Figures 11 and 12 should be compared with Figure 6. While Figures 11 and

12 give direct information on sky cover, the plot of Figure 6, on Normal

Probability Paper, enables us to plot the climatic frequencies for comparison

with the synoptic events. However, this is only a visual aid. For gaming

purposes, the direct amount of sky cover may be desired as the product of the

computer exercise.

9. DISCUSSION AND CONCLUSIONS

The simulation of a time sequence of changes of two interrelated variables

is accomplished by using generating equations, basically Eq. (7). The coef-

ficients (s and bs) are determined in terms of correlation coefficients Eq .

(12) and (13) . The terms symbolized by r are the correlation coefficients
between the variables without time lag, those symbolized by p are correlation
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Figure 12. A Second Stochastic Sky-Cover Simulation.
Conditions are the same as in Figure 11
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coefficients with time lag. The term P cc' for example, is the autocorrelation

of ceiling with itself in time lag I h.

Unfortunately the correlation coefficients, lag correlations, or intercorrela-

tions between variables, are not readily available, especially between END's.

Special studies, using the hourly sequences of many years (10 or more) in each

month need to be undertaken, to find such correlation coefficients. A measure

of the intercorrelation, without time lag, between ceiling and visibility is obtain-
able from a RUSSWO.

Gringorten I published hour-to-hour autocorrelations of END's for ceilings,
visibilities and other weather elements at Minneapolis, Minn. (Table 4). There
were two estimates for each correlation; the first estimate was best for the

duration of the weather element above a certain minimum, the second estimate

was best for the duration of the weather element below a certain maximum.
Generally speaking, the hour-to-hour correlation coefficient was higher for

ceiling than for visibility. Other studies have indicated higher autocorrelation

in winter than in summer although the figures for Minneapolis, Minn. do not

support this conclusion. A "best" a priori approximation for hour-to-hour cor-

relation is estimated to be 0.95.

Table 4. Estimates of Hour-to-Hour Autocorrelations of END's for Ceil-
ings and Visibilities at Minneapolis, Minn., in Four Mid-Season Months

Element Month

January April July October

Ceiling 0. 95 0. 96 0. 90 0. 96
0.95 0.97 0.92 0.97

Visibility 0.90 0.92 0.90 0.92
0.94 0.95 0.95 0.95

Table 2 supports previous conclusions that correlation coefficients are lower

in summer than in winter. Tables 2 and 3 reveal a regrettable dependence of
the tetrachoric correlation coefficient on the measure of the ceiling and visibility.

.4i An overall average correlation coefficient, however, works well, to stochastical-

ly generate a sequence of values of two interrelated variables. Additionally, a

time lapse simulation is well served by the Whiton estimates [Eqs. (16)1 of lag

correlations.

..
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Appendix A
Proceure to Generate a Simulated Sequence of

END's I in 0 -U Procm

Step 0. Begin with an arbitrary initial END, [y(t)1. Choose a value for the basic
time interval (Ot hours). Fix on the parameter: Relaxation Time (T hours).
Decide on the size, or the number of END-values in sequence (.
Find

p exp (-6 t/ T

Initialize n 0.

Step 1. For nO=, N-1

Increase n by 1. Use Subroutine (A) to find a random normal number,

?7(t + 6t0.

Find

y(t +6t) p y(t) + r)p~ (t +6t0

If n < N. replace y(t) with y(t + 6t0 and repeat Step 1.
If n N, the sequence is completed.

41
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Subroutine A: For generating a random normal number.
(Note: This is only a simple suggested routine. There are others that are

better.)

Step A. Begin with an arbitrary random number (0 S x0 1 1) or the last number

in the memory.

Set J = 12

Qx. 0.
3

Step B. For j 0, J-1

Increase j by 1

xj = (xji + 8  intt (x + i)8
3 j-l i

Add x. to _ x.
3 J

If j < J replace x j_ 1 with x , and repeat Step B

For j = J, find Y(t + 6t) = x. - 6

RETURN to Step 1.

tmit is the integral part of a number, for example, int (12. 375) 12

42
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iZ Appendix B
Procedure to Generate a Simulated Sequence of Two

Interrelated END's (yl, Y2) in a Markov Process

Step 0. Assign:

The non-lag correlation coefficient between y1and y2  r12

The autocorrelation between y 1 (t) and y1 (t + 6t0: p 1 1

The lag correlation coefficient between y,(t) andy(t+t)p 2

The lag correlation coefficient betwrLen y(t) and y 1 (t + 6t0:P 2

The autocorrelation between y(t) and Y2 (t + 6 t): 2

Choose a value for the time interval: 6t

Decide on the number of; pairs (y 1 .y 2) in sequence: N.

Find:

1 2
a11  P 1 1 - 1 2 P2 )1 '12

a12 =p 2 1 - 1 2  11 /( - 12)

a l -p r11 p~9 -/ 2r 1  1 ~/(
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b 2 ji 2 2 + p2
2 2 2r 2p2 p22 )/(1 - r12

2)

h - [r 12 (1 - aIIa2 2 - a12a2 1) - (a1 1 a 2 1 +a2a22)]/b1b 2

Begin with an arbitrary pair of initial random END's: yl(O). Y2 (0).

Initialize n = 0

Step i. For n = 0, N-1

Increase n by 1.

Use subroutine (A) to find a random normal number: n1 (t + 6t)

Use subroutine (A) to find a random normal number: rj1 (t + 6t).2

• , Find:

)2 (t + 6t) = h n(+ at) + 1 h 27 at)

Find:

Yl( t) = yl(t) + a1 2  y2 (t) +b 1 7 n(t +6t),
° .

Y2 (t+at) = a21 yl(t)+ a 2 2 • Y2 (t)+b 2  112 (t+6t)

If n < N, replace y1 (t) with y,(t + at)

Y2 (t) with y2 (t + 6t) and repeat Step 1.

If n N, the sequence is completed.

Subroutine A: For generating a random normal number (the same as in Appendix

A).
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Appendix C
Procedure to Glenerate a Simulated Sequence of Two Inter-

* .~ related Wenther Elements (XI. X2) in a Markov Procem

Step 0. (Same as in Appendix B)

Stepi1. For n =0, N-1
Increase n by 1.
Find a random normal number: in1 (t +6t0

Find a random normal number: inl(t + Ot0.
4.2

Find:

2 (t+6t)=h- 4 ~ ~ (+6t)+ -(t6

yi (t + 6t0 = a 1 1  y1 (t) + a 1 2 *y 2 (t) + bi * Y1 t + 60)

y2 (t + 60z a 2 1  y I(t) +a 2 2 *y 2 (t) +b 2 * ) t t

Step 2. Use Subroutine (B) to find the probability (p,) corresponding to y,(t + 60)

Use Subroutine (B) to find the probability (P2 ) corresponding to y2 (t + 60)-
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Find the hour of the day Ll:

L a 24 1 fra (n/24)1 t

Find the hourly group (g):

p g = int(L/3)tt

Use Subroutine (C) to find X (t + 60 corresponding to p,

Use Subroutine (D) to find X2 (t + 60 corresponding to P2

V. If n < N, replace yl(t) with yl(t + 6t)

replace Y2 (t) with Y2 (t + 6t) and repeat Steps 1,2.
Y2*

If n = N, the sequence is completed.

Subroutine A: For generating a random normal number (the same as in Appendix

A).

Subroutine B: For transforming an END (y) into probability, p = P(KS y)

Assign:

c= 0.196 854

c2 = 0. 115 194

c3 =0.000 344

c = 0.019 527

Set = m = -1 for y 0

Set I = 0, m = 1 for y <0.
Fid1+ {(+cII c 2 Y2 +c 3ily3I+c 4 y4) 4 }1j:
Find p = I +M 201+ cll1YI+ cy2+ '3--" 4 4 -

RETURN.

Subroutine C: For ceiling height (C), given P (= C)

Find, from computer memory, the values a, b, c for the hourly group (g).

* Where p = P(- C)

5,'." Find

C = c ( )/b 1/a

RETURN or alternative.

tfra is the fractional part of a number, for example, fra(12. 375) = 0. 375

"int is the integral part of a number, for example, int(12. 375) 12

4 .
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Subroutine C: For cloud cover W,) given KS~ x)

Find, from computer memory, the values a, 13for the hourly group (g)

Where p =P(:5 x)

Find

x 1)1/0 ] Ila

RETURN.

Subroutine D: For visibility () given P( V)

Find, from computer memory, the values a, 0 for the hourly group (g)

Where p = P(-- V)

Find

V n_--,

RETURN, or alternative.

Subroutine D: For cloud cover (same as for Subroutine C for cloud cover).
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