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1. Introduction

Computational Fluid Dynamics (CFD) is capable of treating realistically

complex aerodynamic problems. Prior to the mid-70's the main emphasis of

CFD research was the development of numerical methods for solving the various

governing equations of fluid dynamics. These include the potential flow

approximation, Euler equations and Navier-Stokes. As 1980 approached,

generalized coordinate transformations were developed which led to appli-

cation of these algorithms to arbitrary geometries. The practical

limitations for treating such geometries lie in the ability to generate

a suitable grid, computer storage and computer speed capabilities. A

reasonable approach to consider is a modular one wherein a general flow-

field is considered to consist of a global scale and one or many local

subdomains. In the subdomains more accurate grid resolution and/or

equations may be required to resolve flowfield details. The issues to

address then become how such calculations may be done in an accurate,

efficient and manageable way.

2. Research Objectives and Tasks

The overall objective of the research sponsored by this grant is the

development of solution algorithms for complex flowfields using procedures

that take account of, recognize, and couple interacting subdomains. This

objective recognizes that a discrete mathematics approach makes it possible

to include, alter, and/or discard physical and geometric descriptions on

a local basis, and that frequently no purpose is served in retaining an

inefficient "complete" description. The local scale phenomena should

then provide equivalently accurate contributions to a global scale

description.

The effort is divided into separate considerations of flowfields with

non-adaptive or adaptive embedded subdomains. The research tasks are

concerned with both the decisions as to the allowable, necessary and

realistic subdivisions, and the implied changes that must be made to the

usually uniform application of a computational algorithm across a global

field. In each case the background working algorithm has been a con-

servative, finite volume, multilevel method (Ni - AIAA J. Vol 20, No. 11)

applied to the compressible flow equations. Detailed descriptions of

* i - ~ '. .... ...
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the research performed during the past year are given in Appendices A and

B. However, we summarize in the next two sections the scope and principal

findings of this research.

3. Summary of Task 1 - Nonadaptive Embedded Subdomains

The solution of the two-dimensional Euler equations for flows past air-

foils was considered in this task. Although some preliminary investigations

considered simplified geometries, the reported results are for the NACA

0012, the RAE 2822 and the KOMG 1 airfoil geometries. A body conforming

0-type grid has been used for all calculations to date. The first stage

of the research considered the solution of the flowfield on a single global

grid. This corresponds to the traditional approach. The second stage of

the research then considered one or more embedded subdomains. The sub-

domains have the same topology as the global domains, but a finer resolution.

There are many significant findings which are discussed in detail in Appendix

A and are sum~arized here. For the single global grid studies we found

. The computed value of the lift coefficient is strongly influenced by

the far field boundary condition when the location of the outer boundary

is at five to ten chords. If the far field effect of a vortex is included,

the lift is accurate to a few percent, while if it is omitted the lift is

in error by 20%.

" Total pressure loss is a sensitive measure of computational error.

" A characteristics type treatment of solid wall and far field inflow

and outflow boundaries was satisfactory.

. When the mesh skewness at the boundary was large, significant total

pressure errors were observed.

Refined meshes generally led to improved accuracy except at the

trailing edge.

* Various treatments of the Kutta condition were tried. The easiest

and most versatile approach is to use no special treatment. This finding

is in agreement with previous results but is not yet well understood.

For the embedded mesh studies the significant findings are

Embedded mesh calculations have been found to give the accuracy of

a globally refined grid if the embedded mesh is positioned "where the

action is."
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o No errors or computational stability problems were encountered

when the discrete equations at the interface were developed consistent with

" the basic global solver. This was not found to be a difficult problem.

* The rate of convergence of the calculations with embedded meshes was

found to be essentially the same as the single global grid. In some in-

stances it was even better. This is perhaps the most surprising result of

the research.

• The structure of the computational data base may be effectively

treated using a pointer system similar to a connectivity array of finite

element methods. This replaces the traditional i,j subscript notation

and well ordered arrays of finite difference methods. There is a storage

penalty for this approach, but conservative estimates indicate a significant

net reduction in storage using embedded meshes.

The net reduction of computational work for a given accuracy is

significant using the embedded meshes,

" Cases with shock waves crossing the embedded mesh boundaries have

been computed without difficulty.

" The procedure as currently constructed is not easily vectorizable

for supercomputers. There are, however, various approaches for vector

application which will be considered during the next year.

4. Summary of Task II - Adaptive Embedded Subdomains

Traditional adaptive grid approaches consider a fixed number of grid

lines in each coordinate direction and a redistribution scheme based on

achieving a uniform local truncation error. The current research con-

siders a fixed global description with increasingly refined embedded

regions. This is a fundamentally different approach which has required

a fresh consideration of adaptive grid or adaptive equation methods. The

scope of work for this first year of research has been to consider the

general approach of adaptive subdomains and to perform computations on

some test problems. The results are fully described in Appendix B and

are summarized here. In considering the general approach to embedded

subdomains the following concepts have evolved.

* The concept of a feature is introduced as a region in the flowfield

which delineates dominant physics that is siqnificantly different in scale,

--4 strength or orientation from the surrounding flow (e.g. shocks, vortices,

shear layers).I
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A A search of the flowfield using a suitable criteria generates

feature points.

" Feature points need to be clustered or grouped so they may be

treated as a subdomain.

. The pointer system describing the data base structure permits the

adaptive subdomains to be effectively treated in the computations.

0 if the feature has a significantly smaller scale than the global

scale it may be considered to be collapsible. It then may be replaced by

a jump condition (shock), a singularity (vortex) or an altered boundary

condition (displacement thickness) for example.

* Embedded region edges do affect the rate at which multilevel

schemes accelerate convergence.

. A good criteria for whether the embedded subdomain needs to be

more accurately modeled is the convergence of global parameters (lift,

drag, etc) with increasing refinement.

The above concepts have been implemented in several test calculations

using the one-dimensional Euler equation for variable area ducts and a two-

dimensional scalar convection-diffusion (Burgers) equation, significant

findings include:

For the one-dimensional duct calculations, adaptive subdomains

(or sub-intervals) adequately found and resolved shock features. Savings

in computational time, including all the overhead of the adaptive algorithm,

were found to be a factor of 2-3 for the test problem. Greater efficiencies

can be anticipated for more interesting problems.

For the two-dimensional problem a viscous shear layerlike feature

oriented at 45* to the grid was adaptively resolved. Similar savings in

computer time were realized. The importance of consistent treatment at

the domain interfaces was observed.

The work to date indicates that additional studies should be

continued leading up to a realistic two-dimensional compressible flow

problem.
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Embedded Mesh Solutions Of The Euler
Equation Using A Multiple-grid Method

-illiam J. Usab, Jr. A
Earli M. Murman *A

Department of Aeronautics and Astronautics,
Massachusetts Institute of Technology

Cambridge, MA 02139

ABSTRACT

A computational procedure using a multiple-grid method
with embedded mesh regions is developed for solving the two
dimensional Euler equations. A pointer system is used to
define the general multiple grid structure. The required
boundary conditions and global/embedded interface conditions
are described. Results are presented for two dimensional
subsonic and transonic airfoils using embedded meshes to
resolve flow details in the leading edge, trailing edge, and
shock regions. The present method is shown to retain the
global coarse mesh convergence rates while gaining the flow
resolution in embedded regions of a correspondingly globally
refined mesh. Through the use of embedded meshes the total
storage and computational work is significantly reduced over
that of a equivalent global refinement.

INTRODUCTION

Recent algorithm developments of Ni (ref. 1), Jameson,
Schmidt, and Turkel (ref. 2), and Rizzi (ref. 3) have
demonstrated that it is now possible to obtain solutions of the
Euler equations for many problems with practical computing
times. Extending these methods to more difficult flows and
increasingly complex geometries reduces to a problem of
generating optimal grid distributions with hiah grid resolution
where required while minimizing unnecessary points and arid
generated numerical error. Currently this grid problem is
handled by developing better grid generators or, for very
complex geometries, throuah the use of patching techncuec
(ref. 4). In the latter approach, the domain is subdivided
into simple subdomains which are patched together through
special boundary conditions (ref. 5).

An attractive approach to complex geometries is to recast
the problem in the frame work of a multiple-grid structurc.
The multiple-grid structure consists of a relatively crude
global grid covering the entire solution domain, and any number

A Research Assistant, Member AIAA.
A Professor, Associate Fellow AIAA.
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of embedded local grids providing adequate resolution of local
flow features. Furthermore, the discrete equations represented
on this grid are solved as a simultaneous system rather than as
patched regions with interfacing boundary conditions. In the
present work, this is accomplished using Ni's multiple-grid
algorithm. Such an approach has been suggested by Brandt (ref.
6) for elliptic type equations solved by multigrid methods. It
was implemented by Brown (ref. 7) for the transonic potential
equation. However the multiple-grid structure given here
presents the first step towards a completely general modular
approach to solving the complete compressible flow problems.
In this modular approach any number of local subdomains might
be used where higher resolution, local grid systems, or special
equation sets are needed. A modular approach of this type has
the advantage of being easily adaptable from one problem to
another and also computationally efficient for steady state
calculations if advantage is taken of the multiple-grid
algorithm for accelerated convergence.

This paper represents the initial step towards this goal
through solutions of the two dimensional Euler equations on a
multiple-grid structure with one or more embedded mesh regions.
A more detailed discussion of the results presented herein may
be found in reference 8. The solution algorithm is an
extension of the multiple-grid scheme for the Euler equations
presented by Ni (ref. 1). This multi-grid type algorithm
lends itself to the multiple-grid structure suggested above.
Storage is kept to a minimum since the required information is
only stored once for each mesh point on the finest level. In
order to extend this scheme to completely general grid
structures the solution algorithm must be separated from the
grid structure. That is, the organization of the computational
data base, comprised of the variables at node points, must not
be determined by the solution algorithm. This has been
accomplished through the development of a pointer system which
defines the grid structure. The usual subscripted index
notation (iJ) of finite difference procedures is replaced bv a
single numerical subscript to identify mesh points. The
pointer system is very similar to the connectivity array which
is used to define general finite element systems. Boundary
conditions and their location, which also vary from problem to
problem, must likewise be defined in this pointer system. With
the grid-structure defined through a pointer system, a general
solver may now be written in terms of these pointers. This
separation of grid structure from the solver is the key to
creation of a general modular approach to problems.

The present paper is concerned with the solution of the
Euler equations. Johnson (ref. 9) has demonstrated that Ni's
multiple-grid accelerator is easily extendable to the Reynolds
averaged Navier-Stokes equation. The present authors, in an
unpublished pilot study, also drew the same conclusion. It is
felt that the multiple-grid structure method given herein
should prove to be an attractive algorithm for Navier-Stokes

2
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calculations.

In the sections which follow, the governing equations
will be defined followed by review of the basic Ni scheme. The
conditions used at farfield and solid wall boundaries are
described together with the Kutta condition. The extension to
embedded mesh regions is then made through formulation of
proper cell integrations at embedded mesh boundaries. Finally,
with the general solver formulated, the pointer system which
directs the solver is presented.

The results demonstrate the multiple-grid structure
method and its flexibility for several two dimensional
subsonic and transonic airfoil problems. In these cases.
embedded mesh regions have been used to resolve flow details i.,
the leading edge, trailing edge and shock regions. In order to
achieve equivalent resolution using other methods, global grid
refinement would be required leading to substantially larger
computer storage requirements and lengthier calculations.

GOVERNING EQUATIONS

The two dimensional Euler equations for inviscid flow may
be written in conservation form for a cartesian coordinate
system as

U + F + G =0 (la)
t x y

where

I pl Ipu I pv I
U = I pu g F = I puu + p g G = I puv I (lb)

I pv I I puv I I pvv + p I
I e I I Puho  I I pvho I

in terms of density p, cartesian (x,y) velocity components
(u,v), and total internal energy per unit volume e. The
pressure p and total enthalpy ho  are then defined for a
perfect gas as

p = (y - 1)E e - 0.5 P ( uu + vv )3 (2)

h o = ( e + p )/p

where Y is the ratio of specific heats.

By use of the divergence theorem the governing equation
may be written in integral form as

UffU dA = fF,G).n dS (3)

Approximation of this equation leads to a finite volume method

3
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in conservation form.

BASIC MULTIPLE-GRID METHOD

The Ni multiple-grid algorithm is composed of two parts.
The first part is a single step explicit Lax-Hendroff type time
marching solver which is used on the solution mesh. To
illustrate the basic Ni algorithm, the solution mesh is
considered to be comprised of a single global grid called the
level h mesh. The second part is a coarse mesh accelerator
which operates on residuals transferred from the solution mesh
to one or more progressively coarser grids. The key to both
parts of Ni's multiple-grid scheme is the formulation of the
discrete equations in terms of a control volume integration of
the governing equations over each grid cell. The sum of this
control volume integration, which may be called the cell
residual or change, is then transferred to the surrounding grid
points by way of a "distribution" formula. The resultingformulae for the corrections to grid point variables is
equivalent to a standard Lax-Wendroff time step at each grid

point.

It is not the intent of the paper to rederive the Ni
formulation which is clearly presented in ref. 1. Rather, for
completeness, the final formulation of the multiple-grid method
will be briefly outlined for a general nonorthoqonal grid
system. In the present presentation, both the basic solver and
the coarse mesh accelerator will be expressed in a cell
reference frame using numerical values for grid points, cell
centers, etc.. The reason for this choice of reference frame
will become clear with the description of the pointer system in
a later section.

The fine mesh solver beginsnith the initialization of
all grid point corrections ( SU=U -U ) to zero. Then, cell
by cell the following control volume flux balance and
distribution are performed for each cell. For the typical cell
shown in figure 1 this involves the following 4 steps.

STEP 1: Finite volume approximation

AU f Cell Residual
c

4
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-(At/AV)( E0.5(F +F H(y-y )-0.5(G +G )(z-x )3 (4a)

-EO.5(F +F H(y -y )-O.5(G +G )(x -x )3
3 4 3 4 3 4 3 4

+CO.5(G +G )(x -x )-O.5(F +F H(y -y )3

-EO.5(G +G M(x -x )-0.5(F +F )(y -y MJ
2 3 3 2 2 3 3 2

where

AV =-0.5E (x -x H(y -y )-(x -x )Hy -y ) 3 (4b)
3 1 4 2 42 3 1

This step is a discrete approximation to the governing integralI equation on a cell volume whose shape is invariant with time.

STEP 2: Distribution formulae

6U= 6U +O0.25E AU - Af - Ag 3 (5a)
1 1 c c c

6U) = 6U +O0.25E AU - Af + Ag 3
2 2 c c c

6U = 6U +O0.25C AU + Af + Ag 3
3 3 c c c

6U = 6U +O0.251 AU + Af - Ag 3
4 4 c c c

where

Af (At/ AV )[ A F Ay -AG Ax 3 15b)
c c c

m m
Ag =(At/ AV )E A G Ax AF Ay 3

c c c

and

A F = (a F1 U ) AU (5c)
c c c

A G = (G/IaU ) AU
c c c

x 4, w
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I
Ax - 0.25( x + x - - z

2 3 1 4

1

Ay - 0.25( y + y - y - y
2 3 1 4

Ax a 0.25( x + x - z - z

m 
3 4 1 2

Ay = 0.25( y + y - y - y
3 4 1 2

U = 0.25( U + U + U + U
c 1 2 3 4

This step "distributes" the cell residual of step I
proportionally to the solution grid points resulting in a
Lax-Wendroff type formulation of the grid point correction
equations. Expressed in this form, the numerical signal
propagation phenomena appears similar in nature to
characteristics propagation (ref. 1). In this distribution
formula (3 F/U )c and ( G/aU )c are the Jacobian matrices
evaluated at the cell center in terms of U . As Ni points
out, a significant number of operations can be c saved if A F
and AG are directly formulated in terms of AUC and U C
before coding.

STEP 3: Smoothing formulation

6U = 6 U + 0.25 PE U -U 3 (6)
1 1 c 1

6U = 6U + 0.25 1CU -U J
2 2 c 2

6U = 6U + 0.25 PE U -U 3
3 3 c 3

6U = 6U + 0.25 PE U -U 3
4 4 c 4

= oA t [A 1 + Am 3/AV

1 2 1 2
A1 =4 Ax ) + (A y )

m 2 m 2'
*IAm = Ax ) + (Ay )

6
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Nhile Lax-Hendroff type algorithms are known to have a
significant amount of implicit artificial smoothing, for
transonic and supersonic flows with shocks additional explicit
artificial smoothing is required to stabilize the solution.
From the authors'experience, when the multiple-grid accelerator
is used this smoothing greatly improves the convergence rate,
and, in many cases, is required for convergence. The present
smoothing formulation (ref. 1), expressed here in a
distribution format, would in practice be included in the
distribution of step 2. It is important to note that it is the
nodal solution that is being smoothed, using a nine point
Laplacian operator, and not a smoothing applied to the cell.
This smoothing is equivalent to adding a term of order Ax to
the original governing equations if A x = A y. For a cartesian
system this term is

qAx C U + U ) (7)

xx yy

STEP 4: Boundary conditions and solution update

Once the distribution has been performed at each cell on
the fine mesh the required boundary conditions are applied.
These will be discussed in more detail later. At each grid
point over the complete solution mesh the dependent variables
are updated by

n+l n
U =U + 6U (8)
i i i

The newly calculated value of L is equivalent to a second
order accurate (in time) Lax-Wendroff method.

This completes the formulation of the basic solver on the
solution mesh with exception of the definition of the time step
restriction. For stability the following relation is required

Av , AV I
At <= MINI 1 m m I (9)

I JuAy -vAx j+aAl IuAY -vAx J+aAm I

where a is the speed of sound.

The above expression is based on the maximum elgenvalues
of the Jacobian matrices ( aF/WU and aG/;U ) of the
quasilinear form of the governing equations for a nonorthogonal
coordinate zystem and the correspondin cell dimensions. This
stability restriction, based on experimental observations of Ni
and the present authors, states that the maximum CFL number in
both nonorthogonal coordinate directions must be less than or
equal 1. It is interestina to note that a Von Neumann analysis

, of the present algorithm applied to the two dimensional scalar
wave equation predicts the more restrictive condition of

7
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CFL(-l/v", while analysis of the corresponding one dimensional
algorithm yields the experimental result, CFL(=l.

If the basic solver is used without the coarse grid
accelerator marching with a global time step based on the above
relation yields second order time accurate solutions. However,
if only steady state solutions are of interest, much faster
convergence is possible if each cell is advanced at the local
rather than global time step condition. Of course, if the
multiple-qrid accelerator is used then the solutions are no
longer time accurate and local time stepping is also used.

The multiple-grid accelerator consists of application of
the following procedure on one or more progressively coarser
meshes. The process begins by elimination of every other grid
line in both coordinate directions resulting in what will be
called the 2h mesh. A typical coarse grid cell is shown in
figure 2. Note we now have access to the next level finer grid
points shown as points 5-9 in the figure. First SUiat all 2h
grid points is initialized to zero. Then, following the basic
solver, the 2h mesh is swept cell by cell performing the
following steps:

STEP 1: Finite volume approximation

To retain the accuracy of the level h mesh solution the
change, or cell residual, for the center of the 2h cell is
determined from a weighted average of the level h mesh
corrections. The simplest form, and that used here, is
straight injection of the fine grid corrections as

2h h
AU =6u (10)

c 5

STEP 2: Distribution formulas

The distribution formulas for this step are the same as
the previous STEP 2 except that the known solution at the cell
center (i.e. node 5) is used for calculation of ( aF/UC) and
( 3G/aU c) . In addition, no smoothing is done for the coarse
mesh sweeps as is done in step 3 of the basic solver.

Once the above steps have been performed at all 2h cells,
the boundary conditions are applied at all 2h boundary points.Then the corrections are interpolated back to the fine mesh
using linear interpolation. Finally the boundary conditions
are applied once again on the fine mesh and the solution is
updated using equation 8.

The above coarse mesh accelerator is then repeated for
progressively coarser meshes (i.e. 4h,8h,....). A complete
multiple-grid cycle consists of one sweep through the level h
solution mesh followed by a coarse 2h mesh sweep, followed by a'44



AIAM 83-1946-CP

4h sweep, and so on to the coarsest mesh.

BOUNDARY CONDITIONS

Each of the boundary conditions used has been implemented
in a predictor/corrector form. The predictor/corrector form
follows from the fact that second order numerical integration
schemes for internal points incorporate a mathematical signal
propagation phenomena analagous to the theory of
characteristics. For example, Abbett (ref. 10) and others
have viewed McCormacks scheme as computing the solution of two
simple waves, the solutions of which are summed to yield a
complete solution. In the same sense Ni suggests that the
"distribution" formula represent similar simple wave solutions.
On boundaries the predictor step consists of summing
contributions from cells interior to the boundary. The
corrector step consists of enforcement of the appropriate
boundary conditions (i.e. inflow, outflow, solid wall, or
Kutta) using a simple wave type of treatment.

In this section, subscript "p" defines predicted values
obtained by distributions from the two boundary cells belonging
to point i. Subscript "c" refers to the corrected values after
application of the boundary conditions. Once found the
corrected change at boundary points is then

n
6U = U - U (11)

i c i

The corrector step for the farfield and solid wall
boundaries is based on a characteristic analysis of the
linearized Euler equations in a coordinate system tangential
and normal to the boundary at point 1, as shown in figure 3. A
general and easy to follow development of this characteristic
analysis is presented by McCartin (ref. 11). If qn and qt
are defined as the normal and tanqent velocity conponents, and
a is the speed of sound, then the eigenvalues X and
corresponding characteristic variables H in the reference frame
normal to the boundary are

2
q P- p/(a )

n
= q H q (-12)

n t

q +a I q + p/(P a)3/'7
n n
q -a E-q + p/(P a)J//-

n n

Bar quantities are linearized state conditions which are taken
as the predictor state (p).

9
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The number of boundary conditions which may be specified
at the boundary is equal to the number of positive eigenvalues.
For the far field the specification of the boundary conditions
depends upon whether the normal velocity is positive (inflow)
or negative (outflow) and supersonic or subsonic. For subsonic
Inflow (O<q (c) the three positive eiqenvalues require three
boundary conaitions be applied while N4 must come from the p
state. The boundary conditions are set by defining Ml, N2, and
f3 in terms of freestream conditions(m ). For the moment it
will be assumed that these correspond to a uniform freestream
flow projected normal and tangential to the boundary. We thus
have the following system of equations defining the corrected
state (c).

2 2
P - p /(a2) __ - p /(2) (13)

c c

q q

CC

q +p q + pp00
n c n c

c

-q +p /(pa) =-q + p/()
n c n p

c p

After recombination we have,

q =q (14)
t tbc

F sb p + P + pa( q sq )3

100

oo p

• 2
o~~~ =W O+ ( -Pwo)(

-q =q +( Po - M )(1)
Sn n. c

SFor supersonic inflow (qn)c) all eigenvalues are positive
and four boundary conditions are required. In this case the
inflow boundary is frozen at the freestream conditions.

~For subsonic outflow (-c~qn<0) there is only one positive
eiaenvalue and therefore one required boundary condition. On

10
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the outflow boundary the pressure is set at the freestream
value, PC = pw . HI, H2, and W4 are determined from the

- predicted flow conditions. After rearranging we have the
following relations,

p =PW (15)
c

q =q
t t

c p

P P + ( p,. - p Ma
c p p

q =q + ( p. - p )/(a)c p

Fc: supersonic outflow (qn<-C) all information comes from
the predicted state 

p.

While the farfield boundary conditions as presented are
very commonly used for lifting airfoil problems, this boundary
must still be placed a large distance from the airfoil for good
results. In practice, it is not uncommon to see a far field
inflow radius on the order of 100 chords (ref. 12). This is
the result of the fact that while there is a net circulation
around lifting airfoils, the farfield condition assumes zero
circulation. This problem has been greatly reduced for
subsonic cases in the present calculations by adding to the
freestream flow the farfield effect of a compressible point
vortex centered at the airfoil. With this formulation the
outer boundary can be placed much closer to the airfoil.

The farfield compressible potential for a vortex in a
uniform flow has been derived by Ludford (ref. 13) as

-1
= q=R cos( - )- (r /2 7 )tan 08 tan(8 - e) (16a)

where

2
= - M (16b)

The circulation is based on the lift coefficient found from
a surface integration around the airfoil

r = 0.5 q~c C (17)
L
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Based on the freestream quantities and the calculated lift
coefficient the following vortex far field condition (v) is
obtained:

q sq (18)
n n.,
v

q -q +qmc C BO/4Wr Ccos (0 -M)+B 2sin (e -x)31
t tC L

2 2 1/y Y--
p (p +(Y-1)P. q. - q 3/(2 p 0 ) -

v v

P0 " O ( p /, p= )/

V V

Now instead of the freestream conditions (1) the new
vortex conditions (v) are used in each of the far field inflow
boundary conditions presented above. Although this formula
strictly applies to irrotational flow, it has been used for
flow involvinq shock wave generated vorticity.

Finite volume methods with the state vectors defined at
cell centers (e.g. refs 2,3) only require the pressure on the
solid wall. Incorporation of the solid wall condition for Ni's
scheme requires all flow quantities be known or determined at
the solid surface. For this reason, a characteristic analysis
Is also used at the solid walls. Referring back to the
boundary cells shown in figure 3 and with qn=0 in eqn 12, there
is one positive eiqenvalue 14 requiring one boundary condition
be set. The condition used is q, -0. l., 2, and N3 are then
determined based on the predicted state (p) where

n

(U •U + 2(8 U ) (19)
1 p 1 1p

The factor of two in the above expression is used to accelerate
convergence. This laht be thouqht of as either a crude
application of the reflection principle at the solid wall or
merely an over-relaxation of the predicted change. After
substltu-cn and recombination the corrected conditions are
found to be

q -0 (20)
~n
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q =q
t t

c p

p -p +q Pa
C p n

P
p -p +q p a

c p n
p

It is interesting to note that this solid wall boundary
condition is a linearized version of the common simple wave
boundary condition, where the corrected state is based on the
generation of an isentropic expansion or compression wave
normal to the boundary which is of sufficient strength to
cancel qn

All airfoil solutions to be presented have been obtained
on 0-type meshes. This places a mesh point at the trailing
edge of the airfoil which is a singular point in the flow
field. The procedure used to enforce the body boundary
condition should be modified to enforce a Kutta condition. A
number of procedures were tried. The simplest and seemingly
most reliable procedure to date is to use the predicted values
from the distribution formula without applying any correction.
In essence this amounts to doing nothing special at the
trailing edge which agrees with published results (refs 2,3).
The smoothing coefficient was increased for wall points in the
trailing edge regions to eliminate minor oscillations in this
region. It was verified for a subcritical case that this gave
the same lift as specifying a flow direction along the
bisecting angle of the trailing edge or specifying a condition
which produced a stagnation point. Further discussion may be
found in reference 8.

The smoothing formulation presented in step 3 of the fine
mesh solver is not applied along the farfield and solid wall
boundaries. Along these boundaries the smoothing component
normal to the boundary is dropped for lack of information. The
solution is smoothed tanqent to the boundary using tho
corresponding one dimensional smoothing operator.

The basic multiple-grid Euler solver and boundary
boundary conditions have been verified for several different
flow problems. Figure 4 shows the near field of a 129*33
0-type mesh with a far field radius of 5 chords for a NACA0012
airfoil. This mesh, which will be defined as the h12 mesh, was
generated using a 2-D version of the transfinite interpolation
routine described in ref. 14 and supplied to us by the author.
The surface pressure coefficient, surface total pressure loss
and near field Mach number contours are shown in Fig. 5 for
M 0.63 and a 2.0 degree angle of attack. A multiple-arid

13



AIAA 83-1946-CP

solution with 4 global mesh levels was used. The calculated
lift coefficient of 0.329 agrees well with the theoretical
value of 0.335 presented in Ref. 15. Total pressure loss,
which should be zero, has been presented since it has been
found to be a very sensitive indicator of errors in the
boundary condition formulation and poor grid resolution (ref.
16). Based on this parameter the characteristic formulation of
the solid wall boundary condition works quite well.

Figure 6 present the solution for the same flow
conditions using a 65*17 mesh which corresponds to h mesh of
the previous result. The only detectable changes from the
129*33 solution are the higher surface total pressure loss and
the slightly lower lift coefficient of 0.327. These changes
are the direct result of the poorer mesh resolution in the
leading and trailing edge regions. Figure 7 compares the
convergence histories of the two solutions. The average
absolute value of the change 6(Pu)/At on the finest mesh is
plotted as a function of the multiple-grid cycles. Since both
solutions were obtained by marching at the maximum local CFL
condition, the large difference in convergence rates is due to
the larger time step for the h mesh. If one includes the
factor of four increase in work per multiple-grid cycle for the
129*33 mesh solution, the importance of minimizing the total

number of grid points is clear.

The spike in the total pressure loss at the trailing edge
for these cases is a localized effect due to skewness of the
0-type mesh in this region. This error can be reduced, as
shown in figure 8 for a 65*17 mesh, if the mesh is this region
is made more orthogonal to the surface.

Each of the above calculations were performed using the
vortex far field characteristic boundary condition. Table 1
presents the lift coefficients for solutions on a 65*17 mesh
with a far field radius of 5 and 10 chords, with and without
the far field vortex correction. If each is compared with the
theoretical lift coefficient value of 0.335 it is clear that,
while theerrors in both cases drop off with increasing radius,
by using the vortex correction the far field boundary may be
brought much closer to the airfoil. This in turn reduces the
storage and work bv reducina the number of mesh points required
for equivalent mesh resolution.

EXTENSION TO GENERAL EMBEDDED MESH FORMULATION

Consider the addition of a local embedded mesh of half
the mesh spacing h/2 into the standard global mesh as shown in
figure 9. After renumbering the mesh levels, h/2 being level
1, h being level 2, and s. on, it is noted that level 2 is now
a coarse mesh within the embedded region and a fine mesh
outside this region. It is desired to perform a control volume
flux balance for all cells on the finest mesh in each region of

14
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the total domain in order that the fine mesh accuracy be
obtained. However, it is also desired to couple the solution
of the discrete equations throughout the total domain in order
to achieve rapid convergence. The solution begins on level 1,
which includes only the embedded mesh region. Steps 1 to 4 of
the basic solver are done for all cells in level 1, except
those at the boundary which will be subsequently described.
Proceeding to level 2, for those cells outside the embedded
mesh region the basic fine mesh solver is used. However, for
those cells within the embedded region the coarse mesh
accelerator is used.' For levels greater than level 2 it
follows that the coarse mesh accelerator would be used
everywhere. Beyond the basic framework just described, two
special problems must be considered. One is the treatment of
the boundary points and the other is the organization of the
mesh points. The latter is described in the next section on
the pointer system.

Points at the boundary must be carefully treated in order
to maintain global conservation and computational stability.
Consider the embedded mesh/global mesh interface shown in
figure 10. A choice must be made as to whether points 1,6,2
are to be considered as members of the global grid or the
embedded grid. That is, it must be decided as to whether the
solution of the equations at these points is to be obtained to
global or embedded grid accuracy. In this paper, the approach
has been adopted that the boundary points are members of the
global grid. The solution for points 1 and 2 is obtained on
the level 2 sweep described above. Values at point 6, which
are needed to compute the level 1 sweep, are obtained by linear
interpolation from points 1 and 2. Linear interpolation is
consistent with the trapezodial integration used on the flux
balances.

Treatment of the boundary cells proceeds as follows.
Prior to the solution sweep on level 1, points such as 6 are
initialized by linear interpolation from points 1 and 2. Steps
1 through 3 of the basic fine mesh solver are performed for all
cells on level 1 including those bounded by points 1,6,2.
Prior to the execution of step 4, all values of 6 U at boundary
points between the embedded and global mesh are reset to zero
(points 1,6,2). Sten 4 is then comrleted. As a result, n-
change of U has taken place at the boundary points. Atter
deletion of every other point on the embedded mesh the level 2
solution outlined earlier proceeds except for boundary cells as
shown in figure 10. The injected value from the fine mesh is
used for coarse mesh accelerator updating of interior points
such as 3 and 4. However a computcd flux balance is used in
the distribution formula for boundary points such as 1 and 2.
It is obtained from the level 1 sweep and saved prior to
execution of step 4. A trapezodial integration is done around
the boundary of the cell with center point 5 using all the
level I points as the boundary. It therefore has lower
truncation error than level 2 cell integrations. Smoothina is
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added into the distribution formula for points 1,2. It should
be noted that with the above formulation, smoothing is applied
only once to each node point. Those within the embedded mesh
are smoothed on the level 1 operations while those on the
embedded/global mesh boundaries and the global mesh are
smoothed on the level 2 operations.

To demonstrate the above embedded mesh formulation
consider the NACA0012 test case of figures 4-7. Beginning with
the h mesh (65*17) of figure 5 as the global mesh we now
include embedded h/2 meshes around the leading and trailing
edges of equal density to a 129*33 mesh as shown in figure 11.
Using the embedded mesh formulation presented above produced
the solution shown in figure 12. Comparing this solution with
the 129*33 and 65*17 solutions (figures 5 and 6) shows that the
embedded leading and trailing edge regions have resolved the
same flow detail as the global 129A33 mesh (fig. 5). By using
the leading edge embedded mesh the total pressure loss in this
region (fig. 12b) is the same level as in figure 5b. A checkof embedded mesh boundary regions has shown that no total
pressure losses are generated in these regions due to the
embedded mesh. A calculated lift coefficient for the embedded
mesh solution of 0.330 is almost exactly the same as the global
129*33 mesh result.

The residuals presented for embedded mesh solutions are
the average of the absolute value of 6(pu)/At for all points
in the domain after the global h level sweep. The spectral
radius for all other levels have been found to be the same.
Figure 13 presents the the global h mesh residual convergence
history showing solution convergence in nearly the same number
of multiple grid cycles as the global 65*17 solution and almost
half the number of cycles compared with the global 129*33
solution (fig. 7). Thus, we have gained the 129*33 mesh
resolution with a convergence rate on the order of the 65A17
global solution. Since the total number of mesh points is much
less than the number of global 129A33 mesh points, the work per
cycle is also significantly reduced.

The extension of the above procedure to multiple embedded
domains and embedded regions with more than one level follows
directly. The solution cycle always begins of the finest mczh.
Under the above described formulation, the boundary of a h14
mesh embedded in a h/2 mesh should be at least a distance h
from the boundary of the h and h/2 mesh. Some changes in the
formulation could remove this restriction. However, this is
not an important restriction since the truncation error near an
interface will be of the coarser h level order anyway.

To illustrate the benefit of continued mesh refinement
consider the NACA0012 embedded mesh structure of figure 11 but
now include a second embedded h/4 mesh in the leading edge
region as shown in figure 14. The solution for this double
embedded region is shown in figure 15. As expected the higher

16
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resolution further reduced the total pressure loss and shows an
improvement in the force coefficients when compared to figures
5,6, and 12. The convergence history on the global h mesh is
similar to the previous embedded mesh case, with no loss in the
rate of convergence with the addition of the new region
embedded region.

POINTER SYSTEM

The purpose of the pointer system is to act as a kind of
road map for the solver. The pointer system defines the
multiple-qrid structure including dom. 's of each level of the
structure, location of physical boundary conditions and
embedded mesh boundaries. Separation of this structure
definition from the Euler equation algorithm leaves a very
general and easy to follow program. When the grid structure is
changed, only the pointers are changed not the solver. With
the present formulation the solution U and change U are
stored only once for each arid point on the finest mesh in each
local region. The pointer system then defines each grid level
in terms of these basic nodes.

For the full two dimensional Euler equations the
following 10 quantities must be stored for each node:
coordinates x and y, conservation variables 0, P u, Pv, and
e,and the change in the conservation variables 6 P, 6 Pu, 6P v,
and 6e. They are stored in a 10 by N solution matrix Q
defined as

Q=EQ (21a)
mn

w m = Variable Type (l(=m<=10) 
(21b)

n = Node Number (l<=n<=N)

Additional quantities such as cell volumes, projected areas,
temporary variables, etc. could also be stored to reduce
rerctitive calculaticns.

A cell pointer matrix must now be defined which points to
the nodes in Q needed for the formulas on each level of the
multiple-grid structure. There are many possible ways- to
define the arids of each level but the most basic is to use the
smallest element, the cell. Other possible grid structures
include contiguous lines or blocks of cells. However, defining
the grid on each level in terms of cells allows the most
flexibility in the definition of the grid structure. The
domain of a aiven level does not need to be simply connected,
topologically restricted, or even defined in any order. In
addition, both the fine morh solver and coarse merh
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accelerators can be simply expressed in terms of cells as
discussed earlier and shown in figures 1 and 2. Nine pointers
are required to define the nine nodes of each cell of every
level of the grid structure (figure 2). They are stored in an
integer matrix P defined as

P - I P 3 (22a)
ij

where

i - Cell Node Number (1(=i<=9) (22b)

j = Cell Number (l(=J<=J)

Note that for the fine mesh cells the injection and
interpolation points (5(=i(=9) are set to zero since those
nodes don't exist. The value of point 5 is then the "switch
indicator" as to whether the fine solver or the coarse mesh
accelerator should be applied.

For embedded mesh calculations nodes must be smoothed on
different levels. This can be very efficiently handled by
setting the sign of the corner pointers (1(=i<=4). If the node
is to be smoothed by the cell it is positive, otherwise it is
negative.

Finally there must be some way of knowing which level the
cells belong to. By storing cells of the same level together
(in any order), then only a pointer for the first and last cell
of each level is required. The cell pointer matrix P combined
with these level pointers completely defines the multiple-grid
structure.

In addition to the basic grid structure, the location and
type of boundary conditions must be defined for the solver.
Boundary conditions are really exceptions to the general solver
and can be problem dependent. Boundary conditions also tend to
require different amounts of information and quite often acccs3
to domains larger than one cell. For these reasons, they are
not included in the cell pointer matrix since once defined we
would like this matrix definition to remain fixed.

At the present time there are two types of boundary
pointers. As the need arises new forms can be added. Type 1
is used for solid wall, farfield boundaries, and any other
boundary condition where pairs of cells are required. For each
boundary node on the finest local mesh level the following
information is stored in a 3 by K matrix called BI

Bl = Bl 3 (23a)
ik
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where

i - 1 Cell Number of Cell 1 (23b)
2 Cell Number of Cell 2
3 Face Number

k = Boundary Point Number

The four possible boundary locations are shown in figure 16.
For more than one boundary condition defined by this pointer
all points of the same type are stored together along with a
starting and ending pointer for each boundary condition.

The second boundary pointer, type 2, is for boundary
conditions that need only a cell side or string of 3 nodes as
shown in fig 17. The embedded interface formulation is the
only condition that uses this at this time. The definition of
this pointer matrix B2 follows,

B2 = I B2 I (24a)

where

i = I For Node Number of Point 1 (24b)
2 For Node Number of Point 2
3 For Node Number of Point 3

J = Number of Interface Interpolation Point

This pointer is used to define the solution interpolation for
point 2 along the embedded mesh interface before the embedded
sweep and to zero the interface corrections at points 1,2, and
3 after the sweep. In B2 all sides on a given level are stored
together from which a starting and ending pointer for each
level are defined.

Clearly the pointer scheme described above provides a
very flexible approach for dealing with complex grid
structures. With an optimal grid structure the solution
storage and computer time can be minimized. The price which
must be pild for this flexibi1itv arrears in the total stc:---
required and organization of the data base for vector computer
architectures. While the solution storage is significantly
reduced, the pointer system must also be stored. To illustrate
the storage requirements let's compare the following -two
dimensional cases. In the first case we have a N*N global mesh
with an embedded mesh (h/2) over one quarter of the domain as
shown in figure 18a. For the second case we will consider a
standard non-embedded mesh calculation where a global h/2 mesh
refinement has been used to gain the same resolution as the
first cane, figure 18b. Storage of the solution in both cases
requires storage of 10 real variables for each node of the
finest mesh in each reuion (20 words(16 bit)/point);
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(20)(1.75)*N*N words for the first case and (20)(4)*N*N in the
second. Neglecting the boundary pointers, the pointer system
requires 9 integer variables for each cell of each level (9
words(16 bit)/cell), assuming two grid levels, the total
pointer storage for the embedded case is (9)(2)(N-1)(N-l)
words. A summary of the storage requirements for the two cases
is presented In table 2. Comparing the total storage there is
a reduction by using the pointer system but this reduction is
less than might be expected if the pointers were not required.
However, if less than one quarter of the region used an
embedded mesh or if two embedded meshes are used, or more than
10 variables are stored at each node point the ratios will
change.

RESULTS

The embedded mesh extension to Ni's multiple-grid method
as presented in the preceding sections provides a very flexible
structure in which resolution of local flow detail is possible
while minimizing the storage and work required. In general the
addition of a local embedded h/2 level mesh region results in
very little change in the number of multiple-grid cycles over
the solution on the h global mesh alone. The price for this
higher resolution then only appears in the additional work
performed within the embedded mesh. The following three 2-D
airfoil solutions demonstrate the performance and flexibility
of the present formulation. Each of these cases has special
flow details which must be resolved for a proper solution.
They are often chosen for code comparisons ( for example the
first two were part of the GAMM workshop ref. 17). In each of
the following solutions the far field vortex correction has
been used with a mesh far field radius of 5 chords. Two
solutions will be presented for each case the first being a
65*17 global mesh solution using 3 multi-grid levels and the
second the corresponding embedded mesh solution using a total
of 4 multi-grid levels.

The first case is a NACA0012 airfoil at flow conditions
of M = 0.85 and a = 1.0 deg.. This is a lifting case with
strong shocks at 85% chord on the upper surface and 70% chord
on the lower surface. The lift in this case is a strong
function of the shock location making good shock resolution
very important. The h mesh corresponds to figure 5 with every
other mesh line removed. The corresponding solution is shown in
figure 19. While both shocks are apparent in fig. 19 neither
shock is very well defined due to the poor mesh resolution in
the shock regions. Note the leading edge total pressure loss
characteristic of the earlier results and poor resolution of
the total pressure jump across the shocks. Figure 20 shows the
corresponding embedded mesh used for this case where four
embedded regions have been added to resolve the leading and
trailing edges and the two shock regions. Comparing the
embedded mesh solution shown in figure 21 with the h global

20

AA-



I
AIAA 83-1946-CP

solution shows much better resolution of the two shocks and a
reduction in the surface total pressure losses which occur in
the expansion region around the leading edge. Note in this
example that the upper surface shock wave crosses the boundary
of the embedded mesh region. Other than local loss of
resolution (fig 21c) no difficulties are encountered. The
convergence histories in terms of multiple-grid cycles between
the h and embedded solutions are very similar (fig. 22).

The second test case to be shown is the RAE2822

supercritical airfoil (ref. 7) at M, , = 0.75 and a = 3.0 deg..
At these conditions there is a very rapid expansion around the
leading edge and also a strong shock at 80% chord on the uppersurface. The embedded mesh used is presented in fig. 23 using
embedded regions around the leading and trailing edges and in
the shock region. The corresponding embedded mesh solution is
shown in fig. 24. The higher grid resolution in the leading
edge region using the embedded mesh is important to resolve the
rapid expansion and nearly halves the total pressure errors in
this reqion. The converaence rates for a global h mesh and the
embedded mesh calculations are shown in fig. 25.

The final case to be presented is the Garabedian and Korn
supercritical airfoil( ref. 18) with a design condition of
M. =0.75 and a =0.12 deg. and a theoretical lift coefficient
of 0.63. At design conditions the supersonic region extends
over about 60% of the the upper surface. The solution in this
case is very sensitive to the location of the sonic line in the
flow. The embedded mesh used for this case is shown in fig.
26. The corresponding embedded mesh solution is shown in fig.
27 with a lift coefficient of 0.604. In cases where a known
solution exists for comparison, it is found in this work that
the calculated lifts are a few percent low. For this case
while the embedded meshes reduced the total pressure error by
almost half the effect on the lift coefficient was not very
significant. Even with the embedded mesh regions the
calculated lift is below the design conditions of ref. 18.
The convergence histories are similar to others which bave becn
shown.

CONCLUSIONS

The method for embedding meshes in a multiple-grid
structure presented in this paper represents the first step in
the development of a general modular approach to solving
complex flow problems. While the present formulation uses a
Lax-t2ndrott type time marchinq scheme, the multiple-grid
structure is a much more fundamental concept which need not be
limited to this scheme. When this multiple-grid structure is
viewed in terms of a pointer systeu the extension from a global
grid structure to verV General arid structures which include
embedded mesh regions presents very little added complexity.
The pre:ent pointer system wis chosen for its flexibility, tt-

21



AIAA 83-1946-CP

cell being the most fundamental element of the grid struture.
It is quite possible that for certain applications, such as
vectorized algorithms, another pointer formulation might be
more desirable. The addition of a pointer system does add to
the total storage required per grid point of the system but for
a proper distribution of mesh points, made possible by the
general multiple-grid structure, the total number of grid
points can now be minimized. This can then result in a
significant reduction in storage over that required for an
equivalent global grid. In addition, this reduction in total
number of required mesh points then results in much less
computational work, both due to the reduction in the number of
points and also improved convergence rates. As shown by the
presented cases, with the present formulation it has been
possible to gain the fine mesh resolution within the embedded
mesh regions while preserving the global coarse mesh
convergence rates.
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APPEIUDIX B

ADAPTIVE EMBEDDED SUBDOMAINS

1. Background

The objective of this effort is to develop adaptive solution algorithms
for the Navier-Stokes equations. A typical and intended application is the
computation of the viscous, compressible flow over an isolated lifting airfoil
at a realistic flight Reynolds number.

Adaptive solution algorithms is a generic designation for numerical methods
which sense some unique physical behavior in the flowfield during computation.
The procedure subsequently changes the governing equations and/or computational
grid so as to adequately describe the primary features. Adaptive solution
algorithms which change the governing equations are referred to as adaptive
equation techniques; those which alter the computational mesh are known as
adaptive grid techniques.

In order to understand the usefulness of these kinds of algorithms, it is
helpful to describe the concept of features. A feature is defined as a region
of the flowfield which delineates dominant physics that is significantly different
from the physics of the surrounding flow. Relevant examples of features include
shock regions, boundary layers, wakes, and embedded vortices. Each feature can
be associated with a number of characteristics--i.e. type, location, strength,
orientation, and scale. The scale of a feature has special importance in classi-
fying the feature to be either collapsible or non-collapsible. The collapsible
character of a feature implies that the scale is sufficiently small relative to
the global scale such that the entire feature may be collapsed to a point or
line. Necessarily, it is implied that the physical description associated with
the events within the feature are properly taken into account despite the
collapse modeling. Examples of collap.sible features are shocks and thin
boundary layers.

If a feature is collapsible, adaptive equation techniques are very useful.
In adaptive equation schemes, a special subset of the governing equations is
used to adequately model the physics within the feature. This may take the
form oi a jump condition. An inviscid/viscous interaction algorithm is a
familiar technique which alternates between system descriptions. In the vis-
cous example the influence of viscosity is treated as if its effects are vir-
tually confined to an infinitesimally thin region adjacent to a wall (or
possibly center line of a wake). An outer flow is computed as if it were
inviscid, and extended to the wall; an inner viscous (boundary/shear layeC)
solution is computed simultaneously and the two solutions are suitably matched.
The essential point is that different subsets of the Navier-Stokes equations
are relevant and used in each of the two regions, consistent with the local
physics. Shock fitting is another example of an adaptive equation algorithm
and one which intuitively fits the collapsible concept. Shock jump relations
are used at such a feature and those special equations allow for a discontinuity
in the computed flowfield and a proper matching of the flow variables on both
sides of the jump. In each case, viscous or discontinuity, the algorithms rely
on a simplifying change of the governing equations at the feature to take into
account the unique physics. Hwever, the proper matching conditions are not
at all obvi-us in most cases, and this is a major obstacle.
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Unfortunately, some features are not collapsible, and adaptive equation
algorithms cannot always be used. Instead, adaptive grid algorithms may use
the same descriptive equations throughout the flowfield but with the grid
spacing varied so as to properly capture the local physics. A viscous flow
example would be an adaptive grid algorithm which captures the boundary layer
adjacent to a wall by decreasing the local mesh spacing in order to resolve
the local viscous behavior. Within the basic framework of adaptive grid
algorithms, there are currently two major approaches. The first (and currently
most popular) involves grid point redistribution; the second can be called
embedded grids.

In grid point redistribution, a fixed number of grid points are spaced
throughout the flowfield. Grid point movement is induced by regions of larger
error (most likely regions near futures) which attract mesh lines. Advocates
describe the resulting solution as being uniformly good. Alternatively it may
be viewed to be uniformly bad, since in those regions with small initial errors
the removal of grid points results in larger errors. The method is very popular,
however, since the logic needed to implement the algorithm is relatively
straightforward. The same logic can be used for all cases, independent of
the features which are present (or absent).

The other adaptive grid algorithm (embedding) maintains the global grid
as an invariant and furnishes additional grid points at the features. This
yields locally embedded patches that increase the accuracy at features, and
simultaneously maintains the global mesh accuracy. Note that this does involve
increasing the total number of computational nodes and therefore both computa-
tion effort and required storage. With careful control of the adaptation
algorithm, however, it does prove to be possible to keep this under control.
The chief disadvantage is that fine regions exist only as a result of local
embedding and thus introduces artificial internal boundaries. The necessary
coupling of the global and embedded grids can cause problems. The logic
needed to implement an embedding method is considerably more complicated than
that for grid point redistribution.

2. General Approach

The approach taken in this research task is to allow both adaptive equation
and adaptive grid algorithms. The combination offers a maximum degree of com-i putational efficiency with appreciable generality.

As an example, consider the compressible, viscous flow over an isolated
airfoil at a high angle of attack and a typical flight Reynolds number. The
expected features are shown in Figure 1. The shock and the boundary layer on
the lower surface are collapsible, and thus amenable to adaptive equation
techniques. On the upper surface, however, the shock induced separation results
in a viscous region with a scale which is on the order of the airfoil thickness
and clearly non-collapsible. Thus in that region an adaptive grid scheme is
required.

It is helpful to describe the overall adaptive solution algorithm in
terms of its sequential steps:

-loan=

p - .
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1. Compute a solution on the given global grid.

2. On the second or later computation cycle examine specified key
parameters (e.g. lift coefficient, or wave drag) for the extent of change
since the previous cycle; STOP when criteria is met.

3. Search entire flowfield for possible feature points.

4. Cluster individual feature points into feature groupings.

5. For each feature:

" If not collapsible, adapt the grid and proceed to 6;

" If collapsible, search an included library of characteristics
until

. either a match is found (enabling use of the prescribed
adapted equations and contraction of the adapted grid)

. or a match is not found (and the grid is adapted further).

6. Cycle through 5 to consider all features.

7. Return to 1.

Each of the above steps will now be described in more detail.

Solve equations system. The basic field evaluations used in this study
have made use of a conservative, finite-volume, time-marching scheme developed
by Ni and subsequently modified by Usab in the present parallel task to solve
the two-dimensional unsteady governing equation in the vector form

dU +d dG dH di
dt dx dy dx dy

where F and G are the convective, and H and I are the diffusive terms.
This scheme is essentially a Lax-Wendroff one-step procedure with a multiple
grid accelerator. Since it is explicit, the computation for each control
volume is independent of other control volumes. Thus the use of adaptive
equations is compatible with imposing alternate physics within different
cells, and the computation algorithm can be implemented easily. In addition,
the multiple grid accelerator procedure can be used to couple the global and
embedded meshes as described previously for Task I.

Search for feature points. An adaptive solution technique requires some
measure for the existence of a feature within the domain. Typically, this
corresponds to evidence of large change in the value of an important "variable."
The "change" can be deduced from such criteria as a gradient, second difference,
local truncation error, or other parameterr which are indicators of nonuniform
fields. "Variable" refers to any flow state property (e.g. density or velocity),
or an integral parameter (e.g. displacement thickness), or a derived quantity
(e.g. vorticity).

Ayr- la
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Clustering. Feature points are grouped so that those with the same dominant
physics can be examined as a whole. For example, for the flow shown in
Figure 1, those feature points associated solely with the shock need be
considered simultaneously.

Grid Adaptation. The simplest implementation of a grid adaptation algorithm
is the subdivision of each cell which contains a node that has been designated
as a feature point. This is the algorithm that is currently being used, but

it has been found to be slightly inadequate since it allows for multiply
connected adapted regions with "holes." Somewhat more complicated algorithms
do exist for handling such a possibility and are being investigated at the
current time. It is also possible to contract cells (delete all fine cells
associated with the chosen cell) and this is an especially important capability
when used in conjunction with adaptive equations. A pointer system similar to
that described under Task I has been used for all procedures in the adaptive
work. However, it was necessary to modify the system somewhat in view of the
dynamic addition and subtraction of grid cells. In effect, the adaptation
freedom of cell placement insists on a more complex pointer system which
includes additional information.

Characteristics library. The type of a collapsible feature is quite necessary
and must be established since appropriate equations must be assigned. This
can be viewed as a classical pattern recognition problem and may be solved by
comparing the characteristics of the feature with those stored in a library.
For example, the library might contain the following description (constraints)
of a shock: very thin, with a jump in normal velocity component given by the
Rankine-Hugoniot conditions and the components being supersonic upstream and
subsonic downstream. Similar constraints for boundary layers, wakes, embedded
vortices, and stagnation points must be provided in a library for those and
any other candidate physical events which are subject to adapted equation
assignment.

Equation Adaptation. It is assumed that appropriate algorithms do exist for
all kinds of flow physics that are of interest (e.g., inviscid flow, shock
fitting, boundary layer). Adapting the equations reduces to a bookkeeping
problem, but the essential requirement is that each cell be flagged to indicate
the type of computation that is appropriate. Each type of computation also
must be constructed in such a way that it can be easily adjoined to the basic
scheme in a most general way.

3. Statement of Work

The objective of this task has been to construct a scheme which is able
to find the extant flow features and then to apply the most efficient algorithm
to each of them independently. In order to proceed in an orderly fashion the
overall development has been subdivided into the following subtasks:

1-D Euler flow with adaptive grid
• 2-D model problem with adaptive qrid
. 1-D Euler flow with adaptive equation (shock fitting)
. 2-D model problem with adaptive equation (thin layer)
. 2-D Navier-Stokes with adaptive grid
. 2-D Navier-Stokes with adaptive solution
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The first has been completed, and the second is nearly complete. Some results
for each of these subtasks are described in more detail below.

4. I-D Euler Flow with Adaptive Grid

The initial major objective was to determine the level of difficulty
associated with finding simple features and subsequently adapting the grid.
The same code developed for this subtask should also prove to be useful in
studying the interaction of simultaneous adaptive grid and adaptive equation
algorithms (e.g. I-D Euler with shock fitting).

The quasi-one-dimensional Euler equations are given in vector form by

dU dF--'t = G (2)
t 'dx

where

P PU Pu

U =Pu , F = pu2 + , G Pu 2 (3)

ph0 -p pub0  
puh0

and t and x denote time and axial position respectively. The equations have
been solved using Ni's conservative finite volume, multiple-level, time-
marching scheme. Characteristic boundary conditions are applied at both the
inlet and exit and embedded regions are computed using a variant of Usab's
embedded mesh procedure.

Figure 2 shows the solution for a divergent duct with a supersonic inlet
and sufficient back pressure to induce a standing shock. The computed solution
is plotted as a line and the analytic shock position and jump levels are de-
noted by the symbols. The duct and grid are shown below. The Mach number
distribution computed on the global grid (level 0) agrees quite well with
the analytic solution except in the vicinity of the shock, where the computed
shock thickness extends over roughly two computational cells and pre- and
post-shock oscillations are evident. The adaptive grid algorithm was then
employed such that all computational cells found to fall within the feature
were subdivided. For this example, feature points were defined to be those
points for which the second difference of the density exceeded the average
second difference. This subdivision process resulted in the grid geometry
shown at the bottom of Figure 3. For simplicity, the new cells, which are
half as large as the original cells, are termed level 1 cells. The corres-
ponding Mach number distribution is shown at the top of Figure 3, and it is
apparent that the shock width has been approximately halved and the oscil-
lations associated with the shock have been confined to a smaller portion
of the domain. The same process when applied again yields the results shown
in Figure 4. The finest cells in this case are referred to as level 2 cells.
Again the shock width and region of oscillations have been halved.

As a further check on the differences between solutions that may have
resulted from a finer resolution only near the shock or other unknown embedded
mesh influences, the same field was computed with level 2 cells everywhere
throughout the duct. The very good agreement with Figure 4 (i.e. the two
solutions virtually coincide) strongly suggests that the improved resolution.*1

: ;
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at the feature is indeed responsible for the improvement and that the internal
boundaries do not introduce extraneous effects.

Figures 5, 6 and 7 provide a second example of computed solutions repre-
senting a Laval nozzle with a subsonic inlet, expansion through sonic speed
at the throat, and containing a shock in the diverging portion as a result of
an implied back pressure. Cases with a uniform mesh, one level of adaptation
(level 1), and two levels of adaptation (level 2) are shown as indicated by
the accompanying channel and grid. Again the adapted solutions are clearly
superior.

Since the purpose of adaptive solution algorithms is to efficiently provide
accuracy, it is proper to compare computation times for the adapted and non-
adapted runs. The computation times for adapted runs should in fairness include
all of the time for the initial solution, feature finding, grid adaptation,
and the iterations to final convergence. Table I compares normalized CPU times
for each of the above geometries. The first row entries are for the initial
global (level 0) geometry. The second row contains times for the same solution
accuracy near the shock but completed in global (every cell a level 1 cell) and
separately in adapted (only embed level 1 near the shock) fashion. A similar
comparison is made on row 3 for level 2 cells. For both geometries, the adapted
grid solution requires less computer time. The Laval nozzle is seen to be even
more efficient than the divergent duct case, which may be attributed to the fact
that the embedded region is in that case a much smaller part of the global grid.
It is tempting to extrapolate this to an airfoil situation in which the shock
is expected to cover an even smaller part of the flowfield; on that basis it
appears reasonable to anticipate a tenfold or more saving.

Table I. Comparison of Computation Times

Duct Nozzle

Base (uniform level 0) qrid 1.0 1.0
Level 1 grid Global/Adapted 2.3/1.8 3.1/1.8
Level 2 grid Global/Adapted 9.7/4.5 10.8/3.1

5. 2-D Model Problem with Adaptive Grid

Extension of the self-adapting procedures to two dimensions was thought
to warrant an initial study based on a model sytem. Specifically, the
clustering of feature points is much more difficult in two dimensions than in
one dimension. This is compounded by the fact that two dimensional problems
have features which may curve or even split (as in the case of a lambda shock).
The primary purpose was an examination of feature topologies, and their manipu-
lation and behavior during computational cycling. For that purpose the full
Euler or Navier-Stokes equations were not considered necessary at this time.
Instead, a two-dimensional model equation was used so as to allow for a more
controlled environment arid much more rapid solution times.

Multiple grid acceleration was employed for this two-dimensional model
as in the one-dimensional duct flow cases. However, the 2-D problem in some
instances resulted in multipl grid applications that actually decelerated

A .
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the convergence rate. A detailed examination of the behavior is being made
and an explanation appears plausible and inherent in the multiple grid
algorithm.

The governing equation for the two-dimensional model problem was assumed
to be

U +AU + = c (U +U ) 
(4)

t x y to yy

where the subscripts denote differentiation and where A, B, and C at most
depend on x and y. This scalar equation has both convective and diffusive
terms and is quite suitable as a model equation for this subtask. By properly
selecting combinations of the coefficients A, B and C, features can be made to
have any desired oricntation or curvature in the field. Solutions were obtained
by the Ni scheme described above and with characteristic boundary conditions
imposed.

Figure 8 shows a typical global grid (level 0) and field contours of the
variable U for a case in which the coefficients A and B are chosen to be equal
(implying convective propagation to proceed up and to the right, inclined 450
across the domain. The diffusive coefficient C was defined such that the dis-
turbance at the left-hand boundary decreased in amplitude as it was convected.
The initial distribution on the left edge was Gaussian. The third (lower)
part of the figure indicates feature points by a "+" and others by a ".".
Feature points were defined in this case as points at which the gradient of U
is greater than the average gradient value in the field.

Figure 9 shows the resulting adapted grid and the corresponding contours
of U. The corresponding level 1 global solution is shown in Figure 10. The
outermost U contour from Figure 9 has been added to Figure 10 for comparison.
The remaining inner four contours essentially coincide in both figures. The
comparison discloses small errors which are introduced by the edge of the
embedded region. The apparent waviness is associated with solving equations
with diffusion contributions, which introduces new physics at the edges of
the embedded regions. As a consequence there is a need for a slightly revised
algorithm than is sufficient when only convection is present. Diffusive
physics demands a new coupling of computational nodes across those edges
for comparable accuracy in the modeling. An adequate algorithm for that
purpose is part of the ongoing effort; although more work is required on
this point, the errors remaining here are believed to be removaule. Again,
a significant CPU saving was realized by localizing the adapted level 1 region
to the region of appreciable nonuniformity.



B-8

Figure 1 Typical airfoil flowfield features of boundary
layer, trailinq wake, shock and shock/viscous
layer intoraction
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TPANSONIC DUCT TEST CA!E
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Figure 3 Mach number distribution for divergent duct flow with
supersonic ira let/subsonic exhaust conditions

Level 1 Adaptation to shock feature
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Figure 4 Mach number distribution for divergent duct flow with
supersonic inlet/subsonic exhaust conditions

Level 2 and 1 Adaptations to shock feature
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Figure 7 Mach number distribution for converging diverging nozzle
with subsonic inlet and exhaust and intervening shock

Level 2 and 1 Adaptations to shock feature
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Figure 9 Twoi-dimensional field contours for model
convection/diffusion equation (4)

Above: Level 1 Adaptation to disturbed
field basis
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