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ABSTRACT

A new image segmentation algorithm is presented, based on recursive

Bayes smoothing of images modelled by Markov random fields and corrupted

by independent additive noise. The Bayes smoothing algorithm yields the

a posteriori distribution of the scene value at each pixel, given the

total noisy image, in a recursive way. The a posteriori distribution

together with a criterion of optimality then determine a Bayes estimate

of the scene.

The algorithm presented is an extension of a 1-D Bayes smoothing

algorithm to 2-D and it gives the optimum Bayes estimate for the scene

value at each pixel. Computational concerns in 2-D, however, necessitate

certain simplifying assumptions on the model and approximations on the

implementation of the algorithm. In particular, the scene (noiseless image)

is modelled as a Markov mesh random field, a special class of Markov random

fields, and the Bayes smoothing algorithm is applied on overlapping strips

(horizontal/vertical) of the image consisting of several rows (columns).

It is assumed that the signal (scene values) vector sequence along the strip

is a vector Markov chain. Since signal correlation in one of the dimensions

is not fully used along the edges of the strip, estimates are generated

only along the middle sections of the strips. The overlapping strips are

chosen such that the union of the middle sections of the strips gives the

whole image.

Different versions of the Bayes smoothing algorithm based on different

assumptions on the Markov random field are implemented and applied to seg-

mentation of some two level test images. The results are very good even

for very low signal-to-noise ratios and compare favorably with existing seg-

mentation algorithms. The algorithms are also applied to remotely sensed

.* -.. ,. ,'.', --... ..- '.. ".. ... " " ". .. .. .. ' . , .. .. -. -



~SAR data obtained from SEASAT, yielding remarkably good segmentation of

~these images as well.
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I. INTRODUCTION

-Image segmentation and restoration have received enormous attention in

the image processing literature. In this report, we present an image segmen-

tation algorithm based on Markov random field (MRF) models for the image and

a Bayesian smoothing approach for the actual prucessing. The image is

assumed to be the sum of the realizations of two independent stochastic pro-

cesses: the "scene", a MRF, and the noise field, consisting of iid (indepen-

4. dent identically distributed) Gaussian random variables (r.v.). The Markov

scene model provides a powerful mechanism for incorporating the spatial

dependence of pixels in relative proximity of each other.

The Bayes smoothing approach used in the algorithm is an extension to

2-D of the 1-D algorithm presented by Askar and Derin [1]. The 1-D Bayes

smoothing algorithm is based on a model where the signal is a Markov process

corrupted by independent noise. The natural extension to 2-D is to model

the scene as a MRF, although extension to 2-D results in severe computational

complexity. It is well known that in 1-D the Bayes smoothing estimate per-

forms better (i.e., has a smaller mean-squared error) than the linear smoothing

or filtering estimates. In particular, it minimizes the expected cost of the

estimate, using all available data and without any restriction of linearity.

For a quadratic cost function the Bayes estimate is the a posteriori mean

* . . and for uniform cost function the Bayes estimate is the maximum a posteriori

(MAP) estimate.

Some of the earlier work on image segmentation and estimation in 2-D is

due to Nahi and Assefi [2], Nahi [3], Habibi [4], Nahi and Franco [5], Woods

and Radewan [6]. Most of this work involves attempts to extend Kalman

filtering ideas to 2-D by devising various 2-D scanning schemes and defining

appropriate autoregressive models. Although Bayesian estimation is mentioned
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in some of these studies, it is basically a linear filtering or linear

smoothing that is being sought. To reduce the prohibitive computational

load in 2-D certain reasonable suboptimality assumptions have been pro-

posed by Woods and Radewan [6], namely, Kalman strip processor and reduced

update Kalman filtering. Despite the Markovian characteristics of some of

these models, the connection with MRF is incidental and undeveloped.

There is a vast body of literature on various spatial interaction

models and image restoration and parameter estimation algorithms based on

these models, e.g., [7]-[10]. Woods in [7] presents an autoregressive

model characterization of causal, unilateral Markov random field models.

Chellappa and Kashyap [8], [9] present an extensive exposition of simul-

taneous auto-regressive (SAR) and conditional Markov (CM) spatial inter-

action models, and some parameter estimation and neighborhood determina-

tion schemes for these models. They also report on linear image restora-

tion algorithms for the SAR and CM models. For a detailed treatment on

these and other models, we refer the reader to these references and to

the paper by Jain [10], on image processing models, and to references

therein.

MRF models, Bayesian approach and MAP formulations in the context of

image segmentation have been used before by other researchers. MRF models

and MAP formulation is combined in the recent work by Kaufman et al [11]

with reduced update Kalman filtering techniques and in Therrien [12], [131

with two dimensional autoregressive texture models for texture based

segmentation. Elliott et al [14], Elliott and Srinivasan [15], and

Cooper et al [16] have applied MAP techniques to boundary estimation in

noisy images. Hansen and Elliott [171 use MRF models, MAP formulation and

some simplifying assumptions on the model to devise image segmentation
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algorithms based on two stages of dynamic programming. In the recent work

by Geman and Ceman [18] and Elliott et al [191, the Gibbs distribution

characterization of MRF is used to develop image segmentation algorithms.

The image segmentation algorithm in this report is based on a special

conditional characterization of MRF's. The objective of the algorithm is

to determine recursively the a posteriori distribution and subsequently

an estimate of the scene value (pixel intensity) at each pixel given the

whole (noise corrupted) image. The algorithm yields the optimal estimate

of each pixel value in the scene given the observed image under quite

general assumptions, namely, a MRF model for the scene, and independent

noise. However, computational complexity of the algorithm in 2-D, necessi-

tates restrictions on the class of MRF models, and suboptimal implementation

of the algorithm. The model for the scene is restricted to the special

class of MRF's called Markov mesh random fields (MMRF) which are character-

ized by causal transition distributions. Furthermore the processing is

done over relatively narrow strips rather than over the full image as pro-

posed by Woods and Radewan (61 in a Kalman filtering set up. Estimates

are obtained at middle sections of the strips and these pieced together from

overlapping strips yield an estimate of the full scene. Various versions

of the algorithm are applied to some binary test images with varying noise

levels and to some SAR images obtained from SEASAT. The segmentation results

even for low signal-to-noise ratio images are remarkably good.

There is an important distinction between the a posteriori distribution

of the scene value at each pixel based on the full image, which is sought

here, and the scene configuration that will maximize the a posteriori dis-

tribution of the full scene given the full image, which is the goal of some

earlier work. Although the latter may seem more desirable, the full scene

." % ." - . - ." .. . • ., ,. - - - -, - - .... ,- . . . . . • . .-. ,



estimate is more constrained, and more susceptible to burst type errors.

We have performed extensive simulations in 1-D comparing the performances

of these approaches and observed that, in most cases,, the individual pixel

estimates were just as good as those of the full scene. Furthermore, the

former approach provides the additional flexibility to compute other Bayes

estimates corresponding to other cost functions, if desired.

This report is organized as follows. In Section II, we give a brief

exposition of the Bayes smoothing- algorithm in 1-D. Then we present in

Section III the problem statement and the MRF model. Extension of the

Bayes smoothing algorithm'to 2-D and its implementation for Markov mesh

random fields is presented in Section IV. In Section V the algorithm is

applied to various test images and SAR data, followed by concluding remarks

in Section .I

II. BAYES SMOOTHING ALGORITHM IN I-D

Let {XkI denote the signal to be estimated. It is assumed that {Xk}

is a Markov sequence with the known transition probability density function

f(xklXkI) and initial distribution f(x1). Note that throughout this report

random variables are denoted by capital letters and their realizations by

respective lower case letters. The observation at each step is given as

.Y k = 1,2,...,N

where Wk is the observation noise. It is also assumed that {Wk} is an

independent sequence, {Xk} and {Wk) are mutually independent and that gk is

*, an arbitrary measurable function.

N
Based on realizations from the observation sequence y {ylY2,...,yN '

it is desired to compute an estimate of the signal X for each k. A Bayes

estimate X = (yN), where yN ={yY 2, ... IyN is one that minimizes the
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expected value of a cost function C(Xk,Xk) associated with the estimation

procedure, namely

E{C(XkXk)- C(xk,x) f(xk,yN) dxk dyN (2)

Equivalently, we seek to minimize

E{C(X, ,k)IyNY N f} C(xk,^k f(xkly ) dxk (3

for each y N. So it is necessary to determine the a posteriori distribution

Theoretically, the a posteriori distribution f(xkly N) is determined by

the joint statistics of the random sequence XN = {XlI,X 2,...,XN}, the statis-

tics of the noise sequence W and the functions gk" However, in order for

this to be of any practical value, the a posteriori distribution f(xklyN)

must be determined recursively for 1 < k < N. The following are some results

along these lines due to Askar and Derin [1].

Theorem 1. Under the assumptions stated above in (1)

f(xklxj,yN) =- f(xkIxj,yJ-1 ) k < j < N. (4)

where yk = {y1,Y2,...,yk} is a realization of the random sequence

* ~ k
Y y . {yiY2,...,y k"

Theorem 2. Under the assumptions stated above in (1)

f(xkyN) - f(xkyk) f f(xk+k) f( N) dxk+l (5)fkl xk f(xk+l ly k) f(xk+l l y
) dk+ 5

where recursive relationships for the conditional filtered and predicted

densities f(xklyk) and f(xk+llyk) respectively were determined by Ho and Lee

[201 as

- .

" • i . # o i °. e • • * ° -* . ' -"• - . w - * • •",". • ". . . " . . *, .•. °



6

k f(yklxk) f(xkly k-1l (6
f(xy k) = Sf(yklxk) f((6)

and

f(xk+lyk) I f(xk+llxk) f(xklyk) dxk (7)

The proof of Theorem 1 and proofs of the recursive relationships

(5) - (7) follow from Bayes' rule and model assumptions. The smoothing

algorithm given in (5) is a backward algorithm where k is running from

N-i to i. So the smoothing algorithm involves two passes over the data,

one forward pass during which the conditional filtered and predicted den-

sities are computed according to (6) and (7) and stored, and one backward

pass during which the smoothing a posteriori densities are computed. Note

that durir4 the backward pass the observation sequence yN is not explicitly

used.

The general implementation of this smoothing algorithm could lead to

storage and processing difficulties. However, under Gaussian assumptions

the densities are characterized by a few parameters, and computation and

storage is straightforward. Also, if the signal {Xk} is a sequence of r.v.'s

taking only finitely many values, then the integrals reduce to finite summa-

tions and the implementation of the algorithm Is relatively straightforward.

In this smoothing algorithm, attention is concentrated on computing

f(xklyN) the a posteriori distribution of individual signal values, given

Nthe full observation set y . An alternative Bayes estimation scheme would

be to compute f(xNIy N ) (or equivalently f(xN,yN)) yielding a Bayes estimate

of the whole signal sequence. Recursive expressions for these densities

can easily be written down for models at hand. However, the actual implemen-

tation requires computations and memory in the order of KN where K is the

number of values r.v. Xi takes and hence it is not feasible to compute

S . . .- .. . i -. * - . -. *,. . . . ..
"
"." "':""~ '



7

f(xN yN) unless for very short sequences, even for binary r.v.'s. On the

other hand, the xN that will maximize f(xNiy N) can be computed using dynamic

programming, thus obtaining a MAP estimate of X . Such a MAP formulation

is presented by Scharf and Elliott [21] and used in image segmentation by

Hansen and Elliott [17].

An extensive simulation in I-D was carried out and the performance of

the two approaches on different binary signal sequences were compared. It

was observed that, taking the mode of f(xklYN) as the estimate for Xk for

k = 1,2,...,N and then piecing them together to get the estimate for the

full scene XN performs just as well, if not better, in most cases as the

MAP estimate obtained by maximizing f(xNy N ). Of course, both estimates

performed much better than a simple threshold comparison estimate which does

not exploit the dependence in the signal sequence.

III. PROBLEM STATEMENT AND MARKOV RANDOM FIELD MODELS

Problem Statement

Suppose the image is a random field Y fY ij.} defined over a finite

N I x N2 lattice of points (pixels) defined as L - {(i,j): 1 < i < N1 ,

1 < j < N2}. Suppose further that the image random field Y is a function

of a scene (true picture) random field X and a corruptive noise random field

W, each defined over the same N1 x N2 lattice. The functional relationship

between the random fields is such that at each pixel the image r.v. is a

function of the scene r.v. and the noise r.v. at that pixel, that is

Yij = g4j(Xij'Wij )  (k,j) c L (8)

Although, with assumptions that will be stated below, the model allows

for an arbitrary measurable function, e.g., gi, that can model satur-
eI., tht.anmoel..ur
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aton, clipping or non-linearity effects, the interest is mainly in the

case where the image is the scene plus noise. In other words,

Y Ni X (i,j) e L (9)

or in matrix form*0i
Y = x+ w (10)

It is assumed that X is a Markov random field (MRF), that W consists

of independent r.v.'s at each pixel, and that W and X are mutually inde-

pendent. The common distribution of the W and the joint distribution of

X is unspecified.

If Xi j represents the brightness level of the scene at pixel (i,j), it

is reasonable to assume that X will depend mostly on the values of neigh-

boring pixels and that the correlation between the values of two pixels

decreases with distance. This spatial continuity is inherent in the MRF

model, in which the neighborhood structure can be specified according to

-* the degree of spatial continuity desired.

Our objective is to determine f(xijly), the a posteriori distribution

of the scene at pixel (i,j) given the full image y, for each pixel in the

lattice. From these, an estimate of each Xij and finally combining them

an estimate for the full scene X is obtained. In this study the estimate

of X j is taken as the mode of the a posteriori distribution f(xijiy) , which

is a reasonable choice especially for binary scenes the algorithm is applied

9 to.
.4

For the model under consideration the a posteriori distribution f(xijlY)

can be determined recursively, as will be explained in Section IV. However,

due to the amount of computation, certain approximations are made, such as

t t a t s . 0 .. 0 . . , . . ..*~ -. . . -.- .> . .- . .- . . ...- .. . . ;.. .. i . ' . - .
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processing the image in sections (strips). These and other considerations,

which are discussed in Section IV, lead naturally to certain subclasses of

MRF's called Markov mesh random fields (MMRF).

Markov Random Fields (MRF)

.The foundations of MRF lies in the physics literature on ferromagnetism,

originating in the work of Ising [22] in 1925. We will give only the basic

definitions; for a detailed treatment we refer the reader to Kinderman and

Snell [23].

Definition 3.1. Let L be a finite lattice

L (i,j): 1 < i < Ni, 1 < j < N2 }  (11)

Neighborhood of a c L, denoted by n a, is defined as

n = {b c L: b 0 a and a c n b Va e L (12)

And, a neighborhood system on L is defined as

I -In : a e L (13)
a

Definition 3.2. Given a finite lattice L and a neighborhood system on

L, a random field X - tXa, a c L} is a Markov random field if and only if

P(Xa - Xalb = xb, b C L - (a}) = P(Xa = Xab xb, b c na ) (14)

for each a C L.

Elaborate spatial dependence can be modelled by suitably large neighbor-

hood systems. Indeed, any random field L is a MRF with respect to the nei,ii-

borhood system for which nij - L, V(i,j) c L. However, relatively simple

neighborhood systems are adequate in modelling most scenes of interest,

and we are mainly interested in the two simplest neighborhood systems:

4.
-S. , . ', . .- .' ' . .. . "- , . . -. .. ,.-. -.- -. .. - . - .. .. , . .. - . -. . . - . . .. . .. . .
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1 2
(i) the 4 neighbor system 1, and (ii) the 8 neighbor system I2, both

depicted in Figure 1. Certain obvious adjustments need to be made for the

neighborhoods of the pixels along the boundaries.

The probabilities on the left hand side of (14) are called the "local

characteristics" of the field, and it can be shown that, for any random field,

these local characteristics uniquely determine the joint distribution P(X).

-p Now every MRF (with P(X = x) > 0 for all x) is also a so-called "Gibbs distri-

*bution" (and vice versa), and this equivalence allows us to write down

explicitly the joint distribution P(X = x).

1It also follows from the Gibbs distribution equivalence that the joint

distribution of a MRF with I or 2 neighborhood system can be expressed as

P(X = x) = n Pij(xij xil,j, xi,jl,xil,j i) (15)
-7 (ij)cL

with necessary adjustments for i = 0 or j = 0 or both. The expression in

(15) for P(X - x) can be obtained as an extension of the Hammersley and

Clifford Thtorem (see Besag [24]). Note that Pj Is in (15) are not unique

and calculation of a set of them may be extremely difficult due to the

necessary normalization. Fortunately computation of p ij is not necessary.

The important point is that such a representation for P(X = x) exists.

The following are implied by the representation in (15) and will be

S., -used in the smoothing algorithm.

Theorem 3.1. Let X = {Xa, aELl be a MRF on lattice L with neighborhood

system I or 2. The columns (and rows) of this MRF constitute a vector

Markov chain.

This is an interesting and potentially useful result concerning finite

lattice MRF's with i or 2 neighborhood systems.

.4



11

Theorem 3.2. For {Xas aeL) a MRF on lattice L with neighborhood system

11 or

P(x acAIxb,bEB) = P(xa,aeAlxb,bcC) (16)

where A, B, and C are subsets of L shown in Figure 2.

4I

(1.1 (10j

1 2in- 4 neighbor system T- 8 neighbor system

Figure 1. rI and n2 neighborhood systems

* .. . . . . . ... *

B

SF . S t o e u

Figure 2. Subsets of L that are used in Theorem 3.2
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Markov Mesh Random Field (MMRF)

Neither the conditional distribution nor the joint distribution charac-

terizations of MRF's are immediately applicable in the Bayes smoothing algur-

ithm that is being proposed. What is needed is a characterization more

directly causal than (15), which brings us to the so-called Markov mesh

random fields (MMRF) introduced by Abend et al [251 and Kanal [261. Similar

causal, unilateral characterizations have also been used by Kashyap and

Chellappa [8], [9].

Let L be the lattice described above. We define

Ai' j = ((k,k)}Ljk < i or 2 < JI for (i,j)cL

(17)

Bi'j - {(k,t)eLjk < i and 2 < J , (k,k)#(i,j)} for (i,j)cL

A MMRF is defined by the property

P(xI jIxa, acA i) P(xij Ix aacCi,j), (18)

where C i~ is a subset of Bi,j and determines the particular type of MMRF.

Such a random field has the following, very useful property:
El' P(X - x) = R P(x IXa, ax C (19)

iij a ii

This is the causal relationship we need for the smoothing algorithm.

Corresponding to any choice of {C 1,}, there is a family {D I} such that tt

MMRF satisfies

P(Xij- xij Xa - Xa, acL - {(i,j)))

- P(Xij ' xij Xa - xa, acD l~) (20)

2 Moreover, the {D I} constitute a neighborhood system, and hence it follows

.5' from (20) that a MMRF is a MRF. The (D i corresponding to a particular

* £'-',"-;, , -""'.2..1.... '' ,-.. ..-. "'"-," i"; '•r' , ,;'l ;,,- , "" =, .. a.* , * -' - - '" '" "



choice of (C i,j } can be determined using (19).

Of special interest to us is the case in which Ci,j = {(i,j-1),(0-l,j-1;,

(i-l,j)}. The corresponding {D j} is the 8-neighbor system I . For this. {Di,j

choice of Ci,j, the joint distribution in (19) is equivalent to (15), a joint

distribution expression for a MRF with 11 or neighborhood system. The

subsets of the lattice relevant to a MMRF and the particular Ci, j are shown

in Figure 3. Some of the interesting properties of this particular MMRF are

given below:

Theorem 3.3. For a MMRF with C f {(i,J-l),(i-l,j-l),(i-l,j)} the following

are true:

, (i) P(Xa 
fi xa , acE imil 

ffi xb , bcF,,j)

P(Xa =Xa , acEi,jiX b  xib, bcGij)

i P(Xa - Xa Xb xb bC a) (21)
acEi,

(ii) P(Xa Xa cE i1IX b = xb , bcHij)

= P(Xa - xa, aEijXXb  xb, bcKi .)

P(x ijlxii ,xiJ. 2,...,xil) rI P(XalXi, beCa) (22)

1 PacE -{i,j}

The sets El,j, Fi, j , GC,j , Hi,j and Ki,j are shown in Figure 4.

The utility of the MMRF model which stems from the causal relationships

a. above (especially of course (19)), are already discussed in regard to strip
-J

a, processing. In addition, these models may be readily simulated and constitaLt

a surprisingly rich subclass of MF's.

Pickard Random Field

There is yet another interesting subclass of MRF's first noted by

Pickard [27] as a "curious binary lattice process". Let us call it a

Pickard random field (PRF). It is fully characterized by the joint distribution
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i,j) A u

. - • •(Di,)

Figure 3. Subsets of L describing a MMRF

F ~LH

""• .

Figure 4. Subsets of L that are used in Theorem 3.3

*

*
1,2

I
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of four r.v.'s on a 2 x 2 block, (Xa Xb) with the property that
SCd

P(Xb - xbiXa = XaXc - X) P(Xb = xbIXa = Xa) (23)

For the binary case, the joint distribution of the block is then completely

specified by three parameters: P(Xa = 1), P(b = 'lXa = 1) and

P(Xd = lIXC - I, Xa = 1, X 1), subject to certain constraints.

A PRF is then defined constructively. From the joint distribution of

the 2 x 2 block, initial and transition distributions of a 2-dimensional

vector Markov chain are generated, giving rise to a 2 x N1 random field,

namely this chain considered over the index set [1,2,...,NI 1]. Finally

:'* '' initial and transition distributions of an N - dimensional vector Markov

chain are generated, thus providing in the usual way the joint distribution

of an N1 x N2 random field. The random field so generated can easily be

made to be stationary and isotropic.

Here are some of the relevant properties of a PRF. For a detailed

treatment, including some of the proofs see Pickard [27].

Theorem 3.4. The PRF described above has the following properties:

(i) The rows (columns) in each set of k consecutive columns (rows) of

the random field form a k-dimensional vector Markov chain.

(ii) P(Xa - Xa, acE ~jIX. Xb, beMij)

" P(Xa = Xa, asEi,1i xb , bc Q,j) (24)

(iii) P(Xa - Xa, acEi11 I Xb x, beH1 ,j)

. P(Xa = xa, acEij jb - xb, beQi,j) (25)

Sets Ei'j, Mi'j, Qi, and Hi,j are shown in Figure 5.

Theorem 3.5. Any PRF is an MIRF, and hence an MRF.

;'°4
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The proof of this interesting result is lengthy but straightforward and

hence will not be included here.

Actually, the PRF is too special to model most of the scenes of

interest to us, even after an extension past the binary case. We have

included this brief discussion in order to illustrate, in an especially

concrete way, various properties of PRF's that are relevant for the

smoothing algorithm described in the next section.

IV. BAYES SMOOTHING ALGORITHM IN 2-D

Recall that the objective of the algorithm is to determine the

a posteriori distribution f(xij1y) recursively, where the image Y consists

of a MRF X on the N x N2 lattice corrupted by additive independent noise,

see (8)- (10) in Section III.

The Bayes smoothing algorithm in 1-D (described in Section II) remains

valid if all quantities involved, namely Xk, Wk and Yk' are random vectors,

so that {Xkl is a vector Markov chain and {WkI is a sequence of ild random

vectors and independent of {Xk}. The components of the random vectors {Wk}

need not be independent, but the computation of f(y kxk) is drastically

simplified when they are. Thus, straightforward application of the 1-D Bayes

smoothing algorithm on the vector processes recursively, yields f(xk1 y),

the a posteriori distribution of the random vector Xk (possibly a column of

the scene) given the observation random field Y (possibly the noise corrupted

image). The a posteriori distribution f(xki[y) of the r.v. Xki, the ith entry

of the kth vector, can be simply obtained from f(xkIy) by integrating over

the other components of Xk.

Thus, we have a recursive scheme to determine the a posteriori distri-

bution of the individual pixel values given the noisy image, under the addi-
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tional assumption that columns of the scene constitute a vector Markov

chain. We have pointed out in Section III that the columns (or rows) of

a MRF with 1or I neighborhood system do constitute a vector Markov chain

and thus for such MRF's the a posteriori distribution of individual pixel

values given the full image can be obtained exactly. Specifying a cost

function and determining the corresponding estimate for each pixel, this

is the "best" that can be done in estimating pixel values using the observed

-' image under the assumptions of the model.

Despite the optimistic tone of the previous paragraph there are over-

whelming computional difficulties in implementing the smoothing algorithm

on the columns of an image matrix. Even for a binary scene on a 128 x 128

lattice, at each step of the algorithm there are on the order of 2128 calcula-

tions necessary, because the column vector Xk has 2128 possible values.

Obviously, drastic simplifications are necessary.

Inspired by the ideas of Woods and Radewan [6] on Kalman strip processor,

we propose to process the image in relatively narrow strips, i.e., groups

of rows. Implementing the algorithm on a strip will yield f(xk y), the a

posteriori distribution of X, the kth column restricted to the strip, given

Y = y , Y being the restriction of the image to the strip. Clearly,

f(xkJy ) # f(xJy). However, due to the fact that the dependence between

pixelsusually decreases as the distance between pixels increases, we will

assume that the a posteriori distribution of the pixels along the center

section of the strip will not be influenced very much by the observed image

values outside the strip. Denoting by Xk the restriction of Xk to the center

section of the strip, it is thus assumed that

f(xkIy) f( ) (26)
4 - -.

Iii .'," . ..,. , .", ..-. .. , ., .. , " " .. ' " -" 'i•v ". ..' -. ' " ., '{ -" '" -
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This is a reasonable assumption whenever pixels that make up are

"far away" from those outside the strip, as measured by the effective

"correlation length" of the field.

The a posteriori distribution f(xkjy') is simply obtained by applying

the algorithm on a strip. Then integrating f(xi'ly') over the entries of

that are outside the center section of the strip gives f(x'1y'), which

in turn is approximately equal to f(xly). The a posteriori distribution

of the individual pixel values that are entries of X are simply obtained

by integrating f(xlY') over all the other entries of X . The estimates

of the pixel values that are entries of X re then determined from the

corresponding a posteriori distribution to be the mode or the mean or some

other parameter of the a posteriori distribution depending on the specified

cost function or the estimation strategy.

The strips are arranged such that the union of the center sections

S. is equal to the full scene. Thus, the estimates along center sections

combined provide an estimate of the full scene. The processing along the

strips can be done simultaneously.

A drawback to this approach is the assumption that the column vectors

{(Xi' along the strip constitute a vector Markov chain, which is not neces-

sarily true for an arbitrary MRF. Moreover, even if {X'} is a vector Markov

vector chain, the transition distribution P(xjxI) of this vector Markov

chain must be known in order to be able to use the algorithm.

To address both of these issues we concentrate on the Markov mesh

4 random field models discussed in Section III. Looking at Theorem 3.3 (ii),

we see that the column vectors along a strip are not exactly a vector Markov

chain. But if we overlook the dependence of XiJ on pixels other than the

adjacent one, in other words, if we assume that

:,,~~. . .... . ...... . .. . . ..... .".-' . . -. .... . .
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P(xij lxi,jlxi,j_2...,*xi l) P(xijlxi,jl) (27)

9. then it follows from (22) that the columns along the strip do constitute

a vector Markov chain and (22) gives a simple explicit expression to com-

pute P("kI'ki ) in terms of P(Xijtxb, bcC i~)'s, the causal transition dis-

tribution characterizing the MMRF, and the transition distribution

P(xj lxiJ-)"

Aside from the approximation expressed in (27) which is not an unreason-

able one in a Markov setting, starting from a joint distribution on a 2 x 2

block, the building blocks of the MMRF, P(x.ljxb, beCij) for

C = {(iJ-l),(i-l,j-l), (i-l,J)} and P(xijlxi,j1 ) needed in (22) are

computed and hence P(x'Ix i) is computed using (22). Thus, with a MMRF

model and with the approximation of (27) the Bayes smoothing algorithm is

readily implemented over strips of the image. Let us denote this version of

the algorithm, in which strips can be processed simultaneously, by Algorithm A.

It should be noted that for Pickard random field (PRF) described in

Section III, the desired properties of the strip processor, namely

(i) columns along a strip are a vector Markov chain,

(ii) P(x.lI) is explicitly determined

are both valid without any approximation. But the PRF model is so restric-

tive that the segmentation so obtained for our scenes is not as good as

*that obtained by various MMRF models, making the approximation in (27).

The restrictive nature of the PRF is illustrated by the following example.

Consider a binary scene with P(Xij = 1) - 0.5 and P(Xij = Il I  1) 0.8.

It follows from the model constraints that P(Xij = 11Xij_ I  = 1, Xi-,-l 1,

Xi-l, j - 1) > 0.9375 and that it has to be less than 0.94 for spatial con-

tinuity constraints such as P(Xij = iXi j_1 - 0, X 1, Xi, 0)

being relatively small (< 0.05). For these reasons, the PRF model will not b!

* , *',*.-*,,, - .,'...,.-. . ..'....-..... ... - • ...'' -, ", , . " . . -i . ."..'"
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discussed any further.

Alternate Version of Bayes Strip Processor Algorithm

For a MMRF with Ci' j = {(i,j-l), (i-l,j-l), (i-l,j)} the following

relationship holds:

P(Xa = X a , acEijJXb = xb, bc HijUR.,j )

= P(Xa = xa9 aE imjtXb = xb, bcQi.jUSij)

= i P(X ax b , bcC) (28)
acE aj

The sets Ei'T, Hi'J, R i'J, Qi,j and S i~i are shown in Figure 6. In simple

terms, this means that given the row above the strip, the columns of the

strip form a vector Markov chain, and that P(x+lIx x), where x denotes

the row above the strip, is readily obtained in terms of the building

blocks (causal transition distribution) P(x alXb beCa) of the MMRF.

It is also true that the Bayes smoothing algorithm (4) - (7) described

in Section II is still valid for a MMRF model with vector processes (a strip)

andwithx, the row above the strip, given, meaning that x is simply added to

all the conditional distributions in (4) - (7). The transition distribution

P(X +lJ,1 kx) is computed using (28). So the algorithm in this case yields

f( 1jy', x) recursively.

In order to apply this version of the algorithm, however, we need to

know x the row above the strip. Clearly this information is not available.

But an estimate x of x is determined during the processing of a previous

strip. So if the estimate x is used instead of x, f(x.'ly',,) is obtained

as an approximation to the a posteriori distribution f(x jy',E). Then

integrating f( .Iy',x) over the variables that are not to be estimated,

the a posteriori distribution of the variables to be estimated is obtained.

* *4 .. 4 . . 4. . ..
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Using the estimate of the row above the strip is equivalent to

adjoining a boundary condition to the segmentation problem. The variables

to be estimated along the strip could again be along the center section of

the strip or could be along the top of the strip adjacent to the "row above",

whose estimate is used. Let us refer to these two new versions of the

algorithm as Algorithm B and Algorithm B' respectively. Note that Algorithms

B and B' have a sequential nature because of the use of the previous estimate K.

In Section V, we will report on the application of Algorithms A, B and B'

to obtain binary segmentation of some noisy test images and some remotely

sensed SAR images obtained by SEASAT.

At this point, it would be in order to summarize all the assumptions

and approximations made to obtain an implementable 2-D Bayes smoothing algorithm.

Aside from the general assumptions of the scene being a MRF on a finite

lattice corrupted by additive independent noise the following assumptions and

approximations are made:

i. Scene is a MRF with i or 2 neighborhood system.

ii. Scene is a MMRF with "support set" C i,= = {(i,j-l), (i-l,j-l), (i-l,j)}

(a special case of a 2 neighborhood MRF).

iii. Pixels far apart tend to be independent and as a consequence of this

f( l[Y) "0 fC ly').

iv. P(xij~xi,jlxi,j_ 2 ,...xi,l) = P(xij xi,jl) (assumed in Algorithm A).

v. x, estimate of the row above the strip is used instead of x, the row

above itself, in all the conditional distributions (assumed in Algorithms

B and B').

o .. . " '°'" 
°
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V. BINARY SEGMENTATION USING BAYES SMOOTHING STRIP PROCESSOR ALGORITHMS

The scene X is assumed to be a binary (equivalently two-level: X., k2)

?IRF with support set C1 ~ - (i,j-l), (i-l,j-l), (i-1,j)}. The joint dis-

tribution of 2 x 2 block from the scene is specified as follows:

1 1 21 1 1 0" ' P( 1 1 ) - ql' P( 1 1 ) = q2 ' P( 1 0 = q

(29)
P( 0 o) q 4' P( 0 0 ) "s 0 0 ) = 6

0 100

The joint distribution of the 2 x 2 block is invariant under multiples of 90 *

rotations. Various transition probabilities necessary for the algorithms

are determined in terms of the parameters ql, q2 '.. q6 " Different degrees

of spatial continuity can be modelled by a proper specification of qi par-

ameters.

The scene is corrupted by additive, independent, zero-mean Gaussian noise.

In other words, the r.v.'s constituting the noise field are assumed to be

iid and N(O,a 2). For the sake of the Computer Vision system used it is

further assumed that the noise takes discrete values with probabilities

proportional to that of N(O,2 ), upon proper normalization. The segmentation

algorithm is applied to images with varying noise levels. The signal to

noise ratio (SNR) of an image is defined as

"" t2 -t£

SNR 2 (30)

where 1I and £2 are the levels of the binary scene. For the test images

segmented the quantities £1 £2 and a are all prespecified and hence known.

For the real SAR images, they are estimated by assuming that the image is a

moiwd 2'=. mixture of two Gaussian distributions with means £i and £2 and variance a

!i,
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In all the segmentation examples reported here, the strips are taken

as 3-row wide with the "center section" of the strip being the middle row.

Algorithm can be implemented with greater strip widths but the computation

times become prohibitive for strip width greater than 5. However, as will

be illustrated, remarkably good segrentation results are attained even with

3-row wide strips. Both the test images and the SAR images segmented are

taken to be 64 x 64. Larger images can be processed with computation times

proportional to the total number of pixels in the image. Segmentation of

64 x 64 images with 3-row wide strips takes in the order of 30 seconds on

a Computer Vision System supported by a VAX 11/780 computer.

Taking 3-row wide strips in Algorithm A the scene values are estimated

along the center row using the (noisy) image values on the 3 row strip. In

Algorithm B, similarly center row scene values are estimated using the 3 row

strip and the estimate of the "row above". In Algorithm B', again using

the image on the 3-row strip and the estimate of the "row above", scene

values along the top row of the strip are estimated. In all cases, the

estimate is taken as the mode of the corresponding a posteriori distribution.

Following the segmentation the estimated scene is post processed by a

3 x 3 median filter. This post processing helps eliminate some of the specks,

i.e. the isolated, presumed to be erroneous estimates. But while eliminating

erroneous specks some new errors may be generated due to a resulting decrease

in scene detail. A desired degree of scene detail together with possibly

erroneous speckles can be attained by a proper choice of the qi parameters.

Different segmentation results based on different sets of q, parameters are

illustrated in the figures.

2.
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In Figures 7-22, segmentation of some test images with different

SNR's using Algorithms A, B and B' are presented. The arrangement

of the four sections of these images is described in Table I. The SNR

of the noisy image, the type of the algorithm used and the qi parameters

used are all specified separately for each Figure. The three versions

of the algorithm yield similar results for high to medium SNR's but show

distinctively different characteristics for low to very low SNR's. It

is seen from these Figures that segmentation results are excellent for

high to medium SNR's (e.g., SNR - 7 or 1) and resonably good for low-to-

very low SNR's (e.g. SNR - 0.7 or 0.5). Some directionality features are

apparent in the segmentation for low SNR's. It is believed that this

undesirable effect can be eliminated or reduced by increasing the strip

width and by properly choosing the qi parameters.

During experimentation with the segmentation algorithm, we observed

that the results are somewhat sensitive to the parameters q1 's. The set

of parameters which yields a "good" segmentation depends on the noise

level and the level of detail (object sizes) in the image. In this study,

TABLE I

DESCRIPTION FOR FIGURES 7-22

(a) Noiseless test image.

(b) Gaussian noise added to (a) with specified SNR.

(c) Segmentation of (b) by the specified algorithm.

(d) (c) Post-filtered by 3 x 3 median filter.

................



h~a~ 26

ab

c d

Figure 7. Segmentation with Algorithm A, SNR-2, ql-O.44 , q 2-q3 =q 5 =O.O5'
a 4 -c and q 6 -0.5.

a b

c d

Figure 8. Segmentation with Algorithm B, SNR-2, qlinO.42, q2 -q 5-0-005'
q 3 -. 01O, q 4 -E, and q6-0 .

5 .
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7. 27

a b27

c d

Figure 9. Segmentation with Algorithm B', SNR=2, qiO0.42, q2 -q5-0.005,
q3-0.01, q4 -, and q60O.5.

a b

, 4

c d

Figure 10. Segmentation with Algorithm A, SNR-l, q1-0.44, q2-q3q 5 ,0.005,
q4n , and q6-O. 50.
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a b 28

c d

Figure 11. Segmentation with Algorithm B, SNRl, q1fO.42, q2 q5 -Oo005,
q3 0.0l, q403, and q6 O0.50.

ab

c d

Figure 12. Segmentation with Algorithm B', SNRfi, q],0.38, q2-q5 -0.01,
q3=0.015, q4-c, and q6'0.48.
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a b

c d

Figure 13. Segmentation with Algorithm A, SXR-0.7, q -0.3, q 2-q 5 -0005 '
q 3 -0.01 q4 c and q60 .62.

a b

*c d

Figure 14. Segmentation with Algorithm B', SNRinO.7, q1"0.3, q 2 -q5 =0.02,
q 3 =0.025, q 4-C and q 6 -0.44.
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M 30
W, a b

-

q. 3m0.1 q 4 .,adq0.70.
c d

Figure 15. Segmentation with Algorithm A, SNR=0.5, q 1-.O.22, q2sq5 0.005,
q3=O.01, q4 =C, and q6-O.70.

ab

b 3

I'

'1

c d

~Figure 16. Segmentation with Algorithm B', SNR-0.5, q1 =O.28, q2-q5=Oi.03,
q3-O.04, q4 "c, and q6-O.32.
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a b

c d

Figure 17. Segmentation with Algorithm A, SNR=2, q,0.38, q 2=q 3=q 5=0.015,
q- and q 6 -0 .44.

a b

c d

Figure 18. Segmentation with Algorithm B, SNR-2, q1-O 38, q 2-q 3=q 5 =0.015,
q4cand q-0 .44.



a.7

ab 32

c d

Figure 19. Segmentation with Algorithm B', SNR-2, ql=q 6 -0.38, q 2=q 3 q 5=0.02,
and q4c

a b

'who

c d

Figure 20. Segmentation with Algorithm A, SNR-1, q1 =0.42, q 2-q 5 =O.O1'
q 3.Oo005, q 4 -c, and q 6=0 .48.
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c d

Figure 21. Segmentation with Algorithm B, SNR~1, q,=0.36, q 2=q 5 -0.02,
q 3 0.015, q 4 =c and q 6 -0.422

a b

Figur 22 emnainwt4loih ',SRl 103,q- q-.2

C2 d

q4cand q6-0.40.
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we did not try to develop a scheme to estimate the parameters that will

give the "best" segmentor. Instead, based on a few trials, we chose sets

of parameter values that gave reasonably good segmentation results.

Increasing ql and q6 and equivalently decreasing the others has a stiffening

effect which reduces the details and the specks presumed to be noise.

The segmentation algorithm is also applied to some remotely sensed

data, namely to some synthetic aperture radar (SAR) data obtained by SEASAT.

Such an SAR image provided by Office of Naval Research is shown in Figure

23. Segmentation Algorithm A is applied on three 64 x 64 portions of this

image, shown in frames in Figure 23. The segmentation results of these

three images by Algorithm A is presented in Figures 24-26. The sections

of these Figures are arranged such that in section (a) is the actual SAR

image, in sections (b), (c), and (4) are segmentations of (a) using qi

parameters getting stiffer in that order. We see that as the qi para-

meters are made stiffer some of the image details as well as some specks

presumed to be noise are eliminated. The q1 parameters can be chosen

according to the level of detail desired in the segmented image. Again

the actual image is assumed to be a mixture of two Gaussian distributions

and the parameters of these Gaussians are estimated and used in the seg-

mentation algorithm. The qi parameters used are specified following each

figure. In all cases q4 = 10 - 5 is taken and this amount is properly sub-

tracted from other qi's so that

q + 4q2 + 4 3 + 2q3 + 4q5 + q=1

is insured. It is clearly seen in Figures 24-26 that the algorithm yields

-I
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Figure 23. SAR image of Chesapeake Bay area.

a b

c d

4 Figure 24. Segmentation of SAR image by Algorithm A. (a) image, (b) qj~q6=0. 2'
q2l-q3-q5-O.05, q4-c, (c) ql=q6 -O.32, q2 -q 3=q5 -O.O3,q4=e,(d) ql-q -0O.44, q -q 3-q5-.. 1, q-c.
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c d

Figure 25. Segmentation of SAR image by Algorithm A. (a) image, (b) ql=q6=O.
2O

q27q3=q5=0.05, q4=c, (c) ql=q6=O.32, q2=q3=q 5=O .03, q4 =6,
*(d) qq 6=O.44, q 2=q3 -q 5=O.O1, q 4 =c'

a b

cd

*Figure 26. Segmentation of SAR image by Algorithm A. (a) image, (b)ql=q =0. 20
*q 2 nq 3 -q5-0.05, q4 -e, (c) ql-q6=O.32, q2-q3-q5-O.03, q4-c

(d) q1-q 6 .0.44, q2=q 3=q 5=0.01, q 4 =r.
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remarkably good segmentations of remotely sensed data as well. The

algorithm can be incorporated with a parameter estimation scheme so that

a completely automated implementation of the algorithm is feasible.

VI. CONCLUDING REMARKS

In this report we presented a new segmentation algorithm based on

recursive Bayes smoothing of images modelled by Markov random fields

*corrupted with additive noise. Ideally, the algorithm yields the a posteriori

distribution of the scene at each pixel, based on the whole noisy image.

Computational concerns, however, necessitate certain simplifying assumptions

on the model and some approximations during the implementation of the algor-

ithm. In particular, the scene is modelled as a Markov mesh random field,

a special class of Markov random fields, which allows for a causal condi-

tional distribution characterization. Various properties of the Markov

mesh random fields, their relationship to Markov random fields and to other

classes of Markov random fields are investigated.

The algorithm is implemented using strip processing approach, where

the estimate for each pixel value is determined based on all the data over'I

a strip. This, near optimal version of the algorithm is applied to some

test images of various noise levels and to some remotely sensed SAR data.

The algorithm yields excellent segmentation results for high to medium SNR's

and reasonably good results for low to very-low SRN's (up to 0.5).

Some areas for future work include extending the algorithm to segment

multilevel images and to employ wider strips. As the strip width is increased

the algorithm tends to the optimal Bayes estimate of each pixel based on the

whole image. It in also of interest, to explore ways of determining the

vector Markov chain tr'nsition probability distribution according to some

0 . - -... .. -. - .:. .. . " . . '- • . . - . . - '" "- - .. . • " " . .'" ' :'
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criterion. The transition distribution is to be determined using the

noisy image and it should closely represent the scenes of interest.

,
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