HD-R133 949 A TWO-TIERED APPROACH TO SPECIFVING PROGRRHS(U)
MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER
SCIENCE J M WING JUN 83 MIT/LCS/TR-299

UNCLASSIFIED NB@@14-83-K-8125 FrG 972

.
T
T e
T 1T T T 1K
T
1
N
I
T T T T Tk
T T T T T
I A A
T T}
I
I

Nl Rl YO I T
.._-.-. fn "t T

A KA ATA

oty i
s B

=" 1
22 this nis

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

RPN ol A Oyt S PG

> . Lo 2N o I -y
‘,f =, .- -‘l..-

e n e

"7’ l Y'_-v"v.:.f;‘.{

-y
"""m"'-.‘-.,zu mm

MIETT LOS TR-299

A TWO-TIERED APPROACH
TO SPECIFYING
PROGRAMS

Jeannette Marie Wing ELECTE]
0CT 241983

D

I'nis rescarchhwas supported in part by the National Science Foundation
undor grant MCS 8TT98 16 and by the Detense Advanced Rescarch
Projects Agenoy monitored by the Office of Naval Research under
Contract No NOGT 83 K 0125

DISTRIBUTION STATEMENT A

Approved for public release}
Distribution Unlimited

OTI® FILE COPY

[EebINaob ey s VRE NIRRT E NTASNSNYCHTESE T TS o

v
R A
S
el

LA
U]
of e

v e
.
Py

-7
i.r"

)
»
Lt

RN

o3

; A T DA T) - . aMe o
PNL A A RO O Ch AT IR Al £ A A I I Bl Vo B B S e S Mot aost DAl e et s Jmadme oo "

~ LN

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

7. REPORT NUMBER 2. GOVT ACCESSION NO.

MIT/LCS/TR-299 p-F133949

3. RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)

A Two-Tiered Approach to Specifying
Programs

5. TYPE OF REPORT & PERIOD COVERED

Ph.D. Thesis, June '83

Sﬁf%'?falgﬁ ORG. REPORT NUMBER

ey
7. AUTHOR(s)

Jeannette Marie Wing

8. CONTRACT OR GRANT NUMBER(s)

DARPA/ONR §?8§4—83-K-
NSF-MCS-8119846

9. PERFORMING ORGANIZAﬁON NAME AND ADDRESS
MIT Laboratory for Computer Science
545 Technology Square
Cambridge, MA 02139

10. PROGRAM ELEMENTY. PROJECT, TASK
AREA & WORK UNIT NUMBERS

V1. CONTROLLING OFFICE NAME AND ADDRESS

DARPA/Dept. of Defense

1258 We150n Biafgssige Techniuges Office

12. REPORT DATE

June 1983

13. NUMBER OF PAGES

163

4. MONI G NCY NA RESS(if ditferont from Controlling Oflice)
Office of Naval Rescarch/Dept. of Navy
Information Systems Program
Arlington, VA 22217

1S. SECURITY CLASS. (of this report)

Unclassified

18a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

e e et e ——
16. DISTRIBUTION STATEMENT (of thie Report)

Approved for public release; distribution unlimited

Unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Types, Programming Methodology

19. KEY WORDS (Continue on reverae side if necessary and identify by block number)

Formal Specifications, Program Design, Specification Languages,
Specification Analysis, Algebraic Specifications, Abstract Data

20. ABSTRACT (Continue on reverse side It necessary and identify by block number)

urrent research in specifications is beginning to emphasize the
ractical use of formal specifications in program design. This
thesis presents a specification approach, a specification language

that supports that approach, and some ways
ions written in that language.

to evaluate specifica-

he two-tiered approach separates the specification of underlying

abstractions from the specification of

DD ,"S%M, 1473 EoiTion oF 1 NOV €815 OBSOLETE
$/N 0102-LF-014.6601

JAN 73

lIncl

SECURITY CLASSIFICATION OF THIS PAGE (When Data Bntered)

...........

~ T, '.‘;Fv.'-.‘.'-'.'-'. e Ml -
P VA S IR B G B
LSRR T RN SRR O R S R

.

AN e s
P

i

e

x

Yy
3

Iy
AV NN

.t
143
A

Ll

R Y

PN
4

Yy

v e ',
PR
["‘f‘f.-" b

-

.
¢

2
P
LAY WY R

f."“-l-_""fl<b .
RIALIARFAITE . FIETN

'y

¢ i. l. i' l. ..
K -

,
v .

DO T Y
PR T Y

A
-

A T e

L Rt tite- e iy 4n Y Jyte Thiaciivd

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

RN A DA AR ar A AR I A P S A M M "R S SRR CM AN

20. .. continued

this approach, state transformations and target nrogramming
language dependencies are isolated into an interface language
component. All interface smecifications are built upon shared
language snecifications that describe the underlying
abstractions. This thesis presents an interface specification
language for the CLU programming language and presumes the
Larch shared language.

This thesis also suggests a number of kinds of analyses
that one might want to rerform on two-tiered specifications.
These are related to the consistency, comnleteness, and
strength of specifications, and are all pnresented in terms
of the theories associated with specifications.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

.
‘
LV SR) ..d

Cay ey e

’

D) SR IA

ALY

2 3 l."".“

I T —r o —
" e N N T T T T T T T Y T T e T, La A e g

7 W

/

W%

A Two-Tiered Approach to Specifying Programs

4 by

Jeannette Marie Wing

~U AN

© Massachusetts Institute of Technology 1983

Craciiades

3

’ This research was supported in part by the National Science Foundation under grant
MCS-8119846 and by the Delense Advanced Research Projects Agency monitored by the
Office of Naval Research under Contract No. N0014-83-K-0125.)

Y

3 Accession For

- NTIS GRARI

- DTIC TAB

. Unannounced 0 Massachusetts Institute of Technology DT

_{, Justification | Laboratory for Computer Science 'C

: B Cambridge, Massachusetts 02139 ELECTFE

r Distribution/ - o OCT 241983

e

Avail and/or L

% Digt Special 4"- D

5 (R

LR .

..................

3

AW I B33 D e e

Vasoalnat

(Wi .

L& Ay

$ %)

o 1 d R
d LLL:-‘.;\L :

w4

t
.
.
.
/)
.
@
0
4
»
.
L4

4 A, PP T

A Two-Tiercd Approach to Specifying Programs
by

Jeannette Marie Wing
Abstract

Current research in specifications is beginning to emphasize the practical use of formal
specifications in program design. This thesis presents a specification approach, a
specification language that supports that approach, and some ways to evaluate specifications
written in that language.

The two-tiered approach separates the specification of underlying abstractions from the
specification of state transformations. In this approach, state transformations and target
programming language dependencies are isolated into an interface language component. All
interface specifications are built upon shared language specifications that describe the
underlying abstractions. This thesis presents an interface specification language for the CLU
programming language and presumes the use of the Larch shared language.

This thesis also suggests a number of kinds of analyses that one might want to perform
on two-tiered specifications. These are related to the consistency, completeness, and
strength of specifications, and are all presented in terms of the theories associated with
specifications. .

A

Thesis Supervisor: John V. Guttag

Title: Associate Professor of Computer Science and Engineering

Keywords: Formal Specifications, Program Design, Specification Languages, Specification
Analysis, Algebraic Specifications, Abstract Data Types, Programming Methodology.

This report is a revision of a thesis of the same title submitted to the Department of Electrical
Engineering and Computer Science on 19 May 1983 in partial fulfillment of the requirements
for the degree of Doctor of Phitosophy.

AT s Ny NV IR VIR h AT A e i S0l 2t B SR e etriee s A TTTer—— T Lot e apen o
) -3- :
Acknowledgments

I would like to express my foremost thanks to my advisor, John Guttag, for his sustaining
guidance and encouragement throughout my graduate career. His keen intuition helped me
separate the good ideas from the bad, the important from the trivial, the interesting from the
dull. | am deeply grateful to Jim Horning for his invaluable technical help on my thesis and for
the opportunities to share ideas with him at Xerox Parc. | would like to thank both John and
Jim for their help in formulating my thesis topic, and their constant faith and interest in it. |
would also like to thank Barbara Liskov for her perceptive comments on my final draft. All
three deserve many thanks for their careful and thorough readings of my thesis and their
suggestions for improving its presentation and organization. John deserves special credit for
patiently editing numerous drafts of many of the chapters.

| owe thanks to many people for their friendship and their help in providing a bearable
working environment. In particular, | am indebted to Bill Weihl for his technical expertise, and
his willingness to discuss problems and suggest solutions. | am also thankful to Kathy Yelick
for diligently reading drafts of my entire thesis; to Maurice Herlihy, Gene Stark, Karen Sollins,
and Joe Zachary for various enlightening conversations and their feedback on some of my
chapters, to Pierre Lescanne for listening to my ideas, answering my questions, and
heightening my awareness of MIT parochialism. | would also like to express my appreciation
to Srivas Mandayam and Sriram Atreya for their open ear and encouragement at the start of
my thesis research; to Julie Lancaster, Randy Forgaard, Ron Kownacki, and Brian Oki, at the
end.

Finally, | wish to thank my parents with all my heart for their unceasing moral support,
optimism, and confidence in me.

’

LY [)
PARNA AN

IR Y

---------- et e et et At e e
P N Y T . P L P N R S Y R I P LTI .

_ Py .

» T i NS

Pl e

k.2 X Pink 2k od

© AN

R8s Y K2

a W AOILBA AT

& BN X

A BRI a5 s 203

L) e

R

B A o Sl Al Lt b T o i ot a Bl A AR RO M S i R o A i S At S St el St Tt AT A B AR ol A S A R e

...................

CONTENTS

1. Introductioncccoimiicriniiiiissentietiieresinncieinnennesecisseenas 7

1.1 The Problem seaenesarasnetesssnerestst st e r s a s e s s e et S e n bt sere R Rt s be s 9
1.2 The Two-Tiered ApProach ... presssusisnssntesesanesnentasssans 10
1.2.1 The APDPFOACH ..ccociiirciriceenniesserssstisnsrsssst s ssstessasesssnssssssessnessssessensssnnas 10
1.2.2 Two-Tiered SpecCilicationsc.ccciiinerniiniiimeininiineesiscesieninen 1"
1.2.3 Foliowing the APProachcccesmmiennniissismmeniiinieesssesmsesasens 13
1.3 A Glimpse at a Particular Two-Tiered Specification Languagecceeevn.n. 14
1.3.1 A Preview of the CLU Interface Languageccccenvecrnnccninnenscierencsnens 15
1.3.2 AnOverview of Larehc.ccciicnininniiniiennenncnerisseecnnsiesssssssessens 18
1.4 Related WOTKc.cociiicminniiinoniiiimimesmnisinmmmsmsiesssisssesassss s 21
1.4.1 Program Verification ..., 21
1.4.2 Program Developmentc.ceeiimeiinnnnsinsiosnmnesstssneeaessssossiss s 22
1.4.3 ADSIrAct DAt TYPES ...ccocccvuureinrersssssssniessnnrssnssnseresnssssssissusesssnsssnssssssossusnens 23
1.4.4 Specification LANQUAGEScccsccerrrnernnsciessnrmnnrsesisinnsnssssesssrostsssessnsan 24
1.5 What iS in thiS TheSISccccrveecimieriicsneststssersnnennissssasessessseesasessescansnsssnsenesssssses 26 -

1.5.1 Approach to the Formalizationcc.cccecninninicninicnncnninnnnsessena, 26
1.5.2 A Guide to the Rest of the Thesisccciinninnininnnncsinssiean, 28

2. Kernel Interface Languagecccccvaveeecceincncncccciccacsecsenes. 30

2.1 Classes of Models ceeersrstnsesst st sa e a st s R et e bt s e e s sEs e nre 31
2.1.1 Traits and AIGebrasccccurinininncrsnrinnissnississssiiosinesosss 32
2.1.2 ODJECIScocnrrrrereriensennisnstnnsnsssssssstsssnsisnsssssssssssnssstsssssssssissssssssssasessans 33
2.1.3 State retheesienesaniesessEs sttt et eREeRe SRR eRe s as b e s et Rs SRS O RS S RO R 3
2.1.4 Procedures and Operationsc.ccctevenerninsinnisneisarenessrssssssssesasesnsens 34
2.1.5 Clusters and Abstract Data TYPescccuerveivnsscsnssnisnsnssisinsssssensnssnens 36
2.1.6 Computationscceevcreerecnns Nreraeerteraseattetentasasenersnsbesntoraras 36

2.2 Kemnel Interface Language and Modelsc..cccuieneecniessiesansisnscssessessensanne 39
2.2.1 Interface Assertion LANQUAGEcvcriniimicersmsnrnisnsnisunsnsissasissssesssneane 40
2.2.2 Procedure Specificationscocuuivninnnniissnninsninsessnnissmmsmsan. 47
2.2.3 Cluster Specifications deesrseseerr ettt st b R s st s ar e ses R s Rt sven 58

2.3 SUMMATY ..ooviiiiiiiieriinneiensiinsesnsssissieesssssssissmsnsesstesssssessssstasssssssessssassssssnerssones 61

3. THOOTIOS ...ccccoverenrceinerinnrencersessensecsevsessscnssassnsssssansessessasses O2

3.1 DEHNIIONS .oocviruiverirerrercensccsersaerassarsrerssisessssissererssssesassnsoraserssssesassnssnsonnssnsanasssonses 62
3.2 Satisfaction reteressteEee Lo s et b e At S PRSI L e e TR RSSO S RO T e RO e be Rt e e RRe R L e R b O eee 64
3.3 Theory of a Specificationc..ccvurene rerersressresseentist s breaae e eaaraeans ferereersresianens 65
3.3.1 Theory Oof @ TIAILccccccvirnereirirresisrecressniieessstessrssrsssssssssesasssssessenssssssesanes 65
3.3.2 Theory of a Procedure SpecifiCationieienincsnenierienenessionsisnes 68

................

.....

P e o ¥

- o

Sl

PRI s’

al 8

‘,.. -0

P

NS
. R

4.

5.

e A NaCY-4e - Sua i g Jrap Row R et Rees N O I oA

3.3.3 Theory of a Cluster Specificationccvcvennererimrersnirenrereresssssssseens 4|
3.4 Theory of an IMPIEMENAtIONcivniinennireeneesreeessenstessesenes 4
3.4.1 Theory Oof A ProCeaurec.reeeivencssesnnssencaiesssississscssenssssrsans g
3.4.2 Theory OF A CIUSEETcovvuvreemncrncrnnerencnnerninecsressrssnssonsarssssssstanessiseen 74
35 TYPE INAUCTIONcoociriiiiineniinccsreneriresesanesssresassonsressssssssansssnsrssssasasssassansssstssssaneas 74
3.5.1 Computational INAUCHIONccocvveervinmnncnrnneeseninnnserenesnnersssessnens 75
3.5.2 Type INdUCHON PRINCIPIEcccerveereiiirenniisiinesiesiinssssenssesessarsssssensssnene 76
B8 SUMMATNY ...covierinnieisciiintiiinsasnseesessaessasssesssssstasssssssssssssstessrasissssanonssnssassessns 87
Extended Interface Language for CLUcccccvenveevieeneeee.. 88
4.1 SIMPIE EXTENSIONSccocericeeienricnrrscnneenisreseresssmeersiisinessssmesessassessessrsssesassesses 88
4.1.1 Default USed Traitcoerreeecrernimirnnenneresensesnmnsesssssessnsssssessseessssessnssssneses 89
4.1.2 MULAEES CRAUSEcovcirereeicinreienreeensirensiennesssessessiosmsersessasssssssssstssssasasens a0
4.1.3 Default Termination Condition Valuec.uiiiinnninnienneinnens sees 92
4.1.4 Multiple Pre- and Post- CONItIONScccccveirrerienienecccvensenssesnerrssnnssinine 93
4.2 Handling Other CLU FEAIUIESccccrmeiiiiniinnnnsssnnnesissnssscsnsmssssnsesssssssssones 94
4.2.1 MeMOTYy ODJECEScoccveeeerererencrsurerennsrerenesraesisesssnsstssssasesrsansessessansrsasses 95
4.2.2 REIBIONS ...ccoovvenemenreeirriereerennescsassene seessastirtssntetisrestesarettatesrasnereuntatsesssaessan o8
4.2.3 Parameterized Specificationsccvnimneniienininssssianiinin. eernessens 105

Evaluating Specificationsccccecvirvininecrinccccccnceneenees. 113

—

!
e de

N v R
et R I
O ERLAT) . S,
PR A W) a

t

‘a s b

‘L L .._' .." o “:'.‘; ,

N RY:

[0

-
‘

T
.ia
LS
T
]
o
PR
l.‘i
A
et

5.1 Properties of SpecCificationsc.ccuciiisvniricicrsnsenmnieninnissnesienamssssos 114
5.1.1 Consistency eretereettaseeertaneritaRnRaraSIIN e e ERsar Rt rasenesrbesatnasasnattnetsas 115
5.1.2 FUN-COVETAQEoociviiniiriniennirinnssssssnissensserrssssessansnssssssosmsnsesesasirssevonss 118
5.1.3 DeterminiSMccocinnieririinnnreoimsisssrismassesmsnsesssisne ssesestassasassssassasons 120
5.1.4 Prot@Ctionoviiieiinivenencennensesnneeniismmenicesssimseneosissmseesisesssessssserses 123
5.2 Comparing SPECIfiCALONSc.cerueereernareiresimsarssnmnesessaniessssesssssssassssssssossens 126
5.2.1 Comparing Srenghcccvecneenriercnnssineeissneesssersemsssssissesssasssssaeses 127
5.2.2 Definition Of SI@NGEHc..ccuerreirreesrmsscnscssssasssmmssssssmsssessussnssssssss 128 .
5.2.3 Modifying a Specification With Respect To Strengthcceoeeusenes 131 ;'.:
5.3 ESSONUANLYoonmemermmmesessssscsesmssessesssnmessssssesssssssssassssensssssssassisnssssssssssases 134 o
5.3.1 DEfINIIONS ...ooovvurinecrierisnsesennniissssssissssssssssssesssssssssssssmsssasssssssasssssessssss 135
5.3.2 Situations for Determining Inessemiamy ... 136 >
6. Conclusions, Contributions, and Further Work................. 138 ":
.:\
6.1 Summary of Conclusions and ContribULIONSc.ceeueemseresssnssssscressesenens 138 :3}{
8.2 DIrECHONS FOF FUIMNEE WOPKoeocrveenncrsessenssresessesssssssssssssansasssssasessessesessass 140 ¥
6.2.1 Development of interface Languages ... 140 '—4
6.2.2 Evaluating Collections of SPecifiCationccceerseeenesssessmesesssens 141 o
6.2.3 Maching SUPPOITc.ccveveiunsninnisnsecsinsssnmnsresiisssssimssssesssssses . 142 T
6.2.4 EXDEIMENIAUONovosvcerssirssessissnssssssssssssssssssssesssssssiussssessssssssssess 143 o
N
IRy 13;2':'52*-.;; e e e e e e i T e T

‘itjn':- 1

gy,

NN

r .1

AL
gl Gt

.
etatlat

,-..’-;._.:.;.;.....»,
. ¥ & e
TSN

3 G A

RS
fetace et

A

PALL A W JNL)

INCNO .
. PR LR
W AN

REfOreNCeSc.ccccevcnieninreraretencesesecssesacnssecncsnccssescascoccaceces 144
Appendix |. Interface and Trait Specifications ceeeneee 152

Appendix Il. Proofsccccieeverenanennes certssensesensesanans veeeesss 156

1.1, Validity of a Type Induction RUle ...t 156
1.2. Proof of SatiSIACHIONccceieiiiiiiinecrinniiecsneersessresieresersserereresamsessansssonsseassnsasssss 157

& D S R g
4, x4 . 3 e e O e o S S N e W e e e T e e N s T T T R e T T v .

‘ t'(x;{_
~

1. Introduction

The goal of this thesis is to help people write formal specifications of pieces of large

.....

.} software. To achieve this goal, we propose a two-tiered approach for formally specifying the
‘.‘33 behavior of sequential programs, we describe a language that supports this approach, and we £
suggest ways to evaluate specifications written in this language.

.'-:3 g
3 A specification describes a program's behavior; it is independent of the program itself. It ::j
ity
b is formal if it is written in a language with explicitly and precisely defined syntax and

semantics. Two virtues of formal specifications are their precision and amenability to :
:'1' .
! machine-manipulation. o
e Current research in specifications is beginning to emphasize the practical use of formal I
1 specifications in the programming process. People have already benefited from using fij
-] -
;@3 informal specifications in most phases of this process. Writing informal specifications is X
. widely accepted as a useful way of organizing ideas, documentating design decisions, and
> informally arguing the correctness of programs. Software design methods that include some s
:}; form of informal specification have been in use in industry for some time [Caine75, 4

: Jackson75, Katzan76, Yourdon78}.
?.,3 Thus far, formal specifications have played a less influential role in the programming =3
- process than informal specifications. People have used them with limited success in program
‘,:;' verification, and have just begun using them in program design. We believe that formal :I_
% o
:: specifications can and should play a more important role in the ‘programming process than ‘-\{
L they do now. .
A
.’,'-.3 =
’1 Using formal specifications early in the programming process, i.e., the design phase, -
.. : -
should reduce the time, effort, and resources spent in the overall process, especially in the
v) -
costly testing, debugging, and maintenance phases. It is often the act of specifying and not '
" the final product that is most uceful in the design phase. Uncovering bugs early can save the j;
2
o3 :
t S

'?_.: e I T N e T e e e e e T T T ~ e e e e e e e

7
~
“
e .
II
fl

......
......

.....................

A e ARt S it Al A i gt i RN AN - N wt e .8 .T""'j""*:'j?
o

8. -

cost of uncovering thém later in the testing and debugging phases. Also, as with informal 4
specifications, a formal specitication serves as a valuable piece of documentation--a means of ____j
communicating between a client and a specifier, between a specifier and program:mers, and 4‘
among programmers.]
There are many problems with trying to use formal specifications during program *#
design. Ironically, one is that the need to be precise intimidates many programmers. The %
problem of programmers learning how to read and write iormal specifications can be -
gradually overcome. Every programmer has already learned to deal with at least one formal _-;
language--a programming language. We need to make formal specifications more accessible
to programmers by supplying an easy-to-learn and easy-to-use specification language, and by]

suggesting guidelines for reading and writing specifications.

Another problem is that much of the past research in formal specifications focused on
theory and not practice, so that spéciﬁcations of small examples pervade literature, e.g., the
ubiquitous stack. The resuilt of this theoretical focus is a collection of small and
self-contained specifications of the behavior of well-understood data structures or of small
and simple programs. Small examples are not convincing and the lack of larger ones
reinforces people’s reluctance to accept the use of formal specifications. We need to

demonstrate the use of formal specifications on larger examples.

The problem of size has been addressed in programming. In the same way a large
program is constructed from program modules, the specification of a large program should be
constructed from specifications of the program modules. This technique introduces the two
subproblems of how to specify the pieces and how to combine them; this thesis focuses on

the former.

< om

ST - PRIV P SRR . e e e
. e T e e . . IR L e L IS R MY N L
LI P T N el WU T WL U W i Oy U B, T Ty, Y Y T W A TSPty N S, L ey) W

PSP PSP S R S

o'

........

Finally, another problem is that in the development of a specification the specifier is
usually not provided with any feedback as to whether the specification is in some sense
"correct.” We need to identify and check for properties of the specification that relate to its
utility. Ideally, we would check individual components of the specification for local properties,
like sufficient-completeness [Guttag75), expressive-richness [Kapur80b], and
implementation-bias [Jones80], and the entire specification for global properties, like
modularity [Parnas72b] and coupling [Myers75]). Since we expect specifications to grow

incrementally, feedback needs to be provided on incomplete specifications.

We organize the rest of this chapter as follows. Section 1.1 contains a statément of the
problem and the essence of our solution. The next two sections describe in some detail, but
not formally, the key aspects of the specification approach, and the key features of a
particular specification language. We define the language precisely in later chapters.
Section 1.4 contains a discussion on related work. Section 1.5 presents the approach we take
for providing a formal basis for defining the specification language. It also contains a guice to

the rest of this thesis.
1.1 The Problem

The main problem specifiers face is that formal specifications are hard to write. The
effort involved in writing them has thus far been disproportionate to the benefit gained from
having written them. We propose one step towards a solution to this probiem by providing the

specifier with:

1.A é.pecification approach,
2. A specification language, and

3. Ways to evaluate specifications.

L ats A

R R I L T L.
. S S e PO
POV WY Ry VT ~at SO

S g P
ST
l:.. . W
- PR D
PR S

A |
v "}_

-
o

The most significant contribution of this thesis is the specification approach, the
two-tiered approach. It motivates the design of the specification language whose precise
definition constitutes the bulk of this thesis. In this chapter, we discuss the approach and give

. an overview of the language; in Chapter 5, we address the evaluation of specifications.

We keep in mind the following two goals. First, we want to make specifications easier for

programmers to understand. This goal greatly affected our language design. Second, we
want to make it easier to reason about specifications with sufficient machine support.
Machine support, such as that provided by a theorem-prover, allows us to infer properties
about not only the specification, but also what it specifies. This goal greatly affecte: our

approa.ch to our formalization.
1.2 The Two-Tiered Approach

Sections 1.2.1 and 1.2.2 describe, in general terms, the two-tiered approach and

two-tiered specifications, respectively; Section 1.2.3 outlines how a specitier would follow our

approach to write a specification.
1.2.1 The Approach

The two-tiered approach to specifying programs separates the specification of
underlying abstractions from the specification of state transformations. We use a shared
specification language to describe underlying abstractions, and an interface specification
language to describe state transformations. The specification of a program module is written

- in an interface language and consists of two parts: a shared language component (bottom
tier) and an interface language component (top tier). These two components correspond to

the two tiers in our approach.

W TS T .
.....
.......

WA TR R P

v

‘I "l .l *“ “‘ ?

r.

T,
.

Ly Y

.(‘I'r"rY.
.

I NN
& v & 2 a4 2

«
.
]

“Bb

| Y JOE SRS T R S
et T Yy G 5 0
PR A R N

4

-1t

The interface specification language is programming language dependent, while the
shared language is programming language independent. This allows us to keep separate the
description of programming language independent issues from the description of
programming language dependent ones, eg., side effects, error handling, and resource
allocation. For example, if we were to implement arithmetic, we would describe ideal
arithmetic in the shared language, and we would describe boundary conditions constrained

by word and memory size in an interface fanguage.

Since the invention and description of key abstractions is done in the shared language,
we expect most of the effort involved in writing a specification to be invested in the shared
language component. The interface language component should deal only with state
transformations and programming language dependent issues. One reason for separating
the two language components is that we expect many shared language components to be
reuseable by different interface language components. Some of them will be developed for

particufar applications; a few central ones will be useful in many applications.

We use the term “interface"” because an interface specification describes all the
information about the behavior of the program module. Any user of a program module need
only look at its interface specification to understand the module’'s behavior. We use the term
“shared" because in the design of a family of interface languages, each interface language is
derivable from a subset of a target programming language, and a common subset, which is

the shared language.
1.2.2 Two-Tiered Specifications

in this thesis we focus on the description of an interface language for the programming
language CLU [Liskov77, LiskovB1]. In this section, however, we discuss, in general terms,

syntactic and semantic properties of interface and shared language components.

T ST

e B e
O U RS R R

Wm:l.".'\v,'.‘ NI TN EATR AN O iR A e e L ST e .-.'1
< .

. -
ﬂ:l "{
A !
! -12- -

. -"[l

: An interface language component has three parts: a header, a body, and a link to the]
\ shared language component of the specification. The syntax of the header is based on the ..1
; syntax of the programming language. For example, the types of the input and output w%
[arguments to a procedure are listed in the header information of a procedure specification as 1
they would be in an implementation. The body contains first-order assertions written in a .j
e language based on its shared language component, plus special assertions, which are L‘
introduced to handle issues dependent on the semantics of the programming language. The 4
.4 .
., meaning of the assertions is based on first-order predicate logic with equality, where equality j
o is defined by its shared language component. The link identifies the shared language N
\ component to be used.

. The crucial syntactic information provided by a shared language component to an
.'j interface language component is a set of sort identifiers, and a set of function identifiers and
E function signatures. The function identifiers are composed to build terms, which are used to

‘ write the assertions appearing in the body of an interface language component. The sort
identifiers and function signatures are used to sort-check terms much in the same way as type 1
,,\ identifiers are used to type-check programs. The crucial semantic information provided by a ‘
shared language component to an interface language component is a theory of equality for ':4
- By explicitly including a shared language component in an interface specification, we

gain the advantage that every symbol in an assertion is precisely defined within a

specification. In some other specification methods [Hoare72, Parnas72a), there is a rgliance

'E:: on an interpretation for symbols in an assertion, where the interpretation comes from outside

fjl; the specification. For example, the meanings of symbols like € and C might come from ‘
1: textbooks on set theory. In contrast, some other methods [Robinson77, Jones81] provide an

assertion language defined within the specification, but restrict the symbols to come from a

fixed set of primitives. We gain the advantage that the user is able to provide just the symbols

Tt R e et N
PPN PR S SN W A e e PIPIE WL, W U TP TR TR i e

v
A A
PRTRTRICALE (L

$, 0 -“-" .

RN)

vy B
® .

A_ D
N
P

N
4
J
S
4
o
-4

~ atypical top-down design strategy that could be used in following the two-tiered approach.

.............

necessary to write the assertions in the body of a specification. -

1.2.3 Following the Approach

When a designer begins to write specifications early in the programming process, the

act of specifying intertwines with the act of designing. One helps the other. We sketch below

1. Develop an approximate intuition of the problem to be solved.
This requires close, often verbal, interaction with the client who is
posing the problem.

2. Decide on the major abstractions.

1. Top tier: Write the header information of
the interface language components. =

2. Bottom tier: Write the syntactic -
information of the shared language .
companents of the specification, i.e., the
sort identifiers, and function identifiers and

signatures.

3. Fill in the blanks.

1. Top tier: Fill in the information in the -
bodies of the interface language -
components of the specification, e.g., write -
the assertions in the body of a procedure
specification. Simultaneously generate
additional function and sort identifiers .
needed from the shared language) -
components.

2. Link between top and bottom tiers:
Define the explicit link to the shared ..
language components of the specification. S

3. Bottom tier: Fill in the semantic
information in the bodies of the shared
languages components of the specification,
i.e., the theory of equality for terms. -

..........

4. Check one's understanding of the problem and its {ormalization;
repeat previous steps until convergence is achieved.

There are two points worth observing in regard to following this approach, especially for
large pieces of software. First, as with any overall design method, many iterations over these
steps may be necessary. Writing a specification sharpens a specifier's intuition of the
problem. Hidden design decisions surface. Addressing postponed decisions often requires
modifications of decisions made earlier. Second, the specifier should be willing to discard
large chunks of a specification in the process of refining the abstractions. This is especially
true after the first iteration. Often after a large investment in time and effort, the specifier (or
designer or programmer) is reluctant to start anew or to try an alternate strategy. With
sufficient machine support the specifier shouid be able to save time and eflort often spent in

managing and maintaining the consistency of a large specification.

During the process of writing a specification, the specifier should also evaluate it 'for_
certain properties, e.g., consistency and completeness. Checking for these properties as a
specification develops can increase one's confidence that a specification is in some sense
"good."” We discuss the evaluation of specifications in Chapter 5. Finally, as with any design,
the specifier should evaluate the overall structure of the specification, e.g., analyze the
interconnectivity among its components. We do not address this kind of specification

evaluation in this thesis.
1.3 A Glimpse at a Particular Two-Tiered Specification Language

In this section we provide an overview of the two-tiered specification language we define
more precisely in the rest of this thesis. By considering a specific programming language and
a specific shared language we gain the advantage of being concrete in defining our interface

language.

L‘ .

;

L DI E I] o
. oL, h Co)
e e e le ae g TRy

b "
| TSI

Sl Rl Ny el) & il

A R R e L v e e Aairon A e e Shre o Tun S

-15.-

The intertace language we describe is for the programming language CLU. Section
1.3.1 gives a preview of the CLU interface language with those concepts from CLU required to

understand the interface language presented as needed.

The shared language we choose is the Larch Shared Specification Language

[Guttag83a], henceforth referred to as “Larch.” Enough similarity between Larch and other

- axiomatic specification languages (see Section 1.4.4 on related work) exists so that a different

specification language could be used as the shared language. Section 1.3.2 gives an informal
overview of Larch. We describe only the minimal subset of constructs in Larch needed to
understand the examples presehted in this thesis. Details on Larch can be found in

[Guttag83b).
1.3.1 A Preview of the CLU Interface Language

CLU has the primitive notions of object and state. An object is an entity that can be
manipulated by a program. Two important properties of an object are its type, which never
changes, and its value, which may change. A state consists of a set of objects, a mapping
from program variables (object identifiers) to objects, and a mapping from objects to values.
Two important observable state changes are when a new object is created and when the
value of an existing object changes. An object whose value can change is said to be mutable.

A type is mutable if objects of that type are mutable.

It is important not to confuse an object and its type, which are CLU concepts, with a term
and its sort, which are shared language concepts. The connection between the CLU And the
shared language concepts is that (typed) objects have values that are denotable by (sorted)
terms. Through the interface specifications of procedures and clusters, we establish a link

between the values that objects can have and the terms defined by shared language

components. We establish this link explicitly in the text of the interface specifications.

l.‘ ’-‘ "g
‘l‘_iI‘

LRI

B
.

e Te B N

a4l

v g
e

,.'
adh

. 87
i N -
)

o

’ .

o T ." ." r" '

+

3

+

’

. P .
. ' e

. AN
1 v e

WY 2

oy

.........

®
L

A CLU program consists of a set of modules, each of which is either a procedure or
cluster. A proc;edure performs an action on a set of objects, and terminates returning a set of]
objects. Communication between a procedure and its invoker generally occurs through these : 7
objects. A cluster names a type and defines a set of procedures that create and manipulate
objects of that type. Users of this type are constrained to treat objects of the type abstractly.
That is, objects can be manipulated only via the procedures defined by the cluster so, in

particular, information about how objects are represented in storage may not be used.

LGP IRy § SRS

A procedure specification consists of a header, a link to its shared language component,

AN

and a body. Header information includes the types of the input and output arguments to the
procedure and a list of possible termination conditions. The link is the name of a shared
language component. Since the unit of encapsulation in Larch is called a trait, we call the link
in an interface specification the used trait. The body of the specification contains two
assertions that correspond to a pre-condition on the state when the procedure is invoked and
a post-condition on the stale when the procedure terminates. Terms in these assentions are
constructed from function identifiers prévided by the used trait. The pre- and post-conditions

may also contain other special assertions particular to CLU's semantics.

Figure 1 gives an example of a procedure specification. The identifiers, s and j, that
appear in the header denote objects of type set and int, respectively. The name of the shared
language component is SetOfint, which is choose’s used trait. The pre-condition is satisfied if

the initial value of the input argument is not empty. The post-condition confains an assertion

g choose = proc (s: set) returns (i: int)

X uses SetOfint

" pre ~isEmpty(s?)

;::" post has(st,id) A sé = remove(st,it) A mutates s
¢ end

g Figure 1. Choose Procedure Specification

A 1‘4_“_‘%_‘ g

Pl A OO

e

2 aaarad

aalas

& (s

- SR

-
.......

..........

about the initial and final values of the set object and the final value of the int object. An
object identifier that is followed by an up arrow (t) denotes the value of that object in the state
upon procedure invocation, i.e., the initial state; one followed by a down arrow () denotes the
value in the state upon procedure termination, i.e., the final state. The function identifiers,

isEmpty, has, remove, and A, and the meaning of the equality symbol, =, all come from

SetOfint. The last conjunct in the post-condition, mutates s, is an example of a special

assertion; it states that the choose procedure may mutate no object other than that denoted

by s.

A cluster specification consists of a header, a link to the shared language component,
and a body. The header is a list of procedure identifiers. The body of the specification
consists of a set of procedure specifications. The link from the interface component to the
shared component is given by a used trait and a provides clause. The used trait supplies all
function identifiers that appear in the assertions of the procedure specifications of the cluster
specification. The provides clause gives a mapping from a type identifier to a sort identifier;
This mapping determines the values over which objects of the type defined by the cluster can
range. All objects of the type are restricted to values denotable by terms of that sort. The sort
identifier must appear in the used trait. The provides clause also indicates whether the type

is mutable or not.

Figure 2 gives a skeleton .of a cluster specification that defines the type, set. The used
trait is SetOfint. The provides clause gives a mapping from the type identifier, set, to the sort
identifier, S/, which comes from SetOfint. The keyword mutable indicates that objects of the
set type are mutable. Specifications for create, insert, remove, and member are of the form

described for procedure sbecifications.

......
...............
..............................
.....................

o
Lt |
ettt

g .
» St

it e
A DAY
LR
RN
PP S

N
Lok,

.18-

set = clustet is create, insert, remove, member
uses SetOfint
provides mutable set from Sl
create = proc () returns (s: set)
end .
ingert = proc (s: set, i: int)
end .
remove = proc (s: set, i: int)
end
member = proc (s: set, i: int) returns (b: bool)
end

Figure 2. Set Cluster Specification

FETRS ¥ TV RRY W)

1.3.2 An Overview of Larch

The unit of encapsulation in Larch is called a trait. The identifier appearing before the
keyword trait is the name of the trait and is distinct from the sort and function identifiers
appearing in the trait. We will refer to Figures 3 and 4 to help illustrate the meanings of

constructs appearing in traits. We repeat these figures in Appendix | for future reference.

Equivalence: trait
introduces
eq: E, E — Bool
constrains [eq] so that for all [x, y, z: E]
eq(x,x) = true
eq(x,y) = eq(y,x)
(ea(x.y) A eq(y,z)) = eq(x,z)) = true

Figure 3. Equivalence Trait

AW | GPIRRR PR Ty .

YA Y

‘.mkl.‘t & LA

SetOfE: trait

includes Infeger, Equivalence
Introduces
empty: - C
add:C,E—~C
remove:C,E—C
has: C, E — Bool
isEmpty: C — Bool
card: C ~ Int
closes C over [empty, add] -
constrains [C] so that for all [s: C, e, e1: E]
remove(empty, e) = empty
remove(add(s,e), el) = if eq(e,e1) then remove(s.e1) else add(remove(s,e1),e)
has(empty, e) = false
has(add(s.e), e1) = if eqle,e1) then true else has(s,et)
isEmpty(empty) = true
isEmpty(add(s,e)) = false
card(empty) = 0
card(add(s,e)) = if has(s,e) then card(s) else 1 + card(s)

SetOfint: trait

includes SetOfE with [SI for C, Int for E]

Figure 4. SetOfE and SetOfint Traits

A trait contains a set of function declarations, which follows the keyword introduces,
and a set of axioms, which follows a constrains clause. A function is declared by giving its
name (an identifier) along with its signature, i.e., a domain and range. A domain is a list of
sort identifiers, and a range is a single sort identifier. In the Equivalence trait (Figure 3), the
eq function has two arguments of sort £, and returns a result of sort Bool. All traits may use
boolean connectives, e.g., A and = in Equivalence, with their usual first-on;der propositional
logic meanings. Functions can be declared to be mixfix or prefix.: For example, if .eq is to be

used as an infix function, we would write " # .eq #: E, E —» Bool" in its declaration.

There are two kinds of axioms that can appear after a constrains clause. One kind of
axiom is an equation relating two terms. The " = " symbol denotes an equivalence relation on
terms. The second kind of axiom, not seen in either Figure 3 or Figure 4, is of the form "r

exempt"” where 7 is a term. This indicates that the lack of an equation is not an oversight and

..................
........................

L]
.
.
.
+
s
.
<
T)
.
o
.
.

o . e - et e e s - ‘
Lt e et B .
l.".'.".".' PN c .'-'-,",".". ' .

. . . . e L
P TPV a o a s s P

Lk ‘_' ‘,‘ '.' S

is an aid to "completeness” checking. An example of an axiom of this form is “pop{null)

exempt,” which might appear in a trait that defines a theory of stacks.

A function identifier is constrained if it appears in the bracketed list following the
keyword constrains. If a sort identifier appears in the bracketed list (e.g., in the SetOfE trait
of Figure 4), each function identifier whose signature contains that sort identifier is
constrained. A constrains clause indicates the function identifiers that are intended to be

constrained in the equations.

A trait denotes a theory, i.e., a set of formulae closed under a set of inference rules.
Each equation appearing in a trait is a formula in the trait's theory. An axiom of the form "r
exempt"” adds nothing to a trait's theory. We can enrich the theory denoted by a set of
equations by adding closes clauses (explained below). Together the introduces,
constrains, and closes clauses, the "inequation” ~(true = false), and propositional qnd

quantified tautologies define a first-order theory of a trait.

A closes clause adds an inductive rule of inference to a trait. Closing a sort, S, over a
set of function identifiers, F, asserts that there is a representative member, 7, of each
equivalence class of terms of sort S, where each function identifier with range sort S
appearing in 7 is in F. The inductive rule of inference is used to add formulae to a trait's
theory that cannot be shown using purely equational logic. For example, the closes clause in
the SetOfE trait asserts that each term of sort C is equal to a term, 7, where each function
identifier with range sort C appearing in 7 is either empty or add. The associated inductive

rule of inference can be used to derive theorems like ¥s:C card(s) 2> 0.

Larch aiso provides ways of putting traits together, one of which is an includes clause.
A trait that includes another trait is textually expanded to contain all function declarations,
constrains clauses, closes clauses, and axioms of the included trait. The meaning of the

including trait is the meaning of the textually expanded trait. In SetOfE, the signature of eq,

Ce e e 2T

- . - S R N Lo .".".*.'\'. . S T
IR AL P ST PP AP PO UL THRL I WA AT I WA WAL, . Vo T W T W W I VT P W e et b N

PRI

¢

'
W RV

I R

Y M)

=
CY|
- "
e
"J
‘3
-
-
B
'v‘-J
RN
- "‘
2

(4L e W g iy R T R e Ve TN A W P, ~ e, T, w, m e TR .

which is used in the axioms of SetOfE, comes from that given in the included Equivalence

trait.

Finally, Iuﬁction and sort identifiers that appear in an included trait can be renamed. An
explicit renaming is given in brackets following the keyword, with. In the SetOfint trait the

sort identifiers C and E of SetOfE are respectively renamed to be S/ and Int. Renaming is used

* both to collide identifiers intentionally and to prevent identifiers from colliding.

1.4 Related Work

Work related to this thesis ﬁlls into two broad categories: specification Ianéuages and
uses of formal specifications. Various specification languages have dev.eloped in parallel with
different roles of formal specifications in the programming process and with the evolution of
higher-level languages. We now discuss each of the following topics as they relate to this
thesis: using specifications in program verification, using specifications elsewhere in program

development, specifying abstract data types, and specification languages.
1.4.1 Program Verification

Origins of the use of formal specifications can be traced to early work done on proofs of
program correctness [Floyd67, Hoare69], and later work done on machine-aided program
verification (e.g., see [King69, Deutsch73, Boyer75, Good75, vonHenke75, London75,
Suzuki75]). Most of the work is based on Floyd's inductive assertions technique [Floyd67]
and on Hoare's axiomatic appioéch to specifying the meaning of programs [Hoare69}] (for an
excellent review of subsequent developments based on Hoare's approach, see [Apt81]).
Early proofs were of programs written in simple programming languages (e.g., while
programs) or manageable subsets of higher-level languages like Pascal. Most of the work
does not focus on the approach for the construction of specifications nor on the specification

language itself; in contrast, our work focuses on both.

R

a s 8

A X .‘ l'
Nl

b

il

....................

In the mid 1970’s, the focus of program verification turned to problems of specifying
programs using data structures like pointers, arrays, and records [Suzuki76, Luckham76,
Wegbreit76, Reynolds77], and using shared data [Burstall72, Oppen75, Yonezawa?77,

Schaffert81]. Of these, Schaffert’'s work is most closely related to ours.

Schatffert studies the problem of specifying and verifying programs that use abstract
data types and shared data with an emphasis on verification. Although his specification
language is not particular to CLU, its design is motivated by CLU semantics. One difference
between his specification language and ours is that he combines the specification of
properties of objects of an abstract data type with the specification of properties of their
values into one specification rather than separating them into two parts as in our two-tiered

_approach. Another difference is that his assertions are not restricted to first-order logic so

mechanization of his proofs would be more difficult than of ours.

1.4.2 Program Development

Philosophical discussions on the ;;ractical use of formal specifications can be found in
[Parnas77] and, more recently, in [Guttag82). Guttag and Horning advocate the use of formal
specifications in the design phase of program development in [Guttag80b], where they hint at
the two-leveled approach to specifying programs. They specify routines using
weakest-preconditions [Dijkstra76), but the main example of their paper coﬁtains no
specifications of routines. More im;;onantly, they do not make explicit, as we do,
programming language dependencies in their routine specifications nor do they make explicit
a connection between routine specifications and their algebraic. specification components.
Jones also advocates the use of formal specifications for program development; his formal
method stems from the Vienna Definition Method (VDM) (see [Bjorner78) for extensive

coverage and related references on VDM).

K

L.

I SRV,

-
%
=]
3
S

o

-4
-

-

ks

| IR
e ¢'.' Wt a4

S

‘v.1e use of specifications to enforce "modular" programming gave rise to the distinction

between a "specification part" and “"implementation part" in the encapsulation units of
programming languages such as Mesa modules [Mitchell78] and Ada packages [Ada79).
Each encapsulation unit has a specification part that defines how implementation parts of
other encapsulation units can use it. Specification parts contain syntactic information that
the compiler can use, such as the types of input and output arguments, and possible
termination conditions of a pro.cedure, but no formal semantic information about the]
encapsulation unit, such as the input-output behavior of a procedure. The design of the CLU
library includes this kind of specification information as well. Specifications in CLU, however,
are not part of the syntax of the language. Specifications written in our interface language are
like “"specification parts" except that we provide not only syntactic, but also semantic, ::’:Q

information about program modules.
1.4.3 Abstract DataTypes

Formal specifications have been used extensively to describe abstract data types,
leading to two different approaches, sometimes referred to as "operational” and T
"definitional.” A survey of these approaches can be found in [Liskov79). In the operational -
approach, one gives a method of constructing the abstract data type. Examples of the ‘ :‘_-Z—
operational approach include Parnas's work on state-machines [Parnas72a), Robinson and |
Roubine's extensions to them with V-, O-, and OV-functions [Robinson77), Berzins's abstract :

models [Berzins79], and Jones's model-oriented specifications [Jones80].

In the definitional approach, one gives a list of properties of the abstract data type, not a -
method of constructing the type. The definitional approach can be broken into two .
categories, sometimes referred to as "axiomatic" and “algebraic.” The axiomatic approach
stems from Hoare’s work on proofs of correctness of implementations of data types
[Hoare72], where predicate Iodic pre- and post-conditions are used for the specification of

each operation of the type. Other work using the axiomatic approach is in [Standish73] and

.04.- -

[Nakajima80)]. In ‘the algebraic approach data typss are defined to be hetercogzneous
algebras [Birkhoff70]. This approach uses axioms to specify properties of abstract data types, -
but the axioms are restricted to equations. Much work has been done on the algebraic
specification of abstract data types [Goguen75, Guttag75, Zilles75, Burstall77, Ehrich78,
Wand79, Kamin83] including the handling of error values [Goguen77, Goguen78, Kapur80a], "1‘

nondeterminism [Kapur80a], and parameterization [Thatcher78, Goguen81, Ehrig80].

Our work is related to both the axiomatic and algebraic approaches. At the interface a#
F language level, a cluster specification that defines a data type is written in an axiomatic style ;

since pre- and post-conditions are associated with each of the procedure specifications. At

the shared language level, a trait specification is written in an . ~ebraic style where axioms

appearing in a trait are restricted to be primarily equational. N
One significant difference between the axiomatic part of our approach and other
axiomatic approaches is that we define the truth of an assertion with respect to two states. . ;
Since a program is normally viewed as an input-output relation, a post-condition often needs
to refer to both the initial and final values of objects. Usual Hoare logic, in which each ’
predicate in a triple is interprefed with respect to a single state [Hoare69], uses a starkiard *i
trick of introducing free variables in pre-conditions to “save"” the initial values. Jones avoids 1
this by defining pre-conditions on one state and post-conditions on two [Jones80]. We also i
avoid this by interpreting all assertions, found in both pre- and post-conditions with respect to _-:1
two states. .
1.4.4 Specification Languages :
Much of the work on specification languages has evolved from work done on the }
specification of abstract data types. The more widely-known specification languages that j
have resulted from this research are CLEAR [Burstall77, Burstali81], lota [Nakajima80], Z —-~"ﬂ
[Abrial80], SPECIAL [Robinson77), and VDM's Meta-IV [Bjorner78). CLEAR, lota, and Z stem

<

.
......
.........

.........

B NP . R . - o FST S UE SR Wb \GUN U0 Uiy W Wy W 3
P , Lt . - L. " PP DG VS LT ST W ST
PO TR RPN o o Al e Sucncdaaiiide W -

from the detinitional approach of describing abstract data types. SPECIAL and Meta-IV stem

from the operational approach, so we discuss them separate from the other three.

CLEAR, lota, and Z distinguish between a "syntactic part” and a "semantic part" where
the syntactic part defines the signatures of functions. The semantic part of a CLEAR
specification is a set of equations with universally quantified .ariables, and a possible
induction rule. Models of a théory in CLEAR are based on initial algebras. The semantic part
of an lota specification is a set of axioms written in first-order predicate logic, and a possible
induction rule. A model for an lota specification is also an algebra, but since lota does not
restrict axioms to be equations, the existence of an initial algebra is not guaranteed. The
semantic part of a Z specification is a set of predicates on sets, relations, and functions. A
model for a Z specification is a set that satisfies those predicates together with an

interpretation of the relation and function symbols.

One important difference between these three specification languages and ours is that
specifications written in CLEAR, lota, and Z have no simple way of specifying side effects and
error handling of procedures that implement the specified functions. As stated in Section
1.2.1 we use the interface language component of a two-tiered specification to deal with
issues like side effects and errors. As an intended consequence of our separation of
concerns, CLEAR, lota, and Z can be substituted for Larch as a shared language although
doing so would correspondingly change the underlying models of interface specifications.
Each, however, provides the required syntactic and semantic propeniés of the shared

language that we discussed in Section 1.2.2.

SPECIAL's viewpoint is similar to our two-tiered viewpoint; it separates the "assertion"
part, analogous to our shared language component, from the "specification” part, analogous
to our interface language component. A major difference between SPECIAL and our work is
that in SPECIAL, types used in the specification part are defined in the assertion part. Atype

is restricted to be either a primitive type, a subtype, or a structured type, each of which comes

TEL T e T
S FL

Al T,
RESIR

ia . D
 r oA w e e sl

with a set of pre-defined functions. Hence, since the assertion language is so restricted, most

of the work of writing a specitication is done in the specification part, where their O-, V-, and

OV-function definitions correspond to our procedure specifications. We take the opposite
viewpoint and expect most of the work of writing a specification to be done in the "assertion"

part (shared language component).

The most significant difference between Meta-IV, which is the language of the Vienna
Definition Method, and our language is that we do not use an oberational approach to writing
specifications. In Meta-1V, a model of an abstract data type is given in terms of previously
defined types. Constraints on the properties of such a model are given in terms of
"meta-programs,” which include the use of declarations, assignment statements, and

conditionals.
1.5 Whatis in this Thesis

We reemphasize that the most impor!ant contribution of this thesis is the two-tiered-
approach and the particular separation made between the two components of a specification.

This thesis lays out a basis for this approach by formally defining a two-tiered specification

language (Chapters 2, 3, and 4), and describes ways to evaluate two-tiered specifications
(Chapter 5). In Section 1.5.1 we discuss our approach to defining the language formally, and

in Section 1.5.2 we give a guide to the rest of this thesis.]
1.5.1 Approach to the Formalization

This thesis deals with specifications, i.e., strings of symbols. A string of symbols may be O
viewed in two ways: as a sentence of a language, or as the meaning of that sentence.

Logicians sometimes call the first point of view "syntactic" and the second point of view

"semantic.” From the syntactic viewpoint, a precise description of sentences is given by
defining a formal system: a set of symbols, a set of well-formed formulae, & set of axioms, and

a set of rules of inference. A theory associated with a formal system is the set of well-formed

.....

....... B - - DI Y DN R Y
. T et Lt .
W4 At A et elg nt e ot atlaldintain el W nbal noat

RPN N N P I R R A i e T M A R

formulae derivable from the axioms and rules. From the semantic viewpoint, a precise)
description of sentences is given by defining a mode/ for the language. A model consists of a o

universe of mathematical entities such as sets and functions, and a mapping (sometimes e

- called an interpretation) from sentences in the language to the mathematical entities. These

mathematical entities are called meanings of the sentences.

The syntactic and semantic views are related. A sentence, o, in a language, L, is valid if
it is true in every modet for L. Wé write "M k= ¢" to denote that the sentence o is true in the
model M (or equivalently, "¢ holds in M," "M satisfies ¢," and "M is a model of ¢"). Mis a
model for a set of sentences, 2.'if it is a model for each ¢€Z. Since a theory is a set of

sentences in a language, it also makes sense to talk about a model/ of a theory.

In this thesis, we concentrate on describing specifications and implementations from a
syntactic viewpoint because we can treat them as concrete objects, i.e., text written down on
a piece of paper, as opposed to abstract mathematical entities. Furthermore, we define a
satisfies relation between an implementation and a specification in terms of their theories.
Chapter 3 contains the definitions of satisfies and the formal systems associated with

specifications and implementations.

It is important to establish the soundness of these formal systems. Informally, a formal
system, F, is sound if no invalid formula is deducible from the axioms and rules of inference of
F. That is, any theorem in the theory, T, specified by F is valid in all models of T. Formally, F is
sound if all the axioms of the formal system are valid and the rules of inference are sound. A

rule is sound if the validity of each of its hypotheses implies the validity of the conclusion.

Therefore, to show the soundness of the formal systems we will define, it is necessary to
B define (1) the classes of models of the theories of the formal systems and (2) the validity
relation (F=) between models and theories. Chapter 2 contains the definitions of these

classes of models, which are the same for specifications as for implementations, and the

[WL AP TP

A
bt

L
e
e
)
n
3
N

e R

definition of the validity relation for specifications. Although we lay out the foundations to be
able to prove the soundness of the formal systems we describe, it is outside the scope of this .4

thesis to present the proof.

We choose to present the semantic viewpoint first (Chapter 2) and the syntactic one
later (Chapter 3) because we believe that it is easier to understand the meanings of

specifications and implementations in terms of familiar mathematical entities such as sets,

functions, and relations, rather than in terms of strings of symbols and rules that manipulate
them. We hope that it is easier for the reader to compare whether his intuition matches ours,
i.e., whether the models we define reflect the same intuitive concepts he has about the

meaning of a program and its behavior.
1.5.2 A Guide to the Rest of the Thesis

In Chapters 2 and 4, we view specifications semantically. We give meanings to
specifications in terms of mathematical entities that include, among other things, algebras
and relations. In Chapter 2, we definé a kernel interface language, and in Chapter 4, we
define extensions to the kernel. The kernel language is defined to serve as a basis for other
interface languages and also to reduce the number of linguistic constructs to consider when
viewing specifications syntactically. The extensions in Chapter 4 are syntactic amenities to

the kernel and additional constructs to handle particular features in CLU, e.g., iterators.

in Chapters 3 and 5, we view specifications syntactically. The formal syStems associated
with specifications are defined by using the axiomatic semantics of CLU, which associates
proof rules with individual CLU statements and expressions, and the semantics of Larch. In
Chapter 3, we define the theory denoted by a specification written in the kernel interface

language. In Chapter 5, we describe evaluation properties of specifications in terms of these

theories.

PRI TP
........
Wt

L el sl ambgry T ————— R T T TR T T ——w e ewr———m—y
. DA e e Sape e et Sas. it Sunt St Aot e e Spe Suvtfute Sve e Rand e S fute Sate S gave

Dt R sl e ad 6 & e ACR L i Sl AR A a MR

k

~ 4

Chapters 2 and 3 can be read together for a formal description, in terms of both models 4

and theories, of the kernel interface language. Chapters 2 and 4 can be read together for a J

L

. D
LRI L P M

description of the entire interface language for CLU. Chapters 3 and 5 can be read together

for an idea of the benefits gained from treating the meanings of specifications as pure text.

Finally, in Chapter 6 we summarize our conclusions and main contributions of this

- research, and discuss directions for future work.

'as e

l- » , : K
§ DN

‘!

N
N,

aTi I
ROk ""I‘
AP v,

. ———y
" vess
BaS

i I 2 A e AR

...............

2. Kernel Interface Language

This chapter defines a kernel language that can be used to write specifications of CLU

programs consisting of procedures and clusters. A procedure specification specifies the set

of procedures that implement it; a cluster specification specifies the set of clusters that

implement it.
We would like the kernel language to have the following properties:

1. Rich enough to allow us to specify any operation or type one
might want to implement in CLU. '

2. A small number of constructs. In Chapter 4, in order to make
reading and writing specifications easier, we introduce some
syntactic sugar and add other constructs to the kernel. The
additions will be defined by translating them into constructs of the
kernel language.

3. A syntax that maps easily into the well-formed formulae of the
theory that a specification denotes. This is to simplify the formal
definitions presented in Chapters 3 and 5.

A goal for the entire interface language, not just the kernel, is that it be adaptable to
programming languages other than CLU. The particular concrete syntax presented, not
surprisingly, borrows heavily from CLU, but the abstract syntax of the interface language can

serve as a basis for an interface language for other programming languages.

Section 2.1 presents the classes of models for theories associated with specifications
and implementations. Section 2.2 presents the (kernel) interface languagé. The two main
objectives of Section 2.2 are (1) to define the validity relation (=) between a model and a
specification, and (2) to present the precise syntax and (model-oriented) semantics ot
procedure and cluster specifications. The presentation is bottom-up. Assertions constitute
the body of a procedure specification, and procedure specifications constitute the body of a

cluster specification. Hence, we start by defining an assertion language based on Larch, then

PR P % TP TP PR PN P

PP S Sl R '3

Coa

Ry N D S

e a Al 28

e *
a’

CPLULILA

e

i,‘.-ws .

- S ALATEMO0 8 S

-

.................

procedure specifications, then special assertions that are additions to the assertion language
particular to CLU, and finally, cluster specifications. We warn the reader that we sometimes
digress from our two main objectives of Section 2.2 in order to present some necessary detail

for the sake of precision.
2.1 Classes of Models

A theory defines a class of models. In this section, we are interested in describing the
classes of models for the theories of specifications and implementations. To do so we use the
basic mathematical entities of values, functions, and relations to define the notions of objects,

states, operations, and abstract data types.

Let us first motivate the kinds of models we will introduce to model the computation of a
CLU program. The execution of a program begins with the invocation of some operation in
some initial state. The execution of the operation and of subsequent operations invoked in a
computation can change the state. We thus need to characterize carefully what information is
in a state and what possible changes t.o a state may arise because of the execution of an
operation. An operation can change a state by creating new objects and changing the values
of existing ones. Each CLU object can be accessed only through certain operations,

depending on the abstract data type it belongs to.

We present our classes of models in a bottom-up fashion: we start off by describing
values, then objects, states, operations, abstract data types, and finally, c;omputations. In
Section 2.1.1, we define when an algebra is a model of a trait theory. In Sections 2.1.2 and
2.1.3, we discuss the domains of objects and states, which underlie the models of procedures
and clusters. In Sections 2.1.4 and 2.1.5, we define the classes of models for procedures and
clusters, respectively. We call these models operations and abstract data types. The classes
of models for specifications are the same as for their implementations. The chart in Figure 5

summarizes the syntactic and semantic domains we will be dealing with. Finally, in Section

2.1.6 we define our model of computation.

Y
.I a
[N TP To9 WS,

Syntactic Conventions

For an n-tuple, x = <v,, ..., v,>, we write x.v; for the ith component of x. For a function of

one argument, f, we write dom(f) for the domain of f and ran(f) for its range.

2.1.1 Traits and Algebras

A trait defines a set of equations, propositional formulae, and first-order quantified
formulae that makes up the trait's first-order theory with equality. The class of models of the
theory of a trait is a set of many-sorted algebras. We use the usual definition of satisfaction
between an algebra and a first-order theory that has equality [Birkhoff70, Enderton72). We

define an algebra to be a model of a trait Tr if it satisfies the theory of Tr.

A many-sorted algebra is a pair consisting of a set of values, Val, partitioned according
to their sorts, and a set of total functions, Fun, over these values. We use the set of terms,
Term, to denote values in Val. Terms are of the form "x" where x is in the set of (sorted)
variable identifiers, Varid, or of the form "f(11, ..., tn)" where t denotes a function in Fun, and

t1, ..., tn are terms. Let Sort/d be an infinite set of sort identifiers (not associated with any

Syntax (text) ' Semantics{models)
Specifications
Trait Aigebra = <values, functions> .'_-
Procedure specification Operation = <relation, algebra> b
Cluster specification Abstract Data Type = <{objects, operations> -
-]
Implementations ;
Procedure Operation “
Cluster : Abstract Data Type =
Figure 5. Syntax and Semantics
o

BRI . . - - N AT
L PR I T S A T R T . PTG WPy M PO Yl WP

I 3os £

(- .
L BN

-—.—~ e
by
o, 4,

-

)
B

oAt

particular algehra). Henceforth, when we say "algebra,” we mean a many-sorted algebra.
2.1.2 Objects

Let Obj be an infinite set of objects partitioned into subsets according to their types.
Each object has exactly one type, which cannot be changed. We call Obj the universe; it is
the set of all potentially existing objects. A state (defined below) defines a value for each
object. When an object's value changes, we say the object is "mutated.” Let Typeld be an
infinite set of type identifiers (not associated with any particular universe), and let TtoS be a
many-to-one function that maps type identifiers to sort identifiers. For an object, x, of type T,

the sort of the value of x is TtoS(T).

In CLU, an object, A, can be the value of another object, B, in which case we say "A
contains B.” Sharing of objects arises when two or more objects contain the same object.
Because of sharing of mutable objects, it is not sufficient that the value of a containing object
refer to the value of the contained object; it must refer to the contained object itsell, i.e., its

identity.

In order to treat a contained object as part of the value of the containing object, we treat
objects as special kinds of values. We always include implicitly in every trait a trait defining
this infinite set of objects. Thérefore, any model (i.e.,, an algebra, A = <Val, Fund) df the
theory of a trait will have the property that Obj C Val. Treating objects as values raises a
sticky technical issue: what is the sort of a term that denotes an object? We answer this

question in Section 2.2.1 where we carefully define how to sort check terms.
2.1.3 State

Objects can be created and manipulated in the course of program execution. We model

the state of a program at an instant in time by a state. We model CLU states as follows, where

P(Obj) is the powerset of the set Obj.

i
b
,
h____.

.
D .

L .t
PR, S JELEE

e e P AR
[ERCIVY S S R Wy

-
)
.j\
.
.9
ol 4'
_

R T T T T T T T T e e T T T T N T R L Y T S R T E TR T T T ST T S e T e 1
’? "
M -34.- -
i 1
" 4
S i
w State = P(Obj) X Env X Store ®
I Env = Objld — Obj .4
N Store = Obj — Val ——i
i. Def: A state, 0 = <O, ¢, 8, is a triple consisting of a finite set of existing objects, O, which is a \]
-3 proper subset of Obj; an environment, e, which is a mapping from Objid to O; and a store, s, Ry
N .v.
kY which is a mapping from O to Val. e
I.j i;;:
: _
We call Val, the value set of o. The identifiers in Objld are CLU program variables, which

always range over objects. Whenever we refer to "an object in ¢" we mean an object in ¢.0. .

We use Z(Val) to denote the set of states with Va/ as their value set. Thatis, Z(Val) = : 4

{0, e, & | s: O — Val}. We do this to avoid having four components in a state. A particular fj:i:

n_'r,\

state, g, is an element of some set of states, Z(Val), and thus each state is always associated 2

-y

il
with some fixed set of values. 4

A state can change over time in three ways: the set of existing objects grows because iy

new objects are added from the universe; the environment changes because the mapping

from CLU program variables (i.e., object identifiers) to objects changes; or the store changes,

because the values of existing objects change.

2.1.4 Procedures and Operations

We model a procedure as an operation, where an operation is a pair, <R, A>, consisting
of a relation and an algebra. We refer to the relation of an operation modeling a procedure as

the input-output behavior of the procedure. A relation, R, is a set of pairs of states:
R C Z(val) X Z(Val) where A = <Val, Fun>

We call the first component of a pair in the relation the input state; the second, the
output state. Let dom(R) be the set of input states of R; ran(R) be the set of output states of R.

The relation viewed as a set of pairs of states is more general than we need. In particular, we

can and should be specific about the arguments passed to and from a procedure.

» .
“f.laty

LA ool ot

L4

]
b

* Tl

FARICIC A PR

PETYrT n
ALAILILPL

& W et e

Def: The object identifiers in a procedure heading are input formals of the procedure. The
objects the formals denote are input arguments of the procedure. The objects returned by a
procedure are output arguments.

A relation, R, which is a component of an operation, has the following properties:

1. dom(R) = {O, e, s> | dom(e) = set of input formals A
ran(e) = set of input arguments}
2. ran(R) = {<O, e, s> | ran(e) = set of output arguments}

where dom(e) is the domain of the environment e, and ran(e) ié the range. The first property
states that the environment of all input states is the set of bindings from input formals (object
identifiers) of a procedure to the arguments passed to it. The second property states that the
range of the environment of all output states is the set of output arguments. (CLU procedures
do not list identifiers for output arguments. Since our specifications do, we will strengthen the

second property when we define a model of a procedure specification.)

The algebra A of a model of a procedure provides the set of values, Val, over which
objects manipulated by the procedure can range. Val is the same set as the value set of each

state of the pairs in the relation.

Procedures can terminate in more than one way. Let TermCond be a set of special
values called termination conditions, and let terminates be a special object in the state that
can take on a value from TermCond. For simplicity, we henceforth view that included
implicitly in all traits is the trait defining the values in TermCond and that terminates€O for
all states <O, e, s>. We reserve the special value normal for the normal termination condition.
A procedure may also never terminate. For a given input state, if the set of output states is

non-empty, then the procedure must terminate for that input state.!

1. In CLU, a procedure may also terminate because of an unhandled exceplion thereby sigraling failure. We view
this situation as a programmer error and we choose not to provide the ability to specify such procedures. Hence, a
procedure that signalis fallure satisfies no specification.

AT e Mt

- ~) i S A dnt T IR A S R
™ it N A B e B2 SEIn A0 A S gt ik Yok Tadr i AV SV ‘“‘.v-vK'~.“.r.‘\".“";'.' ETITEATYTUT. .‘L.. X
o ot Tt Mol iy i AL N NN Dot Vi A) R T e e 1

.36-

2.1.5 Clusters and Abstract Data Types

We model a cluster as an abstract data type, where an abstract data type is a pair, T =
<Obs, Ops>, corisisting of a set of objects and a set of operations. The set of objects, Obs, is
the subset of the objects of Obj whose elements are of type T. An operation in Ops is a pair
consisting of a relation and an algebra, as previously defined. We require that all the

operations of the type have the same algebra.

2.1.6 Computations

We model a computation as an alternating sequence of states and statements starting in

some initial state, 6, Each statement, S, of a computation sequence is a partial function on

states:
S: Z(val) - Z(val)

For the states, o;, and the statements, S;, 1<i<n, let acomputation sequence be:
05 S; 04y -y 0. Spy On

and for all 1<i<n <o, 4, 6> € S;. We refer to the states g, ..., o, above as "states of a
computation sequence." We could also view a computation sequence as a sequence of
states, and dispense with references to individual statements. However, in defining
computational induction, which we do in Chapter 3, we need to be able to refer to the

statements that cause the changes to states.

We are interested in only two kinds of CLU statements: assignment and procedure

invocation. All other statements can be defined in terms of these two. In CLU, a simple
assignment statement can change the environment of a state by changing the mapping from

an object identifier to an object. A procedure invocation can change the set of existing

"; objects of a state by adding new objects to it, and it can change the store of a state by

......................................

...
R o N A . R

.

A I PN R - AP U S LA P ORI S TGP UET YL Sl G G G Ul QR T G

...............

T R R R R T

.37.-

4

changing the values of objects. All objects returned from a procedure as a result of a

|

procedure invocation can be assigned to object identifiers in an assignment statement. So,

.

when assignment is combined with procedure invocation, an assignment statement, in
general, can change all components of a state. i
Properties of Computations 1
‘ 1. Successive states: A property that holds between two successive states of all
1 computation sequences is: i

V1 SiSn O'i_1.o g Ui-O-

This property states that new objects can possibly be added to, but not removed from, a state . 1

as a result of a procedure invocation.

2. Procedure invocation:. For all 1<i<n, if §; is or contains the invocation of a
procedure, Pr, the following two properties hold. Let Op = <R, A> be the operation modeling
Pr. For all <in, out> pairs of states in R (recall that the range of an environment is a set of
objects):

2.1. ran(in.e) U {Pr} C ¢,,.0
2.2. ran(out.e) C 0,0

The first property states that all input arguments and the procedure Pr are in the set of
existing objects of the state before the invocation of Pr. Pr is included because a procedure is
also an object in CLU and must exist before it is invoked. The second property states that all

output arguments are in the set of existing objects upon the termination of Pr.

We summarize the models we have described in Section 2.1 in Figure 6.

v e

o T ol AR e e I S A S S RGN ERE R NERREIES i M RS
.38.
-’ Syntax Semantics
Trait A model of a trait is a (many-sorted) algebra,
< where for an algebra A = {Val, Fund,
v Val is a set of values and Fun is a set of functions.
h S
N
'jf: Procedure A model of a procedure is an operation,
y where for an operation Op = <R, A,
o R is an input-output relation on pairs of states (see below),
N and A is an algebra. ‘
N Cluster A model of a cluster is an abstract data type,
. where foratype T = <Obs, Ops>,
Obs is a set of objects (of type T), and Ops is a set of operations.
\ Some Syntactic Domains
X Sortld set of sort identifiers
Typeld set of type identifiers
y Objid set of object identifiers
:j Some Semantic Domains
>,
State = P(Obj) X Env X Store
Z(val) set of states over value domain, Val.
i Obj set of all potentially existing objects
e TermCond set of termination conditions
3
- Facts
For all states, o = <O, e, 8>, where o€ Z(Val),
-
- O C Obj set of existing objects
.. e:Objld = O an environment
8: 0 —» Val a store
. TermCond C Val
N terminates€0
. normal€TermCond

Figure ©. Summary of Models, Syntactic and Semantic Domains

. e, S R o AP

. , S et ’ . S S
L e e .

ﬁ- " b bl ol b AP

.-"_q
x5
o
T
B
A
—
-l

A

R

Cla A IR IMIC S A AR OIS I AT A O AC R MMC ATt St St e it T T -_r.wA-,-.'.-_,-_-.-,~_-,-_-_-,-.W~T
4

.39. -

4

B

2.2 Kernel Interface Language and Models -4
2

T

We now turn to describing in detail the interface language. We have already defined the 4
underlying models for traits, described the domains of objects and states, and described the j’:l
LY

underlying models for procedures and clusters. What remains is to present the syntax of the -
=4

kernel language and to define the validity relationship (=), which we do in Section 2.2.2 for %

procedure specifications and in section 2.2.3 for cluster specifications.
Syntactic Conventions

We use extended BNF to define the syntax of our language with the following syntactic

R T] T . P
1 A) . i
o A A AN e Vo

dahed Sl asinde L 2 s s

conventions:
| alternative separator
a+ one or more a's
a+, one or more a's separated by commas

{a an optional a
Nonterminals are italicized. Terminal symbols include parentheses, square brackets, curly
braces, and boldface items. Comments in specifications begin with "%" and end with a

newline.

In the next three sections, 2.2.1 through 2.2.3, we describe the interface assertion
language, procedure specifications, and cluster specifications. Section 2.2.1 contains the
basis of the assertion language for writing the bodies of procedure specifications. Section
2.2.2 on procedure specifications is further broken down into five subsections describing
various parts of the interface language that are germane to procedures. It introduces special
assertions that are additions to the base assertion language described in Section 2.2.1. In
Sections 2.2.2 and 2.2.3, for each part of the interface language we will present four sections:
its syntax, its syntactic checks, its meaning, and an example. Some of the syntactic checks
that we require would be unnecessary if we added more complexity to the grammar that we

present. We choose not to put the complexity in the grammar in order to simplify our

....................
........................

descrizuon of the meanings of the various parts of the language.
2.2.1 Interface Assertion Language

In this section we describe the language we use to make assertions about objects and

their values in a state. These assertions appear in the bodies of specifications and can refer

to both initial and final values of objects. After presenting the syntax of interface assertions,
we present a lengthy section on the syntax checking of assertions. It is long because we
discuss in depth the issue of sort checking a term that refers to an object. Finally, we present 3
the meaning of an interface assertion by giving a truth value function. Since an assertion can

refer to the initial and final value of an object, the truth function is defined with respect to two -]

states, corresponding to the input and output states of an input-output relation.
Syntax

Assn :: = true | false | ~Assn | Assn Connective Assn | (Assn)
| Quantifier Varld: Sortid Assn
| Term = Term
Term ::= Varld | Objid | Opld{(Term +,)> | Termt | Term} .
Connective := A|V|=|e=
Quantifier := V|3 -

We allow parentheses to be omitted by relying on the following conventions:

1. Outermost parentheses may be dropped.
Eg.,"AAB"is"(AAB)."

2. The precedence of the operators and quantifiers from highest to
lowestis ~, V, 3, A, V, =, =,)

Eg., "VxA=B"is (VxA = B),and not "Vx (A= B), "~AAB =
C"is"((~A)AB)=C."

3. When one connective is used repeatedly, the expression is
grouped to the right.
Eg.,."A=B=C"is"A=(B=C)."

We allow the use of other delimiters, such as square brackets, for parentheses. An assertion

of the form 7 = true is abbreviated to r; r = false, ~7, where 7 isin Term.

W T e T T T M S e A

Assertions in specifications can refer to both the initial and final values of objects. We

use xt to denote the initial value and x{ to denote the final value of object x. The

e l'.'.'.'.".""‘n
. Sl
AT S PO TR T A

interpretation of these terms will be defined rigorously in the Meaning section.

In order to define precisely how to sort check an assertion we need to define the :1
subterms of an assertion or term: ""<:

" Def: The subterms of an assertion, a, in Assn are defined as follows: 1
1. a is a subterm of itself. ' =

2. If ais of the form t7 = 2, the subterms of both t7 and 2 are subterms of a.

3. If a is of the form ~a, the subterms of a are subterms of a.

4. If a is of the form a1 # a2, where # is in Connective, the subterms of both a7 and
a2 are subterms of a.

5. If a is of the form (a), the subterms of a are subterms of a.

6. If a is of the form Vv:S a of 3v:S a, the subterms of a are subterms of a.

Def: The subterms of a term, 1, in Term are defined inductively as follows:
1. 7 is a subterm of itself.
2. If 7 is of the form (f(t1, ..., tn)), where f is in Opld and t1, ..., th are in Term, the

»
4

subterms of t1, ..., tn are subterms of 7. N
3. If 7 is of the form tt or ti, the subterms of t are subterms of 7. -1

;._41

Checking]
We check that all assertions sort check, where all trivial subterms, i.e., terms that are in : ‘_I;

either Varid or Objld, sort check. The second definition below relies on understanding the

R |

discussion, Sorts for Objects and Values; we present it here to keep the definitions involving

the syntax checking of an assertion together.

Def: An assertion, a, sort checks:
1. It ais of the form t1 = 12, the sorts of both 7 and 12 are the same.
2. All subterms of a sort check.

Def: A term, 7, sort checks if and only if:
1. All subterms of r sort check.
2. It 7 is of the form g(s1, ..., sm), where g is in Opld and s1, ..., sm are in Term, the
domain of g must be a sequence of the sorts of the m termsiin s1, ..., sm where
E a. The sort of a term of the form f(t1, ..., tn), is the range of f, where f is in
Opid and t1,tn arein Term, .
b. The sort of a term of the form v is S, where v is in Varid-and is bound in an

o assertion of the form Vv:S a or 3v:S a, for a in Assn,
N c. The sort of a term of the form o is the sort T_obj where o is in Objid and T
%

} .

RTINS
Y

A

ﬁ.‘
A

T R

a

AT S S e

tan a0 A
0

-

PLAAAL

ol

POl ik N Wy

Il LR <« ot
PLA A e

SR

- ' NN 'l.':ll:.:-. s

AT

<

-

-

is the type of the object denoted by o. and
d. The sort of a term of the form 1t or ti is the sort TtoS(T) where tisin Term
and T is the type of the object denoted by 1.
3. If 7 is of the form 1t or t{, t must denote an object, where tis in Term.

Sorts tor Objects and Values

We now address the sticky technical issue raised earlier in Section 2.1.2 where we
discussed obijects: if an object is a value, what is the sort of a term denating such a value?
Before we answer this, let us look at an example. Let the value of some array (of sets) object
be denoted by the term.. addh(addh(create(1),51),52), where the signatures of addh and

create are (addh and create are trait function identifiers):

create: int - A
addh: A, 72— A

What sort is "?"? The object identifiers s1 and s2 denote objects since the value of an array

object refers to the set objects the array contains, not just the values of the set objects.

We introduce a special subset of Sort/d called ObjSortid. For each different type in the
set, Obj, there is a sort identifier in ObjSortid. Each sort identifier in ObjSortld is called an obj
sort; each in Sortid is called a value sort. (Just as an object is a special kind of value, an obj

sontis a special kind of value sort.) So, in our array example, s and s2 are of some obj sort.

Therefore, an object has two sorts associated with it: its obj sort and its value sort. The
sort of a term denoting the valye.of an object is a value sort--it can be an obj sort since objects
can contain other objects. The sort of a term dencting the object itself must be an ob; sort.
There is a one-to-one correspondence between the type of an object and its obj sort. We use
the naming convention that T_obj is the name of the obj sort for objects of type 1. In our array
value example, s7 and s2 are of the obj sort, sef_obj. There is a one-to-one correspondence
between the type of an object and the sort of a term denoting its value. The function, TtoS,

gives us this mapping from type names to (value) sort names. (TtoS can be many-to-one

D T I L

because more than one type can be defined with respect to the same sort.) In our array

| AU LR

example, the term addh(addh(create(1),s1),s2) is of (value) sort, A.

s e T e g
a2 s 0 a4

We emphasize that the reason we introduce an obj sort of the form "T_obj" instead of

simply using the type identifier "T" is to keep the set of sort identifiers disjoint from the set of

type identifiers. Wé do this to be consistent with the facts that the set of values, Val, is
partitioned by sorts and the set of objects, Obj, is partitioned by types. We also emphasize
that the only reason we need to introduce obj sorts for objects is that objects are treated as
values (because of sharing and mutability); for sort checking to work, we need to be able to
refer sensibly to "the sort of an object," or more precisely, "the sort of a term denoting an
object.”

. Def: Aterm denotes an object if and only if the sort of the term is some obj sort.

Figure 7 summarizes the various sets of identifiers for objects, values, obj sorts, value]
sorts, and types; some facts reiating these sets; and some questions that are reasonable to

ask of objects and values, and their answers.

Returning to the array example, the signature of the addh function is:

addh: A, set_obj — A

Suppose we also have a fetch function for arrays with the following signature:
fetch: A, Int — set_obj

with TtoS defined as follows:

TtoS(array[set]) = A
TtoS(set) = S
TtoS(integer) = Int

?;E RN
. ’
KX A

»
-

(X7

L ACS
Y
FY AR,

X

"L

AR e st e e AP TR L A SRS LA AT S A LSS A S SR A A Yo Ry . ‘{
No 44 1
N Syntactic Domains
R ’
b Varld variable identifiers denoting values, some of which may be objects
P Objid object identifiers denoting objects, which are speciat kinds of values
Sortld value sort identifiers
'{E'{ ObjSortld obj sort identifiers, each of the form T_obj, for type identifier T
Typeid type identifiers
. Facts
o Varld N Objid = @
T~ Sortid N Typeld = @
n ObjSortld C Sortid
|Typeld] = |ObjSortid], where “|X|" is the cardinality of set X.
3N 3 bijection: Typeld «> ObjSortid
e VTETypeld IS€Sortld ToS(T) = S
3:‘.53 Guestions ' Answers
’
B For an object, x, of type T:
o What s the type of x? T
:;-_23 What is the value of x in a state, o = <O, e, 8>? 0.3(x).
" What is the obj sort of object x? T_obj
What is the value sort of the value of X? TtoS(T)
ok Figure 7. Sorts and Types, Objects and Vailues
E For an array[set] object, a, let at be the value of a, and for an integer object, i, let it be the
B value of i:
The type of a is array{set]. -
. The obij sort of a is array{set]_obj. 2]
oy The (value) sort of the value of a is A. N
The type of the object denoted by fetch(atit) is set. 3
The obj sort of fetch(at,it) is set_obj. —_
The (value) sort of fetch(at,it)t is S. :2.1
,:,3
s
4
...... ~ * - - ‘1

.

RASOLEE ~ NUNOCHAR

PO

s’

Y I]
LR O

_ s
S

2y At) A
. & .
W

.
I Y)

£ -
0

(RT™
M)

P R AR A

- latalelaca

¥

) (el
'IL':'L"n_fA_{.,‘L .

LY Pyl -

Ok
et

%

2w
PR

H
.

Suppose instead that addh and fetch were declared as:

addh: A,S— A
fetch: A,Int— S

In this case, it would not make sense to ask for the type of fetch(at,it) since fetch(at,it) does

not denote an object. It does make sense to ask for the sort of fetch(at,it); the sortis S.
" An Important Shorthand

It is important to realize that we can quantify over objects because we are treating
objects as values. It makes sense to write an assertion Vx:T_obj a or 3x:T_obj a, where x
ranges over objects of type T and a is in Assn. In our examples, we abbreviate these to the

forms Vx:T a and Ix:T a.
Meaning

Assertions are well-formed formulae in first-order predicate calculus with equality,
where equality is denoted by the symbol, =. We will define the truth of an assertion with
respect to two states, an algebra, and a variable-to-value mapping. Before we define the truth

function, T, we explain why we need these various pieces of information.

As mentioned in the beginning of Section 2.2.1, we need to interpret interface assertions
with respect to two states because assertions in specifications can refer to both the initial and
final values of objects. The two states correspond to the input state and the output state in a

relation of an operation.

A model of a procedure specification is an operation that includes the same algebra
used to interpret an interface assertion. The algebra provides a set of values, Va/, and a set of

functions, Fun, to which we refer below.

~

........... PN . - ot
Lo od A A" a™a

Finally, in order to handle the frce variables in an assertion, we include a

variable-to-value mapping. This is a standard "trick" used to keep track of the variable

| identifiers that are introduced in quantified assertions. (The following definition is adapted - ':J
: from [deBakker80].) 7]

Def: Let VarMap be the set of functions, u: Varld — Val (the same Val as for the algebra .
B discussed above). For all u€VarMap, v€Varld, x€Val, we write "u[x/v]" (read "substitute x -"3
> for vin p") for the element of VarMap that satisfies, for each y€ Varid: 4

1. pfx/v)(y) = x,ify = v
2. p[x/v)(y) = ply).ify#v

We are now ready to give the truth function, T.

T: Assn X Z(Val) X Z(val) X Alg X VarMap — {TRUE, FALSE}.

04
> We write "T[P](o, o', A, p)" for the truth of an assertion P in states, g, ¢'; algebra, A; and
4 variable-to-value mapping, u. The states o and o’ are elements of Z(Val), where Val is the
. same set Val/ as for the algebra A. For all a, a1, a2 € Assn, and t1,t2 € Term,
1
1 Titrue)(o, o', A, p) = TRUE
] Tfalse)(o, o', A, p) = FALSE
TM~a)j(o, o', A, n) = ~Tla)(o, o', A,)
J Tla1 #a2](0, 0’, A,) = Tlall(e, o', A, p) # T[a2)(s, o', A, p),
y where # is in Connective.
g n(a)]("v o' A l") = ﬂa](ﬂ. o', A ”)
TVv:Sal(e, o', A, p) = Vx:S T[a)(o, o’, A, u[x/v]),

where x is of sort S and does not appear free in a.
T[3v:Sal(o, o', A, p) = Ix:S Ta)(a, o', A, p[x/v)),
where x is of sort S and does not appear free in a.
Tit1 = 2)(0, o', A,) = TRUE, if t1)(o, o', A, p) = V[t2)(a, o', A, p);
FALSE, otherwise;
where " = " between values is the equality relation on values in algebra, A.

B
PR/ TR

"::“.1
R
IR
R
S
. . .‘
.
-
e
R
Sl
- ¥
S
o R

RSN S S)

..................................

N -47 - =
NG -,i
.- The value of a term is defined by the following function, <
.:: ,i _.J
{ V: Term X Z(Val) X Z(Val) X Alg X VarMap — Val.’ L}(
L For all y€ Varld, x€Objld, f€0pId, and t, 11, ..., tn € Term, b
o :
: Vylo. o' A, p) = ply) 3
x_\f: Vix)(e, o', A, p) = x, where x is neither an input nor output formal i
N Vxl(o, 0', A, p) = a.e(x), where x is an input formal -]
N Vxl(o, @', A, p) = ¢'.e(x), where x is an output formal
0K Ui, ..., tn)](a, o', A, p) = fi(Mt1)(0, @', A, p), ..., tn](a, o', A, p))
’ where f! is the function €A.Fur genoted by f.
> Vttl(o. o', A, p) = a.8(Mtl(0, 0", A, p))
1::. Vti)(o, o', A, p) = o'.s(t)(0, o', A, p))
;::'3 Example
3':- As an example, let us apply the value function, V, to the term, fetch(at,it), where a and i ¥
i ;' are input formals of a procedure specification. :
20 |
o Mfetch(at,it)l(o, o', A, p) .
25 = fetch!(V[at)(o, o', A, p), Vit)(o, o', A, p))
G = fetchl(a.s(V[al(a, o', A, p)), 0.5(Vi)(s, o', A, p)))
= fetchl(o.s(c.e(a)), 6.5(c.e(i))) N
] Here, fetchl is a tunction in A.Fun; o.s(0.e(a)) and o.s(o.€(i)) are values in A.Val. :
= 2.2.2 Procedure Specifications
=
‘ A procedure specification specifies a subset of the set of all the possible operations that
.. are models of procedures. In this section, we define when an operation is a model of a
L2l 5
N procedure specification. -
- ~' -
;
-\' . in the next five subsections we will describe the language and the validity relation for .
A.'f.: ' ::
'v:": procedure specifications. First we consider procedure specifications ignoring exceptional N
.'qu .
r~ termination; second, we consider those with exceptional termination. In the subsequent three

saections, we describe special assertions to handle the creation of new objects, the mutation

LA
a_®
LY

i
-
Pl
-
4
L]
.
.
<
"

)
.
.

A AT A i et Ae e SeChedivcasCi v TR et S IS SRR B NE AR RS RS S R

of existing objects, and procedure objects.
2.2.2.1 Procedure Specifications Without Signals

A procedure specification includes a name, a heading, a link, and a body. The heading
specifies the types of the input and output arguments. The link identifies the name of the trait
that defines an algebra that provides the values over which the input and output arguments
canrange. The body is a pair of assertions that specify conditions relating the initial and final

values of the input and output arguments.
Syntax

ProcSpec ::= Procld = ProcHead Link ProcBody end
ProcHead ::= proc Args {Rets>

Link :: = uses Traitld

ProcBody ::= PreC PostC

PreC ::= pre Assn

PostC :: = post Assn

Args 1= ({Decl+)>)

Rets ::= returns (Decl/+,)
Decl ::= Objid +,: TypeSpec
TypeSpec .= Typeld

Some definitions:

Def: The object identifiers in a procedure heading are formals of the procedure specification.
The objects the formals denote are arguments.

Def: Object identifiers in an Args are called input formals, and their objects, input arguments;
object identifiers in a Rets are called output formals and their objects, output arguments.

Def: The trait named in a procedure specification, pr, is called the used trait of pr

............

.........................
....................

ST U FTR T RT ETWMTE TR T T L.
o - -

.-
>

LR A I I
¢ e Lt . NS
Aot 4 4 2

.

e

Checking

For a procedure specification to be syntactically well-formed, we check that:

1. Each object identifier appearing in a pre-condition or
post-condition appears in the list of formals. The sets of input
formals and output formals are disjoint.

2. The assertions appearing in the pre- and post-conditions sort
check according to the function declarations of the used trait.

3. Output formals appear only in a post-condition.

4. Terms of the form 74, where r€Term, appear only in the
post-condition.

The header of a procedure specification is the same as that for a CLU procedure except that

- identifiers are introduced in the returns clause for output arguments.

Meaning

Informalily, the pre-condition of a procedure specification defines a subset of the
universe of states over which the procedure must terminate. The procedure specification
does not say anything about those states which do not satisly the pre-condition. The

post-condition defines for any valid initial state the final states that are acceptable.

Formally, a model of a procedure specification, Pr, is an operation. An operation is a
pair, <R, A>, where R is a relation on pairs of states, and A, is an algebra. Each relation, R, of
an operation has the following properties (compare with Section 2.1.4):

1. dom(R) = {<O, e, 8> | dom(e) = set of input formals A
ran(e) = set of input arguments}

2. ran(R) = {<O, e, s> | dom(e) = set of output formals A
ran{e) = set of output arguments)

The first property states that the environment of all input states is the set of bindings from
input formals (object identifiers) of a procedure specification to input arguments (objects).

The second property states that the range of the environment of all output states is the set of

...............
....................

e T T ———

. - Vo PRI SR S WP UL W Y P NP VI R YT T S T

T W VL s T T g s a M T Ve T g s e 5 e
Uagho gt “ion Yl W e =S B R LMLl AR DR AR) B S R

AR - TAFIAN,

bindings from output formals (object identifiers) to output arguiments (ohjects).

We now define when an operation is a model of a procedure specification, Pr. Let Pr

have a pre-condition P, post-condition Q, and used trait Tr.

]
Def: For an operation, Op = <R, A>, Op is a model of Pr, i.e., Op k= Pr, if and only if: ——i
1. Aiis a model of Tr, and 1

2. <R, A> = <P, Q> (defined below). :
Def: Let A = <Val, Fund. <R, A> k= <P, Q> if and only if: ' -
-.'_j
Vu:Varld — Val ;4
VYo T[P)(a, p, A, p) = [I6' <o, 0'>ER A Yo'[<a, 0'>ER = T[Ql(a, 7', A, p)]] S
This says that for all variable-to-valug mappings (needed to handle free variables that appear fjf:’*

in assertions), for all states in which the pre-condition is satisfied, there exists some output
state in the relation (this gives us termination) and for all such output states (reached from an
input state in which the pre-condition is satisfied), the post-condition is satisfied. In the abc_we
predicate, we define p to be somé constant state (e.g., the null state) because aithough all

assertions are interpreted with respect to two states, it makes sense to refer to only initial

values of objects in a pre-condition. By the syntactic restrictions we place on what assertions

may appear in pre-conditions, the evaluation of an assertion in a pre-condition can ignore the *;
second state. 3
2

Example S
o

choose = proc (s: set) returns (i: int) _,‘

uses SetOfint oSy

pre ~isEmpty(st) ._'-,1

post has(st,i¢) Ty

end -

This procedure specification specifies that the choose procedure takes in one input object of \
.:‘..:1

type set and returns one output object of type int. The pre-condition is satisfied only when the j~_;;-
value of the input set object is not empty. The post-condition asserts that the value of the '—4

output integer object is in the value of ine input set object. The function identifiers, isEmpty

! .
. e S
VLSRRI WO S S)

b
[
B
|
4
p
4

...........

and has, appear in the SetO/E trait, which is included in the SetOfint trait (Appendix A).

2.2.2.2 Termination Conditions

A CLU procedure may terminate in more than one way, depending on the input state.

We distinguish exceptional termination from normal termination by including in the procedure

‘ heading all possible exceptional termination conditions of the procedure and each of their

associated returned objects.
Syntax
We add to the procedure specification heading a signals clause:

ProcHead :: = proc Args <Rets> <Sigs>
Sigs :: = signals (Exception +,)
Exception :: = Sigld {(Decl + >

and to the assertion language:
Assn : = ...| returns | signals Sig/d

As with a Rets clause, object identifiers in a Sigs clause are called output formals and their

objects, output arguments.
Checking
We additionally check for a well-formed procedure specification that:

1. Each signal identifier appearing in some signals assertion in the
post-condition appears in the headirig.

2. signals and returns assertions appear only in the post-condition.

R L Y
I YR U P Sy

RV Y T

- o - A W N TN TR YY [el T Tl T A Ot o S N T B e R ST
AU g S S KA E T Th ANLANE AL NN RDE I 0V S L R R TE D A AL e
A A N A e N .

-52. -
Meaning . d

Recall that a special terminates object is included as part of the set of existing objects
of all states. Upon normal termination of the procedure, the value of terminates is equal to

normal; upon exceptional termination, the value of terminates is equal to the Sig/d in some

signals assertion. Fdrmally, we extend the truth function, T, such that for all x€Sig/d:

Mreturns)(o, o', A, p) = o'.s(terminates) = normal
Msignals x)(o, 0’, A, p) = o’.s(terminates) = x

The set, TermCond, is the union of Sig/d and {normal}.

Example

choose = proc (s1: set) returns (i: int) signals (emptySet(s2: set))
uses SetOfint
pre true
post [~iSEmpty(s1t) = has(s1%,i}) A returns]) A
[isEmpty(s1t) = signals emptySet A s2 = st]
end

When choose terminates normally, terminatesd = normal and returns an int object; when it

terminates exceptionally, terminatesd = emptySet and returns a set object.

2.2.2.3 New Objects

Procedures can create new objects. When a new object is created, the set of existing
objects, O, of the input state is extended by adding an element from the universe to O that was
previously not in O.

- L
Syntax i

Assn: = ..|new & |new Term+,

s
- _{

DY W S T R Vo ey TR T SAAP S Sy LT TIPS W W SO T WA LI W WA WO SO S SN ST SIS FYRTSOC SR [N NURSE SNSRI SR S B

Checking

A new assertion can appear only in a post-condition. Let a be an assertion of the form -
new !1,..., tn, where t1, ..., tn are in Term. Subterms of a are the subterms of each term in the

listt1, ..., tn. We check that for the assertion a:

1. Each subterm of each term listed in t7, ..., in sort checks.

2. Each term listed in 11, ..., tn denotes an object.

Meaning

Recall that a state has three components, one of which is the set of existing objects, O.

We extend the truth function, T, such that for all terms t1, ..., tnin Term:

Tinew B)(o, ¢', A, p) = 6.0 = ¢'.0.
Tinew t1, ..., tn)(0, 0", A, p) = (c.ON{t1, .., tn} = D) A (6.0 = s.OU {11, ..., tn}).

Example

create = proc () returns (s: set)
uses SetOfint
pre true
post sé = empty A new s A returns
end

This procedure specification specifies that the create procedure when invoked returns a new,

initially empty set object. The previous examples can be strengthened by adding a new &

assertion to their post-conditions.
2.2.2.4 Mutation

A procedure can mutate objects as well as return them. We add an assertion that
specifies that no objects are allowed to be mutated and an assertion that specifies what

objects a procedure is aliowed to mutate.

et

%
B4
b
[N
"o
~
v

R
8
b

''''''''''
..........

Syntax

Assn i = ...| mutates @ | mutates Term +,

Checking

A mutates assertion can appear only in a post-condition. Let a be an assertion of the
form mutates t1, ..., tn, where t1, ..., tn are in Term. Subterms of a are the subterms of each

termin the list t1, ..., tn. We check that for the assertion a:

1. Each subterm of each term in the list t1, ..., tn sort checks.

2. Each termin thelist t1, ..., in denotes an object.
Meaning
We extend the truth function T as follows:

Timutates @)(o, o', A, pt) = T{Vy:T_obj (y€o.0 == y} = yt)](o, 0", A, p)
Tmutates tl, .., tn)(o, o', A, p) =

TVy:T_obj (yYEa.OA ~(y = t1) A .. A ~(y = tn)) = (y¢ = yt))l(a, o', A, p)

Example

intersect = proc (s1, s2: set)
uses SetOfint
pre true
past Vi:int [has(s2i,i) = has(s1t,i) A has(s2t,i)]
A\ mutates s2 A returns
end o

This procedure specification specifies that intersect may change only the value of the second
input argument. Since s7 and s2 might denote the same input actual and s2 might be
mutated, we cannot guarantee that s7 is not mutated; the final value of s1 is not necessarily

equal to its initial value. The previous examples can be strengthened by adding the mutates

@ assertion to the post-conditions.

l;'_;'-“l_"k‘-' oAt atal;a

MRV SR * BN

a0l Y ov e .
TN it BRY DAY 3 W)

R T P S Wi TGS

‘ b4 ._; q.'.'n‘._._. LR

/ "‘l.; +

._a

.- .
~

7
S
K

“
P
k-

..............................

.55

2.2.2.5 Procedures as Objects

In CLU, procedures are also considered as objects that can be passed to or returned
from procedures. For example, an input procedure argument, arg, to a procedure, pr, can be

applied to other input arguments of pr.

Syntax

The type of a procedure object is given by its procedure heading. We add to the syntax

of the interface language:

TypeSpec :: = ... | ProcHead

. We add to the syntax of the assertion language:

Assn ::= ... | Assn {Term} Assn

We call this new kind of assertion a "procedure object assertion (poa)."2

Checking

Let a be a poa, P{r}Q, where P and Q are assertions and = is a term. Subterms of a are
subterms of P, Q, and 7. We check that the procedure specification,
T

pre P
postQ

is syntactically well-formed. We also check that the subterms of = sort-check.

2. Poa's should not be confused with partial or total correctness assertions fhat deal with procedure invocations.
Poa's deal with procedure objects.

* . - - -
v Whcwr DA I e 2 A R NAAG LA e T e ta et et et ete ettt et

R
~
e}
i
o

..........
. Ly

Meaning

Recall that the meaning of a procedure object is a pair consisting ot a relation and an
algebra. The meaning of a poa, i.e., an assertion that refers to a procedure object is given in

terms of the relation of the procedure object. We extend the truth function T as follows:
TP{r)Ql(c, o', A, p) = Vr](0, 0", A, p) =<P, QD

where = was defined in Section 2.2.2.1.

Example

Suppose we specify a procedure that copies the elements of an array using the
copyElem procedure as an input argument. If we wish to place a restriction on the copyElem
procedure object, we would write it in the pre-condition of copyArray. The ArrayOfElemObj

trait, which uses the Array trait, is given in Figure 8.

copyArray = proc (atl: array[elem], copyElem: proc (e1: elem) returns (e2: elem))
returns (a2: array[elem])
uses ArrayOfElemObj

pre true{copyElem}(e1t = e2¢ A new e2 A mutates 3 A returns)

post new a2 A length(a1t) = length(a2i) A low(alt) = low(a2})
A (Vj:int low(a1t)<j<high(a1t)

[fetch(a1t,j) = fetch(a24,j) A new fetch(a2i,j)]

A mutates & A returns

end

We are not able in our specification language to specify the invocation of another
procedure. That is, we are not able to make an assertion in the procedure specification, Pr1,
about the application of a procedure, Pr2, to a list of arguments, ArgList, such as:

apply(Pr2, ArgList)

The reason is that we cannot know in which states to evaluate (i.e., apply V) the objects in

ArgList. To specify the effect we would want, because Pr2 may have side eftects, we would

e

. .

Sl

oo
St
to
1

- .
R ST, BRI S ;
Bnid o Smtana e "nla ALA. A A

ArrayOftlemObi: trait
includes Array with [AQE for A, elem_obj for E] '

Array: trait

includes Integer, Elem
introduces

create: Int — A

addh: ALE— A

remh: A= A

low: A — Int

high: A = Int

fetch: A, Int = E

store: A, Int, E— A

size: A—Bool
closes A over [create, addh]
constrains [A] so that for all [i,i1,i2: Int, e,e1,e2: E, a: A}

1 " remh(create(i)) exempt
-3 remh(addh(a,e)) = a
F low(create(i)) = i
v, low(addh(a,e)) = low(a)
- high(a) = low(a) + size(a) - 1
- fetch(create(i1),i2) exempt

fetch(addh(a,e),i) = if i .eq (low(a) + size(a)) then e else fetch(a,i)

store(create(i1),i2,e) exempt

store(addh(a,el),i,e2) = If i .eq (low(a) +. ze(a}) then addh(a.e?2)
else addh(store(a,i,e2),e1)

size(create(i)) = 0

size(addh{a,e)) = size(a) + 1

Figure 8. ArrayOfElemObj Trait

want to evaluate ArgList with respect to pairs of intermediate states of the invocation of Pr1,

and not the initial and final states.

The copyArray example illustrates this failure of expressive power in our specification

o oot
. o w'sla
wia a tatte s

language. We would like to be able to specify. that any implementation of copyArray must
invoke the copyElem procedure such that the effects of executing the copyArray procedure
ol include the effects of executing the copyElem procedure. We specified in copyArray's
post-condition, what the behavior of copyArray would be as if copyElem were invoked from

copyArray. Nowhere, however, do we actually state in the post-condition that copyElem must

D A A S SRS

oy d T - &
T R e N e RN NL IR T T T A AL ASL AN TEIRI ST B

be used--it is as if the copyElem argument were ignored. Hence, a procedure whose behavior
is the same as specified above, but is implemented without using the copyElem procedure
argument, would satisfy the procedure specification. In order to rule out such procedures, we
would need to be able to make an assertion such as:

Vj:int low(a1t)<j<high(a1t) apply(copyEiem, fetch(a1t,j)).
2.2.3 Cluster Specifications

A model of a cluster specification is an abstract data type. A cluster specification
includes a type identifier, a list of procedure specification identifiers, a link, and a body. The
link includes the name of a trait and a mapping from the type identifier to a sort identifier. The

body includes a set of procedure specifications.

.
A

..
’

P A
P AR

i T4
..‘l . v
ambhha 8 A S

v
Y %

¥
PP

N

G
ettt
Abdnd, .

e e i
PR

a8 e 1 et - .
e T T e

| IR K38 AT

[N RPA DR 4 P
LI N A

Syntax

ClusSpec :: = Typeld = cluster is Procld +, ClusLink ClusBody end -
ClusLink :: = Link ClusMap s
ClusMap :: = provides MutFlag Typeld from Sortid N R
ClusBody :: = ProcSpec + -
MutFiag :: = mutable | immutable .

NN

Def: The type identifier named by a cluster specification is called the defined type. . ,,;‘
Def: The trait named in the uses clause of a cluster specification, cl, is called the used trait of :'.‘::::1
cl. O
AN

Def: A procedure specification defined within a cluster specification is called a bound - ,,_1
procedure specification. A procedure specification defined outside of all cluster s
specifications is called a free procedure specification. oS
h-‘.-~

NSk

Checking B
T

We check that: D

1. All procedure specifications whose identifiers appear in the

heading of a cluster specification are defined in the body of the

cluster specification, and all identifiers of procedure specifications in pER

the body of the cluster specification appear in the heading. nf.'. »
o N e e e T S S i S

A R S T e N s s s s T T Ty Y oy gy

.59.

2R assertion must appear in a procedure specification in the cluster
specification where the defined type of the cluster specification is

e 4
::jll 2. The type iclentifier found in the type-to-sort mapping is the same .
-‘Z-_: as the type identifier that names the cluster specification.]
{ 3. The sort identifier in the type-to-sort mapping is the name of a sort —
- provided by the used trait. 4
= -
4. If the "flag” (in MutFlag) is mutable, some mutates t1, ..., tn e

- the type of the object denoted by some termin t1,...., tn. If the “flag” , 1
gj‘ is immutable, none.of the objects denoted by terms in mutates o
{.; assertions in any of the procedure specifications can be of the o
defined type. ..
. o
- 5. Each procedure specification is well-formed. .4
- 3
g X
;;';:', Meaning
-._- A model of a cluster specification is an abstract data type, which consists of a pair of a
-‘ set of objects and a set of operations. Let Cl be a cluster specification; Prs, the set of

S procedure specifications of Cl; Tr, the used trait of CI.
5/ .

'_'.‘;a; Def: For an abstract data type, T = <Obs, Ops>, T is a mode! of Cl, i.e., T k= Cl, if and only if:

2 1.Obs = {0 | 0€0Db; A the sort of o is T_obj},

'~23 2. Vpr€Prs 3op€Ops, op &= pr,

- 3. Vop, = <R;, ADEOps, A = A, where A is a model of Tr.

:'”f The type-to-sort mapping of the form, "provides (...) T from S," of the cluster specification
X : tells us that the value of TtoS for type Tis S.

N

~ Example

:f'-i The set cluster specification (Figure 9) defines a mutable set abstract data type.
.« Singleton and union return new nonempty set objects. Delete might mutate its input set
;’-:EI. argument, if doing so does not empty it; otherwise, it terminates exceptionally, signaling

.‘ emptiesSet. From the theory (Chapter 3) associated with this cluster specification, we can

show that no set object can be empty. Size returns the cardinality of its input set argument.

S

ey el S
‘

.“. -

»
alatsta

. :_. S OY)

Al A

o f od .2 A EY<
Wty Al

Bty b 0N,
a8 8 s 8 2 M

Fa
]
Ny
\
S
"
]
L 4

set = cluster is singleton, union, delete, size
uses SetOfint
provides mutable set from S|

singleton = proc (i: int) returns (s: set)
uses SetOfint
pre true

post s¢ = add(empty, it) A news A mutates & A returns
end

union = proc (s1, s2: set) returns (s3: set)
uses SetOfint '
pre true
post Vi:Int [has(s34,i) = has(s11,i) V has(s21,i)]
A new s3 A mutates & A returns
end

delete = proc (s: set, i: int) signals (emptiesSet)
uses SetOfint
pre true
post [((card(st) > 2) V ~has(st,it)) =
(s¥ = remove(st,it) A mutates s A returns)] A
[((card(s?) .eq 1) A has(st,it)) =
mutates @ A signals emptiesSet] A
new @
end

size = proc (s: set) returns (i: int)
uses SetOfint
pre true
post it = card(st) A new @ A mutates @ A returns
end
end

Figure 9. Set Cluster Specification (SetClusSpec)

The set cluster specification example illustrates a clear distinction between a (value) sort
identifier and a type identifier. Although the trait SetOfint defines an "empty” value of sort S,
no object of set type will ever have such a value since operations on objects of set type
construct only nonempty set objects. One could have specified a more conventional set type

with operations create and insert, so that a possible value for a set object would be “"empty.”

PRV SR LA W W

DS L P |

7 -61. -
" -
2 ROt
o We will be returning to this somewhat contrived example in later chapters. We T
y .
- . =geforth reter to the specification of Figure 9 as SetClusSpec and repeat it in Appendix | for e
f ’7
- future reference. k%
2 R
2.3 Summary j;:_._-;{,
In this chapter we described models of specifications and implementations, and we 11
: described a kernel interface language. Models of traits are many-sorted algebras; models of ;’.2_5-1
- procedures and procedure specifications are operations, each of which is a pair consisting of
4 a relation on states, and an algebra; models of clusters and cluster specifications are abstract
data types, each of which is a pair consisting of a set of objects and a set of operations.
The kernel interface language contains procedure specifications and cluster
E,‘ specifications. Interface assertions constitute the body of a procedure specification;
¢ procedure specifications constitute the body of a cluster specification. The language of
B interface assertions is built from the language of Larch assertions. We added notation (t and
1) to be able to refer to the initial and final values of objects, since interface assertions are
\

interpreted with respect to two states. A procedure specification basically consists of a used
trait and a pair of assertions. We introduced special assertions to handle multiple termination
conditions, creation of new objects, mutation of existing objects, and procedure objects as

arguments. A cluster specification basically consists of a type name, a used trait, a

§ LR A A

type-to-sort mapping, and a set of procedure specifications. In the next chapter we see how

IO

to map a specification into the set of well-formed formulae of the theory it denotes.

WO

- 4.0

i

LN

)
et

P

LS R

AN &

Attt it e At vk o i Syt INCIAEERN A S

3. Theories

In this chapter we switch to the syntactic viewpoint of specifications and
implementations. The two main objectives of this chapter are (1) to define when an
implementation satisfies a specification, and (2) to define precisely the theories denoted by

specifications and implementations.

Section 3.1 contains some dt;finitions dealing with first-order theories. From these basic
definitions, in Section 3.2 we define the satisfaction relation between implementations and
specifications. Section 3.3 and 3.4 define the theory of a specification and the theory of an
implementation, respectively. Their definitions depend on the definition of a type induction
principle, which we defer defining to Section 3.5. Section 3.5 builds up to defining this

principle, which is complicated because of the possibility of "exposing the rep" in CLU.
3.1 Definitions

The following definitions dealing with theories and formal systems are provided as a
review of basic concepts in logic. We borrow from three introductory logic texts

[Shoenfield67, Mendelson64, Enﬂerton72].
Theory and Formal System
A theory is specified by giving a formal system, which has three parts:

1. Its language. To specify a language, we specify its set of symbols,
and its set of well-formed formulae (wH's). We denote the language
of a formal system F by L(F).

2. lts axioms. Each axiom must be a well-formed formula of the
language of the formal system.

3. ts rules of inference, which we sometimes call rules. Each rule of
inference states that under certain conditions, one formula,.called
the conclusion of the rule, can be inferred from certain other
formulae, called the hypotheses of the rule. Each rule is an

p
3
T
Y
]
R
::
..

D R S Lt i S R R A e B e e I AN A A A A A A AL AN BN T L e

Cee bl

N inference relation among wif's.

Lo

A proof in F is a finite sequence of wif's, each of which is either an axiom or is the

1
Py

) ’
" conclusion of a rule whose hypotheses precede that wif in the proof. A theorem of F is a wff,
- A, such that there is a proof whose last wif is A. Such a proof is called a proof of A. The

theory specified by a formal system F is the smallest set of formulae reflexively and transitively

IS DR

* closed over the set of axioms under the rules of F.

The logical symbols.of a first-order language are the usual connectives, quantifiers, and

possibly an equality symbol, =. All other symbols, e.g., function symbols, are called

Ak .L"“l“l.; <,

nonlogical. A first-order language L' is an extension of the first-order language L if every
nonlogical symbol of L is a nonlogical symbol of L’. Let F and F’ denote formal systems that _‘
respectively specify the first-order theories T and T'. T’ is an extension of T if L(F') is an
extension of L(F) and every theorem of T is a theorem of T'. A conservative extension of T is

an extension T' of T such that every formula of F which is a theorem of T' is also a theorem of

o T.
Used and Imported Types
The following definitions are based on the interface language.

A used type of a procedure specification is a type whose identifier appears in its
heading. The type of any object that is an input or an output argument of that procedure is a
used type. A used type of a cluster specification is a used type of each of its procedure

specifications.

L‘_l;‘. For a used type, T, the sort, TtoS(T), is called the used sort. For a rep type, T, the sort,

TtoS(T), is called the rep sort. For an abstract type, T, the sort, TtoS(T), is called the abstract

sort.

N R L SO CAE L A R R T T T e e T TR s T R S L TN e e s e
=
.::. -64 -
“
-.:,'
:_';; Recall from Chapter 2, a bound procedure specification is a procedure specification that
‘);':5 is defined within a cluster specification. A free procedure specification is a procedure
(. specification that is defined outside all cluster specifications.
i
3: An imported type of a cluster specification is a used type of a cluster specification that is
b not the defined type. An imported type of a bound procedure specification is a used type of
‘-j;I‘_‘ ‘ the procedure specification that is not the defined type of the cluster specification. So that we
~;'.j can use the same terminology for free and bound procedure specifications, we define an
- imported type of a free procedure specification as a used type of the procedure specification.
Syntactic Conventions
5
o For a predicate, P, of n arguments, we write P[X] to denote P(x1, ..., xn). For a predicate
:'_:5 P of 1 argument, and a list, X = x1, ..., xn, we write AP(X) to denote P(x1) A ... A P(xn). For
x':
o two lists of equal length, X = x1, ..., xn, and A = at, .., an,we write X = Aforx1 = al A ... A
s
xn = an. We write "Pr.pre” and "Pr.post” to denote the pre-condition and the post-condition
o of the procedure specification Pr.
2, 3.2 Satisfaction
455
".-} We define satisfaction of an implementation with respect to a specification in terms of
; ;;_(
‘-; theories so we need not directly refer to states. This point of view of couching definitions in
§ terms of theories will lead to subsequent definitions of properties of specifications given in
4.':-
3 Chapter 5. We choose to use the term "satisfaction" instead of "correctness" because it
% .
’I
N better suggests that a relation exists between an implementation and a specification, and

because in terms of theories, the notion of a "correct” theory seems strange.

o)

Def: A procedure, Procimp, satisties the procedure specification, Pr. if and only if Th(Pr) C
Th(Procimp).

Detf: A cluster, Clusimp, satisfies the cluster specification, Cl, if there exists a homomorphism,
A, from terms of the rep sort to terms of the abstract sort such that Th(Ci) C Th(Clusimp)
[T/R],.

[T/R], (read "T for R under A") means that T, the identifier denoting the abstract type, is
} - substituted for every occurrence of R, the identifier denoting the rep type, and A(r) is

b substituted for every occurrence of a term of rep sort denoted by r.

m We discuss how one would prove that an implementation satisfies a specification after
e we have formally defined the theories of specifications and implementation. In Section 3.4.1

we discuss this for procedures; in 3.4.2, for clusters.

3.3 Theory of a Specification

We are very careful to separzite the trait language from the interface language, and fhe
interface language from the programming language. We must similarly be careful to
distinguish among the theory of a trait, the theories of procedure and cluster specifications,
and the theory of an implementation. In this section we begin with a formal definition of the

theory of a trait and then define the theories of procedure and cluster specifications.
3.3.1 Theory of a Trait

Let Th(tr) denote the theory of the trait tr. Th(tr) is a conservative extension of first-order
many-sorted predicate calculus with equality. It is an extension by the addition of the function

identifiers of tr, the axioms of tr, and two rules of inference. The formal system is as follows:

Symbols
Logical symbols: ~, A, V, =, &, ¥, 3, =; the set of variable identifiers, Varl/d; true, false;

Nonlogical symbols: the set of function identifiers, Opld; the punctuation marks: comma,

colon, and parentheses.

;
:
:
;i
;1
J

. - v -

. - . . - . P .t - . - . o ~ . -
.... - . . . ~ T . . . Y - - 3 . - . - . - N ; s b e ;. . R
PR I P T A A R VPP S T S WA P Rl U S G S P S WS PP ST SURt UL Sl WA

Wit's
wif ::= Assn
Assn :: = true|false | ~Assn|Assn A Assn | Assn V Assn
| Assn = Assn | Assn = Assn | (Assn)
|V Varlid: Sortld Assn | 3 Varld: Sortld Assn
|Term = Term

Term ::= Varld | Opld{(Term + ,)>

The precedence of the operators and quantifiers from highest to lowestis ~, ¥, 3, A, V, =,

+. When one connective is used repeatedly, the expression is grouped to the right.

Axioms
1. All logicat axioms of first-order predicate calculus with equality.
a. All propositional axioms. E.g., ~P V P.
b. Substitution axiom: ¥x:S (P) = (P[t/x]), where term t is substitutable for variable
identifier x in P (defined precisely below), and t and x are of sort S.
¢. Identity axiom: t = t.
d.'EquaIity axiom: s1 - t1 A.. Asn = th = f(s1, ..., sn) = f(t1, ..., tn).
2. All equations of the formt1 = t2in tr.
3. ~(true = faise). All other inequations in Thitr) are derivable from this one and the

meaning of =.

« Lt e T

.......

................ L.

N N N Ty Ly w Ty
R . Cote e R T R M TR

:.',: Rules of Inference

1. Rules for first-order predicate calculus with equality: , _

a. Modus ponens
P,P=Q
Q .

b. Generaliiation

P
VxSP

Here Vx:S stands for universal quantification over all sorted variables x; in P with

corresponding sorts S;.

2. Sort Induction

If "closes S over [op1, ..., opn]" appears in tr, the following is the corresponding

sort induction rule for predicate P(t) with free variable t of sort S.

P(Xg) A .. A P(xyq) = P(OP1(Xg, vy Xgq))

P(x,) A A P(x,) = P(opn(xy,.., x._(ﬁ -]

Vt:SP() ;;:;

where ki is the arity of opi, P(x;) = true if x; is not of sort S.

3. Sort Reduction®

If "reduces S over [op1, ..., opn]" appears in tr, the following is the corresponding
- sort reduction rule.]
o)
>y -

Aty
N
' o

°p1(x1, very XH, t‘, veey xk) = °p1(x', ey XH. t2. cony xk)

opn(xy, ..., Xi 1, 11, ..., xQ = 0pN(Xy, ...y Xi 1, 12, ..., XL)
t1 =12

3. Although in Chapter 1 we did not discuss sort reduction because we do not need it for our exampie traits, we
include it here for completeness.

..........

D
3

(TS N L . Ta » e

- ..'. A
2"

%
‘

'l f.‘:’.': .
4 .

at. e
[}
PR

n
JUSTUDINA WL

where t1 and t2 are tuims of sort S, and the x;'s do not occur in t1 or t2, and the ti's appear in

S e]
(Y
.

DAL

all argument positions of sort S.

i .

xS
AAd .

4
)
a

80 Substitution "
g::‘»:: .;
3

% In the substitution axiom we used the phrase "a term that is substitutable for a variable -

4

in a predicate,” which we now define.]

. . -1

Def: An occurrence of x in a formula P is bound if it occurs in a part of P of the form ¥x:S Assn J
or 3x:S Assn; otherwise, it is free in P. .

Det: A term, =, is substitutable for x in P if for each variable identifier y occurring in 7, no part

‘ of P of the form "Vy:S B" or "3y:S B" contains an occurrence of x that is free in B.
2 '
= We write "P[r/x]" (read "substitute 7 for x in P") to denote the formula P obtained from
the substitution of = for free occurrences of x in P, restricted to the cases where 7 is
substitutable for x in P. We extend this notation for lists (of equal length) of terms and
- identifiers, A and X, so that P[A/X] stands for the formula obtained from P by respectively
replacing all occurrences of x1, ..., xn by ter.ms al, ..., an, where each term ai is substitutable
for xi in P.
3.3.2 Theory of a Procedure Specification
- : Let Th(Pr) denote the theory of the procedure specification Pr. Th(Pr) is a conservative
extension of the theory of the used trait of Pr. We extend the theory of the used trait of Pr by
f adding to the formal system:
% -
2 Symbols
The identifier, Pr; terminal symbols of Assn's; the set of object identiliers, Objid; curly —‘
\ braces, tand ¢.
;
:

.69 -
Wit's
': Wtf ;. = Assn | Assn {Procid} Assn
-.: Assn :: = % as in Section 3.3.1 '
‘i | returns | signals Sigid _ ' .}_
53 | new @ | new Term +, ' ...;4
¥ | mutates & | mutates Term +, 4
i | | Assn {Term} Assn
:‘: Term ::= % asin Sectign 33.1 | ._.‘_3‘
‘}" | Objid | Termt | Termd Ld‘
N Axiom
Pr.pre[X] {Pr} Pr.post[X,Y]
‘,E where X is the list of input formals of Pr; Y, the list of ocutput formals.
4 |
Rules of Inference
3 1. Rule of Consequence
j‘ | P P1, PLPAOL, Q1 =
y where P, P1, Q, and Q1 are assertions. Recall that the validity of the assertions of the
3 hypotheses of this rule is with respect to two states. In particular, Q1 can refer to initial values
:: of objects referred to in P1. : _J
.‘ o
- 2. Simplified Invocation Rule o
- X = AAY = B, Pr.pre[X] {Pr} Pr.post{X,Y - o
Pr.pre{A7X] {Pr} Pr,post[i\/x.%77§_‘_l }
: —
X is the list of input formals of Pr; Y, the list of output formals; A is the list of terms denoting
"‘ objects that are input arguments; B, the list of output arguments. This is a simplified case of T:i'-:.1
T

b
4
"
Of

PP AN a e a el
« "

At Bt T IR B i ey

.70 -

the CLU procedure invocation rule (see [Schatfert81]).4

3. All type induction rules of each imported type. We define this set of type induction rules
in Section 35.2.

Th(Pr) contains the theories of all of Pr's imported types. We intentionally excluded the
defined type from the set of imported types of a bound procedure specification so that its
theory would not include the theory of its defined type. This is done to avoid a circular

definition of the theory of a cluster specification (Section 3.3.3).

Example
Recall the choose procedure specification:

choose = proc (s: set) returns (i: int)
uses SetOfint
pre ~isEmpty(st)
post has(st,i$) A new @ A mutates @ A returns
end

Th(choose) includes the trait theory, Th(SetOfint), which contains some axioms, e.g.,
isEmpty(empty) = true, and Vx:Si e:E [isEmpty(add(x,e)) = false]; and the sort induction rule
with the hypotheses P(empty) and P(x) = P(add(x.e)), and the conclusion Vt:SI P(t). An
example theorem that is derivable from the axioms and the rules in Th(SetOfint) is Vt:S

card(s) > 0. Since the Integer trait is imported in the SetOfint trait, Th(choose) includes all

theorems on terms of /nt sort.

An additional theorem in Th(choose) is ~isEmpty(st){choose}(has(st.it) A new @ A
mutates @ A returns). Given the simplified invocation rule, and the rule of consequence,

we derive theorems from this axiom. For example, the formula

4. We do not need the part of the rule that handles recursive invocations.

PP L L P I LTS AR S P U, S, 7 W V.

............
..................

. WP, Y S

FIFIIRIPar AN Y W SR S VEN -

1% b Ve

< Y
'ente

28 0 e T NY

. .
QO IGISI LS b3

2 0

Pd

e v
RSN L LDy L)

Fotalale

o2 PP PPN

AR

QO - W LAORFOANENCI, - 8 A0

£t AN,

SRRV -
-

.71-

~isEmpty(add(empty,1))
{choose}
has(add(empty,1),1) A new @ A mutates 2 A returns

ig in Th(choose).
3.3.3 Theory of a Cluster Specification

Let Th(CI) denote the theory of the cluster specification Cl. Th(C) is the union of the

theories of its procedure specifications closed under the following:

Rules of Inference

1. All type induction rules of the defined type, T. See Section 3.5.2.

Sometimes it is useful to include the theory of the defined type of the cluster
specification with the theory of a bound procedure specification. We denote this theory by

"Th(Pr +).” For notational convenience, if Pr is a free procedure, let Th(Pr +) be Th(Pr).
3.4 Theory of an Implementation
3.4.1 Theoryof a Pl'ocedure_

Let Procimp be a procedure and Th(Procimp) denote the theory of the procedure

Procimp. The formal system that specifies Th(Procimp) is as follows:

Symbols
Identifiers that appear in the procedure body; keywords of CLU and Assn's; curly braces, *

and ¢; Procimp (the name of the procedure), if the body of Procimp contains a recursive

invocation.

.............
L LI Tt

A e i ea))

H . ‘
. . AP I
Lt e
L
e

- T P ..
S T .
N e N
PRI ' B
Lt e LTt .
e e ety NN

MR O

LY

[]
LR W S

gy -
3 _te
-

e
LRI

T

.72.

Wit's
Wif .. = Assn | Assn {Stmt} Assn
Stmt :: = CLU statements or expressions in the body of Procimp

Assn ;= % as in Section 3.&2

Axioms
All valid formulae of the form Assn {Stmt} Assn; in particular, consequences of the
simplified invocation rule for the' procedure specifications that specify the behavior of the

procedures called from within the body of the procedure, Procimp.

Rules of Inference

1. Rule of Consequence

2. All proot rules of CLU [Schaffert81], including those for sequential, iterative, and
conditional statements.

3. All type induction rules of each imported type of Procimp.
i Procimp is defined within a cluster we also add:
4. All type induction rules for the rep type of the cluster.

From the proof rules of CLU and the rule of consequence, given the body .of a
procedure, we derive the set of formulae involving the body of the procedure that are valid in

all models of Procimp. These formulae comprise Th(Procimp).
Proving Satisfaction

In order to show that a procedure (implementation), Proclmp, satisfies a procedure

specification, Pr, we need to show that each theorem in Th(Pr) is in Th(Procimp). Let Pr be:

- e e PR L R S B B R I
. [N & S T L B e .
R P N L A T S I T L]

S e L e e P AR AL
hk i PO T T UL Bk e ey

Pr = proc (x1, ..., xn) returns (y1, ..., ym) signals (..)

preP -
‘ e preQ -
- end ’ .
) Y
5 and an implementation of Pr be: ~
7 :
Proclmp = proc (x1, ..., xn) returns (...) signals (..) "'i
2 BODY f__-.*
.'.,; end ’ :F:
2 ' ‘;
b Let A and B be lists of terms denoting input and output objects, and X and Y be the lists -.i
i of input and output formals. Assume P[A/X] {Pr} Q[A/X, B/Y] is a theorem in Th(Pr). We
must show that P[A/X] {Pr} Q[A/X, B/Y] € Th(Procimp). To show this, we use the following
& (non-recursive) procedure definition CLU proof rule,
_‘:j x1 = at A..Axn = an A P1{BODY} Q1 .
2, P1{Pr} Qi "
N, ¥
where P1 and Q1 are assertions, ai are terms denoting objects, and the procedure’s local (not =
'j' own) variables must not occur free in P1 or Q1. Notice that Vi[xi = ai] = Vi[xit = ait]. Any
local variables are freshly created on each invocation of the procedure, and are discarded ¥
- when it returns, so P1 and Q1 must not refer to them.
:’:‘J
.':3 The conclusion of the procedure definition rule produces a specification of Pr.
"l
¥ Typically, we must then show that (1) P[A/X] = P1, and (2) Q1 = QfA/X, B/Y]. Then from
| R the rule of consequence, we have:

P L .
et alaleata

P[A/X] = P1, P1 {Pr} Q1,Q1 = Q[A/X, B/Y
J_I—T'_)'%p A/X Pr&‘olA'/'x','B%"/v /4B

A which gives us that P[A/X] {Pr} Q{A/X, B/Y] € Th(Procimp).

| etk Tty s L DRSO NG QA AN AA N MRS S e e e e R e N L L T T T e T T A S S e "_'_'T
2 S
=, -74 =
M ¥
vl L
b .
o 3.4.2 Theory of a Cluster 5
Let Th(Clusimp) denote the theory of the cluster Clusimp. (Clusimp) is the union of the A

theories of its procedures closed under the CLU proof rules. There are no type induction {

rules associated with a cluster. o 5

‘:::1

. |

Proving Satisfaction 2

Carrying out the following steps is sufficient to show that a cluster satisfies a cluster 1

specification.

1. Define a homomorphism A that maps terms of the rep sort to terms of the abstract

2. Define a rep invariant on terms of the rep sort used to help prove satisfaction of
each procedure.
3. For each procedure, show it satisfies its corresponding procedure specification

under A and that the rep invariant is maintaiqed. |

These steps are no different from those used in usual proofs of satisfaction, where A is
called an abstraction function [Hoare72. Guttag78, Guttag80a]. For our purposes, however,
the abstraction function is defined on (sorted) terms and not on (typed) objects. We give an
example of a proof of satisfaction between a cluster and a cluster specification in Appendix

n2.

3.5 Type Induction R

w4
In the definitions of the formal systems that specify the th2ories of specifications and __4
implementations, we referred to the "type induction rules” of a type. We derive each rule

syntactically from cluster specifications. We argue that each rule is sound, however, because

it is derivable from the computational induction rule for CLU, which we assume is sound. In

Section 3.5.1, we define this computational induction rule. In Section 3.5.2, we define how to

G Cair el
.........................

derive syntactically a set of type induction rules for a cluster specification.
3.5.1 Computational Induction

Recall that our model of computation is an alternating sequence of states and
statements starting in some initial state, o,. For the states, o;, and the statements, S;, 1<i<n,

let a computation sequence be:
005104,0,1S,0,

Informally, if some predicate P is true for each successive pair of states in the
computation, then P is true of a computation. P is essentially an invariant over the
computation sequence. We need to introduce a function, flip, on assertions because we want
P to be true for all successive pairs of states in the computation, where the final state of one
pair becomes the initial state of the next pair. Since assertions are interpreted with respect to
two states, in order to use the same truth function T, which we defined in Chapter 2, we need
to ignore one of the two states in which an invariant is interpreted. Hence, we use flip to make

all the arrows in an assertion point in the same direction.
Formally, we state the computational rule as follows. For some predicate P:

true {S,} flip(P)

P {S,} flip(P)

P {S,} flio(P)

true {Si flip(P)

for all statements S of the computation.

tlip(P) is P with all occurrences of * replaced by {, with a restriction on the form of P to

which flip is applicable, and a restriction on the flipping of arrows in a procedure object

assertion (poa):

Lo

[y
PPy

,- e ey
AR

AR AR

pray P R YL ’

. 4 'y W e T TN T T W v g Wy, e e T TR T e T T M o« T e P T ey T, YL VLW,
MU S e Rar e S i L S] ":.".'-'ﬁ?‘.r'..r'.':. . .:-t'.~l.b‘~‘.b".‘_"-'L“L".“\' - q—

1. Only assertions whose value depends on a single state can appear
in P. Specifically, no returns, signals, new, or mutates assertions s
are allowed in P. Otherwise, we could not properly ignore one of the —
two states in which an assertion is interpreted. LS

2. If P contains an assertion about a procedure object of the form
P1{r}Q1, where P1 and Q1 are assertions and 7 is a term denoting a
procedure object, we do not replace t by ¢ in P1 or Q1. This is
because P1 and Q1 are not interpreted with respect to the same
state as that for P1{r}Q1.5

A.L}

We emphasize that the first restriction is only for the computational induction rule and
not on all assertions. For example, formulae of the form P {Pr} Q where Q has returns,
signals, new, or mutates assertions are still well-formed, as in the axiom of Th(Pr), Pr.pre

{Pr} Pr.post.

Henceforth, we write P! for flip(P). Notice we must also be careful when using the usual

Hoare proof rules for statements like sequential composition, conditional, and loops. For

example, the sequential compoéition rule should be:

P{S1} Q' Q{S2} R!
P {S1;52} R

Similar syntactic transformations must be performed on all other proof rules so that they can

be applied appropriately in proofs.

3.5.2 Type Induction Principle

A cluster specification is ideally more than just a syntactic way of grouping together a
set of procedure specifications. It gives us a way of localizinb the specifications of the
behaviors (input-output relations) of all operations on objects of the defined type. This

modularization should give a means of localizing the proot of invariant properties of all

5. Recall that the truth of such a poa is defined to be true if the value of T, i.e..‘ some relation-algebra pair, satisties
the pair of assertions <P1, Q1> (Section 2.2.2.5).

o Vo !

R A e i A A T R S St T T e T T U - I A e A e R i T S B S P U A A VI S |

objects of the defined type. We would like to associate with a cluster specification a type

induction rule and assert that it is a sound rule in any cluster that satisfies the cluster

specification. This rule would allow us to infer that some property is true of all objects of type -.'C'-:%
T by considering only a subset of the procedures that create and mutate objects of type T. In
this section we see that defining such an induction rule is not quite so straightforward _*«
p

because of situations that arise in implementations that "expose the rep." _ f
In Section 3.5.2.1 we show how to derive this desired tybe induction rule for a cluster __J
specification and give an example of a derivation. In Section 3.5.2.2, we explain the problem 3: ,i
of exposing the rep that can invalidate this type induction rule, and so in Section 3.5.2.3 we 1
extend the derivation procedure to allow for some implementations that expose the rep. _—;

3.5.2.1 A Type Induction Rule

We first state how to derive the type induction rule for a type T, then explain the rule, : : '_.:.

-
then justify it _ &4

For a procedure specification, let T1 be the sublist of its input formals that are of type T;
T2, the sublist of output formals that are of type T. (Recall by our definitions in Chapter 2,
formals in a signals clause are included as output formals of a procedure header.) T1 and T2
are sublists because some input and output formals may not be of type T. Let i and j be the

lengths of the lists T1 and T2, respectively.

- ¥
B -SRI

e e Tt
R I P IO

T
P T R

v GRS

e
™ s
NOYOR i

v

| &N

Method: Derivation of a type induction rule for predicate, P(t), with tree variable t of type T.

Hypotheses: The hypotheses are named HB, HP, and HM for basic, producing, and mutating

constructors (to'be defined), respectively.

1. For each bc€BC(T), add an HB hypothesis of the form:
true {bc) /i\P'(TZ)
2. For each pc€PC(T), add an HP hypothesis of the form:
AP(T1) {pc} /j\P'(T2)
3. For each mcE€MC(T), add an HM hypothesis of the form:
AP(T1) {mc} AP{T1) A API(T2)

where P is restricted as for the computational induction rule (Section 3.5.1). /i\P’(T1) can be
conjoined to /i\P’(Tz) to the right of the braces in the first two kinds of hypotheses, but by the

definitions of basic and producing constructors (defined below), it would be vacuously true.

Conclusion: true {S} Vt:T P'(t) for all statements S.

{end of Method)ll

The sets, BC(T), PC(T), and MC(T), represent the sets of specifications of procedures
that can create and mutate objects of type T. These sets are not necessarily disjoint since a
procedure might do both. Roughly speaking, the differences among the three are 'wh'ether
any input arguments are of type T, whether any output arguments are of type T, and whether
any objects of type T are mutated. BC(T) is the set of basic constructors of type T. A basic
constructor of type T is a procedure specification that has no input arguments of.type T;
whose pre-condition contains no explicit assertions about objects of type T; and whose
post-condition specifies the return of a new object of type T. For example, singleton of
SetClusSpec (Appendix |, Figure 9) is a basic constructor of type set. PC(T) is the set of
producing constructors of type T. A producing constructor of type T is a procedure

specification that has both input and output formals of type T; whose post-condition specifies

PV W P T WP SR PP L SCIRNT I SN WA YT QU WS G Wi Sy

|
s e

e e T T
T e
et v e
PR ot

.
W .

T e e
. R
N AN S

B R R

TR

. L
.

Ry R

‘|‘ e

>
-

-
3
L
e
4

R

‘ A
[

]

I S
R .
. e o e e
. Lt .
P
) 2 b [N

x
-

b the return of a new object of type T; and for all assertions in its post-condition of the form

o . -
"1 mutates t1,..., tn, none of the types of the objects denoted by the terms in the list t1, ..., tn is 2
¢ T. For example, union of SetClusSpec is a producing constructor of type set. MC(T) is the set ‘4

of mutating constructors of type T. A mutating constructor of type T is a procedure
specification that has an assertion in its post-condition of the form mutates t1, ...,th, and T is

the type of the object denoted by some term in the list t1,..., tn. For example, delete of

g g
LR

SetClusSpec is a mutating constructor of type set.

A

To justify the rule, consider the computational induction rule given a predicate, P(t), on

«

.
e

¥
L QY

objects of type T. We need be concerned only with invocations of procedures that create and

’

ry

:3 manipulate objects of type T. We reduce the number of hypotheses of the computational
-
! induction rule to obtain a type induction rule by retaining only those relevant hypotheses.
'.;; Notice we have available, however, only the procedure specifications and not their
implementations. Hence, the hy_potheses we select from the computational induction rule can
! be based solely on the specification of the procedures, and not their implementations.
%
J: Example 1
4
o Consider our simple example, SetClusSpec. Following the method given, we have
-'1‘
poi instances of each of the three kinds of hypotheses, HB, HP, and HM, to obtain the following
A
X type induction rule:
true {singleton} P¥(s)
P(s1) A P(s2) {union} P'(s3)
2 P(s) {delete} P!(s)
e true {S} Vt:set Pi(t)
N
« \4
2
'
oy
¢
o
l':.

c o

'4'

Suppose P(\j is card(tt) > 0. The hypotheses are:

N

HB true {singleton} card(st)> 0
HP card(s11) > 0 A card(s21) > 0 {union} card(s3¢) > 0
HM card(st} > 0 {delete} card(s¢}> 0

The conclusion is true {S} Vt:set[int] card(ty) > O for all statements S.

]". EREERI
Y ¥ WO

We use the axiom of the theory of the procedure specification and the rule of
consequence to show the validity of each of these hypotheses. For example, to show the

validity of HP above, we have: ! ?

1. Assume [card(s1t) > 0 A card(s2t) > 0].

2. From the above assumption and the sort induction rule associated with Th(SetOfint), i
Vi:Int [has(s34,i) = has(s1t,i) V has(s21,i)] = card(s3¢) >0 "'j‘

3. Th{union) contains the axiom, -
true {union} [new s3 A mutates @ A returns -
A ViInt [has(s34,i) = has(s1t.i) V has(s2t,i)].

4. So, by the rule of consequence (union.post = 2) we have: _ e
HP: card(s11) > 0 A card(s2t) > 0 {union} card(s3+) > 0 j

]

N

1%y

Similar reasoning is used to show the validity of HB and HM for singleton and delete.
Therefore, we can conclude that the size of all objects of type set is greater than zero. Notice

that this is a very different theorem from that in Th(SetOf/nt), Vx:Sl card(x) > O. o

PRI
LI *
‘_'. Jl/ K

K
.3

3.5.2.2 Exposing the Rep

=

We have defined an object to belong to only one type. In CLU, nowever, this property of j
objects does not always hold si'nce one can write programs where an object belongs to more &
than one type, e.g., both the abstract and the rep type. CLU type checking does not prevent
this situation from arising because it cannot detect it syntactically. Since operations of both ._i

types might possibly mutate such an object, the desired locality principle of a cluster can be

violated; our single type induction rule might be invalid. .

PO T P S U PTEAP S LI WAL UL IOIES-PUSIPUSLIII SH Ahs WUEPRL I NP Y-IP G DU S i WP U SV Y

AU I
hataldad o a8l fadd

L) ~ v 5
..

When some opcerations besides those specified in the cluster specification defining T

can mutate objects of type T (by means other than invoking procedures of the cluster), we say

~~ EhhOMIN
[

s -8 '. ‘.
4 6

Ly

that "the rep is exposed.” There are two ways in which such a situation may arise. Both

Y)
2
]

0

involve sharing of objects of mutable type.f One way is when the rep type object and the

ate
Setat
l'l‘l
.
&

abstract type object are the same object. We call this "exposing the whole rep.” Any mutating
operation of the rep type can then mutate an object of the abstract type, and vice versa. A
simple example of this in shown in Figure 10. Exposing the whole rep can (and most of the
time should) be avoided._ In the queue example, the make procedure should copy the array
before returning the queue to avoid exposing the rep. Since it does not, a mutating array
operation, e.g., addh, that changes the original input array object also changes the returned

queue object since they are the same object.

A second way an object of type T can be mutated by an operation other than those
specified in the cluster specification defining T is by establishing sharing with an object of
type T1 whose value is incorporated in the value of the rep of type T. We call this "exposing
the subrep.” Whether or not an implementation exposes its subrep is relative to a
- specification. For example, the read procedure in Figure 11 would be exposing the subrep it

the specification of read were to require that the top of the input stack returned be a new

.. queue = clusteris ..., make, ...
A rep = array[elem]
'.7:;; make = proc (r: rep) returns (cvt)
e return(r)
‘ end make
: end queue
e Figure 10. Exposing the Whole Rep for Queues
N

6. i we had only immutable types or if we eliminated sharing in CLU, the problem of exposing the rep would not
exist. :

-82.-

- 1

. .

-}:}: object. Since read returns the top of the input stack argument, without copying, then any ;
. .

changes made to that set would appear to change the value of the stack. Again, to avoid this -

ﬁl sharing, a copy of the top of the sequence should be made before returning it or pushing it. ’:?

i

P '.

) One could argue that implementations that expose the rep (of any kind) should be B

b -

banned. There are two reasons why such a restriction is too severe. The first is that in ;

practice, one sometimes inténtionally wants such sharing among objects, perhaps for ’;]

-]

stack = cluster is empty, grow, read, ... -

rep = sequence[set] -4

-

empty = proc () returns (cvt) _4’

return (rep$new()) .

end new]

% grow will only push on the input stack a set whose size is less than 64 g

grow = proc (s1: cvt, s: set) returns (cvt) -3
it set$size(s) > 64 then return (s1) “q

€1

seq: rep .= rep$new()
for e: set in rep$elements(s1)
seq:= rep$addh(seq, e)

end
return (seq) "
end grow ;‘;
read = proc (t: cvt) returns (set) signals (bounds)
return (rep$top(t)) resignal (bounds)
end read j
oee 1
end stack ~
set = clusteris ..., delete, ...
tep = arrayfint)
% delete mutates sifiisin s ~
delete = proc (s: cvt, i: int) o
end delete _:jl
X
end set .:11
Figure 11. Exposing the Subrep for Stacks -

Y 24
N

T T S . L.) AR R Lo ST : . . PR P ST C -
AP e e g e e T T T e e
.' o .-l ... '-: -~ .l. .- A‘-l: L. ol J: ‘.L' PP ISRV T ST S "\-‘ - = b 5 * “a PP, L, Y oy A-‘..-_l A B e B e n. ' L ‘."

L)

efticiency reasons, and cleverly exploits it. The second is that there is no reasonable way to
ban such sharing, i.e., to detect it syntactically. Before we proceed with the definitions of
these induction rules, we point out that CLU, which cannot completely enforce a restriction
against exposing the rep type, can still be used to construct "true" abstract types. The
programmer need only follow a programming discipline that ensures that reps are not

exposed or that sharing of mutable objects is not abused.
3.5.2.3 Type Induction Rule Revisited

If we were to associate a type induction rule as thus far defined with each cluster

specification then an implementation that exposes the rep might violate this rule and not

necessarily satisfy the cluster specification. In deciding whether an implementation satisfies a
specification, we could either be very restrictive and outlaw any implementations that expose
the rep or be less demanding. We choose to be less demanding and allow for some
implementations that expose their .subrep. In doing so, we choose not to associate a single
type induction rule with a cluster specification, but rather a set of rules. We call this set of
rules, the type induction principle of the cluster specification. Each rule is dependent on the
form of a predicate, P(t), which we would like to assert holds true for all objects of type T
between all pairs of successive states in‘any computation. In essence, the predicate is shown
to be an invariant for the cluster specification. Since there is one rule per predicate, one

cod!d take an alternative viewpoint that we are associating a set of invariants with a cluster

specification, where each invariant is a predicate corresponding to a rule.

Notice that hypotheses (1), (2), and (3) of the derivation method (Section 3.5.2.1) are

ATty
I A
LT, .
S e
PRTSPRIN

independent of the form of the predicate P(t). However, an object of type T might contain
objects of mutable type, M, and for any predicate containing a term that refers to values of

these subobjects, the truth of the predicate depends on the behavior of all procedures that

.
ba
:

& -
[
e
i
o
;E

possibly change the values of objects of type M. We need to show that the predicate P(t)

e
-

remains invariant for each mutating constructor of type M, and hence include a hypothesis for

IR ISIIND

A M
< s

L R et St .- ©
P T T T e e L I,

each mcEMC(M).
Thus, we add the following rule to the derivation of a type induction rule.

Method (continued): Derivation of a Type Induction Rule

4. For each subterm, 1, in P(t) that denotes an object of mutable type M (# T) if 7 is
followed by t or ¥, add a r-instance (defined below) of HM for each mc€EMC(M).

(end of Method)il

,'. Def: Let P(t) be a predicate with t a free variable in P. Let 7+ be a subterm of P, and tbe a
3 subterm of r, where 7 denotes an object of type M. A r-instance of HM for Pr and predicate
2 P(Y) is: '
E]
. %y = 7V /A . A x, = 1lv /] A 4
. [Pivy/t] A ... APv /1] o
b {Pr} i
' [P'lvi/ A .. APV /t] APy, 1A .. APy, /tT] '2‘;21
24 Ty
where : :_:.i
1. Each v; in P[v,/t] or Pi{v,/t] is a fresh variable. There is a v for each of Pr's input Rk
3 and output formals x; of type M. We need these fresh variables because Pr might have more T
. than one argument of type M.]
2 2. Plv/t]is (Plv;/t])". l.e., substitute v, for t; then flip.
P Example 2
-
¢ Suppose we specify the type stack of small sets, where sets are mutable, and that the
identities of set objects are pushed onto the stack, not just their values. Figures 12 and 137 ™
N give the cluster specification for the type stack of small sets and for the trait it uses. The | T";
: implementation of Figure 11 satisfies the cluster specificaiion of Figure 12, even though the '..Zj
. . -4
implementation exposes its subrep. An implementation that does not expose its rep, e.g., one)
- in which the read procedure returns a copy of the top of the stack, would also satisfy the

specification since the post-condition of the read procedure specification specifies only that N

7. These two figures with minor variations are repeated in Appendix | for future reference.

. . o0
.]
DT

B PR
U TN

stack = cluster is empty, grow, read
y uses StackOISS

provides immutable stack from SSS
3 = _‘::i
empty = proc () returns (st: stack) }i:;-:
pre true i
2 post sti = null A new st A mutates @ A returns S
‘ end : s
- .
. grow = proc (s1: stack, s: set) returns (s2: stack) '.;;-l::
pre card(st) < 64 .)
post s24 = push(s1t,s) A new s2 A mutates @ A returns 2
i end o
- L ——
read = proc (t: stack) returns (s: set) 1
pre ~isNull(tt) o
post si = top(tt)t A mutates & A returns
end
A . end stack

J Figure 12. Stack Cluster Specification

the value of the set object returned be.the same as the value of the top of the input stack

2

4 object.
b

. Suppose instead we specified in read's post-condition:

-y

N .
N st = top(tt)t A pew s A mutates @ A returns ’
(] ;“:;l
i i.e., that not only the value of the set object returned be the same as the value of the top of the —~—3'
i) stack, but also that the set object be new, then the implementation of Figure 11 would not

! satisfy the specification.
»

“ Returning to the specification of Figure 12, for any predicate, P, involving the values of

j1 sets as well as the values of stacks, it would be incorrect to assume we could prove P without

[:4
¥

considering the cluster specification for sets--we must include hypotheses for all procedure

specifications that mutate set objects.

TRTTETTYY WY T

« . v - ~
Ew AT A oA el el e A A AL JrURNICIRTLRICINIE PN R S e R A

4

"A.'.:f;*
b

* ’‘ . I. L
e L-_.' e aind

StackOISS: trait
includes SetOfint,

-u ~ JRTRAT S J J XL
2 S 1’
a a-4" = .. vt L,Net

closes C over [null, push]
constrains [C] so that for ali [s: C, e: E]
top(null) exempt
top(push(s.e)) = e
pop(null) exempt
pop(push(se)) = s
isNuli(null) = true
isNull(push(s,e)) = false
isin(nuil,e) = false ‘
isin(push(s,e),e1) = if e .eq e1 then true else isin(s,e1)
size{null) = 0
size(push(s,e)) = size(s) + 1 ' T

a st
JUIEY uy 2

StackOfE with [SSS for C, set[int)_obj for E] ""i

n StackOfE: trait -]
N includes Integer S
NG introduces Ak
null: -+ C -4
push:C,E—C - 4

top:C—E]

pop:C— C R

isNull: C ~ Bool -

isin: C, E ~ Bool 22

size: C —» Int _J

o

.

.
2 a s a's’g

3 IR R

Figure 13. Traits for Stacks

Hence, our induction rule must include a hypothesis for the delete procedure

specification of sets. For example, suppose we want to prove ~isNull(tt) = [card(top(tt)t) <

64] for t of type stack. We have instances of HB and HP for empty and grow as follows:

HB true {empty} ~isNull(stt) = [card(top(sts)+) < 64] -
HP ~isNull(s1t) = [card(top(s1t)t) < 64] {grow} R
~isNull{s2¢) = [card(top(s24)¢) < 64]) "

o

We also need to add -instances of HM for the term, r = top(tt), since top(tt) denotes an

object of mutable type set and top(tt) is followed by an ¢t in P. The delete procedure - &

specification is the only mutating constructor of type set so we have a top(tt)-instance of HM

with the fresh variable, v1, substituted in for t in top(tt).

.........

...... . NEPEL IR c . L e o e e e e .
g H A . . < . D T A R S SR I S, S

. . - . - . - - - - -’ .0
PR B R L RS R
- PRI PR VP SR A S I PN LIPS SIS S ILICIN S T S - & e bl Ao L .

4 %1% Y i

* A AR

e

s

AP - gt $ Gy dnhion

NN

AR RE RN PR T A

R

-

ALV

3

......
............

HM s = top(vit) A ~isNulli(vit) = [card(top(v1t)t) < 64] {delete}
~isNull(v1d) = [card(top(v1})}) < 64]

The conclusion of this rule is true {S} Vt:stack[set] ~isNull(t) = card(top(ti)¢) < 64 for all

statements S. We show the validity of the hypotheses of this rule in Appendix Il.1.

If we do not include the hypotheses for mutating constructors of type set, we could

 possibly prove a statement that is not true. For example, suppose SetClusSpec has a

procedure that mutates its input set argument by inserting integers into it. [If called, this
procedure could possibI\} change the value of a set pushed on the stack and we could not
ensure that the size of all sets in fhe stack would be less than 64. If we had not included the
hypothesis for this add procedure, we could have proved a false statément--that the size of

the top of all stacks is less than 64.
3.6 Summary

Iﬁ this chapter we gave a precise definition of when an implementation satisfies a
specification in terms of their theories. We defined theories of specifications and
implementations by precisely defining their formal systems. We also described in detail the
derivation of a type induction principle associated with a cluster specification and gave

examples of its use.

...............................
......

................

'''''''''

e S SARL Sandl R ey S I TRt e SN SAsSE Ca SNE SR ST A
 Jat s dea et Sur gt G e N g S SRV TN TN N R R T TR TR R ST AT

T
[

.

v

.

«

>

.

K

3]

Il

[

[l

[

[

4

PP R |

4. Extended Interface Language for CLU

In this chapter we describe some extensions to the kernel interface language that make

L]
.
Ao b bt ti'aa —

it easier to read and write specifications, and some that make it easier to specify certain

)
. B
Aodod

.’

features particular to CLU. The design objectives in extending the kernel interface language

>

were: L]
1. To enhance the readability of specifications, 'f:.jff

2. To encourage a stylized form of writing specifications, —.‘i

3. To be applicable to interface languages for other programming languages.

Section 4.1 presents four simple syntactic extensions. The prime motivation for

introducing them is to enhance the readability of specifications. The meaning of each new

\ construct is given a translation into the kernel language. For each extension we also give any :
N necessary additions to the syntax and checking of specifications. Section 4.2 discusses 1:4
extensions to both the syntax and semantics of the interface language to handle three '%

features particular to CLU: own variablez;,, iterators, and parameterization. ,

)

4.1 Simple Extensions LE‘

The assertions in the pre- and post-conditions of a procedure specification tend to be

unwieldy and long. In order to streamline the appearance of each of these assertions and to o

highlight the significant ones (e.g., mutates), we introduce the following four changes to the T"“‘j}

kernel language: a default used trait, a separate mutates clquse, a default termination 1
condition value, and multiple pre- and post-conditions. :

..........................
.....

........

* FRECAROERIN S

FEROMAT LR -

....4;&.:‘.:_'.

¥

N ‘;‘aﬁ; 9! ‘,..',

A, A On

Y,
R SR TS R Y)

NI R

4

RN

4.1.1 Default Used Trait

Naming the used trait in a procedure specification becomes optional. For a free
procedure specification, since the theory of the used trait must include the theories of each of
the used traits of the cluster specifications that define the used types of the procedure
specification, we can always introduce a new trait that includes (in the Larch sense) the used

- traits associated with the used types. For bound procedure Speciﬁcations, if the name of the
used trait does not explicitly appear, we define the default used. trait to be the used trait of the

cluster specification to which the procedure specification is bound.
Syntax
ProcSpec :: = Procld = ProcHead <Link> ProcBody end
Translation
For the following free procedure specification,

Pr = proc (...) returns (...) signals (...)
pre P
postQ
end

let {Try, ..., Tr,} be the set of used traits of the used types of the input and output arguments

to Pr. The above translates to:

Pr = proc (...) returns (...) signals (...)
uses Tr
pre P
post Q
end

where Tr is the trait:

oy S NI SRT I N

0
. 17-'. el o, . e, v e
DA

3P0

e T T S e = U

................................

."
R R 1
I.'- O at I.‘! R |

Cl = clusteris ..., Pr, ...

3’ Tr: trait
T includes Try, ..., Tr,
A bound procedure specification, Pr, appearing in a cluster specification, Cl, -4
Cl = clusteris ..., Pr,
uses Tr 2
>
Pr = proc (..) returns (...) signals (...) g
preP -
postQ. e
end X
3
wee . -
" end 5
- : R
s translates to: N
£ R

AP uses Tr
e
)1 Pr = proc (...) returns (..) signals (...)
ol usesTr
- preP
postQ
end

end

4.1.2 Mutates Clause

We highlight a procedure’s potential effect of mutation of objects by lifting from the

post-condition a mutates assertion of the form mutates t1, ..., th and setting it off as a

clause on its own. If no explicit mutates clause appears, we conjoin the mutates @ 1
assertion 1o the pest-condition. : "3

R PRI
PRI P R I
[S RDI) .

.“
“q
~-
:
L.
K
..................................
- 2% et . =
- ey " Tat ot . .
....... e e . L T P .
e et e e e e - ST e « - R S Nl S . - o . - . . N . ORI R ~ . N S gy e st
(O R S S RN WY & LYY PG Y S ST G S UL L N WU SO S G WP O Y P WY S

e]‘
o "
A .91- X
-.J Syntax

b .

{ We modify the syntax to allow for a mutates clause:

ProcBody :: = Triple
Triple :: = PreC {Muts> PostC

Muts :: = mutates Term +,

K~

: j . Recall that a procedure object assertion is of the form "P{Pr}Q" where P and Q are
-

‘; assertions; hence the syntax must still allow mutates assertions to appear in post-conditions.
;:_I

: < Translation

a3 A triple of the form:

e
b,

] pre P

2 postQ

‘:"_3 where Q has no mutates assertion, translates to:

3 - preP .

:;; post Q A mutates @

p L]

<

- A triple of the form:

-~y

o

- pre P
3 mutates Term +,

g post Q

oy, 4

- where Q has no mutates assertion, translates to:

pre P

- post Q A mutates Term +,
3
4 4 '.'"':
O .
A‘Q{)
N

%

Nl oy

-'l‘
L X

4.1.3 Default Termination Condition Value

We choose narmal to be the default value for the terminates object of a procedure
specification. If no returns or signals assertion appears in a post-condition, then there is an

implicit returns assertion in that post-condition.
Translation
A procedure specification of the form:

Pr = proc (...) returns (...) signals (...)
pre P
post Q
end

where Q has neither a returns nor a signals assertion translates to:

Pr = proc (...) returns (...) signals (...)
pre P
post Q A returns
end

Example

intersect = proc (s1: set, s2: set)
pre true
mutates s2
post Vi:int [has(s24,i) = has(s1t,i) A has(s2t,i)]
end '

This specification has an implicit used trait, a separate mutates clause, and an implicit
termination condition value (i.e., normal). The reader should compare the above intersect

procedure specification with that in Section 2.2.2.4.

...........
........

- e T . o RN .t - s . . - L e T R PO Cpte e
LS VAPUY TN D5 B TR P S P Pe AP WA YOS YRS S . o fa'ala’n

R PR A A
O LN DV FEa T NPT § WP N LELIN)

L

A o
e

7l e i

c .) oo

e B A R

N - S

&

............

-93.

4.1.4 Mulliple Pre- and Post- Conditions

The behavior of a procedure can often be broken down into several cases depending on
the input state. Demarcating these individual cases enhances the readability of the
specification and also disciplines the specifier to consider all possible cases in a stylized way.

We introduce the use of multiple pre- and post-conditions.
Syntax
We modify the synta'x as follqws:
ProcBody :. = Triple +
Translation
A procedure specification, Pr, of the form:

Pr = proc (...) returns (...) signals (...)
pre P1
post Qt

- prePn
postQn
end

translates to:
Pr = proc (...) returns (...) signals (...)
preP1V ..VPn

post(P1 = Q1) A ... A (Pn==Qn)
end

We do not require that the pre-conditions cover all cases nor that they be disjoint.

EEMUIAOR R DA et G U e " S St i et M Sl A= A ArSel vt Sl aa S e e -w e e —————TYy gy

"-‘n!-:
DI S R S L

A

fiD-R133 949 A TWO- TIERED HPPROHCH TD SPECIFVING PROGRRHS(U)
- MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTER
SCIENCE J M WING JUN 83 MIT/LCS/TR-299
UNCLASSIFIED N@@814-83-K-8125 F/G 9/2

fle
flL

||| .25

FEEE

FrEEEEEE R

1.6

FEEEE

=
Ms

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

-
-

< 2, ML UL AL R e A ST S MO NP, £ A N A NONEVSD S by

LR ., . .
e o N T e e e A . PRI . e et - - . .
e e s e . P W PP, S-S . 5 h I ISR Ml AL Sy J Sl SO S

wTwrY W e TR ST Tt T TSt T et St M
ot e N 2 M S g il @ LS NI B AT S Seh AL AR AR S e A LR AR TR

-04.
Example

absVal = proc (i; int) returns (j: int)
preit >0
postjt = it
preit<0
post ji = -it
end
Multiple pre- and post-conditions are most useful in distinguishing among the various
termination conditions of a procedure and in conjunction with an implicit returns assertion.

Typically, one pre- and post-condition pair is written for each distinct termination condition.

Example

chogse = proc (s: set) returns (i: int) signals (isEm;;ty)
pre ~isEmpty(st)
post has(st.it)

pre isEmpty(s})

post signals isEmpty
end '

The reader should compare the above choose procedure specification with that in Section

22.2.2.
4.2 Handling Other CLU Features

We have so far ignored the following three features of CLU: own variables, iterators, and
parameterization. We discuss an own variable as a particular kind of "memory object” in
Section 4.2.1, and the other two féatures in the subsequent tv»;o sections. We add some
extensions to CLU computation sequences and to procedure invocations to handle memory
and iterators, and we add a semantic check for one kind of restriction on type parameters of

parameterized specifications.

WO PRSP WP S WA N)

- e, e,
‘.J'J‘.‘"

o VA

aan

LY

VLT

4.2.1 Memory Objects ' '::.'-

A procedure's behavior may depend on the values of objects in the input state not

e
explicitly bound to the formals. We call these “memory objects.” In CLU, for example, an own :
variable is an object whose value is “remembered” from invocation to invocation. in other
programming languages, a global variable is an example of another kind of memory object :3

- accessible from all procedures. .

We need to specify the behavior of a procedure with memory, which we cannot do in the
framework presented so far. Hence, we extend the syntax and semantics of procedure and

cluster specifications. We use CLU own variables to model these extensions.8

Specilying memory raises two problems. The first is that unlike for input and output
formals, we need to be able to specify the possibility of changing the bindings of memory
object identifiers. Thus far, we did not need to specify this because the effect of changing
bindings of formals does not affect the bipdings of the actuals. That is, except for owﬁ
variables, bindings from CLU program variables to objects can be changed only through CLU
assignment and not through procedure invocation. Hence, analogous to a mutates
assertion for stating a possible change to the store component of a state, we introduce a
changes assertion for stating a possible change to the environment component. One subtie
. difference between changes and mutates is that whereas only tenns denoting mutable
objects can follow the mutates keyword, identifiers for both immutable and mutable objects

can follow the changes keyword.

‘Y
8. As a matter of programming style, the use of own variables in CLU is discouraged because they add semantic -:-"
complexity. Their use can always be avoided by retaining state information in a "dummy” cluster; however, own S
variables are often used to save overhead in extra procedure calis. o

...............
.......

i Aot & mad Saitemse And Ak Sadk et da e & Ml Tl Nl N2t Y o L o i ol ol R A R A St S S

v e I ik Y S N L A i o A N A
NS I i A e AL ML e L MR A N LN ST AR g R

:;, s At
o e6.
:'::
! The second problem deals with keeping track of whether a memory object has been
3 initialized. In CLU, initialization of a procedure's memory occurs at (possibly) the procedure’s
first invocation. It may not occur if the initialization code within the procedure is not executed
- (e.g., because of a conditional), in which case memory is left uninitialized. Hence, we
o associate with each memory object, x, an implicit memory boolean object that is initially false
and denoted by the identifier x$init. If x$init is false, x is uninitialized; if true, x is initialized.
,_\'
iy
T Syntax
- We modify the syntax as follows:
ClusBody :: = <Rmbr> ProcSpec +
ProcBody :: = <Rmbr> Quad +
Rmbr :: = remembers RemDec! +
o RemDecl :: = Objld: TypeSpec
o Quad :: = PreC <Chgs> <Muts> PostC
- Chgs :: = changes Objid +,
" The remembers clause simply allows the user to introduce object identifiers for memory. We
3
1—'; emphasize that the declaration of memory objects in a specification does not imply the use of
v memory (e.g., own variables). in a corresponding implementation. As with a mutates
i assertion, we make a changes assertion a separate clause in the body of a procedure
':'fj specification.
»
. We add to the syntax of the assertion language,
! C
; Assn :: = ...| changes Objid +,
<4

with truth value:

Tlchanges x1, ..., xn)(o, ¢', A, p) =
Vy([~ly = x1) A .. A ~(y = xn) = (0.e(y) = o' .e(y))]

A2t S AN T o i

§ 2800

"."d‘..

Brsd)

—

Checking

We check that

1. Object identifiers appearing in a remembers clause of a
procedure specification, Pr, are disjoint from Pr's input and output
formals.

2. Object identifiers appearing in a remembers clause of a cluster
specification, Cl, are disjoint from the sets of input formals, output
formals, and memory object identifiers of all of Cl's procedure
specifications.

3. Only memory object identifiers can appear after the changes
keyword.

Meaning

We treat memory objects as implicit input and output arguments to a procedure. We
modify the structure of an operation (a relation-algebra pair) so that the domain and range of
the environment components of the inpyt and output states of the relation includes memory
(compare with Section 2.2.2.1) and their corresponding "init" objects. Let MemId be the set
{x | x is a memory object identifier} U {x$init | x is a memory object identifier}, and let
MemObj be the set of objects denoted by identifiers in Memld.

1. dom(R) = {<D, e, 3> | dom(e) = set of input formals U Memid A
ran(e) = set of input arguments U MemObj}

2. ran(R) = {<D, e, 8> | dom(e) = set of output formals U Memld A
ran(e) = set of output arguments U MemOb;}

The first equation states that the environment of each input state includes the bindings from

memory object identifiers to memory objects and the bindings for the corresponding "init"

(X

objects as well as the set of bindings from input formals (object identifiers) to input arguments

(objects). The second equation states a similar property for the environment of each output

Y

state.

—a—a

RN XN N

.................

e
i
We add the following two properties to the initial state of a computation, o, for all
memory objects, x, ____
1. {x, x8init} C 65.0 gy
2. 0.8(0g.e(x$init)) = FALSE S
The first property states that all memory objects and their associated boolean "init" object are :‘j;
in the set of existing objects of the initial state. The second property states that the “init" :
° N :4
objects are initialized to the boolean value false. Notice that since x$init denotes an f-_Z-'_:j
i
immutable boolean object, it makes sense to change x$init, but not to mutate it. £
Example 1
increment = proc () returns (j: int) oo |
uses Integer oy
remembers ctr: int ;
pre ctr8initt = false
changes ctr, ctr$init
postctrd = 1 Aji = 1 A ctr$initd = true

pre ctr$initt = true

changes ctr

postctrd = ctrt + 1A ji = ctrd
end :

The first time the increment procedure is called, the value of the integer object, ctr, is

initialized to 1 and returned. Subsequent invocations will return successive integers.
4.2.2 Iterators

An iterator computes a sequence of items of objects, one item at a time, where an item is
a set of zero or more objects. We amend our model of a computation sequence to include
iterator invocations, which we treat similarly to procedure invocations. The only way an
iterator can be invoked is by use of a for statement. The execution of the for statement

includes one or more invocations of the iterator and is terminated when the iterator

terminates. _,:_::‘

....................
""""""""""""""""""""""""""""""
Y

KRR

T
L2 W

PPN HRERIERY, e o z?m

NN

e

LAl

. RARARA

elements = iter (a: arrayfint]) yields (int)

next: int : = array[int]$low(a) %1
while true do % 2
yield (a[next]) %3
next:= next + 1 %4
end %5
except when bounds: return %6
end %7

end elements

‘ flip_sign = proc (a: array[int]) returns (array{int])

b:= array[int]$create(array[int]$low(a))
for i: int in elements(a) do

addh(b, -i)

end
return (b)

end Hip_sign

Figure 14. Elements Iterator, Implementation and Use

An example of an elements iterator and its use are given in Figure 14. Elements
computes a sequence of integers. The flip_sign procedure creates a new array with the same
low bound as a, the input array, and returns an array with the signs of all the integers of a
reversed. The first time elements is invoked, the integer at the low bound of a is yielded
(statement 3). A subsequent invocation of elements yields the next integer of a. This process
continues until a bounds exception is raised, in which case elements terminates (s;atement

6).

We need to distinguish between two kinds of termination for iterators. The first is when
an iterator yields an item follc;w.ing an invocation from a for statement, e.g. statement 3 of
elements. An alternate view of this situation is that the iterator does not "terminate,"' butis
justin a "suspended” state. The additional piece of semantics we need for the specification
of an iterator is a special termination condition. We reserve the identifier, suspend €

TermCond, for the value of this termination condition, and we add a corresponding

suspends assertion to the assertion language. The second kind of termination is when the

:f-fﬂ

wtete s
P ST S W

T I B
RO IS D g4

Y e R e T e A eV ata Satatetat . K R R)
-

iterator returns, causing the for statement to terminate, e.q., statement 6 of elements. As with

procedure specifications, we use the termination condition normal for this kind of —1

[
termination. %
Syntax

The syntax for an iterator specification is as follows:

IterSpec :: = lterld = IterHead {Link> lterBody end
lterHead :: = iter Args <Yields> <Sigs>

iterBody :: = <Rmbr> Quad +

Yields :: = yields Args

As with a Rets clause in procedure specifications, an object identifier in a Yields clause is an

output formal, the object it denotes is an output argument.

Recall that we list in the header of a cluster specification the identifiers of procedure
specifications that are specified in the body. We also include iterator specifications in a

cluster specification. We modify the syntax as follows:

ClusSpec ::= Typeld = cluster is Routid +, ClusLink ClusBody end
ClusBody :: = RoutSpec +

Routld :: = Procid | lterld

RoutSpec :: = ProcSpec | terSpec

A routine specification is either a procedure or iterator specification. Bound and free routine

specifications are defined in a similar way to bound and free procedure speci‘ﬁcations.
We add to the syntax of the assertion language:
Assn = ... | suspends
with truth value:

T[suspends](c, 0’, A, p) = o’.s(terminates) = suspend

...............
........

Checking

The syntax-checking of the body of an iterator specification is as defined for procedure
specifications. A suspends assertion can appear in only post-conditions. We also allow the

use of all syntactic amenities introduced in Section 4.1 for iterator specifications.
Translation
An iterator specification of the form:

It = iter (x1: St1, ..., xm: Sm) yields (y1: T1, ..., yn: Tn) signals (e1, ..., ep)
uses Tr
pre P
post Q
end

translates to:

It = proc (x1: S1, ..., xm: Sm) signals (suspend (y1: T1, ..., yn: Tn), el, ..., ep)
uses Tr

preP

postQ "]

Example

i
J

D E
. ' (A T
A .

Ju b e l_“.- P

.
PR 2]

¢
i)

.
L)

tokens = iter (s: stream) yields (t: token)
uses StreamTrait
pre ~isEmpty(st)

mutates s
post t¢ = head(st) A si = rest(st) A suspends
pre isEmpty(st) R
post returns ~—
end .
Each time the iterator is invoked with a nonempty input stream object, tokens mutates the ~
stream and yields a token from.it. The specification does not forbid the possibility that s be _4

changed in the body of a for statement. Recall that a returns assertion in the second

N

ilac s

O
L8 L

AS

[N 1 AN .is.‘..ls)

AP

4 A DR
EAR LA ANNA
Wt TN,

%' Y3

a,
X
c; \

X
C e

v T Nl W S “Thdi-t IR A R T
il MM ok SR aic A It ket LA L AN L LA KR LR A S

-102 -

post-condition is equivalent to the assertion terminates! = normal.

Memory Used With lterators

The specification of memory objects in iterator specifications requires making additions
to our model of CLU computations. Because we are modeling each individual invocation of
an iterator, and not each for statement that invokes an iterator, we need to be careful about
specifying the effect of an iterator on its memory. In particular, initialization of memory for an
iterator is done at the first invocation of that iterator in the first for statement of the

computation that invokes it. Subsequent for statements that invoke it do not "reinitialize”

memory.

We distinguish a use from an invocation of an iterator, Iter. Each for statement that
invokes lter is a use of it. Each iteration within a for statement that uses Iter is an invocation

of it. For example, in Figure 14, flip_sign uses elements once but invokes it (possibly) many

times.
Meaning

Let first denote a special memory object that enables us to distinguish the first
invocation of an iterator from subsequent invocations in a for statement. We view first as a
"global” or "ghost” variable accessible in all states in a computation. At the first invocation
of each use of an iterator, first is true; otherwise, it is faise. Therefore, at the first invocation
of an iterator of each of its uses, first is true; at each intermediate invocation of each use,

first is false. Immediately before each use first is true.

To achieve the desired effect of first being true before each use of an iterator, we
associate an implicit assignment statement "first : = true" before the (syntactic) appearance
of each for statement in the program text. This ensures that if a statement, S, in a

computation is the first invocation of an iterator the value of first is true in the state preceding

* W TATST T 4T
S

..

o 0 k4 - « . . B
.] .

vy s la e e

P

3w

v v
e
PP

Y e e

A AL A

.

(g G

.

MRS R, 1

3

LSS AR Lkt

[

M AL AV Ve

VO AAAAALA N OO

S;. For a computation sequence,
0081 04, s Oy Sy 0y
we have:

1. "nteﬂo-o
2. Foralli 2 1, if S;is a first invocation of an iterator, o;.,.5(0; y.e(first)) = TRUE;
otherwise, 0, 4.5(0; q.e(first)) = FALSE;

We extend the domain and range of the relations of all iterators to include first as we

did for other memory objects.
Syntax

Since we often need to check whether or not we are at the first invocation of an iterator,

we add to the assertion language:
Assn = ... | firstinv
with truth value
Tlfirstinv](o. o', A,) = o0.8(c.e(first)) = TRUE

We do not provide an assertion to check whether we are at the first use of an iterator for

the same reason we do not provide an assertion to check whether we are at the first N ;:
._:_-,‘

invocation of a procedure. The only reason we might (incorrectly) think we would need the t:S
ability to make these distinctions is because of the initialization ot memory. Recall, however, ’.\.-.i:
oY

that initialization of memory objects is not necessarily done at the first use of an iterator or at T
the first invocation of a procedure. It is necessary only to distinguish between whether ‘
memory has been initialized, which we can do using the "init" boolean object associated with o
~ k=

each memory object. . :_::::
T

‘o-‘-n*

e -]

g e e s o e S T e e ﬁj

i i Jiane aihtbe S il T e St et st Shre JRiec e Jiue. Jinpe i die e Jant S e, Sn
-~ .y it . LA » - - - L M W e a e v e ® W s m e _w e WY W
y - asaei " 6, Yottt o e o T s Rt - AL L M A A A

- -104 -
|
5 We do provide two implicit assertions with iterator specifications. First, note that after

the first invocation of any use of an iterator, the final value of first should be false, and after
subsequent invocations, its value can remain false. Hence, we implicitly append the assertion

firsti = false to each post-condition of a quadruple of an iterator specification.

A RN R R

: Second, since one of the possible effects of an iterator invocation is to change the
-, binding of first, we implicitly append first to the list of object identifiers of each changes
clause in each quadruple of an iterator specification. If a changes clause does not explicitly

appear, we implicitly include one in each quadruple.

1
‘ Translation
. A body of the form:
]
¥ pre P
: mutates M
post Q
j where Q has no changes assertion, translates to:
;
pre P
changes first
"y mutates M
y post Q A firstd = false
%
A body of the form:
pre P
. changes C
: mutates M
» post Q
- transiates to:

................

4
P

]

pre P
changes C, first
H mutates M
1‘ post Q A firsté = false

o
o e

LI}
1 A
a_m.a_a a.d

A'I< * .

L)
PP O

Example

o 4
PO

LKLY LR o

One use of memory with iterators is to specify that the initial value of an argument to the

9
-‘ . iterator is the same as the final value from the previous invocation.
il
W elements = iter (s: set) yields (e: elem)
n uses SetOfElem
- remembers myset: set
pre ~isEmpty(st) A [firstinv V st = mysett]
! mutates myset, s
- post has(st,ed) A s = remove(st,ed) A myseté = s¢ A suspends
3 pre isEmpty(st) A [firstinv V st = mysett]
¥ post returns
o end '
"; In the above elements specification, myset is a set object used to remember the value of
".t
_.: the set object from invocation to invocation. The st = mysett conjunct that appears in both
e pre-conditions requires that the initial value of the set object at each invocation be the same
>
- } as the "remembered” value from the previous invocation. The first triple handles the cases
N o
*j when the set argument is not empty and either (1) it is the first invocation of elements, or (2) it
b1
v is not the first invocation and the initial value of s is the same as the remembered value. The
: ‘\:f second triple handles the cases when s is either initially empty, i.e., at its first use, or becomes
! C .
“I empty from the previous invocation of any of its uses.
P
f 4.2.3 Parameterized Specifications
JJ)
[4 "
-~ 5
3 Procedures, iterators, and clusters may all be parameterized in two ways: over certain .
- %
g types of objects and over type identifiers. We call a parameter of the first kind an object o !

L)
LA AP,

parameter; the second, a type parameter. An integer object parameter, n, for example, can be

.,

'..
o
'~
(&

o<

" g -t - Pl Calit-pi . W NEMSEL N . - «* .
0 < A A A N A A A A S e R AT TS
-

-
T:\ -106 - =
i Td -._.:
JRL]
?:.‘; used in a procedure that computes the average of a list of numbers, where n is the length of
. . .
L3 the list. Type parameters are far more common in CLU than object parameters. A list cluster, e
{ (3
'é; for example, can be parameterized over a type parameter, T, to stand for a set of clusters, "
>
;‘;_';_- each defining a list{A] type for some actual type identifier, A. Type parameters can also have 1
"5'5 -
W restrictions. In Section 4.2.3.1 we discuss parameterized specifications without restrictions; ..:
*
N in Section 4.2.3.2 we describe the kinds of restrictions that we can impose on type
e 1
a2 1
-E\f parameters. ;
’ 4.2.3.1 Parameterization Without Restrictions j
\ﬁ‘ _.:
': Syntax -]
2 E
We modify the syntax as follows:
&
‘_ X ProcHead :: = proc <Parms> Args <Rets> {Sigs> Z:‘_'
ey lterHead :: = iter <Parms> Args <Yields> {Sigs> o
ClusSpec :: = Typeld = cluster <Parms> is Routld + , ClusLink ClusBody end ;;]
0 ClusMap ::= provides MutFlag Typeld from Sortld {'.:
R Parms :: = [ParmDecl! +) N
X ParmDecl :: = Objld: TypeSpec | Idn: type n
. Where :: = where Restriction + , v
" Object parameters are of the form Objid: TypeSpec; type parameters are of the form ldn: "
N . S . "]
od type. Parameters of a procedure or iterator specification should not be confused with the N

input and output formals (object identifiers) of the specification, nor with objects bound to the

formals.

"
‘e
'y Y
L% Y
N ,.;
. L
.4
3
.."
3
.

ST R
.l-’;.'.."'

Cag it “te - 2023 s By At Rt S O

.......

Checking

1. Object parameters are of only the following types: null, bool, int,
real, char, and string.

2. The body of a parameterized specification sort checks. For a
term, 1, denoting an object of type T, where T is a type parameter,
the sort of r is T_obj. The sort of the terms, 7t and 74, is TtoS(T). As
usual, the names of these sorts must appear in the used trait.

Meaning

A model of a parameterized procedure specification is a set of operations
(relation-algebra pairs). Each operation in the set is a model of an instantiated specification,

obtained by textually substituting a list of actual parameters, A, for the list of (object and type)

4

Lt e e T
. L. R
LI Cet .o e
o~ Alaia et

bk b

f;, parameters, F, of the parameterized procedure specification. For the following parameterized
"

:'.‘ procedure specification,

X

Pr = proc [F] (InList) returns (Outyist) signals (SigList)

) uses Tr

- pre P
g postQ
: end

an instantiated specification is of the form:

Pr{A] = proc (InList [A/F]) returns (OutList [A/F])
signals (SigList [A/F])
uses Tr'
pre P [A_obj/F_obj, TtoS(A)/TtoS(F)]
post Q [A_obj/F_obj, TtoS(A)/TtoS(F)]
end

where Tr' is the trait,

Tr': trait
includes Tr with [A_obj for F_obj, TtoS(A) for TtoS(F))

We adopt the convention of'naming each of these instantiations "Pr[A]." We do the

renamings in the pre- and post-conditions because sort identifiers can appear in quantified

e e Loa b h A P U WP S S Sy & P VT S ST B

4‘. : -"'-" T ll "' - . ’
. -AL. [

P
¢ ’5 I
DY RPN
s ‘ I
PPy PSPy

wr i e el hd
ety W i A PP et yol ot Eel e AR AT S Al Ml i A R DA AR LI AT O CH AP AN ST AN

' -108 -
4
expressions in the assertions. The first list of renamings handles obj sort identifiers; the
o second, value sort identifiers.
{
A model of a parameterized cluster specification is a set of abstract data types (recall
‘~ that an abstract data type is a pair consisting of a set of objects and a set of operations). Each
. abstract data type is a model of an instantiated cluster specification. For the parameterized
cluster specification (MutFlag is either the keyword mutable or immutable), %
% |)
= C = cluster [F] is RoutidList "j
- uses Tr T
< provides MutFlag C from S ' A
& RoutSpecs -
" end
each instantiation is of the form:
<
Y C[A] = cluster is RoutidList
:‘ uses Tr'
provides MutFiag C[A] from S
o RoutSpecs [A/F, A_obj/F_obj, TtoS(A)/TtoS(F)]
% end
where again Tr is the trait,
. Tr': trait
. includes Tr with [A_obj for F_obj, TtoS(A) for TtoS(F)]
$, The first list of renamings for RoutSpecs (A/F) is used to rename type identifiers in the
headers; the second and third lists are used to rename the sort identifiers in the pre- and
3
3:: post-conditions of each of the routine specifications. We adopt the convention of naming
:;: each of these cluster specifications "C[A]." Notice that each type, C[A], maps to the same '.:::.
» . .
. sort identifier, S. e
3]
, =
-
X
-.; .
. .y
- 4

o ".'.L,L.&> ’

PR

—

-y >
MERY R R Y
» (]

.
Tatat e

i

5 “'1"""- A

R

fAR
a & .

»

-

' oA .)..: e K

l‘l“

Ty &

»
-

(7T

(] -

S et

Toatasen go o ¥

DRARS
AR I .y

% .‘

'

Nreir A al it a A S ek w Ot S At A RS R EA SRS A SO

Example
The following is a parameterized set cluster specification:

set = cluster[T: type]is ..., insert, ...
uses SetOfT
provides mutable set from ST

;;sett = proc (s: set[T],t: T)

pre true
mutates s
post si = add(st,t)
end
end

where the SetOfT trait is given below using the SetOfE trait of previous chapters.

SetOfT: trait
includes SetOfE with [ST for C, T_obj for E]

An instantiation of the above parameterized cluster specification is as follows, where the

actual type identifier is int, and SetOfT’ is the SetOfT trait with int_obj substituted for T_obj.

sef[int] = clusteris ..., insert, ...
uses SetOfT’
provides mutable set[int] from ST

msert = proc (s: set[int], t: int)

pre true
mutates s
post si = add(st.t)
end :
end

. N L . e e RN
..... T e e R N R
- - - . - - hd -~ . ~ ~ = M -

W WO G W S, SR, W S Tt . Wl N AT fTals " atatatl'w

I, WY T W e TN T g e VT T e T e e Ty R T T ey
n - - il e eI ORI T e e TR .. e B
h - o, Ve W - wtar sty e 1

4.2.3.2 Parameterization With Restrictions

We often find it useful to place restrictions on type parameters. These restrictions play a
similar role to that of the assumptions of a trait in Larch. We write these restrictions in a

Where clause. We modify the syntax:

oy Sy) A

Syntax

AT

ProcHead :: = proc {Parms> Args <Rets> <Sigs> {<Where>
iterHead :: = iter {Parms> Args (Yields> <Sigs> {Where> -
ClusSpec :: = Typeld = cluster <Parms> is Routid +, »

<Where> ClusLink ClusBody end

Where :: = where Restriction +, ~]

Restriction :: = BasicRestriction | Typeld in TypeSet

BasicRestriction :: = Typeld immutable | Typeld has RoutHead e
| Typeld has RoutSpec e
. TypeSet :: = {Typeld | BasicRestriction + .}

RoutHead :: = ProcHead | iterHead

The where clause is removed upon an instantiation of a parameterized specification. The *|"
symbol? in the TypeSet production should not be confused with the "|" symbol used as an

alternative separator in the grammar.

Checking

We check that the actuals substituted for type parameters satisfy the restrictions in the

where clause. There are four kinds of restrictions on a type parameter. Three are “basic"

.,
N restrictions, two of which require only syntax checks; the third requires a semantic check.
The fourth kind of restriction is built up from these basic restrictions and hence, may also
. require semantic checks. In the following discussion on these four restrictions, let T be a type
5 parameter, A be a type, and Cl,, be the cluster specification defining A.
2 9. Ris & reserved symbol in CLU.

P I A R N A B LR A AR Rt e et S o D B et BN St s oariian AUt ibiag v M A Aot

The first kind of restriction is of the form, T immutable. To check that A satisfies this

et e
PP
PR .

KN s e e f

e o ..

PRSI

restriction, we check that the type flag of Cl, is immutable. Itis not a kind of restriction that

ol

»
. ™
A A b dm s Ma.

can be placed on type parameters in CLU, but we include it in the specification language

because proofs (e.g., those that use the type induction principle of A) may depend on a type

P

»

N L RN
3 ; el
dlrsnb

14

being immutable.

S,
Yy

(]
)

The second kind of restriction is of the form, T has R = Sig, where R is in Rout/d and

»
el
n
4

et T I I
st e

y v

A Ab

X
. '-.j

’
ey

Sig is in RoutHead. To check that A satisfies this restriction, we check that Cl, contains a

routine named R with the signature Sig.

P B

I B

The third kind of restriction, stricter than the second, is of the form, T has R, where R is T

.
A AOE)
) « e’

i

in RoutSpec (R includes a signature and a body). To check that A satisfies this restriction, we
check that the theory of R is a subset of the theory of A. This restriction is not present in CLU
because it involves semantic checking. The second kind of restriction is a special case of the

third where the pre- and post-conditions are both identically true.

The fourth kind of restriction is included for completeness since it is allowed, but rarely
used, in CLU. ltis of the form, T in {X| X has r1, ..., m}, where r1, ..., m are restrictions of the
three forms just described. To check that A satisfies this restriction, we check that A satisfies

all the restrictions, r1, ..., m.

:::::::

AT e A S bt A AL S Lo e aAE R A AT Mt A A AR A AR RS AR A A R A A
R
N -112-
.-;
Examples
{ set = cluster[T]is ...
where T has
- equal = proc (11, t2: T) returns (b: bool)
i pre true
s postbl = {t1 = 12)
: end
:,,:.
Xy uses SetOfT
Z provides mutable set from ST
2. :
e end
o The implementations that satisfy this specification would differ from those that would a
)
': specification in which the post-condition of equal was replaced by
A
. postbi = (t1t = t21)
%
3% The difference is that the first specifies that the elements to the equal procedure be the same
' objects whereas the second specifies only that the elements have the same value. There
' would be fewer implementations satisfying each of these two specifications than those
v
-4 satisfying a specification in which we do not specify the behavior of equal at all.
‘:
‘J
s
%4
o

o ! " .:.:'j'.l)'.'.A ':a' ‘ 273 }..:';':- s . , My ‘a"l‘:‘i‘.‘"

B R e) S I e e A e N R A A A A AR AL A A I AR S N R ARG RIS M DGR ottt RN M N T

13- i
5. Evaluating Specifications j
In the incremental development of a large specification, providing useful feedback to a h_j

% specifier can increase his confidence that his specification is on the right track. For example,
a specifier may wish to know if his specification is in some sense "correct,” i.e., that it

captures his intuition of what he is trying to specify, or that it is in some sense "good," i.e., —.—‘3

" that it satisfies a set of desired objective and possibly subjective properties.

We distinguish a specification from what it specifies, i.e., from the specificand set of a

specification [Guttag82]. Providing feedback to a specifier may help him better understand
% both the specification and its specificand set, and consequently may cause him to modify or
- improve the specification. Depending on how informative the feedback is, it may even point to
g a place in the specification where an improvement can be made.
: .
L3 One way of providing such feedback is to provide the specifier ways of evaluating a
specification. In this chapter, we consider two forms of evaluation: checking specifications
for various properties, and comparing specifications with respect to various qualities. For
example, we might like to check if a specification is consistent or compare the strength of two
specifications.
Checking is performed on a single specification; in Section 5.1 we discuss checking for
) the following four properties: consistency, full-coverage, determinism, and protection.
4 Comparing is performed on two specifications; in Section 5.2 we discuss comparing two

specifications with respect to the quality strength. In Section 5.3, we discuss checking a
specification for a property, essentiality, with respect to a theory. All definitions are in terms

of theories.

We do not give an extensive enumeration of properties and qualities, but just a sample to
suggest the usefulness of evaluating specifications and to illustrate our approach. We leave

for future work the tasks of identifying and defining additional properties and qualities,

v

“¢ tma

. P 0.5, %

TR

L us

-3 Sub- Rt Rl

N At e 4t b

o

il A o g Bedmust

analyzing the tradeoffs among them, and finding other methods of evaluating specifications.

5.1 Properties of Specifications

Following our specification approach, we put together pieces of existing specifications
to create a larger specification targeted for a particular problem or problem domain. As the
specification grows incrementally, we might invoke a "checker" to test for a property of the
specification. In the process of -tuning a specification, we would probably invoke such a
checker many times. If a specification does not have a property, we can choose either to
modity the specification so that it does, or accept the fact that it does not--a checker is used
only to provide information, not to inhibit the progress of writing the specification. Checking
for a property might aiso necessitate a clarification in the client's problem statement. For
example, discovering that a specification is inconsistent may point to a contradiction in the
problem statement--the specification merely reflected the mistake. The signatures of the

properties we will discuss are shown in Figure 15.

. Two properties of a specification that might be of interest are consistency and
completeness. The ability to check for consistency is probably of more use than the ability to

check for completeness. Knowing a specification is inconsistent informs the specifier that no

consistent: trait — boolean
consistent: procedure specification — boolean
consistent: cluster specification — boolean

fully-covering: procedure specification — boolean
fully-covering: cluster specification — boolean

deterministic: procedure specification = boolean
deterministic: cluster specification — boolean

protective: procedure specification — boolean
protective: cluster specification — boolean

Figure 15. Signatures of Properties

..............
........

a¥ e

RS

N e Wit
RN A
A
PN,

* -."‘.._‘-}-. =
G :. ".

Lo and

"

T
:¥
]

'rJl

- s P T
. . s .
o ',',',',‘-“x
' . ps -
. .J,"K,A, ;

(SN N

.......................

L o e gl il el AT A cout - A s oS oA St A e i ol aa A M SRR A AL SN SNE N S NS AR NN E R L AL R ..:I
4

-

<

implementation could be written to satisfy the specification. We deline consistency in Section

5.1.1. e
4

We do not define completeness because we expect most specifications to be incomplete
in the logical sense'® as well as in the practical sense--in the development of a large
specification, we may have no intention of ever "finishing" it. We usually want to know when

- we have said "enough” as opposed to "everything.” In Sections 5.1.2-5.1.4 we define three

properties: full-coverage, determinism, and protection. Each gets at a different notion of

sufficiency as a different kind of approximation to completeness.

For each property, we first motivate it, then define it, and then discuss specifications

with that property. When we define each property we also motivate our definition.
5.1.1 Consistency
5.1.1.1 Definition

The usual notion of consistency of a formal system refers to the inability to derive an
explicit contradiction. For a given first-order predicate logic formal system, a set of formulae,
@. is inconsistent if and only if for some A, both Aand ~A are theorems in ¢. Equivalently, ¢
is inconsistent it and only if false is in ¢. We will use the second definition to build the notion

of an inconsistent specification.

Def: A trait, Tr, is inconsistent if and only if the formula (true = false) or the formula false is in
Th(Tr). ‘

Def: A procedure specification. Pr, is inconsistent if and only if (1) there exists a satisfiable
formula P such that the formula P{Pr}false is in Th(Pr), or (2) Pr's used trait is inconsistent.

Def: A cluster specification, Cl, is inconsistent if and only if (1) true{S}false is in Th(Cl), or (2)
for any of Cl's procedure specifications, Pr, there exists a satisfiable formula P such that the
formula P{Pr}false is in Th(Cl), where P is satisfiable, or (3) Cl's used trait is inconsistent.

10. Qiven a formal system, its theory i3 complete if for all formulae, F, we can determine whether F or ~F is in the

.
LR T e e O L I IR
et BT e T T T T NN S e AT PR TS [P U A S AR S
I I R SR S TS R B R O S PP U WA IR ST TP T TP U UL, P . Y Y .

CO) e a .
Ll AT R «
eyt T g


~~~~~~~~~~~

Def: A specification is consistent if and only if it is not inconsistent. .

IDARAYOALY | L
L.

Checking for consistency is in general undecidable since first-order logic is
undecidable. Under certain conditions, however, we may be able to show that a specification
is consistent or inconsistent. For example, for equational theories, on which trait theories are
based, a semi-decision procedure exists that checks for inconsistency by generating the
- contradiction true = false (and checks for consistency by generating true) for some sets of

equations when treated as sets of rewrite rules [Knuth69, Musser77).

N From the way we construct procedure and cluster specifications, it would be useful to

know under what conditions putting smaller consistent pieces together results in a

specification that is guaranteed to be consistent, or, on the other hand, to know when

inconsistencies may be introduced.

A procedure or cluster specification cannot add formulae that would be inconsistént
with a consistent used trait. The theory of a procedure specification is a conservative
extension of the theory of its used trait; it adds formulae only of the form P{Pr}Q, and none of
the form t1 = 12 or Vx:S P(x). Therefore, the procedure specification cannot add the formula

true = false or false, either of which would be inconsistent with a consistent trait.

”
:" To check a procedure specification for consistency, if the used trait is consistent, we

need to check only that no formula P{Pr}false, where P is a satisfiable predicate, is in Th(Pr).

Notice also we define inconsistency of a procedure specification in terms of Th(Pr) and not
- Th(Pr+) so as not to include the theory of the defined type when Pr is a bound procedure
specification. Since the theory of a cluster specification is defined in terms of the theories of -—4

its procedure specifications, we avoid a circular definition. ' e

To check a cluster specification for consistency, if the used trait is consistent, we need

to check that each bound procedure specification is consistent and that their union is

. Coege e s
! .|' e !
. ) LN

A
oA
3, consistent (both cases covered by clause 2 of the definition of an inconsistent cluster
Ca
o

R N T VRSP R i L
s T e T e e e T e T e e T S
T S M T, I T W WU TP W AP W W Y T P WP Y W PGS W WP |

LTI PPN

o .




.........

-17-

specification). and that the addition of the type induction principle for the defined type does
not introduce any inconsistencies (covered by clause 1). This matches our intuition since
even if the theories of the procedure specifications are individually consistent, their union may

not be; moreover, an additional rule of inference may be used to introduce an inconsistency.
5.1.1.2 Consistent Specifications

Consistency is a desirable property of all specifications. Inconsistent specifications are

more common than one might imagine, as the following example illustrates.

intersect = proc (s1, s2: set) returns (s3: set)
uses SetOfint
pre true
post Vi:int [has(s34,i) = has(s11,i) A has(s2t,i)]
end

Suppose intersect is a free procedure specification. We show that Th(intersect) is
inconsistent, given the set cluster specification is SetClusSpec. It is inconsistent because
there is no set object that can be returned as the intersection of disjoint input arguments.
Notice that step 5 uses the theorem, true {intersect} Vs:set card(st) > 0, from Th(set)

derivable from the type inductidn principle for sets.

1. Letsit = add(empty,1) A s2t = add(empty,2).
2. true {intersect} Vi [has(s34,i) = has(s11,i) A has(s2t,i)]
--axiom of Th(intersect)
3. true {intersect)} Vi [has(s34,i) = has(add(empty,1),i) A has(add(empty,2),i)]
--simplified invocation rule with the substitution as indicated
4. true {intersect) card(s34) = 0
--Vx:SI [Vi:Int has(x,)) = false = card(x) = 0] € Th{SetOfint)
5. true {intersect) Vs:set card(s$) > 0
--Induction rule from Th(set)
6. true {intersect) V:s card(si) > 0 A card(s3¢) = 0
--conjunction of two post-conditions (Hoare proof rule)
7. true {intersect} false
--Lets = 83.

............................
.......................................
............

...........
----------------

, .
. '
+ SO,
. A AL
T e
o 4
PR .

'

)
St h

CeETy g




Notice that if intersect were bound, it would be consistent because the theorem of step 5 Bt

would no longer hold. Th(set) would be different (e.g., we could construct an empty set ‘
object) because it would include Th(intersect) and so set's type induction principle would %

have a weaker form. e
5.1.2 Full-Coverage

In this section and the next two, we will define three properties that are related to the
"completeness” property of a specification. These three represent examples of the kinds of

approximations to completeness a specifier might want to check of his specification.

A common error in programming is forgetting to cover all the cases. As a result, a

program may behave in an erroneous or surprising manner on some inputs. We would like to
be able to prevent the occurrence of these errors before coding begins, i.e., in the design
phase, by making sure our specification covers all the cases that can arise. For example, the

following specification,

ORI I e S

search = proc (a: array, e: elem) returns (index: int)
uses ArrayOfElem
pre isSorted(at)
post et = fetch(at, index+)
end

is not fully-covering because the case for the unsorted array is not covered. A checker for
full-coverage invoked on search might prompt us to add another pre/post pair to handle the

unsorted array.

caieaagacie

Unlike consistency, however, full-coverage is not always desired. We may intentionally
want to leave some cases unspecified because we know they will never arise or because we
want to let the programmer decide how to handle them. In the example above, we may
decide not to add another pre/post pair if we expect search to be invoked always with a
sorted array. '




B L R R R RS A A N AN S E AL T ML A S S A e At Tt T D O I O R S A P

-119.

5.1.2.1 Definition

We want the definition of full-coverage to capture the notion that the behavior of a

t

4

procedure is specified for all "reachable” input states. In terms of models, a procedure is ]
<4

fully-covering if the domain of the input-output relation of any operation modeling a ]
procedure is the entire set of states, Z(Va/). One way of capturing the notion of full-coverage 1

- of a procedure specification in terms of theories is that if the pre-condition of the procedure
specification is equivalent to true, then the relation is defined for all input states, and so the
procedure specification is fully-covering. That is,

Def: A procedure specification, Pr, is fully-covering if and only if true {Pr} Pr.post is in

o0 [PEASSANN W WA RPN,

Th(Pr+).

Del: A cluster specification is fully-covering if and only if all its procedure specifications are

fully-covering.

5.1.2.2 Fully-Covering Specifications : , J

-

A specification may not appear to be fully-covering when it is. Consider SetClusSpec, in

which each of its procedure specifications, in particular, delete, is fully-covering. Although y

the disjunction’! of delete’s pre-conditions is not identically true, it is provably true from the -

Th(set), which is contained in Th(delete +). The proof that delete is fully-covering would use ﬁ

the theorem, true {S} Vx:set card(x{) > 0, which comes from the type induction principle for \

SetClusSpec.
In practice, writing a procedure specification that is fully-covering is similar to

generating sufficient test cases for a program [Goodenough75, McMullin82]. A helpful -

guideline to follow is for the specifier to use in a stylized manner, multiple ~

pre/changes/mutates/post quadruples in conjunction with signals assertions (for multiple _:

. 11. Recal! from Chapter 4 that the appearance of multiple pre-conditions translates to the disjunction of all the
) pre-conditions.




7 - ’ e

L A

-

o o
iR ES RS

, Lol A 7
":"- -va? -4 alifa 2

i § LRIk YR

...............................

termination conditions) to cover all the cases. If one pre-condition places a restriction on the
input state, then other pre-conditions should cover the cases for which the restriction does
not hold. For each separate case, there is typically a different termination condition. As a

result, the behavior of the procedure is "fully” specified.
5.1.3 Determinism

In specifying a program, it is not always easy to separate decisions that should be made
at design time from those that should be delayed to implementation time. A specification
should impose as few constraints as possible to avoid unnecessa , overspecifying the
behavior of the program. An intentional lack of constraint can be regarded as an intentional

incompleteness.

Nondeterminism gets at the notion of introducing an intentional incompleteness in a
specification. It says that the values of input and output objects of a procedure specification
are not predictable in the final state. A nondeterministic specification allows the implementor
the freedom to choose the most convenient (e.g., efficient to implement) values. For exampls.
in implementing a choose procedure for sets, returning the last integer inserted may be more

efficient than returning the largest integer.

In contrast, determinism requires that the final values of the input and output obiecis be
predictable. Whereas the fully-covering property deals with the "completeness" of a
specification with respect to input states, determinism deals with it with respect to output

states.
5.1.3.1 Definition

A specification is deterministic if for each state that satisfies the pre-condition, only one
set of final values for the input and output objects satisfies the post-condition. We define this

property in terms of theories, analogously to the usual definition for a function. A relation, f,




°.- 1
P
2 e

PP U SO

- b.] 0-

i
YY)
335050500

.‘»' S

it
PRI
a'a a-Aala

-4 4.
.
4.4 2

.
data

..................................

...............

-121 -

on X X Y is a partial function if for all x€X, y1,y2€Y [(<x, y1>€f A <x, y2€f) = y1 = y2]. For
determinism, we require the relation between the values of input and output objects defined

by a procedure specification to be a partial function.

Let X be the list of input formals and Y be the list of output formals for the procedure

specification Pr. To simplify the following discussion and definitions, we will treat memory

- objects as (implicit) input obiedts and require that all memory object identifiers be included in

X. All formals in the signals clauses are included in Y (by definition). Let Pr.pre(Xt) be the
pre-condition on the initial values of input objects, and Pr.post(Xt, X{, Yi{) be the

post-condition on the initial and final values of input and output objects.

Def: A procedure specification, Pr, is deterministic if and only if Th(Pr+) contains the
following formula:

VY A, A1, A2: T-in, B1, B2: T-out

Pr.pre(At) =
[Pr.post(At, A1{, B1d) A Pr.post(At, A2, B24)] =
A1} = A24 A Bl = B24.

where T-in is the list of types of the input objects and T-out is the list of types of the output
objects.

Def: A cluster specification is deterministic if and only if all of its procedure specifications are
deterministic.

Def: A specification is nondeterministic it it is not deterministic.

Recall that a state consists of not only a store (mapping from objects to values), but also
a set of (existing) objects, and an environment (mapping from object identifiers to objects).
The definition of deterministic places no constraints on the set of.objects or the environment
of the final states. A more restrictive definition could require that for each input state in which
the pre-condition is satisfied, there exists a unique output state in which the post-condition is
satisfied--restricting the set of output states satisfying a post-condition to be a singleton set.

We see no reason, however, to rule out a procedure that may, for example, create in the

process of execution new objects that may be inaccessible upon termination of the

l, LY e N
PR t'
PO YT RN Y oy A

U
L




e procedure. Similarly, we should not rule out a procedure that may change the bindings of its
formals since those changes are not observable outside the procedure. In these cases, the
sets of objects or the environments of the possible output states satisfying the post-condition

may differ.

5.1.3.2 Deterministic Specifications

Pt

:“ A specifier may intend a specification to be deterministic or not. A procedure
H specification may turn out to be nondeterministic because of an unintentional oversight on
[‘-’:Ej the part of the specifier. The following procedure specification,

choosel = proc (s: stack) returns (i: int)

uses StackOfint
pre ~isNull(st)
mutates s
post il = top(st)
end

is nondeterministic--the final value of s is indeterminate because of the presence of the
mutates clause. To make choose1 deterministic, the specifier could add the conjunct s¢ =
pop(st) to the post-condition, or remove the mutates clause. On the other hand, the
specifier may have intended to let the implementer decide whether or not to pop the stack,

and therefore may have intended choose 7 to be nondeterministic.

Checking for determinism requires showing that a formula is in a theory; checking for
nondeterminism, that it is not. A specifier could show the latter by assuming the formula is in
the theory and finding a contradiction to show otherwise. For example, the following

procedure specification,

o .
...... . S e et - R
LIPS W SN PP I ST W Sy, ISP LI s ra e 'a ' ala’ .’ s a'‘a"as's’ 2" PR a L

L Ande Snde sauik St CRE N DA AL

| ORI

N R

v P I
" I- P n
b, :

o

RINKY | S

it .

O R
ot adad dalaral

LA
[P P,

l."!-r.‘ v
A .
4'1'.;4'1“’.

)

o, 0.
)

e




o ’ -_.f‘lﬂ
- -
» -123- s
]
N | =
N choose2 = proc (s: stack) returns (i: int) T
X uses StackOfint o
4 pre ~isNull(s?) e
. post isin(st, i¢) L
1 -end .
4
¢! is nondeterministic. Suppose
T3
Vs:stack, i1,i2:int .
4 ~isNull(st) = S
N [isin(st,i1d) A isin(st,i2¢) A mutates @] = N
¥ [itd = i24]
- .
is in Th(choose2 +). Then let st be push(push(null, 5), 7), i1¢ be 5, and i2! be 7 to derive a s
. J . . ‘_:_ .:
4 contradiction. =
.'1 ._j N
T3
- 5.1.4 Protection =
'% By partitioning a specification into two tiers, we can avoid at the top tier an
incompleteness at the bottom tier. In particular, a procedure specification should be able to -
use a trait even if the trait is not sufficiently-complete [Guttag75]. It is the procedure ‘
specification’s responsibility to protect any of its users from the incompletenesses of the trait ﬁ::“
; by ensuring that the meaning of the procedure specification is independent of those
& incompletenesses.
) %q S
5 Axioms of the form "7 exempt" are included in a trait to inform the specifier. of an
g intentional incompleteness. We would like to ensure such incompletenesses do not show i
j through to the interface level. .For example, since the axiom top(null) exempt is in the j?::'_
! f StackOfint trait, the following procedure specification is not protective. ]
4
L 4 -

read1 = proc (st: stack) returns (i: int)

3

N uses StackOfint .;;'.-.;
;:. pre true N R
0 postil = top(stt) ~
L 2 end -

If the initial value of st were null, then the incompleteness of the stack trait would show

- TN




through to the interface leve! because the value of the integer returned would be denoted by

the exempt term top(null).

Factoring a specification into two tiers allows us to factor our checks as well. If upon
checking a trait for sufficient-completeness, we discover it is not sufficiently-complete, we
may be inclined to invoke our checker for protection. For example, invoking a checker for

protection on read? might cause us to modify it to be:
read2 = proc (st: stack) returns (i: int)
uses StackOfint
pre ~isNuli(stt)

post il = top(stt)
end

Read2's pre-condition is sufficiently strong so that the value of the returned integer object
would never be denoted by the term top(null); hence, the incompleteness at the trait level

would not show through to the interface level.
5.1.4.1 Definition

We say that a procedure specification is protective if it is independent of the set of
exempt terms of its used trait. We build up to the definition of protection by first
characterizing the set, E(Tr), of exempt terms of a trait, Tr, and then defining "independent of

aset of terms.”
Def: For a trait, Tr, the set, E(Tr), of exempt terms of Tris

E(Tr) = {t| 3t'Jusuch that (' = u)ETh(Tr), where t' is a subterm of t,
and u is an instantiation of a term appearing exempt in Tr}

E(Tr) includes all terms that have a subterm that is provably equal to an instantiation of
an exempt term. For example, for the StackOfE trait (Appendix |, Figure 13), E(StackOfE) =
{top(null), pop(null), size(top(null)), top(pop(push(null,e))), ...}. E(Tr) does not inciude terms
about which the trait does not say anything. For example, if @he last equation in StackOfE

were removed, it then would not constrain the term size(push(s,e)). The reason we do not




ST SNk

-al

BRI W L 4 9 ™ Y S ¥ ha_u

(' wty % T e ok

include these kinds of terms in E(Tr) is that given a set of axioms in a trait, we cannot, in

general, generate all the terms that are "intentionally” and “implicitly” not constrained. It is

easy, however, to know what terms are explicitly exempt. o

We now give the definition of "independent of a set of terms." Intuitively, it captures the li:ii.':
notion of never having to deal with certain terms. We follow it with the definition of protection. L

Def: Let S be a set of terms. An assertion, A, appearing in Pr is independent of S, if . ;

1. No subtermof Aisin S, or ' _—

2. 3B ([A <= B] € Th(Pr)), and B is independent of S. 1;-1

s

v

Def: Pr is protective if A
1. Pr.pre is independent of E(Tr), and
2. Pr.pre = Pr.post is independent of E(Tr).

Det: A cluster specification is protective if each of its procedure specifications is protective.

5.1.4.2 Protective Specifications

Protection is a desirable property of an interface specification. The specification should

not be dependent on properties of the values denoted by exempt terms, and in reasoning
about it the specifier does not want to be "stuck" with terms that are exempt. If upon :Ti-j:f
checking to see if a specificatioh is protective, we find that it is not, we may be able to find the ::
.A\h.'
dependency in the specification and then fix the specification to remove it. N
S
RN
Checking may require some cleverness on the specifier's part. It may involve finding an :2
assertion equivalent to the one being shown independent of a set of exempt terms. - -
]
Checking that the pre-condition is protective is usuaily easy because pre-conditions are '_-.::-I:
usually simple. Checking the post-condition, however, is likely to be more difficult. Consider I-:;I:j
A
again the following example: : j-i.'~
VjZ;:;H

....................
...................................



g, S

§ 2 s gl

DS

304

@ Dy

........................................................................

read2 = proc (st: stack) returns (i: int)
uses StackOfint
pre ~isNull(stt)
post il = top(stt)
- end

To show that read? is protective, we show that it is independent of the set of terms

E(StackOfint).

1. Show ~isNull(stt) is independent of E(StackOfint). Trivial.

2. Show ~isNull(stt) = i4 = top(stt) is independent of E(StackOfint).
Referring to part (2) of the definition of when an assertion is independent of
a set of terms, let B be [isNull(stt) V 3s1:Sl, it:Int [stt = push(s1,i1) A i =
i1l

In practice, writing a protective procedure specification is straightforward provided that
the trait is actually strong enough to specify the desired properties. Strong enough
pre-conditions are written to make sure that even if a post-condition alone is not independent
of an exempt term, the assertion "Pre = Post" is. Often enriching the set of functions of the
used trait makes it easier to read and write pre-conditions to handle these cases. For
example, the function isNull is included in the StackOfint trait instead of writing in the

pre-condition the equivalent assertion, ~(stt = null).
5.2 Comparing Specifications

In the context of developing a large specification, one kind of evaluation we intend to
perform is to compare specifications. For example, we might want to compare specifications
with respect to their restrictivit‘y. 'concision. elegance, or lucidity. (Judging a specification for
some of these qualities is purely subjective, eg., elegance and lucidity, and so we wodld not
attempt to define these qualities formally.) We might invoke a "comparator™ to compare
specifications with respect to these qualities. As with checkers, we would invoke a
comparator many times during the development of the specification. Comparators can be
used to help us decide between two specifications. For example, we often want to choose the

less restrictive (constraining) of two specifications. Comparators can also be used to check

.....




ALy
N

whether a change we make to a specification had some expected or unexpected etfect on

)
falalaia

o
one ol its qualities. For example, if we add something to a specification, we might like to know ]

:% whether we have made it more restrictive or left its restrictivity unchanged.

We discuss comparing specifications with réspect to one quality, strength, of which

restrictivity is a special case. Figure 16 gives the signatures of the corresponding

specifications. In Section 5.2.2 we define strength. In Section 5.2.3 we discuss the effect

1 - comparators. In Section 5.2.1 we motivate comparing the relative strength between

certain modifications to a specification has on its strength.

%

4

4 5.2.1 Comparing Strength

’ Intuitively, the stronger or more restrictive a specification, the fewer the number of
i 3 implementations that satisfy it. In writing a specification, we may want to know whether one
‘i

) specification is as strong as or stronger than another. We may discover that after modifying a
. specification the new one is incomparable to the original.

'fj There are at least two situations in which it is useful to know when a specification is as
' strong as another. One is where we modify a specification but want to ensure its strength is
‘-e unchanged. For example, if we rename identifiers of a specification in order to have
3 mnemonic names, we would want to make sure we have made only a syntactic and not a
- semantic change. A second situation is in determining if it is permissible to replace a
, specification with another without affecting any of its users. If one specification is as strong
1 as another, then under certain circumstances we should be able to substitute one for the
5

Al

. ]

e as strong as: specification, specification — boolean
! stronger: specification, specification ~ boolean
” restrictive: specification, specification — boolean

3 .

s}' Figure 16. Signatures of Comparators

Tt g a et atanar et AN T e e e e el e e L e




other. Comparing the strengths of the two specifications can help determine legality of

replacement. This situation is addressed in [Bloom83] in the context of distributed programs.

Sometimes, we may want a stronger specification. We might realize the specification is
not strong enough in trying to prove a property of the specification or its specificand set. We
could choose to either weaken the statement of what we were trying to prove or strengthen
the specification. If we were to decide to strengthen the épecification, we might want to
compare the new and original specifications to make su-re we did not make them
incomparable. For example, if we were unsuccessfully trying to prove a cardinality property
about sets based on a specification for bags, we might realize that either our axioms are not

sufficient to prove it or that they are wrong. We might choose to strengthen the specification

for bags to obtain one for sets that allows us to prove the desired cardinality property. When
we discuss the essentiality of a specification in Section 5.3, we rely on the notion of strength

in determining whether a specification is strong enough to prove some property.

5.2.2 Definition of Strength

The intuition we want to capture formally is that the stronger the specification, the fewer
the number of implementations that satisfy it. We borrow the analogous concept from logic
that the stronger a theory, the fewer the number of models that satisfy it, and define a strength

relation between specifications in terms of strength between their theories. For example, the

theory of <Z, +, -> is as strong as <N, 0, succ), but not vice versa, where Z is the set of all

- integers, and N is the set of all natural numbers. e

We could define a theory, Th1, to be as strong as or stronger than another theory, Th2, if 4

2 . the two theories are in the same language and Th2 C Th1. Theory containment, however, is ff'_-}f
2 not sufficient to capture the notion of relative strength between two theories for two reasons. -~
S

The first is that the two theories may be in different languages; thus, they may be disjoint, but =

still be as strong as each other. The second is that even if the two theories are in the same




R R L T T T . T o N e o T 3 T o N o o T o N N T Iy I T T T T TR ey
- LA A L T R e T P Mt W s -. h A .. : - . i

-129. B
7
%}. language, a formula that is in Th1, but not in Th2, may be translatable to one in Th2; thus Thi, \
(,' although larger, may not be stronger than Th2, __
': in general; even if the theories are in different languages, there may exist a way of
':E:: translating from one language to the other such that theorems of Th1 are translations of
& theorems of Th2. One reasonable way of translating from one language, L1, to another, L2 is h:;
S: to map symbols of L1 to those of L2. Mapping symbols is not sufficient because in some ]'
T cases we could then show that one theory is stronger than another when they really are as j
\. : strong as each other. For example, adding a new function symbol to L1 to obtain L2 may not _J
:‘ strengthen Tht because the new function symbol can be defined in terms of sytﬁbols of Lt. ‘
.:g We will give an example of this situation in the next subsection. .
:.‘ Therefore, more generally, determining when one theory is as strong as another
ft depends on finding an interpretation that translates formulae of one theory into those of
W another. Most of the following definitions are adapted from [Enderton72]. Notice that an
] interpretation is a generalization of the notion of theory morphisms from algebraic theories
: 'j [Burstali80, Burstall81] to theories in full first-order logic with equality.
': Let Tht be a theory in a language L1 and Th2 be a theory in a (possibly ditferent)
';:’:‘ language L2.'2 Let » be a mapping from L1 into L2. L
X .
Def: If Yo€L1 [0 € Th1 = w(0) € Th2], then w is an interpretation of Th1 into Th2.
:;3 Def: Th1 is as strong as Th2 if there exists an interpretation of Th2 into Th1. ;?
j Def: Th1 is stronger than Th2 if T.h1 is as strong as Th2 and Th2 is not as strong as Thi. _,,
Def: Th1 and Th2 are incomparable if Th1 is not as strong as Th2 and Th2 is not as strong as :':é
4 . .
‘;-g Def: i Th1 and Th2 are in the same language, Th1 is more restrictive than Th2 if Thi is :
’ stronger than Th2,

s 12. L2 must include equality tor technical reasons.




e N e e R A S A A A A At AR AR A A A A A R S A A R “?
" 130 L]
We extend the last four definitions to two specifications in the obvious way. For 1
example, give;'o two specifications, Specl and Spec2, Spec1 is as strong as Spec2 if 4
Th(Spec1) is as strong as Th(Spec2). )
Showing that Th1 is as strong as Th2 requires showing the existence of an interpretation —]
from L2 into L1. Shbwing that Th1 is stronger than Th2 is much harder,; it requires showing ]
not only the existence of an inferpretation from L2 into L1, but also that there does not exist B
any interpretation from L1 into L2. Notice that showing that Th1 is not stronger than Th2 is
easier than showing Th1 is stronger than Th2 since for the former it suffices to show the #
; j existence of an interpretation from L1 into L2.
:;: Finding an interpretation or showing the nonexistence of one is difficult in general. If we &L

were to base our definition of strength on the simpler, but more restricted, definition of an

interpretation that is defined to map symbols of one language into those of another, then it -

would be easier to find an interpretation or show the nonexistence of one when comparing
relative strengths of specifications. As previously mentioned, the alternate definition may be

simpler, but it does not capture the strength relation we want.

Finally, showing that two theories are incomparable requires showing the nonexistence
of interpretations between the two languages in both directions. In some cases, however, to
convince ourselves of incomparability, it suffices to show that there is a formula in L1NL2 that
is in Th1 and not in Th2, and a formula in L1NL2 that is in Th2 and not in Th1. For interface
specifications, the language of a shared trait can often be used as a basis for L1NL2. We give

an example of this situation in the next section.

-

|

<. AR A . R T I . P B . e e : 4-.v‘.'.«"~-“‘ NSRS ‘*".J
P I I e . e TR . CAT RS RIS TP W TP UG TR WY DR 0 TPty gy Yty s




PSR L P AR

~

PR AL AL, x

Pl Wl

o
gL

‘.’J L

ba'aals JasaaanTa s

. - ety
.G IPE3 -~V T r)

i B

2P AR

- § Lafataleltalat

¥
3
b
)
3
[ 4

AR

B A 3

LR AT I DA SRR ANA AR S LA A & G S T e AR A A UL A A O

......

5.2.3 Moditying a Specification With Respect To Strength

it would be useful to characterize changes we can make to a specification by their effect
on the strength of the original specification. Adding equations, reduces clauses, or closes
clauses can strengthen a trait. Selecting a stronger used trait, or changing its pre- or

post-condition can strengthen a procedure specification.

To strengthen a cluster specification, we could select a stronger used trait or add a
procedure specification. Adding a procedure specification does not necessarily strengthen a
cluster specification. Doing so might leave the strength of the cluster specification
unchanged or weaken it. It might even make the original and new cluster specifications
incomparable because type induction rules of the original cluster specification might become

invalid. We later give examples of each of these cases.

The kind of procedure specification that is added to a cluster specification can restrict
the possible effects on its strength. If T is_ the type defined by the cluster specification, A
procedure specification can be classified according to whether it specifies a procedure to
construct or to observe objects of type T. A constructor returns or mutates objects of type T
while an observer returns or mutates objects of type other than T. Using the terminology from
Chapter 3, we can further classify constructors into basic, producing, and mutating
constructors. In general, a procedure specification might both construct and observe objects
of type T, as well as do combinations of all three kinds of construction. For the present
discussion, we only consider the "pure” cases in which a procedure specification specifies
either the construction or observation of objects of type T, but not both. For example, a "pure
observer” specifies that a procedure takes in objects of type T, does not mutate any objects,
and only returns objects other than type T. Figure 17 shows the possible effect adding a pure

constructor or observer has on the strength of a cluster specification.

b auhalih Jf

o
Al ] (RN

‘- ) .
e e
. A
O et ta e e
. H v v
. PR

o

P IR TR S S
[ S R
. l . St

o et et e,
L s e
T Y s D

L
P
e
. P
Ol )

PRI
v L
Ly B

o'y

RRAAES




'
o}
d
y

- - « ¥y P R Bl A M A S " TR
St fa=da- A A o el e e R O M A SRS

FEL‘.L—.IJ,') e s

:
es -132.
F
2z,
>,
9‘, stronger as strong as incomparable weaker
5 constructor ? yes yes yes
observer ' yes yes no no 2
“;:Q Figure 17. Effect of Adding a Constructor or Observer on Strength % ‘
.1
. -3
:; Adding any kind of "pure constructor" has the possible effect of leaving the original s
specification unchanged, making it incomparable to the new, or weakening it. We conjecture _.4
d . N i
o that adding a constructor cannot strengthen a cluster specification because adding a ‘]
s : e
, constructor adds a hypothesis to each of the type induction rules. Adding a hypothesis to a '-};
rule might leave unchanged, weaken, or invalidate an existing rule; it cannot allow us to :
conclude a stronger invariant. We leave the proof of our conjecture as an open problem.
N
o~
s We now give some examples. Let Spec1 be SetClusSpec and Spec2 be the result of
>
adding a constructor to Spec1. As an example of adding a constructor that leaves a
" specification’s strength unchanged, consider adding a pair procedure specification that takes
, ) in two (possibly equal) integers, i and j, and returns a set that is the union of {i} and {j}. Since
& formulae involving pair can be expressed in terms of singleton and union, no theorems of
'\
; Th(Spec1) are invalidated and no new theorems are added. If, however, we had chosen our
2 alternate definition that defines an interpretation to map between symbols, then adding the
identifier, "pair,” would strengthen SetClusSpec because pair could not be mapped to any
identifier, id, in SetClusSpec such that formulae involving pair in Spec2 couid be translated

-

into formulae in Spec1 with id substituted in for pair. This example motivated our choosing
the definition of strength as given since we intuitively believe that adding a constructor that

does not change the invariant of a type should not strengthen the cluster specification.

Adding to Spec1 a create procedure specification that takes in no arguments and
returns an empty set makes Spec1 and Spec2 incomparable. One might think that by the

addition of create Th(Spec?2) would be strictly larger than Th(Spec1) and so Th(Spec?2) would

- G WO NRONOR - YA AL - QRO




be stronger than Th(Spec1). This is not true, however, since the formula. true{S}Vs:set
card(si) > 0, ;Nhich is in Th(Spec1), is not in Th(Spec2) and the formula, true{S}3s:set
card(s¢) = 0, which is in Th(Spec?2), is not in Th(Spec1). This example illustrates a perhaps
surprising consequence of our definition. Intuitively, we would think that adding a constructor
that increases the value set of a type should strictly strengthen the cluster specification.
Strength, however, is defined in terms of theories, i.e., what is derivable from specifications,

and not in terms of the "expressive” power of specifications.’

As an example of adding a constructor that weakens the strength of a specification,
consider a stack[elem] cluster specification, Spec1, that has a pop procedure specification
that returns a new stack whose value is that of the input stack with the top element removed.
Let an invariant of Spec1 be that no stack object is mutated. Adding a mutating constructor,

shrink, that mutates the input stack by removing the top element invalidates that invariant.

Adding a "pure observer," can strengthen a cluster specification or leave it unchanged.
It cannot weaken the original cluster specification nor make the original and new
specifications incomparable. Adding an observer can at most add formulae of the form
P{Pr}Q to the theory of a cluster specification. Since hypotheses of type induction rules deal
with only constructors, adding an observer has no effect on the type induction rules of the
cluster specification. Hence, the addition of a (pure) observer cannot weaken or invalidate

any of the rules.

As an example of strengthening with an observer, consider adding a size procedure
specification to a stack[elem] cluster specification that has only constructors. Doing so adds
theorems about integers to the Th(stacklelem]). As an example of leaving the strength

unchanged, suppose stacklelem] has null, push, and top, where top mutates its stack

13. This observation suggests pursuing the definition of a different property of sbecifications that might be related to
"expressive-completeness” [Kapur8Ob).

e A
TV § IV PN o

i LL-. VIR L PV I

,..
A
inachid,

R - R IO
LY YO UL Y SRIP RIS W SO G TS LI U e, S S Y




N

R e W alt
1Nat i hal

LG

i g 2 LA
p ".»‘JI'J‘A -

'L'T
v
4" »

"’l‘ .~l
éf

A

[~

fAS S

1.
s

LY
a

Is

.134 -

argument. Adding a read procedure specification that is like ldp except that it does not

mutate its stack argument, does not change the strength of the original specification.

5.3 Essentiality

In the construction of a specification, we often want it to be "minimal" in a given
context. That is, we would like to able to pare down a specification to just the "essential part”

necessary for a desired set of properties to hold. Removing parts that have been shown to be

inessential gives us a way of paring down a specification.

A part, P, of a specification, Spec, is inessential for a theory, T, if Spec with P removed
can still be used to deduce the theorems in T. We say "P is an inessential part of Spec for T."
Identifying a part of a specification that is inessential to prove a property means that we can
freely remove or alter that part of the specification and still be ensured that the desired
property holds. On the other hand, if we were to change some part that is essential then we

might have to reverify that the property hoids.

Whereas checking for properties defined in Section 5.1 is performed on a single
specification, checking essentiaiity and inessentiality is performed on two specifications and a
theory, where the second specification is defined to be a "part" of the second. The
signatures for checkers for essentiality and inessentiality are as follows:

essential: specification', specification, theory — boolean
inessential. specification, specification, theory — boolean

In Section 5.3.1 we define essentiality and inessentiality by first defining what we mean

by a part of a specification. In Section 5.3.2 we give some situations for when we might want

to determine inessential parts of a specification.

B WP R SN AT WY ST SR W AP A T W S W O il

1
R
]
1

L
e




-135.- “ 3

Y

%

5.3.1 Detfinitions j
In the following discussion we treat a specitication as a formal system, which is a set of ;—j
symbols, a set of wif's, a set of axioms, and a set of rules. (See Chapter 3 for the 1
correspondence between a specification and its formal system.) Thus, it makes sense to talk ’
about the language (set of symbols and set of wif’s), axioms, and rules of a specification. For ":
s 4

a specification, Spec = <L, A, R>, L is its language, A is its set of axioms and R is its set of I;f‘: '_
rules. . A
Def: A part of Spec is a séecification with a language, L'CL, a set of axioms, A'CA, and a set ,_di
of rules, R'CR. : o

Examples of parts of a specification are the used trait of a procedure or cluster

specification, and each of the bound procedure specifications of a cluster specification.
Notice also that the type induction principle is a part of a cluster specification. Let two parts

of Spec be P1 = <L1, A1,R1> and P2 = <L2, A2, R2>.

Equal:P1 = P2ifand onlyif L1 = L2, A1 = A2, and R1 = R2,
Subset: P1CP2 if and only if LICL2, A1CA2, and R1CR2.
Proper subset: P1ICP2 if and only if PICP2 but P1 # P2.

Difference: (Spec - P1) is the specification whose language is (L. - L1), whose .
set of axioms is (A - A1), and whose set of rules is (R - R1).

We require that subsets of sets of axioms and sets of rules are well-formed. For example, if L1
C L2, all axioms in A2 and all hypotheses and conclusions of rules in R2 are restricted to be in

L2. Notice that P1 C P2 does not imply Th(P1) C Th(P2).

Let P be a part of a specification, Spec. Let T be a theory such that each formulain T is

deducible from Spec. We write this "Spec I~ T."

Def: Pis an inessential part of Spec for T if and only if (Spec - P) = T.

Def: An inessential part P pf Spec for T is maximal if no part properly containing P is
‘[‘4 inesgential.




. Notice that there can be more than one maximal inessential part of a specification for a given

& theory. : , _23
{ ‘ Def: P is an essential part of Spec for T if and only it (Spec - P) is a maximal inessential part of - od
Spec for T. e
¥ gy
a RO
. Checking for essentiality or inessentiality must be done with respect to a theory since a :'j-'jl

=3

part of a specification that is essential for one theory might be inessential for a different n

:;: theory. Given a theory, T, if a part, P, of a specification, Spec, is purported to be inessential '-;i j]
for T, then one method for checking the inessentiality of P would be to remove P from Spec __
and check if the remaining specification is strong enough to prove each theorem in T. If each . i
) ,'.;_\
theorem in T is provable from (Spec - P), then P is inessential. If there is some theoremin T ;-'.-_;'-
such that it is not provable from (Spec - P), then some subset of P is essential for T. __j

>
‘!7
b

5.3.2 Situations for Determining Inessentiality

Here are three situations in which it would be useful to determine whether a part of a
specification is inessential. One situation is to check if some part of a specification is S

inessential to prove some property of the specification itself. For example, we might want to ;'-':;".

know what part of a specification is inessential to proving it is fully-covering or deterministic.
» We might want to make a specification weaker, but ensure that it is still fully-covering or

deterministic.

A second situation is to check if some part of a specification is inessential to prove
particular properties of its specificand set. For example, suppose we want to determine if

some part of our trait for sets is inessential for proving the propert)}. has(delete(s,i).j) = ~(i .eq

e 3
- s 0%
Pt tatetatll

T

i) A has(s,j). We see, in particular, that the axioms about card are inessential to prove it.
Another example of this second situation is to determine what part of a trait is inessential to

establishing one of the hypotheses of a type induction rule associated with a cluster

K specification. For example, in Chapter 3 when we showed the property that the size of all set

objects is greater than zero (for sets as defined by SetClusSpec), we used the property from




tali el

~

)

VNP

Chat) .

[N AENTARSENL

-1

4
o
.'.

|

the SetOfint trait that the cardinality of values of set objects is greatér than or equal to zero. In

this case, sort induction is essential, but, for instance, axioms about delete are not.

A third situation is to determine what part of a specification is inessential in the proof of
satisfaction between an implementation, Imp, and a specification, Spec. Let T be {Imp
satisfies Spec}. Suppose in showing T we use a specification S, whose theory is a subset of
Th(imp). We might be interested in knowing what an inessenﬁal part of S is that is not needed
to prove T. In knowing what part of S is inessential to the proof ;>f satisfaction, we can change

that part of S and be guaranteed that Imp still satisfies Spec.

frame
Lo




''''''''''''

6. Conclusions, Contributions, and Further Work

. o ¥
o 2

6.1 Summary of Conclusions and Contributions

RTRFRTAT AL

In Chapter 1 we observed that at present formal specifications are difficult to write and

<

s »
MY

to apply in the design of software. We believe that the two-tiered approach presented in this —l

thesis is one step toward a solution to this problem.

o Y.

[}
»

X
<

‘
v

Our presentation included an approach to writing specifications, a specification
language, and some v\;ays to evaluate specifications. The approach separates the ' .
specification of state transformations and target programming language dependencies from :f-".r
the specification of underlying abstractions. The language supports tﬁis approach and was T
designed with the programmer in mind. The ways to evaluate specifications, i.e., checking
and comparing, give a specifier means of convincing himself that his specification reflects his
understanding of the problem statement. The distinguishing aspects of our solution are (1)

the separation of concerns in the specification approach, {2) the incorporation of

‘.'.‘ ) "...

programming language dependencies in the specification language, and (3) a theory-oriented \
framework that provides a basis to reason about specifications independently of their
underlying models. "
The four main contributions of this thesis are: | he
1. The rigorous semantics for the two-tiered approach, _ "‘“\
2. The design of a CLU interface language, :
3. A framework for reasoning about two-tiered specifications and
» what they specity, and .
N
. 4, Exploiting the framework for evaluating specifications. '_E".:;
: NS

LML M
.U

N oA

...........
.................

----------------------



) .
............................................

A T
A_A_

8
L.

- The complex part of doing the semantics was in carefully fitting the two tiers together,

'a
LL'_ P

and at the same time, keeping the separation clean. Mathematical entities such as algebras

‘ and relations serve as a basis for defining our model-oriented semantics. Although the
_,;, models chosen are motivated by CLU, they can be used to model the semantics of interface
3 languages for other programming languages. The models are relatively independent of
& Larch.
, The key contribution behind the design of the interface specification language for CLU
1 3 was isolating programming language dependencies into one component of a specification. In
3:‘ doing so, we shed light on what aspects of a programming language should show through to
‘; an interface specification language, and on what aspects were complex to handle (e.g., own
' _variables). Another related contribution is the factorization of the presentation of the
,,_. interface language into a kernel part and an extended part. Although we presented a design
' ’ targeted for a particular prog(amming language, we believe it is general enough to be
" adapted for others.
We also defined a proof-theoretic framework for reasoning about specifications. This
8l reflected the same clean separation between the two tiers as the model-oriented semantics. It
‘ was designed to allow one to reason about what is being specified completely in terms of the
1 text of the specifications. This advantage is especially significant if one has appropriate
"“‘ : machine support, e.g., a theorem prover.
Y

In exploring the utility of this framework, we defined some sample properties of

Lot

Z:-, specifications and ways to compare them. In making these definitions, we illustrated how to
L and
"" state their definitions within the proof-theoretic framework. Identifying these properties is of
:"; concern to a specifier who wants to know if some developing specification is getting "better."
-
o?

Experimentation is needed to see if we have focused on the right properties, but we have

provided here at least some of the properties that might be of use to a specifier, and an

indication of how to define them.




b A A el TR g B i e i T e

ALY Art e 0o A Ay L A i nel W 00N il Al sl A N DR SRR RS AAER RN A . A Y

a'ataf,

v T revyv

G
A

eIt Y
Sl e
CRAPE Tl Y R

*

Ty

i ——
S92 g
Y ‘A“ 'A"l ety

§

[ S S A

:'.", '_. N

-

6.2 Directions for Further Work

We first discuss two areas of "basic” research: developing other interface languages
and evaluating collections of specifications. We then discuss two areas of "experimental”

research: building machine support and applying the two-tiered approach to examples.
6.2.1 Development of Interface Languages

One test of our two-liered approach is to develop interface languages for other
programming languages, both sequential and concurrent. We have not discussed
concurrency at all in this thesis, and would be interested to see how easily the kernel interface
language can be extended to handle concurrent programming issues. A first step to take is to
extend our model to concurrent programming and then add syntactic extensions to the kernel
language. Stark [Stark83] defines a model of the behavior of concurrent systems, which
could serve as a reasonable basis for such a specification language. Jones extends his own

work for sequential programs to concurrent ones {JonesBi}.

Development of interface languages for other sequential programming languages is
currently being done for Cedar Mesa [Horning83). Its design borrows directly from the kernel

language we defined in Chapter 2.

Finally, we mention with hindsight a change we might make to the CLU interface
language. Instead of giving two assertions in a procedure specification, since they are both
interpreted with respect to two states, we could give only one assertion [Horning83, Yelick83).
Hence, instead of writing a pair, <pre, post, in the body of a procedure specification, we write
a single assertion. We also mention an obvious extension to the language. Instead of listing a
gingle used ftrait in a uses clauée of a procedure or cluster specification, we can list a set of
used traits. Furthermore, we can perform operations on each of the traits in the list, e.g.,
renaming and inclusion. This .extension does not change the semantics' of a procedure or

cluster specification because a single trait can be defined to include (i.e., includes in Larch)

Lo

DS T TP T SV Wy

PRV
ot
Pttt




',-“‘-h » PCPAAC T R gt iu g T Tt At lin fam g e jhe gy e e L N S e R T R w e~ o~
o .:
N .
-141 . ]
2 -
t} each trait in a set of traits. -;".;j
{ 6.2.2 Evaluating Collections of Specification 4
3 | i
::: In Chapter 5, we concentrated on individual specifications, and not at all on collections . :
N : , . . o
of specifications. As a collection of specifications grows, the issue of evaluating it becomes o
.
R . 4
:} just as important as, and probably harder than, evaluating each of its individual components. "
4 We briefly mention some relations among specifications that are easily derived from the ;'_j",
o "]
’ formalism we have described for the interface language. i
i} g
‘:-' . . ._::i
fé:: A specifier usually has in mind some structure among the mass of specifications written. NS
.__; . b
=X Depicting this structure is good practice in the design of a large specification as well as good
g
;3 documentation for the reader. For example, we define uses to be a relation on a collection of
‘, :Z* specifications, where a specification, Spec, uses a trait, Tr, if Tr is Spec's used trait. Similarly,
l‘
N we define imports to be a relation on a collection of specifications, where a specification,
ot 4] Spec, imports a cluster specification, Clus, if Spec imports the type defined by Clus.
=
{:2 These relations indicate global, or interconnection complexity, as opposed to the local
=% ! : .
complexity that can be seen in individual specification units. Evaluating the complexity of
N
2 each of these kinds of relations can give the reader and writer of specifications an idea of the
,._3 . -
‘ol complexity of the specification. We might treat the relation associated with each of these
Y
ha kinds of specifications as a graph and then analyze the complexity of the specification in
0,
X terms of properties of the graph. Some properties to check of a graph are whether it is
J_‘ acyclic, whether it is hierarchical (no sharing), or whether it is a tree (one root, no sharing).
r Whether a property is desirable or not would depend on the use of the specification. For
example, one can argue that in writing a good specification one should have a uses relation
e
;'; that has a lot of sharing of the used traits to avoid repetition and to reuse work already done.

On the other hand, care must be taken when changes are made to a shared trait; a

.
p
2
,
4
.4
)
2

specification with a hierarchical uses relation might be easier to modily.




................................

6.2.3 Machine Support

a
N
| TSRS PP

(:, The limited experience we have had in writing specifications makes evident the need for g
S e
) machine-support. Without machine-support, we have no hope of expecting either specifiers ;-jj
L -
~ to write or programmers to use specifications, except as an academic exercise. j:':
\‘;‘ ) 1
. ]
g Minimally, machine-support should provide ways to manage the text of specifications; 9
‘jl-_" ideally, it should provide ways to reason about their meaning as well. Our list of tools includes
(see [Guttag82)): -1
{ v
5 "
N
1. A syntax checker. "3
2. A library. Both traits and interface specifications, and both _1
" problem independent and dependent specifications should be £
included. Traits should be included for possible reuse; interfaces, o
L primarily to provide examples.
-r 3. An editor. A syntax-directed, interactive editor should supply ::i
o templates, generate redundant information, and keep track of -
- missing information. ":,
j{lf 4. A semantic checker. Theorem proving technology can be applied T
’:j- to the manipulation of specitications for checking properties of both
- specifications and what they specify. Much work remains in finding
algorithms and heuristics that check for these properties.
-::f':f The Larch project at M.I.T. has started on the development of these tools as part of a
-..f
- specification environment. Included in this development effort are implementations of a
- syntax and static semantics checker [Kownacki83] and a semantic checker that can
\ manipulate equations in traits [Lescanne83, Forgaard83], and designs of a library [Atreya82]
S and a syntax-directed editor [Zachary83].
[
-:::
oA
<




.............

.143.

6.2.4 Experimentation

The two-tiered approach needs to be tested on realistic examples of substantial size.
< We can test the utility of the formal framework we set up only by trying it out. In doing so, we
can then evaluate whether the two level partitioning is good, whether it makes it easier to read
and write specifications, and whether it leads to better specifications. We can also see

- whether the separation of concerns leads to a better understanding of the specificands.

We may discover that we need to make changes to the design of the intertace language.
identifying the language constructs that are used frequently, those that are rarely used, and
those that would be nice to have in order to enhance expressibility can help in the designs of

future interface languages.

N We also need to discover other ways to evaluate a specification, other properties and

qualities, and ways to analyze tradeoffs among them. We should test whether the properties

we have discussed or variations of them are of any use or interest to a specifier. We should
see under what circumstances a specifier tends to perform evaluation and classify what kinds

of changes to a specification are made as a result of evaluation.

Finally, with more experimentation, we hope to show the utility of using formal
¥ specifications; in particular, to demonstrate that forcing precision in the design process has a

beneficial effect on the overall programming process.

falal ataamalat A ata . aae




=
. .-.' . 1 44 .
N
N,
o References
ot
o [Abrialg0] Abrial, J.R., "The Specification Language Z: Syntax and
__ Semantics," Programming Research Group, Oxford p
N University, 1980. X
b -
3',3' [Ada79) Preliminary Ada Reference Manual, SIGPLAN Notices, Vol. 14, -
N No. 6, Part A, June 1979, ' __‘
4
3o [Apt81] Apt, KR., "Ten Years of Hoare's Logic: A Survey--Part |," ' ‘;
:-_Zj;.. Transactions on Programming Languages and Systems, Vol.
& 3, No. 4, October 1981, pp. 431-483. 3
3 2
- [Atreya82] Atreya, S.K., "Formal Specification of a Specification Library," "‘j‘
e S.M. Thesis, MIT Department of Electrical Engineering and + 4
e Computer Science, Cambridge, MA, May 1982. -
?. [Berzins79]  Berzins, V.A., "Abstract Model Specificatibns for Data f:;
550 Abstractions," MIT Laboratory for Computer Science, TR-221, =
. Cambridge, MA, July 1979. 3;';
' 4
Sy
4’ [Birkhoff70]  Birkhoff, G., and J.D. Lipson, "Heterogeneous Algebras," O
j:: Journal of Combinatorial Theory, Vol. 8, 1970, pp. 115-133. :f::
h [Bjorner78] Bjorner, D., and C.B. Jones (eds.), The Vienna Development a
B Method: the Meta-language, Springer-Verlag, Lecture Notes in 3
::Ig Computer Science 61, Berlin-Heidelberg-New York, 1978. o
; [Bloom83]  Bloom,-T., "Dynamic Module Replacement in a Distributed -
. Programming System,"” Ph.D. Thesis, MIT Department of . :;
e Electrical Engineering and Computer Science, Cambridge, 3
i MA, May 1983, =
E}\.E [Boyer75) Boyer, R.S., and J.S. Moore, "Proving Theorems About Lisp
i Functions," Journal of the ACM, Vol. 22, January 1975, pp.
1975.
., [Burstall72]  Burstall, R.M., "Some Techniques for Proving Correctness of
o Programs Which Alter Data Structures,” Machine Intelligence
2 7, Haistead Press, 1972, pp. 23-50. '
._ [Burstall77]  Burstall, R.M., and J.A. Goguen, "Putting Theories Together
"-:1 To Make Specifications,” Invited Paper at the Fifth
<] International Joint Conference on Atrtilicial Intelligence,
.:Z Cambridge, MA, August 1977, pp. 1045-1058.
-




|

. 145 .

[Burstalig0]  Burstall, R.M., and J.A. Goguen, “The Semantics of CLEAR, a
: Specification Language,” Proceedings of 1979 Copenhagen
Winter School on Abstract Software Specitications,

Springer-Verlag, ed. Bjorner, 1980.

[Burstali81]  Burstall, R.M., and J.A. Goguen, "An Informal Introduction to
Specifications Using CLEAR," The Correctness Problem in
Computer Science, eds. Boyer and Moore, Academic Press,
1981.

[Caine75] Caine, SH., and E.K. Gordon, "PDL--A Tool for Software
Design,"” Proceedings of the 1975 National Computer
Conference, Vol. 44, Montvale, NJ., AFIPS Press, 1975, pp.
271-276.

[Chang73] Chang, C.C., and H.J. Keisler, Mode! Theory, North-Holland
Publishing Company, 1973.

[deBakker80] deBakker, J., Mathematical Theory of Program Correctness,
Prentice/Halt! International, Englewood Cliffs, 1980.

[Deutsch73] Deutsch, L.P., "An Interactive Program Verifier," Ph.D. Thesis,
University of California, Berkeley, 1973.

[Dijkstra76]  Dijkstra E.W., A Discipline of Programming, Prentice-Hall,
19786.

[Ehrich78] Ehrich, H.-D., "Extensions and Implementations of Abstract
Data Type Specifications,” Mathematical Foundations of
Computer Science 1978 Proceedings, Lecture Notes in
Computer Science 64, 7th Symposium, Springer-Verlag,
Poland, 1978, pp. 155-164.

[Ehrig80] Ehrig, H., H.-J. Kreowski, J. Thatcher, E. Wagner, and J.
Wright, “Parameterized Data Types in Algebraic Specification
Languages,” Automata, Languages, and Programming,
Lecture Notes in Computer Science 85, 7th Colloquium,
Springer-Verlag, Noordwijkerhout, July 1980, pp. 1567-168.

[Enderton72] Enderton, H.B., A Mathematical Introduction to Logic,
Academic Press, New York, 1972.

[Floyd67)} Floyd, R.W., "Assigning Meanings to Programs," Proceedings
of Symposium in Applied Mathematics”, Vol. 19, American
Mathematical Society, 1967, pp. 19-32.

...............
..........

...............
...............
..............

o s e e e e L te . e g - e a a4t et -




[Goguen75])

[Goguen77]

[Goguen78]

[Goguens1]

[Good75)

[Good78]

[Guttag75]

[Guttag78]

[Forgaard83] Forgaard, R., "A Program for Generating and Analyzing Term

Rewriting Systems," S.M. Thesis, MIT Department of Electrical
Engineering and Computer Science, 1983 (forthcoming).

Goguen, J.A., JW. Thatcher, E.G Wagner, and J.B. Wright,
"Abstract Data-Types as Initial Algebras and Correctness of
Data Representations," Proceedings from the Conference of
Computer Graphics, Pattern Recognition and Data Structures,
May 1975, pp. 89-93.

Goguen, J.A., "Abstract Errors for Abstract Data Types,"
Proceedings of the IFIP Working Conference on Formal Basis
of Programming Concepts, Vol. 2, August 1977, pp.
21.1-21.32,

Goguen, J.A., JW. Thatcher, and E.G. Wagner, "inital
Algebra Approach to the Specification, Correctness, and
Implementation of Abstract Data Types," Current Trends in
Programming Methodology, Vol. iV, Data Structuring, ed. R.T.
Yeh, Prentice-Hall, Englewood Cliffs, NJ, 1978.

Goguen, J.A., and K. Parsaye-Ghomi, "Algebraic Denotational
Semantics Using Parameterized Abstract Modules,” Stanford
Research Institute, TR CSL-119, Stanford, CA, February 1981.

Good, D.I,, R.L. London, and W.W. Bledsoe, "An Interactive
Program Verification System,” /EEE Transactions on Software
Engineering, Vol. 1, No. 1, 1975, pp. 59-67.

Good, D.I, R.M. Cohen, C.G. Hoch, L.W. Hunter, and D.F.
Hare, "Report on the the Language Gypsy, Version 2.0,"
Technical Report ICSCA-CMP-10, Certifiable Minicomputer
Project, ICSCA, The University of Texas at Austin, September
1978.

[Goodenough75)] Goodenough, J.B. and S.L. Gerhart, "Toward a Theory of

Test Data Selection,” IEEE Transactions on Software
Engineering, Vol. 1, No. 2, June 1975, pp. 156-173.

Guttag, J.V., "The Specification and Application to
Programming of Abstract Data Types,” Ph.D. Thesis,
University of Toronto, Toronto, Canada, September 1975,

Guttag, J.V, E. Horowitz, and D.R. Musser, "Abstract Data
Types and Software Validation,” Communications of the ACM,
Vol. 21, No. 12, December 1978, pp. 1048-1064.

ST




e ity e Jioe Shte vy S Shee et Shuh Sade Jeom st dn
RARS A Jar i Sav it Jiate St Sre i Sate RN SRS I

- 147 -

[Guttag80a]  Guttag, J.V., "Notes on Type Abstraction (Version 2)," IEEE
Transactions on Software Engineering, Vol. 6, No. 1, January
1980, pp. 13-23.

[Guttag80b] Guttag, J.V., and J.J. Horning, "Formal Specification As a
Design Tool," Proceedings on the Seventh ACM Symposium
on Principles of Programming Languages, Las Vegas, Nevada,
January 1980, pp. 251-261.

[Guttag82] Guttag, J.V., J.J. Horning, and J.M. Wing, "Some Notes on
Putting Formal Specifications to Productive Use," Science of
Computer- Programming, Vol. 2, No. 1, October 1982, pp.
53-68.

[Guttag83a]  Guttag, J.V., and J.J. Horning, An Introduction to the Larch
Shared Language, IFIP 83, Paris, France, September 1983
(forthcoming).

3
k
L
{
o
‘e
.
e . L ottt et e e
RPN SIS Y (DL S NN & PIINCNCNCP - NI S

[Guttag83b] Guttag, J.V., and J.J. Horning, Prefiminary Report on the Larch
Shared Language, Xerox PARC Technical Report, 1983
(forthcoming).

IT
Jhid

[Hoare69] Hoare, C.A.R., "An Axiomatic Basis for Computer
) Programming.” Communications of the ACM, Vol. 12, No. 10,
h October 1968, pp. 576-580.

[N oo g e e
i A- P

- [Hoare72] Hoare, C.A.R, "Proof of Correctness of Data
Representations,” Acta Informatica, Vol. 1, No. 1, 1972, pp. T
= 271-281. g

.
.

K

ce e
Lad

[Horning83]  Horning, J.J., private communication.

[Jackson75) Jackson, M.A., Principles of Program Design, London,
Acadeniic Press, 1975.

[Jones80] Jones, C.B., Software Development: A Rigorous Approach,
Prentice-Hall, 1980.

[Jones81] Jones, C.B., "Development Methods for Computer Programs
Including a Notion of Interference," Ph.D. Thesis, Oxford
University, England, June 1981.

[Kamin83] Kamin, S., "Final Data Types and Their Specification,"

Transactions on Programming Languages and Systems, Vol.
5. Mo. 1, January 1983, pp. 97-121.

-

" - PR
AT G LWL U, TR

Soe e e St N [ ol
. Vet et o . T e N S . TSP R CPLTC T e, . N
LRI I WP ORI WAk WP Gl [T WY ol O TE AL W WU UL W U W WL U R UPI T WPE R DG T vl \ S W S SIS SP ¥




[Kapur80a]

[Kapur80Ob])

[Katzan76]

[King69]

[Knuth69)

[Kownacki83]
[Lescanne83)

[Liskov77]
[Liskov79]

[Liskov81]

[London75]

[Luckham76]

--------------
......................
- > . - -

LI I
-----

. —d e A NS " Tt e B A 2, i JSme Rera et
(AR A GG Ity b bl D A A

Kapur, D., "Towards a Theory for Abstract Data Types,” MIT
Laboratory for Computer Science, TR-237, Cambridge, MA,
May 1980.

Kapur, D., and S. Mandayam, "Expressiveness of the
Operation Set of a Data Abstraction,” Proceedings of the
Seventh ACM Symposium on Principles of Programming
Languages", Las Vegas, Nevada, January 1980, pp. 139-153.

Katzan, H., Jr, Systems Design and Documentation: An
Introduction to the HIPO Method, New York, Van Nostrand
Reinhold, 1976.

King, J.C., "A Program Verifier,” Ph.D. Thesis,
Carnegie-Mellon University, Pittsburgh, PA, 1969.

Knuth, D.E., and P.B. Bendix, "Simple Word Problems in
Universal Algebras,” Computational Problems in Abstract
Algebra, Pergamon Press, Oxtord, ed. J. Leech, 1969.

Kownacki, R.W., "A Tool for Partial Semantic Analysis of
Formal Specifications,”" S.M. Thesis, MIT Department of
Electrical Engineering and Computer Science 1983
(forthcoming).

Lescanne, P., "Computer Experiments with The REVE Term
Rewriting System Generator," Proceedings of the Tenth ACM
Symposium on Principles of Programming Languages”,
Austin, TX, January 1983, pp. 99-108.

Liskov, B.H., A. Snyder, R. Atkinson, and C. Schaffert,
“Abstraction Mechanisms in CLU," Communications of the
ACM, Vol. 20, No. 8, August 1977, pp. 564-576.

Liskov, B.H., and Berzins, V., "An Appraisal of Program
Specifications,” Research Directions in Software Technology,
MIT Press, Cambridge, MA, 1979. '

Liskov, B.H., et al., CLU Reference Manual, Lecture Notes in
Computer Science 114, Springer-Verlag, 1981.

London, R.L., "A View of Program Verification," Proceedings
of the Internalional Conference on Reliable Software, April
1975, pp. 534-545.

Luckham, D., and N. Suzuki, "Automatic Program Verification
V: Verification-Oriented Proof Rules for Arrays, Records, and
Pointers,”" Stanford University, AIM-278, Stanford, CA, March
1976.

.........
......

.....
-----
MLV, o DR S R




..................................

el
LS A S ekttt
et P A R
ot N PR . ol

R e A A

e el

XA~ FON A

[McMulling2] McMullin, P.R., "DAISTS: A System for Using Specifications to
Test implementations,” University of Maryland, Ph.D. thesis,
1982.

[Mendelson64] Mendelson, E., Introduction to Mathematical Logic, D. Van
Nostrand Co., New York, 1964.

[Mitchell78]  Mitchell, J.G., W. Maybury, and R. Sweet, Mesa Language
Manual, Xerox Palo Alto Research Center, CSL-78-1, Palo
Alto, CA, February 1978.

[Musser77] Musser, D.R., "A Data Type Verification System Based on
Rewrite Rules," Proceedings of the Sixth Texas Conference
on Computing Systems, Austin, TX, November 1977, pp.
1A-22-1A-31.

[Musser80]  Musser, D.R., "Abstract Data Type Specification in the Affirm
System," IEEE Transactions on Software Engineering, Vol. 6,
No. 1, January 1980, pp. 24-32.

[Myers75) Myers, G.J., Reliable Software Through Composite Design,
Petrocelli/Charter, New York, 1975.

[Nakajima80] Nakajima, R., M. Honda, and H. Nakahara, "Hierarchical
Program Specification and Verification--A Many-sorted
Logical Approach,”. Acta Informatica, Vol. 14, 1980, pp.
135-155.

[Oppen75] Oppen, D.C., "On Logic and Program Verification," University
of Toronto, TR 82, Toronto, Canada, April 1975.

[Parnas72a] Parnas, D.L., "A Technique for Software Module Specification
with Examples,” Communications of the ACM, Vol 15., No. 5,
May 1972, pp. 330-3386.

[Parnas72b] Parnas,-D.L., "On the Criteria To Be Used in Decomposing
Systems into Modules,” Communications of the ACM"”, Vol 15,
No. 12, December 1972, pp. 1053-1058.

[Parnas77] Parnas, D.L., "The Use of Precise Specifications in the
Development of Software," Information Processing 77, ed. B.
Gilchrist, North-Holland Publishing Company, 1977, pp.
861-867.

[Reynolds77] Reynolds, J.C., "Reasoning About Arrays,” University of
Edinburgh, CSR-6-77, July 1977.




B N g g O D N Sy Sy g ey

......

[Robinson77)

[Schaffert81)

.................. I e T

......................... e _“.‘__.1
K
4
4

Robinson, L., and O. Roubine, "SPECIAL--A Speccification and
Assertion Language,” Stanford Research Institute, Stanford,
CA, TR CSL-46, January 1977.

Schaffert, J.S., "Specification and Verification of Programs
using Data Abstraction and Sharing,” Ph.D. Thesis, MIT
Department of Electrical Engineering and Computer Science,
Cambridge, MA, September 1981.

[Shoenfield67] Shoenfield, J.R., Mathematical Logic, Addison-Wesley, 1967.

[Standish73]

[Starks3]

[Suzuki75]

[Suzuki76)

[Thatcher78]

[vonHenke75)

[Wand79]

[Wegbreit76]

Standish, - T.A., "Data Structures: An Axiomatic Approach,"
Bolt, Beranek and Newman, Inc., Report # 2639, Cambridge,
MA, August 1973.

Stark, E.W., "Foundations of a Theory of Specification for
Distributed Systems," Ph.D. Thesis, MIT Department of
Eiectrical Engineering and Computer Science, 1983
(forthcoming).

Suzuki, N., "Verifying Programs by Algebraic and Logical
Reduction," Proceedings International Conference on
Reliable Software, 1975.

Suzuki, N., "Automatic Verification of Programs with Complex
Data Structures,” Stanford University, AIM-279, Stanford, CA,
February 1976.

Thatcher, J.W., E.G. Wagner, and J.B. Wright, “Data Type
Specification: Parameterization and the Power of
Specification Techniques," Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing, May 1978, pp.
119-132. -

von Henke, FW., and D.C. Luckham, "A Methodology for
Verifying Programs,” Proceedings International Conference
on Reliable Software, 1975.

Wand, M., "Final Algebra Semantics and Data Type
Extensions,” Journal of Computer and System Sciences, Vol.

19, No. 1, August 1979, pp. 27-44.

Wegbreit, B, and J.M. Spitzen, "Proving Properties of
Compiex Data Structures,” Journal of the ACM, Vol. 23, No. 2,
April 1976, pp. 389-3986.

v

=]
e




q\‘r\r A Nk & 4 ) ik ved wdoh Adh E RSN A AL R A O A N S e A AN RS Rt AS At AShe RS
¥ -151 .-
- [Yelick83] Yelick, K.A, "The CLU Interface Language Reference

2N : Manual," MIT Department of Electrical Engineering and
N Computer Science, Cambridge, MA, August 1983 -
_ (forthcoming). f t:-i
w [Yonezawa77] Yonezawa, A., "Specification and Verification Techniques for _1
- . Parallel Programs Based on Message Passing Semantics,"” o
*e ~ MIT Laboratory for Computer Science, TR-191, Cambridge, o

MA, December 1977. .

[Yourdon78) Yourdon, E., and L.L. Constantine, Structured Design: K%

Fundamentals of a Discipline of Computer Programs and
Systems Design, 2nd ed., Yourdon Press, New York, 1978.

- ‘. « o -
R oo
v
.- e "
[.,' PP S 4

y
b

[Zachary83] Zachary, J.L.,, "A Syntax-Directed Tool for Constructing

R Specifications,” S.M. Thesis, MIT Department of Electrical 1
j:i Engineering and Computer Science, Cambridge, MA, March 4
» 1983. *

[Zilles75] Zilles, S.N., "Abstract Specifications for Data Types," IBM
Research Laboratory, San Jose, 1975.

-
-
o)
ot

R N

” o

S . -\‘~q

. R

S

.

J o

oo~

DA

-, 3 -4

D ) ..

o <

e

A A
o,

-
>

\I*
R ., -
R A2 B )
¥ o ;
Dot etalt
A NN

Ol -
)

¥ "\
7'.-- o :1
v . A
x e
» ]
~
3 =
"' -."*1
B \ RN
A -:_'-1
[
{ -—#
Y B
v R e
5 .
." ‘V."1
l) .‘_~-;
L)
H B
) =y
l o - ‘
o
7

ST N

i
L]
.
20
5
e

IR
------




&

Lyl i
[P T SRS

Ll W™

"7

&

wd & 'f_l

L

- RSN

:

J J:

-l

'''''

Chgr i i i it S I ARt N A o ie i gl g A8 A Sl AU A AL S Rl i gl el i “-gA“'"f..'—'~‘~.'._v.v‘vv—~..'?- ApCi

Appendix | - Interface and Trait Specifications

Equivalence: trait
introduces
€q: E, E — Bool
constrains [eq] so that for all [x, y, z: E]
eq(x,x) = true
eq(x,y) = eq(y.x) _
((eq(x,y) A eq(y,z)) = eq(x,z)) = true

Figure 3. Equivalence Trait

SetOfE: trait

includes Integer, Equivalence

introduces
empty: - C
add:C,E—~C
remove: C,E—~»C
has: C, E —» Bool
isEmpty: C — Bool
card: C — Int

closes C over [empty, add]

constrains [C] so that for all [s: C, e, e1: E]
remove(empty; e) = empty
remove(add(s.e), e1) = if eq(e,e1) then remove(s,e1) else add(remove(s,et),e)
has(empty, e) = faise
has(add(s,e), e1) = if eq(e,e1) then true else has(s,e1)
isEmpty(empty) = true
isEmpty(add(s,e)) = false
card(empty) = 0
card(add(s,e)) = if has{s,e) then card(s) else 1 + card(s)

SetOfint: trait
includes SetOfE with [SI for C, int for E]

Figure 4. SetOfE and SetOfint Traits

.
Rl R I I L I LTI IC I RN
.

DRICRE)
oy "

ThJ

.....................................
------------------------

. e e

- A
S e

AN S T

[ AT S N
MR .

-
< ke

o

7
e e ety
tet et
TP R ¥ 4




! = e A
’ VRNV YN

R /-

L
PR

- -

P

set = cluster is singleton, union, delete, size
uses SetOfint
provides mutable set from S!

singleton = proc (i int) returns (s: set)
uses SetOfint
pre true ‘
post s¢ = add(empty, it) A new s A mutates @ A returns
end

union = proc (s1, s2: set) returns (s3: set)
usus SetOfint
pre true
post ViiInt [has(s34,i) = has(s1t,i) V has(s2t,i)]
A new s3 A mutates @ A returns
end

delete = proc (s: set, i: int) signals (emptiesSet)
uses SetOfint
pre true
post [((card(st) > 2) V ~hzs(st,it)) =
(s = remove(st,it) A mutates s A returns)] A
[((card(st) .eq 1) A has(st,it)) =
mutates @ A signals amptiesiet] A
new 2
end

size = proc (s: set) returns (i: int)
uses SetOfint
pre true
postié = card(st) A new @ A mutates @ A returns
end
end

Figure 9. Set Cluster Specification (SetClusSpec)

s

v
r
2

SO ¥




PN % - e R L e e el A O I e R

stack = cluster is empty, grow, read
uses StackOfint
provides mutable stack from Stkl

empty = proc () returns (st: stack)
pre true
poststé = null A new st
end

grow = proc (st: stack, i: int)
pre true :
mutates st
poststé = push(stt, it)
end

read = proc (st: stack) returns (i: int)
pre ~isNull(stt)
postil = top(stt)
end

end stack

Figure 12. Stack Cluster Specification

............................

......




SERP S
7
.

: - ~ =
3 StackOfint: trait -5
:' includes StackOfE with [Stkl for C, Integer for E] RS
' StackOfE: trait “i
} includes Integer o
N introduces e
N null: - C R
~ push:C,E—C —--;
top:C—E N
pop:C—-C ]
isNull: C — Bool : T

isin: C, E > Bool 0
size: C — Int ]
closes C over [null, push] Y ,;!

constrains [C] so that for all [s: C, e,e1: E} SRR
top(nuil) exempt )
top(push(s.e)) = e “

pop(null) exempt )

pop(push(s.e)) = s

isNull(null) = true

isNull(push(s,e)) = false

isin(null,e) = false

isin(push(s,e),e1) = if e .eq e1 then true else isin(s,e1)
size(null) = 0

size(push(s.e)) = size(s) + 1

Figure 13. Traits for Stacks




.........

Appendix Il - Proofs

11.1. Validity of a Type induction Rule
For the predicate,
P(t) = ~isNuli(tt) = card(top(tt)t) < 64.
we show the validity of th? hypotheses of the following type induction rule.
Hypotheses:

HB true {empty)} ~isNuli(st$) = [card(top(sté)+) < 64]

HP ~isNuli(s11) = [card(top(s11)t) < 64] {grow}
~isNuli(s2¢) = [card(top(s24)$) < 64]

HM s = top{vit) A ~isNuli(vit) = [card(top(v1t)t) < 64] {delete}
~isNuli(v1$) = [card(top(v1$)$) < 64]

Conclusion: true {S) Vt:stack[set] ~isNull(td) = card(top(t4)+) < 64 for all
Proof:
1. HB: true {empty} ~isNull(st}) = [card(top(sté)+) < 64]
Th(empty) gives the axiom true {empty} empty.post(st)

where empty.post(st) = sté = nulil A new st A mutates @ A returns
empty.post(st) = P{st/t] is valid because

sté = null = [~iSEmpty(sté) = card(top(st)+) <64],

which is true since ~isSEmpty(sti) is false.
HB is valid by the rule of consequence.

2. HP: ~isNull(s1t) == [card(top(s1t)t) < 64] {grow}
~isNull(s24) == [card(top(s24)+) < 64])

Assume ~isNuli(s1t) = card(top(s1t)t) <64
We have the axiom, card(st) < 64 {grow} grow.post(s1, s2, s)
where grow.post(s1, 82, 8) =
82¢ = push(s1t,8) A new s2 A mutates & A returns

-4

We have that card(st) < 64 < |
= card(s$) < 64, from mutates @

== card(top(push(s1t,s))+$) < 64, from Th(StackOfSS) o




A
N -157 -
‘ = card(top(s2+)+) < 64, from substitution for s24 from grow.post(s1, s2, s)
Ly = [~isNull(s2}) = [card(top(s24)}) € 64]] (a weaker assertion)
Q_’ HP is valid by the rule of consequence.
P, 3.HM: s = top(vt) A ~isNull(v11) = [card(top(vi)t) < 64] {delete}
A ~isNull(v1$) = [card(top(v1$)+) < 64]
A Assume ~isNuli(v11) = [card(top(v11)t) < 64]. The post-condition of delete is:
i [((card(st) > 2) V ~has(st,it)) =
A (s¢ = remove(st,it) A mutates s A returns)] A
) [((card(s?) .eq 1) A has(st,it)) =
. mutates @ A signals emptiesSet] A
o new @
Assume ~isNull(v1+). With the term top(v1t) substituted in for s, we have:
(a) ((card(top(vit)t) > 2) V ~has(top(vit)t,it)) =
C [top(vit}d = remove(top(vit)t,it) A mutates top(vit) A returns]
% " Since card(top(v1t)t) < 64 (from the assumptions),
» card(remove(top(v1t)t,it)) < 64 by Th(SetOfint)
‘_ card(top(v11)+) < 64 by substitution,
Z card(top(v1d)¢) € 64 since the object v1 is not mutated.
' (Only top(v11) is possibly mutated.)
™ (b) ((card(top(v11)t) .eq 1) A has(top(v1t)t,it)) =
. A card(top(vit)t) .eq 1 A mutates @ A signals emptiesSet
)
P Since card(top(v11)t) < 64 (again, from the assumptions),
3 card(top(vi$){) < 64, from mutates .
-3 :
3 HM is valid by the rule of consequence. , ' ]
g
43 il.2. Proof of Satistaction
.. We now give an example of a cluster that satisfies a cluster specification. Figure 18
"‘ gives a set cluster speciﬁcation.' Figure 19 gives an implémentation of this cluster
specification. The implementation uses the rep type, array[int], for which a cluster
specification is given in Figure 20. The ArrayOfint trait used to define the arrayfint] type is
given in Figure 21.
Y
n.‘
s‘;
)




set = cluster is create, insert, size, member
uses SetOfint
provides mutabie set from 8!

create = proc () returns (s: set)

pre true , o
posts{ = empty A new s A mutates @ A returns SO
end e

insert = proc (s: set, i: int)
pre true - )
post s = add(st,i) A new & A mutates s A returns
end :

size = proc (s: set) returns (i: int)
pre true
post il = card(st) A new & A mutates @ A returns
end ‘

member = proc (s: set, i: int) returns (b: bool)
pre true
post has(st, i) = b¢ A new J A mutates J A returns
end member

end

Figure 18. Set Cluster Specification

We sketch the proof of satisfaction below. We prefix procedure names by "T$" to
distinguish them from trait function names. We expect machine tools to aid the implementor
in performing much of the symbol manipulation found in these kinds of proofs [Boyer79,

Good75, Good78, Musser77, Musser80).
1. Let the abstraction function be:
A: TtoS(array[int]) —» TtoS(set)

A(a) = if size(a) = O then empty
eise if size{a) > 0 add(A(remh(a)), top(a))

2. The rep invariant, Ri(a), is:

Va:Al [low(a) = 1 A size(a)2>20 A NoDups(a)],
where NoDups(a) = Vi,j [fetch(a,i) = fetch(a,]) =i = j].




3 PRIt VN

- TN ‘R XW LR U L W

¥ e

ansabad Aonfaded

bh" s e . o

P Ry

11

set = cluster is empty, insert, size, member
rep = array[int]

create = proc () returns (cvt)
return (rep$create(1))
end create

insert = proc (c: cvt, i: int)
if ~member(up(c), i) then rep$addhic,i) end
end insert

size = proc (c: cvt) returns (int)
return(irep$size(c))
end size

member = proc {C: cvi, i: int) returns (bool)

k: int : = rep$low(c)

while k < rep$high(c) do
ifi = rep$fetch{c k) then

returm(true) end

K:=k+1
end-

return(false)

end member

end set

Figﬁm 19. Implementation of the Set Cluster Specification

3. For each procedure in the set cluster we must show it satisfies its corresponding pr'dce’dure
specification in the set cluster specification under A. For our simple example, in most cases
this reduces to showing that the post-condition of some procedure specification of the
arrayfint] cluster specification implies the post-condition of the corresponding prdcedure
specification of the set cluster specification. We also need to show that the rep im)ariant

hokds for each procedure of the set cluster implementation.

3.1. set$create: Let cd = create(1) from array[int]'s create.post. Show thatsé = empty.
st = Act) ‘
= A(create(1)) by substitution
= empty by the definition of A, since size(create(1)) = 0.

R e e
Frd LA PR R T A N
A (i * )Y W




-160.- e
- 1
3{1 array[int] = cluster is create, addh, size, low, high, fetch 1
2. uses ArrayOfint _j
{ provides mutable array[int] from Al
‘ create = proc (i: int) returns (a: array[int])
- pre true .
. post a} = create(1) A new a A mutates @ A returns
end
: _ addh = proc (a: array[int], i: int)
< pre true .
15;; post al = addh(at,i) A new @ A mutates a A returns
2 end
N size = proc (a: array[int]) returns (i: int)
pre true
i post it = size(st) A new & A mutates @ A returns
o end
- o
, : low = proc (a: array[int]) returns (i: int)
Y pre true 3
" post il = low(st) A new & A mutates & A returns -3
N end :;j
» high = proc (a: array[int]) returns (i: int) -
el pre true . Ca
A post i{ = high(st) A new @ A mutates & A returns e
g end =]
g
fetch = proc (a: array[int), i: int) returns (j: int) signals (bounds) .
: pre true '“"]
ot post [low(at)<i<high(at) = (j¢ = fetch(at,i) A mutates 3 A returns] A T‘_f:,
¥ [(Klow(at) V Dhigh(at)) = (signals bounds A mutates @)] e
Anew @ >
end array[int]
!
_j‘ ' Figure 20: Array Cluster SpeclficatI?n
~ .
2
! We know that s is new since rep$create returns a new object, i.e., new ¢ = new s. Since
::-.‘ rep$create does not mutate any object, the mutates @ assertion is true. Thus, the
-d post-condition of create is satisfied. We show that the rep invariant, RI'(c4), is established:
?y low(cé) = low(create(1)) = 1, from Th(ArrayOfint).
”~ size(cd) = size(create(1)) = O from Th(ArrayOfint). .
5 NoDups(ct) = NoDups(create(1)) = Vi,j:Int [fetch(ct,i) = fetch(cd,j) =i = ],
In Th(ArrayOfint), fetch(create(x),y) is defined, but exempt.
o Letv = fetch(create(1),i) and w = fetch(create(1),).
4
¥

R R T I T A T T
’.l‘.n’.w.<.4‘~'.- .............................

...........................

------------ e G YR . - . ot B S
AL T » D S T T S U SR L TR
. v <, ¢ W et A, " -_~_-.-_.‘..._._.‘.‘..,..‘. R ‘._-.'_...:“‘."4‘.‘, e e S T .

e Ol
e, -
BERCRE W W .




A AASMED

—

o7,
G B R R R )

! :’4,4 i!L o

ArrayOfint trait
includes Array [Al for A, int_obj for E]
introduces

empty: Al = Bool
size: Al — Int
isin: Al, int_obj — Bool

constrains [Al] so that for V [k: Int, i,j: int_obj, a: Al}

empty(create(k)) = true

empty(addh(a,i)) = false

size(create(k)) = 0

size(addh(a,i)) = size(a) + 1

isin(create(k)) = false

isin(addh(a,i),j) = if i .eq j then true else isin(a,j)

Array: trait
includes Integer, Elem
introduces

create: Int — A
addh: A,E— A
remh:A— A

low: A = Int

high: A — Int
fetch: A, Int—E
store: A, Int,E— A
size: A -+ Bool

closes A over [create, addh]
constrains [A] so that for all [i,i1,i2: Int, e,e1,62: E, a: A}

remh(create(i)) exempt

remh(addh(a,e)) = a

low(create(i)) = i

low(addh(a,e)) = low(a)

high(a) = low(a) + size{a) - 1

fetch(create(i1),i2) exempt

fetch(addh(a,e),i) = if i .eq (low(a) + size(a)) then e else fetch(a,i)

store(create(i1),i2,e) exempt

store(addh(a,e1),i,e2) = if i .eq (low(a) + size(a)) then addh(a,e2)
else addh(store(a,i,e2),e1)

size(create(i)) = 0

size(addh(a,e)) = size(a) + 1

Figure 21. ArrayOfint and Array Traits

oL [ .....‘.
1,4 RPN

-
!
.
"
S
-t
“
>._1
o«
..
1]
B
-
R
.

Thenv = w= i = j, and so NoDups(c+) holds.

3.2. set$insert: Let st = A(c?). Show thatsé = add(st, i).
Case 1: ~member(st, i)
Letcé = addh(ct.i) from addh.post.

oo,
e
PR

R
aila.ca 2

- " . .
. . 3
l".L‘ :

BRI
aaim s haa

v a
it

e
."l

"
TN g =LIRN

(
3

»
:
RN .
PP PE Y 3

x T
li‘ ‘- L]

. -
R A
PRI S

o e m e e W .
R




e e S s s N T T T s PR AL e e A RS S ub ek Sagr susi s Jeen aom-

st = A(cd)
= add(A(remh(ct),top(ct)))
= add(A(remh(addh(ct,i))), top(addh{ct,i}))
= add(A(ct), i)
= add(st,i)
Case 2: member(st, i)
=» has(st, i)
= add(st, i) = st from Th(SetOfint)
st = A(ct)
= A(ct) sincect = ¢t
= §t

Since set$member (see 3.4 below) and rep$addh do not create new objects, the new @
assertion of insert's post-condition is true. The mutates assertion is true since the value of
the input set object, s, might be changed. Thus, the post-condition of insert is satisfied. We
show that the rep invariant is maintained:
low({ci) = low(addh(ct,i)) = low(ct) =
size(cl) = size(addh(ct,i)) = 1 + snze(Cf), which is true since size(ct) > 0.
NoDups(ct) = NoDups(addh(ct,i))
Vj,k:int [fetch(addh(ct,i),j) = fetch(addh(ct,i),k)]
= Vjk:Int[(if ] = low(ct) + size(ct) then i else fetch(ct,j)) =
(if k = low(ct) + size(ct) then i else fetch(ct,k))]
= j = k since NoDups(ct).

3.3. set$size: Let st = A(ct). Show that size(ct) = card(st). We prove this by induction.
Case 1. ct = create(i).
snze(cf) =0
= card(empty)
= card(A(ct))
= card(st)
Case 2: ¢t = addh(x,y). The induction hypothesis (IH) is size(x) = card(A(x))
From NoDups, we know that ~isin(x,y).
From Lemma (below) ~isin(x,y) = ~has{A(x),y)
Show size{ct) = card(st).
size(ct) = 1 + size(x)
1 + card(A(x)), by IH
card(add(A(x),y)) since ~has(A(x),y)
card(add(A(remh{addh(x,y))),top{addh(x.y))))
card(A(addh(x,y)))
card(A(ct))
card(st)

Since rep$size neither creates new objects nor mutates existing ones, the new & and
mutates @ assertions of size’s post-condition are both true. Thus, the post-condition of size
is satisfied. We show that the rep invariant is maintained. Since rep$size mutates nothing, ¢
= Ct,

low(cé) = low(ct) = 1,

size(ct) = size(ct) 2 0,

........

»

et gt -
" e
AR .
U At I ) M
Snd o n B

B T et
L LS
ey W'

LU B I
o s o

+ 4

Wt T e

)

&b




A 8.9 2.

LSOO -
:

a8
‘ean

P AL YR

-

P 37 M I

By -

XN,

[

- Y9y

(5
4™
%
% "
o’
-

LA

Cd
%]
[
.

NoDups(ct) = NoDups(ct).

3.4. set$member: Let st = A(ct) and let b be the boolean returned by member. Show that
has(st,i) = bs.
Case 1: empty(ct) = (isin(ct,i) = false) =
(has(A{ct),i) = false), by Lemma below.
Case 2: The loop invariant is inbounds(k) and Vd:Int low(ct)<d<k [fetch(ct.d) # i]
where inbounds(k) = low(ct)<kt<high(ct)
Case2.1:i = j
At the return(true) statement we know
that bl = true A isin(ct.,i) = bi.
isin(ct,i) = has(A(ct),i) = has(st,i), by Lemma below.
Case2.2:i#]
We increment k and go to the start of the loop.
At termination of ioop, kt = high(ct)+1 A
Vd:int low(ct)<d<high(ct) + 1 [fetch(ct.d) # i]
= Vd:int low(ct) <d<high(ct) [fetch(ct,d) # i]
= (isin(ct,i) = false)
= (has(A(ct),i) = false), by Lemma below.

" Since rep$iow, rep$high, rep$fetch, and int$add do not create new objects nor mutate

existing ones, the new @ and mutates @ assertions of member's post-condition are both
true. Thus, the post-condition of member is satisfied. The rep invariant is maintained
because rep$low, rep$high, rep$tfetch do not mutate any objects, and so ¢4 = ct, as in the
case for set$size. :

Lemma: Vx:Al [isin(x,i) = has(A(x),i)]
Pf By sort induction.
Case 1: Let x = create(k)
isin(x,i) = false
has(A(create(k)),i) = has(empty.i) = false
Case 2: Let x = addh(y,k)
isin(x,i)
= isin(addh(y.k),i)
= Ifi=k then true else isin(y,i)

has(A(addh(y.k),i)

= has(add(y,k),i)

= Ifi=k then true else has(y,i)

True, by induction. (Proof of lemma)l
(Proof of set)i

..........

N .
PR
- A e

(RS T t

LIRS Al PR
‘s s .";"!f l“‘a‘l"l""ll Y N

PPN

Tl
e
E -
b e v e

]
._j‘,"
7

\
<
B
N
N
‘_vq
1




Y c)
.....

OFFICIAL DISTRIBUTION LIST

A SR

roe e -
. P

.
’l
PR
' ata e

2 Director
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Artlington, VA 22209

LRI
;;E‘.‘:.".'c.‘

3 Office of Naval Research
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. Robert B. Grafton

Code 433

PR '
T T
. > .
s ‘e’ i
SN

e e
ved

s . .

N BTN

2 Dr. E.B. Royce
Head, Research Department
Code 38, Naval Weapons Center
China Lake, CA 93555

6 Director
Naval Research Laboratory
Washington, D.C. 20375
Attn: Code 2627

2 National Science Foundation
Office of Computing Activities
1800 G. Street, NW
Washington, D.C.
Attn: T. Keenar,, Program Director

12 Defense Technical Information Center
Cameron Station
Arlington, VA 22314

OO §

1 Captain Grace Hopper, USNR
NAVDAC-00H
Department of the Navy
Washington, D.C. 20374

& - $347

ks

L oy
L.!.'A:

e VY

% B g




e
.

!

h AN
N

i
pEa
LA

ERRINN




