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‘5 Introduction
<
i: ->Finite field arithmetic may be efficiently applied for
Ei implementing signal processing architectures. The fundamen-
. tal theoretical work in this area was done by Matluk and Gill’
Lg ?—%tf. They showed how convolutions over a residue class ring,
if modulo an integer M, the situation for all implementations
o using a finite digital representation, may be separated into
%} | an equivalent system of serial and parallel sections. If the

! integer M has the prime factor expansion,
1

= é € ©2 s . .
i: i M = Py s Pyv o ceneey Pg r P; a distinct prime,
| .
ﬁ: ; each section in this decomposition performs a convolution
- f employing finite field arithmetic. The general decomposi-
;g i tion is shown in Figure 1. Furthermore when M contains no
EE ! primes raised to a power, this decomposition consists only of
: ! parallel sections, each using arithmetic associated with a
Jé ) : distinctive prime. Recently these techniques have been
{: expanded and fast algorithms for use with signal processing
Tt \ systems have been developed [7].
}3 \“‘\— This report presents scveral new approaches for incor-
E; porating error-correcting codes with signal processing
7i operations yielding fault tolerant systems. Fault tolerant
35 levels can be distributed throughout the system's architec-
?5 ture. Such architectures will become necessary when very
?1 sophisticated and dense systems are implcmnented with Very —~—') P;3
X
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Figure 1
Serial-Parallel System Decomposition of Convolution
Over a Residue Class Ring Modulo M




, . Large Scale Integratione (VLSI).

This introduction describes the basic approach for in-
cluding error-correcéing codes with the convolution operation.
Several architectures are developed that will protect against
permanent and temporary failures in the hardware. The theore-
tical support for these techniques is given in succeeding

sections. Further details are contained in Appendices A-F.

e , The desired signal processing operation is equivalent
% . to the multiplication of two polynomials a(x) and b(x) where
éi a(x) denotes the input sequence and b(x) corresponds to the
; desired filter impulse response. It will be assumed that the

degree of their product does not exceed an integer, k, and that
the coefficients of the polynomials are from a suitably chosen
finite field, GF(q). Furthermore the proper sampling and

fl quantization of the input and weighting sequences is considered
to have been accomplished in accordance with accepted practices
[6]. The required convolution operation is stated in mathe-

matical terms as:

a(x) b(x) ; degree [a(x)b(x)] < k
'; a(x), b(x) € GF(q) [x]
% Cyclic codes are described in terms of polynomial alge-
f bras where the code is a special subspace called an ideal
f; [2-5]. All polynomials in the algebra are reduced in a
?? cyclic fashion and an ideal is gencrated by taking multiples
;: of a single genevator polynomial. Polynomial multiplication
»
-
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»
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involving an element of the code space always produces another
element in the code. Cyclic codes with their error-protecting
structure are ideal for digital filtering because polynomial
multiplicaitons are the fundamental operations in both realms.
Throughout this presentation the cyclic code will have length’
n and the integer k will denote the number of information
digits represented in each codeword. The polynomial algebra
underlying the cyclic code is defined modulo the polynomial

(x"

- 1), [2-5].
Suppose that one of the polynomials in the product a(x)
b(x) is replaced by a codeword from the cyclic code with

generator polynomial g(x). The filter sequence represented

by b(x) may be encoded.

bi{x) + [bi{x) g(x)] ENCODING OF
FILTER RESPONSE
When the encoded filter response is multiplied by a(x), a
codeword results. The desired filter result is the informa-
tion part of the codeword since the degree of a(x) b(x) is -

less than k and the degree of the generator g{x) is (n -k).

a({x) [b(x) g(x)] = [a(x) b(x)] g(x) CODEWORD
DESIRED
FILTER
RESULT
The polynomial a(x) represents the input to the filter, but
since b(x) corresponds to a fixed filter response and g(x) is

a known encoding polynomial, [b(x) g(x)] may be precomputed

and stored.
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Figure 2 shows the system philosophy for employing the

code space. This represents the general case of a non-

systematic code since the information digits are not assigned

to fixed positions in the codeword [5]. The special case of

182 58 R0y 0 VY,

systematic codes will be discussed shortly. 1In Figure 2,

two extra subsystems that provide the protection are indicated.

. g
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Bat Leowrtn?,
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4
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One is the Error Detector/Corrector which extracts the correct
desired product from the output of the polynomial multiplica-
tion section while the other is an Error Status Check system
which determines if errors have occurred and whether they are
- from the multiplication section or lie in the Error Detector/
Corrector itself. Clearly it is possible for two of the three
a subsystems to introduce errors that go undetected. However
the probability of this type of error is substantially less
than an unprotected system.

! Error-correcting codes were designed for detecting and

correcting additive errors. When hardware failures lead to

N

S
PP

these types of errors at the system's output, the code can

e

detect and may also be used to correct the errors. However

..‘,

it will also be shown that the code can detect and correct

other types of errors that arise in hardware systems.

DI

Systematic Form of the Code:

- Y

A systematic form of the cyclic code may be used in the

LRRRIR

system described above. 1In such a form the desired filtering

LS o 5o

~ opera’ ‘on's o put appears in an unaltered format at the out-
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put of the polynomial multiplication subsystem. Thus no

60

o

further operations are required to extract the result if no

T
i 4

. 8
U 8
e

errors have been made. However in this case two parallel

similar subsystems are required. One subsystem calculates the

502500

=3
o

direct filter output while the other computes the corresponding

e

parity-check digits.
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]
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For the systematic form the stored encoded filter weights,

e

Yy

labeled b(x)g(x) in Figure 2, are computed differently. The
- term xn-kb(x) is reduced modulo g(x) to obtain the parity-
check portion of the codeword denoted by [-p(x)]. The
Euclidean Division Algorithm when applied to xRy (x) using

g(x) as the divisor [5] gives:
2 x"K¥p(x) = f(x)g(x) + p(x) ; deg p(x)=deg g(x) = n-k (1)

The polynomial [xn_kb(x) - p(x)) is a codeword, and more
importantly the parity-check digits represented by [-p(x)] are
confined to the lower ordered (n-k) coefficients. On the other
hand the weighting contained in b(x) appears in the higher

&: ordered k positions. Thus the codeword may be separated into
two polynomials, one representing the parity-checks and the

other, the desired weighting.

Fy
AT
2 a0

-.l‘

L)
P R ]

[x"'kb(x)] + [-p(x)] = CODEWORD

FILTER PARITY-CHECK
WEIGHTING PART
PORTION

p "1,“;,:?__.__..4 - 4%
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When multiplied by a(x) the desired result may be segre-
i gated into two portions as shown in Figure 3 where two similar i

subsystems are required. Only linearity is necessary to insure

Tent, - S,

this separation into two parallel subsystems. Since the degree

AL

i [a(x)b(x)] is less than k, the digits in [xn-ka(x)b(x)] corre-
spond to the desired filter output. On the other hand though
[-a(x)p(x)] may have degree greater than (n-k-1). These
digits are only necessary when the error detection and correc-
tion systems are employed. The two parts need only be combined
before entering the error control subsystems as shown in Figure
3. |

The systematic and nonsystematic code forms lead to similar
architectures. 1In developing the general system architecture
the nonsystematic form will be considered. The basic principles
are applicable in both situations, and only minor modifications
are necessary for the systematic case. The system shown in

Figure 2 will be studied in detail with particular attention

devoted to the subsystem labeled polynomial multiplication.

Polynomial Multiplication Using Component Polynomials:

Associated with the code space are irreducible polynomials
gi(x), i=1, 2, ..., t, where the number t is determined by
the code space. These polynomials are factors of the parity-

check polynomial, h(x).

h(x) = g. (x)

1 1

W =t

i




: \‘ ‘ _-- ---:.- |‘ .||_|
. . \\ )
Lo
) A00D DILVWILSAS V ONISN WALSKS ONIIHOIEM TVLIOIA
, € @an¥tjy
3 [(x)d)
" SIHOIAM QIYOLS
g
2
.\ )
. NOILVOTTdILINK
w.. )
8 0 d)e TVIWONATOd AIIIJ
W~.
3
_.“. )
104100 -
w @I LOTUA0D YOLOTWNO0D - (x)e
g — [((x)a] -
- (axe /¥013313a ¥owud N SIHOIAM QIWOLS 1NdNT
., [ (x)q¢x)e)
q-u
ov1d . YDTHD - e .
T
< | LITHS
¥OW¥3 SOLYLS ¥ou¥d _ NOILVOITAILINK
. : ' T.
(x)q(x)® TVIKONXTOd
1nd1no 1o3avid
- — .
(x)q(x)e o
MNIOINS NNNRNNGG . TROIRARAL - OSOOIGAD JOOAARRr CRAASARLE DAL - SIRRSRIRY, UMYV L | GRK




)
»
b

.

)
-4

<Avr.w<,
TR I
- LR 4‘1.0 F B

IR S

............

10

Each irreducible factor in turn defines an idempotent ei(x),

with the defining property:
e2( ) = k ) ; 1i=1, 2 t 3
;(x) = e. (x ;s 1 =1, 2, ..., (3)

These idempotents permit an expansion of [a(x)b(x)g(x)]
using component factors modulo the individual factors gi(x),

i=1, 2, ..., t.

t
a(x) b(x) g(x) = izl a,(x) b (x) e (x) (4)
where
ai(x) = a(x) mod gi(x) (5)
and
bi(x) = b(x) g(x) mod gi(X) (6)

The polynomial multiplication subsystem of Figure 2 may be
replaced by t parallel subsystems each involving component
multiplications of the respective factors ai(x) and bi(x)
ei(x). Thg t results are recombined according to equation
(4).

. The terms bi(x) represent fixed weigbts which may be
stored. The theory shows that each component mul£iplication
ai(x) bi(x) is equivalent to a product of corresponding field
elements from a finite field defined by the irreducible fac-
tor gi(x). The field representation of this product addresses
shifted versions of the idempotent ei(x), and a sum of the

necessary versions gives the factor [ai(x)bi(x)ei(x)]. This

RS s Al e Snd Bedh et s el o B se e and el aalh Sadit e Mt -t i dl St i adin st inil P
R PR R P | R B B TR .
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v
. is shown in Figure 4a where the reduction modulo gi(x) is
‘s
a1 an integral part of the field operations. The t products
. each generated in this way are combined according to eguation

v
9, 0
Pl

P R

v

(4). The complete system appears in Figure 4b.

e .
.,

Use of the Transform Domain:

..
I

An alternate implementation of the polynomial multipli-
cations can be performed in a transform domain. The mapping
into this domain involves a primitive n th root of unity a
which lies possibly in an extension field which will be
denoted by GF(qm), m>1l. However under certain conditions it
may be possible to choose n so that the primitive root, a
falls in the base field GF(g). The polynomial multiplications

of the component polynomials may be transformed to an equiva-

lent series of multiplications of the related transform
coefficients. The inverse transform of these results gives the
desired product. The number of nonzero transform coefficients
needed to implement the product ai(x)yi(x) is less than the
degree of the correspondingly indexed irreducible factor gi(x).
Furthermore the transform coefficients may be determined by
forming successive g th powers of a single transform coeffi-
cient. The realization of this device is simpler than a
general multiplier system for the coefficient field GF(qm).
Figure 5 shows the transform domain approach to polynomial
multiplication. The transform coefficients affiliated with
the component polynomials ai(x) are labeled [;ij] while those

corresponding to the Yi(x) components, by [;ij]. The number

------- .\‘.\-
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IF £, = DEGREE [g;(X)], COMPONENTS
a;(X), bi(X) BEHAVE AS IF FROM GF(p%i)
[a4(X)b; (X)

mod gi(X)] <> FINITE FIELD MULTIPLICATION

STORAGE OF
SHIFTED VERSIONS
OF IDEMPOTENT ei(X)

O_SHIFT

N
w1 SHIFT
- - - - - - ai(x)bi(X)ei(X)

Y%

SYMBOL

ai(x)
—» FINITE
FIELD
b.(X) |MULTIPLICA-
1 TION
ai(X)
i

ai(X)bi(X)ei(X)
Q-i(x)——>

b.(X)

Fiaure 4a

Multiplication of One Components

Polynomial

Fioure 4
Multiplication Usina Components
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of nonzero terms in [Yij] is guaranteed to be less than the

degree of g, (x) and so only coefficients in the list, {aij
with similar indices need to be determined. The locations of
the nonzero terms are known in advance and are determined by

index numbers in certain subsets of integers, the cyclotomic

subsets modulo n.
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Space Decompositions

BT

The section describes the component decompositions of the

code space. The general nature of minimal ideal expansions is

b-..
¥y
<

RS
ke
AN
S
e
el

presented first followed by the application of minimal ideals-
to cyclic codes. The basic properties displayed in this sec-
tion are also used in certain aspects of the transform domain
implementation. All properties are stated without proofs but

the supporting developments are relagated to the appendices.

Minimal Ideal Decompositions:

If the code length n and the size of the ground field g
are relatively prime then the polynomial (x™ - 1) may be
factored into distinct irreducible factors. (Say for defi-
niteness that there are T factors.)

T
(x® - 1) = T g;(x) ; (nq =1

i=1l (7)

gi(x) irreducible

The ring of polynomials GF(q) [x]}, reduced modulo (x® - 1) ‘is
a residue class ring in which the minimal ideals are defined
by the irreducible factors in equation (7). The following

notational conventions are introduced.

A = GF(q) [x]/ “x“ - 1” ; Residue Class Ring (8)

“f(xﬂ) denotes principal
ideal generated by f(x).
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mi(x) = iig;%;%L ; MINIMAL IDEALS (9)
Mi = ((mi(xq) i=1,2, ..., T

The fact that each mi(x) as defined in equation (9), gener-
ates a minimal ideal is demonstrated in Appendix A.

Each minimal ideal Mi also contains an idempotent ei(x)
defined by considering units modulo gi(x) in the minimal
ideal Mi. It also generates the same principal ideal. An

idempotent obeys the following identity
el(x) = e, (x) IDEMPOTENT (10)

The idempotents and their properties play a central role in
the results to follow. For example the components necessary
for a direct sum expansion oif any element a(x) € A can be

easily determined using an orthonormal property.

T
a(x) = @& ai(x) ei(x) ; @ Denotes a direct
i=1 sum expansion o
(11)
ai(x) = a (x) mod gi(x); i=1, 2, ..., T

Minimal Ideals and Cyclic Codes:

A cyclic code is a principal ideal in A generated by
a polynomial g(x). Furthermore g(x) divides (x® - 1) and
also defines the parity-check polynomial, h(x).

(x™ - 1) = g(x) h(x) (12)
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Since (n,q) = 1, there are no repeated factors in (x" - 1),
and g(x) and h(x) contain only distinct irreducible factors.
The factors of h(x) will be indexed by i =1, 2, ..., t and

those of g(x) by j = t+1, t+2, ..., T.

t
h(x) = TT g4 (x)
i=l
(13)
T
g(x) = T g.(x)
j=t+1 3

The degrees of these polynomials determine the permissible
numbers of parity-check digits in each possible code contained

within A_.
n
degree g{x) = n-k ; degree hix) =k (14)

The code generated by g(x) will be labeled by G; it is
a k-dimensional subspace of Al (and by construction also a

principal ideal).
G = ((g(x))) (15),

The code space G may be expressed in terms of the t minimal
ideals defined by the respective factors gi(x), i=1, 2,

..., L.

G =

1

M. (16)

t
-1
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It is possible'to define an idempotent genefator for the
code space G. If cascaded sections use the same code space,
the idempotent propefty of this generator could be used to
guarantee that no decoding would be necessary until the final
section. This concept will not be pursued further here, but

such possibilities for cascaded configurations could be use-

ful.
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The Transform Domain

Definitions and Properties:

The degrees of the polynomials a(x) and b(x), involved
in the weighting operation, determine the parameter k while
the desired level of error protection determines the size
of n for the code. The choices of the pairs of integers
n and k are limited by the irreducible factors of x™ - 1).
(See equations (7), (12) and (13).) The field GF(g) may be
extended to a larger field GF(qm) and if n divides (qm - 1)
there will be a primitive n th root of unity in GF(qm). Let
a denote this root. (If n is (g - 1) the root a will lie
in the original field GF(q).)

The irreducible polynomials gi(x) which are factors of

N _ 1) are constructed using powers of this root a and

(x
subsets of the integers modulo n. These cyclotomic subsets
index the conjugate roots in GF(qm) of the irreducible fac-
tors. A typical cyclotomic subset AS consists of the inte-
gers modulo n of the form {s, sq, sqz, seey, S ql—l} where

s and | are related by the identity sqg! £ s mod n. s is

generally taken as the smallest positive integer in the

cyclotomic subset.

As = {s, sq, sqz, ey sql—l}
(17)

1, s defined by s = sq! mod n
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Each subset is constructed successively and inductively
by selecting an integer, s, modulo n, that is not contained

in a previously considered subset and forming each integer s

qJ until the identity s = s ql mod n is satisfied. The inte-

gers modulo n are partitioned by the cyclotomic subsets.

These subsets define irreducible factors gi(x).

= gl .
g, (x) o q (x-a) . A (i) come
j e As(l) S
cyclotomic-subset

i=1,2, ..., 7T

The degree of gi(x) is defined by the size, Ri' of the re-
(i)

spective cyclotomic subset AS
A transform may be defined for the space An. It uses the

n th root of unity, a, and takes values in GF(qm) as deter-

mined by the choice of this root. The forward transform

produces n coefficients in the larger field GF(qm).

A

Yj = Y(QJ) ; j=0,1, 2, ..., (n-1)

(18)

y({x) = Yo + Yy X+ Y, x2 + -- + Y1 xn—l ; Y(x) e An

The inverse transform has a similar form and is normalized by

an element in the prime subfield GF(p) where g = pr, p a primel.

e ) e

1(‘n-1” p denotes the inverse of n modulo p. Note that since
(n,q) = (n,p) = 1 such an inverse clcment exists; there are

integers x and y such that xn + yp = 1; x = n—1 mod p.
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The validity of this transform pair is established in Appendix
c.

This transform éair has the usual and important relation-
ship between convolution in one domain and pointwise sequence

products in the other. 1In symbols this relationship is:

~
da.

a(x) €—» {a.l}
J I 35=0,1, ..., n-1

|
VY]
Q

-e

A

~<
il
-
[*}
]

Y (X) € {;j}

a(x) v(x) <—p= {;.;.}
J'J] (20)

CONVOLUTION -¢—3= POINTWISE MULTIPLICATION
This relationship is also demonstrated in Appendix C.

Effects of the Code in Transform Domain:

The transform domain will be used in per®srming the
multiplication of the component factors ai(x) and bi(x)
ei(x) as required in each sum term of equation (4). The
polynomial ai(x) is defined in equation (5) while bi(x) is
given in equation (6). For convience the stored components

will be labeled by Yi(x).
Yi(x) = bi(x) ei(x) ;s i=1, 2, ..., t (21)

~

The transform coefficients, Yij' associated with each yi(x)

have an important property.
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. (1)
0 S I 4 As
(22)
i1=1, 2, , t
; 3=0,1, ..., (n-1)
They are nonzero only on the cyclotomic subset As(l) because

ei(x), involves all irreducible factors except gi(x). The

required polynomial product ai(x) Yi(x) corresponds to a

pointwise product in the transform domain using only those

transform coefficients of ai(x) that have indices in the
ii cyclotomic subset As(i). They are the only ones that can
3 yield a nonzero product. '

%j On the other hand the roots asqj associated with each

cyclotomic subset may be viewed as an individual piece of

the transform where the number of elements in the cyclotomic

subset As(l) will be denoted by li. The stored weights for

the i th component yi(x) are represented by the 2i nonzero

o transform coefficients
N 9 : (i .
. Yij r J € As ) , 1 =1, 2, ..., t.
t
- Note the total number of nonzero coefficients is [ li = k.
. .
p i=1
% The transform coefficients of the input components ai(x) need
'

to be determined only for the same set of indices. The point-

wise product is formed and the inverse transform using only

the roots defined by the respective sets As(l), yields the ai(x)

yi(x) products.




_ (n-1) A A .
2300 v3 00 = |[n 1))p L xm[ Ly (o) iy 25 C mj]

(23)

Recall that the {aij} coefficients are determined from the
input polynomial a(x). The final result [a(X)b(x)g(x)] is

given by the sum of these products according to equation (4).

The Transforms of the Polynomial Components:

A property of the transform pieces relates the zeros
of the polynomial with the location of the zero transform
coefficients and conversely. Consider a typical piece of the
transform of component polynomial, say ci(x), over its re-

(1)

lated cyclotomic subset AS

i, 5 = ci(aJ) ;3 e A R R T S
n-1 by (24)
= ] c, . @ e .5 o= g 2
r=0 1, ’ J q
£ =0, ..., (li—l)
_ 2 n-1
where ci(x) =0 + i1 x+ci'2 X"+ ...+ S (n-1) ¥ .

The size of cyclotomic subset As(l) is designated by li.
A useful result which is a special case of a general

property for elements of An is from a Lemma in Appendix D.

TR S D S S M PR U DT WA T W W YU SR YR S
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Annihilator Property

J except for j € As(l)

»~

if and only if the transform coefficients cij = 0 for all

. (1)
j £ As .

ci(x) in An has as roots all «a

In another vein, since the polynomials in An have coeffi-
cients in GF(q) while the transform may take values in GF(qm)
there is a constraint on the values of the respective coeffi-
cients. This leads to the Chord Property cf the transform

coefficients.




-------
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Chord Property

a

N

(1)

RIeY

i . ce q_" .
ci(x) € GF(g) [x] if and only if (cij) = cqjq, joe A

~—g—
LI |

e
2

[
PR

This is also a special case of another general result from
Appendix D. The Chord Property simplifies the computation of
s the transform coefficients affiliated with each polynomial

component. The piece of the transform indexed by the cyclotomic

subset As(l) can be computed by repeatedly forming the g th

(Y

powers of a single coefficients. This continues until all

exponents from As(l) have been used.

f: Calculation in the Transform Domain:

The product [a(x) b(x) g(x)] can be realized principally

in the transform domain. An inverse transform yields the final

S result (See equation (23).) However as was noted earlier the
X product of transform coefficients ;ij ;ij' corresponding with
i ‘the polynomial product v, (x) a,(x), i=l, 2, ..., t are nonzero
3 only in nonoverlapping éegments in the transform domain. fhus

it is important to investigate the properties of the inverse
transform of a sequence of transform coefficients indexed by
a single cyclotomic subset.

In this regard let §(x) denote the sum below and let gr
label its transform coefficients which were produced by multi-

plying the terms Yij and a3 indexed by the cyclotomic subset

(i)

As

_______________
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27

(25)

The Annihilator Property shows that the transform coefficients,

~

As,

the irreducible polynomial factors of g(x). The combined effect

are zero for indices in the cyclotomic subsets related to

on these transform coefficients may be stated as:

Zj =0 F > A(g)
C) (26)
(g) _ (3)
A T o j=t+l As

The remainder of the indices are contained in the complement

set, A[gj, defined by the set difference operator in the
following.
Aig)z PO,I,Z,..., (n-1)} - A(g)] (27)
The inverse transform determines the coefficients of & (x).
5. =((n‘1)) § TY A oI ; 3=0,1,2,...,(n-1) (28)
J P re A r
Let ¥ denote a generic root of g(x). It may be expressed

(9)

as a power of a using the appropriate index from A .
y = o59 ; sqz € A(g) (29)

" The general result, Lemma D1, Appendix D, shows that ¢y is a

root of 6(x), and if 6 (x) eAn, the closure property of the
(g)

individual cyclotomic subsets comprising the subset A

coupled
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with the general chord property Lemma D2 gives that
A g A (g) ’
A = A for all r e A (30)
r rq

Then g(x) divides §(x) and the error detector/corrector subsystem
will be unable to distinguish any errors that were introduced. in
§ (x).

A word of caution is in order. Care must be taken to insure
that any hardware implementation does not satisfy the two condi-
tions (26) and (30), thus preempting the error detecting capabil-
ity of the code. For example implementing relatiqnship (30) in

~ A

the architecture to avoid computing all of the products [Yij a

i3]
as prescribed in equation (25) could mask errors that are intro-
duced by hardware failures. Fortunately the transform domain

contains redundancy that protects against such errors.

Error Protection in The Transform Domain:

If an error occurs in the transform domain, numerous errors
can be introduced in the polynomial components. Their number
could exceed the error-detecting or coerrecting capability of the
code. Two general sources of errors in the transform domain
that arise internal to the architecture are of concern. On the
other hand any errors appecaring momentarily in a straightforward
implementation of the inverse transform operation affect only one
polynomial coefficient which may be treated as a normal additive

error. Further it can be safely assumed that the stored trans-

form coefficients are held in the memory correctly.
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Fﬁ . One source of internal errors is the calculation of the

~

transform coefficients from the input a(x), i.e., the aij terms
2 may be incorrectly computed. The second form of errors results

from the componentwise multiplication in this transform domain.

These products {a_ Yij} are necessary in the inversion formula
1)

(23) and can propagate numerous errors into the Al domain. It
o is possible to model both types of errors by considering noise

A A

transform coefficients Eij along with the desired products cij'

~ A
A

d.. =c,. + €.. ;i=1, 2, ..., t
1) 1) 1) (31)

5 e D
Most reasonable hardware implementations using the trans-
form domain will employ an inversion formula involving a sum
only over the individual cyclotomic subset as shown in equation
g (23). Therefore the polynomials resulting from the inversion
2 of the product terms will obey the Annihilator Property. Thus
it is reasonable to assume that the Annihilator Property is
N satisfied. However it is shown in Appendix E that if the
noise transform coefficients ;ij do not obey the Chord Property,
the result of the inversion formula will yield at least one
polynomial coefficient with a value strictly in the extension
field GF(qm). Then of course the polynomial di(x) obtained from
{ﬁij} has at least one coefficient also in GF(q"), a fact that
;i is easy to detect.
: It is shown in Appendix E that the error-detecting capability
of this approach allows up to (li - 1) transform coefficients in

(i)

error where the cyclotomic subset As

has 21 indices. Frror

. Te e e e JEE o R . . . .
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detection is easily implemented by checking that the inversion
formula (23) only produces elements in GF(q). There is an
error-correcting teéhnique also available. It is outlined and
discussed in Appendix E. The sequence of transform coefficients

”~

dij is compared with li different test sequences. Each test '
sequence is generated by forming all qEE powers of each Sij

element. If a coefficient obeys the Chord Property then it is
correct; otherwise it can be replaced using the Chord Property

and known correct elements in the {dij} sequence. This scheme

will correct up to li-l errors in the transform coefficients.

2
It also can correct errors introduced by the implementation of

the scheme itself.
The error-protecting levels in the transform domain are

(1)

directly related to the size ki of each cyclotomic subset As .
Thus the choice of error-correcting codes for digital filtering
applications should have components with large cyclotomic sub-
sets (or equivalently large degrees of the affiliated irreducible
polynomials). However the overall efficiency of the space-
decompositions depends on having numerous but small component

factors. The classic trade-off between complexity and error-

protecting capability is encountered.
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-Imbedding Exrror Protection in Fast
Transform Implementation

The classical method of using the transform domain employs
fast transform algorithms for producing the frequency domain

coefficients which in turn are producted with the stored

.
RO
B v

weighting coefficients, this result being inverted by another

R
A

VLR

fast algorithm [6]. This traditional approach is depicted

. W

'.1
I"

in Figure 6. However the transform coefficients in this
situation are not sorted according to their minimal ideal
index as shown in Figure 5. The fast transform method has a
speed advantage especially when pipelining is incorporated in
the realization. A major disadvantage is the potential for
internally generated errors to propagate extensively through-
out the implementation. 1In fast transform algorithms each
intermediate variable at one stage is used in several inter-
mediate variables at the succeeding stage. Thus even single
errors can contaminate many final output values.

The purposes of this section are to develop fast forward
and inverse transforms, analyze the propagation and penetra-
tion of internally generated errors and demonstrate methods
and restrictions which insure safe operation of the overall
system shown in Figure 6. The techniques described below
will concentrate on containing and controlling the effects

- of single isolated internal errors, primarily through error
~

detection followed by re-execution of the defective stlep.




_’69 -
aj) |
- ~ 8 (x)
FAST Y, Y, | FAST
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FORWARD . INVERSE
TRANSFORM l TRANSFORM
|
an~1
- — - - - - Yn-1

STORAGE OF
Yj COEFFICIENTS

§(x) =.a(X)Y(X)

TRANSFORM DOMAIN IMPLEMENTATION EMPLOYING FAST ALGORITHMS

Figure 6
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It will be clear that other procedures are possible also and
that the detection and correction of multiple errors are
eésily implemented with more powerful codes and additional
restrictions.

The finite field forward transforms is used to obtain the

transform coefficients aj, j=o0,1] ..., (n-1) from the poly-

nomial a(x).

~ n—l i 0
a. = Z a, a ] : J=10,1, ..., (n-1)
3 40
r
q=Pp
(32)
m
n|(g -1);(n,q) =1
o nEE root of unity
n-1
a(x) = a, + a,x + ... 4+ a 1%

A prime factor fast transform algorithm may be developed
starting with the prime decomposition of the integer n.

Repeated occurrences of the same prime are permitted.
M .
n= I P; PPy < PRIME (33)

Since n and q are relatively prime, p cannot appear in the
product (33). There are two forms of the fast algorithm
depending on the initial decompeosition of the indices i and
j appearing in (32): decimation in freguency and decimation

in time. Figure 7 shows the general form of the fast algorithm

for the case of n having four factors. Both forms never use
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more than n intermediate variables at any stage of the

algorithm. The straightforward mathematical implementation

- ST .o 4.
P N T
PRI T S
Ct e T ey

-

of formula (32) requires on the order of n2 multiplications
and a similar order of additions. Either form of the fast

algorithm needs on the order of

WA
a‘ I' .‘ I. l‘ '}

M
n ( P:)
121 1

such operations. This is one source of the speed advantage

Pt ,‘-.—-».r-.gr;—
iy :'. - -
."'.“ . " . :

of fast algorithms.

!
s
)

l"

The details of the fast algorithms are developed in
Appendix F, but a list of the intermediate variables and the
range§ of the indices are displayed above the interstage gaps
in Figure 7. Figure 8 gives the sets of variables and their
interrelationship for both forms of the algorithm. Pieces
of the appropriate signal graphs are given in Appendix F
where it becomes clear that an error in one operation rapidly
spreads to many subseguent intermediate variables. However
in both forms the intermediate variables, the Y and Z sub-.
scripced variables, obey properties which allow chords to be
used at each stage. These properties may be listed where the
ranges of the indices are given in Figure 8.

) 9 =

= 2 . . ; qjl mod P

2. .
( Jpr 1) 93y’ 1

)q

(Z. . i z . . 3
Jpsdg i3 qiyr aiyr iy P Ay mod Py (34)
( )q - H qj3 mod p3

2. . . . Z . . . .
Jl']zl]3l14 QJllqu'qJ3’l4

q _ : ] d
(Y. . .)— - Yqj4 ! i3 ’ 12 ’ il ! qj4 mo n4
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(35)

. Y .o, .
1 1" 1

The procedures, outlined in the previous section on
error protection through chords in the transform domain, can
be used for detection and correction as detailed in Appendix
E. Note from equations (34) and (35) that the chord lengths
are now determined modulo integers which are divisors of n.
Therefore it is important to insure chord lengths greater than
one so that detection is at least possible. Two principles
which are demonstrated in‘Appendix F may be used in this
regard. One concerns the combination of chord lengths while
the other is constraints on the code length n.

The first principle applies to the overall chord length
when more than one index and prime number is involved as in
equations (34). For example, say that the chords corresponding

to index jl mod Py is ll while the one for index j2 mod pz-is

L

20

Y
=
Q0
1]

Jp mod Py . 2 jeast
(36)
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j2 mod P,y ; 22 least
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- Then the overall chord length applicable to Z.

-, ., for i3
11" J2" 13
fixed, is the least common multiple of %, and 22.
Ly, = L.c.m, (21,22) (37)
. . . th

This means by successively forming g— powers of Z. s, e
J1" J2" 13

its value is repeated first on the le st power.

The second principle concerns sufficient conditions
insuring that all chord lengths for nonzero indices exceed
length L. The conditions are

s
[p, (a®-1)) =1 for a11 s < 2. (38)
They guarantee that all chord lengths t which satisfy
.t _ . .
j g = j mod P; i=1,2, ..., M (39)
obey the inequality
L < t. (40)

With this principle it is possible to know when chord lengths
are favorable to detection or correction. The sufficient con-
ditions can only be satisifed up to the integer m because

n| (g"-1), equation (32).

Even when the restriction (38) are used to guarantee
error detection or correction through the chord properties,
there are situations where errors can still propagate from one
stage to another. The properties (34) and (35) show that any
intermediate variables with all j indices equal to zero must

lie in GF(q), e.qg.,
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ZO’ 0 i3 € GF(g) ; 0i13<n3

Yor i,,i4 & CFl@ 5 5Py, y<py

At each stage there are fewer such terms with the DC term,
;0, being the only one in the transform domain belonging to
GF(q). Furthermore intermediate variables with zero j sub-
scripts may propagate unchecked errors only to those new
variables at the next stage which have analogous j indices
also equal to zero. Thus uncovered errors will only reach
the DC coefficeint, ;0' However this one term may be pro-
tested by redundant duplication methods. |

The fast inverse transform is developed in an ana-
logous manner. It will have the usual symmetry with respect
to the fast forward transform [6]. Figure 9 contains the
general structure of both the time and frequgncy decimation
forms. The intermediate variables passed between stages are
shown also. These variables have properties similar to those
in equations (34) and (35) with Appendix F containing the

formal development of the algorithm and the properties. They

are shown below..

z. .19=132 . . .
3y, i) qiy. 12 i 93p modpy
-~ - (41)
(z,. . .19 =1z . C o 3
Jll 32' 13 qjll qui 13 ; qu mo pz

A a m A 4" &' A & aaala 82" 3. 8" a2 alw e a e




41

Pty

™

6 JYNDIJ
WHIIYODTIV HFSUIANI ISVL JI0 WHOI TVHIANIAD

6 HUNDIA
W04 XONINOFAYA NI NOILVWIDAQ

m&m&dmvﬁ + NQHQMﬂ + HQNh + Hﬂ = C

»-‘s .“

LA

-
S

it S A

.

et it Shd
-

odinsn et Bt 4

=T
.HQ I = Uu
( xepur 3andur 30
v uotsuedxmg XTpey PaXIRW
l.mm = NC Nlm = mc mlnw. = q:
“ Sy tu
2y > Nﬂ €y > €t 12T .
Ta 5. T¢ ¢a > ¢ €31 > E¢
-y,
A 4
' | |
“ _ ! !
| _ ! [
T _ _ ! ! C
d aWIy¥d | °d awruq . d awrua ! ’d awrua | e
NO Qqiasvg | NO Qasvd | NO Q3svdg ! NO Qgdasvd | v
NOILDIS | NOILO3S | NOILO3S _ NOILOIS )
WIOJSNWYIL WIOASNTI L WIOJISNVYEL WIOJISNWNIL
—————————— petife——
| — HM
NH~Hﬁ ‘1! h.Hﬂ vﬂ~mn~Nﬂ.Hﬂ Y
Z 2 ) 4

SATEVIYVA FTLVIAIWIIINI




g B
N
. <r "
3 qe SANDIA e
3 WY0d IWIL NI NOILVWIOAA
_. MQNQHQv.w. ..,
o

+ NQHQM + HQNH + H._u =1 ,.

T xapui 3ndano 3O £ z T i
.ﬂ._ uotsuedx3g XTped PoOXTW 4 _ by .Nlm = &y Im = Cu ‘“.
2 u ¢
_, > ¢a > %1 Tg > Ty "
g
3 A
f. VQ VC MC > £ n NC.. > [4 ﬁ 4......
3 T-u, flaucm i
. , | f . | .“
é ! | A
- I _ ! .
E [ ! | o
. . I o
g Teo | _ ! L 2
1 ! ! .
: ! b [ € ! _ e -4
[ I d FwIdd . d awrdd | ¢d mwrud ! Td awiua | v
v. ] NO gasvd | NO a3svd | NO ddIsvd “ NO Q3Isvd :
p NOILDIS NOILOdS NOILOES NOILOZS .m
3 = WMOJSNWIL WHOJSNYHL WHOJSNYYL WHOISNYHL et
= HM | HM o
s, ‘J - | ° 3
ﬁm. OM.‘]_ < om ,.
A Ty Cpa € g Ty p € T g v T
3 "k R ¢ o
‘ v v .
”. _.”H“A
- i
m SETAVIYVA FIVIQIWHILNI )




Y
o
W

-
.

.

'

ARy
13

.o
)
W

; qj3 modp3

' Jyriy qul i1 ; qu modn2
(42)

I3’ 'Y a3’ ' 1 i 433 modng

(v. . . )9 =y . . . i 9j, modn

Properties (41) and (42) may be used to establish chords
affording error detection and correction as outlined earlier.
The sufficient conditions (38) clearly insure that all chords
associated with nonzero indices have at least length £. But
any intermediate variables whose j indices are all zero lie
in base field GF(q), and may impact other subseqguent GFl(q)
variables. Hence it is possible to propagate errors from
one stage forward. 1In addition, an examination of the appro-
priate signal flow graphs shows that each such variable
affects numerous GF(qg) variables in the next stage. These’
errors penetrate tc the final stage possibly affecting many

output coefficients.

As an example of this internal error propagation error
polynomials, generically labeled e(x), which are added to the
3 final result 6(x) are consider. They are developed for the
3 situations where a single additive error, with value g,
g

occurs within a stage. Table 1 summarizes the results of

" these analyses. These error polynomials have the same value
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€ added to many pogitions in the desired output 6(x). Never-
theless it is possible to detect such errors in the final
output if the code génerator polynomial, g(x), is probably
chosen. It must not divide the special forms of e(x) as
shown in Table 1. Note that each error polynomial is formed -
by effectively removing certain nEE roots of unity from the
factor (x™-1). Hence if g{x) contains at least some of the
roots which are removed it could not divide any of the e(x)
terms thus providing an error detection capability.

For example, in the decimation in frequency form an error

polynomial

3 x™-1)
n
(x >-1)

e(x) = x

can appear at the output. But if g(x) contains as one of

its roots an n, root of unity (and of course its conjugate

3
roots), all errors of this form are detectable. Therefore
proper code selection is critical for protecting against

n,
internal errors in the fast inverse system. Since all (x 1.1

factors are divisible by (x-1), so if g(x) contains 1 as a

root, every possible single error failure may be detected.

- I e e e




ERROR DESCRIPTION ERROR POLYNOMIAL AT
OouTPUT
VARIABLE WITH
STAGE ADDITIVE ERROR € e(x)
~ n
1 a, € (x"-1)
(x-1)
2 . i
%0, 0,0, i, - [ (x"-1)
Ny
| (x -1
i, <P,
3 YA . i n
0, 0. 13 €X3F(x —l)
N3
i n (x 7-1)
3 <3
4 Z,, :
r 1 n
2 £ x 2 (xn—l)
2
. (x “-1)
1, < ny

DECIMATION IN FREQUENCY FORM
TABLE 1la

OUTPUT ERROR POLYNOMIALS DUE TO SINGLE INTERNAL
ERRORS IN THE FAST INVERSE ALGORITHM

TABLE 1
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.
= ERROR DESCRIPTION ERROR POLYNOMIAL AT
5 " QUTPUT
VARIABLE WITH
STAGE ADDITIVE ERROR € e (x)
~ (x"-1)
1 ap € [ (x-1)
X 2 Y .
0., 1 i n
1 e x L (x -1)
Lo n
11 , Py ‘n2
(x “-1)
3 YO' i2' 13 . . .
11 12P1 ) (x"-1)
< € X X ———n———‘
1 < Py n
n3
(x 7-1)
13 < P3
Y ) . : i).1,p; 13P,P, N
4 YO’ 13, iy, &) e x 1x 2 1x 3 (; )
n
(x 1-1)

= DECIMATION IN TIME FORM

TABLE 1b
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Error Detection/Correction and Error Status

Lo a4 #
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+
L SR

The approach to error control presented in this chap-
ter has intrinsic opportunities for distributed error detec-
tion and correction throughout the architecture. Not all
possibilities will be explored here but an obvious and
* important aspect of error protection involves the minimal
ideals. Each minimal ideal, Mi’ which contains the component
polynomials is a cyclic code in its own right [4). The

number of parity-check positions is equal to the degree of

2720,

the related irreducible factor of (x" - 1), gi(x). Cyclic
codes have powerful burst error-protecting capabilties pro-
portional to the number of parity-check positions. Thus
error detection or correction can be performed on the
individual components [ai(x)bi(x)ei(x)] before the final
combination as required by equation (4) is completed. This
protects against errors introduced in the last stages of the
component polynomial manipulations. This technique allows.
errasure decoding to be mixed with the usual decoding methods

[2, 5]. The overall detecting and correcting performance

- levels increase accordingly.
Suppose that the output of the filter mechanization of !
a(x) b(x) g(x) can be modeled as containing additive errors.

The output of the filter section is given by r(x).

r(x) = [a(x) b(x) g(x)] + v(x) ; vi(x) error components (43)

............
.....
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Standard error—confrol techniques [2-5] may be applied under
these conditions. For example the same transform domain used
in the filter's implementation is also applicable. 1In this
:El situation the roots of g(x) as indexed by the set A(g),

: eguation (26), are involved. They define the syndromes.
(Recall g(x) has degree (n-k) and A(g) has (ﬁ—k) elements.)

A typically syndrome is s, where

B
., sg = r (af) ; g en'd

o = via

Of course there is the problem that the Error Detector/
Corrector system shown in figure 2 could suffer errors similar
to the section that it was designed to protect. The Error
[, Status device is designed to signal the occurance of such a

problem. Say that the decoder produces a polynomial, f(x),

,g which represents the desired product a(x) b{(x). An error

9 status may be made by encoding f(x) through multiplication by
,!
§a0 g(x) and subtracting it from a copy of r(x), equation (43).
3 n(x) = r(x) - £(x)g(x)

o The weight of the status polynomial u(x) determines whether
'3 the decoded element f(x) is the closest choice to r(x). This
& gives a check on the Error Detector/Corrector and the Status
r
«&J Check circuit.
;_‘:
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The Special Case of Systematic Codes

¢ oo f
‘2
Tel
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All of the previous discussions are applicable to the
case of systematic codes. As was mentioned in the intro-

duction, the parity-check portion, [-p{(x) a(x)], when added

oA}
Y

to a shifted version of the desired result, a(x) b(x),

Pl et '}

LTI

<

yields a codeword. Therefore the techniques described for

-

N5
Y

nonsystematic codes can be employed for the parity-check
portion of the codeword; only the components from the t
minimal jideals that define the code G need to be computed.
Lii.earity quarantees that no other components are required.
The desired result a(x) b{x) has degree less than k

and thus can be computed in a residue class ring modulo

(xk - 1) which has been labeled as A, in this report. All

k

the minimals ideals in the algebra A, are employed now

k

because no code is involved. However the use of the mini-

mal ideal decomposition and the transform techniques can be

advantageously applied. One may think of using a rate-one,
(k,k) code in this case. Nevertheless there are intrinsic
error detection and correction opportunities even in the no
coding ideals and because of the properties of the transform

domain.
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Appendix A

Properties of Minimal Ideal

A minimal ideal only contains itself and the trivial
ideal ((o)) The fact that the ideals defined by m, (x),
equations (9), are minimal in the space Al will be proved
first; the concepts used in this proof will appear in
developing other properties.

Suppose that there is a smaller ideal Si contained
within Mi' Then there is a polynomial si(x) that generates
Si, i.e., §; = “si(x)” . Since si(x)eMi it follows by the
definition of mi(x) that all irreducible factors except gi(x)
divide si(x). (For if gi(x) were also a factor of si(x) then
si(x1=0 in An') Thus si(x) may be written in the form

1)

si(_x)_ = f(x). 95 ; xj_>_0 (A-1)

RECE

j#i
j=1
where f(x) contains all other irreducible factors of si(x)'not
contained in the factorization of (x"-1). But then f(x) is
relatively prime to (x7-1), indicating that f(x) is a unit in
An. ((f(x), xn—l)=l implies that there are items y(x) and

z{x) such that y(x)f(x) + z (x) (x7-1)=1; y{(x) is the inverse

of f(x) in An). Hence it is possible to take

gj*j(x) (A-2)

si(x) =

W= s

j#i
j=1

....................
o e et




Clearly “si(x)” C:: (bni(xﬁ) . To show the opposite inclusion

o it will be demonstrated that si(x) divides mi(x). Since gi(x)
S is excluded from si(ﬁ), they are relatively prime. Then so is
ii gi(x) and the term, .g- g;szi;, which has all irreducible fac-
. tors of si(x) with sgn;le power Aj's removed.
(9,0, 1 gj‘*j‘l’(x)) =1 (a-3)
j#L

Thus these are polynomials a(x) and b(x) for which it is

possible to write

(A.-1)
atx) I g I (x) + b(x) g (x) =1 (A-4)
j#AL -
(A.-1)
Then gi(x) divides [1—a(x) .g‘ gj J (x)] and it follows from
J#L

the definition of the irreducible factors of (xn-l) that

n (A, -1)

)it g.(x) [l~a(X) I = (x)]E 0 mod (x"-1) (a-5)

i3 k#i

j=1

Equivalently in An'
n A
mi(x) = a(x) I g."3(x) (A-6)

j#L I
j=1

The generating polynomials of the minimal ideals have an

interesting property in An:

mi(x) mj(x) = 0 ; i#3, 1,3, =1, 2, ..., T (A-7)

...........................
.................................
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It is easy to show from this that the T minimal ideals form
a direct sum decomposition of An’ Thus any a(x) € A can be
expanded uniquely as a sum of elements each possibly from one

e of the minimal ideals:

T
a(x) = z a.({x) m.(x) (A-8)
j=l ] J

Each nonzero term [aj(x) mj(x)] represents the component of
a(x) in minimal ideal Mj.
The orthogonality of the ideal generates mi(x) and mj(x)

clearly demonstrates that any distinct ideals share only the

L,
stald e i

zero element. Thus to show that the minimal ideals Mi can be
. used for a direct sum decomposition of An’ it remains to prove
that any element in An can be written using components from
some of the ideals. The set of polynomials mi(x), i=1, 2,
..., T have their greatest common divisor as unity. Then there
are polynomials vi(x) such that
T
1=} v,.(x) m,(x) (a-9)
j=l J J .
Multiplying both sides by any a(x) € Al gives:
T
a(x) = § la(x) v,(x) m,(x)] (A-10)
1=1 J J
J :
Since none of the nonzero terms, [a(x) vj(x) mj(x)], can be

A in more than one ideal, the direct sum expansion in equation

~~I.~ ‘?.
JCRP I

(A-8) is established where aj(x) = a(x)vj(x).

De )

»
4

-----------




The idempotents have several important properties which

will be listed and then proved.

ei(x) a(x) = a(x) ; a(x)eMi
(a-11)
UNIT ON M,
1 =1
ej(x) = mod gi(x)
0 3 #1 (A-12)
ORTHONORMAL
IDENTITY
((ei(x)” = (‘mi(xﬂ, IDEAL GENERATOR (a-13)
e.(x), g:.(x)] = 1 RELATIVELY PRIME _
( it e ) RELATIONSHIP (A-14)

Each minimal ideal Mi contains an idempotent that also
generates the same principal ideal. The idempotent is
determined by noting that mi(xl and gi(x) are relatively prime.
Hence there are two polynomials si(xl and ri(xl for which the

following is true.

1l = si(x) mi(x) + ri(x) gi(x) ; i=1, 2, ..., T (A-15)

The desired idempotent ei(x) is defined by

ei(X) = Si(x) mi('x)' ; i=1, 2, ..., T (a-16)

.........
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We now detail the proofs of the properties listed above.

Firstly the basic idempotent property equation (10) follows

by multiplying identity (A-15) by ei(x).

ei(x) ei(x) + si(x) mi(x) ri(x) gi(x)

(a-17)

e?(x) + 0 mod (xn-l)

The property of a unit also is demonstrated by choosing any
a(x) in Mi and multiplying equation (A-15) by it. However,
since a(x) = ai(x)mi(x) because it is in the principal ideal

generated by mi(x), a simplification is possible.

a(x) = a(x) ei(lx) + a, (x) mi(X) r;(x) g.(x)
(A-18)
= a(x) ei(x) + 0 modulo (xn—l)

Reducing both sides of identity (A-15) modulo gi(x) gives
the top part of equation (A-12) while definition (A-16) clearly
shows that ei(x) contains all other irreducible factors and the

remaining part of the orthonormal property is demonstrated.

We observe that by the definition of ei(x), equation (A-15),

“ei(x)” C ”mi(x)” .

While on the other hand combining identities (A-15) and (A-16)

and multiplying by mi(x) yields:

mi(x) mi(x) ei(x) + mi(x) ri(x) gi(x)

(A-19)

il

mi(x) ei(x) + 0 modulo (xn-l)
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Hence mi(x) is contained in uei(x)n and therefore

((“‘i'(")” C fese0))-

Both mi(x) and ei(x) are legitimate generators for Mi as
shown in equation (A-13).

Finally the relatively prime property in equation (A-14)
can be shown by assuming that gi(x) divides ei(x). Since ei(x)

is a unit, property (A-11), the following is true.

ei(x)mi(x) = mi(X) (A-20)

But by the definition of mi(x), equation (9), the left side
is zero in A, a contradiction to fact that mi(x) has degree
strictly less than n.

Another interesting and useful property of the minimal
ideals is their relationship with the appropriately sized
finite fields. Consider the following mapping from Mi into

the cosets of the principal ideal ((gi(x)” .

F, Mi———-b-GF(q).[x]/“gi(_x).”

(A-21)
a(x) ei(X) }— a({x) mod gi(X)_

FIELD ISOMORPHISM

The range space is known to be a finite since gi(x) is irre-
ducible. Note that in Mi we may always write each element

b(x) as a(x) ei(x) where degree a(x) < degree gi(x). Also

“
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note that in the minimal ideal, ei(x), acts as the field

identity, but it is not the identity of the ring An.

{: To establish thé isomorphism (A-21) we first show that
; every b(x) is equivalent to another polynomial a(x) with

? degree less than degree gi(x). The Eucledian algorithm can
N be used to show that

A b(x) = ai(x) gi(x) + a(x)

; (A-22)
where deg a(x) < deg gi(x)

- It then follows that because of the unit property of ei(x),

P b(x) = b(x) e. (x)
: 1 (A-23)

5, ' = ai(x) gi(x) ei(x) + a(x) ei(x) = a(x) ei(x)

Consider any a(x) € GF(q)[xl/ “g(x)” . The element a(x) ei(x)
in Mi clearly is mapped to it by F.. Since the number of

- distinct elements in each space is equal the mapping is
one-to-one and onto. The mapping Fi preserves both sums and

products. Note since (gi(x), ei(x)) = 1 the item al(x) ei(x)

PRATAPADATARS

bl(x) ei(x) = al(x) bl(x) ei(x) maps into al(x) bl(x) mod gi(x).
The mapping (A-21) gives M, mod gi(x) all of the properties of
a field and also explains why ei(x) acts as a unit on the

space Mi mod gi(x).

.........................................
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Appendix B

( Idempotent Expansion of the Code Ideal

The direct sum decomposition of G, equation (16), may

870, 2 87

be demonstrated in the following manner. Since g(x) € An
oA it may be expressed using the minimal ideal expansion as
s per equation (11).

¥ g(x) =
N i

&

1 Y; (%) e, (x)

(B-1)
Y; (x) = g(x) mod g, (x)
However from the construction of g(x) as given in equation

o (13), (T-t) of the Yi(x) coefficients are zero.

Yi(x) = 0 mod gi(x) i = t+1, t+2, ..., T (B-2)

) Thus g(x) is in a smaller subspace of A : it is defined by the

first t minimal ideals.

M.

g(x) € LM

»® : , R
o 1
f .

Il & 3

Since the finite direct sum of ideals is an ideal, it follows

o

that

KRR

[s0)) C i§1 N,

iy
Vo

a

On the other hand, the generator of each Mi' ei(x), i=1, 2,

Et } ‘l ‘I.'
* % e

[

..., t, by its respective definition (A-16) is contained in the

ideal “g(x)” .

] ’:( - X x
o
Dl IR A s 5 !
- et tatatnl X

e
e tatats

»

e
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It then follows that

- t . i
r 121 M. (C “g(xq) so that the desired identity (16)

3

s is established.

:\-

= The code G also has an idempotent generator which will
{3 be denoted by gI(x). It satisfies the usual property:

R 2

- g; (x) = gI(X) (B-3)
. Furthermore it is equivalent to the generator g(x).

)

B

= ffssta)) = (lseol)
T

“

- The code idempotent acts as an identity on the ideal G.

¥ Y(x) = y(x) g (x) ; All y(x) € G (B-5)
3 .

- These results are proven below where a method for deter-

N mining gI(xl is given. Unlike g(x) its degree is not neces-
A

n sarily (n-k).

Xy One possible application for the code idempotent in

a8 representing the code involves the cascading of filter sections.
! .
3 Say the same code is used in each of several filter sections
™ which follow one another in a cascade. Further suppose that
. no decoding is performed until the final section is reached.
52 If the stored filter weighting in each of the s sections is
i‘ given by the codeword [bi(x) gI(x)], i=1, 2, ..., s, then
j the output would be of the form

> s s

b a(x) TT [bi(x) gI(x)]== a(x) g (x) 1T b, (x) ; a(x) input
Sl i:l i=1

- to cascade
.f by repeated applications of property (B-3).

;:

4




The idempotent form of the generator polynomial g(x),

labeled by gI(x), may be constructed by noting that g(x)

and h(x) are relatively prime. (They share no common

irreducible factors.) Thus there are polynomials d(x) and

f (x) for which it is possible to write:

d(x) g(x) + £(x; h(x) =1 (B-6)

The idempotent generator gI(x) is the product of d(x) and g(x)
gp(x) = d(x) g(x) (B-7)

It is easy to see that gI(x) and g(x) both generate the

same ideal.

lls:=)) C (s}

[gp(x) + £(x) h(x)] = g(x) g;(x) + 0 on the other; thus g (x)

divides g(x) and “g(x))) C “gI(x)_” .

”41"")7 = Ng(x)” (B-8)

It is possible using the definition of gI(x) and the

on one hand while g(x) = g(x)

basic equation (B-6) above to demonstrate the facts in egua-

tions (B-3) and (B-5). Their proofs parallel those associated

with the similar results for minimal ideal idempotents con-

tained in Appendix A.
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Appendix C

Finite Field Transform

The n th root of unity, o, has the following properties:

" =1 ’ ak # 1 for all k < n
3 m o (c-1)
) a € GF(g'l , n divides (q - 1)
ii The validity of the transform pair, equations (18) and (19),
.& rests upon the following identities concerning sums of roots
%
:;j of unity.
N
2 n-1 as n-1
s e =} 1= ((n) ; A= 0mod n (c-2)
o 2=0 2=0 P
2 )
BN ‘ n-
A (1-ad) 7 o« = (1-a™ =0; d 7 0 mod n (c-3)
2=0
>
Q The first equation is a consequence of the characteristic of
U
Q the field GF(qm) while the second one is the geometric sum.
- Since d Z 0 mod n, (l—ud) # 0, and equation (C-3) implies that
o)
3
” the sum is zero
o
n-1
ot = 0 ; 4 Z 0 mod n (c-4)
) =0
2: The relationship between equations (18) and (19) may be
X
e examined by substituting one into the other.
" n-1 . n-1 [n-1 . .
- - - - -1 m -2
. ((n 1)) z Y. @ 23 ((n 7)) ) ) Y, © IV a™*I  (c-5)
N P 520 3 P 520 |m=0
& n-1 n-1 )
- -2
! =y Ty, o (m=213
P .= ot
m=0 Jj=0




However the sum in brackets in the last expression may

be evaluated using identities (C-2) and (C-4).

nil aj(m—l)- ((n))p ;M = £ mod n
j=0

0 ; M Z L mod n

This verifies that equation (19) is the inverse of equation

(18) and vice versa. The uniqueness of the transform follows

immediately from the linearity of the formulas. The inversion

formula, equation (19), guarantees that the transform with all

zeros also has zero coefficients in the polynomial domain An.
The relationship between convolution and pointwise coeffi-

cient multiplication in the transform domain, eguation (20)

can be established by considering the inversion of the pro-

duct {;. A.].
i Y3

1 n-1 A ~

- _jm _ -
§, = ((n ))p 'Eo aj vy @ m=0, 1, ..., (n-1)
J
n-1 . n-1 . n-1 .
- - 2
= ((n l)) ] a Jm ) ay L ) Yg ol
P 320 k=0 2=0 _
(C-6)
n-1 n-1 n-1
-1, +2-
=™ty 7 1 a v, | ] QI
P xzo0 20 j=0
N Identities (C-2) and (C-4) permit the evaluation of the sum
on j.
. nil aj(k+2—m) _ ((n))p ; k+2 = m mod n
j=0 0 otherwise

..............
-------------
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The value of 6m is determined by a convolution of the terms

a; and Yj where the indices are reduced modulo n.

n—.
§ = Y a Y
m 220 m-2 "2
(c-7)
nil
= a Y -
k=0 k 'm-k

However this is completely equivalent with polynomial multipli-

cation in An because of the reduction modulo (xn - 1).

§(x) = a(x)y(x) (C-8)

where §(x) = 60 + Glx + ... + 6
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Appendix D

Annihilator and Chord Properties of

Transform Coefficients

The Annihilator Property relates the zeros of a poly-

nomial c(x) € An with the indices of the zero transform

coefficients cj. Using the notation of the text and in
particular the usual labeling of the polynomial and trans-
form coefficients, it is possible to state the following

Lemma.

Lemma D1

. A

c(x) has a o) as a root if and only if c. = 0 for j

¢ A where A denotes a subset of the indices {0, 1, ..., (n-1)}.

Proof: Since by definition cj = c(aj), the necessary part is
obvious. On the other hand the inversion formula (19) and the
requirement that cj = 0 for all j ¢ A allows the following

form for c(x).

c(x) = § ((n” c a, (D-1)

Evaluating this at aj, j £ A and rearranging the terms gives:

-1 .

_a -1 ~ D % (5-m)

c(a"d) = ((n"5))_ ¢ a (D-2)
! P M og=0

me A
However since j £ A, (j—m) Z 0 mod n and so identity (C-4)

applies showing that the last sum in (D-2) is zero. Thus

v'-'-.- ,‘.‘57‘-‘1\_ = . » N A
P Y i SR S = . S, S, SN SR S SR S U S SR PN, S &i



................................

aj, j £ A is a root of c(x) where its transform coefficients

are zero for those indices not in subset A.
The Chord Property describes a special relationship
among the indices of equal transform coefficients. The closure

|
|
property of cyclotomic subsets resembles this useful property. i

Lemma D2

~

c(x) € An if and only if (cj)q=c. . 3=1, 2, ..., n-1

Jq
Proof: For any € e GF(q), c? = c.
~ n"'l . n-l . ~
(c)%9= 7 &2 o IOt - ] ¢ DL _ O (D-3)

;j: 0, l, 2, . e oy (n"l)

The coefficients of a polynomial in An are in GF(q). Then the

inversion formula (19) and the special index property on the

right of the Lemma lead to the following development

—1 n"'l A q = 2' i
(c)¥=10n N1 ] (9 a 9% . ¢=0, 1, ..., (n-1) (D-4)
P’ 520
The normalizing factor ((n—l))p is by definition in GF(p)
Ceoerlq) .
n-1 . .
q _ -1 -jq
(cg1 = ™M)y} ey 0 (D-5)
3=0
Since (n,q) = 1, a change of variables m = jg in the sum-

mation is possible and an equivalent expression for c, emerges

AN
.
CRa

on the right of (D-5).

P

r
»
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' Appendix E
. Error Correction in the Transform Domain
tf Suppose that the desired output from the componentwise
ii multiplications in the transform domain for component i, i = 1,
5: 2, ..., t is denoted generically by'{cij). Let c, (x) desig-
o
o nate the corresponding polynomial obtained from the inversion
N

process.
1o . A ~ ~
;2,: cij = aij Yij -q——»-ci(x) s i=1, 2, ..., t
R .
<, . (1)

j e As

E} Errors can be introduced in several operations. When the

stored transform coefficients {Yij} are delivered to the

multiplier system, they could contain errors {cij} ; the
input coefficients {aij} could contain errors modeled by the

term R g
s {nl }

J

.. + O.. Erroneous Stored Sequence
{Ylj 013} e guen

. . . s Erro us Input Segu
{alJ + nlj} rroneo np equence

Label the final result of the pointwise coefficient multipli-
cations by {dij}. The most general form of these coefficients

including all types of errors is given by:

~ " ~ ~ ~

L. = .. . . ..+ 1Nn.. . .
dl] (yl] + 013) (alj nlj) + vl]

. T, e e I R
. R et et e o et T e e e e B IR W PRE I
..... SRR N P T B S T TV TPUA R Y LR B T T R S S TR A R
- . - - - . . A . . . - - . - . . . . - . . o PR ) - - » . . N

R N P R P T AR S T WAL PR AL SRS ST TP Yol IR SR S-S - D, V0. St . W5 Wi W5 P W P TR e ]




Thus it is possible to include all of these types of errors in

the following expression where the noise coefficients €,. are

~

added to the desired coefficients ci.

313 = ;ij + ;ij ; Eij Noise Terms
i=1, 2, ..., t (E-1)
j e A;i)
where
;ij = ;ijhij ; ;ij Input Terms

(E-2)

Y.. Stored Terms

The coefficients of di(x) are related to the dij through

the inverse transform:

-1 - -23 .
d., = ((n 7)) ) ., d.. a i=1,2, ..., t
i% Pjgalt) il (E-3)
£ =0,1, ..., (n-1)
where
nil 2
4, (x) = d., x (E-4)
i 220 if

The inversion process satisfies the Annihilator Property,
Lemma D1, Appendix D. (This guarantees that di(x) € M, pro-

vided di(x) € An).

--------------
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E=3

It will be aséumed that thé size of the cyclotomic subset
A;i), denoted by Ri, is greater than one throughout the remain-
der of the appendix.‘ The ramifications of this assumption will
become apparent as the development progresses. The transform

domain errors, eij’ are reflected to the polynomial components

as an error polynomial ei(x) by the inversion formula.

d.(x) = c,(x) + €. (x) ; £€.(x) Error
* . t . Polynomial
ci(x) Desired (E-5)
Result

i=1, 2, ..., t

~

If the error coefficients Eij do not satisfy the Chord Property,
Lemma D2 indicates that not all coefficients of Ei(x) are in
GF(q), an easily detectable condition.

There are simple sufficient conditions for violating the

Chord Property.
Lemma El

If at least one transform coefficient is zero while others

are nonzero then these coefficients do not satisfy the Chord

Property.
. A _ . ~ . (i)
Proof: Let eijo = 0 while eimo # 0 for Jgr Mgy € As . Then
by the construction of the cyclotomic subset A;l), there is a
r

o such that jO = myq O mod n. Assume that the Chord Property

holds. Then it follows that
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zy But this is a contradiction of the fact that
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k2 e. )9

) (e imo ) #0

This Lemma insures that the Chord Property is the basis
for detecting up to (zi - 1) errors in the noise coefficients.
Thus the size of the cyclotomic subset takes on the same impor-
tance as minimum distance does in norﬁal bounded distance
decoding [3-5]. The analogy does not stop there. The error-
correcting performance in the transform domain which will be
developed next extends up to (li - 1)/2 errors in the coeffi-
cients.

R For error-correcting purposes the transform coefficients
dij which are the inputs to the inversion formula (E-3) will

be called the Master Sequence. If all of its items are correct,
each coefficient could be used, by invoking the Chord Property,
to generate li different Test Sequences by repeatedly forming
the qEE power of each successive element. This concept of a
Master Seguence and li Test Sequences is shown in Figure E-1

where each element in a Test Sequence is listed directly under

its correspondingly indexed term in the Master Sequence. The |
generating coefficient in each Test Sequence is surrounded by a

box .
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Suppose now that some of the coefficients in the Master

»
e )

Sequence have nonzero error coefficients. Say there are v

where the integer v is less or equal to (li - 1)/2.

NONZERO NOISE COEFFICIENTS

-~
™
-
-
.
.
*
-
-
]

L. -1 : (E-5)

Further assume, only momentarily though, that the formation of

the li Test Sequence is erxror-free. Most test seguences, except

A ~

those generated by d d.. , ..., d.. which do not obey the
131 ij, ij,
Chord Property, will have more than li correct terms in common
2

with the Master Sequence. The remaining Test Sequences represent

gquestionable positions in the Master Sequence. However the

incorrect positions can be determined using the Chord Property
and the known correct positions. Alternately a majority decision
on a particular position using all the Test Sequences and the
Master Sequence gives the correct value for that position.

Now remove the requirement, introduced directly above, that
the generation of the Test Sequences be error-free. Say a

position in the Master Sequence is correct but that the Test

Sequence generated from it contains errors due to the generation
process. It is easy to see that as long as the additional number
of erroneous Test Sequences combined with the number of original

errors does not exceed zi—l, then the correction technique using

2
a majority decision will not affect the correct positions.
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Appendix F

Fast Finite Field Transform Algorithm:

Development, Properties and Error Propagation

Prime factor fast finite field forward and inverse

transform algorithms are developed in this appendix. The

intermediate variables used in each of the algorithms

O aa)
IR

possess useful properties concerning chord lengths. Such
properties can be employed for distributed error control
in system realizations. The propagation and penetration

of internal errors are investigated, and, in the case of

RETSSAN  Soond

the inverse transform, the output error polynomials due to

single errors within the structure are explicitly deter-
mined.

The forward transform will be considered first where
both decimation in frequency and decimation in time forms
of fast algorithms are developed. Some parts of typical
signal flow charts are shown. Analogous developments
for the inverse transform are presented in the latter half
of the appendix.

The decimation in frequency form of the forward trans-

form stems from the following decomposition of the i and

j indices in equation (32).

1 = 11n + 1 1

2 2 0,1,...(p -1)

1’ 1
(F-1)

j = jl + jzpl iZ, jZ = 0,1,...(n2—1)

-----

.........
--------------
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F-2-
g! The prime Py is a factor in equation (33) while
.‘;: .
o _ M
"2 7L P
f (F—Z)
o Intermediate variables 2. . is defined.
o J1r12
i~
- -1 .
igi, Pl ny 413y
b Zy i, =@ .2 ino+i, (@)
o2 1772 11=0 172 72
-
b The transform coefficient, aj, may be expressed as:
.% n,-1
¥ - Py 1335
e a, . . 2. . (a7) i J=3y + 3,P
b J1 P j=0 J10t2 172
ﬁb The development continues in this fashion refining any index
5‘:- .
ﬁi. whose range limits contain composite numbers. Table F-la
| summarizes the straightforward development of a fast trans-
»2 form when n contains four prime factors.
.l
14 The decimation in time approach may be developed
4
” starting with the expansion of indices as:
.'@-;
:1 i=1i, +i,p, P iy, 39 = 0,1,...(py-1)
A ' (F-3)
) j = jlnz + jZ i izr j2 = 0,1,-..(1’12—1)
o
ﬂg Thus the desired output variable, say aj , may be written
>
F= in terms of intermediate variables, Y. i
‘4 2771
3
!
Iy
i
N
N
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2!
0<i,<p,
The next step is to define other intermediate variables

by further decomposing indices which range up to n, using

2
the prime P, and

Table F-1b shows the interrelationship between intermediate

variables for a four factor value of n. The input data with

indices expressed in a mixed radix notation are used to

define intermediate variables Y. . . . which in turn are
J4I13I12I11

to define the Y, .etc.,. See Figure 8b in the text

33,i2,iI,
for the general flow of the defining relationships.

The intermediate variables obey the interesting
properties typified by equations (34) and (35). They equate
the qEE power of variables with other variables having
specially related indices. Such properties might accurately
be called limited chord properties since the related indices
are reduced modulo divisors of n. They are based upon the
input data lying in the field GF(g). These properties allow
distributed error protection within the algorithm.

A proof of one of the properties will be outlined;
similar proofs are easily constructed for all of them possibly

involving finite induction. Take for example, , and

Z. .
Jyr1y

consider its qEE power,
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0<ip<ny

= Zjlq’iz 3,9 modulo P1

The index (jlq) is reduced modulo Py because of the range
of the j1 variable.

Parts of the signal flow graph for the first stage of
the fast forward algorithm are shown in Figure F-1. Note
that an error in one input datum can propagate to either
pP; Or p, new intermediate variables depending on the form.
However, because of the limited chord properties, it is
possible to perform detection and correction as outlined
earlier using qEE powers of the variables. There is one
possible difficulty, though. The chord length must exceed
cne so as to offer any error control capability.

There are constraints that guarantee that all chord
lengths, involving non-zero indices, exceed a known integer.
This general result will be stated in the nature of a theorem.
_Theorem If (n, (qi—l) ) =1 for all i< &, there are

no integers j and s, 0<j<t, s<& such that

jg©= j mod t (F-6)

where t|n

Proof: Since t|n, (t, (a*-1) )= 1, 0<i<® also.

--q'l .\._.,._ - N
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F-7.

Each input datum enters into the formation of Py inter-

mediate variables for each i, =0, 1, ..., (nz—l).

2

DECIMATION IN FREQUENCY FORM
FIGURE F-1la

PART OF FIRST STAGE, FAST FORWARD ALGORITHM

FIGURE F-1
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Each input datum enters into the formation of Py
intermediate variables for each set of indices

1'.3 =0,1, ..., (p3—l) H i2 =0, 1, ..., (pz—l) ;
il =0, 1, ..., (pl—l).
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Suppose that j, and‘s° exist which satisfy the egquation.
. SO . so

Then t|j,(g -1). But since (t, (@ -1) )=1 it follows

that t|j, which is impossible because of the range of j.

Thus by constraining the length n so that it shares

no orime factors with

(q*-1) ;i<e (F-7)

all intermediate variables with non-zero indices will be

vpart of chords with lengths exceeding &. The error detection
and correction procedures have been outlined earlier. Note,
though, that in eqguation (32), n](qm-l) and so % must be

less than m.

The intermediate variables with zero indices are in the
field GF(g) giving chord lengths of one. Thus, no error
protection through chord lengths can be applied. Nevertheless,
at the next stage, each such variable has a direct impact on
newly defined intermediate variables which are part of error-
protected chords. The next stage in the algorithms will be
discussed so that this will be apparent.

Figure F-2 displays parts of the second state of each
form of the algorithm. It is an easy matter to demonstrate
the properties in equations (34) and (35) for the new
intermediate variables appearing at the conclusion of this
stage. For example, in the case of the decimation in frequency

form, the limited chord property apolies to the two indices,
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j1 and j2' of Zj 3 i In this situation, each index
17 72" 73

may have different chord lengths, a case to be considered
next.

Suppose two non-zero indices, j1 and j2 have respective
limited chord lengths 2, and 2, established by the following !

requirements

mod p : 2, least

k- L8

&N

[
T}
(&)

—
’

=

™
b

(F-8)
qu 552 mod D, ; 12 least

| i ety §

The overall chord length of 2Z. . . describing the
J1- Jyr 13
behavior when taking repeated gth powers, is easily seen to
i be the least common multiple of 21 and 22.
E
\
L12= L. C. M. (211221; Overall Chord Length (F-9)

This same principe can be generalized to intermediate
. variables involving more than two indices in their limited

chord vroperties.

If a constraint similar to indentity (F-7) is imposed
on the transform length n, all chord lengths at the second
stage will permit error protection except for the case when
j1=0=j2. However, in such a case the defining egquation for
zjl'jz’j3,i4’ Table F-la, shows that any errors in

zO,O,iB' ig fixed, provogate to terms like Zo, 05514

0<j;<p3 which appear in nontrival chords. Furthermore there

could be numerous chords at this level allowing the source
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&: ) ZO: 0, i3 to be identified.

@' The general development and error protection available in
( .

- the fast tranforms are now clear. The fast inverse trnasform
'g will be considered next.

. The inverse transform is given by

3 a, = ((n"7)) ¥ a, (@M ; ((x))_ = xmod p (F-10)
% J P 320 I P

g

‘f where the letters a are used for convenience. In the context

o\ of signal processing the inverse transform would be applied

;: to the Aj transform coefficients to yield the coefficients

f' in §(x) (see Figure 6). The chord property, equation (30),

Iﬁ generically stated as,

4 (a.)? = a, ; jg mod n (F-11)

= 3 jg 739

Ei imposes constraints on intermediate variables within a fast
algorithm. Such algorithms have two forms and may be devel-
oped as before. Table F-2 gives the definitions for a four
factor version.

- A proof of the limited chord properties listed in equations

Jl

& (41) and (42) relies upon the condition (n,g) = 1. For example

.3 to show that

b

W (z, . . )% =z, . . i (F-12)

..‘ Jl’ 32' J3I 14 qul qul J3ql 4

o

i i3 mod } mod

= . 11,4 Pyr 1,94 Py
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2% the defining eguation from Table F-2a is used.
N .
~ A . n,—
‘ (2 . q _ U301y py Py 8
) Jyr Jor J2s 1i,) a z
o 1’ J2¢ J37 14 5t20
o 1~
;’: : (P-13)
2:' a14(q34)p1 P, P3 -
N 43y 4 93Py 4 933PyP, 4 (Qd4)PyP,P4
'§ However (g,n) = 1 implies (q,n4) = 1 because n4[n.
d So ((q—l))n = q = mod n, exists and the change of variables
o 4
b 4
- is one to one mod n, since j, = ((q-l))n £ is the inverse
&3 4
é mapping.
g . , p,-1 .
§! G 1a _ g39 14P1P2 § (aplp2p3)14§
‘ J1r I I3 3y £=0
d . (F-14)
N A
. a . . ] ‘ , _ -
2 93y + 93Py 4 933P Py 4 EPIPRP3 = a3y a3y @iy i,
J A proof of (Y. . )q =Y . . uses the same reasoning and
N Jar1p Qe 1y
,; similarly for the remaining properties in equations (41) and
N (42).
-
;* The limited chord properties can be used for error control
A in the inverse transform algorithm just as before, and the
%ﬁ sufficient conditions (F-7) guarantee a minimum length for all
& “he chords involving nonzero indices. However errors in terms
N
V! with zero indices can be a source of difficulty because they
q ) are elements in GF(q). The fast inverse transform algorithm
r K "_.M"?,_ S o R ’( ".‘6.‘-."4-




::': "‘v‘ -
‘..3, ’ ¢ F—.l7
X3
:ﬁl systematically produces some intermediate values in GF(qg) at
N each stage and uses them in the formation of new intermediate
[ .
[NV2 values which are also in GF(g) at the next stage. Therefore
;é in some instances there is no useful chord property available
G for error control. On the other hand though the error-correct-
.Zj ing code over the final n output values can handle these pro-
>
- pagating errors.
g Typical parts of the last two stages of the decimation
= ‘ in frequency form are shown in Figure F-3, When an error, e,
f} : occurs in intermediate variable ZO' , at the input to the
€ 2
- last stage errors appear in Py terms
s '
'.: . N H i = oo s ) = .
%r all'“z N +e ;113 =0, 1, ,(pl 1)
Eﬁ The error components in the output are additive and can be
§: expressed as an error polynomial.
oy 1 '

. p.-1 . .

i 1 in i n
i e(x) = € x 2 Z x 2 = € X 2 xn 1 (F-15)
g i=0 % 23
2
e
% If this single additive error, €, occurred in the next to
2 last stage, say in term 2 . , the same additive error
" 0, O, 13
22 value e will appear in the (p;p,) output values
i
fJ a. ) +e¢ ; i,=0, 1, ..., (p,-1)
-’:: iyn, + 1,0, + i, 1 1
% 170, 1, -vr (pp=1)
-
'y
. 1 The error polynomial corresponding with these (plpz) errors is
s
&
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- | i, P17t Pyt in,  inn,
X e(x) =€ x ) I (x ) (x )
i.=0 i.=0
1 2
_ (F-16)
_ e 3 [x0 R S
- n ‘ n, F1¥2
M3 3

For the decimation in frequency form, the output errors
resulting from internal errors in various stages is summarized
in Table 1 of the text.

The propagation of errors in the decimation in time form
behaves in an analogous manner. The last two stages are
exemplified by the parts in Figure F-4 from which error
penetration effects may be studied. Carefully analyzing

terms with first index set to zero shows how internal errors in

GF (q) terms pass through to the output. The error polynomials

associated with such error are also given in Table 1.

The error polynomials for either form represent very

special types of error patterns, one with identical errors in
N well-defined locations. The few errors that can propagate
to the output can be detected and corrected by the overall
cyclic codes if its generator polynomial, g{(x), is properly
'; chosen. It must not divide any of the possible error poly-
22 nomials. Since the inverse algorithm is additive, all
) possible output errors, caused by intcrnal failure pro-
: ducing GF(q) errors in vulnerable intermediate variables, can
be constructed by linear combinations of the error polynomials

4 already given.
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