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Introduction

iFinite field arithmetic may be efficiently applied for

implementing signal processing architectures. The fundamen-

tal theoretical work in this area was done by Matluk and Gill

r They showed how convolutions over a residue class ring,

modulo an integer M, the situation for all implementations

using a finite digital representation, may be separated into

an equivalent system of serial and parallel sections. If the

* integer M has the prime factor expansion,

e. e2  e

M P 1 ' P2 . . . . .. Ps Pi a distinct prime,

each section in this decomposition performs a convolution

employing finite field arithmetic. The general decomposi-

tion is shown in Figure 1. Furthermore when M contains no

primes raised to a power, this decomposition consists only of

parallel sections, each using arithmetic associated with a

distinctive prime. Recently these techniques have been

expanded and fast algorithms for use with signal processing

systems have been developed [7].

This report presents several new approaches for incor-

porating error-correcting codes with signal processing

operations yielding fault tolerant systems. Fault tolerant

levels can be distributed throughout the system's architec-

ture. Such architectures will become necessary when very

sophisticated and dense systems are implemented with Very ---- P

.. J
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3

Large Scale Integration, (VLSI).

This introduction describes the basic approach for in-

cluding error-correcting codes with the convolution operation.

Several architectures are developed that will protect against

permanent and temporary failures in the hardware. The theore- -

tical support for these techniques is given in succeeding

sections. Further details are contained in Appendices A-F.

The desired signal processing operation is equivalent

to the multiplication of two polynomials a(x) and b(x) where

a(x) denotes the input sequence and b(x) corresponds to the

desired filter impulse response. It will be assumed that the

degree of their product does not exceed an integer, k, and that

the coefficients of the polynomials are from a suitably chosen

finite field, GF(q). Furthermore the proper sampling and

quantization of the input and weighting sequences is considered

to have been accomplished in accordance with accepted practices

[6]. The required convolution operation is stated in mathe-

matical terms as:

4a(x) b(x) ; degree [a(x)b(x)] < k

* a(x), b(x) c GF(q)[x]

Cyclic codes are described in terms of polynomial alge-

bras where the code is a special subspace called an ideal

[2-51. All polynomials in the algebra are reduced in a

cyclic fashion and an ideal is generated by taking multiples

of a single generator polynomial. Polynomial multiplication

.4

/4
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-7. .17 MI,, . . -7. -7- -

1 4

involving an element of the code space always produces another

element in the code. Cyclic codes with their error-protecting

structure are ideal for digital filtering because polynomial

multiplicaitons are the fundamental operations in both realms.

Throughout this presentation the cyclic code will have length

n and the integer k will denote the number of information

digits represented in each codeword. The polynomial algebra

underlying the cyclic code is defined modulo the polynomial

(xn - 1), (2-51.

Suppose that one of the polynomials in the product a(x)

b(x) is replaced by a codeword from the cyclic code with

generator polynomial g(x). The filter sequence represented

by b(x) may be encoded.

b(x) - lb(x) g(x)] ENCODING OF

FILTER RESPONSE

When the encoded filter response is multiplied by a(.x), a

codeword results. The desired filter result is the informa-

tion part of the codeword since the degree of a(x) b(x) is

less than k and the degree of the generator g(x) is (n -k).

a(x) [b(x) g(x)] = [a(x) b(x)] g(x) CODEWORD

DES I RED
FILTER
RESULT

The polynomial a(x) represents the input to the filter, but

since b(x) corresponds to a fixed filter response and g(x) is

a known encoding polynomial, [b(x) g(x)] may be precomputed

and stored.

LIL. . . -° . . °. . . - . *. . . . ..*-o . . . . .
'':*, -- " .," " */ ... . ...,' 'h . . . """" . ."""". . " " " .""'" -i " .''' -. ',,.-' ""-, 4 , 

.
°$ '.- . ,-, **- - " ., ':'
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Figure 2 shows the system philosophy for employing the

code space. This represents the general case of a non-

systematic code since the information digits are not assigned

to fixed positions in the codeword [5]. The special case of

systematic codes will be discussed shortly. In Figure 2,

two extra subsystems that provide the protection are indicated.

One is the Error Detector/Corrector which extracts the correct

desired product from the output of the polynomial multiplica-

tion section while the other is an Error Status Check system

which determines if errors have occurred and whether they are

from the multiplication section or lie in the Error Detector/

Corrector itself. Clearly it is possible for two of the three

subsystems to introduce errors that go undetected. However

the probability of this type of error is substantially less

than an unprotected system.

Error-correcting codes were designed for detecting and

correcting additive errors. When hardware failures lead to

these types of errors at the system's output, the code can

detect and may also be used to correct the errors. However

it will also be shown that the code can detect and correct

other types of errors that arise in hardware systems.

Systematic Form of the Code:

A systematic form of the cyclic code may be used in the

system described above. In such a form the desired filtering

opera# *on's o' put appears in an unaltered format at the out-

'4
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ERROR ERROR
STATUS

CHECK FLAG

POLYNOMIAL
INPUTMULTPLICTIONOUTPUT

* IN UT M LTI LICA IONERROR DETECTOR/
*a(X) CORRECTOR a(X)b(X)

a(X)b(X)g(X)

Figure 2

* DICHOTOMY OFSIGN1AL PROCESSING'
SYSTEM EMPLOYING CONCLURRENT

ERROR PROTECTION
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put of the polynomial multiplication subsystem. Thus no

further operations are required to extract the result if no

errors have been made. However in this case two parallel

similar subsystems are required. One subsystem calculates the

direct filter output while the other computes the corresponding

parity-check digits.

For the systematic form the stored encoded filter weights,

labeled b(x)g(x) in Figure 2, are computed differently. The

n-kterm x b(x) is reduced modulo g(x) to obtain the parity-

check portion of the codeword denoted by [-p(x)]. The

Euclidean Division Algorithm when applied to x n-kb(x) using

g(x) as the divisor [5] gives:

x n-kb(x) = f(x)g(x) + p(x) ; deg p(x):-deg g(x) = n-k (1)

The polynomial [x n-kb(x) - p(x)] is a codeword, and more

importantly the parity-check digits represented by [-p(x)] are

confined to the lower ordered (n-k) coefficients. On the other

hand the weighting contained in b(x) appears in the higher

ordered k positions. Thus the codeword may be separated into

two polynomials, one representing the parity-checks and the

other, the desired weighting.

" [xnkb(x)] + f-p(x)) = CODEWORD

FILTER PARITY-CHECK
WEIGHTING PART
PORTION

J%

5%

,%. . . .. . . .
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When multiplied by a(x) the desired result may be segre-

gated into two portions as shown in Figure 3 where two similar

subsystems are required. Only linearity is necessary to insure

this separation into two parallel subsystems. Since the degree

n-k
[a(x)b(x)] is less than k, the digits in [x a(x)b(x)] corre-

spond to the desired filter output. On the other hand though

[-a(x)p(x)] may have degree greater than (n-k-i). These

digits are only necessary when the error detection and correc-

tion systems are employed. The two parts need only be combined

before entering the error control subsystems as shown in Figure

3.

The systematic and nonsystematic code forms lead to similar

architectures. In developing the general system architecture

the nonsystematic form will be considered. The basic principles

are applicable in both situations, and only minor modifications

are necessary for the systematic case. The system shown in

Figure 2 will be studied in detail with particular attention

devoted to the subsystem labeled polynomial multiplication.

Polynomial Multiplication Using Component Polynomials:

Associated with the code space are irreducible polynomials

gi i = 1, 2, ... , t, where the number t is determined by

the code space. These polynomials are factors of the parity-

check polynomial, h(x)

t
h(x) = gi(x)

i=l 1

"-'. .:I-'-. .. -. . --,, . .- - -" --ii , . ..- ,.- .. i -,-. -, : - . • , - • " ' ,- • . - - " "
. ". -. .. .. . . . . . . . . . .bt~~',.

t
ab ,um . . ..T .L. L.. ,%a.. . . .
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Each irreducible factor in turn defines an idempotent e. (x),1

with the defining property:

2
e2(x) = e.(x) ; i = 1, 2, ... , t (3)

These idempotents permit an expansion of [a(x)b(x)g(x)]

using component factors modulo the individual factors gi(x),

i = 1, 2, ... , t.
t

a(x) b(x) g(x) a.(x) bi(x) ei(x) (4)

where

a.(x) - a(x) mod gi(x) (5)1

and

bi(x) - b(x) g(x) mod gi(x) (6)

The polynomial multiplication subsystem of Figure 2 may be

replaced by t parallel subsystems each involving component

multiplications of the respective factors a. (x) and b (x)1 i
e. (x). The t results are recombined according to equation

1

(4).

The terms b. (x) represent fixed weights which may be

stored. The theory shows that each component multiplication

a.(x) bi(x) is equivalent to a product of corresponding field

elements from a finite field defined by the irreducible fac-

tor gi(x). The field representation of this product addresses

shifted versions of the idempotent ei(x), and a sum of the1

necessary versions gives the factor [ai(x)bi(x)ei (x). This

- ..
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is shown in Figure 4a where the reduction modulo g.(x) is

an integral part of the field operations. The t products

each generated in this way are combined according to equation

(4). The complete system appears in Figure 4b.

Use of the Transform Domain:

An alternate implementation of the polynomial multipli-

cations can be performed in a transform domain. The mapping

into this domain involves a primitive n th root of unity a

which lies possibly in an extension field which will be

denoted by GF(qm), m>l. However under certain conditions it

may be possible to choose n so that the primitive root, a

falls in the base field GF(q). The polynomial multiplications

of the component polynomials may be transformed to an equiva-

lent series of multiplications of the related transform
'..

coefficients. The inverse transform of these results gives the

desired product. The number of nonzero transform coefficients

needed to implement the product ai (x)yi(x) is less than the

degree of the correspondingly indexed irreducible factor gi(x).

Furthermore the transform coefficients may be determined by

forming successive q th powers of a single transform coeffi-

cient. The realization of this device is simpler than a

general multiplier system for the coefficient field GF(qm).

Figure 5 shows the transform domain approach to polynomial

multiplication. The transform coefficients affiliated with

the component polynomials ai(x) are labeled [ai ] while those

corresponding to the yi(x) components, by [Yij]1 The number
1,. j
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.4IF t. = DEGREE [gi(X)], COMPONENTS

a1(X), b1 (X) BE HAVE AS IF FROM GF(p t)

[a1 (X)bi (X) mod gi (X)] FINITE FIELD MULTIPLICATION

STORAGE OF

SHIFTED VERSIONS

OF IDEMPOTENT e.(X)

a. X __ _ _ __ _ _0-SHIFT

FINTE1 SHIFT
FIIT aIXb(~iX

FIELD

1 TION

Zi-l) SHIFT! ) aXl

SYMBOL

aimai(~biX(X)X

444 Fioure 4a

Mutiplication of One Components

Finure -4

Polynomial Multiplication IUsino Components
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PCE ERROR
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L\ACHECK

IN 0 M E T DETECTOR/
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of nonzero terms in [y. is guaranteed to be less than the
1J

degree of gi(x) and so only coefficients in the list, laij

with similar indices need to be determined. The locations of

the nonzero terms are known in advance and are determined by

index numbers in certain subsets of integers, the cyclotomic

subsets modulo n.

-... °

-4,.

44.-.. . .. .. . ..

" 4, ,, ' , : , :. . - : : , , . , .- . . . , . . . . . , : ,...,.................:.o -- . . .:.u
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Space Decompositions

The section describes the component decompositions of the

code space. The general nature of minimal ideal expansions is

presented first followed by the application of minimal ideals-

to cyclic codes. The basic properties displayed in this sec-

tion are also used in certain aspects of the transform domain

implementation. All properties are stated without proofs but

the supporting developments are relagated to the appendices.

Minimal Ideal Decompositions:

If the code length n and the size of the ground field q

are relatively prime then the polynomial (xn - 1) may be

factored into distinct irreducible factors. (Say for defi-

niteness that there are T factors.)

T(x n - 1) II gi(x) ; (n,q) = 1 (7)

ili gi(x) irreducible

The ring of polynomials GF(q) [x], reduced modulo (x - 1) is

a residue class ring in which the minimal ideals are defined

by the irreducible factors in equation (7). The following

notational conventions are introduced.

A = GF(q) [x]/ ((xn - 1)) ; Residue Class Ring (8)

((f(x))) denotes principal

ideal generated by f(x).

"F

". .. . . . . . . . . . . . . . . . . . . . .
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M.(x) ; MINIMAL IDEALS (9)
I gi(x)

M. = ((mi(x))) i = 1, 2, ..., T

The fact that each mi(x) as defined in equation (9), gener-

ates a minimal ideal is demonstrated in Appendix A.

Each minimal ideal Mi also contains an idempotent e i (x)

defined by considering units modulo gi(x) in the minimal

ideal Mi . It also generates the same principal ideal. An

idempotent obeys the following identity

eix = ei(x) IDEMPOTENT (10)

The idempotents and their properties play a central role in

the results to follow. For example the components necessary

for a direct sum expansion oZ any element a(x) c An can be

easily determined using an orthonormal property.

T
a(x) = a. (x) ei (x) • Denotes a direct

sum expansion

'" (11)

a. (x) = a (x) mod gi(x); i=l, 2, ... , T:411

Minimal Ideals and Cyclic Codes:

A cyclic code is a principal ideal in A generated by
n

a polynomial g(x). Furthermore g(x) divides (x - 1) and

also defines the parity-check polynomial, h(x).

(xn  - 1) g(x) h(x) (12)

.1-
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Since (n,q) = 1, there are no repeated factors in (xn - 1)

and g(x) and h(x) contain only distinct irreducible factors.

The factors of h(x) will be indexed by i = 1, 2, ... , t and

those of g(x) by j = t+l, t+2, ... , T.

t
h(x) = ]"gi(x)

i=l

(13)

Tg(X) = "T gj (x)

j=t+l

The degrees of these polynomials determine the permissible

numbers of parity-check digits in each possible code contained

within An

degree g(x) = n-k ; degree hix) = k (14)

The code generated by g(x) will be labeled by G; it is

a k-dimensional subspace of An (and by construction also a

principal ideal).

G = ((g(x))) (15)

The code space G may be expressed in terms of the t minimal

ideals defined by the respective factors gi(xi, i = 1, 2,

., . .. , t.

t
G M. (16)

i=l 1

.2

... - . ..dS ~. . . . . . . . . . . .
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It is possible to define an idempotent generator for the

code space G. If cascaded sections use the same code space,

the idempotent property of this generator could be used to

guarantee that no decoding would be necessary until the final

section. This concept will not be pursued further here, but

such possibilities for cascaded configurations could be use-

ful.

%4

.4
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The Transform Domain

Definitions and Properties:

The degrees of the polynomials a(x) and b(x), involved

in the weighting operation, determine the parameter k while

the desired level of error protection determines the size

of n for the code. The choices of the pairs of integers

n and k are limited by the irreducible factors of (xn - 1).

(See equations (7), (12) and (13).) The field GF(q) may be

extended to a larger field GF(qm) and if n divides (qm - 1)

there will be a primitive n th root of unity in GF(q . Let

a denote this root. (If n is (q - 1) the root a will lie

in the original field GF(q).)

The irreducible polynomials gi(x) which are factors of

S(xn - ) are constructed using powers of this root a and

subsets of the integers modulo n. These cyclotomic subsets

index the conjugate roots in GF(qm ) of the irreducible fac-

tors. A typical cyclotomic subset A consists of the inte-

gers modulo n of the form {s, sq, sq 2 , ... , s where

s and I are related by the identity sql = s mod n. s is

generally taken as the smallest positive integer in the

cyclotomic subset.

A ={s, sq, sq 2  sq1-1

. I *~~(17)

s defined by s - sql mod n

"'

'I0

. ..
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Each subset is constructed successively and inductively

by selecting an integer, s, modulo n, that is not contained

in a previously considered subset and forming each integer s

qJ until the identity s - s q mod n is satisfied. The inte-

gers modulo n are partitioned by the cyclotomic subsets.

These subsets define irreducible factors gi(x).1

Sgi(x) = II (x-ct j )(i
ji A s(i) ; A M some

- :cyclotomic-subset

i =l, 2, ..., T

The degree of gi(x) is defined by the size, 9i, of the re-
M1

spective cyclotomic subset A (i)
s

A transform may be defined for the space A . It uses the

n th root of unity, a, and takes values in GF(qm) as deter-

mined by the choice of this root. The forward transform

produces n coefficients in the larger field GF(q .

Y. = y(cx J ) ; j = 0, 1, 2, ..., (n-i)
J

(18)

-) +2 n-iy0x) = + x + x + -- + Yn-l x y(x) 1 An

The inverse transform has a similar form and is normalized by

r 1
an element in the prime subfield GF(p) where q = p , p a prime

Y( n-  1) j n-i (19)1

1 ((n-1)) denotes the inverse of n modulo p. Note that since

(n,q) = (n,p) = 1 such an inverse element exists; there are
-iintegers x and y such that xn + yp 1 ; x = n mood p.

,o' .. . -.- . , . . . . . . . .. .- . -. . . . .. . .



22

The validity of this transform pair is established in Appendix

C.

This transform pair has the usual and important relation-

ship between convolution in one domain and pointwise sequence

products in the other. In symbols this relationship is:

a(x) {a a. = a(a
j = O, 1, ... ,n-i

Y(xW . 3 {y }; j =

a(x) y(x) fa (20""j (20)

CONVOLUTION - POINTWISE MULTIPLICATION

This relationship is also demonstrated in Appendix C.

Effects of the Code in Transform Domain:

The transform domain will be used in peYd :,.rming the

multiplication of the component factors a (x) and bi (x)

ei (x) as required in each sum term of equation (4). The

polynomial ai (x) is defined in equation (5) while bi (x) is

given in equation (6). For convience the stored components

will be labeled by yi (x).

Yi(x) = bi(x) ei(x) ; i = 1, 2, ... , t (21)

The transform coefficients, yij' associated with each Yi(x)

have an important property.

p'

p
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b (a A

* s
Yi = Yi ( a j  b i(CJ ei(CJ = i

I (i)

0j e As
S

"* (22)
i = 1, 2, ... t

j =0, 1, ... , (n-1)

i (i)

They are nonzero only on the cyclotomic subset A because
• m S

eix), involves all irreducible factors except gi(x). The

required polynomial product a. (x) yi(x) corresponds to a

pointwise product in the transform domain using only those

transform coefficients of a.(x) that have indices in the

cyclotomic subset A i) They are the only ones that can

yield a nonzero product.

On the other hand the roots a associated with each

cyclotomic subset may be viewed as an individual piece of

the transform where the number of elements in the cyclotomic

subset A (i) will be denoted by k.. The stored weights for

the i th component yi(x) are represented by the I nonzero

transform coefficients
*1

Yij , j s  ,A 1,2 ,...,t.

t
Note the total number of nonzero coefficients is 9. = k.i=l

The transform coefficients of the input components a (x) need
1

to be determined only for the same set of indices. The point-

wise product is formed and the inverse transform using only
(i) yed h .x

the roots defined by the respective sets A M yields the ai(x)

Yi(x) products.
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-1 (n-1) -m" ai~ ) Yix) = nI x ()Yij aij a s(3
a i(x) Y1 () 1 ()) p xm[ j A -.mj

s (23)
-.j

" ; i = , 2, .. , t

Recall that the [a..) coefficients are determined from the

input polynomial a(x). The final result [a(x)b(x)g(x)] is

given by the sum of these products according to equation (4).

The Transforms of the Polynomial Components:

A property of the transform pieces relates the zeros

of the polynomial with the location of the zero transform

coefficients and conversely. Consider a typical piece of the

transform of component polynomial, say ci(x), over its re-
M1

lated cyclotomic subset A is

c. = j(i)
C,) ci(a) j E As  , i = 1, 2,..., t

n-i £ (24)

n 1 c . sqr

r=O ir ; j=sq
Z 0, .. , ( -i

2 n-i

where c. (x) = c. + c x+c x + + Cni i1, i'l i,2 ,n1x

The size of cyclotomic subset A is designated by k..
s 1

A useful result which is a special case of a general

property for elements of A is from a Lemma in Appendix D.
n

.7. * . .
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K, Annihilator Property

c (x) in A has as roots all cxj except for j c A M

if and only if the transform coefficients c.. = 0 for all

j %e A

In another vein, since the polynomials in A have coeffi-. :. n

cients in GF(q). while the transform nay take values in GF(qm

there is a constraint on the values of the respective coeffi-

cients. This leads to the Chord Property of the transform

coefficients.

S.%

5*
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Chord Property

ci(x) GF(q) Ix] if and only if (cij)q =C j C AS

rcj',

This is also a special case of another general result from

Appendix D. The Chord Property simplifies the computation of

the transform coefficients affiliated with each polynomial

component. The piece of the transform indexed by the cyclotomic

subset A can be computed by repeatedly forming the q th

powers of a single coefficients. This continues until all

exponents from As  have been used.

Calculation in the Transform Domain:

The product [a(x) b(x) g(x)] can be realized principally

in the transform domain. An inverse transform yields the final.$

result (See equation (23).) However as was noted earlier the
A A%

product of transform coefficients yij aij' corresponding with

'the polynomial product yi(x) ai(x), i=l, 2, ... , t are nonzero

only in nonoverlapping segments in the transform domain. Thus

it is important to investigate the properties of the inverse

transform of a sequence of transform coefficients indexed by

a single cyclotomic subset.

In this regard let 6(x) denote the sum below and let Ar

label its transform coefficients which were produced by multi-

plying the terms y.j and aij indexed by the cyclotomic subset

A s

Z. . . * . . .' S " , - . . .... . .. . . . . . . . . .
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t6(x) = a. (x) Yi(x)

(25)

A.= Yi a.. ;j AJ 1j 1) s

i = 1, 2, ., t

The Annihilator Property shows that the transform coefficients,

A., are zero for indices in the cyclotomic subsets related to

the irreducible polynomial factors of g(x). The combined effect

on these transform coefficients may be stated as:

A.=0 j A

T (26)

A(g) U AUJ)
j=t+l s

The remainder of the indices are contained in the complement

set, AgT, defined by the set difference operator in the

following.

A.g-) [ 0,1,2,..., (n-l)) - A( g ) (27)

The inverse transform determines the coefficients of 6 (x).

p. n-Y Ar ; j=0,l,2,...,(n-l) (28)
rc A

Let T denote a generic root of g(x). It may be expressed

as a power of a using the appropriate index from A (g)

a sq ; sq c A() (29)

The general result, Lemma Dl, Appendix D, shows that * is a

root of 6(x), and if 6(x) EAn , the closure property of the

individual cyclotomic subsets comprising the subset A coupled

.5

i°.

°0° +a -°..- +..o - o *. o ° °..o . . - .- - o. ,- . - . ° - . % . . . ..- . . . . -. ..
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with the general chord property Lemma D2 gives that

^q ^ (g)
= A. for all r c A (30)

r rq

Then g(x) divides 6(x) and the error detector/corrector subsystem

will be unable to distinguish any errors that were introduced, in

6 (xl.

A word of caution is in order. Care must be taken to insure

that any hardware implementation does not satisfy the two condi-

tions (26) and (30), thus preempting the error detecting capabil-

ity of the code. For example implementing relationship (30) in
^~ -

the architecture to avoid computing all of the products [y ija.]

as prescribed in equation (25). could mask errors that are intro-

duced by hardware failures. Fortunately the transform domain

contains redundancy that protects against such errors.

Error Protection in The Transform Domain:

If an error occurs in the transform domain, numerous errors

can be introduced in the polynomial components. Their number

could exceed the error-detecting or correcting capability of the

code. Two general sources of errors in the transform domain

. that arise internal to the architecture are of concern. On the

other hand any errors appearing momentarily in a straightforward

implementation of the inverse transform operation affect only one

polynomial coefficient which may be treated as a normal additive

error. Further it can be safely assumed that the stored trans-

form coefficients are held in the memory correctly.

. '' ,'' ' ' .' " ', . '. "'. . " ., , " . .- . . . . • ." """ " . . -" " , "- " " "
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One source of internal errors is the calculation of the
transform coefficients from the input a(x), i.e., the a.. terms

may be incorrectly computed. The second form of errors results

from the componentwise multiplication in this transform domain.

These products {aij Yij} are necessary in the inversion formula

(.23) and can propagate numerous errors into the A domain. Itn

is possible to model both types of errors by considering noise

transform coefficients c.. along with the desired products c...

" d.. c. + c.. i = 1, 2, t
1),A(31)

s

Most reasonable hardware implementations using the trans-

form domain will employ an inversion formula involving a sum

only over the individual cyclotomic subset as shown in equation

(231. Therefore the polynomials resulting from the inversion

of the product terms will obey the Annihilator Property. Thus

it is reasonable to assume that the Annihilator Property is

satisfied. However it is shown in Appendix E that if the

noise transform coefficients cij do not obey the Chord Property,

the result of the inversion formula will yield at least one

polynomial coefficient with a value strictly in the extension

field GF(q m ) . Then of course the polynomial d. (x) obtained from1

{d. .) has at least one coefficient also in GF(q m), a fact that

is easy to detect.

It is shown in Appendix E that the error-detecting capability

of this approach allows up to (k. - 1) transform coefficients in

error where the cyclotomic subset A( i ) has k indices. Error
s

i~iii
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detection is easily implemented by checking that the inversion

formula (23) only produces elements in GF(q). There is an

error-correcting technique also available. It is outlined and

discussed in Appendix E. The sequence of transform coefficients

d.. is compared with k. different test sequences. Each test

th A

sequence is generated by forming all q- powers of each d..". ii

element. If a coefficient obeys the Chord Property then it is

correct; otherwise it can be replaced using the Chord Property

and known correct elements in the {d ij} sequence. This scheme

will correct up to t -1 errors in the transform coefficients.
• " 1

2
It also can correct errors introduced by the implementation of

the scheme itself.

The error-protecting levels in the transform domain are

directly related to the size ki of each cyclotomic subset As

Thus the choice of error-correcting codes for digital filtering

applications should have components with large cyclotomic sub-

sets (or equivalently large degrees of the affiliated irreducible

polynomials). However the overall efficiency of the space

decompositions depends on having numerous but small component

factors. The classic trade-off between complexity and error-

protecting capability is encountered.

"4-

°°,
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Imbedding Error Protection in Fast
Transform Implementation

The classical method of using the transform domain employs

fast transform algorithms for producing the frequency domain

coefficients which in turn are producted with the stored

!, weighting coefficients, this result being inverted by another

fast algorithm [6]. This traditiofial approach is depicted

in Figure 6. However the transform coefficients in this

situation are not sorted according to their minimal ideal

index as shown in Figure 5. The fast transform method has a

speed advantage especially when pipelining is incorporated in

the realization. A major disadvantage is the potential for

internally generated errors to propagate extensively through-

out the implementation. In fast transform algorithms each

intermediate variable at one stage is used in several inter-

mediate variables at the succeeding stage. Thus even single

errors can contaminate many final output values.

- The purposes of this section are to develop fast forward

and inverse transforms, analyze the propagation and penetra-

tion of internally generated errors and demonstrate methods

and restrictions which insure safe operation of the overall

system shown in Figure 6. The techniques described below

will concentrate on containing and controlling the effects

of single isolated internal errors, primarily through error

detection followed by re-execution of the defective step.

S..
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It will be clear that other procedures are possible also and

that the detection and correction of multiple errors are

easily implemented with more powerful codes and additional

restrictions.

The finite field forward transforms is used to obtain the

transform coefficients aj, j = o, 1, ... , (n-l) from the poly-

nomial a(x).

^ n-i
a. a. ; j 0, 1, (n-i)
3 i=0 q rq =p

"," (32)

ni (qm-ll; (n,q) = 1

th
Sn-root of unity

n-i
a ix) = a0 + x + ... + an1 x

A prime factor fast transform algorithm may be developed

starting with the prime decomposition of the integer n.

Repeated occurrences of the same prime are permitted.

M
n= I pi ; Pi = PRIME (33)

i=l

Since n and q are relatively prime, p cannot appear in the

product (33). There are two forms of the fast algorithm

depending on the initial decomposition of the indices i and

j appearing in (32): decimation in frequency and decimation

in time. Figure 7 shows the general form of the fast algorithm

for the case of n having four factors. Both forms never use
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more than n intermediate variables at any stage of the

algorithm. The straightforward mathematical implementation

2
of formula (32) requires on the order of n multiplications

and a similar order of additions. Either form of the fast

algorithm needs on the order of

M
n C pi )

i=l1

such operations. This is one source of the speed advantage

of fast algorithms.

The details of the fast algorithms are developed in

Appendix F, but a list of the intermediate variables and the

ranges of the indices are displayed above the interstage gaps

in Figure 7. Figure 8 gives the sets of variables and their

interrelationship for both forms of the algorithm. Pieces

of the appropriate signal graphs are given in Appendix F

where it becomes clear that an error in one operation rapidly

spreads to many subsequent intermediate variables. However

in both forms the intermediate variables, the Y and Z sub-

scripced variables, obey properties which allow chords to be

used at each stage. These properties may be listed where the

ranges of the indices are given in Figure 8.

(Z Iq z jmdpjl 1q Zqj I , i 2  qJ mod p1

(Z )q

l j2 3 qJl , qj 2 ' i 3  ; qj 2 mod P 2  (34)_

q = ;j3 mod P3.'.' 1'j2 'j3 ' 4 qJl q iJ2 q 3'i

(Y q ; qj mod n: ( Yi I  44

4 3 24 13 2

4 .
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(Y.. Y qj3 modn
S3' 12' 1 =q 3 ' i2

(35)

(Y )q Y ;qJ mod nj,:2' il q j2' il

The procedures, outlined in the previous section on

error protection through chords in the transform domain, can

be used for detection and correction as detailed in Appendix

E. Note from equations (34) and (35) that the chord lengths

are now determined modulo integers which are divisors of n.

Therefore it is important to insure chord lengths greater than

one so that detection is at least possible. Two principles

which are demonstrated in Appendix F may be used in this

regard. One concerns the combination of chord lengths while

the other is constraints on the code length n.

The first principle applies to the overall chord length

when more than one index and prime number is involved as in

equations (34). For example, say that the chords corresponding

to index j mod p1 is ti while the one for index j2 mod P2 is

2"

31 q  j mod p, £ least

£ 2 (36)

J2 q 2 j2 mod P2 £2 least

-.o
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Then the overall chord length applicable to Z. - for i
31' J2' 13

fixed, is the least common multiple of L, and t2 "

L = £.c.m. (tilt 2) (37)

This means by successively forming q- powers of Zi
.1 j 2 13

its value is repeated first on the L st power.11
The second principle concerns sufficient conditions

insuring that all chord lengths for nonzero indices exceed

length £. The conditions are

(n, (qS-l)) = 1 for all s < 1. (38)

They guarantee that all chord lengths t which satisfy

j qt= j mod p. i = 1, 2, ... , M (39)

obey the inequality

Z < t. (40)

With this principle it is possible to know when chord lengths

are favorable to detection or correction. The sufficient con-

ditions can only be satisifed up to the integer m because

ni (qM-l), equation (32).

Even when the restriction (38) are used to guarantee

error detection or correction through the chord properties,

there are situations where errors can still propagate from one

stage to another. The properties (34) and (35) show that any

intermediate variables with all j indices equal to zero must

lie in GF(q), e.g.,
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Z C GF(q)- ; O<i3<n 30' -3

Y0' i 2, e GF(q) ; i 2 <P2, i1 <Pl

At each stage there are fewer such terms with the DC term,
A

a0 , being the only one in the transform domain belonging to

GF(q). Furthermore intermediate variables with zero j sub-

.. scripts may propagate unchecked errors only to those new

variables at the next stage which have analogous j indices

also equal to zero. Thus uncovered errors will only reach
A

the DC coefficeint, a 0 . However this one term may be pro-

tested by redundant duplication methods.

The fast inverse transform is developed in an ana-

logous manner. It will have the usual symmetry with respect

to the fast forward transform [6]. Figure 9 contains the

general structure of both the time and frequqncy decimation

forms. The intermediate variables passed between stages are

shown also. These variables have properties similar to those

in equations (34) and (35) with Appendix F containing the

formal development of the algorithm and the properties. They

,* are shown below..

(Z q Zill '2 qjl, i 2  ; qjl modpl

^q (41)
(Z' 92' i3 qjl, qJ 2 ' i 3  ; qj 2 modP 2

• q

i*!' p.i'. A ~ * .. * *
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Z )q Z , ; qJ3 modP3(JI' 92' 93 14 qJl qJ2' qJ3 j 4

A A

qj 2 ' il qj2 modn2

(42)

(Y. )q =Y
33 2'i qJ3 2 i 1 qj3 modn3

(Y. )q =Y, qj4 modn
K.Y4' 13' 12' '1 qJ 4 ' 13' 12' 11 4 4

Properties (41) and (42) may be used to establish chords

affording error detection and correction as outlined earlier.

The sufficient conditions (38) clearly insure that all chords

associated with nonzero indices have at least length £. But

any intermediate variables whose j indices are all zero lie

in base field GF(q), and may impact other subsequent GF(q)

variables. Hence it is possible to propagate errors from

one stage forward. In addition, an examination of the appro-

priate signal flow graphs shows that each such variable

4 affects numerous GF(q) variables in the next stage. These*

errors penetrate to the final stage possibly affecting many

output coefficients.

As an example of this internal error propagation error

polynomials, generically labeled e(x), which are added to the

final result 6(x) are consider. They are developed for the

situations where a single additive error, with value c,

occurs within a stage. Table 1 summarizes the results of

these analyses. These error polynomials have the same value

q

J.



44

c added to many positions in the desired output 6(x). Never-

theless it is possible to detect such errors in the final

output if the code generator polynomial, g(x), is probably

chosen. It must not divide the special forms of e(x) as

shown in Table 1. Note that each error polynomial is formed

by effectively removing certain n--h roots of unity from the

factor xn-l). Hence if g(x) contains at least some of the

roots which are removed it could not divide any of the e(x)

terms thus providing an error detection capability.

For example, in the decimation in frequency form an error

polynomial

.-. ~~ ~ x) =x -3-

i (x n -i )]

can appear at the output. But if g(x) contains as one of

its roots an n3 root of unity (and of course its conjugate

roots), all errors of this form are detectable. Therefore

proper code selection is critical for protecting against
n.internal errors in the fast inverse system. Since all (x 1-)

factors are divisible by (x-l), so if g(x) contains 1 as a

root, every possible single error failure may be detected.

''" . -' . v -. ."."-".'"."-" " ,", • , " ". '.•. ',..'';..-. ,-' ---. . .-' - -, . '.. ' ' .-. ,,
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ERROR DESCRIPTION ERROR POLYNOMIAL AT
OUTPUT

VARIABLE WITH
STAGE ADDITIVE ERROR c e(x)

â

0
1 0  (x of01

.. 2Z0, 0, 0, i4  (xn-l)
4, E X

(x -1)i 4 < P 4

Of z 0  

[xn_1)

:~ , ,ic x --n-_

CX "L J
(x -1)i3 < n 3

.
0 ,  i 2  <i c 2  (x n _l 1

2 2
... i 2 < n( x - )

4."

DECIMATION IN FREQUENCY FORM

:4 TABLE la

OUTPUT ERROR POLYNOMIALS DUE TO SINGLE INTERNAL
ERRORS IN THE FAST INVERSE ALGORITHM

TABLE 1

.-
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ERROR DESCRIPTION ERROR POLYNOMIAL AT
OUTPUT

VARIABLE WITH
STAGE ADDITIVE ERROR c e(x)

1 r (xni 1

a0 J

2 Y0 , i

n
iI < P1  n(x 2i

i2 < x x-- --

i 3 < P 3

.4

(x -ix

•.-

3,P3

DECIMATION IN TIME FORM

TABLE lb

• " ' " ' ' " " " " '" " " ' k" "' ..;: ,. , : . . :: : 2.i -:-: : '._
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Error Detection/Correction and Error Status
p"

The approach to error control presented in this chap-

ter has intrinsic opportunities for distributed error detec-

tion and correction throughout the architecture. Not all

possibilities will be explored here but an obvious and

important aspect of error protection involves the minimal

ideals. Each minimal ideal, Mil which contains the component

polynomials is a cyclic code in its own right [4]. The

number of parity-check positions is equal to the degree of

the related irreducible factor of (xn - 1), gi(x). Cyclic
%1

codes have powerful burst error-protecting capabilties pro-

portional to the number of parity-check positions. Thus

error detection or correction can be performed on the

individual components [ai(x)bi (x)ei x)] before the final

* combination as required by equation (4) is completed. This

protects against errors introduced in the last stages of the

component polynomial manipulations. This technique allows.

errasure decoding to be mixed with the usual decoding methods

[2, 51. The overall detecting and correcting performance

levels increase accordingly.

Suppose that the output of the filter mechanization of

a(x) b(x) g(x) can be modeled as containing additive errors.

"i The output of the filter section is given by r(x).

r(x) - [a(x) b(x) g(x)] + v(x) ; v(x) error components (43)

L.
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Standard error-control techniques [2-5] may be applied under

these conditions. For example the same transform domain used

in the filter's implementation is also applicable. In this

situation the roots of g(x) as indexed by the set A

equation (26), are involved. They define the syndromes.

(Recall g(x) has degree (n-k) and A( g ) has (n-k) elements.)

"-* A typically syndrome is s8 where

S= r(a) ; 8A ( g )
n8 _ (44)

Of course there is the problem that the Error Detector/

Corrector system shown in figure 2 could suffer errors similar

to the section that it was designed to protect. The Error

Status device is designed to signal the occurance of such a

problem. Say that the decoder produces a polynomial, f(x),

* which represents the desired product a(x) b(x). An error

status may be made by encoding f(x) through multiplication by

g(x) and subtracting it from a copy of r(x), equation (43).

p(x) = r(x) - f(x)g(x)

The weight of the status polynomial V(x) determines whether

the decoded element f(x) is the closest choice to r(x). This

gives a check on the Error Detector/Corrector and the Status

Check circuit.

i ,'C.-.- ,-.-'....... .'--.. . -,... ..-.. ,.i, . r .' . -'" """'"""(

" ' " ".. . . . . . . .-.. .".. .".".. . .... . . . . . . ..J w m ii=, 
- '

.b - .. .. -
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The Special Case of Systematic Codes

All of the previous discussions are applicable to the

case of systematic codes. As was mentioned in the intro-

duction, the parity-check portion, [-p(x) a(x)], when added

to a shifted version of the desired result, a(x) b(x),

yields a codeword. Therefore the techniques described for

nonsystematic codes can be employed for the parity-check

portion of the codeword; only the components from the t

minimal ideals that define the code G need to be computed.

Li:.earity quarantees that no other components are required.

The desired result a(x) b(x) has degree less than k

and thus can be computed in a residue class ring modulo

(x k _ ) which has been labeled as Ak in this report. All

the minimals ideals in the algebra Ak are employed now

because no code is involved. However the use of the mini-

mal ideal decomposition and the transform techniques can be

advantageously applied. One may think of using a rate-one,

(k,k) code in this case. Nevertheless there are intrinsic

error detection and correction opportunities even in the no

coding ideals and because of the properties of the transform

domain.

-.
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Appendix A

Properties of Minimal Ideal

A minimal ideal only contains itself and the trivial

ideal (10)). The fact that the ideals defined by m (x),

equations (9), are minimal in the space A will be provedn

first; the concepts used in this proof will appear in

developing other properties.

Suppose that there is a smaller ideal S. contained

within M.. Then there is a polynomial s (x) that generates

Si, i.e., Si = ((six))) . Since s(x)EM. it follows by the

definition of m. x) that all irreducible factors except g.(x)

divide si (.x). (For if g.(x) were also a factor of s.(x) then

si(xl=O in A n) Thus s I(x) may be written in the form

n XI
si(x I = fix)_ gj( x  ; i >0 (A-1)

j=l

where f(x) contains all other irreducible factors of s. Ix) not

contained in the factorization of (xnl). But then f(x) is

relatively prime to (x n_ 1 ), indicating that f (x) is a unit in

A. (fx), xnl)=l implies that there are items y(x) and

n_z(x) such that y(x)f(x) + z(x) (x -l)=l; y(x) is the inverse

of f (x) in An . Hence it is possible to take
n)

s- (x) = g. (x) (A-2)

j=l
'..4
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Clearly !I.() C ((m.(x))l To show the opposite inclusion

it will be demonstrated that s (x) divides m.(x). Since g Wx

is excluded from s.(W, they are relatively prime. Then so is

g.(x) and the term, HI g. (x) which has all irreducible fac-

tosof S (.x) with single power X.Is removed.

Z.gi (x)' I gj ("j3c) W 1 (A-3)

Thus these are polynomials a(xY and b(x) for which it is

possible to write

a (.x) Ti g (x) + b(.x) g.(x) =1 (A-4)

Then g Wx divides [1-ai.x) HI g. W]~ and it follows from
in

the definition of the irreducible factors of (x-)that

11 cf . Wx [l-ax I (x) JE 0 mod (x n_1) (A-5)
j~i H kgk

j=l

Equivalently in An

I. I x ax I g. j (x) (A-6)

j=l

The generating polynomials of the minimal ideals have an

interesting property in An

m .(x) M (xW = 0 ;i/j, i,j, =1, 2, .. ,T (A-7)
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It is easy to show from this that the T minimal ideals form

a direct sum decomposition of An  Thus any a(x) E A can be

expanded uniquely as a sum of elements each possibly from one

of the minimal ideals:

T
a(x) = I a.(x) m (x) (A-8)

j-l 3 )

Each nonzero term [a (x) m (x) ] represents the component of

a(x) in minimal ideal M..

The orthogonality of the ideal generates mi.Cx and mj(x)

clearly demonstrates that any distinct ideals share only the

zero element. Thus to show that the minimal ideals M. can be1

used for a direct sum decomposition of An, it remains to prove

that any element in A can be written using components fromn

some of the ideals. The set of polynomials m. (x), i = 1, 2,

- ... , T have their greatest common divisor as unity. Then there
".%

are polynomials v.(x) such that

T
1 = . (x) m (x) (A-9)

j=l

Multiplying both sides by any a(x) c An gives:

T
, a(x). = [ a(x) v (x) m (x)] (A-10)

j=1

Since none of the nonzero terms, [a(x) v (x) m (x)], can be

in more than one ideal, the direct sum expansion in equation

(A-8) is established where a.(x) = a(x) v(x).

.- ,

*1
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The idempotents have several important properties which

will be listed and then proved.

e.i(x) a(x) = a(x) ;a(x)EM.i

UNIT ON M

J j 1
e W 0m od i~ x)(A- 12)

ORTHONORMAL
IDENTITY

(e (X) = (m(x))) IDEAL GENERATOR (A-13)

e (x 1 g.(x)) RELATIVELY PRIME (A-14)
1, RELATIONSHIP

Each minimal ideal M. contains an idempotent that also

generates the same principal ideal. The idempotent is

determined by noting that m (x. and gitx) are relatively pime

Hence there are two polynomials s.(.xN1 and r.(x. for which the

* V following is true.

W .x m.(xW + r.(X) g.. (x) ; 1, 2, .. ,T (A- 15)

The desired idempotent e. (x) is defined by1

e() W S Wx m~(x i (x 1, 2, *.,T(A-16)
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Sky

We now detail the proofs of the properties listed above.

Firstly the basic idempotent property equation (10) follows

by multiplying identity (A-15) by ei(x).

e (x) e2 (x) + s (x) mi (x) r (x) gi(x)• i i i

(A-17)
2(x) + 0 mod (xnl).
1

The property of a unit also is demonstrated by choosing any

a(xI in M. and multiplying equation (A-15) by it. However,1

since a(x) = a. (x)mi (x) because it is in the principal ideal

generated by mi (x), a simplification is possible.

a(x) = a(x) e i (.x) 4- a i (x) mi (x) r i (x) gi(x)

(A-18)

-a(xI el(x) + 0 modulo (xn-l)

Reducing both sides of identity (A-15) modulo gi(x) gives

* the top part of equation (A-121 while definition (A-16) clearly

shows that e. (x) contains all other irreducible factors and the

remaining part of the orthonormal property is demonstrated.

We observe that by the definition of ei(x), equation (A-15),

While on the other hand combining identities (A-15) and (A-16)

and multiplying by mi(x) yields:

m i (x) =m i (x) e.(x) + m i (x) r i (x) gi(x)

m(x) e(x) + 0 modulo (xnl) (A-19)
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Hence mW(x) is contained in 1eix) and therefore

(mix) C: ((ei (x))).

Both mix) and e.(x) are legitimate generators for M as

shown in equation (A-13).

Finally the relatively prime property in equation (A-14)

can be shown by assuming that gix) divides e. (x). Since e. (x)11

is a unit, property (A-I), the following is true.

e. (x)m. (x) = m. (x) (A-20)

But by the definition of m (x), equation (9), the left side

is zero in An, a contradiction to fact that m. (x) has degree

strictly less than n.

Another interesting and useful property of the minimal

ideals is their relationship with the appropriately sized

finite fields. Consider the following mapping from M. into2 1

the cosets of the principal ideal N gi(x)))

F. M-b.GF(q)[x]/ U9i()

(A-21)

a(x) ei(x) H- _ a(x) mod gi(x)

FIELD ISOMORPHISM

The range space is known to be a finite since gi(x) is irre-

ducible. Note that in M. we may always write each element

e b(x) as a(x) e (x) where degree a(x) < degree gi(x). Also

1



A-7

note that in the minimal ideal, ei(x), acts as the field

identity, but it is not the identity of the ring An .

To establish the isomorphism (A-21) we first show that

every b(x) is equivalent to another polynomial a(x) with

degree less than degree gi(x). The Eucledian algorithm can

be used to show that

bCx) = ai (x) gi(x) + a(x)

(A-22)
where deg a(x) < deg gi(x)

It then follows that because of the unit property of e. (x),

b(x) = b(x) e i(x
1 .(A-23)

= ai (x) gi(x) ei(x). + a(x) e i (x) = a(x) e. (x)

Consider any a(x) c GF(ql [x]/ fg(x))l . The element a(x) ei (x)

in M. clearly is mapped to it by F.. Since the number of1 1.

distinct elements in each space is equal the mapping is

one-to-one and onto. The mapping Fi preserves both sums and

products. Note since (gi(xl, ei(.x) = 1 the item a1 (x ei(x)

b W ei (x ) = a l (x) b l (x) e (x) maps into aW(x) b l (x) mod gi(x)

The mapping (A-21) gives M i mod gi(x) all of the properties of

a field and also explains why e (x) acts as a unit on the

space M. mod gi(x).

1 1
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Appendix B

Idempotent Expansion of the Code Ideal

The direct sum decomposition of G, equation (16), may

be demonstrated in the following manner. Since g(x) E An

it may be expressed using the minimal ideal expansion as

per equation (11).

T
g(x) = y yi(x) e i (x)

i=l

(B-1)

Yi(x)= g(x) mod gi(x)

However from the construction of g(x) as given in equation

(13), (T-t) of the yi(x) coefficients are zero.

Yi(x) = 0 mod gi(x) i = t+l, t+2, ... , T (B-2)

Thus g(x) is in a smaller subspace of An; it is defined by the

first t minimal ideals.

g(xI C T M.
i=l

Since the finite direct sum of ideals is an ideal, it follows

that

((g(x) C i M.i=l1

On the other hand, the generator of each Mi, ei(x), i=l, 2,

t, by its respective definition (A-16) is contained in the

ideal g (x))

r'4

P.4I
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It then follows that

t
i Mi C ((g(x))) so that the desired identity (16)
i=l1

is established.

The code G also has an idempotent generator which will

be denoted by gW(x). It satisfies the usual property:

2
g2(x) = gIW)(B-3)

Furthermore it is equivalent to the generator g(x).

G = ((g I (x))) = (( (x ))) (B-4)

The code idempotent acts as an identity on the ideal G.

y(x) = y(x) gI(x) ; All y(x) c G (B-5)

These results are proven below where a method for deter-

mining gI(xl is given. Unlike g(x) its degree is not neces-

sarily (n-k).

One possible application for the code idempotent in

representing the code involves the cascading of filter sections.

Say the same code is used in each of several filter sections

which follow one another in a cascade. Further suppose that

no decoding is performed until the final section is reached.

If the stored filter weighting in each of the s sections is

given by the codeword [bi(x) gi (x)], i = 1, 2, ... , s, then

the output would be of the form

a'x TIb .(X)gIW = a (x) g I(x) TT b. (x W a(x) input
i=l i=l to cascade

by repeated applications of property (B-3).

~~~~~~~~~~~~~~~~~~~~~~~~.'... " "., b.-.. '.. 
- 
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The idempotent form of the generator polynomial g(x),

labeled by gI(x), may be constructed by noting that g(x)

and h(x) are relatively prime. (They share no common

irreducible factors.) Thus there are polynomials d(x) and

f(x) for which it is possible to write:

d(x) g(x) + f(x) h(x) = 1 (B-6)

The idempotent generator g I (x) is the product of d(x) and g(x)

g (xj = d(x) g(x) (B-7)

It is easy to see that g (x) and g(x) both generate the

same ideal.

Q(g1 (x))) ((g(x))) on one hand while g(x) = g(x)

[g,(x) + f(x) h(x)] = g(.x) gI(x) + 0 on the other; thus g,(x)

divides g(x) and [g(x)) C (1gi(x))) .

Q(g~ W) U (g (x)) (B- 8)

It is possible using the definition of g,(x) and the

basic equation (.B-6) above to demonstrate the facts in equa-

tions (B-3) and (B-5). Their proofs parallel those associated

with the similar results for minimal ideal idempotents con-

tained in Appendix A.

I
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Appendix C

Finite Field Transform

The n th root of unity, a, has the following properties:=1klfl k
n ka 1 a 1 for all1 k < n

M " (C-l)
a c GF(qml , n divides (qm - 1)

The validity of the transform pair, equations (18) and (19),

rests upon the following identities concerning sums of roots

of unity.

n-i d n-
1 e = 1= ((n)I ; d - 0 mod n (C-2)

1=0 1=0

'_n-i dl

(1-a d ) n a = (I-a n ) = 0 ; d 1 0 mod n (C-3)
Z=0

The first equation is a consequence of the characteristic of

the field GF(q m ) while the second one is the geometric sum.

Since d 1 0 mod n, (i-ad ) d 0, and equation (C-3) implies that

the sum is zero

n-i d
a d = 0 ; d 1 0 mod n (C-4)

1=0

The relationship between equations (18). and (19) may be

*examined by substituting one into the other.

n-i n-1 n-i 1

((n ) 1 y a -t = ((n ) I I Y m j a - j  (C-5)
P j=0 P j=0 M- 0

n-i n-1 (m-).

IIJ.-.. ..........................................................,. , ..-,-............... ...............
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C-2

* .However the sum in brackets in the last expression may

be evaluated using identities (C-2) and (C-4).

., n-i ((n)) ;mIkmodn

"ij=0 0 ; I k mod n

This verifies that equation (19) is the inverse of equation

(18) and vice versa. The uniqueness of the transform follows

immediately from the linearity of the formulas. The inversion

formula, equation (19), guarantees that the transform with all

zeros also has zero coefficients in the polynomial domain An

The relationship between convolution and pointwise coeffi-

cient multiplication in the transform domain, equation (201

can be established by considering the inversion of the pro-

duct {a Yj).

a ( ) L a. y a _jm m=0, 1, ... , (.n-l)_

((.n-l)P j m k L =
-l ni . n-i a~k]n~l lt](C-6)

j=0

n-i n-in-

= .n 1) p n n ak yt [ j(k+t-m

k1-0 0 J-0

Identities (C-2) and (C-4) permit the evaluation of the sum

on j.

i"n-i .f((n))p ;kii o
n-1 [ j(k+£-m) = k+t H m mod n

j=0 0 otherwise

..1
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The value of 6 is determined by a convolution of the termsIf

a.I and y. where the indices are reduced modulo n.

n-1

M, I a MLyY.

(C-7)
n-1

'k Y ]m~-k

However this is completely equivalent with polynomial multipli-

nn

6(x) a(x)y(x) (C-8)

where 6(x) =60 6 x+ + 6 n-

0 1n-
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Appendix D

Annihilator and Chord Properties of

Transform Coefficients

The Annihilator Property relates the zeros of a poly-

nomial c(x) c A with the indices of the zero transform
n

coefficients c.. Using the notation of the text and in
I

particular the usual labeling of the polynomial and trans-

form coefficients, it is possible to state the following

Lemma.

Lemma Dl

c(x) has a aj as a root if and only if c. = 0 for j
3% A where A denotes a subset of the indices t0, 1, ... , (n-l)).

Proof: Since by definition c. = c(a 3 ), the necessary part is
J

obvious. On the other hand the inversion formula (19) and the
^

requirement that c. = 0 for all j A allows the following

form for c(x).

n-I--m

c(x) = n ((n 1)) x c a. m (D-l)
Z=0 P meA m

Evaluating this at c j , j g A and rearranging the terms gives:
^n- 1£( mc(c-J) - . ((n -1 )) n-l (D-2)

m A p cm £=0 t(jm)

However since j e A, (j-m) ' 0 mod n and so identity (C-4)

applies showing that the last sum in (D-2) is zero. Thus

-. ° - . -
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aJ, j ! A is a root of c(x) where its transform coefficients

are zero for those indices not in subset A.

The Chord Property describes a special relationship

among the indices of equal transform coefficients. The closure

property of cyclotomic subsets resembles this useful property.

Lemma D2

c(xI e A n if and only if ( q=cjq' j=l, 2, ... , n-i

Proof: For any c c GF(q), c = c.

n-i q j n-i (jq) £ ^
q= c c = [ cI = c. (D-3)

;j= 0, 1, 2, ... , (n-i)

The coefficients of a polynomial in An are in GF(q). Then the

inversion formula (19) and the special index property on the

right of the Lemma lead to the following development
n-1

(C )q = [((n) -I (C.)q ajqI ; 2=0, 1, ... , (n-l) (D-4)

j=0

The normalizing factor ((n-)) is by definition in GF(p)
p

CGF (q).

n-l
( C(n I) Cq (D-5)

j -O j

Since (n,ql = 1, a change of variables m = jq in the sum-

mation is possible and an equivalent expression for c2 emerges

on the right of (D-5).

dQ

-. . . .
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Append ix E

Error Correction in the Transform Domain

Suppose that the desired output from the componentwise

multiplications in the transform domain for component i, i 1,

2, ... , t is denoted generically by {c..1. Let c. (x) desig-
1J 1

nate the corresponding polynomial obtained from the inversion

process.

c a ij 1i j )*----ci(x) 1, 2,., t

j C 5J s

L "Errors can be introduced in several operations. When the

stored transform coefficients {y are delivered to theij

multiplier system, they could contain errors {a.j ; the
1J

input coefficients {a I could contain errors modeled by the

terms {T i. "

ij+ a. ij Erroneous Stored Sequence

[s fa.. + nij  Erroneous Input Sequence
1)

Label the final result of the pointwise coefficient multipli-

cations by [dij.. The most general form of these coefficients
1)

including all types of errors is given by:

"di - (Yi. + a.. ' ) (ct.. + ) + v..,1)J "1) i) )3

.9

"ja

. ..

w ........°. . . .
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Thus it is possible to include all of these types of errors in

the following expression where the noise coefficients c..~ are

added to the desired coefficients C..
1)

d.. =c.. + c. ; C Noise Terms

i(i

j c AM

* where

C. 13 a. .y. ; a.. Input Terms

(E- 2)

yij Stored Terms

The coefficients of d. Wx are related to the d.. through
1 13

the inverse transform:

d1 -4d.a-ii 1,2

d~t = (.( A) M 13,, * (E-3)

2.0, 1, .. ,(n-i)

where

n-i

d. (x) d dx (E-4)

The inversion process satisfies the Annihilator Property,

Lemma Dl, Appendix D. (This guarantees that d(x E M. pro-

vided d.(x) c E )
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It will be assumed that the size of the cyclotomic subset

A i  denoted by li' is greater than one throughout the remain-

der of the appendix. The ramifications of this assumption will

become apparent as the development progresses. The transform

domain errors, cij, are reflected to the polynomial components

as an error polynomial e.(x) by the inversion formula.

d (X =c (x) C (X) ; ei(x) Error
111 Polynomial

c (x) Desired (E-5)
1 Result

? i 1 , 2, ..., t

If the error coefficients c. do not satisfy the Chord Property,
1J

Lemma D2 indicates that not all coefficients of E. (x) are in
i

GF(.q), an easily detectable condition.

There are simple sufficient conditions for violating the

Chord Property.

Lemma El

If at least one transform coefficient is zero while others

are nonzero then these coefficients do not satisfy the Chord

Property.

Proof: Let E. . 0 while ci / 0 for jot m F AMP13 0 im0  0 s . Then

by the construction of the cyclotomic subset A, there is a
s

r such that rmq0 mod n. Assume that the Chord Property
0

holds. Then it follows that

• ' - o . ' - . ' - , , . . - • .- - - • . . - . . - - - -. . - . .C - : L : .- .,
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^e ) r0 =0
r

0 0

(imo 
q  im q 0 E. 0

0 0 0

But this is a contra diction of the fact that

^ r0

(E0 )q 0

This Lemma insures that the Chord Property is the basis
for detecting up to (1i - 1) errors in the noise coefficients.

Thus the size of the cyclotomic subset takes on the same impor-

tance as minimum distance does in normal bounded distance

decoding [3-5]. The analogy does not stop there. The error-

correcting performance in the transform domain which will be

developed next extends up to (k i - 1)/2 errors in the coeffi-

cients.

For error-correcting purposes the transform coefficients

d.. which are the inputs to the inversion formula (E-3) will

be called the Master Sequence. If all of its items are correct,

each coefficient could be used, by invoking the Chord Property,

to generate I different Test Sequences by repeatedly forming
-e, th

the q- power of each successive element. This concept of a
Master Sequence and Ii Test Sequences is shown in Figure E-1

where each element in a Test Sequence is listed directly under

its correspondingly indexed term in the Master Sequence. The

generating coefficient in each Test Sequence is surrounded by a

box.

: ' +v+.; '.; ;v+.;; ' .: 5 ; 
. .. .. ,. ,

:...,. --.. ,.'.. ;. -. ,:: .. ;,:.+, . .. .: . .
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Suppose now that some of the coefficients in the Master

Sequence have nonzero error coefficients. Say there are v

where the integer v is less or equal to (9.. - 1)/2.,? 1

" Ef•.. ,... .. , E = NONZERO NOISE COEFFICIENTS
1 j1 1)2 ijv

Li 1 (E-5)

2

Further assume, only momentarily though, that the formation of

the 2i Test Sequence is error-free. Most test sequences, except

those generated by d , ..d, d. which do not obey the
1 12 "

Chord Property, will have more than k. correct terms in common
1

with the Master Sequence. The remaining Test Sequences represent

questionable positions in the Master Sequence. However the

incorrect positions can be determined using the Chord Property

and the known correct positions. Alternately a majority decision

on a particular position using all the Test Sequences and the

Master Sequence gives the correct value for that position.

Now remove the requirement, introduced directly above, that

the generation of the Test Sequences be error-free. Say a

position in the Master Sequence is correct but that the Test

Sequence generated from it contains errors due to the generation

process. It is easy to see that as long as the additional number

of erroneous Test Sequences combined with the number of original

errors does not exceed t.-1, then the correction technique using
•2

a majority decision will not affect the correct positions.

,

-p
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Appendix F

Fast Finite Field Transform Algorithm:

Development, Properties and Error Propagation

Prime factor fast finite field forward and inverse

transform algorithms are developed in this appendix. The

intermediate variables used in each of the algorithms

possess useful properties concerning chord lengths. Such

properties can be employed for distributed error control

in system realizations. The propagation and penetration

of internal errors are investigated, and, in the case of

the inverse transform, tht output error polynomials due to

single errors within the structure are explicitly deter-

mined.

The forward transform will be considered first where

both decimation in frequency and decimation in time forms

of fast algorithms are developed. Some parts of typical

signal flow charts are shown. Analogous developments

for the inverse transform are presented in the latter half

of the appendix.

The decimation in frequency form of the forward trans-

form stems from the following decomposition of the i and

j indices in equation (32).

1 n 2 + i2 ill Jl = 0,1,... (p -1)
(F-i)

di j = il + J2P i 2  j 2 = 0,2,... (n-1)

4
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The prime p1 is a factor in equation (33) while

M
n2 = i

i=2 -2)
• (F-2

Intermediate variables Z. is defined.

Jli2 P1 -1  n2 i 1.,Z. a I a ailn2+i 2 (a

3' i 1 =0 1 2 2

The transform coefficient, a., may be expressed as:

n2-1
SZ i2 (a p i, 2 j 2  j

a i + j2P ( 2 =0 1' I=J1 + j2p l

The development continues in this fashion refining any index

whose range limits contain composite numbers. Table F-la

summarizes the straightforward development of a fast trans-

form when n contains four prime factors.

The decimation in time approach may be developed

starting with the expansion of indices as:

1 =i + i2P 2  ; ill Jl =  0,I,... (Pl-l)

(F-3)

. j = Jln2 +2 ; i2, i2 = 0,1,... (n 2 -1)

Thus the desired output variable, say aj , may be written

in terms of intermediate variables, Y.

I

'5,
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* ln = (2) Y. il;0Jy2 F4

J2,11J l0F -52

~The next step is to define other intermediate variables

.' by further decomposing indices which range up to n2 using

the prime P2 and

i n3 = II p.i
2 2 i =0 3

Table F-lb shows the interrelationship between intermediate

variables for a four factor value of n. The inputdaawt

i indices expressed in a mixed radix notation are used to

define intermediate variables which n urna
j4,i3, 2,i I wicJn unlr

to define the Y. .etc. See Figure Sb in the text

for the general flow of the defining relationships.

The intermediate variables obey the interesting

properties typified by equations (34) and (35). They equate

the qt-h power of variables with other variables having

specially related indices. Such properties might accurately

be called limited chord properties since the related indices

are reduced modulo divisors of n. They are based upon the

input data lying in the field GF(q). These properties allow

distributed error protection within the algorithm.

4*". A proof of one of the properties will be outlined;

similar proofs are easily constructed for all of them possibly

involving finite induction. Take for example, Z lfi 2  and

consider its q-- power.

........
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q = (jlq)i 2 p 1 -1 n 2 (jlq) i 1
.. , (Zj ia q =  ailn (a ) <Jl<Pl(F5

i' 2 i a 1 2 2 (F-5)
0<i2< n2

=''2 Z. j q modulo p,

The index (jlq) is reduced modulo p1 because of the range

of the j variable.

Parts of the signal flow graph for the first stage of

the fast forward algorithm are shown in Figure F-1. Note

that an error in one input datum can propagate to either

p1 or p4 new intermediate variables depending on the form.

However, because of the limited chord properties, it is

possible to perform detection and correction as outlined

thIZ earlier using q- powers of the variables. There is one

possible difficulty, though. The chord length must exceed

one so as to offer any error control capability.

There are constraints that guarantee that all chord

lengths, involving non-zero indices, exceed a known integer.

This general result will be stated in the nature of a theorem.

Theorem If (n, (q -1) ) = 1 for all i< £, there are

no integers j and s, 0<j<t, s<. such that

jqS- j mod t (F-6)

JiiE . where t in

Proof: Since tin, (t, (qi-1))= 1, 0<i also.
%-.

.4

*5•
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a plp 2 p 3 0j4
i 1 +i 2 P1 +i 3 P 1 P 2 +0plp 2 p3 (3,

aPIP2 3j4

." (4PlP2P3)

a 3 % 32111.

a

ai +i2P1+i(plp+2p-p 2  p

3 0, " ,P- l ) ; i401.2 '

• i 0,"1,"",

IPRP2P3 (P4- l ) "

4/j

ail +i2P +i3PlP2+ (P4-1) PlP2P3

i2": Each input datum enters into the formation of P

*P4.

I ' ' ' intermediate variables for each set of indices

i 3 =0, i,.1 , (P3-1) ; 2 =0' ,.. (P2-1)

. 0, , (Pl-l)

"DECIMATION IN TIME FORM

~FIGURE F-Ib
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Suppose that j, and s. exist which satisfy the equation.
so so

Then tljo(q -1). But since (t, (q -1) )=l it follows

that tljo which is impossible because of the range of J.

Thus by constraining the length n so that it shares

no orime factors with

(q -1) ;i<2 (F-7)

all intermediate variables with non-zero indices will be

oart of chords with lengths exceeding £. The error detection

and correction procedures have been outlined earlier. Note,

though, that in equation (32), nl(q m-1) and so 9 must be

less than m.

The intermediate variables with zero indices are in the

field GF(q) giving chord lengths of one. Thus, no error

protection through chord lengths can be applied. Nevertheless,

at the next stage, each such variable has a direct impact on

newly defined intermediate variables which are part of error-

protected chords. The next stage in the algorithms will be

discussed so that this will be apparent.

Figure F-2 displays parts of the second state of each

form of the algorithm. It is an easy matter to demonstrate

the properties in equations (34) and (35) for the new

intermediate variables appearing at the conclusion of this

stage. For example, in the case of the decimation in frequency

form, the limited chord property applies to the two indices,

S • - ° . -. -. -9'- 9 ' . . ." - . • . ..
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and of Zj J In this situation, each index
-1 i2' of, Z

may have different chord lengths, a case to be considered

next.

Suppose two non-zero indices, j, and have respective

limited chord lengths Z1 and £2 established by the following

requirements

J lq I i mod p, k 1 least

2. o(F-8)
j2q 2 2 mod 2 Z least

The overall chord length of Zj ill i3 describing the

behavior when taking repeated qth powers, is easily seen to

be the least common multiple of £I and t2

%1

LI2= L. C. M. (t1 ,2; Overall Chord Length (F-9)

This same principe can be generalized to intermediate
I

.variables involving more than two indices in their limited

chord properties.

If a constraint similar to indentity (F-7) is imposed

on the transform length n, all chord lengths at the second

stage will permit error protection except for the case when

jl=0=j2 . However, in such a case the defining equation for

ZjJ2,J3,i4 ,Table F-la, shows that any errors in

Z0,0, i3 fixed, propogate to terms like Z0  0,j 3,i4 4

O<j 3 <P3 which appear in nontrival chords. Furthermore there

could be numerous chords at this level allowing the source

I * )\ ,. . . 4 . < . 'I.. . --
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Z, 0, i3 to be identified.
- 3The general development and error protection available in

the fast tranforms are now clear. The fast inverse trnasform

will be considered next.

The inverse transform is given by

n-ia. =((n - 1 )) a. (e)-iJ (x)a. ; ()) - x mod p (F-10)

J Pj=0  3 P

where the letters a are used for convenience. In the context

of signal processing the inverse transform would be applied
A

to the A. transform coefficients to yield the coefficientsJ

in 6(x) (see Figure 6). The chord property, equation (30),

generically stated as,

(aj) q  ajq ; jq mod n (F-lI)

imposes constraints on intermediate variables within a fast

algorithm. Such algorithms have two forms and may be devel-

oped as before. Table F-2 gives the definitions for a four

factor version.

A proof of the limited chord properties listed in equations

(41) and (42) relies upon the condition (n,q) = 1. For example

to show that

(Z . , )q = Z. (7-12)
1' 92' j3' 4 ]1q', J2q , j3 q ,'i4

jlq mod pl, j2 q mod P21

j 3 q mod P 3

44
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the defining equation from Table F-2a is used.

^z= (J3q)i4  Pl P2  n4
-1

(ZJ J2' j3 "'4 )q = a 4
j4=0

(F-13)

i4(qj4)p1 P2 P3 ^

aqj + qj 2p1 + qj 3plP 2 + (qj4 )plP2p 3

However (q,n) = 1 implies (q,n4 ) = 1 because n4 In.

So ((q- 1))n q mod n4 exists and the change of variables

= ((q)) n4 4
4.4

= (-l)) i h nes
is one to one mod n4 since j4= ((q )) is the inverse

mapping.

q Cj3q i4PlP 2 P4-1 ip42P3 i 4F

(Z(

31' j2' j3' i4 =0(F-14)

a

aqJl + qJ 2P1 + qJ 3 Pl P2 + PlP 2P3 = ZqjI, qJ2, qJ3' i4

A proof of (Y )q = Yqj21j2 uses the same reasoning and

similarly for the remaining properties in equations (41) and

(42).

The limited chord properties can be used for error control

in the inverse transform algorithm just as before, and the

sufficient conditions (F-7) guarantee a minimum length for all

the chords involving nonzero indices. However errors in terms

with zero indices can be a source of difficulty because they

are elements in GF(q). The fast inverse transform algorithm
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systematically produces some intermediate values in GF(q) at

each stage and uses them in the formation of new intermediate

values which are also in GF(q) at the next stage. Therefore

in some instances there is no useful chord property available

for error control. On the other hand though the error-correct-

ing code over the final n output values can handle these pro-

pagating errors.

Typical parts of the last two stages of the decimation

in frequency form are shown in Figure F-3, When an error, c,

occurs in intermediate variable Z0 , i , at the input to the

last stage errors appear in p1 terms

ai , n + C ; i I  0, 1, (p -1)
1 n2 + 12 =

The error components in the output are additive and can be

expressed as an error polynomial.
i Pl-1 in i

e(x) = c x x 2 x x 2 [ l] (F-15)

if this single additive error, c, occurred in the next to

last stage, say in term Z the same additive error

value c will appear in the (plP 2) output values

a iIn 2 + i 2 n3 + i3 + C ; il=0, 1, ... , (pl-l)

i 2=0T i the (P2-1 )

The error polynomial corresponding with these (plP2) errors is
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i3 p - 1 P2 - 123 1 2

e(x) x (x (Xi

2 = (F-16)

3: x -1

For the decimation in frequency form, the output errors

resulting from internal errors in various stages is summarized

in Table 1 of the text,

The propagation of errors in the decimation in time form

behaves in an analogous manner. The last two stages are

exemplified by the parts in Figure F-4 from which error

penetration effects may be studied. Carefully analyzing

terms with first index set to zero shows how internal errors in

GF(q) terms pass through to the output. The error polynomials

associated with such error are also given in Table 1.

The error polynomials for either form represent very

special types of error patterns, one with identical errors in

well-defined locations. The few errors that can propagate

to the output can be detected and corrected by the overall

cyclic codes if iLs generator polynomial, g(x), is properly

chosen. It must not divide any of the possible error poly-

nomials. Since the inverse algorithm is additive, all

possible output errors, caused by internal failure pro-

ducing GF(q) errors in vulnerable intermediate variables, can

be constructed by linear combinations of the error polynomials

already given.

1 ' '''' -..,-... . ... .- , ' -. .". 2" - .. ' < . .. ? .- - - -. ''"i"i -. -- -.- ", -. ,,-, '"



HD-Ri33 927 FAULT TOLERANT SIGNAL PROCESSING USING FINITE FIELDS 2/2
AND ERROR CORRECTING-.(U) RENSSELAER POLYTECHNIC INST
TROY NY CENTER FOR INTEGRATED ELE. . G R REDINBO JUN 83

UNCLASSIFIED AFOSR-TR-83-0839 AFOSR-88-0153 F/G 12/1 NL

HEEL

L m___



1.0 Mo.2

Eit. ..

MfCROCOPY RESOLUTION TEST CHART
NATIONAL. BUREAU OF STANDARDS-1963-A

%' %



. --71 7777 7 
-. 

.7- ."_, "-.-

"" F-21

i-ai

..

Y0,i3, i2, iI (a4)4W) 4

a. , ,~01

, 0, 
.31 2 111-1c p

(a 4

^ (u 4 )  0--i3<PP

y 
i

* ((n)

1 2--+ l + +3l~ +

O'<i4 < P1

AOci 2 < P 2

(44l,, O<i 3 cp

a, 'P4 -1i 3 i 2 iil O<i 4 < P 4

PART OF LAST STAGE

FIGURE F-4a

PART OF DECIMATION IN TIME FORM, FAST INVERSE TRANSFORM

FIGURE F--4

........................................



y
04 +j 4 1i 2 'i

n Oi3
P 3

y n 1 i 3
n4+j41i2, Pi3)

~2n 4 +j 4 1 i 2 " (oLP3)

(aj

-1j < P

nA OF NEX TO LATSTG

FIGURE F-4

(a3 I
...........



FILMED

11=83


