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SECTION 1
INTRODUCTION

Panel flutter is a self-induced oscillation of a thin-
walled structure caused by an increase of aerodynamic forces
resulting from panel deformation in an airstream. Panel flutter
does differ from wing flutter in that the nature of panel flutter
is generally not as catastrophic as wing flutter. Linear flutter
prediction techniques allow one to determine the locus of
neutrally stable oscillations which is called the flutter boun-
dary. Nonlinear panel flutter; however, is characterized by a
periodic oscillation of finite amplitude at and above the linear
flutter boundary. Presently, the two methods available for non-
linear flutter prediction are theoretical analysis and experi-
mental determination.

At the present time there is poor correlation between
experimental and theoretical flutter prediction in the transonic
Mach number regime. 1In the past, the theoretical prediction of
panel flutter has been overly conservative due to simplifying
assumptions made because of the complexity of panel flutter.
However, these assumptions are usually so restrictive that there
is great variance between experimental results and theoretical
predictions at transonic speeds.

The theoretical studies have been restricted by use of a
simplified linear aerodynamic theory and an imprecise idealiza-

tion of the panel support conditions which result when the

1 [ PRECEDING RGE BLANK-NOT FILED
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nonlinear midplane stresses (i.e., use of small amplitude
oscillation) are neglected. This study removes the above two
simplifying assumptions in that the large deflection equations of
a panel in a nonlinear transonic airstream with shocks present,
are formulated for solution.

Dowelll has presented a study of the nonlinear flutter of a
flat panel using a Galerkin procedure wherein he numerically
integrates the resulting ordinary differential equation of motion
in the time variable. Dowell? has also used a nonlinear plate
theory but a linear aerodynamic theory in the form of both a
quasi~steady and a full unsteady theory. The availability of
such an analysis permits the consideration of the panel post-
flutter behavior only over the subsonic and supersonic Mach
number range. In the transonic range it is necessary to use a
nonlinear aerodynamic theory since the governing differential
equation is nonlinear and contains both subsonic and supersonic
regions together with shocks.

The method to be used herein will be briefly outlined. The
equations of motion for the transverse oscillation of a panel are
obtained. It is assumed that the large deformations can be ade-
quately described by use of the Von-Karman large strain-displace-
ment relations. The flutter motion of the panel is described by
a simple two mode approximation. Galerkin's method is used to
obtain the differential equation in time governing the panel
response to a time dependent aerodynamic pressure field. The
aerodynamic pressure is to be transonic and as such is governed

by the small-disturbance, potential transonic flow differential

O T Y ST VAT 2 e e B e 7 e
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equation. The solution to the nonlinear transonic differential

equation is obtained using a finite difference method developed
by Ballhaus and Goorjian3 and modified for large values of
reduced frequency by Huizing and van der Vooren?. This time
dependent response investigation requires simultaneous integra-
tion of the panel large deflection equation and the transonic
aerodynamic equations in time,
Objectives

The main objective of this investigation is to determine a
procedure for the prediction of the large deflection response of
a structural panel situated in a transonic airstream. Von-Karman
large deflection equations are to be integrated simultaneously
with solutions of the nonlinear transonic equations obtained from
a finite difference, alternating direction implicit scheme
referred to as LTRAN2. The prime task then is to incorporate
this integration scheme into a modified version of LTRAN2 called
NLR-LTRAN2. This procedure will yield theoretical predictions of
flutter speed which should compare with experimentally determined
speeds within the transonic Mach number region.

Large Deflection Equations for Panel Oscillation

Consider the isotropic thin-walled panel shown in Figure 1.
It is exposed to a transonic airstream in which shocks may occur
and is subjected to a longitudinal axial load. It is assumed
that the large oscillations of the panel in the presence of mid~-
surface stresses are governed by the nonlinear Von-Karman strain

displacement relations. These relations are given as:
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Figure 1. A Thin Uniform Elastic Plate Exposed
to a Transonic Airstream

R ‘ . R R et an




_3u, 3v 3w aw _ , 3%w
Y 3y * 3%t oax 2z (1c)

where z is measured from the midsurface of the panel. Egquation
(1) is a modification of a small deflection theory to include the
first order effects of midsurface stretching necessary to inves-
tigate large deflections.

Now Hamilton's variational principle is enforced to obtain
the partial differential equations of panel motion. For a three-
dimensional plate, Von-Karman's large deflection equations (see

Eastep and McIntosh® for a derivation) are:

4 82F 32w 32F azw azF azw = azw azw
DV ‘w-h =5 =5 = 2 Ixdy IxJy + 2 2 YNy Tt
dy  3Ix 9 3% Ix ax
2 2
+ N 3—% = -ph 3—% + A(w,t) (2)
Y 3y at
and
vir _ (azw )2 _ 2% 2% (3)
E X3y % 2y

where w is the plate transverse deflection while F is the Airy

gstress function. The aerodynamic pressure loading, A, is the
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increased incremental aerodynamic pressure caused by the panel

deformation and is given by:

Alw,t) = -p (32 4y 32 (4)

where the velocity potential ¢ must satisfy the small disturbance

transonic differential equation:

2- - 2- 2- 2-
(1-M2) 28 _ (y + 1) M2 223 0 _ y2 2% _ 522 ¢
- > o 3% 2 - 2 ® 2TIX
X X at
%3
+-——% =0 (5)
ER'%

The numerical computation method used for determining the
unsteady transonic flow field is based on the alternating direc-
tion implicit (ADI)3 procedure modified to consider flows of
moderately high reduced frequencies and panel deformations. The
procedure is referred to as NLR-LTRAN2.4

The system of Equations (2) through (5) will be solved by
the Galerkin method for a simply supported plate undergoing

cylindrical bending. That is:

IX 4+ C,(t)sin 2ZX] (6)

W(x,t) = h[Cc,(t)sin = A

1

s ATt ek MU




SECTION 2
APPROACH

Two~Dimensional Flow

Consider for simplification the flow about a two-
dimensional wing panel of given thickness undergoing an assumed
chordwise deformation and the prediction of the oscillatory aero-
dynamic pressures in the transonic speed regime. Figure 2 shows
a panel that is simple supported at both ends. For this study

the aerodynamic locading was assumed to act only on one side of

e gy A ey 2

the panel. The undeformed shape of the panel was represented by

a half-sine wave for both the upper and lower surfaces. With a
chord of 10 inches, the thickness to chord ratio of the panel was ‘

0.003.

For two-dimensional flow, all derivatives with respect to y
are zero. Therefore, th Von-Karman large deflection plate equa-

tion becomes:

4 2 2

d W - 3w AW
aw? X ax? ™ g¢? |
|

where the longitudinal axial load ﬁx is defined as:

2
. Eh aw
Nx 2a (ax) dx
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Galerkin's Method

The procedure used in solving Equation (7) was to apply
Galerkin's Method and a step-by-step time integration method.
Galerkin's Method is an assumed mode technique which reduces a
partial differential equation with independent variables x and t

to a set of simultaneous ordinary differential equations with

independent variable t.

For the Galerkin procedure, a series of displacment func-
tions which satisfy both the geometric and force boundary condi-
tions are assumed. In practice, the more terms used in the
series, the more accurate the answer will become. For the simple
supported beam, the geometric boundary conditions imposed on the

problem are:
wix,t) | g = 0, for all time (8)

and the force boundary conditions are:

2
E1 ? W(;pt) l a _ 0, for all time (3)
X °

The transverse deflection w(x,t) can then be approximated
by a series of displacement functions weighted by unknown coeffi-

cients of time. Therefore,

N
wix,t) = w(x,t) =h ] C.(t)s,(x), (10a)
{=1 1 1

or

L I
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wix,t) = h(cl(t)sin %5

(8]
o3
»®

+ Cz(t)51n

. Nmnx
+ Cylt)sin = ) (10b)

where the displacement functions are defined as:

_ .. imx
¢i(x) = sin = (10c)
The basic procedure in applying the Galerkin Method is to
substitute Equation (10a) into Equation (7); multiply the resul-
ting equation by ¢i(x), i=1,...N; and integrate over the domain

of the problem. This can be expressed in equation form as:

a 4- 2- 2-
[ (np &Y - nR 334, n2 2y,
o} Ix aw at

h(P - P=)) sin l;—"- dx = 0 for i = 1,...N (11)

This will result in N simultaneous ordinary differential equa-
tions with unknowns C;(t).

Piston Theory Aerodynamics

To become familiar with using the Von-Karman large dis-
placement equations and to check the resulting equations after
applying Galerkin's Method, a simple aerodynamic theory was used
as the forcing function. For this study, Piston Theory aero-
dynamics was used because of the ease in which (P - P») can be

calculated, and secondly because of the availability of previous

10




studies conducted by Prof. Dowelll’2, 1n the development of

Piston Theory, the flow was assumed to be highly supersonic or:
/.2
g = M -1 =M (12)

With this assumption, the pressure distribution could be

expressed as:

[-%]

(P - pw) = 29

W
= [

— 4

1 3w
x vV 7e)

(13)

[-¥]

Time Integration Procedure

After applying Galerkin's Method and transforming the equa-
tion into a nondimensional form, the set of simultaneous differ-

ential equations can be obtained from Equation (11):

[M]{U} + [C]{0} + [KJ{U} = {B} (14)

where [M], [C], and [K] are the mass, damping and stiffness

matrices respectively, {U} is the vector of the unknown coeffi-

cients of time, and {P} is a vector of the aerodynamic loads.

The time derivatives are with respect to the nondimensional time.
The nondimensional variables used in obtaining Equation

(14) include:

3
2qa pa aw 15)
A o= s g = —— 3 k=— ;1T =0t (
3D pmh v
11
- b i b N e D . o . . " ‘-l".'.?!:r"'—’ g




Nl OoEd OBN u O e e e s o oey Sy e My D B U BB BN

The solution of Equation (l14) was obtained using a step-by-
step time integration finite difference approachG. Assuming a
linear variation of acceleration, the velocities and displace-

ments at the end of a small time interval can be expressed as:

=0y, + 55 (Lo, + (0)) (16)

e AT2 o
* AT{U}I-Ar * 3 ({U}T~

{uy, = {U}

Lo
. .+ Aw) (17)

T-AT A

where At is the time step and t-At is the previous time. Substi-
tution of Equations (16) and (17) into Equation (14) gives the

acceleration at the new time step as:

(U}, = (FI{(B}_ - (CI{v} - (KI{w}] (18)
where
A s> -1
[F] = [M] + 3% [C] + 2% [K]] (19)
I AT -
v} =y __,_+ S, (20)
() Atz oy
(wp = {0} o+ 87{0Y 0+ T3 (Uh (21)

Equation (18) can then be used to find the velocity (Equation 16)
and displacement Equation (17) at the new time step.
The vector {P} is obtained numerically by solving the

governing aerodynamic equations. The displacment and velocities

il 2




needed for computing {P} are based on the values obtained at the

old time tep.

numerical instabilities would occur during the solution.

The time step was chosen small enough such that no

general, {P} can be shown to bhe:
(1 pope x dx |
5 ) sin » = =
0 a a
- E)Ma 1.'.................
(p} = —% { 1 (B=B=y sin 2n X 9% (22)
K h ?...?.'.........?..a.
I (P-Pu) sin nr X 9X
\ 0 e

where (P - Pw) can be determind from either Piston Theory or
LTRAN2.

Transonic Aerodynamic Pressures

The problem of interest is the flow about a wing panel of
given thickness undergoing an assumed chordwise deformation
(herein selected to be two modes) and the prediction of the
oscillatory aerodynamic pressures in the transonic speed regime.
The numerical computation method used for the unsteady flow field
is based on the alternating direction implicit (ADI) procedure

first formulated by Ballhaus and Goorjian3.

4

The procedure was
modified by van der Vooren® to consider flows of moderately high
reduced frequencies and panel deformations. The small distur-
bance velocity potential equation can be derived for transonic
flow by assuming an inviscid isentropic fluid with only weak

shocks existing. The resulting moderately high reduced frequency

differential eguation solved in the code NLR-LTRAN2 is Equation

13




(5) with the ¢, term dropped. In addition NLR-LTRAN2 retained

necessary unsteady terms in the boundary conditions on the panel
and the wake condition of zero pressure differential in the
wake., These modifications of the original LTRAN2 code of
Reference 3 allowed reduced frequencies up to k = 0.8 to be con-

sidered. The unsteady two-dimensional, transonic small distur-

bance equation solved in the code NLR-LTRAN2 is:

2 2

-ZkM~2°xt + [l-MQ - (y+1)M_"¢ + ¢ =0 (23)

x]¢xx vy
where ¢(x,y,t) is the small disturbance velocity potential
resulting from the panel deformation w(x,t). The boundary con-
ditions which must be satisfied are:

dw . kaw

¢Y(xry=0rt) == +

” 5t ©On the panel surface (24)

ACp(x,y=0,t) = A(¢x + k¢t) = 0 across the wake (25)

where w(x,t) is the panel deformation. At large distances away

from the panel we require that:

For a prescribed panel deformation w(x,t) then NLR-LTRAN2 can be

used to determine the velocity potential from Equation (23) using
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the AID scheme of Reference 3. With the velocity potential thus
determined, the pressure field and hence the pressure difference
of the panel can be obtained from:

Cp = -2(¢x + k¢t) (27)

The panel considered in this study is a symmetric section

composed of sinusoidal arcs of max thickness ratio as shown in
Figure 2. This panel is placed at zero angle of incidence in a
transonic airstream of Mach number 0.85. The chord deformation
is selected by the two-mode assumption as given in Equation (10)
where the maximum slope of the chord deformation is limited to 1
degree. The code NLR-TRAN2 is used to calculate the steady state
initial conditions for the 10% thick panel and plot of the upper
surface coefficient of pressure shown in Figure 3. The
occurrence of the shock wave can be detected at the 70% chord
location. In addition, shown in Figure 4, is the upper surface
coefficient of pressure for the first mode at nondimensional time
of 4. The shock wave has now moved to the new location of 90%
chord location. For assumed values of the modal coefficients C,
and C, then the transonic aerodynamic pressure, P, required in
Equation (22) can be obtained from NLR-LTRAN2. However, in
general, the determination of the modal coefficients must result
from a simultaneous integration of the panel equations and the

transonic aerodynamic equations as described in the previous

gsection on the time integration procedure.
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Figure 4. Upper Surface Unsteady Pressure Coefficient
for a Panel Oscillating in the Fundamental
Mode
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SECTION 3
RESULTS
The results are presented as two tasks; the first task
involves the use of the Von-Karman large deflection equations and
Piston Theory aerodynamics. The second task involves the use of
two single-degree-of-freedom models being loaded by transonic
aerodynamics.

Large Displacement Equations and Piston Theory

Assuming a two mode series solution for the Galerkin proce-
dure (with no damping, [(C] = 0), the mass and stiffness matrices

of Equation (19) are:

_ 1 0

(M] = (28)
0 1

and
A M 1+ 3(c,? + ac?) 0
N M 1 2

[K] = —— 2 o | (29

k“rs 0 16 + 22(C;“ + 4c,”)

The mass became the identity matrix as a result of the nondimen-
sional form of the final equations of motion. Also, the stiff-
ness is nonlinear since it is a function of the square of the
panel displacements C; and C,.

The value (P - P») can be found as a function of the panel

displacement and velocities. The variation of (P - Pw) across

18




the chord of the panel can then be weighted by each of the
assumed modes and integrated to obtain the force vector.

Assuming a two-term representation for the panel displace-
ment and using Piston Theory, the panel deflection at limit cycle
for increasing dynamic pressure is shown in Figure 5 as a solid
line. The dash lines represent similar calculations performed by
Prof. Dowell at Princeton several years earlier. Point solutions
were also made with a four-term and six-term representation of
the panel displacement. For all cases, the present analysis
correlates very well with previous calculations.

The panel mode shape is a function of the aerodynamic load-
ing and is presented in Figure 6., Once again, the data agrees
very well with Dowell's results. The maximum deflection of the
panel was shown to occur near the 70% chord point for all varia-
tions in the aerodynamic loading.

Aeroelastic Response of a Single Degree of Freedom Airfoil

For this task, the aeroelastic response of an airfoil con-
strained to deflect in either pitch or plunge was determined
using the NLR-LTRAN2? computer code. The equation of motion for

an airfoil pitching about its midchord is:

" . 8Cm
a +Ala +A2a =—-——2- (30)
L}
T Ka
For this case, Al = .5, A2 = 1.5 and, »' = 1000. These data

were selected so that the predictions could be correlated with

similar results found in Reference 7.

PO
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The dynamic response of the flat plate pitching about the
mid-chord at a Mach number of 0.7 was obtained for a reduced fre-
quency of 0.1. The aerodynamic equation was integrated in time
for two cycles by forcing a sinusoidal variation of pitching
angle with amplitude of 0.01 radians. The free motion was
started at the end of the second cycle. The pitching moment

coefficient, C was determined by LTRAN2 at each time interval

m’
and used in Equation (30) to determine the time history. A con-
verging type response was ohtained for both the pitching angle
and the pitching moment indicating that the flight conditions are
below the instability speed. The results provided in Figure 7
compared very well with data from Reference 7.

Similarly, for a flat plate plunging, the equation of

motion is:

-2¢
% (31)

oOne
+
w
[ (%]
O
1}

Wu'Kaz

To obtain data for correlation with Reference 7, the coefficients
Byr By and p' were selected to be 0., 1.0 and 100 respec-
tively. Under similar starting conditions as discussed tor the
pitching airfoil case, the plunging response and the coefficient
of lift variation with time is presented in Figure 8 for a Mach
number of 0.7 and a reduced frequency of 0.1. Both the plunging
displacement and lift coefficient agreed very well with the

Reference 7 results.

22




SNVIavY
") I

wear3}sITy oTuosuel], © Ul butyoitd

000} = q._é\,_.

1'0 = By )

L'0="W
08 09 0Oy 0C \ |
,/ \.

(u /081 x W9) INIWOW

W——— PR ” g,

4!

10°*-

10’

2387d 3Ield L 2anb1tJj

0z 1
0°1- -

Q - T J g \u\\.n/
o8 09 0y 0% \ 4
\J
0l .
07 -

(=] 319NV ONIHOLId

20

sk . -




weaIlsITyY OTuosuel] e ut burtbunid 23eld 3eld

SNviavy 08
(=) IWIL

‘g 8anb14g

_ VA ] PR
N 2 AT 0 08-~09 ,0%n
-~ pie v/ S\ ! v NV ™\
Q@ /\\ / ! ™~

ot




SECTION 4
CONCLUSIONS AND RECOMMENDATIONS

Flutter analyses have been conducted on a simply supported
panel to demonstrate the successful combining of panel Von Karman
large deflection equations with a simple linear aerodynamic
theory (Piston) for determining panel response. The panel re-
sponse was determined from a numerical time integration scheme
which reproduced the results presented previously by Dowell.? In
addition, the time integration scheme was successfully used to
insure the simultaneous integration of a set of linear structural
equations and nonlinear aerodynamic equations. Here, the simul-
taneous integration scheme was used to determine the aeroelastic
response of the linear pitching or plunging of an airfoil to the
nonlinear aerodynamic lift and moment obtained from the NLR-
LTRAN2 computer code. The response obtained for pitching or
plunging compared favorably to those obtained by Yang, et al.”’

An analysis was also initiated to study the panel response
represented by a nonlinear structural equation (Von Karman's
large deflection) and a nonlinear aerodynamic equation repre-
sented by NLR-LTAN2, Here, the panel response was represented
with an assumed modal series combination even though both the
structural equations and aerodynamic equations are nonlinear.
However, to date, numerical instabilities with the computer code
NLR-LTRAN2 have hampered the progress and obtaining of final

results.
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It is recommended that the analysis of the nonlinear

response of a panel in a transonic airstream be continued using
the simultaneous integration of structural and aerodynamic
equations described herein. Further, it is recommended that the
assumed modal technigue used here with nonlinear equations be
investigated. Toward this end, the replacement of the Von Karman
large deflection equations with a finite-element representation
is described in Appendix A. Unfortunately, only Piston Theory
aerodynamics have been investigated with the finite element model
so it suggested that the nonlinear aerodynamic theory obtained
from NLR-LTRAN2 be coupled with the element model of Appendix A

for analyses.

%.
;4
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APPENDIX A

PANEL RESPONSE OF A FINITE ELEMENT MODEL
AT POST FLUTTER CONDITIONS USING PISTON THEORY

Introduction

Panel flutter is a self-induced oscillation of a thin-
walled structure caused by increasing aerodynamic pressures
resulting from the panel deformation in an airstream. Nonlinear
panel flutter is characterized by a periodic oscillation of
finite amplitude commonly referred to as limit cycle. Theore-
tical studies in the past have been restricted by the use of a
simplified linear aerodynamic theory and an inaccurate repre-
sentation of the panel support conditions which result when the
nonlinear midplane stresses are neglected (assumption ofbsmall
amplitudes). References 1, 2 and 5 present some of the large
amount of work completed in this technical area. Some details
have been extracted from these references for use in the study
presented here.

The main objective of this investigation is to determine a
procedure for the prediction of the large deflection response of
structural panels in a transonic airstream. The Von Karman large
deflection equations are to be integrated simultaneously with the
solutions of the nonlinear transonic equations. Since this
approach requires an extremely large amount of computation, the
Von Karman large deflection equations will be used in conjunction

with Piston Theory aerodynamics. This section presents only the
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results of the calculations with Piston Theory and a finite
element model.

The thin two-dimensional plate shown in Figure A-1 has been
selected as the configuration to be investigated in this study.
The transverse aerodynamic load acting on only one side of the
panel is of known spatial and temporal distribution. A finite
element representation was selected to eliminate the modal
approximations necessary in the previous investigation because of
the nonlinear Von Karman large deflection equation. The plate is
represented as consisting of twin variable node plane-strain
elements each of unit length. A thickness of 0.03 inches and the
material properties of aluminum are used because of studies com-
pleted on similar plates in References 1, 2 and 5. The plate
consists of 54 nodes; nodes #1 and #44 are simply supported (con-
strained in the x, y and z directions), while the other nodes are
only constrained from moving in the y direction. Node #54 repre-
sents the three-gquarter span of the plate.

It is assumed that the large displacements of the plate are

governed by the nonlinear Von Karman large deflection equations.

=4 3%F 22w 3°F 32w 3 °F 32w
DV w=h1™—3 ™3 = 2 3xay axe 3 2
ay° ax X0y 9X9Y  3x° a3y
2 2 2
s 28N 2= on 2 v Ay (A-1)
Ix Y Yy it

and from the compatibility equation:
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where w is the plate transverse deflection and F is the Airy
stress function. The aerodynamic pressure loading, A(x,t), is
the increased incremental aerodynamic pressure caused by the
plate displacement. As mentioned previously, A(x,t) for this
study is obtained from Piston Theory. These equations are solved
in a computer code referred to as MAGNA, Materially and Geometri-

36 using a finite element procedure.

cally Nonlinear Analysis
Discussion

This section briefly describes the MAGNA computer program
capabilities, and presents a derivation of a subroutine for MAGNA
for calculating Piston Theory aerodynamic pressures.

MAGNA Computer Program

The MAGNA computer program is a large scale, general pur-
pose finite element system intended for the nonlinear (larye
deflection) analysis of complex engineering structures. MAGNA
has been developed primarily for the efficient solution of three-
dimensional problems involving many degrees of freedom and large
handwidth. Isoparametric modeling techniques and state-of-the-
art numerical solution methods are combined in MAGNA to provide
effective analytical capabilities for finite strains, arbitrary
rotations, and elastic-plastic behavior. Both static and
transient dynamic solution options may be performed with the
program, as well as natural frequency/mode shape calculations.

Features such as user subroutine interfaces, post-analysis
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graphics, and analysis restart capabilities are included in
MAGNA.,

For the problem investigated herein, a two-dimensional
large displacement element, referred to in MAGNA as Element #9,
has been used following a modification for obtaining plane-
strain. This modification required a user subroutine which is
presented in Appendix B.

The MAGNA finite element program is operational on the CDC
6000 series, CYBER-74, and CYBER-175 computers with cupport CCL
(CYBER control languaye) procedures and the segmentation loader.
An example of the job control language (JCL) used for executing
the program during the investigations reported herein is pre-
sented in Figure A-2. This JCL attaches permanent files which
include the input data (MAGNADATA), the user subroutines
(TNMAGNA), and a dynamic analysis restart file. It also forms a
post-processing file for plotting the plate response (Tape
L06296) and forms the next dynamic analysis restart file (Tape
L06091) following execution of the program.

The nonlinear dynamic response investigation was started by
first performing a static displacement analysis to obtain an
initial displacement (ID) for the initial transient dynamic
analysis. 1In the time plots of the section entitled, "Analysis
Results", time zero is indicated by t = 2.0 because of the static
analysis increments required for a converge solution. The first
dynamic analysis used the static restart file. After a specified

number of time increments, a dynamic restart tape was formed for
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100=NT2,7120@,10320@,CM10508,GE2  D8@J956,NOLL ,56832
11@=SET=R1=MFL
12@=ATTACH,A,MAGNADATA,CY=5
13@=ATTACH,B,TNMAGNA,CY=3

14@=REWIND ,A,B

158=COPY,A, TAPES

16@=COPY ,B, USRSUB

170=RETURN,A,B

180=REWIND,TAPES, USRSUB
19@=ATTACH,OLDTAP,TDF1,CY=2

200=REWIND ,OLDTAP
210=SKIPK,OLDTAP,11.8,B
22@=COPYBR,0LDTAP,TAPE23

230=REWIND, TAPE23

240=RETURN,OLDTAP
25@=REQUEST ,MPOST ,GE,RING, VSN=L 36296
26@=REQUEST ,NRSTAP,GE ,RING, VSN=L@6@91
27@=ATTACH, P ,MAGNAJCL , ID=BROCKMAN ,MR=1
28@=BEGIN,XMAGNA, P, ,USRSUB,R1+B
29@=UNLOAD ,MPOST,NRSTAP

Figure A-2. Job Control Language for Executing MAGNA
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the next dynamic analysis. The results of each analysis were
placed on a post-processing file for plotting.

The dynamic restart file was then used to continue the
analysis, again forming both post-processing and restart files.
This procedure could be repeated until the panel response versus
time was constant (limit cycle had been reached). Figure A-3
presents a procedure for using the post-processing data file to
obtain panel nodal point displacements plotted versus time,
Figure A-4 presents typical output results using the FDL/FIBRC
IMLAC in a Tecktronic Mode of generating one-line plots of panel
response.During this investigation, all MAGNA computer runs and
plotting were accomplished using terminal inputs.,

Piston Theory Aerodynamics

Piston Theory aerodynamics was used in this study to load

the panel. For Piston Theory, the unsteady aerodynamic pressures

are defined as:

= =29 f3w 1 3w -
Alx,t) 5 [ax T (A-3)

Using the nondimensional aerodynamic parameters defined in

References 1 and 2, that is:

3
= 2ga ¥ _pa
A 3D ¢ and pmhM

Equation (A-3) can be expressed as:

x
*
>
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1@@=,PROC,NOLL.
110=ATTACH,PROCFIL,ID=D8J@236.
12@=BEGIN,NOSFILE.

13@=GET ,WRTFIL, ID=D800@236.

14@=FTN, I=WRTFIL,L=0.
158=ATTACH, TAPESY, POSTPR,CY=1.

16@=LGO0.

17@=RETURN,PROCFIL,WRTFIL, LGO,TAPESS,
180=FET ,XYPLOT, ID=D80@236,

19@=FTN, I=XYPLOT,L=@.
2@@=ATTACH,LIB1,TEKLIB, ID=LIBRARY,SN=ASD.
210=ATTACH,LIB2,PLOT3D, ID=KING.
220=L1BRARY,LIB1,LIB2,

23@=LG0.
24@=RETURN,LGO,LIB1,LIB2,XYPLOT,TAPE2, TAPE30.
250=REVERT.

268=XEOR

27@=XEOF

Figure A-3. Procedure File for Executing
MAGNA Plot Capability
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BEGIN, NOLL, PROCNOLL

AT CV=dd1 SN=AFFDL
PFN IS
PROCFIL:
AT V=001 SN=AFFDL
NOSFILE VERSION 3 READY.
OTHER PROCFIL OPTIONS
EDTFILE, ALLFILE, TEKFILE, HPFILZ
FILE NAME WRTFIL HAS BEEN RETRIEVED
.360 CP SECONDS COMPILATION TIME

MAGNA POST FILE TRANSLATOR FOR XYPLOT

WRITE DISPLACEMENT OR STRESS DATA (D,3)..... o}
HOW MANY CURVES WILL BE PLOTTED?!
ENTER NODE NUMBER AND DISPLACEMENTS1.2

FOR CURVE NO. 1 WANT THE FIRST POINT TO BE AT J.J,3.92N
STOP
333908 MAXIMUM EXECUTION FL.
8.071 CP SECONDS EXECUTION TIME.
FILE NAME XYPLOT HAS BEEN RETRIEVED
PLOT ON HP OR TEKTRONIX (1=HP,2=TEK)....... :
UNSATISFIED EXTERNAL REF -- SETIN
NON-FATAL LOADER ERRORS -
UNSATISFIED EXTERNAL REF -- SETUU 2
READ DATA FROM FILE OR TERMINAL (l1=FILE,2=TERM).:!l
NEED CONVERSION OPTION FOR DATA SET NO. 1 :
HOW MANY CURVES DO YOU WISH TO PLOT.............:1

WHICH SETS OF DATA DO YOU WISH TO PLOT..........:1
LABELS FOR THIS PLOT ARE COMPUTED TO BE:

X-MAXIMUM = 2.88

Y-MAXIMUM = .04

X-MINIMUM = 1.99

Y-MINIMUM = -.05

CHANGE THESE VALUES (Y,N)...ii iy

ENTER MAXIMUM X-LABEL.......vvirvernoannenanneaa22.98
ENTER MAXIMUM Y-LABEL........ e s e H
ENTER MINIMUM X-LABEL........... ... B a8

ENTER MINIMUM Y-LABEL............ P AL L
INTERVAL SIZE ON X-AXIS. . . sttt nracnennncannss HI
INTERVAL SIZE ON Y-AXIS.....00veceurernnennnensat @l
ENTER X-AXIS LABEL, (MAX. 40 CHAR.).............:TIME,SEC
ENTER 7-AXIS LABEL, (MAX. 40 CHAR.).............:NCDAL PT 3! DISPLACZMENT,IXN

fOR DATA SET NUMBER 1

LINE OPTIONS ARE:

SCLID LINE CURVE, NO SYMBOL, TYPE -1

DASH LINE, NO SYMBOL, TYPE -2

3YMBOL AT EACH POINT, TYPE 1

SYMBOLS CONNECTED WITH SOLID LINE, TYPE 2

STMBOLS CONNECTED WITH DASH LINE, TYPE 3.

ENTER CURVE TYPE. ... i ittt iinenn et =l

Figure A-4. Example Output of MAGNA Plot Routine
Using Procedure File
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Alx,t) = —lg %¥ + "“%BK"E‘ %ﬁ (A=4)
a

By grouping the dimensional and material properties of the panel,
the aerodynamic pressure can be represented as a function of

only X, u/M, and M as:

H
=}AM
_ W (M) Iw -
A(x,t) = Clk X + C1C2 2 Tt {A=~5)
and
2
a p_h
_ =D _ m
C1 = =3 and C2 = )
a
.000259 1b sec2 7

and E = 10’ psi)

Using an aluminum plate (pm = —

and assuming that the plate stiffnes, D, equals Eh3/12, the

aerodynamic pressure becomes:

—
>
=

z|T
>
£

(
A(x,t) = -.0225)\ —% - .0001322 2

[-%4

(A~6)

Q
r

Now it is necessary to define the nodal point
slopes, 3w/3x, and velocities, 3w/3t, for Equation (A-6). The
nodal point displacements in an element local coordinate system

(referring to the sketch below) are defined as:

Wy Nowo + Now, = NTw (A=7)

w(g) = N A 2¥g

1
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The shape functions in Equation (A-7) are defined as:

Ny = =(8/1)(1-8); Ny = (1-t?); and Ny = (£/2)(1+2)  (A-8)
These shape functions provided parabolic displacement approxima-

tion across the element. Since:

x = (eoetly . gletley g LS (a-9)
then the slope of a node becomes:

%; (g) = 2[WC;WA +owy - 2wy + wc)c] (A-10)
and the node velocity becomes:

dw N . .

Tt () = leA + NZWB + N3wC (a=-11)

From the Principle of Virtual Work, the work done by the aero-

dynamic pressure A(x,t) was equated to the work done by the nodal
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forces moving through the nodal displacements.

for a particular element,

=
(]
—

or

z
[}
-

o
—

With w(g) = NT W_ )

and

o
1}

A(-l!t)l

A(O,t),

o
o
|

A(l,t)

for the e

In other words,

the work done is:

>
x
o
z
*
a
»®
L}

A(g,t)w(z)dz

A(z

th

FA T w
FB w (A-12)
Fe Ye
T
Fa Ya
= {Fg ¥g
C Yo
T "
,t) = N Py
Pe
element,

substitution into Equation (A-12) gives:

g ol N P e e v W e ean oo o ous D BNA D M BB
W >

T A\
A A
C ol
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Fa Py .

=1 T
Fo /2 { Pg _{ NN “"dz
Fe Pc

By evaluating the integral for the shape

Ny, Equation (A-13) becomes:

Fa 8 4 -2 Py
=1

Fa | = %5 4 32 4 Py

Fo -2 4 8 Pe

Now using the nodal point displacement and velocities,

pressures evaluated at the element nodal points become:

T B
PA = clx (- wA + 4wB - wC) + C2 ax wA
[~
o L
B = Cpr | o = wy) + Gy an VB
L
u
- \ L
PC = clx (wA - 4wB + 3wc_ + C2 3 wc

By substituting these expressions into Equation (A-14)

point displacements and velocities,

(a-13)

functions Ny N2, and

(A-14)

the

{A=15a)

(A-15b)

(A-15c)

we obtain

an equation which now relates the nodal point forces to the nodal

Equation (A-16) becomes:




B e

b

-

FA -3 4 -1 wA
Cy A
Fo = — -4 0 4 vy +
Fo 1 -4 3 W
4 2 -1 w

c,C, [(&)anm A
30 3 2 16 2 g (A~16)

-1 2 4 &:C

At common nodal points between two elements, the nodal forces are
added. Equation (A-16) was programmed 1in the ULOAD subroutine
for calculating the nodal point forces based on Piston Theory
aerodynamics. Appendix C presents a listing of ULOAD.

Analysis Results

This section presents the results of a vibration analysis
and a nonlinear static analysis, and briefly summarizes the
results of the nonlinear transient dynamic analyses. Some of the
response data provided herein are sketches of (w/h) versus a non-

dimensional time, t, defined as:
1
T = t(D/pmha4)/2

For the plate used in this study, v = 17.02t. These sketches
were made prior to obtaining on-line plot capability. The
sketches are somewhat rough in that there was no attempt to
obtain an accurate time history; only the peaks and zeros of the
time history were plotted. All on-line plots present w versus
real time, t, with time zero beginning at t = 2.0 secs as

described earlier. The time increment jump from 0.0 to 2.0 was
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caused during the generation of the static restart tape which

required two increments for convergence (2.0 secs). Therefore,
the first dynamics run, using a static restart file, would begin
at t = 2.0 secs.
Vibration Analysis

The eigenvalue solution option of MAGNA was used to obtain
the first five mode shapes and natural frequencies of the plate.
These data are found in Table A-1l. The mode shapes are presented
for the nodal points through the center of the plate (nodes #45~
#54 and the simply supported edges %1 and #44). A consistent
mass representation was selected for this analysis. MAGNA uses a
vector iteration procedure for obtaining the desired eigenvalues
and eigenvectors.

For a simply supported beam, the natural frequencies of the

beam can be represented as:

1
w, = (mr/a)z(Ehz/lme)/z, N =1,2,000.

This expression gives 26.73 Hz, 106.92 Hz, and 240.57 Hz for the
first three natural frequencies. These results are in good
agreement with the trequencies found in Table A-1. All the beam
results are lower, as expected. The mode shapes, which are pre-
sented with only three decimal digits, all appear reasonable with
respect to the mode shapes of a simply supported beam.
Nonlinear Static Analysis

The static analysis input data to MAGNA are presented in
Figure A-5. The static analysis was required to obtain an
initial displacement (ID) for the nonlinear transient dynamic

analyses. Four initial displacements were investigated during
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TABLE A-1

NATURAL FREQUENCIES AND MODE SHAPES
Mode No.: 1 2 3 4 5
Freq (Hz) 28.04 112.13 252.69 451.18 711.25
Modal Mode Shapes
PT 1 2 3 4 5
1 .000 .000 .000 .000 .000
45 ~.309 .588 -.809 -1.000 -1.000
46 ~.588 .951 -.951 ~.618 .000
47 ~.809 .951 -.309 .618 1.000
48 -.951 .588 .588 1.000 .000
49 -1.000 .000 1.000 .000 -1.000
50 ~.951 -.588 .588 -1.000 .000
51 ~.809 -.951 -.309 ~-.618 1.000
54 -.707 -1.000 -.706 .000 .698
52 -.588 -.951 -.951 .618 .000
53 ~.309 -.587 -.809 1.000 -1.000
44 .000 .000 .000 .000 .000
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Figure A-5. MAGNA Data Input for Nonlinear Static
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the course of this study. The static load and the resulting
plate displacements that were used are shown in Table A-2. For
these analyses, a static load was placed at the center of the
plate (nodal point #23). A nonlinear large displacement
formulation was assumed in these analyses. For the results
defined in the section entitled, "Nonlinear Transient Dynamic
Analyses”, all time histories have a specific initial displace-
ment associated with it. These ID's are defined in Table A-2.
For a simply supported beam, the deflection at the center can be

defined as:

3

w = Fa3/4Eh .

49
This expression gives results which are in good agreement with ID
41 of Table A-2. The other loads result in MAGNA predicted
deflections which are considered to be "large deflections". The
beam expression was derived assuming small displacements, there-
fore, correlation with ID #2, ID #3, and ID #4 would be expected
to worsen.
Nonlinear Transient Dynamic Analyses

The nonlinear transient dynamic analyses were conducted for
three different Mach numbers; 3.0, 1.2, and 0.8. When the Mach
number of 0.8 was used, 8 was redfined as (l—Mzﬁé. Figure A=-6
presents a sample of the data input to MAGNA for these analyses.
Any variations to i, u/M, or Mach number were accomplished in the

ULOAD suproutine,




TABLE A-2

INITIAL DISPLACEMENTS USED FOR
TRANSIENT DYNAMIC ANALYSES

—— e oems enp SEE TN R =N

Static Load at PT 23 (lbs)
Nodal .00357 .00714 .01071 .02570

ID#1 (in) ID#2 (in) ID#3 (in) ID#4 (in)

1 .0 .0 .0 .0
45 -.00087 -.00162 ~.00224 ~.00396
46 -.00166 -.00311 ~.00430 -.00762
47 -.00232 -.00434 -.00601 -.01070
48 ~.00276 -.00517 -.00718 -.01284
49 ~.00292 ~.00548 -.00761 -.01365
50 -.00276 -.00517 -.00718 -.01283
51 -.00231 -.00433 -.00600 -.01069
54 -.00201 -.00376 -.00521 ~.00926
52 -.00166 -.00311 -.00431 -.00764
53 -.00087 -.00162 -.00224 -.00396

44 .0 .0 .0 .0

46




© e e e A TAL

_TPANSIZAT OYNAMIC ANALYSIS

NONLINEAR PANEL FLUTTZR: POST FLUTTER FESPONSE
PISTON THEOPY UNSTEADY AZOOYNAMICS

1 2 1 2 1 1 1 1
72¢ 3
«d0r 2 247,86 3,7
I
e
3
RESTART 1t T°FL  2p° L TNE? 2?
COORQINATES 54
1 n.:- ".“OP
«5 1.7 e’
53 1 9," fe~
2 00" -.".15
42 2 1%, -ei 15
3 J." « " 1% .
L3 2 e «715 )
L 1.1 Ce”
5% 7.5 Cof N -
[, ]
C) 1 i
1M.Ed Bs3 L D0Ff 259
1 - 2 2 € 7 3 [N &5 5 1
2 1 2 6 ;o117 8 b 9 &5
3 1 2 113 14 € i1 12 e 13 46
b 1 2 i 18 19 i1¢ 16 4r 17 L7
5 i 2 18 22 23 19 2 49 21 L8
€ 1 2 22 26 27 23 26 Si 25 49
L4 b 2 26 3 31 27 28 51 29 8
L] 1 3 20 Ju 3t 31 32 5¢ 33 €1 54
9 b 2 2y 3R 3q 25 3e 513 l7 52
1n i 2 29 ke w3 39  uf b Wl 52
q
L]
2 2
2 L1 1
3
4Ls 51 1
3
1 2 2
1 Ll
k |
54 B
1
1 2 ATR0O LNADS (ULOAT) T
c.” e 11 .9 M
23 2 1 =1,
9

Figure A-6. MAGNA Data Input for Nolinear Transient
Dynamic Analysis
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Mach Number = 3.0

Figures A-7, A-8, and A-9 present time history plots of

nodal point #54 (3/4 span) for initial displacements ID #1, ID #2
and ID #3 and for A, u/M and M equal to 400, .01 and 3.0, respec-
tively. The figures present nondimensional displacement, (w/h)},
versus nondimensional time, 1. As described earlier, the plots
are approximate and only show trends. As can be seen from the
figures, the displacements are approaching the thickness of the
plate. The frequency of the oscillation is about 83 Hz. Since
the objective of this study is ultimately to investigate tran-
sonic effects, the studies at M 3.0 were not continued to limit

cycle.

Mach Number = 1.2

For a Mach number of 1.2, the aerodynamic parameters, X
and p/M, were selected to be 300 and 0.013, respectively. Two
different initial displacements wer investigated at these condi-
tions. Figure A-10 presents the time history results for ID #4,
and Figure A-11 presents results for ID #3. These figures pre-
sent the time histories of the nodal point displacement, w,
versus real time, t, for the points through the center of the
plate (points #45-#54). Nodal point #54 represents the 3/4 span
location of the plate and is positioned correctly for increas-
ing x within the figures (between points #51 and #52). The nodal
point is described in the ordinate label of each time history
plot. Also note that in Figure A~10, there is a change in

ordinate scale after t = 2.7 secs.
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After three dynamic restart cycles, the time history for ID
#4 (Figure A-10) reaches a limit cycle near t = 2,21 secs (.21
secs). The magnitude of the displacement at point #54 is £.0144
inches or, in nondimensional form, (w/h) = £.480. For ID #3

(Figure A-11), the time history shows limit cycle after two

dynamic restart cycles. At point #54, the displacement of the
limit cycle is £.012 inches (w/h £.,400) at t = 2.13 (.13 secs}.
This information indicates that the limit cycle amplitude is
dependent not only on Mach number, y/M and A, but also on initial
displacement. The maximum amplitude of the motion occurs at
about § = .7 (70% span); the displacement then falls off to zero

at nodal points #1 and #44. The frequency of the oscillation is

about 65 Hz.

Mach Number = 0.8 H
Figure A-12 presents the transient dynamic analysis results i
for a Mach number of 0.8 and initial displacement ID #3, again k

with A = 300, and u/M = ,013. The results are similar to that

discussed in the section entitled, "Mach Number = 1.2". Motion
that was very near the limit cycle was reached at t = 2.21 (.21
secs). The amplitude of the motion at point #54 was £.017 inches
(w/h £.580). Again, the frequency of the oscillation is about
65 Hz.

A summary plot which presents the deflection of the plate
Auring limit cycle for Mach numbers of 0.8 and 1.2, is shown in
Figure A-13, The response at M = 0.8 is larger across the plate

than the response at M = 1,2,
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Figure A-11.
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Figure A-12.
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APPENDIX B

ELEMENT #9 ROUTINE MODIFIED FOR PLANE STRAIN

-

SUARCUTINT INP°9 (NELEM NMAT NONLINGTOYN)
CeveLX IFPLICIT RZAL®*E (8=Hy0=2)
COMCN/ZILENK/X(w,l)
COVMC*  /ZVTARLY/Z NCI(OYNP(9) ,IPAR(LT)
5 COMMON/PCO"A/E(343),SHN SATIOWEPSIMNC +61 38 (0430
L] _IHICK XK T2
COMMCN/ZFILNAMZMINGNOUT o NTKoNTVYC NTEK, NT.H.NTCON'JTEC.
e e e = . NTBE  NTST .
I“ \SICN l\oP(zsi.ALFA(Z‘l
o e DIMENSICN 22127 4 PRUZ: G SNSI27),,YLD(2")
OIMINSICN thnx(z 1,54LMMAL20) 4 IHARDL2.Y,I558C(2 )
ALMINSICH TCLA3) L, JOUTANLLD
EOQUIVALINCE (Z(1,13,PRCP(L))
_DATA HISDO.HKIN,HCO¥»BLANK,IOUTAX

15 ’ N . FIHISOLIMKIN, SHECM,TH 4 3HLCC, THGLC /

S SR S
f IN3UT AND SLIMENT FILZ INIYIALT7ATION
[ TLEMINT 9 o YASIABLS (LeG) NQDE @1 A8N; STSZLS_gliatnT
r

[

CALL FOHRIP _(243,04NILTYyT4yRL)
NPIHC=25
. L0 Lt Tl MPRNC L
1 P=0P (I¥s,
102301729
25 IPaR(2)=°0
e e L IeremyRle L
198 (u) =2
_IPAT(S)22 B
IPAR(s DSN?FHO
Q2. Ix7.35
< IPAR(I) ="
e _ ___ NT22=nTST e
LLD% (NCUT':""
WEITZINCUT1.17)

bk ed i oeq Gmg SN S B S =
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BTSSTALS DATE

Ypand
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n
O D

00 8. 1=, NvAT
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[ . ¢ GAMMA(TY JIHART(INISSCUIYaLFEL(T)
IFINCNLINSGTL ) GO TO &"

LINZZS waT:ela, PROPCATIES

200

L5 WITSUNCOUT o ac I 1T 4 ES(INWPPCIIWCIS(ZNemiFACL)D
6 TO EB°

_NCULING A6_MATLRIAL _PROFESTIES

PO

L L) IFCYLI(D sl VLN IS,
TECNLMAXLI) oL Te " T N] nnl(I)-:.. .2
IFCTHLRILI) L Ze i) IMARD(IY =Y
M=l ANK
IELINARIIN €T L) SHEWISO
63 TRUIHARIILN A E%0 ) ShaWKIh
IFEIHFRDEIIN o0 ?) 3HSHOCM
HRZToINGT o4 1 DT eE 0T 4PRITY GCHSUID JALFALT) 4 ¥LTETY,
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B e T ST

IPAI(R)2INT
Tess()=t

11 IFLAG=IPR=-IPRPR
10.0x=70:

TRES (Ul =(SEN(1PRY
T30 =T HARNILIPR)

IF (I8 A Gec Teul GO T9 gar

+ DEMAX(I)Y ,GAMMA(T) ,SH,ISSC(I)
5 CONTINUZ .
a* r
c LeN SLIMFNTS
o HRITI = 1.CONNECTIVITY FILS
[ _2,ZLIMTNY_COAKDINAIES FTLE
c 3.PROPIRTTIES FILZ
6% .t } G INTEGRATICN POINT FILE |
”~
I TTYRZIze
T T R eeeascacscessccssncescsccasaraneramaee - -
r
7° € === MAJIFICATICN FOR PLANE STRAIN =ee
O ol - L :
B ITYPE = 2 ]
- .
- T P esecsccacessesccscmccascccrsccaceanaas . ﬁ
75 75032 _ ;
IPaPI=2" :
e .. __Mh0O 8 TI=i,9_  _ ___._ _ . L ‘
NCP(TY=" ;
& NELI)= e S - i
8 . ;
WOIYS(NOUT 228 ) {
$. S5 (NINgi"E ) IZLNG.IPR,INT,KGIN,NOD, THICK f
IFETZ N0el™e™) GO TO 67 . . §
IFIKGTRGEL") KGIN=2 |
A5 __ . ... 1Pax(it)=z1IP> e e i
IF (THICKelZover) THICK=$," ,L
—_ JE_(IpTelT,2) TNT=2 H
IF(INTSG"e?) INT=22 i
e IF({IZLNO=TILFT) 4GTel) GO TO 3% _ o ;
Al N0 4. I=4,9 ]
1 NPLI)=NODUIT)Y, 4
KGIN=" {
177 _gounTInug §
" ]
es € GTNTIATE CLEMINTS ISLPRe: THROUGH TZ(NO g
~ 3
NI=I3ILNO=IcLPO §
00 T4° IT=4,NE ;
e L I1TLER=ITLOC e — ;
e T lh 12,9 {
IF (NPCI)(GTe") HE(IIZNP(I)eKGEN ;
L COMTINUZ {
TEKGET )15 443.412" {
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£Tlsgs(I0%)

oeT=pR(IPL)

CaLl 67T20c (Z,EZZ4PRT,ITYPE)
RHIZIKSLIPE)

XK=YLD(iP®)

220 TEZ=LLFA(IFR)

>
'a
\n

RA-IC=5EMMA (IPR)

_JTPSING=ITMAX(IPRY
24 5%IE7/ (40 #PET)

137 __IF(NCALINGGTou) IPER(TI=

ZLEMINT COORQINATES &ND YRANSFQSMATION

BISXx]l

__NOT=NP(1) __
2Maxzy (3,NOT)

_IMINSY (I, NPT
7T0L=L,i5=F
91 4e¢ 7=2,0

AT

NPI=NP(I)
. . — IF (NPT LZ,0) 6O TN 285 .
135 27=X (2 F])
o XT 122,67 7MAY) ZuAX=22
IF (ZZ4LTeZHIMNY ZMIN2Z2
18% CONITHUL
J0 135 I=21,.,3
BN - . .. ..D2 19 JU=1,3
19~ AA(T 4y Jd= e 8T
195 . BA(ILI)=1.2)
IDLANT=Y
IF (LT aX=7¥INY,LS.,7TCL) JIPLANE=2

145 IPAR(IL)=TPLANS
. I0oUT7=ICUTAX(IPLANE)
IF (IPLANELLZWL) CALL CRYHAX (A&, NP)
K¢=*n
DO 247 J=1.2
b LR} ng_21° I=4,9
xL=.6"
_NFI=NP(D) ..
IF (NPILLE.") GO TO 2.5
Lo . ... B0 2L K=4,3
485 i’ XLEXL*AA (S KI2X(KZNPT)
2°5 KKKVl
. el TCIKKYI= YL
CALL ICINWFINTPR,IPAR1,:5)
. CALL IGCRLMF(NT_T,ECeLi, 200
187 SALL ICTRWE(NTSNN,ZNP L D)
- 23" CALL ICRLWT(NTP2,PXOP L yNOIW")

SALL PPELi M (ITL28R,9,NP)
3% CONTINUZ
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APPENDIX C

USER ROUTINE FOR PISTON THEORY AERODYNAMICS

1 SU3R0UTIRE ULOAD(P WK, TIME 40T 4NTNODV {NKDCF 4N2CCDI NTDIS,
:NRU.NDV.NI MyNOUT)

DIVENSICN P{1) WKL)
COMMCN/MPAFT/NGIFILLE2) yNNOBK
DATA CACYL ,FACT2/2i( e s=2e7/
¢ LAMDE = 31 ,,U/M 3 (.83

CE
_ ISy
i NA

.
=1 .
(ISLE-4)%3¢4
(ISLE=1)%A¢s
T UISLE-L)% 31
CALL ZZACMF(NTIIS, WK, NyNOU)
J1€0A = WK (NL) .
. _NISP3 = WK (NS)
15" - NTSer = WK (NCY T T
SALL RIADMFINTIIS ,WK,N,NRV)
= RK(NE) o
WK { NP)
WK {NC)
2 OINAY = ' 27ERFACTL#(=7,%3I3PA4+4.*DISP3=-DISPC)+
- 1039295 CoFACTZ * (4o *VILB+2,*VILE-VELC) +PY ’
PNAR) = LLASSFACTL® (=L, ,*0ISPA+DISPC) +
1014 3E7=GPFACTR2*(VELA® S S VEL B+ VELCY
D1 2 (T33TESFACTAS(LISCA=L, *NTISPB+2,%DISFC)+
25 o532 9 =CVNFLLTZS (=1, Vil A+2,sVELB+L,® VELCT
IEL: = IELZIeg
IF(IZLS.G6T.4.) GO 70 27
60 9 ;"
2" noONTINVE
3" PINC) = 2%
WRITZINCOT .33
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APPENDIX D

COMMENTS ON NUMERICAL INSTABILITIES
WHEN BOTH PANEL AND AERODYNAMIC EQUATIONS ARE NONLINEAR

An analysis was initiated to study the panel response
represented by a nonlinear structural equation (Von Karman's
large deflection) and a nonlinear aerodynamic equation repre-
sented by NLR-LTRAN2 numerical code. A time dependent response
study requires the simultaneous time integration of the struc-
tural and aerodynamic nonlinear equations. Here, the panel
response was represented by a linear superposition of assumed
modal terms even though both the structural equations and aero-
dynamic equations are nonlinear. Using the Galerkin procedure,
the spatial dependency in the structural equations was eliminated
and were integrated simultaneously with the aerodynamic equations
represented by the NLR version of LTRAN2. The NLR version of
LTRAN2 included a modification to account for the changing
induced angle of attack resulting from the panel deformation
which was incorporated into a chord deformation option contained
internal to NLR-~LTRAN2Z2,

The simultaneous time integration procedure allows one to
determine panel deflection, velocities and accelerations. Once
the initial conditions for the panel deformation are provided,
the effective induced angle of attack and its time derivatives
can be calculated for each point on the panel. The resulting

aerodynamic pressures can then be calculated. The panel response

or deformation at the next time increment can be determined and
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the process repeated for each desired ti.e step. Prior to
releasing the panel for response to the aerodynamic pressure, the
aerodynamic equations were integrated in time for an assumed
simple harmonic panel deformation until the transient prediction
of the aerodynamic pressures disappeared and the pressures became
periodic. This assumed simple harmonic motion generally required
the time for two periods of panel oscillation to insure that the
convergence criteria specified in NLR-LTRAN2 was satisfied.

For the panel and airstream parameters investigated, the
simultaneous integration of nonlinear structural and aerndynamic
equations were unsuccessful in obtaining stable panel responses.
In all cases the panel response diverged sometimes quite quickly
when the panel was freed to response to the transonic aerodynamic
pressure. The diverging panel response was attributed to numeri-
cal instabilities since previous investigations using a linear
aerodynamic representation at greater Mach numbers (piston
theory) yields a stable panel response for certain selected panel
parameters. Various magnitudes of initial displacement, velocity
and acceleration, both singly and in combination, were investi-
gated. The time step for the time integration was varied to very
small values within computational considerations. Also, the
number of cycles for forcing the plate motion in a sinusoidal
fashion was varied to assure all transients were small. 1In all

cases considered, the panel response was divergent after a given

period of time.




The following suggestions are offered as possible courses

of the aforementioned numerical instabilities for consideration

by future investigators.

1. The chord deformation option within NLR-LTRAN2 was a

—— G o

constant source of convergence problems. Even for very small
panel deformations the local angles of attack (slopes of panel

deformation) can become large enough to exceed the convergence

criteria specified in NLR-LTRAN2. This would result in an over
prediction of aerodynamic pressure with no warning from tr=
computational code. This investigator is unaware of any verifi-
cation that the chord deformation option has been accomplished
and any coding errors would surely yield a source of numerical
instabilities. Further investigation of the aerodynamic
pressures predicted by this option of NLR-LTRANZ2 for a given

chord deformation would seem to be warranted to insure numerical

stability.

2. Representation of the nonlinear panel response to the
nonlinear aerodynamic pressures by a linear superposition of
natural modes may be another source of numerical instability and
is a somewhat questionable approach. As suggested in Appendix A,
the representation of the large deflection structural equations

with a large deflection finite element has some merit for inves-

tigation of nonlinear response.
3. In performing the simultaneous integration of struc-

tural and aerodynamic equations there is by necessity a differ-

ence in time step increments required primarily to -insure

convergence of the chord deformation option used in NLR-LTRANZ.

100
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The difference in the time scaling between the structure and

aerodynamic equations were not fully investigated and would be
another source of numerical instability.

4, The stable response obtained using a linear aerody-
namic theory were conducted at supersonic Mach numbers whereas
the Mach numbers selected in this investigation were in the so
called "sub-transonic" Mach number regime. The flow field
characteristics are radically different than the supersonic Mach
regime and would require numerical carefulness to insure numeri-
cal stability. Verification of the possibility of stable
responses in this "sub-transonic" region needs to be established.

5. Another possible cause could be the time step size
resulting in an instability generated by the motion of a shock
wave due to the mixed numerical differencing in NLR-LTRAN2. It
would be necessary to choose the time interval small enough such
that shock waves do not travel more than one mesh point in the x
direction over a single time step. However, very small time
steps may result in prohibitive computational times,

6. Finally, the initial panel deformation and aerodynamic
pressure generated initially before release of the panel to
response to the aerodynamic pressure needs a more complete inves-
tigation when both nonlinear structural and nonlinear aerodynamic

equations are integrated simultaneously.




