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3 SECTION 1

INTRODUCTION

I Panel flutter is a self-induced oscillation of a thin-

walled structure caused by an increase of aerodynamic forces

resulting from panel deformation in an airstream. Panel flutter

does differ from wing flutter in that the nature of panel flutter

is generally not as catastrophic as wing flutter. Linear flutter

I prediction techniques allow one to determine the locus of

neutrally stable oscillations which is called the flutter boun-

dary. Nonlinear panel flutter; however, is characterized by a

I periodic oscillation of finite amplitude at and above the linear

flutter boundary. Presently, the two methods available for non-

linear flutter prediction are theoretical analysis and experi-

mental determination.

At the present time there is poor correlation between

experimental and theoretical flutter prediction in the transonic

Mach number regime. In the past, the theoretical prediction of

panel flutter has been overly conservative due to simplifying

assumptions made because of the complexity of panel flutter.

However, these assumptions are usually so restrictive that there

is great variance between experimental results and theoretical

predictions at transonic speeds.

IThe theoretical studies have been restricted by use of a
[simplified linear aerodynamic theory and an imprecise idealiza-

tion of the panel support conditions which result when the

[ .~
-. -



nonlinear midplane stresses (i.e., use of small amplitude

oscillation) are neglected. This study removes the above two

* simplifying assumptions in that the large deflection equations of

a panel in a nonlinear transonic airstream with shocks present,

are formulated for solution.

Dowell I has presented a study of the nonlinear flutter of a

flat panel using a Galerkin procedure wherein he numerically

j integrates the resulting ordinary differential equation of motion

in the time variable. Dowell 2 has also used a nonlinear plate

theory but a linear aerodynamic theory in the form of both a

quasi-steady and a full unsteady theory. The availability of

such an analysis permits the consideration of the panel post-

flutter behavior only over the subsonic and supersonic Mach

number range. In the transonic range it is necessary to use a

nonlinear aerodynamic theory since the governing differential

equation is nonlinear and contains both subsonic and supersonic

regions together with shocks.

The method to be used herein will be briefly outlined. The

equations of motion for the transverse oscillation of a panel are

obtained. It is assumed that the large deformations can be ade-

quately described by use of the Von-Karman large strain-displace-

ment relations. The flutter motion of the panel is described by

a simple two mode approximation. Galerkin's method is used to

obtain the differential equation in time governing the panelI.
response to a time dependent aerodynamic pressure field. The

aerodynamic pressure is to be transonic and as such is governed

by the small-disturbance, potential transonic flow differential

2



I
3 equation. The solution to the nonlinear transonic differential

equation is obtained using a finite difference method developed

by Ballhaus and Goorjian 3 and modified for large values of

reduced frequency by Huizing and van der Vooren4 . This time

I dependent response investigation requires simultaneous integra-

tion of the panel large deflection equation and the transonic

aerodynamic equations in time.

Objectives

The main objective of this investigation is to determine a

I procedure for the prediction of the large deflection response of

a structural panel situated in a transonic airstream. Von-Karman

large deflection equations are to be integrated simultaneously

with solutions of the nonlinear transonic equations obtained from

a finite difference, alternating direction implicit scieme

I referred to as LTRAN2. The prime task then is to incorporate

this integration scheme into a modified version of LTRAN2 called

NLR-LTRAN2. This procedure will yield theoretical predictions of

flutter speed which should compare with experimentally determined

speeds within the transonic Mach number region.

I Large Deflection Equations for Panel Oscillation

i Consider the isotropic thin-walled panel shown in Figure 1.

It is exposed to a transonic airstream in which shocks may occur

and is subjected to a longitudinal axial load. It is assumed

that the large oscillations of the panel in the presence of mid-

I surface stresses are governed by the nonlinear Von-Karman strain

displacement relations. These relations are given as:

* 3
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Sb A (x, y, z) h

I x
__ __ _ __ _ __ _ __ _ __ _ __ _ _ _ _ _ _ _

I/-
NYi

p - plate densityI
E = 10 x 106 lb/in2

h = 0.03 in
a = b = 10 in

Plate edges are simply supportedI

I Figure 1. A Thin Uniform Elastic Plate Exposed
to a Transonic Airstream
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2W + 3aw 1la)

x ax 2xa 2

u-+ . w 2 (b)

I2u + 2v + iw w - 2aw (

xy 3+ax ax ay ax3y

where z is measured from the midsurface of the panel. Equation

I3 (1) is a modification of a small deflection theory to include the

first order effects of midsurface stretching necessary to inves-

I tigate large deflections.

Now Hamilton's variational principle is enforced to obtain

the partial differential equations of panel motion. For a three-

dimensional plate, Von-Karman's large deflection equations (see

Eastep and McIntosh 5 for a derivation) are:

4 a2 F32 w a2 F32 w a2 F32 wa2 w 2D4w~ 32F w 2F 32w +3F 32w - 2w +8w

2 ---h + -+ N+
ay2 ax2 2 axay axay ax2 ay2 x ax2 ax2

_ 32w  32 w(2
a y 2  - h 2-ph 2 + A(w,t) (2)

and

V 4F aw~ )2 a32w a2w (3)I 3xay a

I where w is the plate transverse deflection while F is the Airy

3 stress function. The aerodynamic pressure loading, A, is the

I 5ii



3 increased incremental aerodynamic pressure caused by the panel

deformation and is given by:I
A(w,t) -P" U0 -] (4)

I where the velocity potential must satisfy the small disturbance

transonic differential equation:

1 -- 2- 2- 2-
(1-M 2  + -) ( 2 3- - 2M2 2-0- - 2M.2 2-0

W a x2  + 1) x ax 2  at2 -atax

+ a2; = 0 (5)

ay 
2

The numerical computation method used for determining the

unsteady transonic flow field is based on the alternating direc-

j tion implicit (ADI)3 procedure modified to consider flows of

moderately high reduced frequencies and panel deformations. The

I procedure is referred to as NLR-LTRAN2.
4

The system of Equations (2) through (5) will be solved by

Ithe Galerkin method for a simply supported plate undergoing

j cylindrical bending. That is:

I
II

I ~ ~ t h[C (t)sin 1x+C 2 (t)sin 21X (6)

I

I
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SECTION 2

APPROACH

Two-Dimensional Flow

I Consider for simplification the flow about a two-

dimensional wing panel of given thickness undergoing an assumed

3 chordwise deformation and the prediction of the oscillatory aero-

dynamic pressures in the transonic speed regime. Figure 2 shows

I a panel that is simple supported at both ends. For this study

the aerodynamic loading was assumed to act only on one side of

the panel. The undeformed shape of the panel was represented by

j I a half-sine wave for both the upper and lower surfaces. With a

chord of 10 inches, the thickness to chord ratio of the panel was
I 0.003.

0 For two-dimensional flow, all derivatives with respect to y

are zero. Therefore, th Von-Karman large deflection plate equa-

j tion becomes:

i D !- N w p h - (P - P-) (7)

w x 2  m 2

where the longitudinal axial load N is defined as:

xI
Eh a 3w 2I~ ~ 2 Nx" o(X) 2 d x

I

I- .. .: . .. . . = . . .... .;. .. . ",' i. ; ' . . . o
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I
Galerkin's Method

The procedure used in solving Equation (7) was to apply

I Galerkin's Method and a step-by-step time integration method.

Galerkin's Method is an assumed mode technique which reduces a

partial differential equation with independent variables x and t

to a set of simultaneous ordinary differential equations with

independent variable t.

I For the Galerkin procedure, a series of displacment func-

tions which satisfy both the geometric and force boundary condi-

tions are assumed. In practice, the more terms used in the

series, the more accurate the answer will become. For the simple

supported beam, the geometric boundary conditions imposed on the

I problem are:

St a = 0, for all time (8)w(x,t) 1 0

and the force boundary conditions are:

El a w(xt) a = 0, for all time (9)

l The transverse deflection w(x,t) can then be approximated

by a series of displacement functions weighted by unknown coeffi-

I cients of time. Therefore,

[N
w(x,t) m w(x,t) = h Ci(t).i(x), (10a)

or

19
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I

w(x,t) = h(Cl(t)sin L- + C-(t)sin !- +

1a C2(tsn ai

+ CN (t)sin NIX (10b)

* where the displacement functions are defined as:

(x) = sin i1x (lOc)

The basic procedure in applying the Galerkin Method is to

substitute Equation (10a) into Equation (7); multiply the resul-

3 ting equation by *i(x), i = 1,...N; and integrate over the domain

of the problem. This can be expressed in equation form as:I
a 4- 2- 2mh2 2
f (hD - h_ - 2 +
o ax aw at

h(P - Pm)) sin i-rx dx = 0 for i = ,...N()a

j This will result in N simultaneous ordinary differential equa-

tions with unknowns Ci(t).

Piston Theory Aerodynamics

J To become familiar with using the Von-Karman large dis-

placement equations and to check the resulting equations after

I applying Galerkin's Method, a simple aerodynamic theory was used

as the forcing function. For this study, Piston Theory aero-

dynamics was used because of the ease in which (P - P-) can be

[ calculated, and secondly because of the availability of previous

1
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I studies conducted by Prof. Dowell 1 2 . In the development of

Piston Theory, the flow was assumed to be highly supersonic or:I
I M (12)

3 With this assumption, the pressure distribution could be

expressed as:I
(P- _P.) = x [3+ (13)

I Time Integration Procedure

After applying Galerkin's Method and transforming the equa-

tion into a nondimensional form, the set of simultaneous differ-

ential equations can be obtained from Equation (11):

I [MI{U} + [C]{U} + [K]{U} = {P} (14)

I where [M], [C], and (K] are the mass, damping and stiffness

matrices respectively, {U) is the vector of the unknown coeffi-

cients of time, and {P} is a vector of the aerodynamic loads.

J The time derivatives are with respect to the nondimensional time.

The nondimensional variables used in obtaining Equation

I (14) include:

I2qa 3  pa a

2- p- k = W = =t (15)

I
I
1 11
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5 The solution of Equation (14) was obtained using a step-by-

step time integration finite difference approach6 . Assuming a

I linear variation of acceleration, the velocities and displace-

ments at the end of a small time interval can be expressed as:

T (l = r-AT 2 T_6 + A T _ + {;} (16)

+ l 2(
u},t = {U} T-AT+ AT{U T-AT 3 UT-AT +1/15)T) (17)

where AT is the time step and T-AT is the previous time. Substi-

tution of Equations (16) and (17) into Equation (14) gives the

acceleration at the new time step as:

I T = (F[(P}T - (CHIl - IKIHwI] (18)

J where

[F] = [[M) + -T [C] + -T2 [K]] (19)

(v) = {U} + '- {U} (20)

T-AT 2 '-AT

{w} = {U} + ATU + A U}T (21)

Equation (18) can then be used to find the velocity (Equation 16)

and displacement Equation (17) at the new time step.

The vector (P) is obtained numerically by solving the

governing aerodynamic equations. The displacment and velocities

3 12
- .... :... -. .. . .. ...... .... ............ ...... : i: ..... . L _. ' ....



I
3 needed for computing {P1 are based on the values obtained at the

old time tep. The time step was chosen small enough such that no

13 numerical instabilities would occur during the solution. In

general, (P) can be shown to be:

f (-) sin i dx0 qa a

= -()Ma : (22)
K 2h 0 qa a

IfP-' sin nw - d

1
where (P - P-) can be determind from either Piston Theory or

I LTRAN2.

Transonic Aerodynamic Pressures

The problem of interest is the flow about a wing panel of

given thickness undergoing an assumed chordwise deformation

(herein selected to be two modes) and the prediction of the

oscillatory aerodynamic pressures in the transonic speed regime.

The numerical computation method used for the unsteady flow field

is based on the alternating direction implicit (ADI) procedure

first formulated by Ballhaus and Goorjian 3 . The procedure was

modified by van der Vooren 4 to consider flows of moderately high

3 reduced frequencies and panel deformations. The small distur-

bance velocity potential equation can be derived for transonic

flow by assuming an inviscid isentropic fluid with only weak

3 shocks existing. The resulting moderately high reduced frequency

differential equation solved in the code NLR-LTRAN2 is Equation

I
3 13



(5) with the tt term dropped. In addition NLR-LTRAN2 retained

necessary unsteady terms in the boundary conditions on the panel

I and the wake condition of zero pressure differential in the

wake. These modifications of the original LTRAN2 code of

Reference 3 allowed reduced frequencies up to k = 0.8 to be con-

3 sidered. The unsteady two-dimensional, transonic small distur-

bance equation solved in the code NLR-LTRAN2 is:

-2kM 2 x + [1-M 2 _ (Y+)M 2] + = 0 (23)

yy (23) y

j where *(x,y,t) is the small disturbance velocity potential

resulting from the panel deformation w(x,t). The boundary con-

Iditions which must be satisfied are:

*y(X,y=0,t) = a--+ --- on the panel surface (24)
y 3x 3t1

and1
ACp(xy=,t) = + k t 0 across the wake (25)

1 where w(x,t) is the panel deformation. At large distances away

from the panel we require that:I
I #x 2 + 0y 2  0 (26)

For a prescribed panel deformation w(x,t) then NLR-LTRAN2 can be

used to determine the velocity potential from Equation (23) using

'I4

1 14



I
I the AID scheme of Reference 3. With the velocity potential thus

determined, the pressure field and hence the pressure difference

I of the panel can be obtained from:

Cp - -2(*,x + kot) (27)

!
The panel considered in this study is a symmetric section

composed of sinusoidal arcs of max thickness ratio as shown in

IFigure 2. This panel is placed at zero angle of incidence in a

transonic airstream of Mach number 0.85. The chord deformation

is selected by the two-mode assumption as given in Equation (10)

where the maximum slope of the chord deformation is limited to 1T
degree. The code NLR-TRAN2 is used to calculate the steady state

initial conditions for the 10% thick panel and plot of the upper

surface coefficient of pressure shown in Figure 3. The

occurrence of the shock wave can be detected at the 70% chord

location. In addition, shown in Figure 4, is the upper surface

coefficient of pressure for the first mode at nondimensional time

of 4. The shock wave has now moved to the new location of 90%

chord location. For assumed values of the modal coefficients C1

and C2 then the transonic aerodynamic pressure, P, required in

Equation (22) can be obtained from NLR-LTRAN2. However, in

I. general, the determination of the modal coefficients must result

from a simultaneous integration of the panel equations and the

transonic aerodynamic equations as described in the previous

[ section on the time integration procedure.

I k.
1 15 j
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I
Figure 4. Upper Surface Unsteady Pressure Coefficient

iL for a Panel Oscillating in the FundamentalMode
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I SECTION 3

3 RESULTS

The results are presented as two tasks; the first task

j 5 involves the use of the Von-Karman large deflection equations and

Piston Theory aerodynamics. The second task involves the use of

II two single-degree-of-freedom models being loaded by transonic

i aerodynamics.

Large Displacement Equations and Piston Theory

Assuming a two mode series solution for the Galerkin proce-

dure (with no damping, (C] = 0), the mass and stiffness matrices

I of Equation (19) are:

I [M1 ] (28)

and

I 1I (] 2 M [ 1 3: 2 2 2C2  (29)
k2X0 0 16 + 22(C 1

2 + 4C22)]

The mass became the identity matrix as a result of the nondimen-

sional form of the final equations of motion. Also, the stiff-

I ness is nonlinear since it is a function of the square of the

panel displacements C1 and C2.

The value (P - P-) can be found as a function of the panel

displacement and velocities. The variation of (P - P-) across

18
-- 1i



I

3 the chord of the panel can then be weighted by each of the

assumed modes and integrated to obtain the force vector.

Assuming a two-term representation for the panel displace-

ment and using Piston Theory, the panel deflection at limit cycle

for increasing dynamic pressure is shown in Figure 5 as a solid

line. The dash lines represent similar calculations performed by

Prof. Dowell at Princeton several years earlier. Point solutions

I were also made with a four-term and six-term representation of

the panel displacement. For all cases, the present analysis

correlates very well with previous calculations.

The panel mode shape is a function of the aerodynamic load-

ing and is presented in Figure 6. Once again, the data agrees

very well with Dowell's results. The maximum deflection of the

panel was shown to occur near the 70% chord point for all varia-

tions in the aerodynamic loading.

j Aeroelastic Response of a Single Degree of Freedom Airfoil

For this task, the aeroelastic response of an airfoil con-

J strained to deflect in either pitch or plunge was determined

using the NLR-LTRAN2 4 computer code. The equation of motion for

an airfoil pitching about its midchord is:

I .. 8C

+ A1a + A2a = 1 1 m 2  (30)

For this case, A1 = .5, A2 - 1.5 and, = 1000. These data

were selected so that the predictions could be correlated with

I similar results found in Reference 7.

I
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I
3 The dynamic response of the flat plate pitching about the

mid-chord at a Mach number of 0.7 was obtained for a reduced fre-

quency of 0.1. The aerodynamic equation was integrated in time

for two cycles by forcing a sinusoidal variation of pitching

angle with amplitude of 0.01 radians. The free motion was

started at the end of the second cycle. The pitching moment

coefficient, Cm , was determined by LTRAN2 at each time interval

j and used in Equation (30) to determine the time history. A con-

verging type response was obtained for both the pitching angle

I and the pitching moment indicating that the flight conditions are

below the instability speed. The results provided in Figure 7

compared very well with data from Reference 7.

Similarly, for a flat plate plunging, the equation of

motion is:

..- 2C i
+ B16 + B = - 2 (31)1 2 ~U'Ka

To obtain data for correlation with Reference 7, the coefficients

B1, B2 and u' were selected to be 0., 1.0 and 100 respec-

tively. Under similar starting conditions as discussed for the

pitching airfoil case, the plunging response and the coefficient

of lift variation with time is presented in Figure 8 for a Mach

number of 0.7 and a reduced frequency of 0.1. Both the plunging

displacement and lift coefficient agreed very well with the

Reference 7 results.
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I

I SECTION 4

CONCLUSIONS AND RECOMMENDATIONS

Flutter analyses have been conducted on a simply supported

5 panel to demonstrate the successful combining of panel Von Karman

large deflection equations with a simple linear aerodynamic

I theory (Piston) for determining panel response. The panel re-

sponse was determined from a numerical time integration scheme

which reproduced the results presented previously by Dowell.2  In

I addition, the time integration scheme was successfully used to

insure the simultaneous integration of a set of linear structural

I equations and nonlinear aerodynamic equations. Here, the simul-

taneous integration scheme was used to determine the aeroelastic

response of the linear pitching or plunging of an airfoil to the

nonlinear aerodynamic lift and moment obtained from the NLR-

LTRAN2 computer code. The response obtained for pitching or

I plunging compared favorably to those obtained by Yang, et al. 7

An analysis was also initiated to study the panel response

represented by a nonlinear structural equation (Von Karman's

large deflection) and a nonlinear aerodynamic equation repre-

sented by NLR-LTAN2. Here, the panel response was represented

I with an assumed modal series combination even though both the

structural equations and aerodynamic equations are nonlinear.

However, to date, numerical instabilities with the computer code

3 NLR-LTRAN2 have hampered the progress and obtaining of final

results.

I
* 25



It is recommended that the analysis of the nonlinear

response of a panel in a transonic airstream be continued using

the simultaneous integration of structural and aerodynamic

equations described herein. Further, it is recommended that the

assumed modal technique used here with nonlinear equations be

investigated. Toward this end, the replacement of the Von Karman

large deflection equations with a finite-element representation

is described in Appendix A. Unfortunately, only Piston Theory

aerodynamics have been investigated with the finite element model

so it suggested that the nonlinear aerodynamic theory obtained

I from NLR-LTRAN2 be coupled with the element model of Appendix A

for analyses.

I
I
I
I
I
I
I

I
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I APPENDIX A

PANEL RESPONSE OF A FINITE ELEMENT MODEL
AT POST FLUTTER CONDITIONS USING PISTON THEORY

Introduction

I Panel flutter is a self-induced oscillation of a thin-

walled structure caused by increasing aerodynamic pressures

resulting from the panel deformation in an airstream. Nonlinear

panel flutter is characterized by a periodic oscillation of

finite amplitude commonly referred to as limit cycle. Theore-

tical studies in the past have been restricted by the use of a

simplified linear aerodynamic theory and an inaccurate repre-

sentation of the panel support conditions which result when the

nonlinear midplane stresses are neglected (assumption of small

amplitudes). References 1, 2 and 5 present some of the large

amount of work completed in this technical area. Some details

have been extracted from these references for use in the study

presented here.

The main objective of this investigation is to determine a

procedure for the prediction of the large deflection response of

structural panels in a transonic airstream. The Von Karman large

deflection equations are to be integrated simultaneously with the

solutions of the nonlinear transonic equations. Since this

approach requires an extremely large amount of computation, the

Von Karman large deflection equations will be used in conjunction

with Piston Theory aerodynamics. This section presents only the

2
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I
results of the calculations with Piston Theory and a finite

element model.

The thin two-dimensional plate shown in Figure A-I has been

selected as the configuration to be investigated in this study.

The transverse aerodynamic load acting on only one side of the

panel is of known spatial and temporal distribution. A finite

element representation was selected to eliminate the modal

I approximations necessary in the previous investigation because of

the nonlinear Von Karman large deflection equation. The plate is

represented as consisting of twin variable node plane-strain

I elements each of unit length. A thickness of 0.03 inches and the

j material properties of aluminum are used because of studies com-

I pleted on similar plates in References 1, 2 and 5. The plate

consists of 54 nodes; nodes #1 and #44 are simply supported (con-

strained in the x, _ and z directions), while the other nodes are

only constrained from moving in the direction. Node #54 repre-

sents the three-quarter span of the plate.

I It is assumed that the large displacements of the plate are

governed by the nonlinear Von Karman large deflection equations.

4 22 
2 2

- w w 3 a w

ax--- -2 -ph at-- + A(x,t) (A-1)

x 2 xay at

from the compatibility at

and fequation:I
1 30



U

I P=(aw) (aw (aw w (A-2)
E xay 3X2

I where w is the plate transverse deflection and F is the Airy

stress function. The aerodynamic pressure loading, A(x,t), is

the increased incremental aerodynamic pressure caused by the

plate displacement. As mentioned previously, A(x,t) for this

study is obtained from Piston Theory. These equations are solved

in a computer code referred to as MAGNA, Materially and Geometri-

cally Nonlinear Analysis 5 '6 using a finite element procedure.

I Discussion

This section briefly describes the MAGNA computer program

capabilities, and presents a derivation of a subroutine for MAGNA

for calculating Piston Theory aerodynamic pressures.

MAGNA Computer Program

The MAGNA computer program is a large scale, general pur-

pose finite element system intended for the nonlinear (large

deflection) analysis of complex engineering structures. MAGNA

has been developed primarily for the efficient solution of three-

dimensional problems involving many degrees of freedom and large

bandwidth. Isoparametric modeling techniques and state-of-the-

art numerical solution methods are combined in MAGNA to provide

* effective analytical capabilities for finite strains, arbitrary

rotations, and elastic-plastic behavior. Both static and

transient dynamic solution options may be performed with the

* program, as well as natural frequency/mode shape calculations.

Features such as user subroutine interfaces, post-analysis

1



3 graphics, and analysis restart capabilities are included in

MAGNA.

For the problem investigated herein, a two-dimensional

large displacement element, referred to in MAGNA as Element #9,

has been used following a modification for obtaining plane-

strain. This modification required a user subroutine which is

presented in Appendix B.

IThe MAGNA finite element program is operational on the CDC

6000 series, CYBER-74, and CYBER-175 computers with cupport CCL

I (CYBER control languaye) procedures and the segmentation loader.

f An example of the job control language (JCL) used for executing

the program during the investigations reported herein is pre-

I sented in Figure A-2. This JCL attaches permanent files which

include the input data (MAGNADATA), the user subroutines

(TNMAGNA), and a dynamic analysis restart file. It also forms a

post-processing file for plotting the plate response (Tape

L06296) and forms the next dynamic analysis restart file (Tape

L06091) following execution of the program.

The nonlinear dynamic response investigation was started by

first performing a static displacement analysis to obtain an

* j initial displacement (ID) for the initial transient dynamic

analysis. In the time plots of the section entitled, "Analysis

I Results", time zero is indicated by t = 2.0 because of the static

analysis increments required for a converge solution. The first

dynamic analysis used the static restart file. After a specified

I number of time increments, a dynamic restart tape was formed for

3



100=NT2,T1200, 103200,CM1O500,GE2 D89g956,NOLL,56832
110=SET=R1=MFL
120=ATTACH, A,MAGNADATAJ CY=5

130=ATTACH ,B ,TNMAGNA, CY=3
1LIO=REWIND,A,B

I 150=COPY,A,TAPES
160=CQPY,B, USRSUB

I 170=RETURN,A,B
180=REWI ND,TAPES, USRSUB
19G=ATTACH,OLDTAP.TDF1, CY=2
200=REWI ND ,OLDTAP
210=SKI PK, OLDTAP, 11 ,0,B

220=-COPYBR,OLDTAP,TAPE23
230=REWI ND ,TAPE23
240=RETURNOLDTAP
250=REQUEST,MPQST,GE, RING,VSN=-L06296
260=REQUEST,NRSTAP,ERING, VSN=LO6091
270=ATTACH, P,MAGNAJ CL, ID=BROCKM~AN,MR=1

I ~280-BEGIN ,XMAGNA, P, ,USRSUB, R1+B
290=UNLOADMPOSTNRSTAP

Figure A-2. Job Control Language for Executing MAGNA

1 33



the next dynamic analysis. The results of each analysis were

placed on a post-processing file for plotting.

The dynamic restart file was then used to continue the

analysis, again forming both post-processing and restart files.

This procedure could be repeated until the panel response versus

time was constant (limit cycle had been reached). Figure A-3

presents a procedure for using the post-processing data file to
I obtain panel nodal point displacements plotted versus time.

Figure A-4 presents typical output results using the FDL/FIBRC

IMLAC in a Tecktronic Mode of generating one-line plots of panel

response.During this investigation, all MAGNA computer runs and

plotting were accomplished using terminal inputs.

Piston Theory Aerodynamics

Piston Theory aerodynamics was used in this study to load

the panel. For Piston Theory, the unsteady aerodynamic pressures

j are defined as:

A(xt) = 2[ + (A-3)

Using the nondimensional aerodynamic parameters defined in

References 1 and 2, that is:

X= 2Qa3 and R pa
BD ' M PmhM

Equation (A-3) can be expressed as:

34 _ _ 1



I 190=.PROC,NOLL.
llg=ATTACH,PROCFI L, ID=D890236.

I 120=BEGI N, NOSH LE.
130=GETWRTFl LAW=8.00236.

I 140=FTN, I=WRTFIL,L=g,
150=-ATTACH,TAPE99, POSTPR.,CY=1.
160=-LGO.

170=RETURN,PROCFIL,WRTFI L, LGOTAPE99,
189=FET,XYPLQT, ID=D890236,I 190=FTN, I=XYPLOT,L=0.
20g=ATTACH, LIB1,TEKLIB, ID=LIBRARY,SN=ASD.

I 210=ATTACH,LIB2,PLOT3D,ID=KING.
220=LIBRARY,LIB1,LIB2.

j 239=LGO.
240=RETURN,LGO,LIB1,LIB2,XYPLOT,TAPE2,TAPE3g.
250=REVERT.

260=XEOR

270=XEOF

Figure A-3. Procedure File for ExecutingJ MAGNA Plot Capability
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I

BEGIN, NOLL, PROCNOLL
AT CV-001 SN=AFFDL
PFN IS
PROCFIL:
AT CV.001 SN=AFFDL

NOSFILE VERSION 3 READY.
OTHER PROCFIL OPTIONS
EDTFILE, ALLFILE, TEKFILE, HPF:LE

FILE NAME WRTFIL HAS BEEN RETRIEVED
.360 CP SECONDS COMPILATION TIME

MAGNA POST FILE TRANSLATOR FOR XYPLOT

WRITE DISPLACEMENT OR STRESS DATA (D,9)..D
HOW MANY CURVES WILL BE PLOTTED?l
ENTER NODE NUMBER AND DISPLACEMENTS1.2

FOR CURVE NO. I WANT THE FIRST POINT TO BE AT 3.0,0.JN
STOP
033000 MAXIMUM EXECUTION FL.
8.071 CP SECONDS EXECUTION TIME.

FILE NAME XYPLOT HAS BEEN RETRIEVED
PLOT ON HP OR TEKTRONIX (1-HP,2=TEK) ........

UNSATISFIED EXTERNAL REF -- SETIN
NON-FATAL LOADER ERRORS -

UNSATISFIED EXTERNAL REF -- SETUU 2
READ DATA FROM FILE OR TERMINAL (1FILE,2=TERM).:1
NEED CONVERSION OPTION FOR DATA SET NO. 1? ...... :N
HOW MANY CURVES DO YOU WISH TO PLOT ............. :

WHICH SETS OF DATA DO YOU WISH TO PLOT ............ I
LABELS FOR THrS PLOT ARE COMPUTED TO BE:
X-MAXIMUM = 2.08
Y-MAXIMUM = .04
X-MINIMU4 - 1.99
Y-MINIMUM = -.05
CHANGE THESE VALUES (Y,N) ....................... :.

ENTER MAXIMUM X-LABEL ............................ :2.38
ENTER MAXIMUM Y-LABEL ........................... :.34
ENTER MINIMUM X-LABEL ............................ :2.
ENTER MINIMUM Y-LABEL ........................... :-.34
INTERVAL SIZE ON X-AXIS ......................... :.J1
INTERVAL SIZE ON Y-AXIS ......................... :.01

ENTER X-AXIS LABEL, (MAX. 40 CHAR.) ............. :TIMESEC

ENTER Y-AXIS LABEL, (MAX. 40 CHAR.) ............. :NODAL PT 5' DISPLACEMENT:N

FOR DATA SET NUMBER 1
LINE OPTIONS ARE:
SOLID LINE CURVE, NO SYMBOL, TYPE -1
DASH LINE, NO SYMBOL, TYPE -2
SYMBOL AT EACH POINT, TYPE 1
SYMBOLS CONNECTED WITH SOLID L:NE, TYPE 2
SYMBOLS CONNECTED WITH DASH 1:NE, TYPE 3.

ENTER CURVE TYPE ...................................

-I
Fiqure A-4. Example Output of MAGNA Plot Routine

Using Procedure File

36
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A(x,t) = - + a2( at (A-4)

fBy grouping the dimensional and material properties of the panel,

the aerodynamic pressure can be represented as a function of

only X, P/M, and M as:

A(x,t) = C X D- +C C ." -5)
1 ax 1 2 /Ea at

I
I and

2-D aPmh
C1 = -and C 2  D

Using an aluminum plate (pm  .00029 lb sec and E = 107 psi)

1 and assuming that the plate stiffnes, D, equals Eh3/12, the

aerodynamic pressure becomes:

A(x,t) = -.0225X w- .0001322 M aw (A6)

ax 8 t

Now it is necessary to define the nodal point

I slopes, aw/ax, and velocities, aw/at, for Equation (A-6). The

3 nodal point displacements in an element local coordinate system

(referring to the sketch below) are defined as:

I w(t) Nlw A + N2wB + N3w C  N Tw (A-7)

I
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I

z

z A B C

1 eth element

X 1  0 +1

e+l

I
The shape functions in Equation (A-7) are defined as:

N1 =-(C/i)(I-C); N2 = (i-l2); and N 3 = (C/2)(1+) (A-8)

I These shape functions provided parabolic displacement approxima-

tion across the element. Since:

X +X x -x

e+l+ (e+l e) -(A

I then the slope of a node becomes:

aw ~w -w AC
(x M = 2 C A + (W A -

2 w B + wC(A-10)

and the node velocity becomes:

3w . + .•

- ( ) = N1WA +Nw 2 B 3c (-1)

From the Principle of Virtual Work, the work done by the aero-

dynamic pressure A(x,t) was equated to the work done by the nodal

38



Now,

!' I

forces moving through the nodal displacements. In other words,

for a particular element, the work done is:

SXe~l F A w l A
U W = f A(x,t)w(x)dx FB  wB  (A-12)X e F C  w C

or

jI 1 (A1 Al
w -1/2 f A( ,t)w(C)dC F W

I
w A P { A

With w(4) = NT WB}, A( ,t) = NT P

I and

j PA = A(-l,t),

PB = A(O,t),

PC = A(l,t) for the eth element,

substitution into Equation (A-12) gives:

P w F T
1 T A T A' A A

1/2 N N B wB  F F wB
-1 PC WC FC Wc

I
or

I

. . . ... ..1 .. . . . .



F A P A T
i F} = 1/2 PB fNNTd; A-13)

F C 
PC 1

By evaluating the integral for the shape functions NJ, N2 , and

N3, Equation (A-13) becomes:

, I = / 8 4 -2 P/ A-

I C C

Now using the nodal point displacement and velocities, the

pressures evaluated at the element nodal points become:

PA C 1 -3WA+ 4w - wC) + C2/ -o, WA (A-15a)

PB 1A [w c  wA) +C2= ," w8 (A-15b)

1PC= ClX [(wA - 4 wB + 3wC) + 2/VXM ]1
By substituting these expressions into Equation (A-14) we obtain

an equation which now relates the nodal point forces to the nodal

j point displacements and velocities. Equation (A-16) becomes:

I
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I

{EF A - X - 4 1]{ 4A}
FB6 -404 WB +

I C  1 -4 3 w C

I

I 4 2 -1 w C }

C C X

At common nodal points between two elements, the nodal forces are

added. Equation (A-16) was programmed in the ULOAD subroutine

for calculating the nodal point forces based on Piston Theory

1 aerodynamics. Appendix C presents a listing of ULOAD.

Analysis Results

This section presents the results of a vibration analysis

and a nonlinear static analysis, and briefly summarizes the

results of the nonlinear transient dynamic analyses. Some of the

S response data provided herein are sketches of (w/h) versus a non-

dimensional time, T, defined as:

T = t(D/p mha 4 )/2

I For the plate used in this study, T = 17.02t. These sketches

were made prior to obtaining on-line plot capability. The

sketches are somewhat rough in that there was no attempt to

I obtain an accurate time history; only the peaks and zeros of the

time history were plotted. All on-line plots present w versus

real time, t, with time zero beginning at t = 2.0 secs as

3 described earlier. The time increment jump from 0.1) to 2.0 was

* 41



I
3 caused during the generation of the static restart tape which

required two increments for convergence (2.0 secs). Therefore,

I the first dynamics run, using a static restart file, would begin

at t = 2.0 secs.

Vibration Analysis

The eigenvalue solution option of MAGNA was used to obtain

the first five mode shapes and natural frequencies of the plate.

I These data are found in Table A-I. The mode shapes are presented

for the nodal points through the center of the plate (nodes #45-

#54 and the simply supported edges 41 and #44). A consistent

1 'ass representation was selected for this analysis. MAGNA uses a

vector iteration procedure for obtaining the desired eigenvalues

1 and eigenvectors.

For a simply supported beam, the natural frequencies of the

beam can be represented as:

W = (niT/a) (Eh / 1 2Pm )/2, n = 1,2, ....

This expression gives 26.73 Hz, 106.92 Hz, and 240.57 Hz for the

first three natural frequencies. These results are in good

agreement with the tLequencies found in Table A-I. All the beam

- results are lower, as expected. The mode shapes, which are pre-

sented with only three decimal digits, all appear reasonable with

respect to the mode shapes of a simply supported beam.

Nonlinear Static Analysis

IThe static analysis input data to MAGNA are presented in

Figure A-5. The static analysis was required to obtain an

initial displacement (ID) for the nonlinear transient dynamic

1 analyses. Four initial displacements were investigated during

[ 42
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TABLE A-1

I NATURAL FREQUENCIES AND MODE SHAPES

Mode No.: 1 2 3 4 5
Freq (Hz) 28.04 112.13 252.69 451.18 711.25

Modal Mode Shapes

PT 1 2 3 4 5

1 .000 .000 .000 .000 .000

45 -.309 .588 -.809 -1.000 -1.000

I 46 -.588 .951 -.951 -.618 .000

47 -.809 .951 -.309 .618 1.000

48 -.951 .588 .588 1.000 .000

49 -1.000 .000 1.000 .000 -1.000

50 -.951 -.588 .588 -1.000 .000

51 -.809 -.951 -.309 -.618 1.000

54 -.707 -1.000 -.706 .000 .698

52 -.588 -.951 -.951 .618 .000

53 -.309 -.587 -.809 1.000 -1.000

44 .000 .000 .000 .000 .000

4
i
I
!
I

43



I
NO NL 1 - , 4-: : U" -u3

PIST0.I 1ri') RY JN 7:'. Y, Y .4 A A I
STATIC L3403 F,3, TIJTTIL 'IS . -E9E3T, 4033L LCD.] 1 - 1 L,

I 3 .. 11 2 . .............. . . . . ..... .. . . .

2

0

2 2 15
RESTA R . ._.......

I ~~53 . .1.-- 9..- 4-,1 . . . .. . . . . . . ...

2 : . 15

3 U. t15
'3 . 2 -i. . .

5-,...... ... ... .. !.,- .. . .... .. . ...

0 '

±0.--5 LI 3  .'Of25'

2 1 2 6 ±; 11 7 8 46 9 -5
S 1 ... 2 .. ... .. .. .... _ .- 12 . - -7 3 ...-.

± 2 . 9 15 le 4 17 47
51- _ .... 2. .... 21. . ..

2 _ 27 23 24 5. 25 49
7. ...... .. 2 27 .2 2 5 _ S 29 . 5 .

i 1 3 30 3 4 35 31 32 32 33 5
3 2 - - _ 31 .39 3 3 -3- 37. 52

0 2 22 2 .............. .. . . .. .. ... ...

2 ,.3 1

I........-.-..........................-.
2 3

S 2 J.0 .A L L.... .IL.. .......

3.0 .u .71 ±3.0 .1 71
23 2 1 ---.... ..

0

I Figure A-5. MAGNA Data Input for Nonlinear Static
Load Analysis

44



I
3 the course of this study. The static load and the resulting

plate displacements that were used are shown in Table A-2. For

I these analyses, a static load was placed at the center of the

* plate (nodal point #23). A nonlinear large displacement

formulation was assumed in these analyses. For the results

j defined in the section entitled, "Nonlinear Transient Dynamic

Analyses", all time histories have a specific initial displace-

I ment associated with it. These ID's are defined in Table A-2.

For a simply supported beam, the deflection at the center can be

defined as:

w 49 =Fa3/4Eh
3

This expression gives results which are in good agreement with ID

*1 of Table A-2. The other loads result in MAGNA predicted

deflections which are considered to be "large deflections". The

beam expression was derived assuming small displacements, there-

fore, correlation with ID #2, ID #3, and ID #4 would be expected

to worsen.

Nonlinear Transient Dynamic Analyses

The nonlinear transient dynamic analyses were conducted for

j three different Mach numbers; 3.0, 1.2, and 0.8. When the Mach

- 21number of 0.8 was used, a was redfined as (1-M2)'2. Figure A-6

presents a sample of the data input to MAGNA for these analyses.

Any variations to A, u/M, or Mach number were accomplished in the

ULOAD suoroutine.

4
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I TABLE A-2

INITIAL DISPLACEMENTS USED FOR
jTRANSIENT DYNAMIC ANALYSES

N Static Load at PT 23 (Ibs)
P .00357 .00714 .01071 .02570

I ID#1 (in) ID#2 (in) ID#3(in) ID#4 (in)

1 .0 .0 .0 .0

45 -.00087 -.00162 -.00224 -.00396

46 -. 00166 -. 00311 -. 00430 -. 00762

47 -.00232 -. 00434 -. 00601 -. 01070

48 -.00276 -.00517 -.00718 -.01284

49 -.00292 -.00548 -.00761 -.01365

50 -. 00276 -. 00517 -. 00718 -. 01283

51 -.00231 -.00433 -.00600 -.01069

54 -.00201 -.00376 -.00521 -.00926

52 -.00166 -.00311 -.00431 -.00764

53 -.00087 -.00162 -.00224 -.00396

44 .0 .0 .0 .0

4
I
I
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NONLINEAR DANEL FLUTTER: POST FLUTTER RESPONSE
PISTON THEODY UNSTEADY AE. OnYKAMICS
TOANSI-NT DYNAMIC ANALYSIS_
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Figure A-6. MAGNA Data Input for Nolinear Transient
Dynamic Analysis
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Mach Number : 3.0

Figures A-7, A-8, and A-9 present time history plots of

I nodal point #54 (3/4 span) for initial displacements ID #1, ID #2

and ID 43 and for X, u/M and M equal to 400, .01 and 3.0, respec-

tively. The figures present nondimensional displacement, (w/h),

versus nondimensional time, T. As described earlier, the plots

are approximate and only show trends. As can be seen from the

I figures, the displacements are approaching the thickness of the

plate. The frequency of the oscillation is about 83 Hz. Since

the objective of this study is ultimately to investigate tran-

sonic effects, the studies at M 3.0 were not continued to limit

cycle.

Mach Number = 1.2

jFor a Mach number of 1.2, the aerodynamic parameters, X

and p/M, were selected to be 300 and 0.013, respectively. Two

I different initial displacements wer investigated at these condi-

I tions. Figure A-10 presents the time history results for ID #4,

and Figure A-lI presents results for ID #3. These figures pre-

sent the time histories of the nodal point displacement, w,

versus real time, t, for the points through the center of the

I plate (points #45-#54). Nodal point #54 represents the 3/4 span

location of the plate and is positioned correctly for increas-

ing x within the figures (between points #51 and #52). The nodal

j point is described in the ordinate label of each time history

plot. Also note that in Figure A-10, there is a change in

ordinate scale after t = 2.7 secs.
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Figure A-7. Transient Dynamic Response to Initial
Displacement #1, PT.54, (X = 400,
/M = .01, M- 3.0)
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I
3 After three dynamic restart cycles, the time history for ID

#4 (Figure A-10) reaches a limit cycle near t = 2.21 secs (.21

secs). The magnitude of the displacement at point #54 is *.0144

inches or, in nondimensional form, (w/h) = ±.480. For ID #3

(Figure A-lI), the time history shows limit cycle after two

j dynamic restart cycles. At point #54, the displacement of the

limit cycle is ±.012 inches (w/h ±.400) at t = 2.13 (.13 secs).

This information indicates that the limit cycle amplitude is

dependent not only on Mach number, p/M and X, but also on initial

displacement. The maximum amplitude of the motion occurs at

about E = .7 (70% span); the displacement then falls off to zero

at nodal points #1 and #44. The frequency of the oscillation is

about 65 Hz.

Mach Number = 0.8

Figure A-12 presents the transient dynamic analysis results

for a Mach number of 0.8 and initial displacement ID #3, again

with X = 300, and U/M = .013. The results are similar to that

discussed in the section entitled, "Mach Number = 1.2". Motion

that was very near the limit cycle was reached at t = 2.21 (.21

secs). The amplitude of the motion at point #54 was :.017 inches

(w/h ±.580). Again, the frequency of the oscillation is about

65 Hz.

A summary plot which presents the deflection of the plate

J[ during limit cycle for Mach numbers of 0.8 and 1.2, is shown in

Figure A-13. The response at M = 0.8 is larger across the plate

[than the response at M = 1.2.
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APPENDIX C

USER ROUTINE FOR PISTON THEORY AERODYNAMICS
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I APPENDIX D

COMMENTS ON NUMERICAL INSTABILITIES

WHEN BOTH PANEL AND AERODYNAMIC EQUATIONS ARE NONLINEAR

An analysis was initiated to study the panel response

represented by a nonlinear structural equation (Von Karman's

I large deflection) and a nonlinear aerodynamic equation repre-

sented by NLR-LTRAN2 numerical code. A time dependent response

study requires the simultaneous time integration of the struc-

tural and aerodynamic nonlinear equations. Here, the panel

response was represented by a linear superposition of assumed

modal terms even though both the structural equations and aero-

dynamic equations are nonlinear. Using the Galerkin procedure,

the spatial dependency in the structural equations was eliminated

and were integrated simultaneously with the aerodynamic equations

represented by the NLR version of LTRAN2. The NLR version of

LTRAN2 included a modification to account for the changing

induced angle of attack resulting from the panel deformation

which was incorporated into a chord deformation option contained

internal to NLR-LTRAN2.

The simultaneous time integration procedure allows one to

j determine panel deflection, velocities and accelerations. Once

the initial conditions for the panel deformation are provided,

the effective induced angle of attack and its time derivatives

can be calculated for each point on the panel. The resulting

aerodynamic pressures can then be calculated. The panel response

or deformation at the next time increment can be determined and
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I

the process repeated for each desired ti -,e step. Prior to

releasing the panel for response to the aerodynamic pressure, the

aerodynamic equations were integrated in time for an assumed

simple harmonic panel deformation until the transient prediction

of the aerodynamic pressures disappeared and the pressures became

periodic. This assumed simple harmonic motion generally required

the time for two periods of panel oscillation to insure that the

convergence criteria specified in NLR-LTRAN2 was satisfied.

For the panel and airstream parameters investigated, the

simultaneous integration of nonlinear structural and aerodynamic

equations were unsuccessful in obtaining stable panel responses.

In all cases the panel response diverged sometimes quite quickly

when the panel was freed to response to the transonic aerodynamic

pressure. The diverging panel response was attributed to numeri-

cal instabilities since previous investigations using a linear

aerodynamic representation at greater Mach numbers (piston

theory) yields a stable panel response for certain selected panel

parameters. Various magnitudes of initial displacement, velocity

and acceleration, both singly and in combination, were investi-

gated. The time step for the time integration was varied to very

small values within computational considerations. Also, the

number of cycles for forcing the plate motion in a sinusoidal

fashion was varied to assure all transients were small. In all

cases considered, the panel response was divergent after a given

period of time.
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The following suggestions are offered as possible courses

of the aforementioned numerical instabilities for consideration

by future investigators.

1. The chord deformation option within NLR-LTRAN2 was a

constant source of convergence problems. Even for very small

panel deformations the local angles of attack (slopes of panel

deformation) can become large enough to exceed the convergence

criteria specified in NLR-LTRAN2. This would result in an over

prediction of aerodynamic pressure with no warning from t >.

computational code. This investigator is unaware of any verifi-

cation that the chord deformation option has been accomplished

and any coding errors would surely yield a source of numerical

instabilities. Further investigation of the aerodynamic

pressures predicted by this option of NLR-LTRAN2 for a given

chord deformation would seem to be warranted to insure numerical

stability.

2. Representation of the nonlinear panel response to the

nonlinear aerodynamic pressures by a linear superposition of

natural modes may be another source of numerical instability and

is a somewhat questionable approach. As suggested in Appendix A,

the representation of the large deflection structural equations

with a large deflection finite element has some merit for inves-

tigation of nonlinear response.

3. In performing the simultaneous integration of struc-

tural and aerodynamic equations there is by necessity a differ-

ence in time step increments required primarily to insure

convergence of the chord deformation option used in NLR-LTRAN2.
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The difference in the time scaling between the structure and

aerodynamic equations were not fully investigated and would be

another source of numerical instability.

4. The stable response obtained using a linear aerody-

namic theory were conducted at supersonic Mach numbers whereas

the Mach numbers selected in this investigation were in the so

called "sub-transonic" Mach number regime. The flow field

characteristics are radically different than the supersonic Mach

regime and would require numerical carefulness to insure numeri-

cal stability. Verification of the possibility of stable

responses in this "sub-transonic" region needs to be established.

5. Another possible cause could be the time step size

resulting in an instability generated by the motion of a shock

wave due to the mixed numerical differencing in NLR-LTRAN2. It

would be necessary to choose the time interval small enough such

that shock waves do not travel more than one mesh point in the x

direction over a single time step. However, very small time

steps may result in prohibitive computational times.

6. Finally, the initial panel deformation and aerodynamic

pressure generated initially before release of the panel to

response to the aerodynamic pressure needs a more complete inves-

tigation when both nonlinear structural and nonlinear aerodynamic

equations are integrated simultaneously.
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