
AD-A133 905 THE SYNTACTIC THEORY OF BELIEF AND KNOWiEDGE(U) BOLT i/J
BERANEK AND NEWMAN INC CAMBRIDGE MA A R HAAS SEP 83
BBN-5368 N00014 -77 C-0378

UNCLASSIFIED F/G 6/4 NLEIIIEEEEII
EIIEEIIEIIIII
EEEEEEEEEEEEI
EIEEEEEEIIEEI
IIIIIIIIIIIIIIffllfllf
EEEIIEEEEEEII
EHEEHEEL

1~i *2 2.2
L Q

11IL 125 111.4 1116

MICROCOPY RESOLUTION TEST CHART
NATIONAL .m ~Au OF STARjoAOS 3- A

i Bolt Beranek and Newman Inc.

I Report No. 5368

I

The Syntactic Theory of Belief and Knowledge

I Andrew R. Haas

I

September 1983

I ELECTE
OCT 2 4 1983

I Prepared for:

Defense Advanced Research Projects Agency

I~ W Sjj5TATEMEN A
IrLJ Approved fo public releas

LL.J Distribution Unlimited
I -.J

I . 1 039

SECURITY CLASuIFICATION OF THIS PAGE ~Sei DOSe EuHOe0

REPOR DOCUMENTATION PAGE MR OPZ11GFR
N.RPR UNGER GOVT ACCESO O RCPI CATALOG HUNGER

fBBN Report No. 5368%,5
4. TITLE (Md Su"fte) 01 TYPE OF REPORT & PERIOD COVERED

THE SYNTACTIC THEORY OF BELIEF AND Technical Renort
KNOWLEDGE 6. PERFORMING ORG. REPORT NUMSER

BBN Renort No. 5368
7. AUTHOX(q) 8. CONTRACT OR GRANT NUUUEP46J

Andrew~N RHas00014-77 -C-O 378
Andrw R.HaasN00014-78-C-0164

10. PERFOR4MING ORGANIZATION NAME AND ADDRESS IS. PROGRAM ELEMENT. PROJECT. TASK

Bolt Beranek and Newman Inc. AE OKUI usw

10 Moulton Street
Cambridcre, _4A 02238

11- CONTROLLING OFFICE NAME AND ADDRESS I2. REPORT DATE

Office of Naval Research Sentember 1983
Department of the Navy 11. NMUER Of PAGES

14. t m O RE Gm AG NY NME & ADURESS(IfI Ibgmi 100 Con&Ieuib Office) IS. SECURITY CLASS. (of this -epee)

Unclassified

IaDECLASSIFICATION/OWNGRADNG
SCH EDULE

IS. DISTRIUUTION STATEMENT (of obl. Raped,

Distribution of this document is unlimited. It may be
released to the Clearincrhouse, Denartment of Commerce,
for sale to the ceneral nublic.

I?. DISTRIISUTION STATEMENT (of IA. 4681cl eniefed ton 9104h 2. If 011e00.1 how Rqm"N

14. SUJPPL.EMENTARYv NOTES

This research was supported in Dart by the National Science
Foundation, the Office of Naval Research, and the Defense
Research Projects Agency.

19. ItEy WORDS (Cetuaue on euwerse side it noveeee a"d Ideiif bp bieca MoNW)

Knowledge Renresentation, Belief, Propositional Attitudes,
* Intropsection, Quantifying In

206 AISSTRACT (Ceuflim an mraree i#de aI Peeseeind I~&uit 6F Stah nmber)

If we assume that beliefs are sentences of first-order
logic stored in an agent's head, we can build a simnle and
intuitively clear formalism for reasoning about beliefs.
I aolv this formalism to the standard logical nroblems
about belief, and use it to describe the connections between
belief and planning.

DD JA5 1473 EDITION OF I OVS 69isOSOLEVE6y Unclassified

SECUNITY CLASSIFICATION OF TMt, 0AG1 (Mhn ao DOeed

.M i

Report No. 5368

THE SYNTACTIC THEORY OF BELIEF AND KNOWLEDGE

Andrew R. Haas

September 1983

Prepared by:
Bolt Beranek and Newman Inc.

10 Moulton Street
Cambridge, Massachusetts 02238

Prepared for:

Defense Advanced Research Projects Agency

The work described herein was supported in part by the National
Science Foundation IST-8012418, the Office of Naval Research
N00014-8-C-0197, and the Defense Advanced Research Projects
Agency, N00014-78-C-0164 and N00014-77-C-0378. The views and
conclusions in this document are those of the author and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of the sponsoring
agencies or the U.S. Government.

F-

I2
I 4 ,~ 2, ..

Report No. 5368 Bolt Beranek and Newman Inc.

TABLE OF CONTENTS

Page

1. Belief and Knowledge in Artificial Intelligence 3

1.1 Representation and Search 3
1.2 Some Inferences About Belief and Knowledge 4
1.3 The Situation Theory 10

2. The Syntactic Theory 15

2.1 A Robot and His Beliefs 15
2.2 Formalizing the Syntactic Theory 16

3. Applying the Syntactic Theory 25

3.1 Observation 25
3.1.1 Time 253.1.2 Perception 28
3.1.3 Retrieving Beliefs From Memory 30
3.1.4 Introspection 323.2 Inference 35
3.2.1 What Do John's Beliefs Entail? 35
3.2.2 The Reflection Schema 38
3.2.3 What Can John Infer from His Beliefs? 46

3.3 Knowing What 50

3.4 Knowing How 53
3.5 Belief and Truth 57

ii

Bolt Beranek and Newman Inc. Report No. 5368

4. Conclusions and Further Work 61

5. Appendix: Proofs 65

5.1 The Reflection Schema is Correct 65
5.2 The Truth Schema Holds for Grounded Sentences 73

6.* Acknowledgements 79

Accessionl For

NTIS GRA&I
rTiC TAB E
JUstfliXfc"I VI .9 .

Distri'UIorf
Avilability Codos
Avail ana /or

Dist Spec i~LL

Report No. 5368 Bolt Beranek and Newman Inc.

ABSTRACT

If we assume that beliefs are sentences of first-order logic
stored in an agent's head, we can build a simple and intuitively

clear formalism for reasoning about beliefs. I apply this
formalism to the standard logical problems about belief, and use
it to describe the connections between belief and planning.

j

!1

Bolt Beranek and Newman Inc. Report No. 5368

Idol=

I

Report No. 5368 Bolt Beranek and Newman Inc.
j

1. Belief and Knowledge in Artificial Intelligence

1.1 Representation and Search

Artificial Intelligence programs must have common-sense

knowledge. This includes knowledge about beliefs and knowledge

A program must be able to understand that Bill believes Mary s

phone number is 5766, or that John knows the name of every person

in the department. If a program is supposed to understand. these
facts, it should be able to make the right inferences ftom them.

If Bill knows that Mary's phone number is 5766, _be knows what

Mary's phone number is. If a program thinks that Bill knows that
Nary's number is 5766, the program should be able to infer that

Bill knows what Mary's number is. If we have a knowledge

representation that can represent facts about beliefs and

knowledge, and an adequate set of inference rules, we have taken

the first step in building a program that can reason about

beliefs and knowledge. The next step is to devise a search
strategy: an algorithm that decides which inference rules to

apply to which expressions to solve a problem

This paper;L-.about Wei si proposes a

representation and inference rules for reasoning about belief and

knowledge Section 1.2 presents examples of sound and unsound

inferences about belief and knowledge. The problem is to allow

* all the sound inferences and rule out the unsound ones. The best

treatment to date is Moore's [13], and I discuss his successes
* and failures. Section 2-presents the syntactic theory of belief

and shows how to formalize it. Section 3 isahe core of the
paper "ai series of examples of representation and inference in

F" 3

Bolt Beranek and Newman Inc. Report No. 5368

the formal system. These examples describe the processes that

create, store and use beliefs and knowledge. Perception,

introspection, memory, inference and planning are all considered.
Finally there is an appendix with proofs that the formalism works

as claimed.

Recent work has made great improvement in AI theories of
belief and knowledge, but they still have serious problems. For

example, Moore's theory predicts that agents always know every
logical consequence of their knowledge. This theory tries to
solve the problems by formalizing familiar ideas from computer

science. For example, it says that sentences stored in an agent's
memory represent his beliefs. It gives better answers to several

questions: When does an agent need knowledge to perform an
action? What can an agent infer from his beliefs? What must you

know about an object in order to know what that object is?

1.2 Some Inferences About Belief and Knowledge

Let us consider some examples that show why reasoning about

beliefs is hard. For one thing, the familiar rule of substitution
of equals does not apply when one of the equals appears inside
the scope of the verb Obelieve". For example, the following

inference is not correct.

John believes that Mary's phone number is 444-1212.
Bill's phone number is Mary's phone number.

John believes that Bill's phone number is 444-1212.

It is easy enough to forbid the substitution of equals when one

4

---,

Report No. 5368 Bolt Beranek and Newman Inc.

of the equals appears inside the scope of 'believe", but this is

not very satisfying. One would like an explanation of why

substitution of equals does not apply.

The following inferences are correct:

John knows that snow is white.

John believes that snow is white.

John knows that snow is white.

Snow is white.

That is, all knowledge is true belief. On the other hand, not all

true beliefs are knowledge. Suppose somebody predicts that a

horse will win a race when the odds are 30 to 1 against it. Sure

enough, the horse wins. We might ask "How did he know the horse

would win?* It would make sense to answer 'He didn't know, it was

just a lucky guess." That is, a true belief might not count as

knowledge if there is no good reason for the belief. I will not
consider this problem further. Suffice it to say that all

knowledge is true belief.

The following inference is correct.

John knows that Mary's phone number is 444-1212.

John knows what Mary's phone number is.

But this one is not necessarily correct:

John knows that Mary's phone number is Bill's phone number.

John knows what Mary's phone number is.

5

Bolt Beranek and Newman Inc. Report No. 5368

This raises the question: when does John's knowing that X is N
entail that John knows what X is? The noun phrases 0444-12120 and
"Bill's phone number" both denote Mary's phone number, but

knowing that Mary's number is Bill's number does not count as
knowing what Mary's phone number is. In some sense the phrase
"Bill's phone number" does not contain enough information, but
it's hard to clarify this.

Context helps to decide what knowledge about X counts as
knowing what X is. Suppose that you and John are staying at a
hotel in a strange city, and you go out for a walk. After a while
John asks "Do you know where we are?" You realize that you're
completely lost, and answer 'No." Seeing a telephone you decide
to call Mary and ask for directions. She answers and says *Do you
know where John is? I need to talk to him right away.' You answer

* "Yes, be's right here" and hand him the phone. When John asked if
you knew where he was you said no; a moment later you answered
yes to the same question.

if you had answered John's question with "Yes; we're right
here", he would not have been amused. John wanted information
that would help him to get back to the hotel. Mary wanted
information that would help her to get in touch with John, and

for that purpose wright herew was a useful description of John's

One clue to the problem of wknowing what" comes from the
problem of "knowing how". The following inference is correct:

John knows that Mary's number is 444-1212.
John knows how to dial a telephone.

John knows how to dial Mary's number.

This one is not:

6

Report No. 5368 Bolt Beranek and Newman Inc.

John knows that Mary's number is Bill's number.
John knows how to dial a telephone.

John knows how to dial Mary's number.

We saw that if you have the name w444-12120 for Mary's number you
know what her number is, but not if you only have the name
"Bill's number". Similarly, if you have the name 0444-12120 for
Mary's number you know how to dial the number, but not if you
only have the name wBill's numberw. It is tempting to connect
these two f acts. In any case a theory of belief and knowledge
must say something about what knowledge is needed to perform
actions. So the theory of belief and knowledge is connected to
the theory of planning.

The problem of "knowing what" is closely related to the so-
called de re statements about belief. Suppose you see John in a
restaurant with a woman you don't know, and you think "That must
be John's wife". Later you find she was his sister. You might

say "I thought John's sister was his wife." The following
inference is correct, at least in some contexts:

I thought John's sister was an accountant.

I believed the statement "John's sister is an accountant".

But the following is surely not correct in this context:

I thought John's sister was his wife.

I believed the statement "John's sister is his wife".

In this case the example seems to mean about the same as "Isaw

7

~~ *.

I-, .. _

Bolt Beranek and Newman Inc. Report No. 5368

John's sister and thought she was his wife". The speaker uses the

description "John's sister" to identify the woman he took for

John's wife. Such statements are called de re reports of belief

or knowledge.

Truth is a crucial property of beliefs. Our theory must

explain inferences like this:

John believes that gold is an element.
Everything that John believes is true.

Gold is an element.

If we know that someone's beliefs are true, we can infer things

about the objects those beliefs refer to. We can also reason in

the other direction: if an object has certain properties, then

certain beliefs about it are true.

Coal is black.
John believes that coal is black.

John believes something true.

Common sense says that we think about objects outside our heads,

and that our beliefs about them can be right or wrong.

People use their beliefs to infer new beliefs. What they

infer depends on what problems they want to solve and how hard

they think. For example, the following inference is very

plausible.

8
K' *f

Report No. 5368 Bolt Beranek and Newman Inc.

John knows that Mary's number is 5766.
John knows that Mary's number is Bill's number.
John is trying to figure out what Bill's number is.

John will infer that Bill's number is 5766.

On the other hand, a math teacher had better not accept the

following:

The students believe the Axiom of Choice.
The Axiom of Choice entails that every set can be well-ordered.

The students will infer that every set can be well-ordered.

A theory of belief ought to distinguish hard inferences from

easy ones, and it ought to say that what people infer from their
beliefs depends on what they try to infer.

People know about their own beliefs. They can easily answer

questions like "Do you know what Nary's phone number is?". Yet we

don't want to claim that people always know about all their
* beliefs, anymore then we want to claim that they believe

everything that they could infer from their beliefs. Otherwise,4 we would end up with the following as a valid chain of inference:

John believes that snow is white.

John believes that John believes that snow is white.

John believes that John believes that John believes that snow is
white.

John believes that John believes that John believes that John
believes...

9

Bolt Beranek and Newman Inc. Report No. 5368

The second line is plausible enough, but the fourth line is

weird, and if we continued the 500th line would be impossible to
read, let alone believe. Introspection is like inference: it is

something people do on purpose, and they do as much of it as they

need for the problem at hand.

Many beliefs are the result of perception. People make

inferences like the following:

John looked at a piece of paper with a number written on it.

John knew what number was written on the paper.

I stressed above that many beliefs arise from a deliberate effort

of thinking. If we say that inference and introspection happen

automatically, we get into trouble because these processes take
beliefs as input and produce new beliefs as output. Therefore

their output can be used as input for more introspection and

inference, and if the process runs on automatically we might get
an infinite set of beliefs. This problem does not occur with
perception, because its input is not old beliefs, but physical

events in the external world. Therefore no problem arises if we
claim that perception creates new beliefs automatically. And

this seems to be true. If someone sneaks up behind your back and

blows a bugle in your ear, you'll notice it whether you want to
or not.

1.3 The Situation Theory

Robert Moore's dissertation 113] uses a theory of belief
based on Hintikka's possible worlds theory [6]. Moore had the

10

12-

Report No. 5368 Bolt Beranek and Newman Inc.

ingenious idea of replacing Hintikka's possible worlds with the
situations of McCarthy's situation calculus. Recall that the

situation calculus is a technique for reasoning about actions. It
introduces entities called situations, such that an object can

have different properties in different situations, and at each

instant of time the world is in exactly one situation. Since the

properties of objects vary from situation to situation, a

sentence can be true in one situation and false in another. Also,
a description like "Bill's phone numberm can denote different

objects in different situations. One describes an action as a

relation over situations. If this relation holds between

situations sl and s2, you can perform the action at any instant

when the world is in situation sl, and if you do the world will
be in situation s2 at the next instant. Moore dealt with
knowledge only, but I will consider a natural extension of his
theory to belief.

Moore proposed to represent an agent's beliefs as a set of
situations, which I will call the agent's alternatives. If
situation s is one of the agent's alternatives, then the agent's
beliefs do not rule out the possibility that the current

situation is s. In other words, for all he knows the world might
be in situation s. Thus if the agent knows everything about the
current situation, his set of alternatives contains only the
actual situation. If he knows nothing at all his set of

alternatives contains every situation. The more the agent learns,
the more situations he rules out and the fewer his alternatives.

An agent believes that P if P is true in all of his
alternatives. This explains at once why substitution of equals

fails inside the scope of *believe". If John believes that Mary's
number is 444-1212, then Mary's number is 444-1212 in all of his

11'

j i : ' ,

Bolt Beranek and Newman Inc. Report No. 5368

alternatives. If Bill's number is Mary's number, then Bill's
number is Nary's number in the actual situation, and so Bill's
number is 444-1212 in the actual situation. Still John's
alternatives might include situations in which Bill and Nary have
different numbers, and in these alternatives Bill's number is not

444-1212. So John does not necessarily believe that Bill's number

is 444-1212.

This theory will also handle the first "knowing what"
example. Moore says that an agent knows what X is if X is the
same object in all of the agent's alternatives. That is, the
agent's beliefs rule out all but one value of X. If the agent
knows that Mary's number is 444-1212, then Mary's number is
444-1212 in all the agent's alternatives. Surely 444-1212 is the
same number in all situations. That number is Mary's phone
number in all of the agent's alternatives, so the agent knows
what Mary's number is. On the other hand, suppose the agent knows
only that Mary's number is Bill's number. Bill might have
different phone numbers in different situations, so there need
not be any one object that is Mary's number in all of the agent's
alternatives. Again we get the right prediction.

Moore goes on to say that actions take arguments. ForI

example, the action of dialing a phone number takes one argument,
the number to be dialed. An agent knows how to perform an action

only if he knows what the action's arguments are. Then it follows
that an agent knows how to dial Mary's number if he knows thatI
Mary's number is 444-1212, but not if he only knows that Mary's

number is Bill's number.

I claim that the situation theory of belief is wrong, and
that a very different approach is needed (this is also Moore's

12

woo&

Report No. 5368 Bolt Beranek and Newman Inc.

current view - see [141). The first criticism is that it makes

false predictions about "knowing what. We don't say that you

know what Mary's number is if you know that her number is equal

to six times thirty-one squared. Yet six times thirty-one squared

is surely the same number in every situation. In this case

Mary's phone number is the same number in all of the agent's

alternatives, yet he still doesn't know what her phone number is.

Also, according to the situation theory whether an agent knows

what X is depends only on the agent's alternatives. But we have

seen that it can depend also on what the agent wants to do with

the knowledge. If you want to put Mary in touch with John, and

you know that John is standing next to you, you claim that you

know where John is. If you want to direct John back to his hotel,

and you know that he is standing next to you, you must learn more

before you can claim to know where he is.

Suppose the agent believes that P, and P entails Q. Then P

is true in all of the agent's alternatives and since P entails Q,

Q is true in all of the agent's alternatives. That is, the agent
believes Q. So in the situation theory an agent believes

everything that follows logically from his beliefs. If the math

professor in our previous example uses the situation theory to

reason about his student's beliefs, he will conclude that they

believe that every set can be well-ordered as soon as they know

the axioms of set theory. There is a similar problem about
introspection - as soon as an agent believes P he believes that

he believes that he believes..., and so on forever.

This problem is not surprising in a theory that talks about

beliefs, but not about the reasoning that creates beliefs. There

may well be an infinite set of beliefs that an agent could infer,

given arbitrary time and scratch paper. But at any time only a

13

Bolt Beranek and Newman Inc. Report No. 5368

finite number have actually been inferred. If we say nothing
about the inference that creates beliefs we can't distinguish
between those that are easy to infer and those that take a long
time. Then it's no wonder if we end up with a theory saying that
everything is inferred in zero time. I conclude that the
situation theory of belief is on the wrong track. We need a
theory that describes the inference that creates beliefs.

14

41

Report No. 5368 Bolt Beranek and Newman Inc.

2. The Syntactic Theory

2.1 A Robot and His Beliefs

I have described some of the data that a theory of belief
and knowledge must handle, and how Moore fared with the situation

theory of belief. Now I consider the syntactic theory. First
comes a statement of the theory in English, then the tools needed
to formalize it, and then a series of example inferences.

I propose to take very seriously the idea that people are

like computers. The agents in my theory look a lot like Von

Neumann machines. Not that people are really like Von Neumann

machines; rather common sense does not tell us about the massive
parallelism and other un-Von Neumann things that go -on in our

heads. Let us imagine a simple robot, and build a theory that

describes his beliefs. We will see that this theory can handle
all of the given problems as well as the situation theory, and

some of them better.

If we want to write a program that believes that snow is

white, we devise a knowledge representation in which we can

assert that snow is white - for example, by writing w(white

snow)". Then we add this expression to a collection of

expressions that are supposed to represent the program's beliefs.
This practice suggests a theory: that beliefs are expressions of

a knowledge representation language. This is the syntactic
theory of belief. It appears now and again in the literature of

philosophy - see [7], [3], and (10]. McCarthy [11] was the first
AI worker to advocate this theory. Moore and Hendrix [14] argued

that the syntactic theory can solve many philosophical problems
about belief.

15

A%# j

Bolt Beranek and Newman Inc. Report No. 5368

Men, machines and Martians can use very different internal

languages to represent the same belief. I propose to ignore this

possibility, and assume that all agents use the same
representation for every belief. Our robot assumes that
everybody else represents beliefs exactly as he does, and he
ignores the difference between a belief and his representation of
that belief. Konolige [8] was the first to formalize this version
of the syntactic theory. His treatment differs from mine in
several important ways, which I will note as I come to them.

Suppose John believes that snow is white. The robot thinks

that John's representation of this belief is the same as the
robot's representation: the expression "(white snow)w. The robot
also thinks that the representation is the belief. It forms a
name for the representation by putting quotation marks around it.
So it represents the fact that John believes snow is white by an

expression roughly like this:
(believe John *(white snow)8)
The first argument of "believe" is the name of a man. The second
argument is the name of an expression. To formalize the syntactic
theory, one must assign names to expressions. That is, one must
devise a system of quotation.

2.2 Formalizing the Syntactic Theory

I use predicate calculus with the following logical symbols:

16

Report No. 5368 Bolt Beranek and Newman Inc.

(-> p q) -material implication
(p q) -conjunction

(V p q) -disjunction
(- p) -negation

(all x p) -universal quantification
(some x p) -existential quantification

This is the official notation; often I drop parentheses and use
connectives as infix operators. A few predicates, like "<" and
E, will also be used as infix operators.

The beliefs of our hypothetical robot are sentences of a
first-order logic extended with quotation. These beliefs need not
be stored explicitly, but the robot must be able to find out
whether he believes a given sentence or not in constant time by a

standard retrieval algorithm. We do not say that you believe

something if you can infer it after ten minutes of puzzling. All

the beliefs are sentences of a single language L. When the robot

forms beliefs about its own beliefs, those beliefs must be
sentences of L that talk about sentences of L. This is a bit
surprising. We are used to talking about an object language Ll by

using a meta-language L2, where Ll and L2 are distinct. Why not
stick to this method? Since the robot can form beliefs about
belief s about beliefs.., up to any finite depth, we could set no

limit to the number of meta-languages needed, but that is quite
OK. If we follow this plan no language can ever talk about
itself, but the robot can always form beliefs about his beliefs
by going one step further in the hierarchy. Konolige used such a

hierarchy of meta-languages in his formalization of the syntactic

theory.

This plan will not work, because it forbids any belief to
talk about itself. A belief can talk only about beliefs in

17

Bolt Beranek and Newman Inc. Report No. 5368

languages lower in the hierarchy. In fact beliefs do talk about
themselves. For example, a human might notice that he never
forgets anything that interests him strongly. Suppose this belief
interests him strongly; then it talks about itself, and quite
likely makes a true assertion about itself. Or suppose the robot-
uses a pattern-matcher to retrieve beliefs from memory. It will
need a belief describing tho pattern-matcher, and this belief can
be retrieved by pattern-matching like any other. Thus it says of
itself "I can be retrieved by using such-and-such a pattern".
There is nothing paradoxical or even unusual going on here. The
point is important, because the decision to use a single self-
describing language will involve us in the paradoxes of self-
reference. One can avoid these paradoxes, but it is not easy.

One way to assign names to sentences is to let sentences be
their own names. Then we could represent the fact that John
believes snow is white by writing
(believe John (white snow))
This might be a good system, but it is impossible in first-order
logic. Sentences denote truth values in first-order logic, they
do not denote themselves. We must look farther for a quotation
mechanism that will fit into first-order logic.

In English we form the name of a sentence by writing
quotation marks around the sentence. Thus the expression

"Snow is white."
denotes the sentence

Snow is white.

If we adopt this scheme in our formal language we could represent
the fact that John believes snow is white by writing
(believe John *(white snow)")
We can fit this scheme into first-order logic by saying that

is 7

* 1

Report No. 5368 Bolt Beranek and Newman Inc.

quoted expressions are constants that denote sentences. Yet this
idea is not good enough, because it will not allow us to
represent the fact that John knows what Mary's phone number is.
We observed above that John knows what Mary's number is if he
knows that Mary's number is n, where n is an Arabic numeral. We

might try to represent this by writing

1
(some n (know John "(- (PhoneNumber Mary) n)")

&
(IsArabic n)

)

But this will not do. By definition of quotation marks, the
second argument of the predicate letter "know" denotes the wff
(= (PhoneNumber Mary) n)
This is true no matter what the variable OnO is bound to. So the
quantifier "some" does nothing, and (1) means the same as (2).

2
(know John a(- (PhoneNumber Mary) n)')

& (some n (IsArabic n))

We need a quotation system that allows us to embed non-quoted
expressions in quoted expressions. Then we can represent the fact
we tried to represent with (1).

Instead of using a quotation mark that applies to whole

expressions, let us quote the individual symbols. If we put the
character ' in front of each symbol that we want quoted, we can
write

19

Bolt Beranek and Newman Inc. Report No. 5368

3
(some n (know John (I- ('PhoneNumber 'Mary) n))

&
(IsArabic n))

to represent the fact that (1) fails to express. All the symbols

in the second argument of "know" are quoted, except for the
variable On" which is bound by the quantifier in the ordinary

way. If we can fit this quotation scheme into first-order logic,

we can formalize the syntactic theory.

The problem is to assign denotations to the quoted symbols

so that sentences like (3) will have the intended meanings, given
the usual semantic rules of first-order logic. To each constant

of our language we assign a name, formed by appending the
character ' to that constant. Thus if "Mary' is a constant and

denotes a woman, *'Mary' is a constant and denotes the constant
"Mary". To each variable we assign a name in the same way. If OxO

is a variable, then O'x" is a constant that denotes the variableN U

x.

Now consider the symbols that take arguments - function

letters, predicate letters, connectives and quantifiers. These

symbols are called functors. The term "(& P 0)' consists of the
functor 1& and its arguments OPO and "Qw. If OF" is a functor of
n arguments, then "'F* is a function letter. It denotes the

function that maps n expressions el ... en to the expression with

functor OF" and arguments el ... en. For example, the function

letter 0'&0 denotes the function that maps wffs wl and w2 to the
wff with functor w&u and arguments wl and w2 - which is the
conjunction of wl and w2. The function letter O'l= denotes the

function that maps a wff to its negation, and so on.

20

* 2 i.*

deport No. 5368 Bolt Beranek and Newman Inc.

If the variable "n" denotes the arabic numeral "57660, then

the termC- ('PhoneNumber 'Mary) n)

should denote the sentence

S(PhoneNumber Mary) 5766)

The function letter "'PhoneNumber" denotes the function that maps

a term t to the term with function letter "PhoneNumber" and

argument t. The constant "'Mary" denotes the constant "Mary". So

the term

('PhoneNumber 'Mary)

denotes the term with function letter "PhoneNumber" and argument

"Mary", which is
(PhoneNumber Mary)

The function letter "'=" denotes the function that maps terms tl

and t2 to the wff with predicate letter "=" and arguments tl and

t2. So the term

(' ('PhoneNumber 'Mary) n)

denotes the wff with function letter Run and arguments

"(PhoneNumber Mary)" and "5766", which is

(- (PhoneNumber Mary) 5766)

And that is the answer we want.

So if the robot knows what Mary's phone number is, it can

represent this fact by the sentence

(some n (know Me ('= ('PhoneNumber 'Mary) n))~&
(IsArabic n)~)

The constant "Me" is the robot's selfname - the robot's usual

name for itself. "know* is an ordinary predicate letter - not a

special modal operator as in Hintikka. The model theory of our

21

I

Bolt Beranek and Newman Inc. Report No. 5368

language contains no special rules for interpreting the predicate
'know".

On the other hand, suppose that the robot only knows that

Mary has a phone number. We represent this as

(know Me ('some 'n ('I ('PhoneNumber 'Mary) 'n)))

In this case the existential quantifier is inside the quotation

mark.

The term
4 ('= ('PhoneNumber 'Mary) '5766)

includes the quote name of the arabic numeral for Mary's phone

number. The term

5 (I= ('PhoneNumber 'Mary) n)

has a variable in the same position. (4) is the quote name of a

wff, but (5) is a wff schema. The quote name of a wff includes a

quote name for every term in that wff. A wff schema is like the

quote name of a wff, except that variables can appear in place of

the quote names of terms. A wff w is called an instance of a wff

schema s if for some assignment of values to the free variables

in s, s denotes w. For example, if the variable an" is as*'igned

the value 05766" then (5) denotes

6 (- (PhoneNumber Mary) 5766)

So the sentence (6) is an instance of the wff schema (5).

Writing a quotation mark in front of every functor is a

nuisance, so we abbreviate by putting the quotation mark in front

of a whole expression. Thus "'(PhoneNumber Mary)" abbreviates

*('PhoneNumber 'Mary)". I use infix notation for the connective
a&", but never for the quoted function letter "'&". People don't

usually use infix notation for function letters, and I want to

emphasize that quoted function letters really are function

22

I r :_ --

Report No. 5368 Bolt Beranek and Newman Inc.

letters. They obey every syntactic and semantic rule that governs

function letters in first-order logic. In particular, we apply

quotation marks to quoted function letters like any other

function letter. Thus "''Superman" denotes the quoted constant
"'Superman", which denotes the quoteless constant "Superman",

which denotes the man from Krypton.

We also need the function letter "quote", which denotes the
function that maps an expression to its quote name. This function

maps the wff "(white snow)" to the term "('white 'snow)", for

example. So we write

(quote ('white 'snow)) = (''white ''snow)

The argument of "quote" is a term that denotes the wff "(white

snow)". The right-hand argument of the equals sign denotes the

term "('white 'snow)". This sentence says that the quote name of

"(white snow)" is "('white 'snow)" - which is true.

The difference between the quotation mark ' and .the function

letter "quote" is this. If "v" is a variable, then "'v" is a

constant that denotes that variable. "(quote v)" is a term in

which the variable "v" is free, and its value depends on the

value of "v". If the value of "v" is the constant "Superman",

then "(quote v)" will denote the quote name of the constant

"Superman", which is "'Superman%

:4I
22

* '23i.f* -

Bolt Beranek and Newman Inc. Report No. 5368

24

Report No. 5368 Bolt Beranek and Newman Inc.

3. Applying the Syntactic Theory

I have now explained the syntactic theory and the machinery
Iused to formalize it. The next task is to apply the formalized

theory to the examples described in section 1.2.

3.1 Observation

The robot forms new beliefs by observing the external world
and his own internal state. The world is always changing, so the

robot needs a theory of time, and it must be able to perceive the

passage of time.

3.1.1 Time

Time is a set of instants totally ordered by <. If instant i
precedes instant j there is an interval whose lower endpoint is i
and whose upper endpoint is j. It contains the instants that are
later than i and earlier than j. The lower endpoint of interval I
is -I, and its upper endpoint is +I. Nearly all properties of
objects hold during intervals. In particular, we write (believe A.1 S I) to indicate that agent A believes sentence S during interval
I. Actions happen during intervals. Thus we write (puton Robot A
B I) to indicate that the robot puts block A on block B during
interval I.

We can define the order relations between intervals in terms
of the < relation between their endpoints. For example, interval
I is before interval J if the upper endpoint of I is before the

25

- __ i -

Bolt Beranek and Newman Inc. Report No. 5368

lover endpoint of J: +I < -J. Interval I meets interval J if the

upper endpoint of I is the lover endpoint of J: +I - -J.

The robot has sensors - devices that detect events in the
outside world and produce descriptions of those events in the

robot's internal language. The sensors accept physical events as
input and produce sentences as output. These sentences become

beliefs. A belief -created by perception must note the time of

the perception. For suppose the robot receives the same message

from his sensors at two different times - hears two rifle shots
in succession, for example. If the beliefs created by these two
perceptions do not mention the times at which the perceptions

happened, they will be identical. Then the robot's collection of
beliefs will be the same as if it had heard only one shot.

Therefore the robot will need names for intervals of time.

These names are constants of the internal language called time

stamps. If the robot hears the doorbell ring during interval I,

it creates a time stamp for interval I - say lIntervall~l". Then

it adds to its beliefs the sentence

(ringing Me Intervall~l)

which says that there is a ringing sound in the robot's

neighborhood during Intervall~l. The robot automatically records

every perception, and also other events such as inferences and

commands to the effectors. Whenever it records such an event it
creates a time stamp for the interval when the event happened. It
uses that time stamp to name the interval in the belief that

records the event.

A time stamp is a useful name for an interval because the

robot keeps records of the lengths and order of intervals, and

uses time stamps to name the intervals in those records. If the

26

Report No. 5368 Bolt Beranek and Newman Inc.

robot creates a time stamp OInterval53O for an interval J, then

as soon as interval J is over the robot forms a belief that

records its length. This estimate of the interval's length need

not be accurate. People can't tell a minute from fifty seconds

without a watch, but they can tell a minute from a second. The
robot can get by with rough estimates too. Let us choose a small
unit of time and approximate the lengths of intervals with whole

numbers of units. Then if J is 30 units long, there is an

interval K such that J meets K and
(believe Robot '(- (length Interval53) 30) K)

This belief gives the length of the interval in units, using an
arabic numeral to name the number of units. For any integer n,
let (arabic n) be the arabic numeral that denotes n. So (arabic
2+2) = (arabic 4) = '4. Suppose the robot creates a time stamp t
for an interval i whose length is n units. Then there is an

interval j such that i meets j and
(believe Robot ('- ('length t) (arabic n)) j)

Setting t = 'Interval53, n - 30, j - K gives

(believe Robot ('- ('length 'Interval53) (arabic 30)) K)

Since (arabic 30) - '30, we have
(believe Robot ('- ('length 'Interval53) '30) K)
which is a notational variant of the last example.

The robot also records the order relations between intervals

that have time stamps. To record the order relation between two

intervals it is enough to record the order relations between
their endpoints. Given intervals I,J we must record the order

relations between -I and -J, -I and +J, +I and -J, +I and +J.
Consider the first case. If i and j are intervals with time
stamps tlt2, the robot will record the order relation between +i
and +j immediately after the later of the two instants. There are
three cases to consider. If +i < +j there is an interval k whose

lower endpoint is +J, and

27

- .----------........ ...---.....---
I -~~

Bolt Beranek and Newman Inc. Report No. 5368

>1 (believe Robot ('< ('+ tl) (s+ t2)) k)
If +i - +j there is an interval k whose lower endpoint is +i, and

(believe Robot (- ('+ tl) ('+ t2)) k)

Finally, if +j < +i there is an interval k whose lower endpoint
is +i, and
(believe Robot ('< ('+ t2) ('+ tl)) k)

So the robot always knows the order relations among all intervals

that have been assigned time stamps. Thus the robot has a sense
of time: if it remembers two perceptions it remembers which came

first and how long they lasted. This particular axiomatization of

the sense of time is crude, but it will do for our purposes. One

could do a better job with the same formalism if necessary.

3.1.2 Perception

Certain physical events cause the robot's sensors to produce

sentences that describe those events. Let us write (perceive
Robot s i) to indicate that during interval i the robot's sensors

produce the sentencoe s as a description of some event or state in

the outside world. As an example, let us describe the robot's

ability to read. The symbols we read and write are expressions
of English, not expressions of the robot's internal language. Let

us gloss over this distinction and pretend that expressions of

the thought language can be written on paper, and the robot can

read them.

Suppose that the robot's field of view is a rectangle, and
the sensors use integer Cartesian coordinates to describe

positions in the field of view. Let (written e x y i) indicate

that the expression e is written down at coordinates (x,y) in the

28

Af- VJ

Report No. 5368 Bolt Beranek and Newman Inc.

robot's field of view during interval i. If this is the case the
robot's sensors will report it, using a quote name for the
expression e, arabic numerals for the integers x and y, and a
time stamp for the interval i. Suppose that e is an expression, x
and y are coordinates, and i is an interval. If (written e x y
i), there is a time stamp t for the interval i, and
(perceive Robot ('written (quote e) (arabic x) (arabic y) t) i)

Suppose that "(white snow)" is written at coordinates (150,150)
in the robot's field of view during interval I. Then there is a
time stamp for interval I, say "Interval99", and we have

(perceive Robot
('written (quote '(white snow))

(arabic 150)
(arabic 150)
'Interval99)

I

Using (quote '(white snow)) - ''(white snow) and (arabic 150) -

'150 gives

(perceive Robot
('written ''(white snow) '150 '150 'Interval99)
I)

The robot believes what its sensors tell it. That is, if it

perceives a sentence s during interval i, there is an interval j
such that i meets j and the robot believes s during J. In this
case there is an interval K such that I meets K and
(believe Robot ('written ''(white snow) '150 '150 'Interval99) K)

29

.4-' ,

Bolt Beranek and Newman Inc. Report No. 5368

3.1.3 Retrieving Beliefs From Memory

The robot acts by executing programs, and its programming

language is quite conventional. There is a fixed set of
registers. Just like a Von Neumann machine, the robot must bring
a data structure into a register before it can operate on that

data structure. Remembering a belief means bringing it from
memory into a register. If the robot has Bill's phone number

stored in its memory, but for some reason can't retrieve it, it
cannot call Bill. It has no way to pass the phone number to its
telephone dialing routine. This matches our intuitions about
people: if you know Bill's phone number, but you can't remember
it at the moment, then you can't call Bill.

The statements of the programming language are terms of the

internal language, although they have no useful denotations.
Considering them to be terms of the internal language is handy

because we can then use quotation to name programs. The
expressions of the programming language are terms of the internal
language, and their values in the programming language are their
denotations. Of course they are limited to terms whose values the

agent can compute.

All the expressions of the internal language are data'I structures of the programming language. There are other data
structures in the programming language - lists of expressions,

for example. Every data structure has a name in the internal

language called its print name. The print names of expressions
are just their quote names. The print name of the list (cons e

nil) is ('cons (PrintName e) 'nil).

The robot uses a statement called the retrieve statement to

30

Report No. 5368 Bolt Beranek and Newman Inc.

retrieve beliefs from his memory. A retrieve statement has the
form (retrieve r p c), where r is a register, p is a wff schema,
and c is a wff. p is called the pattern and c is called the
condition. Suppose the robot wants to retrieve a sentence that
tells what John's phone number is. Such a sentence has the form
7 ('PhoneNumber 'John n)
The term n must be an arabic numeral:

8 (IsArabic n)
The robot can retrieve a sentence that tells what John's phone
number is by executing a retrieve statement with pattern (7) and
condition (8):

9 (retrieve Ri
('PhoneNumber 'John n)
(IsArabic n)

A sentence s matches the pattern "('PhoneNumber 'John n)" and the
condition "(IsArabic n)" if for some binding of the variable "n",
"('PhoneNumber 'John n)" denotes s, and *(IsArabic n)o is true.

For example, if On' is bound to 05766", then *('PhoneNumber 'John
n)* denotes "(PhoneNumber John 5766)" and "(IsArabic n)n is true.
Therefore w(PhoneNumber John 5766)" matches the pattern
"('PhoneNumber 'John n)" and the condition "(IsArabic n)w. If a
sentence matches the pattern "('PhoneNumber 'John n)O and the
condition w(IsArabic n)", then it has the form ('PhoneNumber
'John n) for some arabic numeral n. That is, it tells what John's
phone number is. So if the robot knows what John's phone number
is, he can retrieve that knowledge by executing the statement

(9).

In general, a sentence s matches pattern p and condition c
if p is a wff schema and for some bindings of the free variables

31

A -,

Bolt Beranek and Newman Inc. Report No. 5368

of p, p denotes s and c is true. Suppose the robot executes the

ft statement ('retrieve r p c) in interval I, and the robot believes
a sentence that matches pattern p and condition c. Then thep.. retrieve statement returns a belief that matches the pattern and
the condition. There may be several beliefs that match. If so any

one of them might be returned. Register r is set to the belief
that is returned. That is, there is an interval J such that II meets J and register r holds the returned belief during J. The
retrieve statement allows the robot to search his memory.

3.1.4 introspection

Now that we have a statement that searches the memory we can
describe introspection very neatly. All we have to do is say that

whenever an agent executes a statement he knows whether it
returned a value, and if so what value. The agent can then find

out whether he has a certain belief by trying to retrieve it. If

he succeeds he will know this, and he can infer that he had the
belief; if he fails he will know this also, and he can infer that
he had no belief that matched the pattern and the condition.

suppose, then, that the robot executes a statement s of the

programming language during interval I, and it returns a value

v. The value v is a data structure. The robot has a time stamp t *I for the interval I. There is an interval J such that I meets J,
and during interval J the &,obot believes the sentence

('return (SelfName Robot) (quote s) (PrintName v) t)

This sentence says that the robot executed statement s during

interval I, and it returned value v. The robot is named by hiis

* selfname, the interval by a time stamp, the statement by its
quote name, and the returned value by its print name. If the
robot executes the statement

32

IA

Report No. 5368 Bolt Beranek and Newman Inc.

(retrieve R1 ('PhoneNumber 'John n) (IsArabic n))

and it returns the sentence

(PhoneNumber John 5766)
he will believe

(returns Me
'(retrieve R1 ('PhoneNumber 'John n) (IsArabic n))
'(PhoneNumber John 5766)
Interval432

assuming "Interval4320 is the time stamp for interval I. The
robot knows that if he executes a retrieve statement during any

interval i, and it returns a sentence s, he believed s during

i. So he can infer

(believe Me '(PhoneNumber John 5766) Interval432)
So if the robot believes that John's number is 5766, he can find

out that he believes that John's number is 5766.

Suppose the robot executes a statement s of the programming

language during interval I,and it returns no value. The robot has
a time stamp t for the interval I. There is an interval J such

that I meets J and during interval J the robot believes the

sentence
(' ('some 'x ('returns (SelfName Me) (quote s) 'x t)))

This sentence says that the robot executed statement s during

interval I, and it returned no value.

Suppose the robot does not know what John's phone number is.

That is, he has no belief of the form ('PhoneNumber 'John n),
where n is an arabic numeral. If the robot executes the

statement

(retrieve Rl ('PhoneNumber 'John n) (IsArabic n))
it will return no value. For only a belief of the form

('PhoneNumber 'John n), where n is an arabic numeral, would match

33

1SA
1

]

Bolt Beranek and Newman Inc. Report No. 5368

the pattern and the condition. If this statement returns no

value, the robot will believe the sentence

((some x
(returns Me

'(retrieve RI ('PhoneNumber 'John n) (IsArabic n))
x
Interval 82

This sentence says that the retrieve statement returned no value.

The robot can now argue by contradiction: If I had a belief of

the form ('PhoneNumber 'John n), where n was an arabic numeral,

it would have matched the pattern "('PhoneNumber 'John n)w and

the condition "(IsArabic n)". Then the retrieve statement would

have returned a value. But the retrieve statement returned no

value. Therefore I have no belief of the form ('PhoneNumber 'John

n), where n is an arabic numeral. That is, I do not know John's

phone number.

Most theories of belief include an axiom saying that if an

agent believes that P, he believes that he believes that P. This

theory has instead a general axiom of introspection. It says that

if an agent executes a statement of his internal programming

language, he knows what value it returned. This axiom allows us

to show that if an agent believes that P he can easily discover

* that he believes that P. We use the same axiom to show that if
the agent does not believe that P, he can discover that he does

not believe that P. Also we can show that if the agent does not

know what X is, he can discover that he does not know what X is

- at least in some cases. Later we will find another use for

this axiom of introspection.

341

Report No. 5368 Bolt Beranek and Newman Inc.

3.2 Inference

Inference is another process that creates new beliefs. A.I.

workers have often distinguished between data-driven and goal-
driven inferences. The data-driven inferences happen whenever

certain kinds of data are added to the data base. The goal-driven

inferences happen when the robot is trying to prove certain kinds
of theorems. Data-driven inferences must be limited in some way,

because the robot can have only a finite number of beliefs.

Breaking up conjunctions is a reasonable data-driven inference:
if p & q is added to the belief base, p and q are added too. We
can easily describe this with an axiom:

(believe Robot ('& p q) i)
-> (believe Robot p i) & (believe Robot q i)

The new beliefs formed by breaking up conjunctions could be added

explicitly. They could also be added implicitly, by using a

belief retrieval program that looks inside conjunctions. Such

implementation questions are outside the scope of this theory.

3.2.1 What Do John's Beliefs Entail?

I turn now to the problem of predicting goal-driven

inferences. I begin with the usual distinction between search

space and search algorithm. To show that an agent will infer a
certain belief if he tries to infer it, we must show that there

is a path in his search space that leads to that belief, and that

his search algorithm is powerful enough to find it. I consider

first the problem of showing that the path exists - that is, the

agent's beliefs entail the given sentence.

35

0.7
-1 17~k6 i', ~ ~ IP

Bolt Beranek and Newman Inc. Report No. 5368

Suppose our knowledge of another agent's beliefs consists of

a set of sentences of the form (believe agent (quote s) i) - that

is, we have quote names for the sentences the other agent

believes. Then by removing the quotation marks we can reconstruct

the exact sentences that the other agent believes. We build a

data base, separate from our collection of beliefs, containing

the sentences that the other agent believes. Any theorem that we

can prove using only the sentences in this data base follows from

the other agent's beliefs. This is an old idea. Creary [2] was
the first to point out that we can combine this kind of reasoning

with the use of quotation to represent beliefs.

This method is not sufficient to handle the following

inference.

John knows what Mary's phone number is.
John knows that Mary's phone number is the same as Bill's.

John knows what Bill's phone number is.

In our notation the first sentence becomes

(know John
('= '(PhoneNumber Mary) (arabic (PhoneNumber Mary)))
I

)

We cannot reconstruct the sentence that John believes from this
description, because the description doesn't tell us which arabic

numeral appears in John's belief. So we can't build a data base
containing John's beliefs.

Konolige [8] suggested a solution to this problem. Instead

of using s;aulation, he proposed to describe the proof rules of

the language, and use this description to show that a theorem can

be proved from another agent's beliefs. For example, we might

describe the rule of Modus Ponens by writing

(all p q (ModusPonens p ('-> p q) q))

36

Report No. 5368 Bolt Beranek and Newman Inc.

This axiom says that p and 1'-> p q) entail q by the rule of

Modus Ponens. We do not need quote names for the wffs p and q to
use this axiom - any names at all will do. If we follow Konolige

the lack of quote names for John's beliefs creates no special

problem.

The difficulty with Konolige's proposal is that it leads to

very long proofs. Suppose we try to find the conclusion of an n-
step proof using axioms that describe the proof rules. For each

step of the original proof we must build a short proof, which
shows that that step produces a certain conclusion. Suppose the
average length of these proofs is p steps. Then the proof that

our n-step proof has a certain conclusion will involve p X n
steps.

Now consider what happens when we nest this kind of

reasoning. Suppose John knows that Mary knows his phone number.
Then John expects Mary to know how to call him. Suppose we apply
Konolige's technique to this problem. There is an n-step proof

whose premisses are among Mary's beliefs, and whose conclusion
says that Mary can call Bill by dialing a certain number. To
show that the proof has this conclusion, John must build a proof
of p X n steps. To show that John can build this proof, we must

build a proof of p x (p X n) steps. The size of the proofs grows

exponentially with the depth of nesting. This is clearly
intolerable.

There is an obvious way out of this problem, although it is
not trivial to show that it is correct. We pick a new constant,

say "C", and use it to stand for the arabic numeral that John
uses to name Mary's phone number. Then we can build a data base

that approximates John's beliefs. It will contain the sentences

37

Bolt Beranek and Newman Inc. Report No. 5368

•(PhoneNumber Mary) C)
(PhoneNumber Mary) (PhoneNumber Bill))

from which we can infer

(- (PhoneNumber Bill) C)

Since OCO stands for an arabic numeral, John can infer a sentence

of the form ('= ('PhoneNumber 'Bill) n), where n is an arabic

numeral. That is, John can figure out what Bill's phone number

is.

Let us state the argument more precisely. If we were to go

through the proof we have just built, and replace the constant

OC" with the arabic numeral that appears in John's belief about

Mary's phone number, the result would be a new proof. John

believes the premisses of this proof, and its conclusion gives an

arabic numeral for Bill's phone number. So there is a way to

prove from John's beliefs a theorem that gives an arabic numeral

for Bill's phone number. The crucial assumption here is that if
we go through the proof and replace "C" with another constant,

the result is still a proof. In the appendix I show that if we

take any proof and replace all occurrences of a constant with a

closed term, the result is still a proof. This theorem justifies

the use of a new constant to represent an unknown term that

appears in another agent's beliefs. It allows us to prove the

correctness of an axiom schema called the Reflection Schema,

which does the kind of reasoning that we have informally

described.

3.2.2 The Reflection Schema

Consider first the simple case of the Reflection Schema, in

which we have the quote names of the other agent's beliefs. The

38I1

Report No. 5368 Bolt Beranek and Newman Inc.

proof to be reflected consists of a single step. The rule of

Substitution Of Equals is applied to the premisses
(- (PhoneNumber Mary) 5766)

(= (PhoneNumber Bill) (PhoneNumber Mary))

producing the conclusion

(= (PhoneNumber Bill) 5766)

The structure of proofs is described exactly in the

appendix. For now it is enough to say that a proof is formed by

starting with wffs called premisses and repeatedly applying proof

rules. Every proof has a print name, which includes the quote

names of all the premisses of the proof. Given the print name of

a proof one can easily reconstruct that proof, just as one can

reconstruct a sentence from its quote name. The print name of

the proof just given is

(EqSubst '(= (PhoneNumber Mary) 5766)
'(= (PhoneNumber Bill) (PhoneNumber Mary))
'(= (PhoneNumber Bill) 5766))

(IsProof p) means that p is a correct proof. If p is a correct

proof, the sentence

('IsProof (PrintName p))

is an instance of the Reflection Schema. For the proof given

above we have the instance

10 (IsProof (EqSubst '(= (PhoneNumber Mary) 5766)
'(- (PhoneNumber Bill) (PhoneNumber Mary))
'(- (PhoneNumber Bill) 5766)

If John believes the premisses of this proof he can infer its

conclusion - that is, he can infer that Bill's number is 5766.

It is easy to implement this schema. The implementation is a

39

2 1 1
* ~,* ' ** * * ~ 4* ,t.

Bolt Beranek and Newman Inc. Report No. 5368

program that takes a sentence as input and decides whether it is

an instance of the Reflection Schema. The input sentence

contains the print names of a proof and its conclusion. From the

print names the program reconstructs the proof and the

conclusion. Then it calls the programs that implement the other

proof rules to decide whether the proof is correct. If it is, the

input sentence is an instance of the Reflection Schema.

Suppose John knows Mary's phone number. Then he believes the

sentence

(- '(PhoneNumber Mary) (arabic (PhoneNumber Mary)))

If he also believes that Bill's phone number is the same as

Mary's, he believes the sentence

(- (PhoneNumber Bill) (PhoneNumber Mary))

By Substitution Of Equals he can infer

('- '(PhoneNumber Bill) (arabic (PhoneNumber Mary))

The version of the Reflection Schema that we have just seen is

not strong enough to prove this. It demands the quote names of

the sentences in the proof to be reflected, and we do not have

the quote name of the arabic numeral for Mary's phone number. We

need a stronger Reflection Schema, which includes the following

instance.

11

(all x
(ClosedTerm x)
-> (IsProof

(EqSubst ('- '(PhoneNumber Mary) x)
('- '(PhoneNumber Bill) '(PhoneNumber Mary))
('- '(PhoneNumber Bill) x))

)
)

Since an arabic numeral is a closed term, we infer

40

* -I IV- A

Report No. 5368 Bolt Beranek and Newman Inc.

(IsProof
(EqSubst (1= '(PhoneNumber Mary) (arabic (PhoneNumber Mary)))

('- '(PhoneNumber Bill) '(PhoneNumber Mary))
(C= '(PhoneNumber Bill) (arabic (PhoneNumber Mary)))

)

And this is the desired conclusion.

The argument of the predicate letter "IsProof" in (11) is

called a proof schema. A proof schema is like the print name of a

proof, except that a variable can appear instead of the quote

name of a term. That is, a proof schema is to the print name of

a proof what a wff schema is to the quote name of a wff. The

argument of "IsProof" in (10) is the print name of a proof. It
gives the quote name 0'57660 of the arabic numeral for Mary's

phone number. The argument of IsProofO in (11) is a proof
schema. The variable "x* appears in place of the quote name

"'5766".

Implementing this version of the Reflection Schema is not as
easy as implementing the first version. The first version

reconstructed the proof to be reflected from its print name, and
then called the other proof rules to decide whether the proof was

correct. The new version gets only a proof schema, which stands
for a whole class of proofs called instances of the schema. A

proof p is an instance of a proof schema s if for some bindings
of the free variables of s, s denotes p. The proof named in (10)

is an instance of the proof schema that appears in (11). It is
formed by binding the variable Ox" to the term 057660. An

instance of the Reflection Schema is true only if all instances

of its proof schema are correct proofs.

The solution is to form a proof called the typical instance

of the proof schema. Every instance of the schema can be formed

41

L.1k*6

Bolt Beranek and Newman Inc. Report No. 5368

by substituting closed terms for constants in the typical
instance. If the typical instance is a correct proof, then since
substitution maps proofs to proofs, all the instances are correct
proofs.

The typical instance of a proof schema is its denotation in
an environment that binds its free variables to new constants.
For example, if we bind the variable Oxn to the new constant "CO,
then the proof schema in (11) denotes a proof whose premisses are

(= (PhoneNumber Mary) C)
(= (PhoneNumber Mary) (PhoneNumber Bill))

Its conclusion is
(= (PhoneNumber Bill C)
and the rule used is Substitution Of Equals. Since this proof is
correct, all instances of the proof schema in (11) are correct.
Therefore (11) is a true sentence (in the intended model). This
is a rough explanation of the Reflection Schema, omitting many
complications. The full story, and a proof of correctness, appear
in the appendix.

We have shown how to make inferences by simulation from
atomic sentences like

(believe John
(1 '- '(PhoneNumber Mary) (arabic (PhoneNumber Mary)))

and from conjunctions of such sentences. What about the other
connectives and quantifiers? We ought to be able to make
inferences from disjunctions and negations of sentences about
belief, and from universally or existentially quantified
statements about belief. Here we see the value of adding the
Reflection Schema to a first-order logic. We can handle negation,

42

ohm - * - . . .

Report No. 5368 Bolt Beranek and Newman Inc.

disjunction and quantification without adding any more rules or
jaxioms.

Consider negation. If John believes that Mary's number is

5766, and he does not believe that Bill's number is 5766, he must
not believe that Bill's number is Mary's number (assuming that he
can make trivial inferences). First-order logic allows us to
argue by contradiction: to prove -p by assuming p and proving a
contradiction. So assume

(believe John '(= (PhoneNumber Mary) (PhoneNumber Bill)) I)

and
(believe John ('= ('PhoneNumber 'Mary) '5766) I)
We can prove by simulation that there is a one-step argument from
these beliefs of John's to the conclusion
(- (PhoneNumber Bill) 5766)

So if John can find this one-step argument, he believes that
Bill's number is 5766. This contradicts the assumption that he

has no such belief, so we can conclude that John does not believe
that Bill's number is Mary's number.

Suppose John believes that all millionaires are happy, and

he either believes that Bill is a millionaire or that Bob is a
millionaire - we don't know which.

(believe John ('all 'x ('-> ('millionaire 'x) ('happy 'x)) I)

(believe John ('millionaire 'Bill) I)
V (believe John ('millionaire 'Bob) I)

We should be able to prove that he believes someone is happy
(again assuming he can make trivial inferences).
(believe John ('some 'x ('happy 'x)) I)

First-order logic allows us to argue by cases - to prove p from q
V r by proving p from q and proving p from r. Assume first that

II
4

Bolt Beranek and Newman Inc. Report No. 5368

John believes that Bill is a millionaire. Then we can build a

data base that represents his beliefs, and it looks like this:

(all x (millionaire x) -> (happy x))
(millionaire Bill)

In this data base we can easily infer that someone is happy:
(some x (happy x))

So John believes that someone is happy. Now suppose John

believes that Bob is a millionaire. We can prove again that John

believes someone is happy. Since John either believes that Bill

is a millionaire or that Bob is a millionaire, it follows that he

believes someone is happy.

Suppose John knows every millionaire by name. That is, for
each millionaire he believes that N is a millionaire, where N is

the millionaire's personal name. Let (name x) be x's personal
name, for any person x. (name John Smith) is 'John Smith", and so

on. Then we can describe John's exhaustive knowledge of
millionaires by writing:

(all x (millionaire x)

-> (believe John ('millionaire (name x)) I))

John also believes that every millionaire is happy.

(believe John '(all x (-> (millionaire x) (happy x))) I)
We should be able to infer that for each millionaire, John
believes that he is happy.
(all x (millionaire x) -> (believe John ('happy (name x)) I))

First-order logic allows us to prove that everything has a

certain property by proving that an arbitrary object has that

property. In the first-order proof system used here, free
variables represent arbitrary objects. So let z be an arbitrary

object, and suppose z is a millionaire. Since John knows every

millionaire by name, we have

(believe John ('millionaire (name z)) I)

44

NOW=.

Report No. 5368 Bolt Beranek and Newman Inc.

We choose the constant "C" to stand for the unknown term (name
z). Then the data base that represents John's beliefs contains

the sentences

(millionaire C)
(all x (millionaire x) -> (happy x))

These sentences entail
(happy C)

We conclude

(believe John ('happy (name z)) I)

But since z represents an arbitrary millionaire, we have
(all x (millionaire x) -> (believe John ('happy (name x)) I))
which was to be proved. The treatment of existentially quantified
sentences about belief is similar.

By adding the rule of Reflection to a first-order logic, and

proving that it is correct, we gain two advantages. Because we
have proved the rule correct, we can rule out the possibility of

bugs caused by bad interactions between Reflection and some
obscure feature of the logic. Because the rule is part of a
system that represents negation, disjunction and quantification
correctly and completely, no extra work is needed to handle

negations, disjunctions and quantifications of statements about
belief. Imagine what would have happened if we had first written

a rough description of our inference rules in English, then

written 30 pages of LISP to implement them, and then started
Mmaintaining" the code so that it changed once a week. How would
one show that replacing constants with closed terms maps proofs
to proofs? The kind of work we have just done is possible only if
the rules of inference are set down plainly. These
considerations prove nothing about the merits of frames vs.

semantic nets vs. logic. They do indicate that an if an AI

~45

Bolt Beranek and Newman Inc. Report No. 5368

system is going to use reflection to reason about belief, its
inference rules must be made explicit, not hidden in the code.

3.2.3 What Can John Infer from His Beliefs?

The rule of Reflection allows us to show that an agent's
beliefs entail a sentence. To show that an agent will actually
infer that sentence, we need to show also that his theorem prover
is powerful enough to find a proof. The agent calls his theorem
prover by executing a prove statement. This statement has the
form ('prove r p c), where r is a register, p is a pattern, and c

is a condition. When the agent executes this statement his
theorem prover tries to prove a sentence that matches the pattern
and the condition. If it succeeds, the prove statement returns
that sentence and puts it in register r. Also the sentence is
added to the agent's beliefs.

This leaves the crucial questions: can the theorem prover

prove a sentence that matches the pattern and the condition? If

it can, which one will it prove? Creary [2] offered a simple
answer. If agent A can prove by simulation that agent B's
beliefs entail P, then agent B can prove P. This is very
different from saying that if agent B's beliefs entail P, agent B
can prove P. It is quite possible that B's beliefs entail P but A
cannot prove this fact.

Agent A predicts the behavior of agent B's theorem prover by
making an empirical observation of the behavior of his own
theorem prover. This involves the assumption that agent A is not
much brighter than agent B - an assumption that is reasonable in
most common sense contexts, though not when A is a math teacher

46

Report No. 5368 Bolt Beranek and Newman Inc.

and B is a student. Agent A can answer the question "Which

theorem will agent B prove?" by similar reasoning. Perhaps there

are many theorems entailed by agent B's beliefs that would match

the pattern and condition that B gave to his theorem prover. If A

has shown that a particular theorem entailed by B's beliefs will

match the pattern and condition, he can assume that this theorem

is an obvious answer, and it is the one B will prove. This is not

so convincing as the last assumption, but it is the same

principle - A is predicting the behavior of B's theorem prover by

observing the behavior of his own theorem prover. Agent A can

even make a rough estimate of the time it will take for B to

prove the theorem: it should be no more than the time it took A

to simulate B's reasoning. We already have an axiom of

introspection, which says that when agent A executes a statement

of his programming language he knows what it value it returned.

So if agent A executes the prove statement he knows what theorem

he proved. Also he has a time stamp for the interval in which he

executed the prove statement, so he knows how long it took.

Suppose then that A and B are two agents, and the following

conditions hold.

i. Agent B executes the statement ('prove r p c) during an
interval i, and sentence s matches the pattern p and
condition c.

ii. Agent B's beliefs entail sentence s.
iii. Agent A has proved during an interval j that agent B's

beliefs entail s.

Then agent B's execution of ('prove r p c) returns the value

s, and interval i is no longer than interval j. The first

condition says that agent B is trying to prove sentence s, or one

like it. The second condition says that there is a proof of s

from agent B's beliefs. The third condition says that agent A has

found such a proof, so it is not too difficult.

47

II ~ I

IT

Bolt Beranek and Newman Inc. Report No. 5368

Now we can do the following example from part 1.

John knows that Mary's number is 5766.
John knows that Mary's number is the same as Bill's number.
John is trying to figure out what what Bill's number is.

John will infer that Bill's number is 5766.

We represent the statement that John is trying to figure out
what P is by saying that John has called his theorem prover and
asked it to prove a sentence that tells what P is. In this case,
John wants his theorem prover to prove a sentence that tells what

Bill's phone number is. A sentence that tells what Bill's phone
number is must have the form
'- '(PhoneNumber Bill) n)

where n is an arabic numeral. John can express this requirement

by giving his theorem prover the pattern

('- '(PhoneNumber Bill) n)

and the condition

(IsArabic n)
So we formalize the statement that John is trying to figure out
what Bill's number is by writing

(execute John
'(prove Rl ('= '(PhoneNumber Bill) n) (IsArabic n))
I~)

This satisfies the first condition.

As usual, we formalize the first two premisses as

(believe John 'C- (PhoneNumber Mary) 5766))
(believe John '(- (PhoneNumber Mary) (PhoneNumber Bill))

By the Reflection Schema the robot can prove

48

.

Report No. 5368 Bolt Beranek and Newman Inc.

(proof (EqSubst '(- (PhoneNumber Mary) 5766)
'(- (PhoneNumber Mary) (PhoneNumber Bill))
'C- (PhoneNumber Bill) 5766))

)

Since agent B believes the premisses of this proof, his beliefs
entail its conclusion "C= (PhoneNumber Bill) 5766)0. This

satisfies the second condition. After the robot's theorem prover

proves this theorem, he will know that it was proved. By the

axiom of introspection he will believe the sentence

(returns Me
'(prove)
'(proof (EqSubst ...))
Interval236)

This sentence says that the robot has proved that John's beliefs
entail the sentence (- (PhoneNumber Bill) 5766). It satisfies the
third condition. Now the robot can infer that John's theorem

prover will return the sentence (- (PhoneNumber Bill) 5766), and
as a result John will believe this sentence.

The last argument of the predicate letter Oreturns* is a

time stamp for the interval when the robot executed the prove
statement. The robot's sense of time tells him how long this

interval was. So he believes, let us say, the sentence
(length Interval236) - 20
Then he can infer that John will take no more than 20 units of
time to figure out what Bill's phone number is.

An agent figures out what inferences another agent can make

by simulating his reasoning. If the other agent's beliefs include

terms that are unknown to the simulator, he must use an

approximation of the other agent's beliefs in his simulation. The

simulator introduces new constants to represent the unknown terms

49

i ' .

Bolt Beranek and Newman Inc. Report No. 5368

in the other agent's beliefs. By noting the time that it took

him to simulate the other agent's reasoning, the simulator judges

how hard it will be for the other agent to find the same line of

reasoning. The simulator does not have or need a theory that

explains why one line of reasoning is harder to find than

another. He uses empirical observations of the behavior of his

own theorem prover to predict the behavior of another agent's

theorem prover. So we have a theory of belief that talks about

the processes that create beliefs.

3.3 Knowing What

John knows what Mary's phone number is if he knows that

Mary's number is n, where n is an arabic numeral. We represent

this as

(some n (know John ('- '(PhoneNumber Mary) n))
& (IsArabic n))

We can give a similar treatment of other "knowing what" examples.

An English teacher would say that a student knows who the author

of "Hamlet" is if he knows that the author of "Hamlet" is n,

where n is a personal name. We can represent this as

(some n (know student ('- '(author Hamlet) n)
& (IsPersonalName n)

Since "Shakespearew is a personal name, the student knows who the

author of "Hamlet" is if he knows that the author of "Hamlet" is

Shakespeare. When we say that someone knows what X is, we mean

that he knows that X is n, where n is a name or description

having some property P. In the first case, P is the property of

50

: ' "__• ___ _ ______,____"____ __ _____-_ "

Report No. 5368 Bolt Beranek and Newman Inc.

* i
being an arabic numeral. In the second case, P is the property of
being a personal name. Kaplan [7] suggested this approach.

As we saw in the example of being lost in the city, the

property P depends on context. In that example, the agent wanted

to use the name n to accomplish a task. First the task was to

get back to the hotel, and he wanted n to be something like "five

blocks north of the hotel on Higk' Street". Then he switched to a

new task: helping Mary to find Wohn. For this task the name
"here" described John's location quite well. This example

suggests that John knows what X is if he knows that X is n, where

the name or description n contains the information needed for the

task at hand.

That would certainly explain why knowing an arabic numeral

for Mary's phone number counts as knowing what her number is. The

arabic numeral allows us to call Mary, which is what phone

numbers are for. Or suppose John tells me that he lives in the

grey house across the street from the Star Market on Park Avenue.

Then if I know how to get to the Star Market I can get to John's

house. I could also claim that I know where John lives, even if I
have never seen his house. This example fits the proposal

nicely.

According to Konolige I know where John lives only if I have

a standard name for John's house - one that denotes the same

house in all possible worlds. Certainly "the grey house across

from the Star Market" does not denote the same house in all

possible worlds, so Konolige predicts that in this case I do not

know where John lives. Since Konolige does not suggest that the

set of possible worlds under consideration can vary with context,
he does not allow context to determine whether knowing that X is

51

f

Bolt Beranek and Newman Inc. Report No. 5368

n entails knowing what X is. Moore's proposal is that I know
what X is if X is the same object in all my alternatives. This is
different from Konolige's idea, because my alternatives are a

small subset of the set of all situations. It still does not

explain how I can know where John lives when I have never seen
his house, and can only describe it as *the grey one across from
the Star Market".

Alas, there are plenty of examples where my proposal fails.

Often there is no particular task at hand. In a discussion of
politics I may ask "Do you know who the Saudi oil minister is?'

Presumably I want his personal name, but there is no obvious task

to be accomplished with this information. At least my proposal
accounts for the importance of context in deciding what knowledge

one needs about an object in order to know what that object is.
The proposal is not helpful unless, having identified the task at

hand, we can decide what knowledge is needed to do that task.
This is the subject of the next section.

One can give a similar account of de re belief reports. If
you think, in the de re sense,* that John's sister is his wife,

you have a belief of the form "n, is John's wife", where the name
n really denotes John's sister. Let "denotation" name the

function that maps a term to its denotation. This function maps

the name *Supermanw to the man from Krypton, for example. We

represent the fact that I think John's sister is his wife by

(some n (believe I ('- n '(wife John)))
&(denotation n) a (sister John)

There must be some limitations on the choice of the name n. For

example, if Bill is in fact the president of IBM, the name
'president of IBM" denotes him. Still believing the tautology

52

Report No. 5368 Bolt Beranek and Newman Inc.

*The president of IBM is the President of IBM" will not qualify

you as believing that Bill is the president of IBM. The

*; conditions on the name n seem to be weaker in this case than in
the "knowing what" examples.

3.4 Knowing How

If you know that Mary's number is 5766, you know how to call

Mary. When does knowing that P entail knowing how to perform

action A? Moore proposed that actions have parameters - for

example, the number to be dialed is a parameter of the action of

dialing. You know how to do the action if you know what the

parameters are. And you know what X is if X denotes one object in

all your alternatives. Since "5766" denotes one object in all
situations, someone who knows that Mary's number is 5766 knows

how to call Mary. Konolige agrees that you know how to perform an

action if you know what its parameters are. As mentioned above,

Konolige holds that you know what X is if you have a standard

name for X. Since w5766" is a standard name, someone who knows

that Mary's number is 5766 knows how to call Mary.

Both proposals go wrong in the same way. *Six times thirty-

one squared" denotes 5766 in all situations. So if I know that
Mary's number is six times thirty-one squared I know how to call

Mary, according to both Moore and Konolige. And this prediction

is wrong. I have to figure out that six times thirty-one squared

is 5766 before I can call Mary, and if I don't have pencil and

paper handy it may not be easy to call her.

Even if these proposals could be made to work, they are not

satisfying. There is no apparent reason why having a standard

53

Bolt Beranek and Newman Inc. Report No. 5368

name should help you to perform an action. A better theory would

have more intuitive appeal. It would make us say wAh, now I see

why you need that piece of knowledge to perform that action.'

Let us return to our imaginary robot, and ask 'How would the

robot call Mary on the phone? At which point would he use his
knowledge of her phone number? 3 The robot can act only b~y

executing a program. He knows how to perform an action if he
knows what program he should execute to perform that action.

* Since programs are expressions of the internal language, there is

no mystery about when the robot knows what program to execute. He

knows what program to execute if he has the quote name of the

program. From the quote name he can reconstruct the program

itself ; he can then proceed to execute it. Our problem is then to

show that the robot can construct a program for dialing Mary's

number if he knows the arabic numeral for Mary's number. I

Intuitively it is obvious why you need to know the arabic
numeral for Mary's number to call her. Telephones have arabic
numerals printed on their dials. You use those numerals to
identify the right holes to put your finger in. if phones had

roman numerals printed on them instead, you would need the roman

numerals for Mary's number to call her, We must reconcile this
common sense observation with the claim that the robot knows how

4 to dial Nary's number if he knows what program to execute in
order to dial Mary's number.

The robot performs physical actions by sending commands to
his effectors. These are devices that accept commands in the
internal language as input, and produce physical actions as
output. A command is simply a sentence of the internal language
that describes the desired action. if the effectors perform this

action the sentence will be true.

~~~ ~54 -_ _ _



Report No. 5368 Bolt Beranek and Newman Inc.

Of course the effectors can only accept certain sentences as

commands. Even if two sentences describe the same action, it does

not follow that if the effectors can accept one sentence as a
command they can also accept the other. A real robot can turn one

joint of his arm through an angle of n degrees by putting a

binary numeral for n in a certain register. No other name for the

number n will do.

Actually the commands are not sentences but wffs. A sentence

that describes an action must give the time when the action was

performed. But when the robot sends a command to his effectors

he wants it carried out now; he does not need or want to specify

the time. So the robot uses the free variable "Vnown to stand for
the present time in commands to the effectors'. If the robot sends

a command to his effectors during interval I, the action will be
carried out during interval I. So the command will be satisfied

when the variable "Vnow" is bound to the interval I. "(CloseHand

Robot I) means that the robot closes his hand during interval

I. The robot uses his selfname to refer to himself in commands to

his effectors. So he sends the wff "(CloseHand Me Vnow)' to his

effectors when he wants to close his hand. w(command Robot w W

means that the robot sends wff w to his effectors during interval

i. So the robot believes
(all i (command Me '(CloseHand Me Vnow) i) -> (CloseHand Me i))
This sentence says that if the robot commands his hand to close,

it will close.

Let us return to the phone dialing problem. Suppose for

simplicity that the phone has push buttons rather than a dial. To

wdial" Mary's number the robot must tell his hand which buttons

to push. The robot's hand is presumably guided by his eye. We

assume that the problem of hand-eye coordination is handled by

55



Bolt Beranek and Newman Inc. Report No. 5158

." -

low-level routines that do not concern us. All the robot has to
do to direct his hand to a certain object is to supply the
coordinates of that object in the visual field. As mentioned
above, the visual field is a rectangle, and the robot uses
Cartesian coordinates to specify positions in the visual field.
O(push Robot x y I)n means that during interval i the robot's

hand reaches out and pushes the object at coordinates (x,y) in

the robot's field of view. When the robot commands his hand to

push the object at coordinates (x,y), he uses arabic numerals to

specify the coordinates x and y. So if the robot issues the

command

('push 'Me (arabic x) (arabic y) 'Vnow)
his hand will push the object at coordinates (x,y).

When the robot points his eye at the buttons on the phone,
he will see the arabic numerals from 0 to 090 printed on the
buttons. As stated in section 3.1.2, the sensors will report that
a numeral n is written at coordinates (x,y) by producing the

sentence
('WrittenAt (quote n) (arabic x) (arabic y) 'Interval99)

The numerals (arabic x) and (arabic y) are precisely the data
structures the robot needs to build a command that will cause his
hand to push the button with the numeral n printed on it. If the
sensors produce the sentence

(WrittenAt '5 128 100 Interval99)

the robot knows that the button with the numeral "5" printed on

it is at coordinates (128,100) in his field of view. He can push
it by issuing the command
(push Me 128 100 Vnow)

So assume that the robot is looking at the telephone. He can
dial the number "57660 by executing a program that looks roughly

like this:

56 i



Report No. 5368 Bolt Beranek and Newman Inc.

Scan until you receive a percept of the form
(WrittenAt '5 xl yl i);
Send the command (push Me xl yl Vnow);
Scan until you receive a percept of the form
(WrittenAt '7 x2 y2 i);
Send the command (push Me x2 y2 Vnow;
Scan until you receive a percept of the form
(WrittenAt '6 x3 y3 i);
Send the command (push Me x3 y3 Vnow);
Scan until you receive a percept of the form
(WrittenAt '6 x4 y4 i);
Send the command (push Me x4 y4 Vnow);

Now it is clear why the robot needs the arabic numerals for

the digits of Mary's phone number to construct a program for

dialing her number. He needs to find the the right buttons to

push, and he identifies them by the arabic numerals printed on

them. The robot cannot dial the number in a pitch black room.
Moore and Konolige treat dialing as a primitive action. They do

not mention that you have to look for the buttons with the right

numbers printed on them, so they do not predict any difficulty
about dialing a telephone in the dark. They can of course assert

that having light is a precondition of dialing. But it is better
to derive this precondition from the general rule that you can't

see in the dark.

3.5 Belief and Truth

Common sense says that snow is white if and only if it is
true that snow is white. One can formalize this idea with a Truth

Schema. For every sentence p, the sentence
('<-> ('true (quote p)) p)

is an instance of the Truth Schema. This schema says that the

truth of a sentence depends on the properties of the objects

57

1111w,



Bolt Beranek and Newman Inc. Repirt No. 5368

1mentioned in the sentence. For example, one instance of the Truth
Schema is the sentence
(true ('white 'snow)) <-> (white snow)

which says that the sentence "(white snow)" is true if f snow is
white.

Now we can formalize the inferences involving truth in

section 1.2. The following inference is correct:

John believes that gold is an element.
Everything that John believes is true.

Gold is an element.

The formal translations of the premisses are:

(believe John ('element 'gold) I)
(all x (believe John x I) -> (true x))

These sentences entail

(true ('element 'gold))

The following is an instance of the truth schema:

(true ('element 'gold)) <-> (element gold)

The last two sentences entail
(element gold)

that is, gold is an element.

The Truth Schema captures our intuitions about truth nicely.

Unfortunately, our intuitions about truth are not consistent.
The problem is the celebrated liar paradox. Suppose I say "This
statement is false". If the statement is true, it is false; and
if it is false, it is true. We can get a formal version of this
contradiction by assuming

p - '(- (true p))
The following is an instance of the Truth Schema:

(true '(- (true p))) <-> ( (true p))

Substituting equals gives

56

.... ...



Report No. 5368 Bolt Beranek and Newman Inc.

(true p) <-> (- (true p))

which is an obvious contradiction.

How we deal with this problem depends on what we think the

goal of Artificial Intelligence is. If we are trying to make

machines as intelligent as possible, we must abandon the Truth

Schema and look f or a new schema that can handle the Liar

sentence without contradiction. There are several ways to do

this. For example, see [15].

On the other hand, if we are trying to make machines as

intelligent as people, we don't want to give them a solution of
the Liar Paradox even if we know of one. ordinary people can't

resolve the Liar Paradox; they can only note that it is a

paradox, and go on using the Truth Schema as bef ore. If our

machines are only supposed to be as intelligent as ordinary

people, they should do the same. This does not mean that we
should put the Truth Schema into our logic and forget about the

matter. If we do that, we have no way of knowing when the

contradictions will appear or how much trouble they will cause.
Even if we find by experiment that no problem arises in this or
that application, we can't just ignore the problem. It is our

job, not just to build programs that work, but to understand why

they work. our task is not done until we answer the question "How

can machines (or people) get away with using an inconsistent
theory of truth?'.

Let us look again at the Liar example, p - ( (true p))

Suppose we try to discover whether this sentence is true by using

the usual Tarakian rules for assigning truth values, along with

the rule that (true x) is assigned the same truth value as x. The

sentence is the negation of '(true p), so to find its truth value

59

,NOW=



Bolt Beranek and Newman Inc. Report No. 5368

we must find the truth value of '(true p). To find the truth

value of this sentence we must find the truth value of p. But p

is the sentence we started with. The attempt to find the truth

value of p thus leads to an infinite recursion. A sentence is

called grounded if we can find its truth value by the given rules

without infinite recursion.

Kripke [9] pointed out that many quite ordinary utterances

can be ungrounded if circumstances are very unfavorable. Suppose

Joe Smith is walking down a road at noon on July 1, 1982. He sees

a sign by the road, too far away to read, and remarks 'The

statement on that sign is true.* He approaches the sign and

reads the words "The utterance of Joe Smith at noon on July 1,

1982 is false". If we attempt to find the truth value of this

sentence by usual rules we get an infinite recursion. But of
course the example was created only by assuming a very peculiar

road sign. Although many utterances could lead to this kind of

infinite recursion, in practice not many do.

In the appendix we will offer a formal definition of this

notion of a grounded sentence, and prove that in any model we can

choose the extension of the predicate "truew so that (true 'p)

<-> p holds for every grounded sentence. Since ungrounded
sentences seldom arise in practice, they are rare in the intended
model of the robot's beliefs. Therefore most instances of the

Truth Schema are true in the intended model. And that is why it

is safe for the robot to use the Truth Schema.

60

Jill!



Report No. 5368 Bolt Beranek and Newman Inc.

4. Conclusions and Further Work

This work makes three main improvements in the match between

theory and common sense. First, it does not predict that agents

instantly believe everything that can be proved from their

beliefs. It considers the agent's goals and his limited inference

ability before predicting that he will make an inference, and it

says that inference takes time. Second, it gives a better

account of what you must know about an object in order to know

what that object is. It says that you know what an object is if

you know enough about it to carry out your intended actions.
This is far from complete, but still a real improvement. Finally,

it gives a better account of when you need knowledge to perform
an action. it simply formalizes the obvious: robots perf orm

actions by sending commands to -effectors, and to ac~t they must

2. find out which commands will produce the desired actions.

These improvements have practical importance. A planner will

not get far if (following the situation theory) it thinks that

there is no point in planning to do inferences, since they all

happen instantly and automatically. Nor will an interactive
program do well if it thinks that a large mathematical expression

is a good answer to a user's question because it is a standard

name.

These improvements are all made in the same way: by

forgetting about alternative situations and going back to

familiar ideas from computer science. If an agent uses sentences

to represent his beliefs, and applies inference rules to them,

there is no reason to expect that he will believe all

consequences of his beliefs. If an agent acts by sending commands

to his effectors, then of course he must find out which commands

* 61



Bolt Beranek and Newman Inc. Report No. 5368

will produce the desired actions. Konolige took this line, but
he only went halfway - he returned to the situation theory in his

treatment of knowing what and knowing how. As a result, the
problems of the situation theory reappear in Konolige's theory.

There is also an important gain in the technique for
reasoning about another agent's inferences. The idea of building
a data base to represent another agent's beliefs has always

*appealed to AI workers. But it was not very useful with no way

to represent 'John knows what Mary's phone number is" in the data
base. The use of new constants to stand for unknown terms solves
this problem.

Further work on these lines could be of two kinds:

improvements in the theory, and applications of the theory. The
theory has a major shortcoming as it stands: unlike Moore's
theory, it does not include a formal theory of planning. Since my
treatment of time uses intervals, not situations, one cannot
simply add situation calculus. it would be straightforward to get
rid of the intervals and add situation calculus to the theory.
But situation calculus has its own problems, and people are
working on better treatments of time [16]). It would be nice to
keep the interval theory of time and find a planning theory based

on intervals rather than situations. This problem is tackled in

12,(11 and (5].

One could make several other extensions to the theory, but
real progress will come only from studying applications. A
program can use this theory in two ways: to reason about its own
beliefs and other people's. Planning programs need to reason
about their own beliefs so that they can plan to acquire

knowledge, either for its own sake or as a prerequisite to

62U



Report No. 5368 Bolt Beranek and Newman Inc.

further actions. Since most planning work to date has used
situation calculus, one might replace intervals with situations
before applying the theory to planning. The theory would then
allow a program to build plans involving perception,
introspection, inference and physical actions.

Reasoning about other people's beliefs is important in
interactive programs (whether or not they use natural language)
and in story understanding. With a good representation of belief
one can assert (for example) that agent A is lying to agent B,
while B realizes that A is lying but pretends to be fooled. Here
one would like to use knowledge of an agent's beliefs to predict
his actions, a topic considered in [4]. This type of application
should provide evidence for a better theory of knowing what.

Some people hope that AI programe in all domains can benefit
from knowledge about their own knowledge. One might express
heuristics by saying "This piece of knowledge is good for solving

this type of problem". One could describe a default by saying
"Assume that a human being has two arms unless you have knowledge
to the contrary", thus avoiding the pitfalls of non-monotonic
logic. These ideas are attractive but untested.

63

A *
NONE&



Bolt Beranek and Newman Inc. Report No. 5368

64



Report No. 5368 Bolt Beranek and Newman Inc.

5. Appendix: Proofs

5.1 The Reflection Schema is Correct

Before we can prove that the Reflection Schema is correct,

we must be more explicit about the structure of proofs and their

print names. A proof consists of a proof rule, a conclusion, and

zero or more subproofs. A proof rule that requires no subproofs
is an axiom schema.

The print names of proofs are formed as follows. Consider a
proof with rule R, subproofs P1 .. Pn, and conclusion q. There is

a function letter R' called the proof-building function letter
for R. R' denotes the function that takes proofs P1 .. Pn and a
sentence q, and returns the proof with rule R, sub-proofs P1 ...

Pn, and conclusion q. Then the term
(R' (PrintName P1) ... (PrintName Pn) (quote q))

is the print name of the proof with rule R, sub-proofs P1 ... Pn,

and conclusion q.

For example, consider a proof whose rule is Excluded Middle

and whose conclusion is (p V -p). It has no subproofs, since
~Excluded Middle requires no premisses to derive its conclusion.

Its print name is
(ExMiddle '(p V -p))
wExMiddlem is the proof-building function letter for the rule

Excluded Middle.

4 iIn section 3.2.2 1 outlined the proof that the Reflection

Schema is correct. The core of the argument was that substitution

maps proofs to proofs. Our proofs use the rules of first-order

77 ,65

I T ' , ': " , ' -'t -'i " .... i'i 'i I . .. : I l vI



Bolt Beranek and Newman Inc. Report No. 5368

logic plus the Truth Schema and the Reflection Schema. So we
should begin by picking a first-order proof system and showing
that substitution maps proofs to proofs in that system. There is
a minor difficulty here. Every first-order proof system has a

rule that allows us to prove (all x (p x)) by proving (p t)
without using any assumption that contains the term t. In some

systems the term t is a constant, in others a variable. We must
choose a system in which t is always a variable. For if t is a
constant, a substitution might introduce that constant into one

of the premisses used to prove (p t). In that case the conclusion

(all x (p x)) would not be allowed, and it would not be true that
substitution always maps proofs to proofs. So we must use a proof
system in which variables, not constants, are used to stand for
arbitrary objects. Given such a system, one can show by a

straightforward induction that substitution maps proofs to
proofs. I omit this argument.

Next consider proofs that use first-order rules and the
Truth Schema, but not Reflection. To show that substitution maps

proofs to proofs, we need only show that substitution maps
instances of the Truth Schema to instances of the Truth Schema.
If we allow arbitrary substitutions of closed terms for
constants, this is false. Consider a typical instance of the

Truth Schema:

(true ('white 'snow)) <-> (white snow)

Suppose we replace the constant "snow" with the constant "coal".

We get

(true ('white 'snow)) <-> (white coal)

This is certainly not an instance of the Truth Schema. We should
have replaced the constant O'snow" with n'coal" as well. Then we
would have gotten

(true ('white 'coal)) <-> (white coal)

which is an instance of the Truth Schema.

~66

,7 K



Report No. 5368 Bolt Beranek and Newman Inc.

To accommodate the Truth Schema, we must substitute (quote

c) for (quote d) whenever we substitute c for d. A substitution

that obeys this rule is called a Q-substitution. Let (quote'n e)

be the result of quoting expression e n times. So (quoteA2 OCO)

is "''CU, for example. If s is a substitution of closed terms

for constants, let (s e) be the result of applying s to

expression e. Substitution s is a Q-substitution if for all

expressions e and all integers n

12 (s (quoten e)) = (quote'n (s e))

A Q-substitution s is completely specified by the values of (s c)

for quoteless constants c. Given these values, equation (12)

determines the value of (s d) for every constant d.

Every instance of the Truth Schema has the form

('<-> ('true (quote p)) p)

If we apply a Q-substitution s, this becomes
('<-> ('true (s (quote p))) (s p))

By (12) this is

('<-> ('true (quote (s p))) (s p))

which is again an instance of the Truth Schema. Thus if we add

the Truth Schema to our first-order system, Q-substitution will

still map proofs to proofs. It remains to consider the Reflection

Schema.

If we add the Truth Schema to our proof system, the

Reflection Schema must have instances that describe proofs

involving the Truth Schema. For example, there should be an

instance of the Reflection Schema which says that for all x, the

sentence

13
('<-> ('true (''white (quote x)))

('white x)
)

______67



Bolt Beranek and Newman Inc. Report No. 5368

is an instance of the Truth Schema. Then if we let x - "coal", we

can infer that

('<-> ('true (''white (quote 'coal)))
('white 'coal))

is an instance of the Truth Schema. Since (quote 'coal) - ''coal,

this is equal to

('<-> ('true (''white ''coal))
('white 'coal)

)t

This term denotes the following sentence:

(<-> (true ('white 'coal))
(white coal))

It is clearly an instance of the Truth Schema.

We must change the definition of a wff schema so that (13)

is a wff schema. First, some notation. If t is a term,

("quotewAn t) is formed by prefixing the function letter "quote,

to the term t n times. Thus ("quote"A2 N(arabic N)") is "(quote

(quote (arabic N)))". A more exact definition of ("quoteAn t)

is: ("quoteAO t) is t, and (wquotewAn+l t) is ('quote ("quote"An

t)). Obviously if term t denotes expression e, then ("quotenAn t)
denotes (quoteAn e). We extend the function "quote" to handle

individual symbols as well as terms. If 1 is a symbol, (quote 1)
is 1 with a quotation mark prefixed. So for the connective "& we

have (quote 0&') - 0'&", and (quoteA2 "60) a ''&'. Finally, we

introduce a new notation for expressions of the object language.

If F is an n-adic functor and el ... en are expressions, <F el

en> is the expression with functor F and arguments el .. en.

The quote name of a wff includes the quote name of every

.1



Report No. 5368 Bolt Beranek and Newman Inc.

term in that wff. A wff schema is like the quote name of a wff
except that variables can appear instead of the quote names of
terms. To include (13) as a wff schema, we must generalize this
definition. A wff schema is like the quote name of a wff except

that expressions of the form ("quote"n v), where v is a
variable, can appear instead of the quote names of terms. We

must generalize the definition of a proof schema in the same way,
following our observation that a proof schema is to the print
name of a proof as a wff schema is to the quote name of a wff. A
proof schema is like the print name of a proof except that
expressions of the form ("quote"n v) can appear instead of the
quote names of terms. This definition is not completely precise,
but it is clear enough to support a convincing proof.

The typical instance of a proof schema is an instance formed

by binding its free variables to distinct new constants. If v is
a variable and e is an expression, (new v e) is a quoteless
constant that does not occur in e (including quoted occurrences).
If x is not equal to y, (new x e) is not equal to (new y e). Let
p be a proof schema. The typical instance of p is the denotation
of p in the environment that binds each variable v to (new v p).
I write (den t e) for the denotation of term t in environment
e. An environment is just a function from variables to values, so
the environment that binds each v to (new v p) is (lambda v. (new
v p)). If (typical p) is the typical instance of proof schema p,
we have

(typical p) - (den p (lambda v. (new v p)))
Let s be a Q-substitution, and (lambda v. (f v)) an environment
that binds each variable v to a closed term (f v). We apply a
substitution s to an environment by applying s to each binding in
that environment. That is,
14 (s (lambda v. (f v))) - (lambda v. (a (f v)))

69

* . : .; , . m. w , , , , - " ! -- - ..4 A ... , .



Bolt Beranek and Newman Inc. Report No. 5368

As stated in 3.2.2, we must show that if the typical instance of
a proof schema is a proof, every instance is a proof. The
following lemma is the basis of the argument.

Lemma 1. If p is a proof schema, E binds variables to closed

terms, and s is a Q-substitution, then (s (den p E)) - (den (s p)
(a E)).
Proof. By induction on sub-expressions of p. It is clear from the

definition of the print names of proofs that they contain only
two kinds of symbols: quoted function letters and proof-building
function letters. A proof schema is like the print name of a

proof except that it can contain terms of the form ("quote* n v),
where v is a variable. So a proof schema can contain four kinds

of symbols: quoted function letters, proof-building function
letters, variables, and the function letter "quote". For the
base case, we consider a sub-expression of p that has no sub-
expressions of its own. It must be either a quoted constant or a
variable. If it is a quoted constant, say (quote c) for some

constant c, we have

(s (den (quote c) E))
(s c) (quote x) denotes x
(den (quote (s c)) (s E)) (quote x) denotes x
(den (s (quote c)) (s E)) s is a Q-substitution

If the sub-expression is a variable v, we have
(s (den v E))
(den v (s E)) defn. of (s E)
(den (s v) (s E)) (s v) - v

For the induction step we consider a sub-expression of the form
<F al ... an> - the expression with function letter F and

arguments al ... an, where n > 0. The function letter F is either

a quoted function letter, a proof-building function letter, or
the function letter "quotew. Let f be the function denoted by
the function letter F. We prove

15 (s (f al ... an)) =(f (s al) ... (s an))

70

I &Kk



Report No. 5368 Bolt Beranek and Newman Inc.

If F - (quote G), where G is a functor, we must prove

(s <G al ... an>) - <G (s al) ... (s an)>

Since G is not a constant, this follows at once from the

definition of substitution. If F - "quotew we must prove

(s (quote e)) - (quote (s e))

which is true because s is a Q-substitution. Suppose F is the

proof-building function letter for the proof rule R. We must

prove that applying a substitution s to the proof with rule R,

sub-proofs P1 ... Pn, and conclusion c yields the proof with rule

R, sub-proofs (s P1) ... (s Pn), and conclusion (s c). This is

true by definition - substitution into proofs is defined
component-wise.

With equation (15) we can easily do the induction step.

(s (den <F al ... an> E))
(s (f (den al E) ... (den an E))) defn. of denotation
(f (s (den al E)) ... (s (den an E))) (15)
(f (den (s al) (s E)) ... (den (s an) (s E))) induction hyp.
(den <F (s al) ... (s an)> (s E)) defn. of denotation
(den (s <F al ... an>) (s E)) F not a constant

This completes the proof of Lemma 1.

Lemma 2. For every proof schema p and Q-substitution s, there is

a Q-substitution s' such that (typical (s p)) - (s' (typical p)).

Proof: The substitution s' is like a except that it replaces the

new constants of p with the new constants of (s p). If c is a

quoteless constant in p,

(s' c) a (s c)
If v is a free variable in p,

(s' (new v p)) a (new v (a p))

These requirements are consistent, because the (new v p)'s are

all distinct from each other and from every constant in p. Since

(a' c) - (e c) for each constant c in p, (a' p) - (a p). Then

71



Bolt Beranek and Newman Inc. Report No. 5368

(s'(typical p))
(s' (den p (lambda v. (new v p)))) defn. of typical
(den (s' p) (a' (lambda v. (new v p)))) Lemma 1
(den s' p) (lambda v. (s' (new v p)))) (14)
(den (s' p) (lambda v. (new v (s p)))) defn. of s'
(den (s p) (lambda v. (new v (s p)))) (s' p) - (s p)
(typical (s p)) defn. of typical

This completes the proof.

An instance of Reflection contains a proof schema, which has a

typical instance. This typical instance is itself a proof and

may use Reflection. We define the depth of nesting of Reflection

in a proof in the obvious way. The depth of nesting is 0 in a

proof that does not use Reflection. Suppose P is a proof

containing Reflection steps, and P1 ... Pn are the typical

instances of the proof schemas appearing in these Reflection

steps. Then the depth of P is one plus the maximum depth of P1

Pn. Now we prove

Lemma 3. If P is a proof, and s is a Q-substitution, then (s P)
is a proof.

Proof: By induction on the depth of nesting of Reflection.
Suppose the depth of proof P is n, and the theorem holds for all
proofs of depth less than n. We have already shown that the non-
Reflection steps in (a P) must be correct. Consider a Reflection
step in P; it contains a proof schema p. (typical p) is a proof
(otherwise P would not be a proof), and its depth is less than
n. The corresponding Reflection step in (s P) has the proof
schema (a p) and the typical instance (s' (typical p)), which is
a correct proof by induction hypothesis. Therefore every
Reflection step in (s P) is correct, and (a P) is a proof.

We need one more lemma.
Lemma 4. If p is a proof schema, and E is an environment that
binds variables to closed terms, there is a Q-substitution a such

that (den p E) - (a (typical p)). That is, every instance of pj can be formed by substituting into the typical instance. i

72

iI -. ',



Report No. 5368 Bolt Beranek and Newman Inc.

Proof: Suppose the environment 9 binds each variable v to a
closed term (f v).* For every variable v, let

(a (new v p)) - (f v)
For all other x, (s x) - x. This is a good definition, because if

v is not equal to w, (new v p) is not equal to (new w p). (s p)

p, since none of the (new v p)'s occur in p. Then

(s (typical p))
(s (den p (lambda v. (new v p))) defn. of typical
(den (s p) (s (lambda v. (new v p)))) Lemma 1.
(den (a p) (lambda v. (s (new v p)))) (14)
(den (a p) (lambda v. (f v))) defn. of s
(den p (lambda v. (f v))) (s P) - P
(den p E) defn. of (f v)

This completes the proof.

Now we can easily prove

Theorem 1. If p is a proof schema, and the typical instance of p
is a correct proof, all instances of p are correct proofs.

Proof. The typical instance of p is a proof P. If P' is any

instance of p, by Lemma 4 there is a substitution s such that (s

P) - P1, so by Lemma 3 P' is a proof. Therefore every instance of

p is a proof.

5.2 The Truth Schema Holds for Grounded Sentence.

Intuitively, a sentence is grounded if we can find its truth

value by the obvious rules without entering an infinite
recursion. As a first step in formalizing this notion, let us

recall the definition of "infinite recursion" for programs. We

def ine the notion of a recursion of depth n by induction. if the

execution of a program does not involve any recursive calls, it
in of depth 0. If it involves recursive calls of depths n1l .

73



Bolt Beranek and Newman Inc. Report No. 5368

nk, its depth is 1 + (maximum nl ... nk). The execution involves

infinite recursion if it is not of depth n for any integer n.

Suppose we try to extend this definition to truth value
assignments. Consider the rule -f or assigning a truth value to
(all x (P W). It checks the truth value of (P x) for each choice

of x. in the domain of the model. Suppose that each of these truth

values can be found with a finite depth of recursion. Then
certainly there is no infinite regress involved in finding the
truth value of (all x (P x)). Yet we cannot define- the depth of
recursion of (all x (P x)) to be the maximum depth of (P x) for
any binding of x. It may be that the model contains infinitely
many values for x, and the depth of (P x) can be made arbitrarily

large by suitable choice of x. In that case the maximum is not
defined.

This problem arises because a set of integers need not have

an upper bound in the integers. We can solve it by using infinite
ordinals to measure the depth of recursion. Every set of ordinals
has an upper bound in the ordinals, so we can define the depth of

recursion of (all x (P x)) to be the maximum depth of (P x) for
any x in the domain of the model.j

ii A partial model of a language assigns a denotation to every

function and predicate letter except "true". This leaves us free
to determine the truth value of (true p) by checking the truth
value of p. if p is a wff and e is an environment, the pair [p el

is called a closure. Given a partial model, we can attempt to
find the truth value of a closure [p el by recursively applying
the truth value rules. if the recursion terminates at depth n
with truth value v, the closure has truth value v at level n. If
the recursion never terminates, the closure has no level and no

74



Report No. 5368 Bolt Beranek and Newman Inc.

truth value - it is ungrounded. We define the truth value and

the level of [p el by the following rules. (If e is an

environment, e(v/x) is the environment like e except that the
variable v is bound to x.)
If p is an atomic wff whose predicate is not "true", [p e] has
the usual truth value at level 0.
If (p e] has truth value T at level n, [-p e] has truth value F

at level n+l.
If [p el has truth value F at level n, -p has truth value T at

level n+l.

If (p el and [q e] have truth value T at levels nl and n2, then
[p & q el has truth value T at level (maximum nl n2) + 1.
If either [p el or [q e] has truth value F at level n, then [p &
q el has truth value F and level n+l.

If for every x, [p e(v/x)] has truth value T at level f(x), then
[(all v p) e] has truth value T, and its level is the least
ordinal greater than every f(x).
If for some x, [p e(v/x)] has truth value F at level n, then

[(all v p) el has truth value F at level n+l.
If the denotation of term t in environment e is sentence p, and.p

has truth value T at level n, then [('true t) e ] has truth value
T at level n+l. Likewise if p has truth value F.
It is easy to see that for wffs that do not mention the predicate
"true*, these rules reduce to the ordinary Tarskian rules for

truth assignment.

We say that a closure (p e] is grounded if it has a truth
value at some level. We can easily see that p - (I- ('true 'p))
has no truth value any level. For if it has a truth value there

is a least ordinal at which it has a truth value, and by the

rules for assignment to -q and (true x), the sentence denoted by

p must have a truth value at a lower level. The sentence denoted

75



Bolt Beranek and Newman Inc. Report No. 5368

by p is of course the sentence we started with, so this
contradicts the assumption that we have found the least ordinal

at which p has a truth value.

We must check that the rules assign unique truth values.

Lemma 4. Every closure has at most one truth value.
Proof. It suffices to prove that for every ordinal n, no closure
has two truth values at levels less than or equal to n. The
argument is by induction on n. The case n - 0 follows at once
from the first clause of the definition. For n > 0, consider a
closure of the form [p & q e]. Assume the theorem is false, and
[p & q e] has truth values T and F at ordinals less than or equal
to n. Then [p e] and [q el have truth value T at ordinals less
than n, and either [p e] or [q e] has truth value F at some
ordinal less than n. So either [p e] or [q e] has two truth

values at ordinals nl and n2 less than n. Then the greater of nl

and n2 is a counter-example to the induction hypothesis. So our
assumption is false - [p & q e] does not have truth values T and
F at ordinals less than or equal to n. The remaining cases are
similar.

Given a partial model M, we can construct an ordinary first-
order model N' by setting the extension of the predicate "true'
to the set of all sentences that have truth value T at some

level.

Lemma 5. If [p el has truth value T (or F) at level n, its truth
value in M' is T (or F).
Proof: By induction on the structure of wffs. Consider an atomic
wff whose predicate is not "true". Then by the first clause of
the definition, if it has truth value T (or F) at some ordinal,
it has truth value T (or F) in M'.

76

sod=.



Report No. 5368 Bolt Beranek and Newman Inc.

Consider next a closure of the form [('true x) el. If it has

truth value T at some ordinal, the denotation of x in environment

e has truth value T at some ordinal, so the denotation of x in

environment e is in the extension of "true" in M'. Hence [('true

x) el has truth value T in M'. By the same argument, if [('true

x) e] has truth value F at any ordinal, it is assigned F in M'.

Next consider the conjunction p & q. If it has truth value T

at some ordinal, p and q are assigned T at some ordinals, so by

induction hypothesis they are assigned T in M'. Hence p & q is

assigned T in M'. If p & q has truth value F at some ordinal,

either p or q has truth value F at some ordinal, so by induction

hypothesis either p or q is assigned F in M'. Therefore p & q is

assigned F in M'. The remaining cases are handled in the same

way.

Lemma 6. If p is grounded, the truth value of p in M' is the

truth value of ('true (quote p)) in M'.

Proof: Since p is grounded, it has a truth value V in M, and by

Lemma 5 its truth value is V in M'. The truth value of ('true

(quote p)) in M is also V, by definition. Then the truth value of
('true (quote p)) in M' is also V.

This at once entails

Theorem 2. For any partial model M, if p is a grounded sentence,
the sentence
('<-> ('true (quote p)) p)

is true in M'.

We have shown that, given the extensions of the other

symbols in our language, we can choose the extension of the

predicate "true" so that the Truth Schema is correct for every

grounded sentence. Thus the inconsistency of the Truth Schema

arises only when dealing with ungrounded sentences.

77

.~~~~ .. . ... .



Bolt Beranek and Newman Inc. Report No. 5368

78



Report No. 5368 Bolt Beranek and Newman Inc.

6. Acknowledgements

I acknowledge my thbsis advisor, James Allen, for guidance

over the last four years. I thank David Israel for making me see

that this theory rests on the implausible but useful assumption

that all agents have the same knowledge representation language.

without the work of Don Perlis on theories that contain their own

truth predicate, I would have no answer to the objection that

self-describing languages are inconsistent.

79



Bolt Beranek and Newman Inc. Report No. 5368

REFERENCES

[1] Allen, James.
A General Model Af Action And 2i=.
Technical Report, Department of Computer Science,

University of Rochester, September, 1981.

[21 Creary, L. G.
Propositional Attitudes: Fregean Representation and

Simulative Reasoning.
TI C-6:176-181, 1979.

[3] Fodor, J.A.
Representations.
Bradford Books, Montgomery, Massachusetts, 1982, chapter

Three Cheers for Propositional Attitudes.

[4] Haas, Andrew.

P Mental Actions.
PhD thesis, Department of Computer Science, University of

Rochester, 1982.

[51 Haas, Andrew.
What Robots Do and What Robots Can Do.
1983.

[6] Hintikka, J.
Semantics for Propositional Attitudes.
In L. Linksy (editor), afaraen and Modality, pages

145-167. Oxford University Press, London, 1971.

[7] Kaplan, D.
Quantifying In.
In L. Linsky (editor), R And Modality, pages

112-144. Oxford University Press, London, 1971.

[8] Konolige, K.
A irst-Order Formalization of Knowledge And Action f=r A

* ~Multi-AgS= Planning Sysaom.
Technical Report 232, SRI International, 1980.

[9] Kripke, Saul.
Outline of a Theory of Truth.
journal .L Philosphy 72(13), 1975.

[10] Lycan, William G.
Towards a Homuncular Theory of Believing.

s

80



Report No. 5368 Bolt Beranek and Newman Inc.

tognitijn Aad Brain Theory 4(2):139-157, 1981.

[11] McCarthy, John.

Halsted Press, New York, 1979, pages 120-147chapter First-Order Theories of Individual Concepts and Propositions.

[12] McDermott, Drew.
A TemRor1a Logic fo= easoning About Prc e And Plans.Technical Report 196, Department of Computer Science, YaleUniversity, March, 1981.

[13] Moore, Robert.
Reasoning About Knowedg And Action.
Technical Report 191, SRI International, 1980.

[14] Moore, Robert, and Hendrix, Gary.
Computational M ]of B lief iAnd Semantis Af Relief
Technical Report 187, SRI International, 1979.

[151 Perlis, Donald.
Truth, Sytax and Reason.
PhD thesis, Department of Computer Science, University of

Rochester, 1980.

[16] Vilain, Marc.
A System for Reasoning About Time.
In LP.r t in"a of the I98 Nationa Confrence 2n
Ariial Inteignce, pages 197-201. AAAI, 1981.

81

72 

'

.... ~~~~~ ~ ~ ~~ ~~~~~ 1, 11.. . rim, ' " ! " - . .- "'- . . . ..



ii

Official Distribution List

Contract N00014-77-C-0378

Copies

Defense Documentation Center 12
Cameron Station
Alexandria, VA 22314

Office of Naval Research 2
Information Systems Program
Code 437
Arlington, VA 22217

Office of Naval Research
Code 200
Arlington, VA 22217

Office of Naval Research
Code 455
Arlington, VA 22217

Office of Naval Research 1
Code 458
Arlington, VA 22217

Office of Naval Research
Branch Office, Boston
495 Summer Street
Boston, MA 02210

Office of Naval Research 1
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

Office of Naval Research 1
Branch Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

Naval Research Laboratory 6
Technical Information Division
Code 2627
Washington, D.C. 20380

cont'd.

N a



-2-

Naval Ocean Systems Center
Advanced Software Technology Division
Code 5200
San Diego, CA 92152

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps

(Code RD-I)
Washington, D.C. 20380

Mr. E. H. Gleissner
Naval Ship Research & Development Ctr.
Computation & Mathematics Dept.
Bethesda, MD 20084

Capt. Grace M. Hopper, USNR
Naval Data Automation Command
Code OOH
Washington Navy Yard
Washington, D.C. 20374

Mr. Paul M. Robinson, Jr.
NAVDAC 33
Washington Navy Yard
Washington, D.C. 20374

Advanced Research Projects Agency
Information Processing Techniques
1400 Wilson Boulevard
Arlington, VA 22209

Capt. Richard L. Martin, USN
507 Breezy Point Crescent
Norfolk, VA 23511

Director, National Security Agency
Attn: R54, Mr. Page
Fort G.G. Meade, MD 20755

Director, National Security Agency
Attn: R54, Mr. Glick
Fort G.G. Meade, MD 20755

Major James R. Kreer
Chief, Information Sciences
Dept. of the Air Force
Air Force Office of Scientific Research
European Office of Aerospace

Research & Development
Box 14
FPO New York 09510

cont'd.



-3-

Mr. Fred M. Grif fee
Technical Advisor C3 Division

~'I Marine Corps Development
Education Command

Quantico, VA 22134

................... .... ...... AWL



FIME


