AD-A133 805 THE SYNTACTIC THEORY OF BELIEF AND KNOWLEDGE(U) BOLT
BERANEK AND NEWMAN INC CAMBRIDGE MA A R HAAS SEP 83
BBN-5368 N00014-77-C-0378

UNCLASSIFIED

Bare
FILMED

BTIC

2.8 'g

1.0
fls £ i

TFFEFEREE R

o F
= |
ks flis e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANOARDS - 1963~ A

P SO AP
iy AT s e
R ASh: 7 -, a2 At

Bolt Beranek and Newman Inc.

AD-A\3390S5

Report No. 5368

The Syntactic Theory of Belief and Knowledge

Andrew R. Haas

September 1983 DTI c

ELECTE
OCT 2 4 1983

Prepared for:
Defense Advanced Research Projects Agency B

DISTRIBUTION STATEMENT A

Approved for public release} i
Distribution Unlimited

DTIC FILE Copy

83 - 10 17 039

e I

-

SECURITY CLASHPICATION OF TuiS PAGE ("hen Date Entered)

REPGRT DOCUMENTATION PAGE | BEPORE oL e o
. Y. REPORT NUMBER . GOVY ACCESHON NOJ L RECIPIRNE'S CATALOG NUMBER
BBN Report No. 5368 A\ j Qg
.] 4. TITLE (and Subtitle) S. TYPE OF REPORT & PEMOD COVERED
. -
) THE SYNTACTIC THEORY OF BELIEF AND Technical Revort
£ KNOWLEDGE 6. PERFORMING ORG. REPORT NUMBER
BBN Renort No. 5368
(7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(s)
i N00014-77-C-0378
s Andrew R. Haas N00014-78-C-0164
‘ mmc ORGANIZATION NAME AND ADORESS mﬁn—'

REA & (]
Bolt Beranek and Newman Inc. A ¢ WoRk umIT numeen

10 Moulton Street
Cambridae, MA 02238

1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
¥ Office of Naval Research Sentember 1983
g . Department of the Navv " NUMBED oF Paces
: TAWBI‘TM_M'L WMONITORING AGENCY MAME & ADORESS(! dillerent fram Contreliing Office) | 18. SECURITY CLASS. (of this report)
1 Unclassified
i 86, DECLASHIFICATION/ DOWNGNADING |
D SCHEDULE

76, OISTRIBUTION STATEMENT (of thie Report)

Distribution of this document is unlimited. It mav be
released to the Clearinchouse, Devartment of Commerce,
1 for sale to the general nublic.

17. DISTRIBUTION STATEMENT (of the abetract entered in Bleck 30, it difterent fram Repert)

10. SUPPLEMENTARY NOTES
This research was supported in vpart by the National Science
Foundation, the Office of Naval Research, and the Defense
Research Projects Agencv.

19. KEY WORDS (Continue on reverse side if nocessary and idontily by bleck mumber)

J Knowledge Renresentation, Belief, Propositional Attitudes,
Intropsection, Quantifying In

-
20. ABSTRACT (Centinwe en reverse gide if necoseary and idontity by block mumber)

If we assume that beliefs are sentences of first-order
logic stored in an agent's head, we can bhuild a simnle and
intuitivelv clear formalism for reasoning about beliefs.

I avoly this formalism to the standard logical nrobhlems
about belief, and use it to describe the connections between
belief and planning.

ronm . os
DD a7 1473 soimion oF 1 nov 68 13 ossOLETE Unclassified
SECURITY CLASSIFICATION OF Tt =h¢i (When B:. Entered)

Report No. 5368

THE SYNTACTIC THEORY OF BELIEF AND KNOWLEDGE

Andrew R. Haas

September 1983

Prepared by:

Bolt Beranek and Newman Inc.
10 Moulton Street
Cambridge, Massachusetts 02238

Prepared for:
Defense Advanced Research Projects Agency

The work described herein was supported in part by the National
Science Foundation IST-8012418, the Office of Naval Research
N00014-8-C-0197, and the Defense Advanced Research Projects
Agency, N00014-78-C-0164 and N00014-77-C-0378. The views and
conclusions in this document are those of the author and should
not be interpreted as necessarily representing the official
policies, either expressed or implied, of the sponsoring
agencies or the U.S. Government.

P e
4 Report No. 5368 Bolt Beranek and Newman Inc.
|
TABLE OF CONTENTS
Page
& l. Belief and Knowledge in Artificial Intelligence 3
é 1.1 Representation and Search 3
B 1.2 Some Inferences About Belief and Knowledge 4
g 1.3 The Situation Theory 10
j 2. The Syntactic Theory 15
;|
2.1 A Robot and His Beliefs 15
2.2 Formalizing the Syntactic Theory 16
3. Applying the Syntactic Theory 25
3.1 Observation 25
3.1.1 Time 25
3.1.2 Perception 28
3.1.3 Retrieving Beliefs From Memory 30
3.1.4 Introspection 32
3.2 Inference 35
3.2.1 Wwhat Do John's Beliefs Entail? 35
3.2.2 The Reflection Schema 38
3.2.3 What Can John Infer from His Beliefs? 46
3.3 Knowing What 50
3.4 Knowing How 53
3.5 Belief and Truth 57

-—

y
- e, PROThah B3 0 1 A
BRI LG Ep M P R

Bolt Beranek and Newman Inc.

4. Conclusions and Purther Work

5. Appendix: Proofs

5.1 The Reflection Schema is Correct

Report No. 5368

5.2 The Truth Schema Holds for Grounded Sentences

6. Acknowledgements

ii

yoa t.
A b
R &

P

i

|
|—

..———_——“'—-'
Accession For
| NTIS GRARL
i

TTIC TAB .
Ungnv‘)oﬂﬂb(’d Lj
Juatif eat i oN m———

o ey

By.*_,,,,-A,_,_____..
Distrilw ion/
Availebility Codos
Avail and/or
Dist Special

61

65

65
73

79

o
é’"c "y

-,

. ’ PR) -
LIS Sl - gis e gt - $ HRTYR. R shd ; g *"
S AR A BRI S e W

AR

e el

Report No. 5368 Bolt Beranek and Newman Inc.

ABSTRACT

If we assume that beliefs are sentences of first-order logic

stored in an agent's head, we can build a simple and intuitively

clear formalism for reasoning about beliefs. I apply this
formalism to the standard logical problems about belief, and use
it to describe the connections between belief and planning.

‘ Bolt Beranek and Newman Inc. Report No. 5368

< e S e cobaA e st g gttt <2 i T e A e e L

Report No. 5368 Bolt Beranek and Newman Inc.

1. Belief and Knowledge in Artificial Intelligence

1.1 Representation and Search
N

"\rtificial Intelligence programs must have common-sense
knowledge. This includes knowledge about beliefs and knowledge
A program must be able to understand that Bill believes my/s
phone number is 5766, or that John knows the name of every person i
& in the department. If a program is supposed to understand these
s ' facts, it should be able to make the right inferences from them.
If Bill knows that Mary's phone number is 5766, he knows what
Mary's phone number is., If a program thinks that ‘Bill knows that
b ! Mary's number is 5766, the program should be able to infer that
Bill knows what Mary's number is. <“If we have a knowledge
representation that can represent facts about beliefs and
knowledge, and an adequate set of inference rules, we have taken
the first step in building a program that can reason about
4 beliefs and knowledge. The next step is to devise a search
f strategy: an algorithm that decides which inference rules to
i apply to which expressions to solve a proble&

- e e
e

“Nrhis paper— wih_boutffﬁﬁ:é:‘fi'gt/ step. _IE —proposes a
representation and inference rules for reasoning about belief and _
knowledge. Section 1.2 presents examples of sound and unsound '
inferences\about belief and knowledge. The problem is to allow
all the sound inferences and rule out the unsound ones. The best
treatment to date is Moore's [13], and I discuss his successes
and failures. Section 2 presents the syntactic theory of belief
and shows how to formalize it. Section 3 i§3‘ﬁxe core of the
| paper}v“& gseries of examples of representation and inference in_}i

. & -
(8 TS P

b onae— gy

X
oF

Bolt Beranek and Newman Inc. Report No. 5368

the formal system. These examples describe the processes that
create, store and use beliefs and knowledge. Perception,
introspection, memory, inference and planning are all considered.
Finally there is an appendix with proofs that the formalism works
as claimed.

Recent work has made great improvement in AI theories of
belief and knowledge, but they still have serious problems. For
example, Moore's theory predicts that agents always know every
logical consequence of their knowledge. This theory tries to
solve the problems by formalizing familiar ideas from computer
science. For example, it says that sentences stored in an agent's
memory represent his beliefs. It gives better answers to several
guestions: When does an agent need knowledge to perform‘ an
action? what can an agent infer from his beliefs? what must you
know about an object in order to know what that object is?

1.2 Some Inferences About Belief and Knowledge

Let us consider some examples that show why reasoning about
beliefs is hard. For one thing, the familiar rule of substitution
of equals does not apply when one of the equals appears inside
the scope of the verb "believe". For example, the following
inference is not correct.

John believes that Mary's phone number is 444-1212.,
Bill's phone number is Mary's phone number.

John believes that Bill's phone number is 444-1212.

It is easy enough to forbid the substitution of equals when one

s,

.

Report No. 5368 Bolt Beranek and Newman Inc.

of the equals appears inside the scope of "believe", but this is
not very satisfying. One would like an explanation of why
substitution of equals does not apply.

The following inferences are correct:

John knows that snow is white.

John believes that snow is white.

John knows that snow is white.

Snow is white.

That is, all knowledge is true belief. On the other hand, not all
true beliefs are knowledge. Suppose somebody predicts that a
horse will win a race when the odds are 30 to 1 against it. Sure
enough, the horse wins. We might ask "How did he know the horse
would win?" It would make sense to answer “He didn't know, it was
just a lucky guess.®” That is, a true belief might not count as
knowledge if there is no good reason for the belief. I will not
consider this problem further. Suffice it to say that all
knowledge is true belief.

The following inference is correct.

John knows that Mary's phone number is 444-1212.

John knows what Mary's phone number is.
But this one is not necessarily correct:

John knows that Mary's phone number is Bill's phone number.

John knows what Mary's phone number is,

-

. -
e Yo 1o

v 5 b e 2 m - - S e oAt b b AR ——

Bolt Beranek and Newman Inc. Report No. 5368

This raises the question: when does John's knowing that X is N
entail that John knows what X is? The noun phrases "444-1212" and
"Bill's phone number"™ both denote Mary's phone number, but
knowing that Mary's number is Bill's number does not count as
knowing what Mary's phone number is. In some sense the phrase
"Bill's phone number" does not contain enough information, but
it's hard to clarify this.

Context helps to decide what knowledge about X counts as
knowing what X is. Suppose that you and John are staying at a
hotel in a strange city, and you go out for a walk. After a while
John asks "Do you know where we are?" You realize that you're
completely lost, and answer "No." Seeing a telephone you decide
to call Mary and ask for directions, She answers and says "Do you
know where John is? I need to talk to him right away." You answer
"Yes, he's right here" and hand him the phone., When John asked if
you knew where he was you said no; a moment later you answered
yes to the same question.

If you had answered John's question with "Yes; we're right
here", he would not have been amused. John wanted information
that would help him to get back to the hotel. Mary wanted
information that would help her to get in touch with John, and
for that purpose "right here"™ was a useful description of John's
location.

One clue to the problem of "knowing what"™ comes from the
problem of “knowing how". The following inference is correct:

John knows that Mary's number is 444-1212.
John knows how to dial a telephone.

John knows how to dial Mary's number.

This one is not:

-

)

) S

e .

W coonntl WUN auuni, T autul

Report No. 5368 Bolt Beranek and Newman Inc.

John knows that Mary's number is Bill's number,
John knows how to dial a telephone.

John knows how to dial Mary's number.

We saw that if you have the name "444-1212" for Mary's number you
» know what her number is, but not if you only have the name
% "Bill's number®. Similarly, if you have the name "444-1212" for
: ; Mary's number you know how to dial the number, but not if you

ﬁ ‘ only have the name "Bill's number®. It is tempting to connect
these two facts. In any case a theory of belief and knowledge
must say something about what knowledge is needed to perform
actions., So the theory of belief and knowledge is connected to
the theory of planning.

-? The problem of "knowing what" is closely related to the so-
9 called de re statements about belief. Suppose you see Jobn in a
restaurant with a woman you don't know, and you think "That must
be John's wife". Later you find she was his sister. You might
say "I thought John's sister was his wife." The following
inference is correct, at least in some contexts:

i

I thought John's sister was an accountant.

I believed the statement "John's sister is an accountant®.

But the following is surely not correct in this context:

I thought John's sister was his wife,

I believed the statement "John's sister is his wife".

In this case the example seems to mean about the same as "I saw

T . -)

g R et S o e, [PRt > LY) AN A v ¢ ' S L g, 5 g
Vv . R ¥ " ,ghv' ‘V:«".“\"‘.’a‘ P £ . : L sl " X ’ “{_}ﬂ '“

o A .&

TR

Bolt Beranek and Newman Inc. Report No. 5368

John's sister and thought she was his wife". The speaker uses the
description "John's sister® to identify the woman he took for

John's wife. Such statements are called de re reports of belief
or knowledge.

Truth is a crucial property of beliefs. Our theory must
explain inferences like this:

i
4
; John believes that gold is an element, L
‘ Everything that John believes is true.

Gold is an element.

_“'—"l

If we know that someone's beliefs are true, we can jinfer things
about the objects those beliefs refer to. We can also reason in
the other direction: if an object has certain properties, then
certain beliefs about it are true.

g1 gt

b &

Coal is black. o
John believes that coal is black.

John believes something true.

Common sense says that we think about objects outside our heads,
1 and that our beliefs about them can be right or wrong.

People use their beliefs to infer new beliefs. What they]
infer depends on what problems they want to solve and how hard 1
they think. For example, the following inference is very 1
plausible.

e < < -

! ~— } R
AP . - Y -+ . ive- - el B i G AR A
.. -— - ; X . e - o W . Caaane RS TOP AR e B8 AT T
e N A R Y . . hrkmaers LA NN AR A B R 2t 2 AP RS TN e P TN - PR
[o A 5 W B K .S Ry B . i 1 3 . |
v - W, -, w P oy .

g .
s, oEEy Y
LI

58 ks

Report No. 5368 Bolt Beranek and Newman Inc.

John knows that Mary's number is 5766.
John knows that Mary's number is Bill's number.
John is trying to figure out what Bill's number is.

John will infer that Bill's number is 5766.

On the other hand, a math teacher had better not accept the
following:

The students believe the Axiom of Choice.
The Axjom of Choice entails that every set can be well-ordered.

The students will infer that every set can be well-ordered.

A theory of belief ought to distinguish hard inferences from
easy ones, and it ought to say that what people infer from their
beliefs depends on what they try to infer.

People know about their own beliefs. They can easily answer
questions like "Do you know what Mary's phone number is?". Yet we
don't want to claim that people always know about all their
beliefs, anymore then we want to claim that they believe
everything that they could infer from their beliefs. Otherwise,
we would end up with the following as a valid chain of inference:

John believes that snow is white.
John believes that John believes that snow is white.

John believes that John believes that John believes that snow is
white.

John believes that John believes that John believes that John
believes...

xR

W
i

Bolt Beranek and Newman Inc.

Report No. 5368

The second line is plausible enough, but the fourth line is
weird, and if we continued the 500th line would be impossible to
read, let alone believe. Introspection is like inference: it is
something people do on purpose, and they do as much of it as they
need for the problem at hand.

Many beliefs are the result of perception. People make
inferences like the following:

John looked at a piece of paper with a number written on it,

John knew what number was written on the paper.

1 stressed above that many beliefs arise from a deliberate effort
of thinking. 1If we say that inference and introspection happen
automatically, we get into trouble because these processes take
beliefs as input and produce new beliefs as output. Therefore
their output can be used as input for more introspection and
inference, and if the process runs on automatically we might get
an infinite set of beliefs. This problem does not occur with
perception, because its input is not old beliefs, but physical
events in the external world. Therefore no problem arises if we
claim that perception creates new beliefs automatically. And
this seems to be true. If someone sneaks up behind your back and
blows a bugle in your ear, you'll notice it whether you want to
or not.

1.3 The Situation Theory

Robert Moore's dissertation [13] uses a theory of belief
based on Hintikka's possible worlds theory [6]. Moore had the

10

Report No. 5368 Bolt Beranek and Newman Inc.

ingenious idea of replacing Hintikka's possible worlds with the
situations of McCarthy's situation calculus. Recall that the
situation calculus is a technique for reasoning about actions. It
introduces entities called situations, such that an object can
have different properties in different situations, and at each
instant of time the world is in exactly one situation. Since the
properties of objects vary from situation to situation, a
sentence can be true in one situation and false in another. Also,
a description like "Bill's phone number" can denote different
objects in different situations. One describes an action as a
relation over situations, If this relation holds between
situations sl and s2, you can perform the action at any instant
when the world is in situation sl, and if you do the world will
be in situation s2 at the next instant. Moore dealt with
knowledge only, but I will consider a natural extension of his
theory to belief.

Moore proposed to represent an agent's beliefs as a set of
situations, which I will call the agent's alternatives. If
situation s is one of the agent's alternatives, then the agent's
beliefs do not rule out the possibility that the current
situation is s. In other words, for all he knows the world might
be in situation s. Thus if the agent knows everything about the
current situation, his set of alternatives contains only the
actual situation. If he knows nothing at all his set of
alternatives contains every situation. The more the agent learns,
the more situations he rules out and the fewer his alternatives.

An agent believes that P if P is true in all of his
alternatives. This explains at once why substitution of equals
fails inside the scope of "believe". If John believes that Mary's
number is 444-1212, then Mary's number is 444-1212 in all of his

11’

Bolt Beranek and Newman Inc. Report No. 5368

alternatives., If Bill's number is Mary's number, then Bill's
number is Mary's number in the actual situation, and so Bill's
number is 444-1212 in the actual situation. Still John's
alternatives might include situations in which Bill and Mary have
different numbers, and in these alternatives Bill's number is not
444-1212. So John does not necessarily believe that Bill's number
is 444-1212.

This theory will also handle the first "knowing what"
example. Moore says that an agent knows what X is if X is the
same object in all of the agent's alternatives. That is, the
agent's beliefs rule out all but one value of X. If the agent
knows that Mary's number is 444-1212, then Mary's number is
444-1212 in all the agent's alternatives. Surely 444-1212 is the
same number in all situations. That number is Mary's phone
number in all of the agent's alternatives, so the agent knows
what Mary's number is. On the other hand, suppose the agent knows
only that Mary's number is Bill's number. Bill might have
different phone numbers in different situations, so there need
not be any one object that is Mary's number in all of the agent's
alternatives. Again we get the right prediction.

Moore goes on to say that actions take arguments. For
example, the action of dialing a phone number takes one argument,
the number to be dialed. An agent knows how to perform an action
only if he knows what the action's arguments are. Then it follows
that an agent knows how to dial Mary's number if he knows that

Mary's number is 444-1212, but not if he only knows that Mary's
number is Bill's number.

I claim that the situation theory of belief is wrong, and
that a very different approach is needed (this is also Moore's

12

Report No. 5368 Bolt Beranek and Newman Inc.

current view - see [14])). The first criticism is that it makes
false predictions about "knowing what". We don't say that you
know what Mary's number is if you know that her number is equal
to six times thirty-one squared. Yet six times thirty-one squared
is surely the same number in every situation. In this case
Mary's phone number is the same number in all of the agent's
alternatives, yet he still doesn't know what her phone number is.
Also, according to the situation theory whether an agent knows
what X is depends only on the agent's alternatives. But we have
seen that it can depend also on what the agent wants to do with
the knowledge. If you want to put Mary in touch with John, and
you know that John is standing next to you, you claim that you
know where John is. If you want to direct John back to his hotel,
and you know that he is standing next to you, you must learn more
before you can claim to know where he is.

Suppose the agent believes that P, and P entails Q. Then P
is true in all of the agent's alternatives and since P entails Q,
Q is true in all of the agent's alternatives. That is, the agent
believes Q. So in the situation theory an agent believes
everything that follows logically from his beliefs. If the math
professor in our previous example uses the situation theory to
reason about his student's beliefs, he will conclude that they
believe that every set can be well-ordered as soon as they know
the axioms of set theory. There is a similar problem about
introspection - as soon as an agent believes P he believes that
he believes that he believes..., and so on forever.

This problem is not surprising in a theory that talks about
beliefs, but not about the reasoning that creates beliefs. There
may well be an infinite set of beliefs that an agent could infer,
given arbitrary time and scratch paper. But at any time only a

13

Bolt Beranek and Newman Inc. Report No. 5368

finite number have actually been inferred. If we say nothing
about the inference that creates beliefs we can't distinguish
between those that are easy to infer and those that take a long
time. Then it's no wonder if we end up with a theory saying that
everything is inferred in zero time. I conclude that the
situation theory of belief is on the wrong track. We need a
theory that describes the inference that creates beliefs.

14

- y
AR ;N,-“ﬂ-’q:««“»‘-"«‘_f;”‘ «

PPV

Report No, 5368 Bolt Beranek and Newman Inc.

2. The Syntactic Theory

2.1 A Robot and His Beliefs

I have described some of the data that a theory of belief
and knowledge must handle, and how Moore fared with the situation
theory of belief, Now I consider the syntactic theory. PFirst
comes a statement of the theory in English, then the tools needed
to formalize it, and then a series of example inferences.

I propose to take very seriously the idea that people are
like computers. The agents in my theory look a lot like Von
Neumann machines. Not that people are really like Von Neumann
machines; rather common sense does not tell us about the massive
parallelism and other un-Von Neumann things that go on in our
heads. Let us imagine a simple robot, and build a theory that
describes his beliefs. We will see that this theory can handle
all of the given problems as well as the situation theory, and
some of them better.

If we want to write a program that believes that snow is
white, we devise a knowledge representation in which we can
assert that snow is white - for example, by writing "(white
snow)". Then we add this expression to a collection of
expressions that are supposed to represent the program's beliefs.
This practice suggests a theory: that beliefs are expressions of
a knowledge representation language. This is the syntactic
theory of belief. It appears now and again in the literature of
philosophy - see [7]), [3], and [10]. McCarthy [1l1l]) was the first
AI worker to advocate this theory. Moore and Hendrix [14] argued
that the syntactic theory can solve many philosophical problems
about belief.

15

Bolt Beranek and Newman Inc. Report No. 5368

g

Men, machines and Martians can use very different internal
languages to represent the same belief. I propose to ignore this
possibility, and assume that all agents use the same
t representation for every belief. Our robot assumes that
everybody else represents beliefs exactly as he does, and he
\J ignores the difference between a belief and his representation of
) that belief. Konolige [8] was the first to formalize this version
of the syntactic theory. His treatment differs from mine in
several important ways, which I will note as I come to them.

& Suppose John believes that snow is white. The robot thinks ﬂ
f, that John's representation of this belief is the same as the
,ﬁ robot's representation: the expression "(white snow)". The robot }

bt also thinks that the representation is the belief. It forms a
name for the representation by putting quotation marks around it.
So it represents the fact that John believes snow is white by an
expression roughly like this:
(believe John " (white snow)")
The first argument of "believe"™ is the name of a man. The second
argument is the name of an expression. To formalize the syntactic
theory, one must assign names to expressions. That is, one must
devise a system of quotation.

2.2 Formalizing the Syntactic Theory

we
P

v,

I use predicate calculus with the following logical symbols:

16 | r

Y e e ey m e e =

-—— ki e - L

N R L i e R

Report No. 5368 Bolt Beranek and Newman Inc.

(-=> p q) - material implication

(& p q) - conjunction

(V p q) - disjunction

(" p) -~ negation

{all x p) - universal quantification
(some x p) -~ existential quantification

This is the official notation; often I drop parentheses and use
connectives as infix operators, A few predicates, like "<" and
"=", will also be used as infix operators.

The beliefs of our hypothetical robot are sentences of a
first-order logic extended with quotation. These beliefs need not
be stored explicitly, but the robot must be able to find out
whether he believes a given sentence or not in constant time by a
standard retrieval algorithm. We do not say that you believe
something if you can infer it after ten minutes of puzzling. All
the beliefs are sentences of a single language L. When the robot
forms beliefs about its own beliefs, those beliefs must be
sentences of L that talk about sentences of L. This is a bit
surprising. We are used to talking about an object language Ll by
using a meta-language L2, where L1 and L2 are distinct. Why not
stick to this method? Since the robot can form beliefs about
beliefs about beliefs... up to any finite depth, we could set no
limit to the number of meta-languages needed, but that is quite
OK. If we follow this plan no language can ever talk about
itself, but the robot can always form beliefs about his beliefs
by going one step further in the hierarchy. Ronolige used such a
hierarchy of meta-languages in his formalization of the syntactic
theory.

This plan will not work, because it forbids any belief to
talk about itself. A belief can talk only about beliefs in

17

Bolt Beranek and Newman Inc. Report No. 5368

languages lower in the hierarchy. In fact beliefs do talk about
themselves. For example, a human might notice that he never
forgets anything that interests him strongly. Suppose this belief
interests him strongly; then it talks about itself, and quite

likely makes a true assertion about itself. Or suppose the robot -

uses a pattern-matcher to retrieve beliefs from memory. It will
need a belief describing the pattern-matcher, and this belief can
be retrieved by pattern-maéching like any other. Thus it says of
itself "I can be retrieved by hsing such-and-such a pattern”.
There is nothing paradoxical or even unusual going on here. The
point is important, because the decision to use a single self-
describing language will involve us in the paradoxes of self-
reference. One can avoid these paradoxes, but it is not easy.

One way to assign names to sentences is to let sentences be

their own names. Then we could represent the fact that John
believes snow is white by writing
(believe John (white snow))
This might be a good system, but it is impossible in first-order
logic. Sentences denote truth values in first-order logic, they
do not denote themselves. We must look farther for a quotation
mechanism that will fit into first-order logic.

In English we form the name of a sentence by writing
quotation marks around the sentence. Thus the expression
*Snow is white."”
denotes the sentence
Snow is white.
If we adopt this scheme in our formal language we could represent
the fact that John believes snow is white by writing
(believe John ®(white snow)")
We can fit this scheme into first-order logic by saying that

Report No. 5368 Bolt Beranek and Newman Inc.

quoted expressions are constants that denote sentences. Yet this
idea is not good enough, because it will not allow us to
represent the fact that John knows what Mary's phone number is.
We observed above that John knows what Mary's number is if he
knows that Mary's number is n, where n is an Arabic numeral. We
might try to represent this by writing

1l
(some n (know John "(= (PhoneNumber Mary) n)")

&
(IsArabic n)

But this will not do. By definition of quotation marks, the
second argument of the predicate letter "know®" denotes the wff

(= (PhoneNumber Mary) n)

This is true no matter what the variable "n" is bound to. So the
quantifier "some" does nothing, and (1) means the same as (2).

2
(know John " (= (PhoneNumber Mary) n)")
& (some n (IsArabic n))

We need a quotation system that allows us to embed non-quoted
expressions in quoted expressions. Then we can represent the fact
we tried to represent with (1).

Instead of using a quotation mark that applies to whole
expressions, let us quote the individual symbols. If we put the
character ' in front of each symbol that we want quoted, we can
write

19

Bolt Beranek and Newman Inc. Report No. 5368

3

(some n (know John ('= ('PhoneNumber ‘Mary) n))
&
(IsArabic n)

to represent the fact that (1) fails to express. All the symbols
in the second argument of "know" are quoted, except for the
variable "n" which is bound by the quantifier in the ordinary
way. If we can fit this quotation scheme into first-order logic,
we can formalize the syntactic theory.

The problem is to assign denotations to the quoted symbols
so that sentences like (3) will have the intended meanings, given
the usual semantic rules of first-order logic. To each constant
of our lanquage we assign a name, formed by appending the
character ' to that constant. Thus if "Mary" is a constant and
denotes a woman, "'Mary” is a constant and denotes the constant
"Mary". To each variable we assign a name in the same way. If "x"
is a variable, then "’'x" is a constant that denotes the variable

'xl.

Now consider the symbols that take arguments - function
letters, predicate letters, connectives and quantifiers. These
symbols are called functors. The term "(& P Q)" consists of the
functor "&" and its arguments "P" and "Q". If "F" is a functor of
n arguments, then "'F" is a function letter. It denotes the
function that maps n expressions el ... en to the expression with
functor "F" and arguments el ... en. For example, the function
letter "'&" denotes the function that ﬁaps wffs wl and w2 to the
wff with functor %“&" and arguments wl and w2 - which is the
conjunction of wl and w2. The function letter "'~" denotes the
function that maps a wff to its negation, and so on.

RIE 7

{5 R

s

S

~eport No. 5368 Bolt Beranek and Newman Inc,

If the variable "n" denotes the arabic numeral "5766", then
the term
('= ('PhoneNumber 'Mary) n)
should denote the sentence
(= (PhoneNumber Mary) 5766)
The function letter "'PhoneNumber®™ denotes the function that maps
a term t to the term with function letter "PhoneNumber™ and
argument t. The constant "'Mary" denotes the constant "Mary". So
the term
('PhoneNumber 'Mary)
denotes the term with function letter "PhoneNumber® and érgument
"Mary”, which is
{PhoneNumber Mary)
The function letter "'=" denotes the function that maps terms tl
and t2 to the wff with predicate letter "=" and arguments tl and
t2. So the term
{(*= (*'PhoneNumber ‘Mary) n)
denotes the wff with function letter
* (PhoneNumber Mary)" and "5766", which is
(= (PhoneNumber Mary) 5766)
And that is the answer we want,

"=" and arguments

So if the robot knows what Mary's phone number is, it can
represent this fact by the sentence

(some n (know Me ('= ('PhoneNumber 'Mary) n))
&
(IsArabic n)

The constant "Me®™ is the robot's selfname - the robot's usual
name for itself. "know" is an ordinary predicate letter - not a
special modal operator as in Hintikka. The model theory of our

21

Bolt Beranek and Newman Inc. Report No. 5368

language contains no special rules for interpreting the predicate
*know".

On the other hand, suppose that the robot only knows that
j Mary has a phone number. We represent this as

(know Me ('some 'n ('= ('PhoneNumber 'Mary) 'n)))

: In this case the existential quantifier is inside the quotation
mark.

The term
4 ('= ('PhoneNumber 'Mary) '5766)
includes the quote name of the arabic numeral for Mary's phone
number. The term
S ('= ('PhoneNumber 'Mary) n)
has a variable in the same position. (4) is the quote name of a
wff, but (5) is a wff schema. The quote name of a wff includes a
quote name for every term in that wff. A wff schema is like the
quote name of a wff, except that variables can appear in place of
the quote names of terms. A wff w is called an instance of a wff
schema s if for some assignment of values to the free variables
in s, s denotes w. For example, if the variable "n" is asgkiasned
, the value "5766", then (5) denotes
f 6 (= (PhoneNumber Mary) 5766)
{ So the sentence (6) is an instance of the wff schema (5).

h Writing a quotation mark in front of every functor is a
- nuisance, so we abbreviate by putting the quotation mark in front
of a whole expression. Thus "' (PhoneNumber Mary)" abbreviates
® (*PhoneNumber 'Mary)®. I use infix notation for the connective
"s", but never for the quoted function letter "'&". People don't
usually use infix notation for function letters, and I want to |
emphasize that quoted function letters really are function i

x 22

' - — . . - EEAPES - % i3 1 w8 asn i
- . . P ot s Py et 3 LR Ka PV [
. g . FR

BRSO

H

B

<

s
e

it od g VL

¥

e ol et e TR

ol soprraboeerfhom -

-

Report No. 5368 Bolt Beranek and Newman Inc,

letters. They obey every syntactic and semantic rule that governs
function letters in first-order logic. In particular, we apply
quotation marks to quoted function letters 1like any other
function letter. Thus "'‘'Superman”" denotes the gquoted constant
"1Superman®, which denotes the quoteless constant "Superman",
which denotes the man from Krypton.

We also need the function letter "quote", which denotes the

function that maps an expression to its quote name. This function
maps the wff "(white snow)" to the term "('white 'snow)", for
example. So we write
(quote ('white 'snow)) = (''white ''snow)
The argument of "quote®" is a term that denotes the wff " (white
snow)". The right-hand argument of the equals sign denotes the
term "('white 'snow)". This sentence says that the quote name of
*"(white snow)" is "('white 'snow)" - which is true.

The difference between the quotation mark ' and the function
letter "quote"™ is this. If "v" is a variable, then "'v" is a
constant that denotes that variable. "{(quote v)" is a term in
which the variable "v" is free, and its value depends on the
value of "v". If the value of "v" is the constant "Superman",
then "(quote v)" will denote the quote name of the constant
"Superman®, which is "'Superman”.

23

LA T

3 P . H 9 R 1
B S ARG flr - - o
y .. p v -y A - h

T
PR S

* Bolt Beranek and Newman Inc. Report No. 5368

=]
i
]

Py

24

- s g ————

T g L T

Report No. 5368 Bolt Beranek and Newman Inc.

3. Applying the Syntactic Theory

I have now explained the syntactic theory and the machinery
used to formalize it. The next task is to apply the formalized
theory to the examples described in section 1.2.

3.1 Observation

The robot forms new beliefs by observing the external world
and his own internal state. The world is always changing, so the
robot needs a theory of time, and it must be able to perceive the
passage of time.

3.1.1 Time

Time is a set of instants totally ordered by <. If instant i
precedes instant j there is an interval whose lower endpoint is i
and whose upper endpoint is j. It contains the instants that are
later than i and earlier than j. The lower endpoint of interval I
is -I, and its upper endpoint is +I. Nearly all properties of
objects hold during intervals., In particular, we write (believe A
S I) to indicate that agent A believes sentence S during interval
I. Actions happen during intervals. Thus we write (puton Robot A
B I) to indicate that the robot puts block A on block B during
interval I.

We can define the order relations between intervals in terms
of the < relation between their endpoints. For example, interval
I is before interval J if the upper endpoint of I is before the

25

Bolt Beranek and Newman Inc. Report No., 5368

lower endpoint of J: +I < ~J. Interval I meets interval J if the
upper endpoint of I is the lower endpoint of J: +I = -J,

The robot has sensors ~ devices that detect events in the
outside world and produce descriptions of those events in the
robot's internal language. The sensors accept physical events as
input and produce sentences as output. These sentences become
beliefs. A belief created by perception must note the time of
the perception. For suppose the robot receives the same message
from his sensors at two different times - hears two rifle shots
in succession, for example. If the beliefs created by these two
perceptions do not mention the times at which the perceptions
happened, they will be identical. Then the robot's collection of
beliefs will be the same as if it had heard only one shot.

Therefore the robot will need names for intervals of time.
These names are constants of the internal language called time
stamps. If the robot hears the doorbell ring during interval I,
it creates a time stamp for interval I - say "IntervallOl". Then
it adds to its beliefs the sentence
(ringing Me IntervalloOl)
which says that there is a ringing sound in the robot's
neighborhood during IntervallOl. The robot automatically records
every perception, and also other events such as inferences and
commands to the effectors. Whenever it records such an event it
creates a time stamp for the interval when the event happened. It
uses that time stamp to name the interval in the belief that
records the event.

A time stamp is a useful name for an interval because the
robot keeps records of the lengths and order of intervals, and
uses time stamps to name the intervals in those records. If the

26

Report No. 5368 Bolt Beranek and Newman Inc.

robot creates a time stamp "Interval53" for an interval J, then
as soon as interval J is over the robot forms a belief that
records its length., This estimate of the interval's length need
not be accurate. People can't tell a minute from fifty seconds
without a watch, but they can tell a minute from a second. The
robot can get by with rough estimates too. Let us choose a small
unit of time and approximate the lengths of intervals with whole
numbers of units. Then if J is 30 units 1long, there is an
interval K such that J meets K and

(believe Robot '(= (length Interval53) 30) K)

This belief gives the length of the interval in units, using an
arabic numeral to name the number of units. For any integer n,
let (arabic n) be the arabic numeral that denotes n. So (arabic
2+2) = (arabic 4) = '4, Suppose the robot creates a time stamp t
for an interval i whose length is n units. Then there is an
interval j such that i meets j and

(believe Robot ('= ('length t) (arabic n)) j)

Setting t = 'IntervalS3, n = 30, j = K gives

{believe Robot ('= ('length 'Interval53) (arabic 30)) K)

Since (arabic 30) = '30, we have

(believe Robot ('= ('length 'Interval53) '30) K)

which is a notational variant of the last example.

The robot also records the order relations between intervals
that have time stamps. To record the order relation between two
intervals it is enough to record the order relations between
their endpoints. Given intervals I,J we must record the order
relations between -I and -J, -I and +J, +I and -J, +I and +J.
Consider the first case. If i and j are intervals with time
stamps tl,t2, the robot will record the order relation between +i
and +j immediately after the later of the two instants. There are
three cases to consider. If +i < +j there is an interval k whose
lower endpoint is +j, and

27

) +;
1l
9
s
§
b
£
.]

Bolt Beranek and Newman Inc. Report No. 5368

(believe Robot ('< ('+ tl) ('+ t2)) k)
If +4i = +j there is an interval k whose lower endpoint is +i, and

(believe Robot ('= ('+ tl) ('+ t2)) k)

Finally, if +j < +i there is an interval k whose lower endpoint
is +i, and

(believe Robot ('< ('+ t2) ('+ tl)) k)

So the robot always knows the order relations among all intervals
that have been assigned time stamps. Thus the robot has a sense
of time: if it remembers two perceptions it remembers which came
first and how long they lasted. This particular axiomatization of
the sense of time is crude, but it will do for our purposes. One
could do a better job with the same formalism if necessary.

3.1.2 Perception

Certain physical events cause the robot's sensors to produce
sentences that describe those events. Let us write (perceive
Robot s i) to indicate that during interval i the robot's sensors
produce the sentence s as a description of some event or state in
the outside world. As an example, let us describe the robot's
ability to read. The symbols we read and write are expressions
of English, not expressions of the robot's internal language. Let
us gloss over this distinction and pretend that expressions of
the thought language can be written on paper, and the robot can
read them,

Suppose that the robot's field of view is a rectangle, and
the sensors use integer Cartesian coordinates to describe
positions in the field of view. Let (written e x y i) indicate
that the expression e is written down at coordinates (x,y) in the

28

amad " —

)

rom—

SO i, ot v e

o

~ e

Report No. 5368 Bolt Beranek and Newman Inc.

robot's field of view during interval i. If this is the case the
robot's sensors will report it, using a quote name for the
expression e, arabic numerals for the integers x and y, and a
time stamp for the interval i. Suppose that e is an expression, x
and y are coordinates, and i is an interval. If (written e x y
i), there is a time stamp t for the interval i, and

(perceive Robot ('written (quote e) (arabic x) (arabic y) t) i)
Suppose that "(white snow)" is written at coordinates (150,150)
in the robot's field of view during interval I. Then there is a
time stamp for interval I, say "Interval99", and we have

(perceive Robot
('written (quote '(white snow))
(arabic 150)
(arabic 150)
‘Interval99

=4 ~—

Using (quote '(white snow)) = '!'(white snow) and (arabic 150) =
150 gives
(perceive Robot

(‘written ''(white snow) '150 ‘150 'Interval99)
I

The robot believes what its sensors tell it, That is, if it
perceives a sentence s during interval i, there is an interval j
such that i meets j and the robot believes s during j. In this
case there is an interval K such that I meets K and
(believe Robot ('written ''(white snow) '150 'l150 'Interval99) K)

29

2 rio

—

RYSST R S

Bolt Beranek and Newman Inc. Report No. 5368

3.1.3 Retrieving Beliefs From Memory

The robot acts by executing programs, and its programming
language is quite conventional. There is a fixed set of
registers. Just like a Von Neumann machine, the robot must bring
a data structure into a register before it can operate on that
data structure. Remembering a belief means bringing it from
memory into a register. If the robot has Bill's phone number
stored in its memory, but for some reason can't retrieve it, it
cannot call Bill. It has no way to pass the phone number to its
telephone dialing routine. This matches our intuitions about
people: if you know Bill's phone number, but you can't remember
it at the moment, then you can't call Bill.

The statements of the programming language are terms of the
internal 1language, although they have no useful denotations.
Considering them to be terms of the internal language is handy
because we can then use gquotation to name programs. The
expressions of the programming language are terms of the internal
language, and their values in the programming language are their
denotations. Of course they are limited to terms whose values the
agent can compute.

All the expressions of the internal 1language are data
structures of the programming language. There are other data
structures in the programming language -~ lists of expressions,
for example. Every data structure has a name in the internal
language called its print name. The print names of expressions
are just their quote names. The print name of the list (cons e
nil) is ('cons (PrintName e) 'nil).

The robot uses a statement called the retrieve statement to

30

e

Report No. 5368 Bolt Beranek and Newman Inc.

retrieve beliefs from his memory. A retrieve statement has the
form (retrieve r p c), where r is a register, p is a wff schema,
and ¢ is a wff. p is called the pattern and c¢ is called the
condition, Suppose the robot wants to retrieve a sentence that
tells what John's phone number is. Such a sentence has the form

7 ('PhoneNumber 'John n)

The term n must be an arabic numeral:

8 (IsArabic n)

The robot can retrieve a sentence that tells what John's phone
number is by executing a retrieve statement with pattern (7) and
condition (8):

9 (retrieve Rl
(' PhoneNumber 'John n)
(IsArabic n)

A sentence s matches the pattern "('PhoneNumber 'John n)" and the
condition "(IsArabic n)" if for some binding of the variable "n",
" ('PhoneNumber 'John n)" denotes s, and "(IsArabic n)" is true.
For example, if "n" is bound to "5766", then "('PhoneNumber 'John
n)" denotes "(PhoneNumber John 5766)" and "(IsArabic n)" is true.
Therefore " (PhoneNumber John 5766)" matches the pattern
" ('PhoneNumber 'John n)" and the condition "(IsArabic n)". If a
sentence matches the pattern "('PhoneNumber 'John n)®" and the
condition "(IsArabic n)", then it has the form ('PhoneNumber
'‘John n) for some arabic numeral n. That is, it tells what John's
phone number is. So if the robot knows what John's phone number
is, he can retrieve that knowledge by executing the statement
(9).

In general, a sentence s matches pattern p and condition c¢
if p is a wff schema and for some bindings of the free variables

31

Bolt Beranek and Newman Inc, Report No. 5368

of p, p denotes s and ¢ is true. Suppose the robot executes the
statement ('retrieve r p ¢) in interval I, and the robot believes
a sentence that matches pattern p and condition c¢. Then the
retrieve statement returns a belief that matches the pattern and
the condition. There may be several beliefs that match. If so any
one of them might be returned. Register r is set to the belief
that is returned. That is, there is an interval J such that I
meets J and register r holds the returned belief during J. The
retrieve statement allows the robot to search his memory.

3.1.4 Introspection

Now that we have a statement that searches the memory we can
describe introspection very neatly. All we have to do is say that
whenever an agent executes a statement he knows whether it
returned a value, and if so what value. The agent can then find
out whether he has a certain belief by trying to retrieve it. If
he succeeds he will know this, and he can infer that he had the
belief; if he fails he will know this also, and he can infer that
he had no belief that matched the pattern and the condition.

Suppose, then, that the robot executes a statement s of the
programming language during interval I, and it returns a value
v. The value v is a data structure. The robot has a time stamp t
for the interval I. There is an interval J such that I meets J,
and during interval J the iobot believes the sentence
(‘return (SelfName Robot) (quote 8) (PrintName v) t)

This sentence says that the robot executed statement s during
interval I, and it returned value v. The robot is named by his
selfname, the interval by a time stamp, the statement by its
quote name, and the returned value by its print name. If the
robot executes the statement

” ““"‘P"‘ i o T '

 enatng OIS vreogrme

T d

Report No. 5368 Bolt Beranek and Newman Inc.

(retrieve Rl ('PhoneNumber 'John n) (IsArabic n))
: and it returns the sentence

(PhoneNumber John 5766)

i he will believe

(returns Me
'*(retrieve Rl ('PhoneNumber 'John n) (IsArabic n))
' (PhoneNumber John 5766)
Intervali432

)

assuming "Interval432" is the time stamp for interval I. The
robot knows that if he executes a retrieve statement during any
interval i, and it returns a sentence s, he believed s during

© el . . -

f f i. So he can infer
T (believe Me ' (PhoneNumber John 5766) Interval432)

; f So if the robot believes that John's number is 5766, he can find
g out that he believes that John's number is 5766.

Suppose the robot executes a statement s of the programming
language during interval I,and it returns no value. The robot has
a time stamp t for the interval I. There is an interval J such
that I meets J and during interval J the robot believes the
sentence -

('~ ('some 'x ('returns (SelfName Me) (quote s) 'x t)))
! This sentence says that the robot executed statement s during
interval I, and it returned no value.

- e

-

Suppose the robot does not know what John's phone number is.
That is, he has no belief of the form ('PhoneNumber 'John n),
. where n is an arabic numeral. If the robot executes the
statement
(retrieve Rl ('PhoneNumber 'John n) (IsArabic n))
‘ it will return no value. For only a belief of the form
§ ('PhoneNumber 'John n), where n is an arabic numeral, would match

33

1 e

— e g - ——— - N . . Ay
-

e y T e m . . o - \ . .
RS i 20 B et AN et ata s | st 2 LA SN T ks SR MRERE A kxR

ot
SR

Bolt Beranek and Newman Inc. Report No. 5368

the pattern and the condition., If this statement returns no
value, the robot will believe the sentence
(" (some x

(returns Me
'(retrieve Rl ('PhoneNumber 'John n) (IsArabic n))

b
Interval82

))

This sentence says that the retrieve statement returned no value.
The robot can now arque by contradiction: If I had a belief of
the form ('PhoneNumber 'John n), where n was an arébic numeral,
it would have matched the pattern " ('PhoneNumber ‘'John n)"® and
the condition "(IsArabic n)". Then the retrieve statement would
have returned a value. But the retrieve statement returned no
value. Therefore I have no belief of the form ('PhoneNumber 'John
n), where n is an arabic numeral. That is, I do not know John's
phone number,

Most theories of belief include an axiom saying that if an
agent believes that P, he believes that he believes that P. This
theory has instead a general axiom of introspection. It says that
if an agent executes a statement of his internal programming
language, he knows what value it returned. This axiom allows us
to show that if an agent believes that P he can easily discover
that he believes that P. We use the same axiom to show that if
the agent does not believe that P, he can discover that he does
not believe that P. Also we can show that if the agent does not
know what X is, he can discover that he does not know what X is
- at least in some cases. Later we will find another use for
this axiom of introspection,

Report No. 5368 Bolt Beranek and Newman Inc,

3.2 Inference

Inference is another process that creates new beliefs. A.I.
workers have often distinguished between data-driven and goal-
driven inferences. The data-driven inferences happen whenever
certain kinds of data are added to the data base. The goal-driven
inferences happen when the robot is trying to prove certain kinds
of theorems. Data-driven inferences must be limited in some way,
] because the robot can have only a finite number of beliefs.
f‘ Breaking up conjunctions is a reasonable data-driven inference:
if p & g is added to the belief base, p and q are added too. We
can easily describe this with an axiom:

(believe Robot ('& p q) i)

~> (believe Robot p i) & (believe Robot g i)

] . The new beliefs formed by breaking up conjunctions could be added
explicitly. They could alsc be added implicitly, by using a f
belief retrieval program that looks inside conjunctions. Such
implementation questions are outside the scope of this theory.

3.2.1 what Do John's Beliefs Entail?

I turn now to the problem of predicting goal-driven
inferences. I begin with the usual distinction between search
. space and search algorithm. To show that an agent will infer a
¥ certain belief if he tries to infer it, we must show that there
; is a path in his search space that leads to that belief, and that
his search algorithm is powerful enough to find it. I consider
first the problem of showing that the path exists - that is, the
agent's beliefs entail the given sentence.

35

e ——

— e

T NS S e [g
o R A R BT

. L . P o e gy
R et SR R
PR IS SR e g

Bolt Beranek and Newman Inc. Report No. 5368

Suppose our knowledge of another agent's beliefs consists of
a set of sentences of the form (believe agent (quote s) i) - that
is, we have quote names for the sentences the other agent
believes. Then by removing the quotation marks we can reconstruct
the exact sentences that the other agent believes. We build a
data base, separate from our collection of beliefs, containing
the sentences that the other agent believes. Any theorem that we
can prove using only the sentences in this data base follows from
the other agent's beliefs. This is an old idea. Creary [2] was
the first to point out that we can combine this kind of reasoning
with the use of quotation to represent beliefs.

This method is not sufficient to handle the following
inference.

John knows what Mary's phone number is,
John knows that Mary's phone number is the same as Bill's.

John knows what Bill's phone number is,
In our notation the first sentence becomes

(know John

(*= '(PhoneNumber Mary) (arabic (PhoneNumber Mary)))

I
)
We cannot reconstruct the sentence that John believes from this
description, because the description doesn't tell us which arabic
numeral appears in John's belief. So we can't build a data base

containing John's beliefs.

Konolige [8] suggested a solution to this problem. Instead
of using sumulation, he proposed to describe the proof rules of
the language, and use this description to show that a theorem can
be proved from another agent's beliefs. For example, we might
describe the rule of Modus Ponens by writing
(all p q (ModusPonens p ('=> p q) Q))

36

e ——
R B L NL Y N 2
IR A et ey

Report No. 5368 Bolt Beranek and Newman Inc.

This axiom says that p and ('-> p q) entail q by the rule of
Modus Ponens. We do not need quote names for the wffs p and q to
use this axiom - any names at all will do. If we follow Konolige
the lack of quote names for John's beliefs creates no special
problem,

The difficulty with Konolige's proposal is that it leads to
very long proofs. Suppose we try to find the conclusion of an n-
, A step proof using axioms that describe the proof rules. For each
E, step of the original proof we must build a short proof, which
F - shows that that step produces a certain conclusion. Suppose the
average length of these proofs is p steps. Then the proof that
our n-step proof has a certain conclusion will involve p X n

steps.

: Now consider what happens when we nest this kind of
reasoning. Suppose John knows that Mary knows his phone number.
Then John expects Mary to know how to call him. Suppose we apply
Konolige's technique to this problem. There is an n-step proof
whose premisses are among Mary's beliefs, and whose conclusion
says that Mary can call Bill by dialing a certain number. To
. show that the proof has this conclusion, John must build a proof
1 of p X n steps. To show that John can build this proof, we must
| build a proof of p x (p X n) steps. The size of the proofs grows
exponentially with the depth of nesting. This is clearly
intolerable.

There is an obvious way out of this problem, although it is
not trivial to show that it is correct. We pick a new constant,
say "C", and use it to stand for the arabic numeral that John
uses to name Mary's phone number. Then we can build a data base
that approximates John's beliefs. It will contain the sentences

— e o . — o .
.

N "'?a#‘zvv‘, J‘ ARU s vy (;’ ’ mg;:; f&d,{'v!;‘ltff-,;;rr;‘?"':w ,\f A :" T v - = .u‘ - ..'»_ '_"'."j‘":"!, R - };41&}:#
¥ U Co EN R it g da A CARRIR " NI X Oy Y s

i

et o el

Bolt Beranek and Newman Inc. Report No. 5368

(= (PhoneNumber Mary) C)

(= (PhoneNumber Mary) (PhoneNumber Bill))

from which we can infer

(= (PhoneNumber Bill) C)

Since "C" stands for an arabic numeral, John can infer a sentence
of the form ('= ('PhoneNumber °‘'Bill) n), where n is an arabic
numeral. That is, John can figure out what Bill's phone number
is.

Let us state the argument more precisely. If we were to go
through the proof we have just built, and replace the constant
*"C" with the arabic numeral that appears in John's belief about
Mary's phone number, the result would be a new proof. John
believes the premisses of this proof, and its conclusion gives an
arabic numeral for Bill's phone number. So there is a way to
prove from John's beliefs a theorem that gives an arabic numeral
for Bill's phone number. The crucial assumption here is that if
we go through the proof and replace "C" with another constant,
the result is still a proof. In the appendix I show that if we
take any proof and replace all occurrences of a constant with a
closed term, the result is still a proof. This theorem justifies
the use of a new constant to represent an unknown term that
appears in another agent's beliefs. It allows us to prove the
correctness of an axiom schema called the Reflection Schema,
which does the kind of reasoning that we have informally
described.

3.2.2 The Reflection Schema

Consider first the simple case of the Reflection Schema, in
which we have the quote names of the other agent's beliefs. The

38

P
o

'i‘a.

2y
G -l

= e -

A e— e et

Report No. 5368 Bolt Beranek and Newman Inc.

proof to be reflected consists of a single step. The rule of
Substitution Of Equals is applied to the premisses

(= (PhoneNumber Mary) 5766)

(= (PhoneNumber Bill) (PhoneNumber Mary))

producing the conclusion

(= (PhoneNumber Bill) 5766)

The structure of proofs 1is described exactly in the
appendix. For now it is enough to say that a proof is formed by
starting with wifs called premisses and repeatedly applying proof
rules. Every proof has a print name, which includes the quote
names of all the premisses of the proof. Given the print name of
a proof one can easily reconstruct that proof, just as one can
reconstruct a sentence from its quote name. The print name of
the proof just given is
(EqSubst ‘(= (PhoneNumber Mary) 5766)

(PhoneNumber Bill) (PhoneNumber Mary))
(PhoneNumber Bill) 5766)

'(
'
)

(IsProof p) means that p is a correct proof. If p is a correct
proof, the sentence ’

('IsProof (PrintName p))

is an instance of the Reflection Schema. For the proof given
above we have the instance

10 (IsProof (EgSubst '(= (PhoneNumber Mary) 5766)

'(= (PhoneNumber Bill) (PhoneNumber Mary))
'(= (PhoneNumber Bill) 5766)

)

If John believes the premisses of this proof he can infer its
conclusion - that is, he can infer that Bill's number is 5766.

It is easy to implement this schema. The implementation is a

39

- R

<1

"

Bolt Beranek and Newman Inc. Report No. 5368

program that takes a sentence as input and decides whether it is
an instance of the Reflection Schema. The input sentence
contains the print names of a proof and its conclusion, From the
print names the program reconstructs the proof and the
conclusion. Then it calls the programs that implement the other
proof rules to decide whether the proof is correct. If it is, the
input sentence is an instance of the Reflection Schema.

Suppose John knows Mary's phone number. Then he believes the
sentence
('= '(PhoneNumber Mary) (arabic (PhoneNumber Mary)))
If he also believes that Bill's phone number is the same as
Mary's, he believes the sentence
'(= (PhoneNumber Bill) (PhoneNumber Mary))
By Substitution Of Equals he can infer
('= ' (PhoneNumber Bill) (arabic (PhoneNumber Mary))
The version of the Reflection Schema that we have just seen is
not strong enough to prove this. It demands the quote names of
the sentences in the proof to be reflected, and we do not have
the quote name of the arabic numeral for Mary's phone number. We
need a stronger Reflection Schema, which includes the following
instance.
11
(all x
(ClosedTerm x)
-> (IsProof
(EgqSubst ('= '(PhoneNumber Mary) x)

('= !'(PhoneNumber Bill) °'(PhoneNumber Mary))
('= ' (PhoneNumber Bill) x)

)

Since an arabic numeral is a closed term, we infer

40

Voss =

Report No. 5368 Bolt Beranek and Newman Inc.

(IsProof
(EqSubst ('= '(PhoneNumber Mary) (arabic (PhoneNumber Mary)))
('= '(PhoneNumber Bill) '(PhoneNumber Mary))
('= '(PhoneNumber Bill) (arabic (PhoneNumber Mary)))

)
)

And this is the desired conclusion.

The argument of the predicate letter "IsProof" in (11) is
called a proof schema. A proof schema is like the print name of a
proof, except that a variable can appear instead of the quote
name of a term. That is, a proof schema is to the print name of
a proof what a wff schema is to the quote name of a wff. The
argument of "IsProof"™ in (10) is the print name of a proof. It
gives the gquote name "'5766" of the arabic numeral for Mary's
phone number. The argument of "IsProof"™ in (1l1) is a proof
schema. The variable "x" appears in place of the gquote name
"'5766".

Implementing this version of the Reflection Schema is not as
easy as implementing the first version. The €£first version
reconstructed the proof to be reflected from its print name, and
then called the other proof rules to decide whether the proof was
correct. The new version gets only a proof schema, which stands
for a whole class of proofs called instances of the schema. A
proof p is an instance of a proof schema s if for some bindings
of the free variables of s, s denotes p. The proof named in (10)
is an instance of the proof schema that appears in (l1). It is
formed by binding the variable "x" to the term %“5766". An
instance of the Reflection Schema is true only if all instances
of its proof schema are correct proofs.

The solution is to form a proof called the typical instance
of the proof schema. Every instance of the schema can be formed

41

R

Bolt Beranek and Newman Inc. Report No. 5368

by substituting closed terms for constants in the typical
instance. If the typical instance is a correct proof, then since
substitution maps proofs to proofs, all the instances are correct
proofs.

The typical instance of a proof schema is its denotation in
an environment that binds its free variables to new constants.
For example, if we bind the variable "x" to the new constant *c",
then the proof schema in (11) denotes a proof whose premisses are

(= (PhoneNumber Mary) C)
(= (PhoneNumber Mary) (PhoneNumber Bill))

Its conclusion is

(= (PhoneNumber Bill C)

and the rule used is Substitution Of Equals. Since this proof is
correct, all instances of the proof schema in (ll1) are correct.
Therefore (11) is a true sentence (in the intended model). This
is a rough explanation of the Reflection Schenma, omitting many
complications. The full story, and a proof of correctness, appear
in the appendix.

We have shown how to make inferences by simulation -from
atomic sentences like

(believe John
('= '(PhoneNumber Mary) (arabic (PhoneNumber Mary)))
I

)

and from conjunctions of such sentences. What about the other
connectives and quantifiers? We ought to be able to make
inferences from disjunctions and negations of sentences about
belief, and from universally or existentially quantified
statements about belief. Here we see the value of adding the
Reflection Schema to a first-order logic. We can handle negation,

- -

N BN ;
Yo i e Ty
A . v v i

Report No. 5368 Bolt Beranek and Newman Inc.

disjunction and quantification without adding any more rules or
axioms,

Consider negation. If John believes that Mary's number is
5766, and he does not believe that Bill's number is 5766, he must
not believe that Bill's number is Mary's number (assuming that he
can make trivial inferences). First-order logic allows us to
argue by contradiction: to prove “p by assuming p and proving a
contradiction. So assume
{(believe John '(= (PhoneNumber Mary) (PhoneNumber Bill)) I)
and
(believe John ('= ('PhoneNumber 'Mary) '5766) I)

We can prove by simulation that there is a one-step argument from
these beliefs of John's to the conclusion

(= (PhoneNumber Bill) 5766)

So if John can find this one-step argument, he believes that
Bill's number is 5766. This contradicts the assumption that he
has no such belief, so we can conclude that John does not believe
that Bill's number is Mary's number.

Suppose John believes that all millionaires are happy, and
he either believes that Bill is a millionaire or that Bob is a
millionaire -~ we don't know which.

(believe John ('all 'x ('-> ('millionaire 'x) ('happy 'x)) I)

(believe John ('millionaire 'Bill) I)
V (believe John ('millionaire 'Bob) I)

We should be able to prove that he believes someone is happy
(again assuming he can make trivial inferences).

(believe John ('some 'x ('happy 'x)) I)

First-order logic allows us to argue by cases - to prove p from q
V r by proving p from q and proving p from r. Assume first that

43

PO - T

tan

Bolt Beranek and Newman Inc. Report No. 5368

John believes that Bill is a millionaire. Then we can build a
data base that represents his beliefs, and it looks like this:

(all x (millionaire x) -> (happy x))
(millionaire Bill)

In this data base we can easily infer that someone is happy:
(some x (happy x))

So John believes that someone is happy. Now suppose John
believes that Bob is a millionaire. We can prove again that John
believeg someone is happy. Since John either believes that Bill
is a millionaire or that Bob is a millionaire, it follows that he
believes someone is happy.

Suppose John knows every millionaire by name. That is, for
each millionaire he believes that N is a millionaire, where N is
the millionaire's personal name. Let (name x) be x's personal
name, for any person x. (name John Smith) is "John Smith"™, and so
on. Then we can describe John's exhaustive knowledge of
millionaires by writing:

(all x (millionaire x)

=> (believe John ('millionaire (name x)) I))
John also believes that every millionaire is happy.
(believe John '(all x (-> (millionaire x) (happy x))) I)

We should be able to infer that for each millionaire, John .

believes that he is happy.

(all x (millionaire x) -> (believe John ('happy (name x)) I))
Pirst-order 1logic allows us to prove that everything has a
certain property by proving that an arbitrary object has that
property. In the first-order proof system used here, free
variables represent arbitrary objects. So let z be an arbitrary
object, and suppose 2z is a millionaire. Since John knows every
millionaire by name, we have

(believe John ('millionaire (name z)) I)

M“'L ;‘:..,.:1

pa

[
[
L‘

é Report No. 5368 Bolt Beranek and Newman Inc.

O
Sy I e T T

I We choose the constant "C" to stand for the unknown term (name
& z). Then the data base that represents John's beliefs contains
the sentences

P (millionaire C)

o (all x (millionaire x) -> (happy x))

k. These sentences entail

b (happy C)

i We conclude

] (believe John ('happy (name z)) I)

: But since 2z represents an arbitrary millionaire, we have

. (all x (millionaire x) -> (believe John ('happy (name x)) I))

} which was to be proved. The treatment of existentially quantified
' sentences about belief is similar.

ﬁ By adding the rule of Reflection to a first-order logic, and
‘f proving that it is correct, we gain two advantages. Because we
- have proved the rule correct, we can rule out the possibility of
bugs caused by bad interactions between Reflection and some
obscure feature of the logic. Because the rule is part of a
system that represents negation, disjunction and quantification
correctly and completely, no extra work is needed to handle
4 ‘ negations, disjunctions and quantifications of statements about
belief. 1Imagine what would have happened if we had first written
a rough description of our inference rules in English, then
4 written 30 pages of LISP to implement them, and then started
.i "maintaining® the code so that it changed once a week., How would
one show that replacing constants with closed terms maps proofs
to proofs? The kind of work we have just done is possible only if
the rules of inference are set down plainly. These
considerations prove nothing about the merits of frames vs.
semantic nets vs. logic. They do indicate that an if an AI

45

Povs - - T e ———— et = e - ———— et -

EAR 240 w et s . : . .
S BRRT AT e £ 4 T R

H
|
4 Bolt Beranek and Newman Inc. Report No. 5368

W e T

system is going to use reflection to reason about belief, its x
inference rules must be made explicit, not hidden in the code.

T 3.2.3 what Can John Infer from His Beliefs?

&
-

The rule of Reflection allows us to show that an agent's
beliefs entail a sentence. To show that an agent will actually
infer that sentence, we need to show also that his theorem prover
‘ is powerful enough to find a proof. The agent calls his theorem
% prover by executing a prove statement. This statement has the !
form ('prove r p ¢), where r is a register, p is a pattern, and ¢
is a condition. When the agent executes this statement his
theorem prover tries to prove a sentence that matches the pattern ,
and the condition. If it succeeds, the prove statement returns X
that sentence and puts it in register r. Also the sentence is .
added to the agent's beliefs.

L it 4

This leaves the crucial questions: can the theorem prover
prove a sentence that matches the pattern and the condition? If p
it can, which one will it prove? Creary [2] offered a simple '
answer. If agent A can prove by simulation that agent B's
beliefs entail P, then agent B can prove P. This is very
different from saying that if agent B's beliefs entail P, agent B
can prove P, It is quite possible that B's beliefs entail P but A
cannot prove this fact,

Agent A predicts the behavior of agent B's theorem prover by {
making an empirical observation of the behavior of his own _
theorem prover., This involves the assumption that agent A is not !
much brighter than agent B - an assumption that is reasonable in
most common sengse contexts, though not when A is a math teacher

46

— - - —_ e —
sl A R Gy
ay e Y DY

P
Sy

T N ., o e N) s ma e el R e & . I
po _WJ.SM-_;,., L = - T !“"i”w ‘..sy__ i
k" g % NS PR v ? o R { a

———— .

i
¥

Report No. 5368 Bolt Beranek and Newman Inc.

and B is a student, Agent A can answer the question "Which
theorem will agent B prove?" by similar reasoning. Perhaps there
are many theorems entailed by agent B's beliefs that would match
the pattern and condition that B gave to his theorem prover. If A
has shown that a particular theorem entailed by B's beliefs will
match the pattern and condition, he can assume that this theorem
is an obvious answer, and it is the one B will prove. This is not
so convincing as the last assumption, but it is the same
principle - A is predicting the behavior of B's theorem prover by
observing the behavior of his own theorem prover. Agent A can
even make a rough estimate of the time it will take for B to
prove the theorem: it should be no more than the time it took A
to simulate B's reasoning. We already have an axiom of
introspection, which says that when agent A executes a statement
of his programming language he knows what it value it returned.
So if agent A executes the prove statement he knows what theorem
he proved. Also he has a time stamp for the interval in which he
executed the prove statement, so he knows how long it took.

Suppose then that A and B are two agents, and the following
conditions hold.

i. Agent B executes the statement ('prove r p c) during an
interval i, and sentence s matches the pattern p and
condition c.

ii, Agent B's beliefs entail sentence s.

iii. Agent A has proved during an interval j that agent B's
beliefs entail s.

Then agent B's execution of ('prove r p ¢) returns the value
s, and interval i 1is no 1longer than interval 3j. The first
condition says that agent B is trying to prove sentence s, or one
like it. The second condition says that there is a proof of s
from agent B's beliefs. The third condition says that agent A has
found such a proof, so it is not too difficult.

47

Beranek and Newman Inc. Report No. 5368

Now we can do the following example from part 1.

John knows that Mary's number is 5766.
John knows that Mary's number is the same as Bill's number.
John is trying to figure out what what Bill's number is.

John will infer that Bill's number is 5766.

We represent the statement that John is trying to figure out
what P is by saying that John has called his theorem prover and
asked it to prove a sentence that tells what P is. In this case,
John wants his theorem prover to prove a sentence that tells what
Bill's phone number is. A sentence that tells what Bill's phone
number is must have the form
('= '(PhoneNumber Bill) n)
where n is an arabic numeral. John can express this requirement
by giving his theorem prover the pattern
('= '(PhoneNumber Bill) n)
and the condition
(IsArabic n)

So we formalize the statement that John is trying to figure out
what Bill's number is by writing
(execute John

'(prove Rl ('= '(PhoneNumber Bill) n) (IsArabic n))

I
)

This satisfies the first condition.

As usual, we formalize the first two premisses as

(believe John ' (= (PhoneNumber Mary) 5766))
(believe John '(= (PhoneNumber Mary) (PhoneNumber Bill))

By the Reflection Schema the robot can prove

; * Report No. 5368 Bolt Beranek and Newman Inc.
i

; (proof (EqSubst '(= (PhoneNumber Mary) 5766)

g '(= (PhoneNumber Mary) (PhoneNumber Bill))

2 '(= (PhoneNumber Bill) 5766)

])
Since agent B believes the premisses of this proof, his beliefs
entail its conclusion "(= (PhoneNumber Bill) 5766)". This
satisfies the second condition. After the robot's theorem prover
proves this theorem, he will know that it was proved. By the
axiom of introspection he will believe the sentence

(returns Me

;! ' (prove)

3 '(proof (EqSubst ...))
o Interval23é

)

This sentence says that the robot has proved that John's beliefs
Ly entail the sentence (= (PhoneNumber Bill) 5766). It satisfies the
} f% third condition. Now the robot can infer that John's theorem
< prover will return the sentence (= (PhoneNumber Bill) 5766), and
as a result John will believe this sentence.

The last argument of the predicate letter "returns" is a
time stamp for the interval when the robot executed the prove
B statement. The robot's sense of time tells him how long this
interval was. So he believes, let us say, the sentence
(length Interval236) = 20
Then he can infer that John will take no more than 20 units of
time to figure out what Bill's phone number is.

An agent figures out what inferences another agent can make
by simulating his reasoning. If the other agent's beliefs include
terms that are unknown to the simulator, he must use an
approximation of the other agent's beliefs in his simulation. The
simulator introduces new constants to represent the unknown terms

_ — —. e -

hien Ao onl 79 T4 e g IR A a4 o Wy o 1 \‘.} e
Dy ol "’ ., - "v"i\g"{*‘.',,"« Aitads

- pr

\
{ Bolt Beranek and Newman Inc. Report No. 5368

in the other agent's beliefs. By noting the time that it took ‘
him to simulate the other agent's reasoning, the simulator judges .
how hard it will be for the other agent to find the same line of s
reasoning. The simulator does not have or need a theory that i
explains why one 1line of reasoning is harder to find than ,
another. He uses empirical observations of the behavior of his }
own theorem prover to predict the behavior of another agent's
theorem prover. So we have a theory of belief that talks about i
the processes that create beliefs. .

3.3 Knowing What

John knows what Mary's phone number is if he knows that
Mary's number is n, where n is an arabic numeral. We represent :
this as]

(some n (know John ('= '(PhoneNumber Mary) n))
& (IsArabic n)
)

We can give a similar treatment of other "knowing what" examples. 1
An English teacher would say that a student knows who the author
of "Hamlet"™ is if he knows that the author of "Hamlet" is n,
where n is a personal name. We can represent this as

(some n (know student ('= '(author Hamlet) n)
& (IsPersonalName n)
)

Since "Shakespeare" is a personal name, the student knows who the
author of "Hamlet" is if he knows that the author of "Hamlet" is
Shakespeare. When we say that someone knows what X is, we mean
that he knows that X is n, where n is a name or description
having some property P. In the first case, P is the property of

i 50

U e M o

e e e

- P

T Y W W I B L S RE P Y s 1 v~ S S P PO R T
<L iy e TR s 1 VIR g ‘-’: A T e o e LU «u“ N o Rl ke b . R
L Sl s o . p— VA ! i

SUPUI

|

v — . —

Report No. 5368 Bolt Beranek and Newman Inc.

being an arabic numeral. In the second case, P is the property of
being a personal name. Kaplan (7] suggested this approach.

As we saw in the example of being lost in the city, the
property P depends on context. In that example, the agent wanted
to use the name n to accomplish a task. First the task was to
get back to the hotel, and he wanted n to be something like "five
blocks north of the hotel on Higlh Street". Then he switched to a
new task: helping Mary to £find John. For this task the name
"here™ described John's location quite well. This example
suggests that John knows what X is if he knows that X is n, where
the name or description n contains the information needed for the
task at hand.

That would certainly explain why knowing an arabic numeral
for Mary's phone number counts as knowing what her number is. The
arabic numeral allows us to call Mary, which is what phone
numbers are for. Or suppose John tells me that he lives in the
grey house across the street from the Star Market on Park Avenue.
Then if I know how to get to the Star Market I can get to John's
house. I could also claim that I know where John lives, even if I
have never seen his house. This example fits the proposal
nicely.

According to RKonolige I know where John lives only if I have
a standard name for John's house - one that denotes the same
house in all possible worlds. Certainly "the grey house across
from the Star Market"™ does not denote the same house in all
possible worlds, so Konolige predicts that in this case I do not
know where John lives. Since Konolige does not suggest that the
set of possible worlds under consideration can vary with context,
he does not allow context to determine whether knowing that X is

51

. ! . o A A . ‘.—7- S Al o <V W
P ')"{"! .‘-)“""-'.‘i'?if_ et ¥ g . ‘ ke Q"’«"‘:h, . wf i
LA AR it B 3 S

PR

gy

G

ALK

Bolt Beranek and Newman Inc. Report No. 5368

,'“-‘.

n entails knowing what X is. Moore's proposal is that I know
what X is if X is the same object in all my alternatives. This is

£ } different from Konolige's idea, because my alternatives are a
E: small subset of the set of all situations. It still does not
Q] explain how I can know where John lives when I have never seen

his house, and can only describe it as "the grey one across from
the Star Market".

3 Alas, there are plenty of examples where my proposal fails.
3; Often there is no particular task at hand. In a discussion of
'4 politics I may ask "Do you know who the Saudi oil minister is?"
Presumably I want his personal name, but there is no obvious task
to be accomplished with this information. At least my proposal
accounts for the importance of context in deciding what knowledge
] one needs about an object in order to know what that object is.
The proposal is not helpful unless, having identified the task at
hand, we can decide what knowledge is needed to do that task.
This is the subject of the next section.

One can give a similar account of de re belief reports. If
you think, in the de re sense, that John's sister is his wife,
you have a belief of the form "n is John's wife", where the name
n really denotes John's sister. Let "denotation"™ name the
function that maps a term to its denotation. This function maps
the name "Superman" to the man from Krypton, for example, We
represent the fact that I think John's sister is his wife by

(some n (believe I ('= n '(wife John)))
: & (denotation n) = (sister John)

There must be some limitations on the choice of the name n. For
example, if Bill is in fact the president of 1IBM, the name
"president of IBM" denotes him. Still believing the tautology

e

———t [o— e

£ o)

52

Report No. 5368 Bolt Beranek and Newman Inc.

> &g f'._‘-;) i

SOt S

"The president of IBM is the President of IBM" will not qualify
! you as believing that Bill is the president of IBM. The
conditions on the name n seem to be weaker in this case than in
the "knowing what" examples.

3.4 Knowing How

If you know that Mary's number is 5766, you know how to call
Mary. When does knowing that P entail knowing how to perform
action A? Moore proposed that actions have parameters - for
example, the number to be dialed is a parameter of the action of
.f dialing. You know how to do the action if you know what the
] parameters are. And you know what X is if X denotes one object in

all your alternatives. Since "5766" denotes one object in all
situations, someone who knows that Mary's number is 5766 knows

how to call Mary. Konolige agrees that you know how to perform an
action if you know what its parameters are. As mentioned above,
Konolige holds that you know what X is if you have a standard
name for X. Since "5766" is a standard name, someone who knows
; that Mary's number is 5766 knows how to call Mary.

Both proposals go wrong in the same way. "Six times thirty-
n one squared" denotes 5766 in all situations. So if I know that
: Mary's number is six times thirty-one squared I know how to call
Mary, according to both Moore and Konolige. And this prediction
is wrong. I have to figure out that six times thirty-one squared
is 5766 before I can call Mary, and if I -don't have pencil and
paper handy it may not be easy to call her.

Even if these proposals could be made to work, they are not
satisfying. There is no apparent reason why having a standard

53

——— = s e < o mm—e 3 . 5 o —

oyt v|' T X 54 ML parvs. < . P R T “re sy AT o R B j~'.:'t. R
gt Lo e B s 7 A s

Bolt Beranek and Newman Inc. Report No. 5368

name should help you to perform an action. A better theory would
have more intuitive appeal. It would make us say "Ah, now I see
why you need that piece of knowledge to perform that action.®”

Let us return to our imaginary robot, and ask "How would the
robot call Mary on the phone? At which point would he use his
knowledge of her phone number?" The robot can act only by
executing a program. He knows how to perform an action if he
knows what program he should execute to perform that action.
Since programs are expressions of the internal language, there is
no mystery about when the robot knows what program to execute. He
knows what program to execute if he has the quote name of the
program. From the gquote name he can reconstruct the program
itself; he can then proceed to execute it. Our problem is then to
show that the robot can construct a program for dialing Mary's
number if he knows the arabic numeral for Mary's number.

Intuitively it is obvious why you need to know the arabic
numeral for Mary's number to call her. Telephones have arabic
numerals printed on their dials. You use those numerals to
identify the right holes to put your finger in. If phones had
roman numerals printed on them instead, you would need the roman
numerals for Mary's number to call her. We must reconcile this
common sense observation with the claim that the robot knows how
to dial Mary's number if he knows what program to execute in
order to dial Mary's number.

The robot performs physical actions by sending commands to
his effectors. These are devices that accept commands in the
internal language as input, and produce physical actions as
output. A command is simply a sentence of the internal language
that describes the desired action. If the effectors perform this
action the sentence will be true.

R ST AT

Report No. 5368 Bolt Beranek and Newman Inc.

Of course the effectors can only accept certain sentences as
commands. Even if two sentences describe the same action, it does
not follow that if the effectors can accept one sentence as a
command they can also accept the other. A real robot can turn one
joint of his arm through an angle of n degrees by putting a
binary numeral for n in a certain register. No other name for the
number n will do.

Actually the commands are not sentences but wffs. A sentence
that describes an action must give the time when the action was
performed. But when the robot sends a command to his effectors
he wants it carried out now; he does not need or want to specify
the time. So the robot uses the free variable "Vnow"” to stand for

"the present time in commands to the effectors. If the robot sends

a command to his effectcrs during interval I, the action will be
carried out during interval I. So the command will be satisfied
when the variable "Vnow" is bcuad to the interval I. "(CloseHand
Robot I)" means that the rokot closes his hand during interval
I. The robot uses his selfname to refer to himself in commands to
his effectors. So he sends the wff "(CloseHand Me Vnow)" to his
effectors when he wants to close his hand. "(command Robot w i)"
means that the robot sends wff w to his effectors during interval
i. So the robot believes

(all i (command Me '(CloseHand Me Vnow) i) ~-> (CloseHand Me i))
This sentence says that if the robot commands his hand to close,
it will close.

Let us return to the phone dialing problem., Suppose for
simplicity that the phone has push buttons rather than a dial. To
"dial" Mary's number the robot must tell his hand which buttons
to push. The robot's hand is presumably guided by his eye. We
assume that the problem of hand-eye coordination is handled by

55

S -

,\c- Lk L T 1_,__

oy

Bolt Beranek and Newman Inc. Report No. 5358

low~level routines that do not concern us. All the robot has to
do to direct his hand to a certain object is to supply the
coordinates of that object in the visual field. As mentioned
above, the visual field is a rectangle, and the robot uses
Cartesian coordinates to specify positions in the visual field.
"(push Robot x y I)" means that during interval i the robot's
hand reaches out and pushes the object at coordinates (x,y) in
the robot's field of view. When the robot commands his hand to
push the object at coordinates (x,y), he uses arabic numerals to
specify the coordinates x and y. So if the robot issues the
command

('push 'Me (arabic x) (arabic y) 'Vnow)

his hand will push the object at coordinates (x,y).

When the robot points his eye at the buttons on the phone,
he will see the arabic numerals from "0" to "9" printed on the
buttons. As stated in section 3.1.2, the sensors will report that
a numeral n is written at coordinates (x,y) by producing the
sentence
('WrittenAt (quote n) (arabic x) (arabic y) 'Interval99)

The numerals (arabic x) and (arabic y) are precisely the data
structures the robot needs to build a command that will cause his
hand to push the button with the numeral n printed on it. If the
sensors produce the sentence

(WrittenAt 'S 128 100 Interval99)

the robot knows that the button with the numeral "5" printed on
it is at coordinates (128,100) in his field of view. He can push
it by issuing the command

(push Me 128 100 Vnow)

So assume that the robot is looking at the telephone. He can
dial the number "5766" by executing a program that looks roughly
like this:

56

Report No. 5368 Bolt Beranek and Newman Inc.

Scan until you receive a percept of the form
(WrittenAt '5 x1 yl i);

Send the command (push Me x1 yl Vnow);

Scan until you receive a percept of the form
{(WrittenAt '7 x2 y2 i);

Send the command (push Me x2 y2 Vnow);

Scan until you receive a percept of the form
(WrittenAt '6 x3 y3 i);

Send the command (push Me x3 y3 Vnow);

Scan until you receive a percept of the form
(WrittenAt '6 x4 y4 i);

Send the command (push Me x4 y4 Vnow);

Now it is clear why the robot needs the arabic numerals for
the digits of Mary's phone number to construct a program for
dialing her number. He needs to find the the right buttons to
push, and he identifies them by the arabic numerals printed on
them. The robot cannot dial the number in a pitch black room.
Moore and Konolige treat dialing as a primitive action. They do
not mention that you have to look for the buttons with the right
numbers printed on them, so they do not predict any difficulty
about dialing a telephone in the dark. They can of course assert
that having light is a precondition of dialing. But it is better
to derive this precondition from the general rule that you can't
see in the dark.

3.5 Belief and Truth

Common sense says that snow is white if and only if it is
true that snow is white. One can formalize this idea with a Truth
Schema. For every sentence p, the sentence
('<=> ('true (quote p)) p)
is an instance of the Truth Schema. This schema says that the
truth of a sentence depends on the properties of the objects

57

e

&
e
e

At et MMV . A B e Aty e £

Bolt Beranek and Newman Inc. Report No. 5368

mentioned in the sentence. For example, one instance of the Truth
Schema is the sentence

-(true ('white 'snow)) <-> (white snow)

which says that the sentence "(white snow)" is true iff snow is
white.

Now we can formalize the inferences involving truth in
section 1.2, The following inference is correct:

John believes that gold is an element,
Everything that John believes is true.

Gold is an element.

The formal translations of the premisses are:

(believe John ('element"gold) I)

(all x (believe John x I) => (true x))

These sentences entail

(true ('element 'gold))

The following is an instance of the truth schema:
(true ('element 'gold)) <-> (element gold)

The last two sentences entail

(element gold)

that is, gold is an element.

The Truth Schema captures our intuitions about truth nicely.
Unfortunately, our intuitions about truth are not consistent.
The problem is the celebrated liar paradox. Suppose I say "This
statement is false". If the statement is true, it is false; and
if it is false, it is true. We can get a formal version of this
contradiction by assuming
p="'(" (true p))

The following is an instance of the Truth Schema:
(true '(~ (true p))) <=> (° (true p))
Substituting equals gives

58

A

WSS

i

T

SRR IR) |55 SR~

o fo e WL i Biat . i

oot h. 1 2l 8

Report No. 5368 Bolt Beranek and Newman Inc.

(true p) <=> (- (true p))
which is an obvious contradiction.

How we deal with this problem depends on what we think the
goal of Artificial 1Intelligence is. If we are trying to make
machines as intelligent as possible, we must abandon the Truth
Schema and look for a new schema that can handle the Liar
sentence without contradiction. There are several ways to do
this. For example, see [15].

On the other hand, if we are trying to make machines as
intelligent as people, we don't want to give them a solution of
the Liar Paradox even if we know of one. Ordinary people can't
resolve the Liar Paradox; they can only note that it is a
paradox, and go on using the Truth Schema as before. If our
machines are only supposed to be as intelligent as ordinary
people, they should do the same. This does not mean that we
should put the Truth Schema into our logic and forget about the
matter. If we do that, we have no way of knowing when the
contradictions will appear or how much trouble they will cause.
Even if we find by experiment that no problem arises in this or
that application, we can't just ignore the problem. It is our
job, not just to build programs that work, but to understand why
they work. Our task is not done until we answer the question “"How
can machines (or people) get away with using an inconsistent
theory of truth?".

Let us look again at the Liar example, p = '(~ (true p)).
Suppose we try to discover whether this sentence is true by using
the usual Tarskian rules for assigning truth values, along with
the rule that (true x) is assigned the same truth value as x. The
sentence is the negation of '(true p), so to find its truth value

59

i "‘/‘."‘g';}f

R ;@TM‘"’M&N{; AT SERAE

L s
Ao

PV

Bolt Beranek and Newman Inc. Report No. 5368

we must find the truth value of '(true p). To find the truth
value of this sentence we must find the truth value of p. But p
is the sentence we started with. The attempt to find the truth
value of p thus leads to an infinite recursion. A sentence is
called grounded if we can find its truth value by the given rules
without infinite recursion.

Kripke [9] pointed out that many quite ordinary utterances
can be ungrounded if circumstances are very unfavorable. Suppose
Joe Smith is walking down a road at noon on July 1, 1982. He sees
a sign by the road, too far away to read, and remarks "The
statement on that sign is true."™ He approaches the sign and
reads the words "The utterance of Joe Smith at noon on July 1,
1982 is false". If we attempt to find the truth value of this
sentence by usual rules we get an infinite recursion. But of
course the example was created only by assuming a very peculiar
road sign. Although many utterances could lead to this kind of
infinite recursion, in practice not many do.

In the appendix we will offer a formal definition of this
notion of a grounded sentence, and prove that in any model we can
choose the extension of the predicate "true®"™ so that (true 'p)
<=> p holds for every grounded sentence. Since ungrounded
sentences seldom arise in practice, they are rare in the intended
model of the robot's beliefs. Therefore most instances of the
Truth Schema are true in the intended model. And that is why it
is safe for the robot to use the Truth Schema.

b
& }

o

T

e T N

Report No. 5368 Bolt Beranek and Newman Inc.

4, Conclusions and Further Work

This work makes three main improvements in the match between
theory and common sense. First, it does not predict that agents
instantly believe everything that can be proved from their
beliefs. It considers the agent's goals and his limited inference
ability before predicting that he will make an inference, and it
says that inference takes time. Second, it gives a better
account of what you must know about an object in order to know
what that object is. It says that you know what an object is if
you know enough about it to carry out your intended actions.
This is far from complete, but still a real improvement. Finally,
it gives a better account of when you need knowledge to perform
an action. It simply formalizes the obvious: robots perform
actions by sending commands to -effectors, and to act they must
find out which commands will produce the desired actions.

These improvements have practical importance. A planner will
not get far if (following the situation theory) it thinks that
there is no point in planning to do inferences, since they all
happen instantly and automatically. Nor will an interactive
program do well if it thinks that a large mathematical expression
is a good answer to a user's question because it is a standard
name,

These improvements are all made in the same way: by
forgetting about alternative situations and going back to
familiar ideas from computer science. 1If an agent uses sentences
to represent his beliefs, and applies inference rules to them,
there is no reason to expect that he will believe all
consequences of his beliefs. If an agent acts by sending commands
to his effectors, then of course he must find out which commands

61

Bolt Beranek and Newman Inc. Report No. 5368

will produce the desired actions. Konolige took this line, but
he only went halfway - he returned to the situation theory in his
treatment of knowing what and knowing how. As a result, the
problems of the situation theory reappear in Konolige's theory.

There is also an important gain in the technique for
reasoning about another agent's inferences. The idea of building
a data base to represent another agent's beliefs has always
appealed to AI workers. But it was not very useful with no way
to represent "John knows what Mary's phone number is" in the data
base. The use of new constants to stand for unknown terms solves
this problem.

Further work on these 1lines could be of two kinds:
improvements in the theory, and applications of the theory. The
theory has a major shortcoming as it stands: unlike Moore's
theory, it does not include a formal theory of planning. Since my
treatment of time uses intervals, not situations, one cannot
simply add situation calculus. It would be straightforward to get
rid of the intervals and add situation calculus to the theory.
But situation calculus has its own problems, and people are
working on better treatments of time [16]). It would be nice to
keep the interval theory of time and find a planning theory based
on intervals rather than situations. This problem is tackled in

(12}, (1] and [5].

One could make several other extensions to the theory, but
real progress will come only from studying applications. A
program can use this theory in two ways: to reason about its own
beliefs and other people's. Planning programs need to reason
about their own beliefs so that they can plan to acquire
knowledge, either for its own sake or as a prerequisite to

e = WSS

Report No. 5368 Bolt Beranek and Newman Inc.

further actions. Since most planning work to date has used
situation calculus, one might replace intervals with situations
before applying the theory to planning. The theory would then
allow a program to build plans involving perception,
introspection, inference and physical actions.

Reasoning about other people's beliefs is important in
interactive programs (whether or not they use natural language)
and in story understanding. With a good representation of belief
one can assert (for example) that agent A is lying to agent B,
while B realizes that A is lying but pretends to be fooled. Here
one would like to use knowledge of an agent's beliefs to predict
his actions, a topic considered in [4]. This type of application
should provide evidence for a better theory of knowing what.

Some people hope that AI programe in all domains can benefit
from knowledge about their own knowledge. One might express
heuristics by saying "This piece of knowledge is good for solving
this type of problem”. One could describe a default by saying
"Assume that a human being has two arms unless you have knowledge
to the contrary", thus avoiding the pitfalls of non-monotonic
logic. These ideas are attractive but untested.

P - Jps——

g Bolt Beranek and Newman Inc. Report No. 5368

|
1 4
4 1
7 i
A -4
g :
\ - 4
| |
i
1
!

64

y
f% ! Report No. 5368 Bolt Beranek and Newman Inc.

5. Appendix: Proofs

3 5.1 The Reflection Schema is Correct

3 ; Before we can prove that the Reflection Schema is correct,
: we must be more explicit about the structure of proofs and their
print names. A proof consists of a proof rule, a conclusion, and
zero or more subproofs. A proof rule that requires no subproofs
is an axiom schema.

The print names of proofs are formed as follows. Consider a
proof with rule R, subproofs Pl .. Pn, and conclusion q. There is
a function letter R' called the proof-building function letter
1 for R. R' denotes the function that takes proofs Pl .. Pn and a
sentence q, and returns the proof with rule R, sub-proofs Pl ...
Pn, and conclusion q. Then the term
(R' (PrintName Pl) ... (PrintName Pn) (quote q))
is the print name of the proof with rule R, sub-proofs Pl ... Pn,
and conclusion g.

; For example, consider a proof whose rule is Excluded Middle
and whose conclusion is (p V “p). It has no subproofs, since
Excluded Middle requires no premisses to derive its conclusion.
Its print name is

(ExMiddle '(p V "p))

"ExMiddle" is the proof-building function letter for the rule
Excluded Middle.

- In section 3.2.2 I outlined the proof that the Reflection
‘ Schema is correct. The core of the argument was that substitution |
maps proofs to proofs. Our proofs use the rules of first-order

J
—_— - W

- - - - . P,
. - s v - . . . NER A el A I ANy §
o P L A L vt y". :m"“:.q"':‘..’;".;%"{" va-, '.j."“,‘:f‘f" o uv'ﬂm;?(" " ‘1 "l - agdd Lo, o T 3"1‘ ‘ ek <t
s K) o WU e T T, . g-AAA TN . 2 . L . i]
o b . ; . B TN g Ak Ll

v — R

T

p Bolt Beranek and Newman Inc. Report No. 5368

logic plus the Truth Schema and the Reflection Schema. So we
should begin by picking a first-order proof system and showing
that substitution maps proofs to proofs in that system. There is {
a minor difficulty here. Every first-order proof system has a '
j rule that allows us to prove (all x (p x)) by proving (p t) Y
! without using any assumption that contains the term t. In some ‘
systems the term t is a constant, in others a variable. We must

choose a system in which t is always a variable. For if t is a
o constant, a substitution might introduce that constant into one
¢ of the premisses used to prove (p t). In that case the conclusion
jé (all x (p x)) would not be allowed, and it would not be true that
; substitution always maps proofs to proofs. So we must use a proof
system in which variables, not constants, are used to stand for
arbitrary objects. Given such a system, one can show by a
straightforward induction that substitution maps proofs ¢to
proofs. I omit this argument.

Next consider proofs that use first-order rules and the
Truth Schema, but not Reflection. To show that substitution maps
proofs to proofs, we need only show that substitution maps
. instances of the Truth Schema to instances of the Truth Schema.
If we allow arbitrary substitutions of closed terms for
constants, this is false. Consider a typical instance of the
Truth Schema:
(true ('white 'snow)) <-> (white snow)
Suppose we replace the constant "snow" with the constant "coal".
We get
(true ('white 'snow)) <-> (white coal)
This is certainly not an instance of the Truth Schema. We should
have replaced the constant "'snow" with "'coal" as well. Then we
would have gotten
(true ('white 'coal)) <-> (white coal)
‘ which is an instance of the Truth Schema.

66

L8 v
e,
........

OB e ke
. . g RN
R A Ly ST L A

Report No. 5368 Bolt Beranek and Newman Inc.

A To accommodate the Truth Schema, we must substitute (quote
¢) for (quote d) whenever we substitute c¢ for 4. A substitution
that obeys this rule is called a Q-substitution. Let (quote”n e)
be the result of quoting expression e n times. So (quote®2 "C")
is "''C", for example. If s is a substitution of closed terms
for constants, let (s e) be the result of applying s to
expression e. Substitution s is a Q-substitution if for all
expressions e and all integers n

12 (s (quote®n e)) = (quote®n (s e))

A Q-substitution s is completely specified by the values of (s ¢)
for quoteless constants c. Given these values, equation (12)
2 determines the value of (s d) for every constant 4.

o,

ke
%
”\

4

Every instance of the Truth Schema has the form

] ('<=> ('true (quote p)) p)

If we apply a Q-substitution s, this becomes

('<=> ('true (s (quote p))) (s p))

By (12) this is

("'<=> ('true (quote (s p))) (s p))

which is again an instance of the Truth Schema. Thus if we add
the Truth Schema to our first-order system, Q-substitution will
still map proofs to proofs. It remains to consider the Reflection
Schema.

" If we add the Truth Schema to our proof system, the
Reflection Schema must have instances that describe proofs
involving the Truth Schema. For example, there should be an
instance of the Reflection Schema which says that for all x, the
sentence

13

('<=> ('true (''white (quote x)))
('white x)
)

3.5 Tt olECavE . TR EN L4
1350 bl G Sk o RN A

Y e

ATt oW receee oo

Bolt Beranek and Newman Inc. Report No. 5368

is an instance of the Truth Schema. Then if we let x = "coal®, we
can infer that

('<=> ('true (''white (quote ‘'coal)))
('white 'coal)
)

is an instance of the Truth Schema. Since (quote 'coal) = ''coal,
this is equal to

('<=> ('true (''white ''‘coal))
('white 'coal)
)

This term denotes the following sentence:

({=> (true ('white ‘'coal)) |
(white coal) ~
)

It is clearly an instance of the Truth Schema.

——t

We must change the definition of a wff schema so that (13)
is a wff schema. First, some notation. If t is a term,
("quote™®n t) is formed by prefixing the function letter "quote"
to the term t n times. Thus ("quote®™"2 "(arabic N)") is "(quote
(quote (arabic N)))". A more exact definition of ("quote""n t)
is: ("quote”""0 t) is t, and ("quote™"n+l t) is ('quote ("quote™“n
t)). Obviously if term t denotes expression e, then ("quote""n t)
denotes (quote”n e). We extend the function “quote™ to handle
individual symbols as well as terms. If 1 is a symbol, (quote 1)
is 1 with a quotation mark prefixed. So for the connective "&" we
have (quote "&") = "'&", and (quote”2 "&") = "''g", Finally, we
introduce a new notation for expressions of the object language.
If F is an n-adic functor and el ... en are expressions, <F el
.+ en> is the expression with functor F and arguments el .. en.

B STV SO St W i W

The quote name of a wff includes the quote name of every

68 l

‘ Report No. 5368 Bolt Beranek and Newman Inc.

. term in that wff. A wff schema is like the quote name of a wff
except that variables can appear instead of the quote names of
5 terms. To include (13) as a wff schema, we must generalize this
definition. A wff schema is like the quote name of a wff except
that expressions of the form ("quote"™ n v), where v is a
variable, can appear instead of the quote names of terms. We
must generalize the definition of a proof schema in the same way,
following our observation that a proof schema is to the print
name of a proof as a wff schema is to the quote name of a wff. A
proof schema is like the print name of a proof except that
> expressions of the form ("quote®™ n v) can appear instead of the
g quote names of terms. This definition is not completely precise,
é; but it is clear enough to support a convincing proof.

LI SR NS
i [

The typical instance of a proof schema is an instance formed

i i by binding its free variables to distinct new constants. If v is

3 a variable and e is an expression, (new v e) is a quoteless
constant that does not occur in e (including quoted occurrences).
If x is not equal to y, (new x e) is not equal to (new y e). Let
p be a proof schema. The typical instance of p is the denotation
of p in the environment that binds each variable v to (new v p);

. I write (den t e) for the denotation of term t in environment
e. An environment is just a function from variables to values, so
the environment that binds each v to (new v p) is (lambda v. (new

j v P)). If (typical p) is the typical instance of proof schema p,

' we have

(typical p) = (den p (lambda v. (new v p)))

Let s be a Q-substitution, and (lambda v. (f v)) an environment

that binds each variable v to a closed term (f v). We apply a

substitution s to an environment by applying s to each binding in

that environment. That is,

14 (s (lambda v. (f v))) = (lambda v. (8 (f v)))

- . -— 1 . o L A s
e PR . » —— nots - wAMIIE v bapengy # Y. . LIy, . T 5 A AP b SR 3 A
SR A4 'v i.i,*" :‘ B ,A.’.x_j,l,r ‘\ts&?‘(f’m . 3‘& «ug‘ﬁ"« FA% : N, . L i RS 3;.3 A

* Bolt Beranek and Newman Inc. Report No, 5368

As stated in 3.2.2, we must show that if the typical instance of
a proof schema is a proof, every instance is a proof. The
following lemma is the basis of the argument.

Lemma 1. If p is a proof schema, E binds variables to closed
E terms, and s is a Q-substitution, then (s (den p E)) = (den (8 p)
3 (s E)).

' Proof. By induction on sub-expressions of p. It is clear from the
definition of the print names of proofs that they contain only
two kinds of symbols: quoted function letters and proof-building
function letters. A proof schema is like the print name of a
proof except that it can contain terms of the form ("quote""n v),
3 where v is a variable. So a proof schema can contain four kinds
of symbols: quoted function letters, proof~-building function
letters, variables, and the function letter "quote". For the
base case, we consider a sub-expression of p that has no sub- ﬂ
expressions of its own. It must be either a quoted constant or a

4 variable. If it is a quoted constant, say (quote ¢) for some]
' constant ¢, we have

(s (den (quote c) E)) ;

(s ¢) (quote x) denotes x i
(den (quote (8 c)) (s E)) (quote x) denotes x .
(den (8 (quote c)) (s E)) 8 is a Q-substitution ;

If the sub-expression is a variable v, we have

(8 (den v E))
(den v (8 E)) defn., of (8 E)
(den (8 v) (s E)) (8 v) =v

For the induction step we consider a sub-expression of the form
<F al ... an> -~ the expression with function letter F and
arguments al ... an, where n > 0. The function letter F is either
a quoted function letter, a proof-building function letter, or
the function letter "quote". Let f be the function denoted by
the function letter F. We prove

15 (s (£ al ... an)) = (f (s al) ... (8 an))

70 [

e

-—

: ;
P Ty R e ko By

Report No. 5368 Bolt Beranek and Newman Inc.

I1f F = (quote G), where G is a functor, we must prove

(s <G al ... an>) = <G (s al) ... (s an)>

Since G is not a constant, this follows at once from the
definition of substitution, If F = “quote" we must prove

(s (quote e)) = (quote (s e))

which is true because s is a Q-substitution. Suppose F is the
proof-building function letter for the proof rule R. We must
prove that applying a substitution s to the proof with rule R,
sub-proofs P1 ... Pn, and conclusion c yields the proof with rule
R, sub-proofs (s Pl) ... (8 Pn), and conclusion (s c¢). This is
true by definition - substitution into proofs is defined
component-wise,

With equation (15) we can easily do the induction step.
(s (den <F al ... an> E))

(s (f (den al E) ... (den an E))) defn. of denotation
(f (s (den al E)) ... (8 (den an E))) (15)

(f (den (s al) (s E)) ... (den (s an) (s E))) induction hyp.
(den <F (8 al) ... (s an)> (s E)) defn. of denotation
(den (s <F al ... an>) (s E)) F not a constant

This completes the proof of Lemma 1.
Lemma 2. For every proof schema p and Q-substitution s, there is
a Q-substitution s' such that (typical (s p)) = (s8' (typical p)).

Proof: The substitution s' is like s except that it replaces the
new constants of p with the new constants of (s p). If ¢ is a
quoteless constant in p,

(s8' ¢c) = (8 ¢c)

If v is a free variable in p,

(s' (new v p)) = (new v (8 p))

These requirements are consistent, because the (new v p)'s are
all distinct from each other and from every constant in p. Since
(s' ¢c) = (8 c) for each constant ¢ in p, (8' p) = (8 p). Then

71

Bolt Beranek and Newman Inc. Report No. 5368

(s' (typical p))
(8' (den p (lambda v. (new v p)))) defn. of typical
(den (s' p) (s8' (lambda v. (new v p)))) Lemma 1 .
(den (s8' p) (lambda v. (s8' (new v‘p;;;) (14) !
)
)))

‘| (den (s' p) (lambda v. (new v (s p defn. of s g
2 (den (s p) (lambda v. (new v (8 p) (s' p) = (5 pP)

3 (typical (s p)) defn. of typical

This completes the proof.

An instance of Reflection contains a proof schema, which has a
typical instance. This typical instance is itself a proof and .3
may use Reflection. We define the depth of nesting of Reflection
in a proof in the obvious way. The depth of nesting is 0 in a B
‘ proof that does not use Reflection. Suppose P is a proof

é containing Reflection steps, and Pl ... Pn are the typical

instances of the proof schemas appearing in these Reflection

steps. Then the depth of P is one plus the maximum depth of Pl

..o Pn. Now we prove

Lemma 3. If P is a proof, and s is a Q-substitution, then (s P) .
is a proof. _ ‘E
Proof: By induction on the depth of nesting of Reflection.

Suppose the depth of proof P is n, and the theorem holds for all

proofs of depth less than n. We have already shown that the non-

Reflection steps in (s P) must be correct. Consider a Reflection }
step in P; it contains a proof schema p. (typical p) is a proof
(otherwise P would not be a proof), and its depth is less than
n. The corresponding Reflection step in (8 P) has the proof o
schema (s p) and the typical instance (s8' (typical p)), which is
a correct proof by induction hypothesis. Therefore every !
Reflection step in (s P) is correct, and (s P) is a proof. '
We need one more lemma. . 1
Lemma 4. If p is a proof schema, and E is an environment that

binds variables to closed terms, there is a Q-substitution s such)
that (den p E) = (s (typical p)). That is, every instance of p ,5
can be formed by substituting into the typical instance.

ik L

n !

Report No. 5368 Bolt Beranek and Newman Inc.

Proof: Suppose the environment E binds each variable v to a
closed term (f v). For every variable v, let

(s (new v p)) = (f v)

For all other x, (8 x) = x. This is a good definition, because if
v is not equal to w, (new v p) is not equal to (new w p). (8 p) =
pr, s8ince none of the (new v p)'s occur in p. Then

(s (typical p))

(8 (den p (lambda v. (new v p))) defn. of typical
(den (s p) (s (lambda v. (new v p;;;) Lemma 1.

(den (s p) (lambda v. (s (new v p)))) (14)

(den (s p) (lambda v. (f v))) defn. of s
(den p (lambda v. (f v))) (s p) =p

(den p E) defn. of (£ v)

This completes the proof.

Now we can easily prove
Theorem 1. If p is a proof schema, and the typical instance of p
is a correct proof, all instances of p are correct proofs.
Proof. The typical instance of p is a proof P. If P' is any
instance of p, by Lemma 4 there is a substitution s such that (s
P) = P', so by Lemma 3 P' is a proof. Therefore every instance of
p is a proof,

5.2 The Truth Schema Holds for Grounded Sentences

Intuitively, a sentence is grounded if we can find its truth
value by the obvious rules without entering an infinite
recursion, As a first step in formalizing this notion, let us
recall the definition of "infinite recursion” for programs. We
define the notion of a recursion of depth n by induction. If the
execution of a program does not involve any recursive calls, it
is of depth 0, If it involves recursive calls of depths nl ...

73

e ek '\.r‘-\:f* L A
uv PRt L R

et e w1 b bR T Y

Bolt Beranek and Newman Inc. Report No. 5368

nk, its depth is 1 + (maximum nl ... nk). The execution involves
infinite recursion if it is not of depth n for any integer n.

Suppose we try to extend this definition to truth value
assignments. Consider the rule for assigning a truth value to
(all x (P x)). It checks the truth value of (P x) for each choice
of x. in the domain of the model. Suppose that each of these truth
values can be found with a finite depth of recursion. Then
certainly there is no infinite regress involved in finding the
truth value of (all x (P x)). VYet we cannot define the depth of
recursion of (all x (P x)) to be the maximum depth of (P x) for
any binding of x. It may be that the model contains infinitely
many values for x, and the depth of (P x) can be made arbitrarily
large by suitable choice of x. In that case the maximum is not
defined.

This problem arises because a set of integers need not have
an upper bound in the integers. We can solve it by using infinite
ordinals to measure the depth of recursion, Every set of ordinals
has an upper bound in the ordinals, so we can define the depth of
recursion of (all x (P x)) to be the maximum depth of (P x) for
any x in the domain of the model.

A partial model of a language assigns a denotation to every
function and predicate letter except "true®. This leaves us free
to determine the truth value of (true p) by checking the truth
value of p. If p is a wEf and e is an environment, the pair [p e]
is called a closure. Given a partial model, we can attempt to
find the truth value of a closure [p e] by recursively applying
the truth value rules. If the recursion terminates at depth n
with truth value v, the closure has truth value v at level n. If
the recursion never terminates, the closure has no level and no

74

Report No. 5368 Bolt Beranek and Newman Inc.

truth value - it is ungrounded. We define the truth value and
the level of ([p e] by the following rules. (If e is an
environment, e(v/x) is the environment like e except that the
variable v is bound to x.)

If p is an atomic wff whose predicate is not "true", [p e] has
the usual truth value at level 0.

If [p e] has truth value T at level n, [“p e] has truth value F
at level n+l.

If [p e] has truth value F at level n, “p has truth value T at
level n+l.

If [p e] and [g e] have truth value T at levels nl and n2, then
[p & g e] has truth value T at level (maximum nl n2) + 1.

If either [p e] or [q e] has truth value F at level n, then [p &
q e] has truth value F and level n+l.

If for every x, [p e(v/x)] has truth value T at level £(x), then
[(all v p) e] has truth value T, and its level is the least
ordinal greater than every £(x).

If for some x, [p e(v/x)] has truth value F at level n, then
[(all v p) e] has truth value F at level n+l.

If the denotation of term t in environment e is sentence p, and.p
has truth value T at level n, then [('true t) e] has truth value
T at level n+l. Likewise if p has truth value F,.

It is easy to see that for wffs that do not mention the predicate
"true”, these rules reduce to the ordinary Tarskian rules for
truth assignment.

We say that a closure [p e] is grounded if it has a truth
value at some level. We can easily see that p = ('~ ('true 'p))
has no truth value any level. For if it has a truth value there
is a least ordinal at which it has a truth value, and by the
rules for assignment to “q and (true x), the sentence denoted by
p must have a truth value at a lower level. The sentence denoted

75

-

U SRR Y o . N .
EE) AN B, B PO S Y. AT T O W TN SR R N S

T s s,

Bolt Beranek and Newman Inc. Report No. 5368

by p is of course the sentence we started with, so this
contradicts the assumption that we have found the least ordinal
at which p has a truth value.

We must check that the rules assign unique truth values.

Lemma 4. Every closure has at most one truth value.

Proof: It suffices to prove that for every ordinal n, no closure
has two truth values at levels less than or equal to n. The
argument is by induction on n, The case n = 0 follows at once
from the first clause of the definition. PFor n > 0, consider a
closure of the form [p & q e]. Assume the theorem is false, and
[p & g e] has truth values T and F at ordinals less than or equal
to n. Then [p e] and [q e] have truth value T at ordinals less
than n, and either [p e] or [gq e] has truth value F at some
ordinal less than n. So either {p el or [gq e] has two truth
values at ordinals nl and n2 less than n. Then the greater of nl
and n2 is a counter-example to the induction hypothesis. So our
assumption is false - [p & q e] does not have truth values T and
F at ordinals less than or equal to n. The remaining cases are
similar.

Given a partial model M, we can construct an ordinary first-
order model M' by setting the extension of the predicate "true"
to the set of all sentences that have truth value T at some
level.

Lemma 5. If [p e] has truth value T (or F) at level n, its truth
value in M' is T (or F). J

Proof: By induction on the structure of wffs. Consider an atomic
wff whose predicate is not "true". Then by the first clause of
the definition, if it has truth value T (or F) at some ordinal,
it has truth value T (or F) in M',

76

Report No. 5368 Bolt Beranek and Newman Inc.

Consider next a closure of the form [('true x) e]. If it has
truth value T at some ordinal, the denotation of x in environment
e has truth value T at some ordinal, so the denotation of x in
environment e is in the extension of "true" in M'. Hence [('true
x) e] has truth value T in M', By the same argument, if [('true
x) e] has truth value F at any ordinal, it is assigned F in M'.

Next consider the conjunction p & q. If it has truth value T
at some ordinal, p and q are assigned T at some ordinals, so by
induction hypothesis they are assigned T in M'. Hence p & q is
assigned T in M'. If p & q has truth value F at some ordinal,
either p or q has truth value F at some ordinal, so by induction
hypothesis either p or q is assigned F in M'. Therefore p & q is
assigned F in M'. The remaining cases are handled in the same
way.

Lemma 6. If p is grounded, the truth value of p in M' is the
truth value of ('true (quote p)) in M'.

Proof: Since p is grounded, it has a truth value V in M, and by
Lemma 5 its truth value is V in M', The truth value of ('true
{quote p)) in M is also V, by definition. Then the truth value of
("true (quote p)) in M' is also V.

This at once entails

Theorem 2. For any partial model M, if p is a grounded sentence,
the sentence

('<=> ('true (quote p)) p)

is true in M',

We have shown that, given the extensions of the other
symbols in our language, we can choose the extension of the
predicate "true" so that the Truth Schema is correct for every
grounded sentence. Thus the inconsistency of the Truth Schema
arises only when dealing with ungrounded sentences.

77

Lk

Bolt Beranek and Newman Inc. Report No. 5368

A g

P o e G e P 9

R

I A

Report No. 5368 Bolt Beranek and Newman Inc.

&,

033

—

6. Acknowledgements

g I acknowledge my thesis advisor, James Allen, for guidance
3 over the last four years. I thank David Israel for making me see
i that this theory rests on the implausible but useful assumption
that all agents have the same knowledge representation language.
Without the work of Don Perlis on theories that contain their own
A 1 truth predicate, I would have no answer to the objection that
A self-describing languages are inconsistent.

e -~ - - — - e

T AR T YA

Bolt Beranek and Newman Inc. Report No. 5368

(1]

[2]

(31

(4]

(5]

(6]

(7]

(8]

(9]

(10}

REFERENCES

Allen, James.

A General Model of Action and Time.
Technical Report, Department of Computer Science,
University of Rochester, September, 198l.

Creary, L. G.

Propositional Attitudes: Fregean Representation and
Simulative Reasoning.

JJCAI-6:176-181, 1979.

Fodor, J.A.

Bradford Books, Montgomery, Massachusetts, 1982, chapter
Three Cheers for Propositional Attitudes.

Haas, Andrew.

Plapning Mental Actions.

PhD thesis, Department of Computer Science, University of
Rochester, 1982.

Haas, Andrew.
what Robots Do and What Robots Can Do.
1983.

Hintikka, J.
Semantics for Propositional Attitudes.

In L. Linksy (editor), Reference and Modality, pages
145-167. Oxford University Press, London, 1971.

Kaplan, D.
Quantifying In.

In L. Linsky (editor), Reference and Modality, pages
112-144. Oxford University Press, London, 1971.

Ronolige, K.
A First-Order Formalization of Knowledge and Action for a

Multi-Agent Planning System.
Technical Report 232, SRI International, 1980.

Kripke, Saul.
Outline of a Theory of Truth.
Journal of Philosgophy 72(13), 1975.

Lycan, William G.
Towards a Homuncular Theory of Believing.

80

AR LR T

-y

[11]

A St -

' [12]

[13]

[14]

[15]

[16]

RO

Report No. 5368 Bolt Beranek and Newman Inc.

Cognition and Brain Theory 4(2):139-157, 1981.
McCarthy, John:

Intelligence 9.
Halsted Press, New York, 1979, pages 120-147chapter First-
Order Theories of Individual Concepts and Propositions.

McDermott, Drew.

A Temporal Logic for Reasoning About Processes and Plans.
Technical Report 196, Department of Computer Science, Yale
University, March, 1981.

Moore, Robert.

Reasoning About Knowledge and Action.
Technical Report 191, SRI International, 1980.

Moore, Robert, and Hendrix, Gary.)
i Models of Belief and Semantics of Belief

Technical Reéort 187, SRI International, 1979.

Perlis, Donald.

Iruth, Syntax and Reason.
PhD thesis, Department of Computer Science, University of
Rochester, 1980.

Vilain, Marc.

A System for Reasoning About Time.

In Proceeedings of the 1982 National Conference on
Artificial Intelligence, pages 197-201. AAAI, 1981.

81

R ol P

i £

g

Official Distribution List

Contract N00014-77-C-0378

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

Office of Naval Research
Information Systems Program
Code 437

Arlington, VA 22217

Office of Naval Research
Code 200
Arlington, VA 22217

Qffice of Naval Research
Code 455
Arlington, VA 22217

Office of Naval Research
Code 458
Arlington, VA 22217

Office of Naval Research
Branch Office, Boston
495 Summer Street
Boston, MA 02210

Office of Naval Research
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

Office of Naval Research
Branch 0Office, Pasadena
1030 East Green Street
Pasadena, CA 91106

Naval Research Laboratory
Technical Information Division
Code 2627

Washington, D.C. 20380

Copies

12

cont'd.

-2-

? Naval Ocean Systems Center 1l
- Advanced Software Technology Division

A Code 5200

n] San Diego, CA 92152

“ Dr. A. L. Slafkosky 1
, Scientific Advisor

Commandant of the Marine Corps

: (Code RD-1)

4 Washington, D.C. 20380

Mr. E. H. Gleissner 1
Naval Ship Research & Development Ctr.

Computation & Mathematics Dept.

Bethesda, MD 20084

Capt. Grace M. Hopper, USNR 1l
T Naval Data Automation Command
3 Code 00H

5 Washington Navy Yard
bs Washington, D.C. 20374

B Mr. Paul M. Robinson, Jr. 1
¥, NAVDAC 33

Washington Navy Yard

Washington, D.C. 20374

A Advanced Research Projects Agency 1
3 ? Information Prccessing Techniques

1400 Wilson Boulevard
Arlington, VA 22209

Capt. Richard L. Martin, USN 1
507 Breezy Point Crescent :
Norfolk, VA 23511

Director, National Security Agency 1l
Attn: RS54, Mr. Page
Fort G.G. Meade, MD 20755

Director, National Security Agency 1l
Attn: R54, Mr. Glick
Fort G.G. Meade, MD 20755

Major James R. Kreer 1l
Chief, Information Sciences ;
Dept. of the Air Force j
Air Force Office of Scientific Research '
European Office of Aerospace

Regsearch & Development
Box 14
FPO New York 09510

cont'd.

Mr. Fred M. Griffee
Technical Advisor C3 Division
Marine Corps Development

& Education Command
Quantico, va 22134

END

DATE
FILMED

