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This report is div fi r wo main parts: Experimental Work (B) and

Theoretical Work (C).

In the experimental part we first report the noise in gold metal films.

The noise above 150*K (close to the Debye temperature) is of the form 1/f" 2,

and requires probably a vacancy diffusion model or other specific models as in

the work of Dutta and Horn. Below 150*K the noise is 1/f, with a maximum near

80K, and then a continued decrease. If the N in Hooge's formula is reinterpreted

as the number of electrons within 2 kT from the Fermi surface, rather than the

total number of valence electrons, then the noise can well be understood in terms

of quantum 1/f noise, involving Umklapp processes.

+ - +
The noise in GaAs n n n mesas of submicron dimensions is very low. The

Hooge parameter is of order 10- 7 , indicating that collisions are nearly absent.

+ - +
In l.lp, n n n structures intervalley electron transfer is noticeable. An

attempt to measure the associated intervalley noise is being made. The n p n

have a lot of noise associated with the prepunch-through current. This is

attributed to recombination of injected electrons via empty acceptors, since in

the unexcited specimen there are no holes due to electron spillover. At very

high currents (1- 10 amps) requiring pulsed noise measurements, ballistic behavior

with low noise takes over again, and the behavior becomes similar to that in

n n n structures.

In an entirely different experiment we observed for the first time a 1/f

noise component in radioactive a-particle decay from 241 Americium. This noise

was deduced from counting statistics using the Allan variance theorem.

Partition 1/f noise in pentodes was measured by eliminating the cathode

1/f noise with feedback. Van der Ziel gave an expression which modifies Handel's

theory for this type of noise. The observed noise seems to be in good argument

with Handel's modified theory.

ii



In the theoretical sections some further remarks were made on the inter-

pretation of Hooge's formula for metals. Further, we calculated quantitatively

the mobility-fluctuation noise associated with impurity scattering for silicon

and for gold. It is found to be extremely low, in accordance with the experi-

mental observations that impurity scattering gives little or no noise. Computa-

tions for acoustic phonon scattering, involving both Normal and Umklapp processes,

are being carried out. Further, a survey is presented of the particular features

of nonequilibrium, stationary Markovian noise processes.

*1
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A. INTRODUCTION

In our previous annual report (June 1982) we mentioned six types of

theories, to explain 1/f noise, that have survived. Of these, we can now omit

the category "transport noise theories," a specific example of which is tem-

perature fluctuation (or heat-diffusion) noise. The measurements of J. Kilmer,

performed this year under the contract, have definitively shown that the noise

in electrically isolated, but thermally closely connected, metal films is

uncorrelated over the entire range 300K - 10 K. Other transport theories had

already been discarded earlier due to the work of Mehta and Van Vliet (Physica

Status Solidi (b) 106, 11, 1981). So far, no mathematical transport model has

yielded a 1/f spectrum over many decades, and the physical evidence for the

occurrence of transport noise as a basis of 1/f noise is entirely lacking.

Secondly, in the June 1982 report we mentioned the model based on phonon-

distributed lifetimes, proposed by Jindal and van der Ziel. So far, however,

there has not been any evidence for this model either, while the occurrence of

very long phonon lifetimes remains very enigmatic. So, also ruling out this

theory, four types of theory remain:

1. The universal theories;

2. The van der Ziel-Bernamont-du Pri-McWhorter theories, involving

a T- (a z 1) distribution of time constants;

3. Specific noise model theories;

4. The mobility-fluctuation bulk model, based on quantum 1/f noise

(Handel, Ngai, Widom, et al.).

The "universal theories" usually seek some mathematical general model,

which explains the absence of time scaling (lack of characteristic time constants)

in 1/f noise. For example, Montroll and Schlesinger have explained that a log-

normal distribution in leading order distributes a random variable x according

-Ito x (Proc. Natl. Acad. Sciences USA 79, 3380-3383, 1982). Recently, Marzec
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and Spiegel offered another interesting mathematical example. They showed that

a distribution of tunable oscillators, having an action J on the system, and

subject to the constraints

f p(w)dw = 1, P(Jw)dJ = 1,

0 0

maximizes the informational entropy

= -ffFnP (icw)djdw

0 0

if P1(w) = N/u, where N is the number of oscillators (note submitted to Nature,

1983). They proceed to give examples of the occurrence of such systems of

oscillators in physical systems. We believe at present that such universal

theories should not be dismissed, in particular, since the other possibilities

have also their limitations.

The van der Ziel- ..... -McWhorter theories still are viable for a number

of cases. In these theories there is necessarily always a lower frequency

W, = l/t and an upper limit w 2 = i/T2 outside which the 1/f law does not hold.

Thus, these theories are not scale-free. In some cases conclusive evidence for

this mechanism has been found. Thus, Hanafi and van der Ziel found that the lower

limit W could be varied by sputtering off layers of cadmium mercury telluride

crystals. We note that the noise in this case stems from the surface, as in

McWhorter's original experiments, and is not a bulk effect. We do not know of

any physical evidence of the time-constant distribution model in cases where the

! 1 noise is clearly a bulk effect.

The "specific noise models" certainly apply in certain cases. Kilmer

found that the noise in gold films, above 150K, has a 1/f '
2 spectrum; the

noise rises sharply with increasing temperature up to a certain maximum, as had

also been observed for other metals by the Chicago group (Dutta, Horn, and

others). They suggested a model involving vacancy migration for this temperature
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range. Likely, some effect of this nature is responsible for the noise. Th're

are, of course, a host of other "specific noise model" theories, such as the

recomnbination model by Min (Solid State Electronics, 1979) and the Island model

of Pellegrini (Phys. Rev., 1981). However, there is not, in our opinion, any

evidence for the validity of these models. And if examples for the occurrence of

such theories are found, then still, most 1/f noise cannot be explained by these

models.

The quantum theory of 1/f noise as advanced by Handel in 1975, and worked

out in more detail in 1980 (Phys. Rev. A22, 745, 1980), remains the most general

theory to explain 1/f noise. However, the noise calculated from Handel's theory

is extremely low. Thus, indeed, this theory explains at most the "flicker floor"

occurring in physical systems. For many phenomena, the observed noise exceeds

Handel's theoretical results by orders of magnitude. In this report we present

evidence that Handel's theory may explain 1/f noise in radioactive decay, in

metal films below the Debye temperature, and it can explain partition noise in

pentodes. We note, however, that Handel's work still receives much skepticism

by many investigators. It has to be admitted that a number of points, in par-

ticular the coherence of various events, responsible for the 1/N dependence in

Hooge's law, is not well understood in Handel's theories. This makes a quantita-

tive comparison with observed data very difficult, as we will see in this report4 for the radioactive decay noise and for the 1/f partition noise in pentodes.

In summary, it appears to us that the explanation of 1/f noise is narrowedI down to four types of possible theories. The time-constant distribution theory

:1 is likely only applicable to surface-generated noise. The specific models have,

no doubt, validity for certain types of noise, in particular when the spectrum

is not exactly 1/f, but, e.g., 1/f 1-/f1 3  Thus, the remaining noise

theories of promise are the "universal theories" and the "quantum theories" of

1/f noise which involve infrared divergencies due to nonlinear coupling of the

system with the wave field.
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A point which also needs further investigation is the fact that order

of magnitude variations can occur for macroscopically identical systems. This

was abundantly illustrated at the Montpellier International Conference (1983)

for the noise in metal films, both by Fleetwood and Giordano, and by our own

findings due to Kilmer et al. Why seemingly "identical" systems can have dif-

ferent magnitude of noise (a factor 3- 10) is at present an enigma.

B.* EXPERIMENTAL WORK

Much experimental work was presented at the Seventh International

Symposium on the Noise in Physical Systems and Third International Conference

on 1/f Noise, held in Montpellier, France, May 17- 20. Where appropriate, we

reproduce the contributions of this conference.



I* 1/f NOISE IN METAL FILIS OF SUBMICRON DIMENSIONS

J. Kilmer, C.M. Van Viler, G. Bosman and A. van der Ziel

Department of Electrical Engineering
University of Florida, Gainesville, FL 32611, USA

Photonic quantum 1/f noise has been identified in Au metal films below the Debye

temperature. The low values of the Hooge parameter predicted by Handel's theory

(i.e., ,true--" 10-6 to 10-8) are arrived at by realizing that only the fraction

3kT/2LE F of the total number of carriers are available for scattering at a given

temperature.

In recent years considerable progress has been he length of the resistors is close to 800 m,.

made in the understanding of i/f noise. It is and we have measured the I/f noise in 1 km-width
now'well established that in many cases there samples. These dimensions give a resistance of

is fundamental i/f noise caused by mobility a few hundred ohms and the noise spectrum can be

fluctuations, in particular by fluctuations in readily measured, after amplification, by an

the scattering cross section of scattering of HP 3382 Spectrum Analyzer. By incorporating a

electrons by phonons.il][2l calibrated noise source, the absolute magnitude

of the resistor's current noise spectrum, SI,

The only general theory of i/f noise which can can be directly calculated by simply comparing
explain such fluctuations was given by Handel the relative spectra of device on, device off,

in 1975.[3][4]. However, until recently experi- and calibration source on; it can be shown that

mental evidence verifying the theory did not the amplifier's parameters cancel out. The gold

exist. Specifically, Handel's quantum i/f films were mounted to the cold head of a CTI

noise theory was questioned as the source 0! Cryogenics Model 21 liquid He closed-cycle re-

1/f noise in electronic circuits because of the fri.;erator capable of maintaining a stable tem-

low value of the ilooge parameter, a),, calcula- perature (i.e .,-0.1 K over the duration of a

ted from his theory. Brieflv, the theory t-ltes low-!requencv noise measurement) anywhere be-

that the interference between the part of the tween 300 K and S K.

carrier's wave function which suffers lass-s

due to an inelastic or "bremsstrahlung" scat- The results of the experiment -give current s;,ec-
tering under the emission of infraquanta and tra proportional to 1/f between I and 100 lhz.
the part of the wave function which does not Below L H_ we have cryostat noise, and above

suffer losses produces very low energy beats 100 Hz w.'e have device noise competing with the

which translate themselves (.. =hf) as l/f amplifier's noise and thermal noise. The slope

noise. Handel's theory predicts that scatter- shows y 1 1.2 from 300 K to about the Debye ten-

ing involving Umklapp processes (U-processes) perature (OD = 165 K for cold) in agreement with

provides the largest source of 1/f noise in Fleetwood and Giordano.[5] Below the Debye tem-

metals since the photon infraquanta couplin4 perature the slope evens off to y=- 1. indicat-

constant, aA, is given by[!,] ing a more "pure" 1/f noise present at the lower

temperatures. Next, we characterize the magni-

-(1) tude of the 1/f noise by calculating the dimen-
3amc sionless Hooge parameter, aH, according to the

formula
where a is the fine structure constant (137)

-
1,

perhaps modified by the dielcctric constant in S(f) a
the metal, c is the velocity of light in the I = - (2)

metal, and '.p/ = k is the change in wave vec- I' f\

tor. Since the U-process gives the largest .k,

we expect them to he tile largest contributor to where N is the total number oL available elec-
I/f noise in metals. Thouoh the dielectric trons in the metal, for those spectra woere
constant of metals is not well known, and may was ' I, we took f = 10 hz. In higure I we have
be complex. one easilv sees that tile correc- used N = nV where we set n z 10 cm- and V is
tions in , and , cancel, .;o that we can .urther th, Volume (800 .m 1 . s. 0.2 1-).

take the free space values. Fizurc I ihows in intercsting dependence. of the

m avitodeI if below the iebye temperature
Gold thin-film resistors (2.00OA thick) were

corepnu:)t O thle ocurecf thle nr
prepared for us by Dr. '. ".o[l ind R.A. Buhrman "pore , mise.

of the Na tional Research and Resource *ac il tv

for Submicron Structures at cornelI UniVL'rsitv.



kT)(log N)/aI F where F is the Fermi energy.

O2 Explicitly, we have

k(log N) _ c 
/k T

EF - F)/kT I

where Jc is the bottom of the conduction band,

and ' k is the Fermi integral of order k. For

10- 3-total degeneracy, 7k(n) = nk+ 1
/7(k+2). Thus

the ratio (4) becomes 
2
LFF/3kT with

a9F = CF- c" Consequently, eq. (3) followed
by the proper statistical summation leads to

1H I( a true F atrue (5)
N 3kT fN*'

indicating that the number of carriers available

for scattering is N'" = N(3kT/21F). This is

also intuitively obvious: the Fermi function
differs only appreciably from I or 0 in a slice
of order kT. That such a reduction in noise
must occur in metals was perhaps first pointed
out in a classic paper by Brillouin[ll] on the
first noise observations in metals, by

I L . . . Bernamont.[12] Comparing now (5) with (3) we

find that the "true" Hooge parameter is related
!OCK 300K to the observed Hooge parameter aH by

T 
3kT

Ttrue 2e (6)-F

Figure 1. 
t
H as a function of temperature With .!F = 5.5 eV,[13] the values of 'true

were computed to yield the data of Fig. 2.

We believe, however, that (2) is not a proper
characterization of noise in metals. As was As is noted, we now obtain --values low enougn
pointel out by Van Viet and Zijlstra,[61 the to become in the ballpark expected from the
basi- formula for the mobility fluctuations for quantum theory of 1/f noise. In the latter

t scattering of a single carrier is theory, the atrue of eq. (3) is just twice the
infrared exponent, i.e.,

S (f)
Wi aA. (7)S true (3) atrue "a

With 2p/m = 
2
vFsin U/2, where vF is the Fermi

where we subscripted the 4-value as atrue To velocity (1.39' 103 cm/sec) and - is the scat-
tering angle (=150* for U-processes), we ob-

obtain the fluctuations in the band mobilit', tan from (1) 2aA 2.4 10 . This value is
or for that matter of tihe current 1. we must ti rm()2A=24 0 hsvlei

approximate since N is not exactly known and
sum over the scattering fluctuations of all car- since more correctly we must take into account
riers in the band.[7][S] For a nondegenerate the detailed geometry of the Fermi surface, be-

semiconductor this provides a factor I/N in the inz a sphere with eight "necKs" (see Zimanfl.]).
denominator, see (2). In metals, however, most However, this value comes lose to the observed
of the carriers are "frozen" in the Fermi sea, value of (A )m in Fig. 2, being -.9 10

-
1 

.

a fact also noted by Dutta and Horn in their true ax
review paper. [9] Therefore. as we pointed out

elsewhere, in connection with thermal noise from Qualitatively, we believe that the observed
metals and the Einstein relation,[1O1 the result data of rip. 2 can be well understooca. Above
of the summatin must be multiniicd b,., the Debve temperature "'D, region C, some non-
<,.N" > / <2>, where the subscript refers fundamental 1/f' noise occurs, similar to the
to the, erand inoni :al vnsemolu.[lO0 ;vc. I "tYpe b" noise observed by Dutta and liorn.[9]

From aonical he aove factor is BeLw r we have tor the first tire a clear
Fro statiitncal neclionfca tieu n .boe factor is indicttion of the occurrence Ct quantum Iif
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uo = .2 10
' 
em/sec. This yields 6U  57.6K.

The observed maximum in the noise occurs at
0- about ,OK. Though many details need fuller

consideration, we believe that the observed
noise can be reasonably well explain.ed bv the
proposed processes. Dv,.lopment of a full
theor" and oetaild i" noise measurements in

metls lay ,ive much insi'ht into the nature of

the phonon processes undergone by the Fermi

surface electrons.

.06- We finally note that another type of confirma-

- - tion of the theory of quantum 1/f noise was

recently provided by -particle decay statis-
tics. 15]
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Measurements on the 0.5 Pim and 2 Pim width gold thin film samples

are presently being performed and a similar a H vs. T plot is observed.

Also, to get a more complete picture, the same noise measurements as a

function of temperature will be performed on other metal films with different

Debye temperatures. Presently, masks are being prepared to evaporate aluminum

on a silicon oxide substrate in a 5 uim x~ 1000 p'm x 200OX thin film resistor

configuration here at University of Florida's microelectronics laboratory.

Producing films of less than 5 vim width will be aimed for, since we desire a

greater resistance from the thin film resistor samples. Aluminum is not ideal

since its 0is 428K and the resistor must be placed in an oven to probe the

noise near the Debye temperature.

After perfection of the aluminum evaporation, palladium (9, = 274 K)

silver (0 = 225 K) , chromium, and indium which can be evaporated will be used

to produce resistors in the same thin film configuration, and noise measure-

ments will be performed.

Hopefully, we will be able to produce platinum films (0 240 K) in
D

our microelectronics lab when we get the new ion-beam sputtering equipment.

Finally, provisions have been made to make noise measurements on samples

in the 8K to 2K ambient temperature range by directly submerging the sample

in a liquid helium cryostat and reducing the vapor pressure by pumping.
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II. NOISE IN NEAR-BALLISTIC n'nn AND n pn
GALLIUM ARSENIDE SUBMICRON DIODES

R. R. SCHtIDT. G. BOSMAN and C. M. VAN VLIT

Department of Electrical Engineenng, Unisersity of Florida. Gatnessille. FL 32611 L' SA.

and

L. F. EASTMIAN and M. HOLLIS
School of Electrical Engineerng. Cornell University. Ithaca, NY 14853. U.S.A.

(Recei ed 17 Autut 1982: in reitiscd form 26 October 1982)

Abstract Direct-current (d c i characteristics and noise measurements in the range I H7- 25 kHz are
reported for n ' and n "pn * near-ballistic devices. with n regions (p regions) of 0.4 pm (0.45 pm),
fabricated by molecular beam epttasx at Cornell The n * nn - mesa structures show very low, I f noise,
indicating a [looge parameter 2,, = 60 x 10- '. This very los, noise is attibuted to the near absence of
phonon collisions. The thermal ( - like) noise above I kHz is equal to Nyquist noise at the lowest currents.
rising to shghtl, above Nsquist noise for high currents, indicating the presence of carrier drag effects. The
n "pn * noise, on the contrary,. is quite high. It seems to be associated with the ambipolar effects occurring
for los injection of electrons in the p region. The importance of noise measurements for confirming
ballistic or near-ballisti: beha ior is discussed.

1. INTRODIt (TION of Child's law in vacuum tubes. For sufficiently small
Submicron gallium arsenide structures are of great %oltages there is a domain in which the current I goes
current interest, since they permit ballistic or near- as I'" 2; when the injected space charge exceeds the
ballistic electron flow, which in turn leads to carrier fixed charge due to the ionized donors or acceptors,
velocities that far exceed the saturation velocity in the characteristic changes. however, to the familiar
collision-dominated conduction, thus enabling the de- I": form. In Ref. [I] measurements are presented
sign of picosecond sw itching de.ices and other novel w hich fairly well support these predictions. providing
applications. l-he fabrication of submicron de\ices the nonparabolicity of the bands and the onset of
has been made possible by modern N1 BE techniques. intervalle\ scattering at higher soltages are taken into
electron lithography. etc. For GaAs near-ballistic be- account. In a later theory, Shur(31 and Shur and
havior requires that the distance to be traveled by the Eastman[4] extended the theory to that for "near-
injecte d electrons is less than or of the order of 0.7 um. ballistic" devices, in which few collisions can occur.
Eastman ei al. reportfI] that the mean free path for Since the Boltzmann equation would be inappropriate
phonon emission into optical polar modes at room for that regime, the collisions are taken into account
temperature is 0. 1 p m for electrons of 0.05 eV. and bs adding momentum and energy "drag terms" to the
0.2 pm for electrons of 0.5 eV. Phonon absorption has otherise ballistic equations of motion. In this way.
a longer mean free path and can be neglected for the the transition from Child's law (r- X. where T is the
devices reported here. having thicknesses of 0.4,pm collision time) to the Mott and Gurney law. I D V
(thickness of n laver i n " nn * devices) and 0.45 ,p m (finite r ) is covered by this approach.

Ithickness of p layer in n "pn ' devices). At higher Two modifications have been proposed b. others.
electron energy intervallcy scattering becomes im- sshtch may hase a bearing on the present paper. First,
portant, thus limiting the near-ballistic range to about Rosenberg et al.I5] discuss the effects of"spillover" of
0.5 eV of electron energy. In a sample of 0.4 lim thick- carriers at the n ' n high-low junction. This means, in
ness about two phonon emissions may occur. These essence, that the boundary conditions must be
inol,6c, howev'er. small angle deflections only 15- 10 ) changed to account for the depletion of n * regions
and ha~e little effect on the d.c. carrier charactenstics, and spillover into the adjacent Debe lengths. As a

Ticcordin y to Rf. [I]. result, the effective vidth of the n region is smaller and
The theory for "pure" ballistic behavior (no col- the current is higher than that computed in Ref. [2].

lIsins ,,uffered %hatsoe~er) w~as deeloped by Shur Secondl., Cook and JetTrey[61 have indicated that the
ant [i-ttman in 1979 in a basic paper on this topic[2]. energ. or selocity distribution of the electrons cannot
The% solhe Poisson's equation, allowing for space be neglected. The velocity dispersion is accounted for
.harie of both fised ioni ed donors (or acceptors) and b. the introduction of an electron temperature gra-
inlected carriers F.mplo.ing boundary conditions dient term in the momentum balance equation )op cit
which neelect the initial thermal energy of the eec- eqn (8)). Though they argue that this leads to the
Irons iniccted from the ii ' into the n layer (or p layer occurrence of a potential minimum somess here be-
.i;cr 'anch-throughi. they find the solid state analog yond the "cathode"--rather than at the cathode-
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similar ito [angmuirs% treatment of sacuum diodes. vc ~
hase ereat rcscr% ations ahout their treatment A more7-
strazehttor%%ard and correct approach wkas sets re- 7 0AA OA:Ev(a
cent]% presented h% Holden and Dehne% [71, in a paper
based on ideas from the 6%ell-kno~n sacuum diode 0
discussion of'F~[J Their result% indicate that flo

fixed posser I'm can be stated. F-or 0.5 p samples the
Iinitini sloes fundto be 1.14. F:or thle noise cha rac-_____

teristics the Inclusion oft the selocit% dispersion is es-
scntial. tin pairticular tor the high-frequenes thermal-
like selCI0t11-fltUation noise.

In this paper sse describe %er% accurate lo-
frequenc% and high-frequens: noise measurements on
iiear-ballistic desices Such mecasurements serve a
threelfold purpose First. fro m a practical point of %iew
noise datIa res ealI the praictic I performance Ilimit aifon s
of thle nosel hiiih-peed dkices. AS sse %%III Indicate _____________

the noise of the n 'tn*des ices is extremels lo\s, the 063
it 'pai dcsices. hosseser. fare much \%orse. Secondls, Fsig, I P*tpe near-hallistic mesa structure. the n-type
noise measurements. at audio and s;ubaudio fre- structure is similar.
quencies shed much light on the I I nc ise problem.
Accordine to most recent theories, such noise is
thought to be caused bs m obilit% fluctuations (see, e.g.
Flooetral. [91 and tan der Zl 101). Ifcollisjons in the L
near-ballistic regzime are rare, one expects the I fnoise RL Q
ito be \ery low and ultimatel\. in -pure" ballistic 024 034

des ices, ito be absen t. Our \&ork on n a i de% ices
indicates that this could be correct. Third, and not0 5 R
least. \%e believe that the hivh-frequencv noise (ther- R S.

mal. selociti -fluctuation, or diffusion noise) will shed t
L

0 37
much light oin the mode of operation of near-ballistic
des ices. To date, no full-feged theor,6 for su1 ise 006 R s2
exists; ss e onls has e some preliminar computations

h\s.an der Ziel and Bosnian) Ii 1 121. H owever, once
this noise is understood, we wll hase a posserful
means of substantiating or amending the various__
theories on near-ballistic behas for.

lIi 1v qiialeni circuit of n Pn- structure. shmsking
2. f\PfR1skITFAI. parasitic elemnents t he contact, (C) and C®6 refer to the top

The near-bhillistic diode (N BDh is a sandwiched conitacis I in Fiv I. contaci (L) refers to I . and contact
mesai structure of fise lightl\ doped p or n lIJ\eTS, to (,Nl) of tIle *1t

alternating %stth heasil,6 doped n * lasers.,cce Fig I
The doping densities of" the sarious regions are

10 cm For the n * regions appro\ 2 10' cm
for the n regions and approx. 10" cm for the p
reions The diameter of the mesas is, 100jim The ----------

des ices s"ere manuifa'ctured bs molecular beamn epi-k,1ACHNEA
ta\% at the Cornell I nisersits Submicron Research
Facilits . The mesas were provided wkith %er\ low P 52
ohmic Au Ge contacts. A low. frequenc% equivalent Vci UT I SPECTRUM
circuit of the i -r device is given in Fig. 2. The NLZI

main element (n regions) has a resistance (if 0.750 Q. W

To infer the correct noise of the des ice, the values oifCHNE 1

the parasitic resistances in Fig. 2 hase been taken into L------2

account. For the n 'pa dev ices the p lat% r gavec a P. 2,)9
resistance of order 1)l0Q at I mA. the parasitic re- SA 's
%istances in this case \xerc negligible

The chairacterist ics oft the tIsso t \pes of des ices are
quite different. The noise measurement of the n ti t Correlation measurement setup -DVT- is device
NBlD's, in particular. t;%as a challenge To do this %c un'der test aind L\ .\ denotes the iso linear amplifiers oi the
usecd the setup shos~n in Fig. 3 A 11essIeti Packard mea~urement channels
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35S2 spectrum analier. Ieaturini a dual-channel fat-

:ourer translorm method. %sas emplosed B% me-
surim the coherence tsquare of the correlation) he-
teen the t%%o channels. noise lesels significantl.

- belo the noise level of the preamphlier could he
detected I-or the preamplifiers %%e used tihe common
emitter trannsisors (iS2 in parallel. This resulted in a
7 Q noise resistance for frequencies aboe 2( Fl/. The

equisalent noise resistance of the cross-correlation
- "setup %%as found to he as los as 0.2 .. thus enabling us

It) accurately neasure the thermal noise of the %er.
J e low ohmic n nn devices.

< J The d-c. / V characteristic of an ti-t.pe device is
shoAn in ig. 4. For the higher %oltage Ioss duts-cscle
pulsed measurements %%ere made The highest soltage
oser each laser is about 0.2 V. %%ell belos the occur-
rence of nmtersalle% scattering We notice that within
the experimental errors. the characteristic is entirel.
linear, in agreement with the theoretical curves gi\en
in Ref. 171 (see their Fig. 2. L = 0.5 j sample with,

5' ,0.3 \. In accord with their conclusions, we note
V that near-ballistic behavior cannot usually be deduced

from just a measurement of the I A' characteristic.
Fig 4 I V charateritic n nn de',uce. The resistance value deduced from Fig. 4 is 0.75 fl.

'0

LM

6SSL,.PE 2 1

t0

4 ~' .1) -4

10 0 'LO

V (VOLTS)

I ig I V c:haracteritc of n *"pn " de\ ce

.- /3

. .. .. . ... ... .. , I. ., I . .. I I I
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Fig 6. Noise spectra for n" nn "device.

Alternating current (a.c.) impedance measurements 3. NOISE OF n "R"DEVICE

between I Hz and I kHz showed a flat response and The magnitude of the noise current spectrum for

confirmed his resistance value. These results arc four different currents. n the frequency range
similar to the latest results reported bN, Hollis,,et al. [131. 1 Hz-25 kttz. is shown in Fig. 6. Thermal levels and

The d.c. I/-" characteristic of a p-t. pe dexice is excess I I noise are seen. To determine the thermal
shown in Fig 5. The device is linear up to a current f-like) noise levels the I ,"components are subtracted.
level of I mnA, corresponding to about R, = 0 0. The The results arc shown in Fig. 7. The levels are
slope then increases to a value of about 3 in the 10- axeraged oer the frequences for which there is a
100 mA range. Fiall. at very high currents the slope plateau ( I-25 ktiz the 75 mA curve may. hoever,

becomes less. perhaps approaching three-hales as the show some .g-r noise from 1 --7 kHz: the thermal-like
slope falls off. The a.c. resistances are again flat for all noise occurs for 7 kHz and higher). 1The ratio of these
measured frequencies up to l00 kflz). ave rages io 4 k T 0.75 is plotted versus bias current in

?5 A 31562
°

0 S1 (AVG) K., AD 0,AOVE

27 i ) m 23 . 6 2
0  

S I  (AVG) I X~i- 25KNI

'0

tt

k' f T EQOAL NOTSE '
00 075, O

ig Thermal i-hike notre for n nn device.

Aleratn crrn (a. ,mac esreet .NIE Fnn*DVC
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Fig. . Plot of thermal (-like) noise of n 'nn diode %s diode current.

Fig. . We note that there is an indication that the carriers in the sample contributing to the noise. and
noise exceeds the true thermal noise 4kT R, at the i, is Hooge's parameter. lnitiall,. 2f, was thought to
higher bias currents, be a constant, of order 2 x 10 '. Later on. it was

The I / slope of the noise for the higher current found that material variations for x, do occur.
levels is clearly seen, and straight-line approximations whereas in addition ?, decreases asip i (l. if impurity
are made to the data. The %alues so obtained at 10 hz scattering dominates over lattice scattering (p,,):
are plotted versus bias current in Fig. 9. We note that Bosman et a1.[141 also found that 2H decreases due
the expected behavior for 1 I noise. S, r P. is well
satisfied.

4. NOISE OF n "n DEVICE

The noise current spectrum versus frequenc. for
several bias currents of an n 'p n * device is shown
in Fig. 10. The excess loss-frequency noise of this
device is orders of magnitude larger than for the ,XJ C( f 8

i-tpe device. Another notable feature is the fre- H

quency dependence, which shows a slope off ", to
f "'. Extrapolating to the corner frequency above
which thermal noise dominates gives a value of over
100 MIl for even the lowest (1001,.4) bias current.

The dependence of the noise current on bias cur- R iot9

rent at 100 Hi is displayed in Fig. II. There is an SLOPE 2
dependence up to about I mA. At higher currents the -

noise increases less fast and probably goes through a

maximum.

5. )IS(SSION OF x" nn" RFSII.TS

(a) I n otise
In 19)9 looge developed the following empirical

form ula for I I noise: 6-
to20  100 t+I

SNIV) F = ,, /N. (5.1) 10 0
I~~mA)

%%here i is the frequency. N the total number of Fig. 9. I f noise ofr nn diode %s current at f 10 H:.
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to carrier heating. In a nonhomogeneous simple in
4- which the carrier densit'. is a function o-f position.

/ ot s f. such as occurs in our mesas due to spillover
(Section I iand injection. eqn (5.!1) must be modified.
It is eaisil slio'kn (%an der ZieI and %an Vljet[l 5] that
in that case (5AI) is to he replazed by

.Ss~) I aH t.4Lnim)f - (5.:)

0 +.0 P10

~SLCPE 2where in is the number of n lasers in series. L the
width of one n laser, and .4 the cross section. This

,f1 formula is correct, whether or not the motion of the
carriers is ballistic. Whereas the detailed profile n(.
is complex due to spilloser and carrier flow. we may

7assume that for most of the layer n.% L- 1.5n- %%here
n,, is the doping denist,.f161. With this estimate we
obtain for oo from Fig. 19. Y= 6 10 rhis is

considerahls lower than the %alue oif Y,. for bulk
,oGaAs. which Hooge ct al I] list as 6 1) 'Thus

2 to too the measurements of this paper confirm that col-
lisions are manyv absent in this desice. Moreoset. if

I /mA) Handel's theorsof I f noise is %aud tis. %erl o

Fit IINoie of n pn device vs current al W noise can he expected from those collisions A hich stilt
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occur, insolhin polar phonon emission. As swe similar-type spectra. going slo, er than I A ssere
noticed, the detlection angle 1) for such processes is obsered in 6pm p "tip punch-through diodes by
%er% small. %s hereas in I Iandel's theory of' quantum san de Roer221.
I t noise the magnitude goes as sin- 'i. Measurements van der Ziel[231 has suggested an explanation for
on 0.24 1m de\ ices are underw% a\. Very recent data the t "pn ' d.c. characteristics, as well as the noise
by J. Andria n ci al. 119) indicate that for these devices spectra. He interprets the lo\-frequency noise as a
XH shoS, a continued decrease. So far. these results form of Hooge type I noise, with a high ,. ie
are the best confirmation yet that I / noise is caused notes that there is a large spillover of electro, into
by lattice phonon collisions, the p region where they recombine with the holes.

Though there are relati\ely few holes. they control
(b) Plrmal ioIMw the transport properties ambipolarl%. Hence there are

The des ination "'thermal noise" is used here for many collisions in the p region and the noise is high.
the thermal-like noise observed at high frequencies. At larger forward bias, the hole recombination in the
In a collision-limited desice this noise is due to the p region becomes so low that it can no longer control
ditlusion-noise source, \hich by Einstein's relation the electron transport. Thus. the number of collisions
transforms to a thermal-noise source for cold elec- decreases and the current becomes more ballistic: as
trons. In the space-charge limited injection operation a consequence the (I, I characteristic curves upwyard
Mott 6urney la% %. the noise becomes then 8 kT R,, and the noise decreases.

[see Ref. 12]. In a pure ballistic device, on the other The validity of this explanation could be checked
hand. this noise is due to shot noise. However. the if noise measurements were made on p 'op ' and
vacuum case shows that the noise is distinctly p 'pp' devices. In the p 'pp devices one expects a
go\erned bs the ,elocity distribution of the emitted near-linear (Y. ') characteristic and high noise: this
particles. Thus, a treatment as the Child's law analog noise should rise with P2, and not go through a
of Ref. 2 will not suffice to obtain the noise: the latter maximum. The p 'np ' devices should show ambi-
must be patterned after Langmuir's derivation of the polar transport governed b electrons. The transport
d.c. characteristic, see in particular the noise treat- should then be largely ballistic at low bias. At higher
ment b. D. 0. North[201 and Schottky and bias, the electrons would cease to act as ambipolar
Spenkel21]. Lacking a detailed theory. van der Ziel agents, causing the transport to become nonballistic:
and Bosman[l I] indicated. nesertheless, that sub- the (I, I') characteristic would go slower than linear
thermal noise. t4K r R, wth 0 < I. can he expected. and the noise "ould rise strongly. i.e.. much faster
This is not corroborated by the results of Fig. 8. than I. Noise measurements on p 'pp " and p ' tip
While it is very unlikels that the collision-limited case devices are in the planning stage.
applies in .iew of the low I f noise reported
abo\e it is likely that carrier drag effects, such as CO'.'SIONS
considered in Refs. (3. 4. 61, take place. These Near-ballistic n 'nn devices exhibit extremely
effects should be incorporated by considering a Lan- low I fnoise. with a Hooge parameter of 6.0 x 10 "

.

gevin equation patterned after the momentum and This indicates that the I fnoise is probably caused by
energp balance equations of Shut and Eastman[3. 4]. lattice scattering, due to polar optical phonon emis-
but s ith \elocit dispersion as in the theory of sion. which is rare in the near-ballistic regime. The
lolden and Dchney [7]. thermal noise of these devices is slightly higher than

The deseloptoent of a complete noise theory for Nyquist noise for the highest current levels observed.
ballistic and near-ballistic desices is being planned: It indicates a near-ballistic origin, affected by carrier
such a theors may aid considerably in predicting the drag effects and by the velocity dispersion of the
mode of operation (ballistic, near-ballistic, non- injected carriers.
ballistici from the measured high-frequency noise. Near-ballistic n 'pn ' devices exhibit very large

low-frequenc noise. The initial current and the noise
't. I)1,( t S, o01 OF n'pn ' RESU.TS may be caused by ambtpolar control of the holes in

These de, ices sho\\ed large excess noise. The noise the p region. The noise rises initially as )". then goes
is not \cr\ close to I /. If. nevertheless, we apply through a maximum, and then decreases. due to the
looe'*s formula, at 10 i and 100p A, we obtain ballistic regime overtaking the initial current regime.
1 ! It _-- 1 .. Thermal noise for these devices, requiring mea-

:or I ' 200 nmV. the I V characteristic of Fig. 5 surements above I00 MHz, have not yet been carried
is in rea,onaible agreement with the theoretical pre- out.
dictions and pre iousl, reported resultsil]. The cur- Similar measurements on n tin ' diodes are being
rent bel,,s the punch-through voltage ( - 150 mV) is reported by Peczalski vt aI.[24].

not \ ell utnderstood It is signiticant to note that the
charictcr of the noise in particular its spectral shape.
does not change sshen we pass the punch-through .4tnoI'd 'rnienrs- We are indebted to Professor A. san
soltaiee see lgI 10. onl\. abose the punch-thr-'.gh der Ztie' for man ' discussions and encouragement, and lor

pn -h h exchange ot preiminarN data b, the Minnesta group This
\litij. the noie magnitude starts to decline, going research in Florida %,as sponsored h% AFOSR contract No
no loncr a, I .see Fig II We still remark that x)-t)50



-16-

444 R, R. S( HVIIDT 0 a/l

. FFRF NC' short solid state diodes. I -balistli regime. Phis.

I. M. S Shur and L. F. Eastman. lh',ctrn. Lett. 16. 522 Statu.i Soluhi (a) 73, K93 (982).

1.S)(Is . also L. F Eastman. R. Stall. 1) Woodard. N 12. A %an der Ziel and G. Bosman. ibid. II---collision-

Dandekar. C E C Wood, M.. S. Shur. and K. Board. limited regime. Phvs. Status Solidi 1a) 73, K87 (19821.

t/htiron. Lett. 16, 524 (19 0). 13. M. A. Folhs. L. F. Eastman and C. E. C. Wood.

2 M. S. Shur and L. F. Eastman. IEEE Trans. Electron E'ltron. Loit. 18. 570(1 4982)

it E)-26. 1677 (1979), 14 G. Bosman. R. J J. Ziqlstra. and A. D. %an Rheenen.

3. M. S. Shur. IEEE Tran.s Electron Dei. ED-28. 1120 Pht.%. Left 78A. 385 (1980); ibid. 80A. 57 (1980t

(1981). 15. A. van der Ziel and C. MI. van Vliet. Phivsica Status

4. M. S. Shur and L. F. Eastman. Sohd-St. Electron 24. II Sohith la172. K53 (19S2).

(1981). 16. A. ,an der Ziel. M. Shur. K. L. Lee. T. Chen and K.

5. J. J. Rosenberg. E. J. Yoffa. and M. i. Nathan. IEEE Amberiadcs. IEEE Tran. Electron Der. (1983). in press.

Tran.. Flectron Der ED-28. 941 (1981). 17. Ref. 191. p 496.

6. R. K. Cook and J. Fre%, IEEE Trans. Electron Der. IM P II. Ilandel. Phy-s. Rer A22, 745 (1980).

ED-28. 951 (1981). 19. J. Andrian. A. van der Ziel. G. Bosman. C. M. van Viet

7. A. J. Htolden and B. T. DchneN. El'c:ron. Lett. I. 558 and M. A. Hollis. to be published.

(19S2). 20. 1) 0. North. RCA Rev'ie% 4. 441 (1940); ibid. 5. 106

S. T. C. FrN. Phis. R'r. 17. 441 (1921) (11411.

9. F. N. Hooge. T. J. G. Kleiipenning and L. K 21. W Schottky and E. Spenke. It.senschaftliche

van Damme. Report.s Progres.s in Phi icv 44. 479 1 erolenthchungen aus den Siemens-Ilferken 16. I

(1981). j 1937).
t0. A. van der Zel.Adranc'e in Electronics and Electron 22 Th U %an de Roer, Solid-St. Electron 23. 695 (1980).

Physics (Edited by L. Martin). 49. 225. Academic Press. 23. A. %an der Zicl. pnvate communication.

New York (1979). 24. A. Peczalski. A. van der Ziel. and MI. Hollis. IEEE

II. A van der Ziel and G. Bosman. Near thermal noise in Trans. Electron Der. ( 1982). in press.

Since the appearance of the above article, much more work has been done

+- +
on near-ballistic devices, in particular on n p n devices (see below) and on

n n n devices with different widths for the n layers (see the next section).

The n p n device characteristic was measured at different temperatures,

see Fig. 1 of Sec. E. There is still a linear I-V region at low bias, then there is

a superlinear region, while at high bias the different temperature curves con-

•I verge. We believe that the latter asymptote represents the true ballistic

range. The results appear even clearer if we represent the data in a plot of

DC conductance I/V versus the bias voltage V. This is shown in Figure 2. We

now see clearly that there is an initial low conductance, which depends on the

temperature (though below 77K the data seem to coincide); then there is a

transition region, followed by a final temperature-independent ballistic range.

The noise spectra could initially only be measured in the low conductance

region. The results for 300K are shown in Fig. 3 and the results for 77K are

shown in Fig. 4. We note that the slopes change with temperature. The 300K
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0.7_ 0.8spectra are of the form 1/f -1/f ,while the 77 K spectra are close to the

form 1/f.

The low bias current has puzzled many investigators, see the original

papers by Eastman et al. (e.g., M.S. Shur and L.F. Eastman, Electronic Letters

16, 522, 1980). The expected characteristic is as in the dotted line in Fig. 1.

The bias of 100 mV (20 mV per layer since the mesa contains five devices in

series) is the "punch-through" voltage. The current for lower biases--which

should not be there according to the pure ballistic theory--is called the pre-

punch through current. Supported by the noise data, we believe that this

current is recombination current, not unlike that in p-n junction depletion

layers, as in the standard theory of Noyce, Shockley, and Sah. First of all,

we note that for zero bias and for very low bias the p region is depleted of

holes, due to spill-over of electrons from the n +regions, as was calculated

quantitatively by van der Ziel and Shur. Thus the acceptor sites are all empty,

the electrons being transferred to the valence band. At sufficiently forward

bias, the electrons that are injected will be captured by the acceptors, and

eventually by the valence band. Consequently, there is recombination current

flowing, until all acceptors are filled (those before and beyond the potential

minimum). This process is apparently accompanied by a very large amount of

recombination noise, with distributed time constants, resulting in 1/f, a< 1,

noise. For low temperatures a~ increases since the shorter time constants then

become less prevalent. This noise is therefore, in our opinion, not "true

1/f noise" but a form of g-r noise. This is also born out by the fact that

thc DC conductance in the prebreakdown region is temperature dependent. Above

the "punch-through" voltage (all acceptors now occupied, n> N ) the ballistic

current appears. The DC conductance limit of Fig. 2 represents a conductance

which is approximnately a factor three lower than in the n+n n samples. This

is due to the deeper space charge minimum of the former device. Note that the
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space charge is q(n -ND) in the n-layer while it is (n+ NA) in the p layer.

Bosman has made quantitative computer calculations, based on the Fry-Langmuir

theory, similar to those by Holden and Debney (preceding paper, Ref. 7). He

found the computed DC ballistic conductance limit to be in excellent agreement

with the measurements, both for the n n n device and for the n p n device.

A paper on these data and computations is in preparation.

III. Further measurements in GaAs structures

a) 0.24p, 0.4p, and I.iu devices. Jean Andrian

1. Low-frequency measurements and I-V characteristic of

++
n n n diodes with different lengths

We have made systematic noise measurements on n n n GaAs structures

for various temperatures (77K and 300K) and various bias currents. These

measurements are shown in Figs. 5, 6, 7, 8 and 9. In order to compare the

magnitudes, we also plotted (SI/1 2)x f, which corresponds to a/N in Hooge's model

of i/f noise, as a function of the bias current. This is shown in Figs. 10, 11

and 12. Next we plotted this quantity as a function of the length's device.

The results are shown in Fig. 13. As we note, the noise of the 0.2 7 j device is

higher than that of the 0.4 i device. This is presently not understood, since

the 0.27 p device is the nearest to collisionless, ballistic behavior.

Besides noise measurement, we have measured the I-V characteristics of

these devices. These are shown in Figs. 14 and 15.

The 0 .4w device is linear, as was observed by Schmidt et al.; see pre-

ceding section. In the 1.1 ,im we observed a change of conductance at higher

bias ( 0.7 volt). This phenomenon does not occur in the .4 um device for the

same applied field. We believe that the .4 ;.m device operates in the near-

ballistic mode, while the 1.1 im one is a bulk device. This change of con-

ductance is probably due to intervalley transfer, i.e., the electrons go from

a valley with low effective mass to a valley with a higher effective mass.
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We should be able to detect L1he noise due to this intervalley scatter-

ing. This would be a very interesting phenomenon. In order to measure that

noise we set up a noise measurement system which operates in the radio fre-

quency range. With this system we will be able to measure the change of thermal

noise with bias and the intervalley scattering noise in the transition region.

2. R-F noise measurement system

Essentially, we have to measure the thermal noise of a device with a

1l resistance. We set up the correlation measurement system indicated in

Fig. 16. We made a preliminary test on the linearity of the mixer and the

sensitivity of the system. We plotted the DC meter reading versus the power

input at the power splitter. The results were excellent. The mixer has a wide

range in which it operates linearly; however, we need to have a DC amplifier

with a gain of 1000 (linear) in order to be able to observe the thermal noise

with a bandwidth of 1 MHz. This is done by a single invertor circuit as shown

in Fig. 17. Measurements with this high-frequency noise system, in an attempt

to find the intervalley noise, are in progress.

b) Pulsed noise measurements on n +p n +GaAs devices. Chris Whiteside

1. Pulsed bias noise measurement system

Completion of the pulsed bias noise measurement system has been ac:com-

plished. This system permits noise measurements on devices at very high bias

levels. The device is pulsed at a low-duty cycle in order to avoid excessive

joule heating. Figure 18 shows the final pulsed noise measurement system.

2. Results

Initial experiments using the pulsed system were completed on a near-

ballistic GaAs diode. This diode had been used in previous experiments. We

wanted to extend the bias current level in order to determine the current noise

in the ballistic range. According to the I-V characteristic of Fig. 1 (see

previous section), it is believed that the device becomes ballistic at high
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current levels. Thus a drop in the current noise must take place. Fig. 19

shows that as the current level is increased, the noise begins to fall off.

This is a plot of SI vs. f. The current through the device was increased up

to one ampere. Device heating was kept low by the low-duty cycle of the

measurement system. Clear plots of the noise as a function of current for

4 IHz and 8 MHz are given in Figs. 20 and 21. Though the decrease of the noise

is very pronounced, we have not been able to reach the ballistic noise limit,

which is estimated to be at 10- 14 at the ordinate scale of Figs. 20 and 21.

This would require current in excess of 10 amperes! Measurements as a function

of temperature are in the planning stage.

c) Superlattice measurement

We have obtained a three-layer, GaAs-Al xGalx As heterostructure device

(from Dr. Norkoc) with which noise measurements can be made. Heterostructures

make it possible to measure the effects of a two-dimensional electron gas.

The structure of these devices is shown in Figure 22, with the physical

dimensions of the layers given in Table 1. The Al mole fraction of 20% causes

a conduction band discontinuity of 0.21 eV. This bandgap difference between

the GaAs and AlxGa1 x As layers forms potential wells. Electrons confined in

these potential wells behave like a two-dimensional electron gas.

The current-voltage characteristic of the heterostructure is shown in

Figure 23. Noise measurements were also performed and are shown in Figure 24.

All measurements were performed at 300K. Problems involved with cooling the

heterostructure have been solved so that noise spectra as a function of tem-

perature will be measured in the near future.
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Table 1

Device (three-period) #337 #328

Ga.As top layer (undoped) 200X 200A

AlxGalx As 250X i0001

(Si-doped) 1018 /cm3  1018icm 3

x = 0.20 x = 0.20

Separation layer 150A 150
(undoped AlxGa1 -xAs)

Sheet electron concentration n [cm 2] 300K 2.8 1012 2.67 1012

77K 2.24 1012 1.02 1012

10K 2.24 1012 1.88 1012

P Hal[Cm2/V sec] 300K 6.65 103 6.09 103

77K 9.3 104 7.63 104

10K 2.06 105 1.64 105

Contact spacing L 400 um 400 um

Contact width W 40 tim 40 m

I

I
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IV. 1/f Fluctuations in Alpha Radioactive

Decay from 241 Am

by

J. Gong, C.M. Van Vliet, W.H. Ellis, and G. Bosman
Dept. of Electrical Engineering and Nuclear Engineering Sciences

University of Florida, Gainesville, FL, 32611

and

P.H. Handel, Department of Physics,
University of Missouri-St. Louis, St. Louis, MO, 63121

Abstract

Counting statistics of alpha particles from Americium-
24 1 were deter-

mined over periods from 1 minute to 1,000 minutes. In particular, the

two-sample variance or Allan variance was determined for many sample runs.

According to a recent theorem, there is a unique relation between the

particle flux spectral noise density and the Allan variance. It was found

that for small counting periods the statistics were Poissonian, correspond-

ing to shot noise of the particle flux. For long periods the counting

statistics were found to be non-Poissonian, and 
a flicker floor of = 107

4was established. Good agreement with the quantum theory of 1/f noise was

obtained. These experiments are the first quantitative confirmation of

this theory.

Stibmitted to Phys. Roview A
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1. Introduction

Whereas most of noise phenomena, like shot noise, thermal noise, and

generation-recombination noise, are well understood, 1/f noise remains to

some extent an enigma. This noise has been observed in a great variety of

systems: semiconductor devices, music, traffic flow, hourglass flow, the

frequency of sunspots, the light output of quasars, etc. Because of its

universality, some investigators believe that there must be some common

phenomenon operative in all of these manifestations
[I ]-[4 .

One of the general theories of 1/f noise is the quantum theory, based

on infrared divergent coupling of the system to the electromagnetic field or

other elementary excitations. It was mainly developed by Handel [I ] [5 ]  This

theory is fundamental in the sense that it derives the 1/f spectrum from

basic quantum physics at the level of a single charged particle subject to

scattering with small energetic losses due to bremsstrahlung, although the

final result depends essentially on the presence of many carriers; in this

respect 1/f noise is similar to electron diffraction which is a one-particle

effect, but which can be seen only if many particles are diffracted. In

addition, the theory is universal in the sense that any infraquanta with

infrared-divergent coupling to the current carriers will give a contribution

to the observed 1/f noise proportional to their coupling constant. Such

infraquanta are, for example, very low-frequency photons, various types of

phonons, shallow electron-hole pairs on the Fermi surface of a metal, spin

waves, correlated states, etc.

Recently, this theory has been reformulated with quantum-optical

terminology and compound-Poisson statistics in a paper [6 written by

Van Vliet and Handel, which led to the idea of verifying the theory on a

"clean" system outside the domain of currents in solids: radioactive c-decay.
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In this paper we present data obtained from extensive measurements

on counting techniques for a-particles radioactive decay from 241Am, which

have shown that the statistics are non-Poissonian for large counting times

(order 1,000 minutes) in contrast with the fact that many textbooks cite

a-decay as the example "par excellence" for Poisson statistics. With the help

[7]of the newly devised Allan variance transform theorem , we found that this

excess noise does have a 1/f spectrum, and the "flicker floor" due to the

presence of 1/f noise in the decay has a value of 10- 7 which is in fair agree-

ment with Handel's quantum 1/f noise theory. This result indicates that 1/f

noise is caused by emission of long wavelength infraquanta, such as soft

photons causing minute inelastic losses in the scattered wave packet.

2. Results of the Theory

2.1. Quantum approach to i/f noise

It is known that upon scattering a beam of electrons will emit

bremsstrahlung. The power spectrum W(f) of the emitted radiation is indepen-

dent of frequency (W = constant) at low frequencies and decreases to zero at

an upper frequency limit f which is approximated by E/h, where E is them

kinetic energy of the electrons; h is Planck's constant. Consequently, the rate

W
of photon emission per unit frequency interval is N(f) = , i.e., propor-

tional to 1/f. Therefore, we conclude that the fraction of electrons

scattered with energy loss t is proportional to i/c, i.e., the relative

squared matrix element for scattering with energy loss c is lIbT(e)I2Ki/E.

If the incoming beam of electrons is described by a wave function

exp [ (i/ )(p'-Et) ], the scattered beam will contain a large nonbremsstrahlung

part of amplitude a, and an incoherent mixture of waves of amplitude abT ()

with bremsstrahlung energy loss - ranqing frem some resolution threshold : to
0

an upper limit !,:E, of the order of the kinetic energy E of the electrons



- 25 -

exp [~~CP~ Et)] a 1 + : )e'e dc) .(2.1)

0

iYe
Here bT (E) E IbT(c)je has a random phase y. which implies incoherence of

all bremsstrahlung parts, and lbT(c)12 is proportional to l/c, as we saw

above.

In Eq. (2.1) the frequency-shifted components present in the integral

interfere with the elastic term, yielding beats of frequency Cki. The

particle density given by Eq. (2.1) is

1'P = a2l1+2 f bT(U) I cos +T +Y) d

0

A )

+ f f b (c)bT )eiwcwl dedc' ; (2.2)

T T
0 0

the second term in large parentheses describes the particle density beats.

If the particle fluctuation is defined by 6 11 2 = k1¢ 2 - < 11>, its

autocorrelation function will be

=1 < > <t' ,

A A/h

2laV f lb(c) cos -- dc = 21a 4 f hIb(E)I cos2-ft df

fo 0 (2.3)

which is proportional to lb(c_)L 2 and hence proportional to 1/f. Therefore,

the spectral density of the particle concentration fluctuation (the Fourier

transform of Eq. (2.3)) is proportional to 1/f.

The relative hromsstrahlung rate b(:)L can be derived as follows.

The constant spectral energy density can be written as w(f) =

where e is electronic charge, the dielectric constant of the medium,
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c is the velocity of light, and Av is the velocity change in the scattering

process. The relative scattering rate density with energy loss E, lb( )I1,

is obtained by dividing W(f) by the energy of a photon c = hf.

2 4e2 ' 2 232 -% ci)
[b(f)I 2 4e2 (AV)2  e 2(A-) CA (2.4)

3c3 K2T rf ric 37Kf Kf

4e2 (Av)2  _ cA (2.5)
3c3 Khs 

(2

where

2(-,S)- AV  (2.6)A = 3 -r , US c (2 )

e2  e2
and ca =KC is the fine structure constant. In the M.K.S. system ct-

0

where K is the dielectric constant of vacuum. The spectral density of
0

the relative fluctuations is from (2.3), (2.5), and the Wiener-Khintchine

theorem,

S 2(f) /< > = 21+ :-AZn(A/c )] -aA/Kf 2:,A/cf . (2.7)

IA 0

2.2. The Allan variance transform theorem

The main link between counting statistics and particle current noise

is provided by MacDonald's theorem
[8 ]

!d
<- >s()- sin 3T d, (.8d 2 1 o-

0

Iwith inversion

S ('.) = 2. f sin ..T '<2M > dT ; (2.9)

0

here < is the variance of the total number of particles detected in

a time interval (t, t+T) and S ( ) the noise spectral density of the flux
m

fluctuations mr(t). This theorem is useful for Poissonian statistics.
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Unfortunately, for 1/f noise Eq. (2.8) is not applicable, since the integral

diverges. However, a useful concept in this case is the "two sample variance"

or "Allan variance" Let m T be the average counting rate in (t, t+T)

and 4 2 ) the counting rate in (t+T, t+2T). Likewise, let T{') ) be

(2) =(2)the total number counted in (t, t+T) and let 2  = T be the total number~~~ ethe total number cutdi

counted in (t+T, t+ 2T). Then the Allan variance is defined by

A2 = _ < m)- ()> (2.10)
mT  2 mT  T

and

G A2-= < I -M(2 )> = T . (2.11)
MT 2 mT

A2(A2
The variance a (which means A )) turns out to be finite for 1/f noise.

The transform theorem reads
[71

oCo

A9  4 S(m ~
S do(T) = - T a A2 (2.12)

00

with inversion

S('-,) i - r dn cos fdTA2 (.13

(Slightly more complicated inversion forms using partial Mellin transforms

are found in [7].) For Poissonian shot noise S(,) = 2m , where m is the

average counting rate. Substituting S (:a) into Eq. (2.12), one has

A2 2-"C
c (T) = m T. For i/f noise, with a spectrum of S () =  , where C is a

AA2

constant, the Allan variance j,,, 2CT21n2. Now suppose that the noise is
r

composed of shot noise and t/f noise, i.e.,

A2
, (T) = 0 T + 2(rT .n2 • (2.14)

AT4
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We recall that <MT> M 0oT, so that a measurement of the relative Allan

variance R(T) = A2MT)< >2 yields,

R(T) =m T + 2C'Zn2 , (2.15)

0

where C' = C is the characteristic strength of the 1/f noise S (f)/m2
moo m 0

For short-time intervals the term m- is dominant, hence R(T) is proportional
0

to l/T. When T is long enough, the term 2C'Zn2 becomes dominant. For large T

one cannot further reduce the relative accuracy by longer counting;

R(T-) = 2C'Zn2 is therefore called the "flicker floor".

We conclude from the above that the presence of 1/f noise in counting

statistics can be determined from a measurement of the Allan variance as a

function of T.

3. Experimental Method

3.1. Procedure

The block diagram of the counting system being used to investigate 1/f

fluctuation in the ct-particle emission rate is shown in Fig. 25. The source

is 241Am, which decays with a half-life of T = 458 years with the emission
237

of 5.48 (86%), 5.44 (12.7%), and 5.34 (1.37) MeV cr-particles into 3 The

detector, a silicon surface-barrier detector, is reverse biased at 80 volts,

and the dead times of the ND575 Analog to Digital Convertor (ADC) and ND66

Multi-Channel Analyzer (MCA) are 60 nsecs and 6 usecs respectively. There-

fore, no dead-time correction is necessary, as long as the counting rate is

kept below 1,000 counts per second [ ! 0  (or the averaged time elapse between

two counts is higher than 1,000 ";secs)

A typical full onergy spectrum:i measured in these experiments is given

in Fi. 2b1, in seni- ogarithmie scale. The spectrum is shown on a display

screen while accumulatin..,,'rtt an1d the final result, after a chosen time T,
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is stored in the histogram memory units of the ND66 MCA. The full width

half maximum (fwhm) of the spectrum can be found by moving the CRT display

cursor across the alpha-peak channel regions, with the cursor display indi-

cating the number of counts within each energy interval (channel). The sys-

tematic range used in these experiments with respect to the 5.48 Mev peak

channel was from six fwhm's below the peak channel to two fwhm's above the

peak, in this manner spanning the three prince peak radiation types. There-

fore, with the range being a function of the detector resolution, the total

number of counts IT, which will be analyzed later, is always a fixed portion

of the full spectrum.

The counts MT of adjacent time intervals can be read directly from the

memory units of the ND66 MCA; thus the Allan variance can be calculated by

A2 I I N- i W I +(- 1T ) (3.1)

MT N-1i~l 'ITT

since

<T> = Yi =  MT ~ , (3.2)

the relative Allan variance, R(T), defined by Eq. (2.15), can be found by

using Eqs. (3.1) and (3.2).

Part of the data, mostly the total number of counts for T longer than

1000 minutes, were not read directly from the ND66 Multichannel Analyzer.

An "add-up" method was adopted; namely, M 1 0  was obtained b adding up1 I000waobandbadigu

A50 0 and N 2 ) , and M'2) equals the sum of (3) and M() etc. Physically,• ,1'50o 310 ,  ,100 Iwo500 M500,ec Phsaly

since 500s were measured in adjacent time intervals, of course the first two

can be added up as the total number of counts for the first 1000-minute

interval, and the third and fourth can be summed up as M (2) However, in
1000*

order to check the validity of this method, the following experiment has been

done.

L.
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By making use of a T-connector, the output signal of the Ortec 410 ampli-

fier was fed simultaneously into two ND575 ADCs (see Fig. 25). The first one

(ADC #i) counted 100-minute measurements for 310 times, and the second one

(ADC #2) accumulated 500-minute counts for 62 times; hence, both ADCs

covered exactly the same time span. The "add-up" method was applied to

M1 00 s, obtained from ADC #1, to find out the calculated M 5GJS.

Table 1 lists the results calculated from both ADCs for 500-minute

measurements. The difference between them, in each category, is 5 1%. This

shows the validity of the "add-up" method.

ADC #i ADC 12

<M 500> 9062464.36 9067009.84

A2

o 7862171.3 7943285.5
M50 0

R(500) 9.573 10- 8 9.662 10- 8

Table 1. Comparison of the results
obtained from the "add-up" method (ADC #i)
and the real-time measurements (ADC #2).

Because of the existence of "variance of variance" (or "variance noise"),

the relative Allan variance itself is a fluctuating parameter. In order to

obtain an accurate value of R(T), a sufficient number of measurements must be

made, especially when T is short. Figure 27 shows R(T) versus the number of

measurements, N, for T = I min. When N is small. R(T) is spread over a wide

range. When N is increased, R(T) shows less spread and finally converges to

a stable value. The minimum value for N is about 70. Figure 28 gives a

similar plot for T = 3 min. For a reliable value of R(T), N has to be larger

than 50.

Due to the presence of variance noise, the experimental results of R(T)

contain a fluctuation term .R, i.e.,
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R (T) m T + 2C'kn2 + AR (3.3)
exp m 0T0

where the average value <AR> should be zero. The experiment was then

repeated several times, and the average of R exp(T),

<R (T)> = 1 + 2C' Zn2 + <AR> (3.4)
exp m T

0

is obtained. Although the value of <AR> in Eq. (3.4) can hardly be

exactly zero for a finite number of measurements, it should be reduced a

great deal compared with the value of AR for single measurement. The value

of <R (T)> gives the best estimation to the true value of R(T).exp

The distance between radioactive source and detector was adjusted

such that very close counting rates were obtained while repeating measurements.

However, it is difficult to obtain identical counting rates. Therefore, the

shot noise term in relative Allan variance, R(T), is slightly different betweeen

each series of measurement.,

1Before the average of R (T) is taken, the shot noise term,
expmT

0

should be normalized to the same counting rate. Here a rate of 18,000 counts

per minute was chosen. The normalized relative Allan variance R n(T) is then

R (T) = R (T) 1 11 + 2C'Zn2. (3.5)
n exp -m -T 18,000 T = 18,000 T

0

The value <Rn(T)> is now used to estimate the true value of R(T). This
n

value is calculated as follows:

ER .(T) x DFi < R T) > = nii
<R n T)> DF. (3.6)

I

where R .(T) is the value of R (T) obtained from the i th series and DF.

stands for the degrees of freedom of that particular value, which equals

the number of measured time intervals minus one.
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3.2. Results

Fig. 29 shows the experimental data for <R n(T)> . The theoretical

curve (solid line) is based on R(T) = (1/18,000x T) + 1 x 10- 7 versus l/T,

-7
which suggests that the value of 2C'Zn2 is about I x 10

Fig. 30 shows the average value of the normalized Allan variance,

< ' A2 > , which is obtained by

A22<a hA  > = <R n(T)> x (18,000 xT) 2 
. (3.7)

A2 -7
The theoretical curve (solid line) is based on c = 18,000 T + I x 10 X

"T

(18,000 xT)2. Very good agreement is obtained as shown in these figures.

The value of <KR (T)> and 1/18,000 x T (shot noise level) are listedn

in Table 2. It shows clearly that at this counting rate, 18,000 counts per

minuLe, for T longer than 100 minutes, 1/f noise becomes noticeable. For T

longer than 1000 minutes, 1/f noise totally- dominates the noise spectrum.

T(min.) 1 2 5 10 20 50

<R (T)> 537.4 261.0 123.3 55.66 27.86 11.56n

11 555.6 2 7.8 111.1 55.56 27.78 11.1118,000 T

T (min.) 100 200 500 1000 2000 3000

< R (T)> 7.156 3.825 1.799 1.648 1.159 1.816
n
1

1 5.556 2.778 1.111 0.5556 0.2773 0.185218,000 T

Table 2. The values of < R (T)M and ,'!8,000 T;

all Values x 10
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4. Discussion and Conclusions

4.1. Possible systematic sources of error

Besides the fluctuation of emission cross section described in

Handel's theory, two other possibilities may contribute to the fluctuation

in the total number of counts. First, the pulse height, which is produced

when an a-particle is absorbed by the detector, can be a strong function of

[11lthe bias voltage applied to the detector [ I  If the bias voltage were

unstable, changes in the bias voltage could result in changes in the deple-

tion depth, varying the sensitive path length experienced by the a-particle,

and the depletion layer capacitance. Thus, a-particles with the same energy

would have been registered under different energy channels, and would intro-

duce unwanted fluctuations. To minimize such fluctuations, the detector

control unit selected for use in these experiments, Ortec Model 210, has

quite good stability: bias voltage variation with the line voltage is

< ±0.005% for 105- 125 VAC input, and the stability is ±0.01%12/ Also, the

use of a charge-sensitive preamplifier (Ortec Model 109) diminished the

system's sensitivity to changes on detector capacitance. Secondly, since

a fixed portion of the full spectrum is counted, whether particles with

energies near boundaries fall within or without the region they bounded con-

tributes fluctuations to the total number of counts. However, basing the

range of spectrum integration on multiples of the fwhm reduces variation due

4to peak spreading and gain shift.

Therefore, a wider energy range should have less fluctuations in the

total number of counts in a certain time period. This is indeed the case,

see Table 3. However, for T = 100 minutes, the difference between R(T~s for

wider range and narrower ran:e is ne liiblc. For T = 500 Minutes, the dif-

ference is 4;_ but the value of <R (00)> is 627, higher than the shot noise

level (see Table 2). For 'V 3000 minutes, the difference is 11, and the
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value of <R (3000)> is ten times the value for the shot noise level. Hencen

the energy range chosen in these experiments affected very little the final

results.

T Ch. 127-147 Ch. 112-157
(Peak Channel: 142, FWIIM: 2.5 channels)

100 min. < M1 0 0 > 1812492.94 1828630.89

A2

a A2 2430286.7 2472416.52
M 10 0

R(100) 7.398 x 10- 7  7.394 x 10- 7

500 min. < N50 0 > 9067009.8 9147489.02

A2 7943285.5 7762255.74
M500

R(500) 9.662 - 10 - 8 9.277 x 10 - 8

3000 min. < M300 > 54398712.1 54881014.1

00A2 698293362 634854514
%13000

R(3000) 2.360 Y 10 - 7  2.108 × 10 - 7

Table 3. Comparison of experimental results for
narrower energy range (peak channel - FIHWI x 6 to
peak channel + F<HM x 2) and wider energy range
(peak channel - FWIIM x 12 to peak channel + FWHN x 6.

4.2. Comarison with the theory of quantum I/f noise

According to Handel's theory, the constant C' in th2 1/f noise term in

the relative Allan variance is, cf Eq. (2.7),

C' = 8 "\,/c (4.1)

where - is a coherence factor, for c-particles it is expected to be close
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to one; c is the fine structure constant 1/137, and A = 2(Av)2 /37rc 2 where

-% [51
Av is the velocity change of the particles in the emission process

c is the velocity of light. For a-particles one finds

AA = 33.28 x 10 - 7 x E (4.2)

K K

where E is energy in MeV and K is the dielectric constant of the radio-

active material.

In these experiments E = 5.48 MeV, so that the value of 2C'Zn2 (the

value of the flicker floor, F) is

F =4 33.28 x 10- 7 x 5.48 10-7 (43)= ×~~> £n2 = 505.6 ×< 10 .(4

K K

To the authors' knowledge, nobody has every measured the dielectric

constant of AmO 2' the a-particle source used in these experiments; thus the

value of K in Eq. (4.3) is unknown. However, since the atomic structure

of AmO 2 is similar to that for U02, the dielectric constant of UO 2

(20.4 ±1.5 [13] -, 1.7 ±0.5[14], and 21.0 ±1[153 can then be used as a refer-

ence.

If one considers the following factors that 1) the resulting aA in

Eq. (4.2) is the sum of contributions for all types of infraquanta partici-

pating in the energy transfer, and maybe only part of them were detected,

i.e., the actual value for aA in these experiments may be smaller than that

given in Eq. (' .2); 2) the coherence factor, ,, is always less than unity;

3) the dielectric constant of AmO may be larger than 21: then the measured

value of F = I <10 is in the riqht ballpark to verify Handel's theory.
-7

In particular, for = 0.05, .- 23, one obtains F =1.01 10 , in accord

with the observed value of Figs. 29 iOd 30, We believe, therefore, that

these experiments constitute the first experimental verification of Handel's

quantum L/f noise theor'.

... .. I
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In conclusion, s-particle decay has statistics which for large counting

intervals (=103 min) are non-Poissonian. We established the presence of a

flicker floor R(T.) = 1.0 x 10- 7 . In the frequency domain, this indicates the

presence of 1/f noise in the particle flux for frequencies of the order of

10-4 hz or less. The magnitude of the flicker floor can well be explained as

electromagnetic quantum 1/f noise, providing r = 0.05 can be explained.

(Later note: We presently think the factor K = 25 does not belong in

the formula. Thus, in reality, the theoretical noise is a factor 500 too high.

See our NB at the end of Section V of this report (page 51).)
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V. Partition i/f noise in pentodes. C.J. Hsieh and A. van der Ziel

It is well known that pentodes show partition noise, in addition to space-

charge suppressed shot noise. It is less known that a pentode also shows par-

tition 1/f noise. The effect was first observed by Schwantes and van der Ziel,

Physica 26, 1143 and 1157 (1960). This partition noise can be isolated by a

feedback procedure that reduces the regular flicker noise with a large resistor

Rc in the cathode. The then remaining noise is partition 1/f noise. This

noise was remeasured in an attempt to compare it with Handel's theory.

a) Quantum picture of flicker noise

According to Handel's theory[10, there is a quantum approach 1/f noise.

There should be a quantum 1/f noise part (,.12) present in partition noise in-

volving charged current carriers. The carriers also have infrared divergent

coupling to infraquanta. The spectral density of the relative fluctuations is

< (An)I>f 2 AA (I)

The infraquanta we are going to consider here are photons, with

in(2
2c= final c initial (2)3A 7T c

where a = 1/137 is the fine structure constant and v final is the velocity of

a carrier at the end of the process; v initial is the velocity before the

process.

In the case of a pentode, three grids are present, but the screen grid

is the only one carrying a positive potential. Then, the three independent

noise sources present in a pentode include the partition noise S (f), the anode~p

noise S (f), and grid noise S . The spectral density are given by
a II
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oLA
S = r22eI + 2 -c (r21)2 (3)

a a f a

aA
S = r22el + 2 Cg (r21g)2 (3a)

g g f g

oA

Sp = (1- r2 )2eI + 2 a [(l- r 2 (3b)
g f g

Here we have denoted by F2 'he space charge noise suppression factor and

A = 1.224 x 10- 5 (u a -u c ) (4)caa c

Acg = 1.224 x 10- 5 (u -u C ) (4a)

A = 1.224 x 10- 5 u (4b)g

where Ua, Uc, u are the potentials of the anode, the cathode, and the screen

grid, while u gives the velocity of the smoothed electrons (fraction I-F2), when

they arrive at the screen grid. Note that in order to take into account in-

coherence effects properly we have to replace f by Nf in all previous equa-

tions in the denominator. There N is the average number of electrons involved

simultaneously in the process considered (e.g., transition from the cathode to

the grid in the nonsmoothed way for "A c/Nf). From the current generator

defined above, we can easily obtain the spectral density of noises.

S (f) = Sa(f) + S p(f) (5)

S (f) = S (f) = S (f) + S (f) (5a)

1 g g pg

SI (f) =Sa(f) + Sg(f) * (5b)

For the partition noise Handel presents the expression

2-tA
S (f) (6)p f c 9
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where A = 1.224 x 10 - 5 u and u is the velocity of the smoothed electrons
g

(fraction i-P 2) .  For this expression Dr. van der Zivl eypects instead
C

2aA
s (f) f ag (7)

The argument is as follows. Consider two pentodes, one with a screen grid

transparency X and one with a screen grid transparency (i-X). Then I' = I
a 2

and I I The partition noises and the partition flicker noise should be
2 a

the same, so SI (f) should not change if Ia and Ig are interchanged, and

p
Equation (7) accomplishes this. Moreover, all electrons arriving at the

screen grid should distribute and not only the fraction (1- Fc). One might also

question the factor A ; A is proportional to the anode potential ua) that isquesionthefacorg; AcaUa

to the energy with which the electrons arrive at the anode; A is proportionalcg

to the screen grid potential u . So van der Ziel thinks it would be better tog

write

Sp(f) =  • ca'\cglg (8)
p f a g

In that case,

SlI(f) = ___!a cg (r'-l) lg (9)
I 1 9 f c a g

so that the fluctuations in I and I are fully uncorrelated if the cathode isa g

saturated (U = 1). This looks intuitively right.

b) Feedback effect of the cathode resistor

We apply feedback in the cathode lead by inserting R, as shown in
C

Figure 31. Then,

v -(i + v)Rc (10)
g c Mrt g c
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Simplifying the above equation, one obtains

-i R
V ~c cV e (ii)

g +g mtc

so that the noise current of the cathode with feedback is

i' = i + g i [I gmtRc ic (12)
c c mtg c+ gmtRc 1 + gmt RC

Now we assume that the ac signals distribute between screen grid and anode

in the same way as ic . In this case

gma = gmtx ; gm2 = gmt 
( I - ) " (13)

With feedback resistor Rc, then,

i R

i' = i +g v = Xi + i -g c c xi' + i (14)
a a mag c p ma I + gmtRc c p

So the spectrum of the anode with feedback is

- - i
i.2 i'- , +2  i i= c (15)ia c p c 1+ gmc

P g mt c

or
S I-

SI c + S (f) (15a)

a (I +g R ) p

and we can also write Equation (15) and (15a) in terms of equivalent current,

i ' -  2qAf -( c + (15b)a 7 mtc eqp

(I+ t RcY

so

I eq + B (15c)
eq (I + gmt )

where A and B are constants. We now define the new pentode transconductance

with feedback
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gmt (16)
gmt i+ g mtR c

gmt C

gma= 1 mt (16a)

mt c

i does not change since it flows from screen grid to anode. From Equa-
P

tions (12), (14), and (15) we can get

g2tx2

4KTR' df g 2 = 4KTR df ft + 4KTR df g (17)
na ma nc (n + gmtRc gma

since

g mtg2=
ma "

ma + gmtR c

Dividing Equation (17) by (g' ) , we find
ma

R' = + R (I + g ). (18)
na nt np mt c

According to Schwantes' results, the values of R np/Rnt were always of the

order of 0.1 and g /g was always less than 0.1, so that it is negligible for
x mp

most practical puposes.

c) Feedback effect with correlation between i and ic p

Next we consider correlation between i and i but no feedback. Since;c p'

ia c p + ip the spectrum of the anode current is

" i* + 2 i i A + i (19)
a c c p p

and i i = 2qleq cor. f; so one obtains
c p

ia = 2q(T eqc ) + 2eq cor. N + Ie)Af . (19a)

This is without feedback. If we consider feedback and correlation, we have

i
I i'' + 2 i--+ 1- - t; = c (20)

a c c p p c 1+ g mtR
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and we can get the final formula

iv2 = 2qAf eqc 21eq cor. + I (20a)
a (+ gmt R c) gmtRc) eqp

d) Transformer feedback from screen grid to control grid

As mentioned before, partition 1/f noise flows from screen grid to

anode. The partition 1/f noise can be eliminated by connecting a transformer

with proper turn ratio n between screen grid and control grid. The details

are given in C.J. Hsieh's Engineer's thesis. The transformer feedback measure-

ment is shown in Figure 31.

e) Experimental setup and device description

The circuit of the measurement system is shown in Figure 32. The noise

devices are three pentodes, 6AUGWC (RCA), 6AG5 (RCA), and 6CE6 (GE). Since the

pentode is a high-gain amplifier, we have to be careful with the input terminal.

Figure 32 shows the biasing circuit of the device under test. Since the control

grid is very sensitive to 60 Hz induced at the input, a low-pass filter is used,

so as to reduce the 60 Hz noise as much as possible. The biasing circuit with

low-pass filter consists of a 45V DC battery, a 100K potentiometer, and a

high-quality paper capacitor (2 I2F) to give the correct bias voltage needed.

Similarly, we choose a wire-wound resistor Rc in the cathode lead, in order to

reduce the termal noise as much as possible. Two 70V batteries give the cor-

4rect screen grid voltage. Six 70V batteries are used as a plate power supply.

The anode current Ia is monitored by an HP solid-state digital voltmeter.

A 0.1 1,F, 250 VW.V coupling capacitor is set in between the load resistor Rp

and the Hewlett Packard 3582A spectrum analyzer to prevent the spectrum

analyzer from damaging by the high-load voltage. The HP 3582A spectrum analyzer

featuring a dual-channel Fast-Fourier Transform is employed essentially as a

narrow-band, tunable filter.



- 43 -

Two I-V measurements were done on each pentode. The DC current-

voltage characteristics of the pentode 6AU6WC (RCA) have the conventional

form.

The whole system is first operated without cathode feedback resistor.

The variable potentiometer (see Figure 32) is set to produce different biasing

voltage and get different anode current. The room temperature noise current

spectrum (less than 25 KHz) for three anode currents is shown in Figure 33

[for 6AU6WC (RCA)].

We next consider the measurement with cathode feedback by inserting

several wire-wound resistors Rc as shown in Figure 32. The low-frequency noise

spectra were measured for several resistors (Rc = 3002, 500Q, 700Q, 1 K,

1.5 K 2, 2 K2, and 3 K2) up to 3 K as shown in Figure 34 for 6AU6WC (RCA). The

magnitude decreases with increasing resistance up to about 3 K2; further in-

creasing of the cathode feedback resistor does not affect the magnitude very

much, but the slope becomes less than 1/f beyond 100 Hz. Figure 35 represents

the same results for the pentode 6CE6 (CE) which has a gm about 2.6 milimho

and feedback resistor increasing from 500Pup to 10 K2. Table 1 lists the

data obtained for several different cathode feedback resistors. The noise

spectral density is obtained from the result

SI1

S o R (21)
(I + gmt Rc)

Experimental results are compared with theoretical values for the pentode

6AU6WC (RCA) at 100 Hz and 1,000 Hz, and the comparison is given in Table I

and Table 2, respectivelv. The comparison of the curve of S I/S0 versus

R with the theoretical plots at 100 Hz and 1,000 Hz is shown in Figures 3b
c

and 37, respectively. We note that the two ctirves almost coincide. Similarly,

the procedure is repeated for another pentode 6CE6 (GE). Experimental results

I
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are plotted and compared with the theoretical values given in Table 3 and

Table 4 and are shown in Figures 38 and 39. As mentioned previously, we have

I(f)1

S (f) c + S (f)= 2qf A+ (22)
a (I+g mtR C) p (I R

where A and B are constants. Equation (22) can be rewritten in terms of

equivalent saturated diode current.

leqa A + B (22a)(i + gmtRc 27

Thus, suppose we plot theoretically logS I  versus log (l+g MtRc), the curve
a

is identical to a plot of log (Ieqa) versus log (l+g mtR). Therefore, by

comparing the experimental curve of log (i2 ) versus log (l+ g R )2 and
a mt c

log (i/i 2 ) versus log (l+gmtRc)2 with the theoretical curves for the pen-
a aot

tode 6AU6wC (RCA,, we get a result shown in Figures 40 and 41, respectively.

According to the experimental data, we can calculate the A and B values as

follows. From Equation (22a) and assuming g mtR c>>l, we have (l+g MR) l,

so that B = leqp and

2qleqp = 2 x 1.6 x 1019 leqp = 3 10

hence

B Ieqp = 3 10 21 /3.2 10 9.6 mA

As mentioned before,

= (I / /) = (3.4/3.9)2 = 0.76 (1a 3.4 mA, I c  3.9 mA).

From the experimental curve, we can find that B is less than A. So it is

4 negligible for most practical calculatioa. So

A = leqc\' = teqc x 0.76

and

2qleqc 0.76 S 1 1.224 
× 10 - 1 9

0
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I = (1.224 x 10- 1 9 ) /(0.76 x 3.2 x 10- ) = 503 mAeq c

and

A = I A2 = 503 mA x 0.76 = 381 mAeq c

If Equations (22) and (22a) do not fit too well, then we have to con-

sider the possibility of correlation between i and i . Results for the occur-c p

rence of this are found in Hsieh's thesis. See also Figure 42.

Results including transformer feedback are shown in Figure 43.

f) Effect of anode voltage on partition 1/f noise

Now we observe Figure 44; it has feedback but no transformer. We

measure i 2 at the higher R at V = 133.74 V and V = 453.6 V. In each case
a c a a

we do ten times and then calculate the average in order to improve the accuracy.

The measurement of SI may be done with a precision of 1.2% or better.
a

Here we measure at V = 133.26V, V = 133.74V, and at V' = 133.43V,

V' = 453.6 V. This hardly changed I (from 5.78 mA to 5.81 mA), but changed
a c

I (from 3.97 mA to 4.25 mA\) and hence I changed from 1.81 mA to 1.554 mA.a

As discussed in section a) for the partition noise, Handel presents the

expression

21A
S(f) = 9 (I-F2 )I2 . (23)

f 
g

But van der Ziel suggested that the partition noise may be given as

4 S(f) = c I I (23a)
f a g

I
so that

IS~)V' A, aa gI II

p V  a (24)

[S (M)]Va c a Vp Ig



Now V 33.:. _ 1" c 1). ) . '

V 17.25 V. Hei1nc'e

[S'(f)V I/ I[

p ,l = . J2 j j = .3 0 .3 .) (1 . ~ - : . ; ,,

)p ]Va 'p

= 1.934 < 6.613

= 1.934 x 0.92 = 1.78

Experimentally, the noise at V' = 435.6V was about i.7 times as large
a

as at V = 133.74. If we compare theoretical values with our experimental data,a

we find very reasonable agreement.

Handel's partition noise theory, as modified, yields

A(V a )
St(f) = (25)

I Nf

The high frequencies partition noise theory gives

- a "S1,2 q [-a i L 1II (V) 2a

A(V )
S S II + S (f) = + B(V ) (26)I f) + () =Nf a

where A(V ) increases with increasing V and B(V) decreases. Hencei a

[S (f)]V32 A(V .)/Nf + B(V a2)
= - - - (26a)

I ) I V,]Il A(Val)/Nf + B(V al)

At low frequencies the ratio is A(V2) / A(Va) , which is about 1.70, and at

high frequencies it is about B(V2) / V(3al), which is about 0.90. In between

there is a point where the ratio is exact]\, unit-, (crossover). So we conclude

that the quantum partition noise ts well verified at low frequencies by the

dati, hut we cannot verify it well at -;ufficientlv high frequencies.

As to the absolute magnitude of the 1/f partition noise, we have noticed

ii readl tihat a factor N is necessarV in the denominator of Equation (7), see
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Equation (25). Van der Ziel indicated that Equation (7), without the factor ::,

is off bv a factor 109 . For let

S (f) = 2 l I I A?/Hz (27)
f ~~ a 2

p
=o-5~a =1-5V2

where A 1.224 x 10 V Ac = 1.224 x 10- V2  = 1/137 and I and Ica a' c2 a 2

are in amperes. Now if Va = V = 133.6 volts, I a  5 mA, 1 2 mA,

Equation (27) yields

SI (f) = (2.4 1- 10 /f)A2/H2
P

Experimentally, Hsieh observed

S I (f) = (4 x I-19 /f)A 2 /H2

p

This yields a ratio of 6 x 10 8! Thus it is certain that a factor N of

9
order 0.6 x 10 , as in Equation (25), must occur. This N must be the number

of electrons in the system. If I = 7 x 10 -3A, then I le = 4.4 x 1016
c c

electrons/sec. The transit time is

Td = 2d/6 x 107 V- = 0.48 x 10- 8 sec. (V 50 V, d 1 cm).

Thus

16 -8 8
N = (Ic /e)T d = 4.4 x 10 x 0.48 x 10-  = 2 x 10 .

This comes very close to the experimental value involving the factor 6 × 10.

Thus (25) is the correct result and not (27).

Note: It should be noted that the missing of large factors N, as indi-

cated here, is one of the profound problems of Handel's theory. The same

applies, in our opinion, to Handel's theory for emission noise involving radio-

active decay (see Section IV). There a factor of N ! 500 would be required in

order to give a more satisfactory agreement with experiment. The apparent

coherence properties of scattering particles in Handel's theory is a fact that

has not yet adequately been solved. This remains one of the main obstacles of

Handel's theory.
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C. THEORETICAL WORK

I. Remarks on quantum 1/f noise in metal films. C.M. Van Vliet

Hooge's formula reads

SI(f)/, 2 = a/fN . (1)

In nondegenerate semiconductors N is the number of carriers contributing to

the noise in the entire device. For metal films, N has been interpreted as

the number of atoms in the film, multiplied by the valency. On the contrary,

we believe that N is to be the number of electrons near the Fermi surface

(a slice ; 2kT around the Fermi level), since the other carriers cannot con-

tribute to mobility-fluctuation noise. An intuitive reasoning was presented

in Section B-I. A more complete theory based on the Boltzmann transport

equation is being developed. A preliminary letter to the Editor, submitted

to Physica, is included herewith.

i

I
I
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Letter to the Editor

1/f Noise in Mobility Fluctuations and

the Boltzmann Equation

A. van der Ziel
I , C.M. Van Vliet2)

Dept. of Electrical Eng., U. of Florida, Gainesville, FL, 32611, USA

and

R.J.J. Zijlstra

Natuurkundig Laboratorium Ryksuniversiteit, Utrecht, The Netherlands

and

R. Jindal
3 )

Dept. of Electrical Eng., U. of Minnesota, Minneapolis, M, 55455, USA

Summa rv

The i/f noise in mobility and diffusivity are discussed. The two noise

densities are related due to an instantaneous Einstein relation, valid for

times larger than the collision time. The Boltzmann equation treatment shows

that Hooge's relation for the collective band mobility noise, S P /() = C/fN,

can be justified for a nondegenerate and spatially noncorrelated electron or

ion gas.

1) Pernanent address: Dept. of Elec. Eng., U. of Minnesota, Minneapolis,

N 55455, USA.

2) Permanent address: Centre de Recherches de Iathematiques Applquees,
Universite' de Montreal, Montreal, Quebec 113C3J7, Canada.

3) Present address: Bell Laboratories, Murray Hill, N.J. 07479, USA.

.1 |
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1. Introduction

Several recent papers have discussed the result of 1/f noise for the

relative mobility-fluctuation spectrum S (f)/(U) 2 of carriers in semi-

1-5
conductors . Some papers equate it to a/f and others to a/fN; here a is

the Hooge parameter, f the frequency, and N the number of carriers in the

sample. The discrepancy is easily resolved by distinguishing between the

relative I/f mobility-fluctuation spectrum S i(f)/(,i)2 of a single carrier

and the 1/f mobility-fluctuation spectrum S (f)/(V) 2 for an ensemble of

6
carriers. This was shown recently by Hooge . The pertinent relations are

found to be

S ) 2 = a/f (1.1)
1

and

S (f)/G) 2 
= a/fN (1.2)

In this note we point out once more that (1.1) is the basic relation

and that (1.2) follows for nondegenerate semiconductors; it may not hold for

metals, degenerate semiconductors, and in ionic solutions in which carriers

within a certain distance are correlated7'8 . Our proof for the validity of

(1.2) in nondegenerate semiconductors is based on the Boltzmann equation.

We also derive an Einstein relation for the fluctuations and find the corres-

ponding expression for the relative diffusivity noise S D(f)/(5) 2 .

2. Boltzmann equation approach

In the k-space approach we start from

jn(r,t) = q f dlkZ(k)f(r,kt)v k (2.1)

where Jn(r,t) is the electron current densit,: Z(') = 1/4 3 is the density

of states, and vk is the velocity in a one-particle state jk); f(r,k,t) is

the occupancy of a state k in the vicinity of r, averaged over manv collisions,
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but still fluctuating due to 1/f noise. It can be computed from the mode

t
occupancy operator average <ck ck,>t of the quantum field, compare

9
van Vliet et al

More simply, we obtain f from the Boltzmann equation, assuming that

the cross section for scattering, and thus the relaxation time T fluctuates,

1"
either due to the fluctuating phonon population1

', or due to quantum 1/f

noise 0 . Thus, putting f(r,k,t) = f0 (r,k) + fl(r,k,t) where f0 (r,k) is the

local equilibrium distribution, we find in the usual way in the relaxation

time approximation, keeping f0 in the streaming terms and fl in the collision

integral,

in (rt) = qfd3kZ(k)T(rk,t)

[ k • f0(rk) - (q2 /)vk f (,)]. (2.2)

Writing still V f0 = hvk~f0/ , this yields the diffusion part
-k ..k

J = qV. (D n) [for nondegenerate semiconductors, V. (D n) = D Vn,
~n,diff -- n ~ =

since D does not depend on the chemical potentialI and the drift part

-n,drift = qpn- E with

D (r,t) = <<r(r,k,t)kv (2.3)

i (rt) = - q <<(r,k,t) k t k~ k>> (2.4)

where << >> denotes a k-space average; the local, tOw-fC average

in k-space is defined by

<< (r,t) >>= k(r> ... t)(rk) (2.5)

where we notice the occurrence of the factor n(r) in the denominator,
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since distribution in k-space is normalized to n:

f d3kZ(k)f0 = ;(r) (2.6)

(the bar denoting a time average). Restricting ourselves further to

scalar D and jj and nondegenerate homogeneous semiconductors, for -which

3 log fo/2c. = _l/kT, eqs. (2.3) to (2.5) yield

D (t) =  d 3 r d 3kZ(1:)(v 2 /3) -(rk,t)f0(r , (2.7)n Nj f .. .

vn(t) = L d 3 r d 3kZ(k)(q/kT)(v2/3) r(r,k,t)f 0 (r,k) (2.8)

These results show that:

(a) The fluctuating mobility, as found by the Boltzmann equation, is

of the form (1/N) vP (k,t) where pn (k,t) refers to the mobility of the

state jk); thus, if the spectrum for 11 (k,t) has the form (1.1), then the

spectrum of the mobility for the entire conduction band has the form (1.2)

if the carrier 1/f fluctuations are independent, as in nondegenerate semi-

conductors. For clearly, with S n(k) given by (1.1)

SS(k) = S ( (2.9)
lin,band 2 n~ N n(k)

A more accurate computation of the band integrals involved shows that (2.9)

must be modified by a factor of 3i/8, cf. Kleinpenning and Bell 1 2
. However,

in view of the experimental uncertainty of the Hooge parameter, this

correction is hardly significant.

(b) There is an instantaneous Einstein relation for the fluctuating

quantities D n(t) and n (t):

D (t) = (kT/q)n t) ; (2.10)nn
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Note that t >> r due to our assumptions of a vanishing collision integral

for f0 (r,k,t) f0 (r,k). We thus have the spectral relation

SDn (f) = (kT/q)2 S n (f) (2.11)

or

SD /(Dn)2 s S G /n)2 (.2
D n n Vn /G (212n

13,14This equation was conjectured before 1
' but never proven.

For metals and for ionic solutions above certain concentrations a

7
coherence volume, in k-space or in position space , comes into play. Then

AT(r,k,t)AT(r',k',t) # F(r,k)6(r- r')(k- k'). Clearly then, though (1.i)

might be valid for the individual state mobilities, the band mobility fluctua-

tions do not obey (1.2). A ,omputation for degenerate semiconductors and

metals will be published elsewhere.
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II. 1/f noise due to impurity scattering. Ganesh Kousik

A calculation is made of the mobility (impurity scattering limited)

fluctuations, assuming that the fluctuations in the scattering ion section

are given by Handel's theory of fundamental 1/f noise.

We start with

4e -w 3/2
t ) = 4 e- w /2 (w,t)dw (1)

n0

and

- = N wf (l -cos )a (t,w)d2 (2)

(within the relaxation time approximation).

A[t (tw] N~v fV - Cos Q)AoG,(t,w)d2

<__2>_ = N w (1 - cos )(i - cos i
1 )< a.(t,w)Aa.,(t,w) >d.Qd ' (3)

T

Assuming that scattering in different directions are not correlated and

finding the frequency spectrum on both sides of (3), we get

S (,T)
- = N v 2  (1 - cos e)(1 - cos 0') S ( , ',w)dldQ' (4)

T4 0 W a

and

S (Q,2',w) = <a(2,w)>' 6(Q-2')

S
?v2I2 2aA

S= N (1 - cos <2) <S(,w)>2 d2 (5)T4 0 w f df . 5

Similarly, assuming that scattering of electrons with different energies are

not correlated, we get

( 3 T "  e 2 Ww3S (w)dw . (6)

0
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According to Handel's theory

2aA 16c (P+mk T/p )2 sin 2 0/2 (7)
*2 0 B 03Trm c'

{mkBT/po term is neglected}, 2 is the scattering angle, and p is the electron

momentum. Further,

22m 
z

<o w = e (8)

47T 2(4k 2 sin2 P/2+K2)]

for a screened coulomb potential, K
2 is the screening parameter which for

nondegenerate semiconductors is the Debye screening and for metals is given by

the Thomas-Fermi screening. Impurity scattering is assumed elastic (needed

for the relaxation time approximation) and therefore Ik-k'l = 21k1 sin -/2.

Using (5), (6), (7) and (8), we get

a'3

f - 2w w 7_ _ _ _(9

n Lnv + --- dl dw(9
l n f 0 n 4 k LI f s e c t B

K2 I

where B' = tan 1 2k/K, and k2 = 2mcbf for spherical energy surfaces.

2. (16) ".' ~k B "T4*

A' = B 6
27xTm "c' N2 zl+e 6

0

Equations (1), (2), and (8) give

,-w - w(00 I' n e wi+4)dw(0

where

64 f' kB 2 r''
B =

3'PN z ec
0



- 61 -

We now have

e-2Ww7dw/nhI+Lk I4f tan7 dleW~w n Il+-fI 2-1 see6a

1 7 1 m w216

n" e x 3dw

L o n(l+ 4k
2/lK2)

e-2W w7dw tan 7 df
'P 16A kT 1 [kn(1+4k2/K2)]4 seec6 )

3m, *c -w i
an _ _ee-Wdw

f n{1 +4k2/K 2 )

For nondegenerate silicon

K2 47e 2  i n )
=ckBT n N- D)

where n is the number of conduction electrons and ND is the donor concentra-

tion. c the dielectric constant is 11.9 c .
0

At temperatures in the 10'- 70'K range, not all donors are ionized.

To find n, we solve th% neutrality equation

p n + ND -- 0 (12)

Nfnl r EF -Ec

where ND + D and n I = N exp F . Therefore, the equation for
whr D  n n1 c k

n is

n2 + n1n - NDnl ----- 0 (13)

neglecting terms with n. ? ;0. Figure 45 shows S f/ n vs. T.
1 ;n

In metals one uses the Thomas-Fermi screening

= 47,ei/r/ ,) (in CCS units)

I~r
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where A" CF) the density of states at the Fermi level,

Jlk 3) N
2 F

For gold:

N = 5.9 x 10
22 cm

EF k kBTF = kB x 6.39 x 104 ergs.
S

n

and spherical energy surface (k2 = 2me/h 2 ) have been used. "n vs. T for

n
gold are shown in Figure 46.

Sf

Equation (11) implies P2 , the noisiness, is not a strong function of

the doping density in semiconductors. It is nearly a linear function of T in

both Si and gold, in fact in semiconductors and metals.

The noise in gold (Fig. 45) is smaller, probably due to a much larger

screening constant than in silicon. Thus the electron does not see the ion

potential as strongly as in Si.

For a purely coulomb potential, we find T 0 0 and therefore

S -0;
In

also,S fIA ... dw

i 0, but u - 0.Dn • f d1

4

I
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III. Noise Out of Equilibrium

by

Carolyn M. Van Vliet

Department of Electrical Engineering
University of Florida, Gainesville, 32611

and

Centre de Recherches Mathematiques
Universite de Montreal, Montreal, Quebec H3C3J7, Canada

We discuss six properties of stochastic processes which are generally

valid only in thermal equilibrium systems. In Part A of this paper we discuss

the first and most fundamental property, viz, the fluctuation-dissipation

theorem. Kubo's and Van Vliet's quantum statistical mechanical derivations

are reviewed. Next we discuss Gupta's thermodynamic theorem, which may hold

for a class of nonequilibrium systems. In Part B we discuss the other proper-

ties which mainly center around the principles of mesoscopic reversibility and

detailed balance, and the symmetrization property of the two terms in the

generalized second moment relaxation theorem (also called generalized g-r

theorem, generalized Einstein relation, or A-theorem). We then give two ex-

amples for which this symmetrization property does not hold. First we review

Van Vliet's model of nonequilibrium optical pumping in photoconductors with

traps. Finally, we review Tremblay's et al. derivation of Brillouin light

Jscattering as an example of a nonequilibrium hydrodynamic steady stat%.!
i 1. Thermal e~uilibrium pror erti.

There are a number of properties which render tile description of noise

in thermal equilibrium considerabl, simpler than in a nonequilibrium, or driven

equilibrium, steady state. The main features for fluctuation processes are as

follows.

*Invited paper presented at the 7th International Symposium on Noise in

Physical Systems, Montpellier, France, May, 1983.
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1) Validity of the fluctuation-dissipation theorem

2) The principle of mesoscopic reversibility

3) The principle of detailed balance

4) The symmetrization property of the "generalized second moment

relaxation theorem"

5) The equilibrium Einstein relation between generalized mobility and

diffusivity

6) The Onsager relation for reciprocal flow problems.

The derivation of (1) will be briefly given below. The fluctuation-

dissipation theorem is a genuine consequence of the existence of the micro-

canonical or canonical ensemble to describe equilibrium properties. It can be

derived from a purely thermodynamic point of view (Nyquist 1928, Callen and

Greene 1952) or from a quantum statistical mechanical approach (Kubo 1957).

The other five properties are somewhat more subtle and have a less

general form in that we must distinguish between a-variables, which are in-

trinsically time reversible, such as the position, and b-variables, which are

odd, i.e., change sign under tine reversal, such as the velocity (Casimir 1945).

The details of this necessary distinction are often overlooked, and a number of

errors occur even in recent literature. A much more careful consideration than

hitherto given is necessary, and errors occur both in Lax (1960) and the author's

papers (1965) in this respect. Since the space of this conference paper is

limited, we shall make no attempt to rectify these errors hereby, restricting

ourselves to a-variables. Some remarks on the other cases will be made in some

instances. The five properties 2) to 6) all hang together in a unique way. One

can show that the validity of any one of the five implies the validity of the

others. Again, the writing of a comprehensive survey paper on this topic would

be extremely useful, but space is lacking here since we have been asked to write

on nonequilibrium.
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This paper will therefore be divided as follows. In Section 2 we

review the standard derivation due to Kubo, and its recent modification by

Van Vliet (1978, 1979) of the fluctuation dissipation theory. We also discuss

how a true general extension to nonequilibrium systems should be obtained.

Lacking such a general extension at this moment, we review in Section 3

Gupta's thermodynamic attempt to obtain a meaningful extension for electric

nonlinear circuits under a set of restricted but useful conditions (Gupta

1978, 1982).

In the rest of the paper we discuss the extensions for nonequilibrium

when any of the properties 2) to 6) does not hold. This is relatively easier,

since full solutions for Markovian nonequilibrium systems have existed since the

initial work on optically excited generation-recombination statistics in

semiconductors by Van Vliet and Blok in 1956 (a& b). The first true non-

equilibrium example involving the "generalized nonequilibrium second order

moment relaxation theorem" (also called generalized Einstein relation by Lax

1960, generalized g-r theorem by Van Vliet and Fassett 1965, and A-theorem bv

Van Vliet 1971) was given by Van Vliet in 1964. This is discussed in Sec-

tions 4 and 5.

In recent years renewed interest in the nonequilibrium problem arose

from light scattering in the presence of a small temperature gradient, causing

nonsymmetric Brillouin peaks. This problem was treated by a number of authors

(Procaccia, Ronis and Oppenheim 1979, Kirkpatrick, Cohen and Dorfmann 1979,

Tremblay, Siggia and Arai 1980). We will here present the treatment of the

latter paper (Section 6). It will be shown that their example is mother

straightforward nonequilibrium application of the "generalized nonequilibrium

second order moment relaxation theoreri' as originally set forth by the author

and coworkers (1954, 1965, 1971).
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Part A. The fluctuation-dissipation theorem and extensions

2. Quantum statistical derivations

Kubo considers systems with a Hamiltonian

H total= H - AF(t) . (2.1)

Here H is the Hamiltonian of the system proper and -AF(t) the coupling to an

external field. For electrical conductors, F(t) - qE(t) and A r.. where

r. are the position operators of all of the particles. The Von Neumann

equation for the density operator now reads

A2t + H, u(t)F(t) [A,p] (2.2)

where u(t) indicates that the field was switched on at t = 0. If we are now

near a thermal equilibrium state, we can substitute p peq in the r.h.s. of

(2.2) where peq is the canonical density operator peq = e-/Tr e - , 13 /kT.

The equation (2.2) can easily be solved for the average response of a flow

quantity B where B is an operator in the system. One finds in a straight-

forward way (Van Vliet 1978)
t

< (t) > = Tr (t)B - Tr eqB =J dr *A(t -T)F(T) . (2.3)

0

Here CBA is the response function given by the commutator

1?B T r, A, (t) - (2.4)
TrA , eq

where the time dependence of z (Schr~dinger picture) was transferred to the

time dependence of B (Heisenberg picture):

S if t S i Ht/ S -iHt/ (.5)

B(t) B B = B e'I
where BS is the Schr~dingr operator (the superscript S will henceforth be

omitted); 1 is the Liouville superoperator acting in the Liouville space that

contains all operators A, B, ..... In particular, let A be the current



- 67 -

J = B E r = A, where 0 is the sample volume. If we take the Fourier-

Laplace transform of (2.3), then we have, denoting by - the transform,

3(iw) = q-_(q/Q)!,A(iw)*E(iw) (2.6)

so that the conductivity becomes

1 ia) e-i~tT

(iw) = CL 1f ei-dtt Tr {[A,A(t)]pe q

0

= dt Tr { [J,J(t)] (2.7)

0

We have here the beginning of Nyquist's theorem: the conductivity is related

to the correlation expression,

< [J,J(t)]> = <JJ(t)> - <J(t)J> (2.8)

where J - JS = J(0).

Now to obtain the correlation function proper, it must be defined as

an anticommutator, since the product JJ(t) must be symmetrized:

(t) = < [JJ(t)]+> . (2.9)

It is now po'ssible to relate the commutator to the anticommutator with some

transformations involving contour integration for the Fourier transforms. It

is thin possiblt' to express the full (two-sided) Fourier transform of the

correlation anticommutator into the single-sided Fourier transform given by

(2.7). The result is the spectral expression

S C.) = 41(-,T) {[j' (,.)]s + i[&" (Ld)]a} (2.10)

where v and denote either two different (but correlated) currents or

Cartesian current components, 3 = o' + io", and

s a i
[G + ;1, ) =- [o - o ;

CJX I :l ;l ' 1 - v,'j ;Ilv
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further, C(w,T) = (tol2) coth (Mw/2) is the mean energy of a harmonic

oscillator of frequency mode w. Eq. (2.10) is the fluctuation-dissipation

theorem in all its glory.

We have criticized Kubo's derivation in our 1978 paper, since nowhere

was a form for the Hamiltonian H, commensurate with dissipation, introduced!

In particular, the Heisenberg operators do not represent the required approach

to equilibrium. As we indicated in our paper, a partitioning of the Hamiltonian

is essential; i.e., instead of (2.1) we write

H tota= + XV - AF(t) . (2.11)

Here H is the largest Hamiltonian that can be diagonalized for the many-body

system, e.g., an electron-phonon system; XV represents the interactions which

randomize the energy over the states of H0 . In the Van Hove limit ()O,t

large, X2t finite) and large system limit, such randomization leads to irrever-

sibility (The Poincare cycle becomes "off limits" for observation in such a

system). In our second paper on linear response theory we indicated that (2.2)

now is carried over in an irreversible master equation, which for the reduced

p R(i.e., after the Van Hove limit) now reads

-t* + G% d + i,°) R(t) = F(t) [times a functional of p(t) and A]. (2.12)

Here Ad is the master operator

L.K = - E iy> < ,1r f <V >-<yIKIY> (2.13)

where {l,>) is the set of many-body states of 11° , t is the interaction

Liouville operator C K = W-[1IK] and U. is the transition probability

according to the golden rule, V, ' (2 < I I > I'

Equation (2.12) can be used sinilarly to (2-1) to obtain the transport co-

efficients (3, v, and others, to 1)v exprs,,ed in correlation functions involving
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the reduced operators jR(t)J(O), where now = exp[- (Ad + i ° ) t ]J (0 ) .

The main problem with (2.12) is that the r.h.s. has so far only been evaluated

for a near-thermal equilibrium state. For a driven equilibrium, the Hamil-

tonian (2.11) should be further partitioned:

H tota H + XV - AF - Af(t) - Fa(t) . (2.14)

Here AF would be the steady driven equilibrium coupling to the sustaining

field F , and f(t) would be a small time-dependent field perturbation. Could0

Equation (2.12) be reformulated for this Hamiltonian with only the part

-Af(t) occurring in the r.h.s., then we could obtain a steady-state fluctuation-

dissipation theorem. Such a program has not yet been carried out. One state-

ment can be easily deduced from such a theory, however. We note that in the

above the two Hamiltonians XV and AF are on an equal footing. The noise due

to both is a function of the small signal transport coefficient caused by f(t).

Since traditionally NV causes thermal dissipative noise and AF causes current

or shot noise, it is clear, then, that in a generalized nonequilibrium fluctuation-

dissipation theorem we will no longer be able to separate "thermal" and "shot

noise"; both will be contained in the new fluctuation-dissipation theorem. This

is born out by the theory due to Gupta, reviewed below.

3. pta's thermodynamic result

Since F is the driving parameter which is fixed, typically a large d.c.

field, the entropy will contain intensive variahles. as foreseen by Gibbs

(1902), a fact overlooked by Callen in his well-known monograph (1962). Thus,

properly the entropy is a Massieu-type Legendre transform of Callen's entropy.

From (2.14) we arrive at a Gibbs entropy production

TdS = dC- Ad F (3.1)

where TdS represents the dissipation caused by XV. This form satisfies

Gupta's thermodynamic theory. His basic assumptions are noted in his 1082
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paper. The most important are:

a) The entropy depends, besides on on another variable F, which

can pass through the port of the system and which is fixed.

b) The system is purely resistive, so no energy is stored in AdF. We

should therefore be able to write A as a function of the instantaneous values

of F: A = CI <F> + C 2 <F 2 > , etc.

c) The system has no quantum correction. This is, in our case, born

out by the use of the A operator.

For the present case of electrical conduction, A can again be inter-

preted as (,2/q)J = IL/q where I is the current and F = qE = Vq/L. Thus

AdF = IV. Gupta's theorem for the noise now reads

S FF() = 4kT P / a - (3.2)

or

SV(.0) = 4kT P / i_ (3.3)

where P is the excess power dissipation caused by the presence of aex

periodic zero average small signal a (or i) superimposed on the driven

steady state. For a nonlinear resistor with V = V(I)

= (V + d + I dV i? (I + i) - V IPex 0 di+ 2 dl.' 0 0 0

dV 1 1 CV
-i d12 I =~ (3 4

where the overhead bar means time averaging. Clearly, from (3.3) and (3.4)

dV + _II'V
SVV(4) = I + I 1 (3.5)

Similarly, one finds

S() = S (,,)(di/dV):- 4kTdl Idd(3/d)IId VV 2 dV - (3.6)
0o
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Define now

1 rd 2l / df (3.7)

L d JI

Then (3.6) reads

SII(w) = 4kT [g(I T) - 1ITI (3.8)

where we replaced Io by the more useful symbol IT (for total average

current).

Application: Schottky barrier diodes or p-n junctions at low fre-

quencies (no energy storage in extra term). Then

(eqV/kT (3.9)

g(I = (dI/dV)i = (q/kT)(I T + 
1i) (3.10)

SI T = (q/2kT)l
T T

Thus (3.8) reads

SII(w) = 2q [ (IT + 1I ) + II , (3.11)

indicating shot noise of forward and reverse current. Clearly, this com-

prises the thermal noise, for at zero bias

S11 ()IV=O = 4ql I = 4kTgV=0 . (3.12)

As we noted before, no distinction can be made between thermal noise "proper"

and shot noise.

W Whereas Gupta's theory is highly specialized, it has opened the way

to show that steady state dissipation fluctuation theorems do exist, contrary

to previous pessimistic claims (for a survey see van Kampen 1965). Gupta's

result (3.6) or (3.8) is not a trivial result. Others have tried to generalize

I
K-
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the fluctuation-dissipation-theorem on more heuristic grounds. Van der Ziel

(1973) considered the following possibilities for Nyquist's theorem in non-

linear devices:

a) <v 2 (f)> = 4kT B(V/I): <i 2 (f)> = 4kT B(V/I) ly(f)1 2
n n

b) <i 2 (f)> = 4kT B(I/V); <v 2 (f)> = 4kT B(I/V) / ly(f)12
n n

c) <v 2 (f)> = 4kT B(dV/dI); <i 2 (f)> - 4kT B(dV/dI)[y(f)1 2

n n

d) <i' (f)> = 4kT B(dI/dV); <v 2 (f)> = 4kT B(dl/dV) / ly(f) I'
n n

e) none of the above

In view of Gupta's result, possibility e) is the answer to this multiple choice

question, even though it can be shown that some devices satisfy some of the

other possibilities (which then must be equivalent to (3.6) or (3.8)).

Part B. The generalized nonequilibrium second moment relaxation theorem

(generalized g-r theorem, generalized Einstein relation, or A-theorem)

4. The mesoscopic Markov process

In statistical mechanics the variables are the microscopic variables

P and qi or their quantum operators. In stochastic processes we deal, however,

with much more coarse-grained variables, which are averages over large ranges

of quantum states, even though the fluctuations in these variables cannot be

seen until after suitable amplification. Brownian motion and fluctuations in

carrier populations (conduction band, traps) are typical examples. We call

these variables mesoscopic (tern of van Kampen 1962). Thev can be pictured in

"a-space" (Do (;root and lazur, 1962).

From the microscopic master equation, see (2.12), one can derive a

mesoscopic master equation. The equation roads

DP(at =f d-aa"Pft[p(, a;)Q" - P(a,tla')Qa,,] (4.1)

~t ~ "a a



- 73-

where Qa, is the transition probability per unit time for a change a" -*a.

Assuming that a is a set of variables on (0,-), one can Laplace transform the

master equation, and one easily finds for the characteristic function (Van Vliet

1983)

-s-a(t) -s-a(t) i)" n
>'= <e () s:Fn (4.2)
a n=l n~ n=~

where F is the nth order Fokker-Planck tensor
n

F (a") =f(a- al)nQ d S a = <a(At) -a">n,,/t . (4.3)n Jf - - a

Differentiating now repeatedly with respect to s, and setting s 0, one finds

the moment equations. The first moment equation is the phenomenological equa-

tion

-3 <&a(t)>a, = -N<Aa(t)>a (4.4)
at a

(sub a' means a conditional average in an ensemble with a(O) = a' fixed);

M is the phenomenological relaxation matrix; it is defined by

M (ai " )Q a" , (4.5)Mij al _ _ a ll a ll= a

where a 7 <a>, the unconditional stationary average. By differentiating-o

twice to s, setting s = 0 and letting t-=, one finds from (4.2) the generalized

nonequilibrium second moment relaxation theorem:

< aa > + M<AaA5> = B(a° ) (4.6)

where B is the second order Fokker Planck moment; M is the transpose, Aa is

a column matrix and A5 a row matrix.

The theorem was first derived for igeneration-recombination noise in multi-

level semiconductors or photoconductors (note that the theorem holds out of

equilibrium as in a photoconductor!); in this case a represents the various
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populations of carriers, a = {nln 2 ... n s}. The theorem was called the

generalized g-r theorem (Van Vliet-Blok 1956a). For three-dimensional Brownian

motion the theorem takes a special form (M.C. Wang and Uhlenbeck 1943). The

phenomenological equation for this type is dv/dt = -av. Thus M B. The second-

order Fokker-Planck moment is easily found to be B = 2D 2I, where I is the

unit tensor, D is the diffusivity. Further, < AvAir> = (kT/m)I. Thus (4.6)

leads to mD = kT/, which is the Einstein relation for Brownian motion. (For

carrier motion in a simple semiconductor model S = liT, qT/m, so the above

leads to qD = pkT.) For this reason some authors (Lax 1960) have called (4.6)

the generalized Einstein relation. When dealing with transport processes,

<AaA5> is to be replaced by the covariance kernel <Aa(r)Ai(r')> and the

corresponding theorem has been called the A-theorem (Van Vliet 1971). To us,

at present, the name "generalized nonequilibrium second moment relaxation

theorem" seems most appropriate.

We now state the equilibrium properties 2)- 6) mentioned in the intro-

duction.

a) Mlicroscopic reversibility W y, = WYy follows from the golden rule

in quantum mechanics. The mesoscopic transition probabilities will be denoted

by Q aa. Let now X(a) da be the number of quantum states 1y> when a varies

between a and a + da. We then clearly have, since (a) da,

X(a")Qa,,a = x(a)Qaa,, . (4.7)

This is the principle of mesoscopic reversibility. In the microcanonical or

canonical equilibrium ensemble the probability W(a)da is proportional to the

number of accessible quantum states in da, ioe., X(a)da. Thus (4.7) leads to

the property of "mesoscopic reversibility"

W(a')Q,, = W(a)Q,, (4.8)

.... . aa"
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b) The above leads to detailed balance (Van Vliet 1964). Consider

that a labels the occupancy of a set of quantum levels, i.e., let a = m, n,

or k, which represent discrete population vectors. In particular, we consider

transitions k-+ m such that

{kl... ki, k k s} + {mI ... i, m ... ms} ={k ... k i + 1, k.-1, ks}.

(4.9)

Let pij be the transition rate from levels Ci to levels C. (governed by mass

action laws or similar rates). Then

Qkm = Pj(k) ; Qm= Pi(M) . (4.10)

Eq. (4.8) reads in this notation

W(k)Qkm = W(m)Qmk * (4.11)

We sum this result over all m. Then from (4.9) and (4.10)

... " W(k)p i (k1)E E -j
k. k.

=0 i=0 j=l s=o

= Z Z... W(m) p(m) (4.12)

ml=0 mi= 1 m j=0 ms=0

or also

;<Pji(k)> = <p (M)>. (4.13)

JThe variables k and m are dummy variables; thus (4.13) simply says

<p..> = <p..> . This is detailed balance for the rates between any two
ji ii

sets of quantum states in the system.

c) From Bayes' theorem one easily shows that (4.8) leads to the

symmetry of the pair correlation function for small intervals At

W 2(a,,t; a",0) = W,O' ,t; a,0) (4.14)

I2ll I -I- -
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With the linearized phenomenological equation this leads to

<a(At)=(0) > <aa> - M A<aAa>At (4.15)

and

<a(O)=(3t)> <aa> - <aAa>MAt . (4.16)

When in (4.14) we multiply by aB" and sum over both variables, we easily see

that the Z.h. sides of Eqs. (4.15) and (4.16) are equal. Thus, in thermal

equilibrium the r.h. sides of (4.15) and (4.16) must also be equal, which is

the svmmetrization postulate of the "generalized second moment relaxation

theorem"; in (4.6) both sides are now equal

< > = > . (4.17)

This property gives a tremendous simplification for thermal equilibrium

processes; for now (4.6) can at once be solved

1 a (4.18)

or

<M-13f> = B(a o )  (4.19)

Since (4.18) is for Brownian motion, nothing but the Einstein relation between

mobility and diffusivity, it is clear that some authors (Lax) refer to the

full theorem (4.6) as the nonequilibrium generalized Einstein relation. Well,

whatever the name of Eq. (4.6), we do note that (4.6) is a genuine nonequilibrium

result, while (4.18) or (4.19) is an equilibrium result. Thus, the properties

<: , - - (4 .20a)

delineate clearly between equilibrhim and nonequilibrium behavior.

We still mention the anaLog for transport processes (Van Vliet 1971).

Suppose we have a stochastic variable depending on a (vector) parameter y,

r
I.
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Swhich is continuous in D(--,-) s  The stochastic process a(y,t) is then in-

finite dimensional, though we assume it to be still Markovian. The Langevin

equation is of the matrix operator form

a(y,t)
+ A a(y,t) = !(y,t) , 

(4.21)3t Y~

where A is some (matrix) integral or differential operator describing the

transport process. Let the covariance matrix kernel be

F(y,y') = <Aa(y)Aa(y') > . (4.22)

The analog of the matrix theorem (4.6) is now the A-theorem

t r I
A F(y,y') + F(y,y')A, = 1--(v') (4.23)

tr

where A acts from the right on F. This theorem was proven using Hilbert-

space methods by the author. Notice that S, is the white spectral density of

the Langevin sources. Again, when both terms on the u.h.s. of the .,-theorem

(4.23) are unequal, we deal with a true nonequilibrium state.

In the next two sections we give both a matrix and a transport example

of a true nonequilibrium situation, which, moreover, has been experimentally

verified.

5. Optical pumping in a noneguilibrium steady state

In 1964 we considered a model of a photoconductor in which free electron

hole pairs were created by optical absorption, whereas all of the recombination

was occurring via intermediate states, see Figure 1.

I I2= £n(I- i)tZP31) 23 = 2 Figure I

6 and P- are capture constants. Clearlyv, there is no detailed balance, so we
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have a genuine nonequilibrium state. The M matrix follows from the linearized

mass action type kinetic equations for dAn/dt and dAi/dt (Ap = Ai + An is a

dependent variable). One obtains

M1 =( ), MIl2 = -6n

M21 =-61 + 6io + Kio, M22 = 6no + Kno + 2 Kio (5.1)

For the B-matrix one finds, likewise,

B 11 26no(I-i )

B =B2 = -6no (-i) (5.2)

B72 = 26n (1-i ) .

Moreover, in the steady state one has

CtZ = 6n (I-i ) = v-i (n +i ) (5.3)0 0 0 0 0

One can now solve the nonequilibrium moment relation (4.6), expressing i into0

n via (5.3). Since (4.6) is homogeneous in 6/K, the relative variance

<An 2 >In can be computed as a function of cZ(=) for various values of the0

ratio y = K/6. The results are given in Figure 2 below.

'0

C.5

Fig. 4. The relative variance < \n">/n vs.
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The pecularity of this model is that <An 2 >/n may attain values >> 1, as
0

are indeed experimentally observed in cadmium sulfide. For a thermal equili-

brium situation, oa the contrary, we always have <An2 >/n <1, according to
0-

ermi-Dirac statistics. Thus, the model of this section represents a true non-

equilibrium situation, in which familiar concepts like Fermi-Dirac statistics

are entirely eclipsed.

6. Brillouin scattering as an example of fluctuations

about a hydrodynamic nonequilibrium state

Tremblay et al. (1980) considered fluctuations in hydrodynamic modes A(k)

governed by a Langevin matrix equation

DA(k,t)
+ M(k).A(k) -(k,t) (6.1)Dt -

Notice that M(k) is the A operator of the last part of Section 4. This is an

example of our transport formalism for infinite dimensional stochastic processes

(y-k) as considered in detail in our 1971 paper. For the Langevin forces

correlation we write as usual

1

< :(k,t)(k',t')>= -S- S (k,k')6(t- t') =D(kk')6(t- t'). (6.2)

Solving from the Langevin equation for the spectrum, one finds

S\(k,k',.) = 2[M(k) + iLi (k,k') + 2r(k,k')[M(k) - iWlI . (6.3)

In a nonequilibrium state V can be eliminated by pre- and post-multiplying with

the resolvent; hence

[M(k) + iJIS (k,k',,4[.(k) - iIl = 2r(kk')(k)

'1 + 2M(k)r(k,k') = 2D(k,k') (6.4)

where we used the Fill nonequilibriun second moment relaxation theorem (4.23).

Inverting (6.3) we have

S (k,k',,) = 2[M(k) + iiu] D(k,k')[M(k) - il]- I  (6.5)

=A+
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(For comparison with Tremblay et al., notice our S(k,k',w) is their 2)_ (k,k')

with x =Ilx !J; our Eq. (6.5) is their Eq. (7).)

We now come to their specific model. They consider a fluid with a

fluctuating stress tensor, in a small temperature g-adient. The linearized

hydrodynamic equations for such a fluid are

ap(k,) = - c-v (6.6)

k-v
t -i(k2/p)p- [( +4n/3)/p]k 2 (k-v) + (i/o)k.S.k (6.7)

where p is the pressure, p is the density, c is the sound velocity, the bulk

and n the shear viscosity. There is no Langevin force associated with (6.6), but

there is with (6.7), see their Eq. (9). Equations (6.6) and (6.7), taken to-

gether as a column matrix equation, are of the form (6.1), though the details

are quite complex. One can thus solve for S (k',k",j). They obtain
pp ~

c' 2T(k' -k '')[ 2n(k '.k'I) ? + ( - 2ni3)k'.2 k"2 ]

S (k',k",w) = k ' ? )  
(6.8)

PP c 2k' + i;.jD k (i c k" 2 
- D k"')

where D.E ( + 4n/3 )/o. Due to the temperature gradient contained in T = Tr),

the two Brillouin light-scattering peaks obtain an asymmetrical height. One

finds a difference spectrum 6S () for the peaks located at 1,1 = ck, seePP

Tremblay et al., Eq. (14). The experimental values observed are in agreement

with the theory, thus once more confirming the basic nonequilibrium result (4.6)

or (4.23).
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Figure 40. Log ai) vs. log (1 + amtRc) for 6AU6WC (RCA) at 100 Hz
a (Mt)
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