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. o aq £, Taphpioal Informa :
This report is divEdd@f3M¥ WG main parts: Experimental Work (B) and
Theoretical Work (C).

In the experimental part we first report the noise in gold metal films,

1.2

The noise above 150°K (close to the Debye temperature) is of the form 1/f s

and requires probably a vacancy diffusion model or other specific models as in
the work of Dutta and Horn, Below 150°K the noise is 1/f, with a maximum near
80K, and then a continued decrease. If the N in Hooge's formula is reinterpreted
as the number of electrons within 2 kT from the Fermi surface, rather than the
total number of valence electrons, then the noise can well be understood in terms
of quantum 1/f noise, involving Umklapp processes.
. . + - + . . . .
The noise in GaAs n n n mesas of submicron dimensions is very low. The
-7 . .. . .
Hooge parameter is of order 10 ', indicating that collisions are nearly absent.
+ - + . . :
In l.1ly, n n n structures intervalley electron transfer is noticeable. An
. : . . + - +
attempt to measure the associated intervalley noise is being made. The n p n
have a lot of noise associated with the prepunch-through current., This is
attributed to recombination of injected electrons via empty acceptors, since in
the unexcited specimen there are no holes due to electron spillover. At very
high currents (1- 10 amps) requiring pulsed noise measurements, ballistic behavior
with low noise takes over again, and the behavior becomes similar to that in
+ - +

nnn structures.

In an entirely different experiment we observed for the first time a 1/f
noise component in radioactive x-particle decay from 241 Americium. This noise
was deduced from counting statistics using the Allan variance theoren,

Partition 1/f noise in pentodes was measured by eliminating the cathode
1/f noise with feedback., Van der Ziel gave an expression which modifies Handel's

theory for this type of noise. The observed noise seems to be in good argument

with Handel's modified theory.
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In the theoretical sections some further remarks were made on the inter-
pretation of Hooge's formula for metals, Further, we calculated quantitatively
the mobility-fluctuation noise associated with impurity scattering for silicon
and for gold.

It is found to be extremely low, in accordance with the experi-

mental observations that impurity scattering gives little or no noise. Computa-

tions for acoustic phonon scattering, involving both Normal and Umklapp processes,
are being carried out, Further, a survey is presented of the particular features

of nonequilibrium, stationary Markovian noise processes.
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INTRODUCTION

In our previous annual report (June 1982) we mentioned six types of
theories, to explain 1/f noise, that have survived. Of these, we can now omit
the category "transport noise theories,”" a specific example of which is tem-
perature fluctuation (or heat-diffusion) noise. The measurements of J. Kilmer,
performed this year under the contract, have definitively shown that the noise
in electrically isolated, but thermally closely connected, metal films is
uncorrelated over the entire range 300K~ 10K. Other transport theories had
already been discarded earlier due to the work of Mehta and Van Vliet (Physica
Status Solidi (b) 106, 11, 198l), So far, no mathematical transport model has
yielded a 1/f spectrum over many decades, and the physical evidence for the
occurrence of transport noise as a basis of 1/f noise is entirely lacking.

Secondly, in the June 1982 report we mentioned the model based on phonon-
distributed lifetimes, proposed by Jindal and van der Ziel. So far, however,
there has not been any evidence for this model either, while the occurrence of
very long phonon lifetimes remains very enigmatic. So, also ruling out this
theory, four types of theory remain:

1. The universal theories;

2. The van der Ziel-Bernamont-du Pré-McWhorter theories, involving
a T_a(a = 1) distribution of time constants;

3. Specific noise model theories;

4, The mobility-fluctuation bulk model, based on quantum 1/f noise
(Handel, Ngai, Widom, et al.).

The "universal theories" usually seek some mathematical general model,
which explains the absence of time scaling (lack of characteristic time constants)
in 1/f noise. For example, Montroll and Schlesinger have explained that a log-
normal distribution in leading order distributes a random variable x according

to x-l (Proc, Natl, Acad. Sciences USA 79, 3380-3383, 1982). Recently, Marzec




and Spiegel offered another interesting mathematical example. They showed that
a distribution of tunable oscillators, having an action J on the system, and

subject to the constraints

-] -]

f P (w)dw = 1, f P(I|wyds = 1,
(s

o

maximizes the informational entropy

S = -ff P, 2P, (J,0)dJ du
(o] o]

if Pl(m) = N/w, where N is the number of oscillators (note submitted to Nature,
1983). They proceed to give examples of the occurrence of such systems of
oscillators in physical systems. We believe at present that such universal
theories should not be dismissed, in particular, since the other possibilities
have also their limitations.

The van der Ziel- .,... -McWhorter theories still are viable for a number
of cases. 1In these theories there is necessarily always a lower frequency

wp = l/rl and an upper limit w, = l/T2 outside which the 1/f law does not hold,

2
Thus, these theories are not scale-free. In some cases conclusive evidence for
this mechanism has been found. Thus, Hanafi and van der Ziel found that the lower
limit Wy could be varied by sputtering off layers of cadmium mercury telluride
crystals, We note that the noise in this case stems from the surface, as in
McWhorter's original experiments, and is not a bulk effect. We do not know of

any physical evidence of the time-constant distribution model in cases where the

noise is clearly a bulk effect,

The "specific noise models" certainly apply in certain cases. Kilmer

found that the noise in gold films, above 150K, has a 1/fl’2 spectrum; the i
noise rises sharply with increasing temperature up to a certain maximum, as had
also been observed for other metals by the Chicago group (Dutta, Horn, and

others). They suggested a model involving vacancy migration for this temperature




range, Likely, some effect of this nature is responsible for the noise. Th-'re
are, of course, a host of other "specific noise model" theories, such as the
recombination model by Min (Solid State Electronics, 1979) and the Island model
of Pellegrini (Phys. Rev,, 1981). However, there is not, in our opinion, any
evidence for the validity of these models. And if examples for the occurrence of
such theories are found, then still, most 1/f noise cannot be explained by these
models,

The quantum theory of 1/f noise as advanced by Handel in 1975, and worked
out in more detail in 1980 (Phys. Rev. A22, 745, 1980), remains the most general
theory to explain 1/f noise. However, the noise calculated from Handel's theory
is extremely low., Thus, indeed, this theory explains at most the "flicker floor"
occurring in physical systems. For many phenomena, the observed noise exceeds
Handel's theoretical results by orders of magnitude, In this report we present
evidence that Handel's theory may explain 1/f noise in radioactive decay, in
metal films below the Debye temperature, and it can explain partition noise in
pentodes. We note, however, that Handel's work still receives much skepticism
by many investigators. It has to be admitted that a number of points, in par-
ticular the coherence of various events, responsible for the 1/N dependence in
Hooge's law, is not well understood in Handel's theories. This makes a quantita-
tive comparison with observed data very difficult, as we will see in this report
for the radiocactive decay noise and for the 1/f partition noise in pentodes.

In summary, it appears to us that the explanation of 1/f noise is narrowed
down to four types of possible theories. The time-constant distribution theory
is likely only applicable to surface~generated noise. The specific models have,
no doubt, validity for certain types of noise, in particular when the spectrum

is not exactly 1/f, but, e.g., l/f0'7- l/fl'3

. Thus, the remaining noise
theories of promise are the "universal theories" and the "quantum theories" of

1/f noise which involve infrared divergencies due to nonlinear coupling of the

system with the wave field,
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A point which also needs further investigation is the fact that order
of magnitude variations can occur for macroscopically identical systems. This
was abundantly illustrated at the Montpellier International Conference (1983)
for the noise in metal films, both by Fleetwood and Giordano, and by our own
findings due to Kilmer et al. Why seemingly "identical" systems can have dif-

ferent magnitude of noise (a factor 3-~10) is at present an enigma,

EXPERIMENTAL WORK

Much experimental work was presented at the Seventh International
Symposium on the Noise in Physical Systems and Third International Conference
on 1/f Noise, held in Montpellier, France, May 17 - 20, Where appropriate, we

reproduce the contributions of this conference,




I. 1/f NOISE IN METAL FILMS OF SUBMICRON DIMENSIONS

Jo Kilmer, C.M. Van Vliet, G. Bosman and A. van der Ziel

Department of Electrical Engineering
University of Florida, Gainesville, FL 32611, USA

Photonic quantum l/f noise has been identified in Au metal films below the Debye

temperature. The low values of the Hooge parameter predicted by Handel's theory

(i.e.y 00 = 1078 to 1078) are arrived at by realizing that only the fraction
3kT/25 ¢ Fof the total number of carriers are available for scattering at a given

temperature.

In recent years considerable progress has been
made in the understanding of 1/f noise. It is
now well established that in many cases there
is fundamental 1/f novise caused by mobility
fluctuations, in particular by fluctuations in
the scattering cross section of scattering of
electrons by phonons.[1][2]

The only general theory of 1/f noise which ecan
explain such fluctuations was uiven by Handel
in 1975.[3][4]. However, until recently experi-
mental evidence verifving the theory did not
exist. Specifically, Handel's quantum 1/€
noise theorv was questioned as the source ot
1/f noise in clectronic circuits because of the
low value of the Hooge parameter, ay, caleula-
ted from his theory. Brietly, the theorv states
that the interference between the part of the
carrier's wave function wihiich sutffers losses
due to an inelastic or "bremsstrahlung' scate
tering under the emission otf infraquanta and
the part of the wave function which does not
suffer losses produces very low energy bedts
which translate themselves (L€ =hf) as 1/f
noise. Handel's theory predicts that scatter-
ing involving Umklapp processes (U-processes)
provides the largest source of 1/f noise in
metals since the photon infraquanta coupling
constant, aA, is given by{4]

=k (1

T | e

ro
w

2A =

L5

where a is the fine structure comstant (137)-1,
perhaps modified by the dielectric constant in
the metal, ¢ is the velocity of light in the
metal, and p/f = K is the change in wave vec-
tor. Since the U-process gives the largest 1k,
we expect them to be the largest contributor to
1/f noise in metals. Thourh the divlectric
constant of metals is not well known. and nay
be complex, one ecdasily sees that the correcs
tions in « and ¢ cancel, so that we can turther
take the free space values.

”
Gold thin-film resistors (2,000 A thick) were
prepared for us by Dr. E. Wolf and R.A. Bubirman
of the tational Research and Resource Facilitw
for Submicron sStructures at Cornell Universicoe.

fhe length of the resistors is close to 800 um,
and we have measured the 1/f noise in 1 um-width
samples. These dimensions give a resistance of
a few hundred ohms and the noise spectrum can be
readily medsured, after amplification, by an

HP 3582 Spectrum Analyzer. By incorporating a
calibrated noise source, the absolute magnitude
of the resistor's current noise spectrum, Sty
can be directly calculated by simply comparing
the relative specira of device on, device off,
and calibration source onj it can be shown that
the amplificr's parameters cancel out. The gold
films were mounted to the cold head of a CTI
Crvopenics Model 21 liquid He closed-cvele re-
frizerator capable of maintaining a stable ten-
perature (i.e., £0.1K over the duration of a
low-t requency noise measurement) anvwhere be-
tween 300K and 3K,

The results of the experiment cive current shec-
tra proportional to 1/f° between 1 and 100 Hz.
Below 1 Hz we have crvostat noise, and dbove

100 Hz we have device noise competing with the
amplifier's noise and thermal noise. The slope
shows v = 1.2 from 300 K to about the Debye tem-
perature (9p = 165K for cold) in agrecment with
Fleetwood and Giordano.[5] Below the Debve tem-
perature the slope evens off to y=~ 1, indicat~
ing a more "pury”" 1/f noise present at the lower
temperatures. Next, we characterize the magni-
tude of the 1/f noise by calculating the dimen-
sionless Hooge parameter, uy, according to the
formula

SI(f) a

— 5 &)

o

“

where N is the total number ot available elec-
trons in the metal; for those spectra where

was # 1, we took t = 10 hz, In Figure | we have
used N o= nV owhere we set n = 107 em” oand Vs
the sample volume (300 pm-1 uax 0.2 .n).

Ficure | shows an interesting dependence of the
aaenitude ot y below the Debve temperature
corresponding to the occurrence ot the nore

"aure™ 17 norse.
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Figure 1. QH as a function of temperature

We believe, however, that (2) is not a proper
characterizaticn of noise in metals. As was
pointel out by Van Vliet and Zijlstra,{6} the
basi. formula for the mobility fluctuations for
th. scattering of a single carrier is

S ()
By “true
— T Ti *
u.c
i
where we subscripted the «-value as 2 To

true’
obtain the fluctuations in the band mobilitv,

or tor that matter of the current [, we must

sum over the scattering fluctuations of all car-
riers in the band.[7][8] For a nondegencrate
semiconductor this provides a factor 1/N in the
denominator, see (2). In metals, however, most
of the carriers are "frozen” in the Fermi sca,

a fact also noted by Dutta and Horn in their
review paper.[9] Theretfore. as we pointed out
elsewitere, in connection with thermal noise from
metals and the Einstein relation,[lO] the result
of the summation must be multipricd by

<ENT D> /<§J>,. where the subscript "' refers
to the ygrand canonical ensemble. {10, sec. 3]
From statistical acchanics the above factor is

kTa(log N)/3€ ¢ where & | is the Fermi energy.
Explicitly, we have

kT3 (log N) _ F (£ - ED/xT) “
dey Fo l (& - EQ/KT)

where £ . is the bottom of the conduction band,
and ¥ is the Fermi integral of order k. For
total degeneracy, F(n) = nftl/r(k+2). Thus
the ratio (4) becomes 24 £ p/3kT with

4€p = &.- £.. Consequently, eq. (3) followed
by the pruper statistical summation leads to

SI(f) Q"true ne F cltrue

1% N 3kT fN*

(5)

indicating that the number of carriers available
for scattering is N = N(3kT/28& ). This is
also intuitively obvious: the Fermi function
differs only appreciably from 1 or 0 in a slice
of order kT. That such a reduction in noise
must occur in metals was perhaps first pointed
out in a classic paper by Brillouin{ll] on the
first noise observations in metals, by
Bernamont.[12] Comparing now (5) with (3) we
find that the "true" Hooge parameter is related
to the observed Hooge parameter ay by

] __3KT
frrue T 23w (6)

With 28 = 5.5 eV,[13] the values of trrue
were computed to yield the data of Fig. 2,
As is noted, we now obtain u-values low enough
to become in the ballpark expected from the
quantum theory of 1/f noise. In the latter

theorv, the Y rue of eq. (3) is just twice the

infrared exponent, i.e.,

= 2
Ytrue Zad. 22

With ip/m = 2vpsin /2, where v; is the Fermi
velocity (1.39x 103 cm/sec) and » is the scat-
tering angle (&= 150° for U-processes), we ob-
tain from (1) 23A = 2.4x 10" . This value is
approximate since N is not exactly known and
since more correctly we must take into account
the detailed geometry of the Fermi surface, be-
ing a sphere with eight "necks" (see Ziman{li]).
However, this value comes close to the observed
value of (Jtruc)max in Fig. 2, being 4.9+ 10" .
Qualitativelv, we beliveve that the cbserved
data of Fig. 2 cuan be well understoocd. \bove
the Debve temperature ns Fegion €, some non-
fundamental 1/f' noise occurs, similar to the
"tvpe B noise observed bv Dutta and forn.[9)
Below  p we have tor the first time a clear
indication of the occurrence of quantum 1/f
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avise, CU-processes dominate in the region 8,
In the region A, U-processes freeze cut and

normal phonon processes (N-processes) take over,

Finally, in a4 region D (not vet cbserved),
icnteed impurity scattering mav give rise to a
floor at very low temperdtures.

A quantitative theorv has not vet been fully
developed, However, with U-processes dominatg=-
ing the noise,and N-processes and tonized im=
purity scattering dominating the resistance,
one expects the temaperature dependence to be or

e torm
- YJT
Coa
t * , 3
true SRR

where Lo in the Umrlapp toaperature,

S, oin owhien G4 1s the transverse
velecatyo o sound dn aold, g soltomann's
cnstant o and o Lo DDoNoR vertar aasod1ated
St The aenton b the Nedios eelween el facent
JeTMEoSdr e 500 the extended Sone scbames De

cmputed 1 egd v o wn e

u, = 1.2x107 em/sec. This vields Jy = 57.6K.

The observed maximum in the noise occurs at
about nQ K, Though manv details need fuller
consideration, we belicve that the observed
noise can be reasonably well explained bv the
proposed processes,  Development of a full
theory and detarled 17 noise measurements in
metals mav vive much insisht into the nature of
the phonon processes underpone by the Fermi
surtace electrons,

We finally note that another type of confirma-
tion of the theorv of quantum 1/f noise was
recently provided by :-particle decay statis-
tics. [153]
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Measurements on the 0.5 um and 2 um width gold thin film samples

H

Also, to get a more complete picture, the same noise measurements as a

are presently being performed and a similar a, vs. T plot is observed.

function of temperature will be performed on other metal films with different
Debye temperatures. Presently, masks are being prepared to evaporate aluminum
on a silicon oxide substrate in a 5 um x 1000 um x 20008 thin film resistor
configuration here at University of Florida's microelectronics laboratory.
Producing films of less than 5 um width will be aimed for, since we desire a
greater resistance from the thin film resistor samples. Aluminum is not ideal
since its eD is 428K and the resistor must be placed in an oven to probe the
noise near the Debye temperature.

After perfection of the aluminum evaporation, palladium (8_ = 274K) ,

D
silver (BD = 225K), chromium, and indium which can be evaporated will be used
to produce resistors in the same thin film configuration, and noise measure-
ments will be performed.
Hopefully, we will be able to produce platinum films (GD = 240K) in
our microelectronics lab when we get the new ion-beam sputtering equipment.
Finally, provisions have been made to make noise measurements on samples

in the 8K to 2K ambient temperature range by directly submerging the sample

in a liquid helium cryostat and reducing the vapor pressure by pumping.
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Abstract  Direct-current (d ¢ 3 charactenstics and notse measurements 1n the range 1 Hz-25kH/ are
reported for 2 nn° and n - pn - near-ballisuc devices, with # regrons (p regons) of 0.4 um (0.45 um),
fabncated by molecular beam epitaxy at Cornell The n *nn - mesa structures show very low 1 f noise,
indicating a Hooge parameter x,, = 6.0 x 10" This very low noise is attnbuted to the near absence of
phonon colhisions. The thermal ( — like) noise above 1 kHz 1s equal to Nyquist noise at the lowest currents,
nising to shghtly above Nyquist noise for high currents, indicating the presence of carrier drag effects. The
n*pn° nowse. on the contrary. s quite ligh. It seems to be associated with the ambipolar effects occurring
for low mjection of clectrons in the p region. The importance of noise measurements for confirming

ballistic or near-ballisti: behavior 1s discussed.

1. INTRODUCTION
Submicron gallium arsenide structures are of great
current interest. since they permit ballistic or near-
ballistic electron flow. which in turn leads to carner
velocities that far exceed the saturation veloaty in

collision-dominated conduction, thus enabling the de-

sign of picosecond switching devices and other novel
applications. The fabnication of submicron devices
has been made possible by modern MBE technigues,
electron lithography. etc. For GaAs near-balhstic be-
havior requires that the distance to be traveled by the
injected electrons is less than or of the order of 0.7 um.
Eastman et al. report{i] that the mean free path for
phonon emission into optical polar modes at room
temperature is 0.1 um for electrons of 0.05eV. and
0.2 um for electrons of 0.3 eV. Phonon absorption has
a longer mean free path and can be neglected for the
devices reported here, having thicknesses of 0.4 ym
(thickness of n laver in n " nn * devices) and 0.45 um
tthickness of p laver 1in n " pn * devices). At higher
electron energy ntervalley scattering becomes 1m-
portant. thus kmiting the near-ballistic range to about
0.5 ¢V of electron energy. In a sample of 0.4 ym thick-
ness about two phonon emissions may occur. These
involve, however. small ungle deflections only (5-10 )
and have httle effect on the d.c. carner charactenstics.
according to Ref [1].

The theory for “pure” ballistic behavior (no col-
hisons sutfered whatsoever) was developed by Shur
and Eastman n 197910 a basic paper on this topic[2].
They solve Poisson's equation, allowing for space
charge of both fived sonized donors (or acceptors) and
mjected carriers Employving boundary  conditions
which neglect the imital thermal energy of the elec-
trons snsected from the n * into the n layer (or p layer
alier punch-through), they find the solid state analog

of Child’s law in vacuum tubes. For sufficiently small
voltages there i1s a domain in which the current / goes
as 1'% when the injected space charge exceeds the
fixed charge due to the ionized donors or acceptors,
the characteristic changes. however. to the famihar
I''7 form. In Ref.[1] measurements are presented
which fairly well support these predictions. providing
the nonparabolcity of the bands and the onset of
intervalley scattering at higher voltages are taken into
account. In a later theory, Shur{3] and Shur and
Eastman(4] extended the theory to that for “near-
ballistic™ devices, in which few collisions can occur.
Since the Boltzmann equation would be inappropnate
for that regime, the collisions are taken into account
by adding momentum and energy “'drag terms™ to the
otherwise ballistic equations of motion. In this way.
the transition from Child’s law (1 — x . where t is the
collision time) to the Mott and Gurney law, / x §"*
(finite 1) is covered by this approach.

Two modifications have been proposed by others.
which may have a bearing on the present paper. First,
Rosenberg er af [S] discuss the effects of “spillover™ of
carriers at the # * n high-low junction. This means, in
essence. that the boundary conditions must be
changed to account for the depletion of n * regions
and spillover into the adjacent Debve lengths. As a
result. the etfective width of the n region 1s smaller and
the current is higher than that computed in Ref. [2].
Secondly, Cook and JetTrev [6] have indicated that the
energy or veloaity distribution of the electrons cannot
be neglected. The veloaity dispersion 1s accounted for
by the introduction of an electron temperature gra-
dient termin the momentum balance equation (op cu
eqn (8)). Though they argue that this leads to the
occurrence of a potential minimum somewhere be-
yond the “cathode —rather than at the cathode—
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suntbar to Langmuir's treatment of vacuum diodes. we
have great reservauons about their treatment. A more
stratghtforward and correct approach was very re-
cently presented by Holden and Debney (7], 1n a paper
bused on adeas from the well-known vacuum diode
discusston of Fry [8]. Their results indicate that no
ted power law can be stated. For 0.8 4 samples the
hinuting slope s found to be [ 14 For the noise charac-
téristics the incluston of the velocity dispersion s es-
sential, in particular for the migh-frequency thermal-
like vetoaty -luctuation nose.

In this paper very aceurate
frequency and igh-frequency noise measurements on
near-balhstic devices. Such measurements serve a
threetold purpose First. from a pracacal point of view
nose data reveal the practical performance hmitations
of the novel hugh-speed desices. As we will indicate
the nose of the nn " nn e devices s extremely low: the
n o pn o devices, howeser, fare much worse. Secondiy,
none measurements at audio and  subaudio fre-
quencies shed much light on the 1 f ncise problem.
According to most recent theories, such noise is
thought to be caused by mobihty fluctuations (see. e.g.
Hooge eral [9]and vander Ziel[10]). If collisions in the
near-balhstic regime are rare. one expects the | fnoise
to be very low and ultimately, in “pure” ballistic
devices, to be absent. Our work on n *nan * devices
indwcates that this could be correct. Third, and not
teast. we helieve that the high-frequency noise (ther-
mal. veloctty-fluctuation, or diffusion noise) will shed
much light on the mode of operation of near-ballistic
devices. To date. no full-fledged theory for suc’.  ise
eaists: we only have some prehiminary computations
by van der Ziel and Bosman{il. 12). However. once
this noise 1s understood. we will have a powerful
means of substantiating or amending the varous
theories on near-ballistic behavior.

we desenihe low-

2. EXPERIMFNTAL

The near-ballistic diode (NBD) 18 a sandwiched
mesa structure of five hghtly doped p or » layers,
alternating with heavily doped n - lavers, see Frg. 1
The doping densities of the vanous regions are
107 em 7 for the n° regions, approx 2 = 107em !
for the 7 regions and approx. 10°em ' for the p
regtons The diameter of the mesas 18 100 um The
were manutactured by molecular beam epr-
taxy at the Cornell University Submicron Research
Faciity. The mesas were provided with very low
ohmic Au Ge contacts. A low frequency equivalent
arcutt of the n*nn * device 1s given in Fig. 2. The
main element (1 regions) has a resistance of 0.75Q.
To infer the correct noise of the device, the vaiues of
the parasitic resistances in Fig. 2 have been taken into
account. For the n* pn* devices the p layer gave a
resistance of order 90Q at | mA; the parasitic re-
sistances tn this case were neghgible

The charactensties of the two tvpes of devices are
quite ditferent. The noise measurement of the »
NBD's, in particular. was a challenge. To do this we
used the setup shown in Fig. 3 A Hewiett Packard

devices
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Frg. 1 P-type near-ballisic mesa structure; the n-type
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Fig 2 Egquvalent arcut of o an - structure, showing

parasitic elements The contacts O and ® reter to the top
contacts 3 on kg 1L contact (O reters to B and contact
® o GND of B L

CHANNEL A

WP 3502a
SPECTRUM
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CHANNEL 8

Fig 3 Correlation measurement setup. “DUT™ i« device
under test and LNA denotes the two hinear amplitiers of the
measurement channels




- 11 -

Nowse in near-ballistic gallium diodes LR

3882 apectrum analyzer. featuring a dual-channel fast-
Founer transform method. was emploved. By mea-
suning the coherence (square of the correlationy he-
. tween the two channels. noise levels significantly
> below the noise level of the preamphtier could be
detected. For the preamphitiers we used five common
o - enutter transitors GES2an parallel. This resulted in a
7 €2 noise resistance for frequenctes above 20 Hz. The
R equivalent noise resistance of the cross-correlation
setup was found to be as low 4s 0.2 Q. thus enabling us
to accurately measure the thermal noise of the very

. low ohmuc n “nn * devices.
R The d.c. I 1" charactenstic of an n-type device is
R shown in Fig. 4. For the higher voltage fow dutyv-cycle
| pulsed measurements were made. The highest voltage
I over each laver 1y about 0.2 ¥, well below the occur-
!’ ’f rence of intervalley scattering. We notice that within
: ‘ the experimental errors. the charactenstic 1s entirely
: linear. in agreement with the theoretical curves given
| e e e e . wm Ref [T (see their Fig, 20 L = 0.5 u sample with,
: ¢! ! ¢ 17<0.3v. In accord with their conclusions. we note
that near-balhstic behavior cannot usually be deduced
from just a measurement of the /-1 charactenstic.
Frg. 4 1V charactenisue n “nn - device. The resistance value deduced from Fig. 4 1s 0.75Q.
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Alternating current (a.c.) impedance measurements
between | Hz and | kHz showed a flat response and
confirmed this resistance value. These results are
similar to the latest results reported by Hollis er al.{13].

The d.c. 7-} charactenstic of a p-type device is
shown in Fig. S, The device is linear up to a current
level of | mA, corresponding to about R, =90 Q. The
slope then increases to a value of about 3 in the 10-
100 mA range. Finally, at very high currents the slope
becomes fess. perhaps approaching three-halves as the
slope falls off. The a.c. resistances are again flat for all
measured frequencies (up to 100 kHz).

3. NOISE OF n*an* DEVICE

The magnitude of the noise current spectrum for
four different currents. in the frequency range
1 Hz-25kHz. 1s shown in Fig. 6. Thermal levels and
excess | f noise are seen. To determine the thermal
(-like) netse levels, the | fcomponents are subtracted.
The results are shown in Fig. 7. The levels are
averaged over the frequencies for which there is a
plateau (1-25kHz: the 7S mA curve may. however.
show some g-r noise from 1-7 kHz; the thermal-like
noise occurs for 7 kHz and higher). The ratio of these
averages 0 4 AT 0.75 15 plotted versus bias current in

.20
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lsama 2811629
Darma 23 216%° S; (&V6) 1kHr - 25KME
.19 T ma 20 1 152°
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. .
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Fig 7 Thermal (-hke) notse for n * nn * dewvice.
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Fig. 8. We note that there 1s an indication that the
notse exceeds the true thermal noise 4AT R, at the
higher bias currents.

The 1 / slope of the noise for the higher current
levels is clearly seen. and straight-line approximations
are made to the data. The values so obtained at 10 hz
are plotted versus bias current in Fig. 9. We note that
the expected behavior for 1/ noise. S,x I, is well
satisfied.

4. NOISE OF n"pn* DEVICE

The notse current spectrum versus frequency for
several bias currents of an n " p n° device is shown
in Fig. 10. The excess low-frequency noise of this
device is orders of magnitude larger than for the
n-type device. Another notable feature is the fre-
quency dependence. which shows a slope of £ °7 to
/ °% Extrapolating to the corner frequency above
which thermal noise dominates gives a value of over
100 MHz for even the lowest (100 u4) bias current.

The dependence of the noise current on bias cur-
rent at 100 Hz is displayed in Fig. 11. There is an /[
dependence up to ahout | mA. At higher currents the
noise increases less fast and probably goes through a
maximum.

£ DISCUSSION OF a*an* RESULTS
() 1/ noise

In 1969 Hooge developed the following empirical
formula for |/ nowse:

SN P =1y (N, (5.1

where 1 1s the frequency. N the total number of

carriers in the sample contributing to the noise. and
2, is Hooge's parameter. Imually, x,, was thought to
be a constant, of order 2 x 10 . Later on. it was
found that material vanations for x, do occur,
whereas in addition x,, decreases as {u p,) if impunty
scattering dominates over lattice scattering (u,):
Bosman et al [14] also found that x, decreases due

iO—is + @
2 8
-— dH— 6X10
3
5 0
( 4
N3 - SLOPE 2
—t -
wy
Fb
1620 ettt
10 100
ImaA)

Fig. 9. 1 f noise of n*an* diode vs current at f/ = 10 H:.
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Fig 10 Nowe spectra for n*pn ° device.
to carrier heating. In a nonhomogeneous sample in
e . which the carnier density 1s a function of powtion,
/ n(1). such as occurs 1n our mesas due to spillover
S . {Section 1) and mjection. egn (5.1) must be moditied.
/ ~ It s easily shown (van der Ziel and van Viiet[1 5] that
. .
P o in that case (5.1) 1s to be replaced by
. fdx
SN 1" =tay HI_'m)“ —_ (8.2)
— . ! Jonty)
~ «.\""*NSLCPE 2 where m s the number of » layers in series, L the
'3N ' width of one n Juyer. and {4 the cross section. This
v ' formula 15 correct. whether or not the motion of the
i . . .
' N carriers 1s halhsuc. Whereas the detanled profile n(x)
// 1x complex due to spallover and carrier flow. we may
‘ e assume that for most of the laver n(x) = 1.5, where
8- / n, 1s the doping denistv[16]. With this esimate we
/ obtan for 1, from Fig. 19, 2, =6« 10 * This 1s
considerably lower than the value of x,, for bulk
3 . A ‘_ GaAs, which Hooge er @l [17) hst as 6 x 10 * Thus
r * I I - - - | . .
52 o | 0 100 the measurements of this paper confirm that col-

T{mA)

Fig 11 Notwse of n°pn® device vs current at 100 Hz.

listons are mainly absent in this device. Moreoverf
Handel's theory of 1 f noise is vabd]IS] very low
noise can be expected from those colhsions which still
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occur. mmoelvng polar phonon ennssion. As we
noticed. the detlection angle 0 for such processes is
very small, whereas in Handel's theory of quantum
1 f nowse the magnitude goes as sin® 0. Measurements
on 0.24 um devices are underway. Very recent data
by J. Andrian er al. [19) indicate that for these devices
1y shows 4 continued decrease. So far, these results
are the best contirmation yet that 1 £ noise 1s caused
by lattice phonon collisions.

by Thermual noise

The destgnation “thermal noise™ is used here for
the thermal-hke noise observed at high frequencies.
In a collision-imited device this noise 1s due to the
ditfTusion-noise source, which by Einstein’s refation
transforms to a thermal-noise source for cold elec-
trons. [n the space-charge limited injection operation
{Mott Gurney law ), the noise becomes then 8 kT R,
[see Ref. 12]. In a pure ballistic device. on the other
hand. this noise is due to shot noise. However, the
vacuum case shows that the noise is distinctly
governed by the velocity distribution of the emitted
particles. Thus, a treatment as the Child’s law analog
of Ref. 2 will not suffice to obtain the noise: the latter
must be patterned after Langmuir's derivation of the
d.c. characteristic; see in particular the noise treat-
ment by D. O. North{20] and Schottky and
Spenke{21). Lacking a detailed theory, van der Ziel
and Bosman{l1] indicated. nevertheless. that sub-
thermal noise, 44 77 R with ¢ < 1. cun be expected.
This 1s not corroborated by the results of Fig. 8.
While it is very unlikely that the collision-himited case
apphes -in view of the low 1/ nowse reported
above - it s hikely that carrier drag effects. such as
considered in Refs. [3. 4. 6). take place. These
effects should be incorporated by considering 4 Lan-
gevin equation patterned after the momentum and
energy halance equations of Shur and Eastman{3. 4].
but with velocity dispersion as in the theory of
Holden and Debney[7].

The development of a complete noise theory for
ballistic and near-ballistic devices is being planned:
such i theory may aid considerably in predicting the
mode of operation thalhstic. near-ballistic, non-
ballistic) trom the measured high-frequency noise.

6. DISCUSSION OF 2 pn* RESULTS

These devices showed large excess noise. The noise
15 not sery close to [ 7 If. nevertheless. we apply
Hooge's formula, at 10 Hz and 100 4 A, we obtain
X =310

For 172 200mV, the / | characteristic of Fig. §
1 n reasonable agreement with the theoretical pre-
dictions and previousty reported results[1]. The cur-
rent below the punch-through voltage (= 150 mV) is
not well understood. 1t s significant to note that the
character of the nowse, i particular its spectral shape.
does not chiange when we pass the punch-through
voltage, see Fig 10; only. above the punch-thr -:gh
volture the nose magmitude starts to decline, going
no doneer as 1, osee Fig 11 We sull remark that

stmuilar-type spectra. going slower than 1 £ were
observed 1n 6 um p “np  punch-through diodes by
van de Roer{22}]

van der Ziel[23] has suggested an explanation for
the n*pn ' d.c. charactenistics, as well as the noise
spectra. He interprets the low-frequency noise as a
form of Hooge type 1/ noise. with a high 2,. He
notes that there s a large spillover of electrons into
the p region where they recombine with the holes.
Though there are relatively few holes. they control
the transport properties ambipolarly. Hence there are
many collisions in the p region and the noise is high.
At larger forward bias, the hole recombination in the
p region becomes so low that it can no longer control
the electron transport. Thus. the number of collisions
decreases and the current becomes more ballistic; as
a consequence the (/, }7) charactenistic curves upward
and the noise decreases.

The validity of this explanation could be checked
if noise measurements were made on p "np ' and
ppp* devices. In the p “pp ° devices one expects a
near-linear (/. }') charactenistic and high noise; this
noise should rise with /°, and not go through a
maximum. The p “np * devices should show ambi-
polar transport governed by electrons. The transport
should then be largely ballistic at low bias. At higher
bias, the electrons would cease to act as ambipolar
agents, causing the transport to become nonballistic:
the (7. 1) characteristic would go slower than linear
and the noise would rise strongly. 1.e.. much faster
than /°. Noise measurementsonp "pp* and p “np *
devices are in the planning stage.

CONCLUSIONS

Near-ballistic # “nn " devices exhibit extremely
low 1 f noise. with a Hooge parameter of 6.0 x 10 %
This indicates that the | fnoise is probably caused by
lattice scattering, due to polar optical phonon emis-
sion, which is rare in the near-ballistic regime. The
thermal noise of these devices is slightly higher than
Nyquist noise for the highest current levels observed.
It indicates a near-ballistic origin, affected by carner
drag effects and by the velocity dispersion of the
mjected carners.

Near-ballisic n - pn* devices exhibit very large
low-frequency noise. The initial current and the noise
mayv be caused by ambipolar control of the holes 1n
the p region. The noise rises initialiy as /°, then goes
through a maximum. and then decreases, due to the
ballistic regime overtaking the nitial current regime.
Thermal noise for these devices. requinng mea-
surements above 100 MHz, have not yet been carned
out.

Similar measurements on n “an * diodes are being
reported by Peczalski er ol [24].
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Since the appearance of the above article, much more work has been done
< s . . . + - + ,
on near-ballistic devices, in particular on n p n devices (see below) and on
+ - + . . . . - .
n nn devices with different widths for the n layers (see the next section).
+ - + . e s .
The n'p n device characteristic was measured at different temperatures,
see Fig., 1 of Sec, E. Thereis stilla linear I~V region at low bias, then there is
a superlinear region, while at high bias the different temperature curves con-

verge, We believe that the latter asymptote represents the true ballistic

range. The results appear even clearer if we represent the data in a plot of
DC conductance I/V versus the bias voltage V. This is shown in Figure 2. We
now see clearly that there is an initial low conductance, which depends on the
temperature {though below 77K the data seem to coincide); then there is a
transition region, followed by a final temperature-independent ballistic range.
The noise spectra could initially only be measured in the low conductance
region, The results for 300K are shown in Fig., 3 and the results for 77K are

shown in Fig. 4., We note that the slopes change with temperature. The 300K
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spectra are of the form 1/f -1/f£7°", while the 77K spectra are close to the
form 1/f.

The low bias current has puzzled many investigators, see the original
papers by Eastman et al, (e.g., M.S. Shur and L.F. Eastman, Electronic Letters
16, 522, 1980). The expected characteristic is as in the dotted line in Fig. 1.
The bias of 100 mV (20 mV per layer since the mesa contains five devices in
series) is the "punch-through" voltage. The current for lower biases--which
should not be there according to the pure ballistic theory--is called the pre-~
punch through current, Supported by the noise data, we believe that this
current is recombination current, not unlike that in p-n junction depletion
layers, as in the standard theory of Noyce, Shockley, and Sah, First of all,
we note that for zero bias and for very low bias the p region is depleted of
holes, due to spill-over of electrons from the n+ regions, as was calculated
quantitatively by van der Ziel and Shur., Thus the acceptor sites are all empty,
the electrons being transferred to the valence band. At sufficiently forward
bias, the electrons that are injected will be captured by the acceptors, and
eventually by the valence band., Consequently, there is recombination current
flowing, until all acceptors are filled (those before and beyond the potential
minimum), This process is apparently accompanied by a very large amount of
recombination noise, with distributed time constants, resulting in l/fz, <1,
noise, For low temperatures o increases since the shorter time constants then
become less prevalent. This noise is therefore, in our opinion, not "true
1/f noise" but a form of g~r noise. This is also born out by the fact that
the DC conductance in the prebreakdown region is temperature dependent, Above
the "punch-through' voltage (all acceptors now occupied, n:>Na) the ballistic
current appears. The DC conductance limit of Fig, 2 represents a conductance

i ; + - + ,
which is approximately a factor three lower than in the n n n samples., This

is due to the deeper space charge minimum of the former device, Note that the
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space charge is q(n-ND) in the n-layer while it is (n+—NA) in the p 1layer.
Bosman has made quantitative computer calculations, based on the Fry-Langmuir
theory, similar to those by Holden and Debney (preceding paper, Ref. 7). He
found the computed DC ballistic conductance limit to be in excellent agreement
. + - + ) + - + )
with the measurements, both for the n'n n device and for the n p n device.

A paper on these data and computations is in preparation.

III. Further measurements in GaAs structures

a) 0,24u, 0.5, and 1,1y devices. Jean Andrian

1, Low-frequency measurements and I-V characteristic of

n+n—n+ diodes with different lengths

We have made systematic noise measurements on n+n_n+ GaAs structures
for various temperatures (77K and 300K) and various bias currents. These
measurements are shown in Figs. 5, 6, 7, 8 and 9. 1In order to compare the
magnitudes, we also plotted (SI/IZ)x f, which corresponds to a/N in Hooge's model
of 1/f noise, as a function of the bias current. This is shown in Figs, 10, 11
and 12. Next we plotted this quantity as a function of the length's device.

The results are shown in Fig. 13. As we note, the noise of the 0,27y device is
higher than that of the 0,4u device. This is presently not understood, since
the 0.27u device is the nearest to collisionless, ballistic behavior.

Besides noise measurement, we have measured the I-V characteristics of
these devices. These are shown in Figs. 14 and 15.

The 0.4y device is linear, as was observed by Schmidt et al.; see pre-
ceding section. In the 1.1 um we observed a change of conductance at higher
bias (= 0.7 volt)., This phenomenon does not occur in the .4 um device for the
same applied field. We believe that the .4 um device operates in the near-
ballistic mode, while the 1.1 um one is a bulk device, This change of con=-
ductance is probably due to intervalley transfer, i.e,, the electrons go from

a valley with low effective mass to a valley with a higher effective mass.




We should be able to detect tlie noise due to this intervalley scatter-
ing. This would be a very interesting phenomenon. In order to measure that
noise we set up a noise measurement system which operates in the radio fre-
quency range, With this system we will be able to measure the change of thermal
noise with bias and the intervalley scattering noise in the transition region,

2. K—F noise measurement system

Essentially, we have to measure the thermal noise of a device with a
1@ resistance. We set up the correlation measurement system indicated in
Fig. 16, We made a preliminary test on the linearity of the mixer and the
sensitivity of the system. We plotted the DC meter reading versus the power
input at the power splitter., The results were excellent., The mixer has a wide
range in which it operates linearly; however, we need to have a DC amplifier
with a gain of 1000 (linear) in order to be able to observe the thermal noise
with a bandwidth of 1 MHz, This is done by a single invertor circuit as shown
in Fig. 17, Measurements with this high-frequency noise system, in an attempt

to find the intervalley noise, are in progress.

. -+ . X . .
b) Pulsed noise measurements on n+p n _GaAs devices. Chris Whiteside

1. Pulsed bias noise measurement system

Completion of the pulsed bias noise measurement system has been accom-
plished. This system permits noise measurements on devices at very high bias
levels, The device is pulsed at a low-duty cycle in order to avoid excessive

Joule heating., Figure 18 shows the final pulsed noise measurement system.

b b

2, Results
i Initial experiments using the pulsed system were completed on a near-
| ballistic GaAs diode. This diode had been used in previous experiments. We
wanted to extend the bias current level in order to determine the current noise
in the ballistic range. According to the I-V characteristic of Fig. 1 (see

previous section), it is believed that the device becomes ballistic at high i




current levels., Thus a drop in the current noise must take place. Fig. 19
shows that as the current level is increased, the noise begins to fall off,
This is a plot of SI vs. f. The current through the device was increased up

to one ampere., Device heating was kept low by the low-duty cycle of the
measurement system, Clear plots of the noise as a function of current for

4 MHz and 8 MHz are given in Figs. 20 and 21, Though the decrease of the noise
is very pronounced, we have not been able to reach the ballistic noise limit,
which is estimated to be at 10-'14 at the ordinate scale of Figs. 20 and 21,
This would require current in excess of 10 amperes! Measurements as a function

of temperature are in the planning stage,

¢) Superlattice measurement

We have obtained a three-layer, GaAs—Alea xAs heterostructure device

1-
(from Dr. Morkog) with which noise measurements can be made, Heterostructures

make it possible to measure the effects of a two-dimensional electron gas,

The structure of these devices is shown in Figure 22, with the physical

dimensions of the lavers given in Table 1, The Al mole fraction of 20% causes :
a conduction band discontinuity of 0.21 eV, This bandgap difference between

the GaAs and Al Ga xAs layers forms potential wells. Electrons confined in
X

i-
these potential wells behave like a two-dimensional electron gas.

The current-voltage characteristic of the heterostructure is shown in
Figure 23, Noise measurements were also performed and are shown in Figure 24.
All measurements were performed at 300K. ©Problems involved with cooling the

heterostructure have been solved so that noise spectra as a function of tem-

perature will be measured in the near future.
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Table 1

Device (three-period) #337 #328
GaAs top layer (undoped) 2008 20034
Al Ga, As 250 &18 \ 1000 1218 ;
(Si-doped) ~10" " /cm 107" /em
x = 0,20 x = 0,20
Separation layer ‘
(undoped Al Ga As) 150 & 150
x  1-x
-2 12 12
Sheet electron concentration nS[cm ] 300K {2.8 10 2.67 10
77k |2.24 10%% [1.02 10'?
10Kk [2.24 1012 | 1.88 10%2
2 . - - 3 3
uHall[cm /V sec] 300K 6.65 10 6.09 10
77K 9.3 10* |[7.63 10
10K 2.06 10° |1.64 10°
Contact spacing L 400 um 400 um
Contact width W 40 um 40 Lm
il S
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v, 1/f Fluctuations in Alpha Radioactive

241
Decay from Am*

by

J. Gong, C.M. Van Vliet, W.H. Ellis, and G. Bosman
Dept. of Electrical Engineering and Nuclear Engineering Sciences
University of Florida, Gainesville, FL, 32611

and

P.H. Handel, Department of Physics,
University of Missouri - St., Louis, St. Louis, MO, 63121

Abstract
Counting statistics of alpha particles from Americium~241 were deter-
mined over periods from 1 minute to 1,000 minutes, In particular, the
two-sample variance or Allan variance was determined for many sample runs.
According to a recent theorem, there is a unique relation between the
particle flux spectral noise density and the Allan variance. It was found
that for small counting periods the statistics were Poissonian, correspond-
ing to shot noise of the particle flux. For long periods the counting
statistics were found to be non-Poissonian, and a flicker floor of = 10-7

was established. Good agreement with the quantum theory of 1/f noise was

obtained. These experiments are the first quantitative confirmation of

this theory.

%
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1, Introduction

Whereas most of noise phenomena, like shot noise, thermal noise, and
generation-recombination noise, aré well understood, 1/f noise remains to
some extent an enigma. This noise has been observed in a great variety of
systems: semiconductor devices, music, traffic flow, hourglass flow, the
frequency of sunspots, the light output of quasars, etc. Because of its
universality, some investigators believe that there must be some common
phenomenon operative in all of these manifestationsll]—[é].

One of the general theories of 1/f noise is the quantum theory, based
on infrared divergent coupling of the system to the electromagnetic field or
other elementary excitations. It was mainly developed by Handelll][sl. This
theory is fundamental in the sense that it derives the 1/f spectrum from
basic quantum physics at the level of a single charged particle subject to
scattering with small energetic losses due to bremsstrahlung, although the
final result depends essentially on the presence of many carriers; in this
respect 1/f noise is similar to electron diffraction which is a one-particle
effect, but which can be seen only if many particles are diffracted. In
addition, the theory is universal in the sense that any infraquanta with
infrared-divergent coupling to the current carriers will give a contribution
to the observed 1/f noise proportional to their coupling constant. Such
infraquanta are, for example, very low-frequency photons, various types of
phonons, shallow electron-hole pairs on the Fermi surface of a metal, spin
waves, correlated states, etc.

Recently, this theory has been reformulated with quantum-optical

l6]

terminology and compound-Poisson statistics in a paper written by
Van Vliet and Handel, which led to the idea of verifying the theory on a

"clean" system outside the domain of currents in solids: radioactive a-decay.




In this paper we present data obtained from extensive measurements
on counting techniques for a-particles radioactive decay from 2[‘lAm, which
have shown that the statistics arernon-Poissonian for large counting times
(order 1,000 minutes) in contrast with the fact that many textbooks cite
a-decay as the example 'par excellence" for Poisson statistics. With the help
of the newly devised Allan variance transform theorem[7], we found that this
excess noise does have a 1/f spectrum, and the "flicker floor" due to the
presence of 1/f noise in the decay has a value of 10_7 which is in fair agree-
ment with Handel's quantum 1/f noise theory. This result indicates that 1/f

noise is caused by emission of long wavelength infraquanta, such as soft

photons causing minute inelastic losses in the scattered wave packet.

2. Results of the Theory

2.1. Quantum approach to 1/f noise

It is known that upon scattering a beam of electrons will emit
bremsstrahlung. The power spectrum W(f) of the emitted radiation is indepen-~
dent of frequency (W = constant) at low frequencies and decreases to zero at
an upper frequency limit fm which is approximated by E/h, where E is the
kinetic energy of the electrons; h is Planck's constant, Consequently, the rate

of photon emission per unit frequency interval is N(f) = i.e., propor-

W
ht’
tional to 1/f. Therefore, we conclude that the fraction of electrons
scattered with energy loss ¢ is proportional to 1/e, i.e., the relative
2

squared matrix element for scattering with energy loss ¢ is |bT(e)| «l/e.

If the incoming beam of electrons is described by a wave function
exp [ (i/ﬁ)(ﬁ'?- Et) ], the scattered beam will contain a large nonbremsstrahlung
part of amplitude a, and an incoherent mixture of waves of amplitude abr(a)

with bremsstrahlung energy loss ¢ ranging from some resolution threshold £y to

an upper limit ASE, of the order of the kinetic enerny E of the electrons
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Vp = exp [Lﬁ )(p r Et)] all + f bT(e)e de} . (2.1)
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Here bT(s) = le(c)le has a random phase Yo which implies incoherence of

all bremsstrahlung parts, and ]bT(e))2 is proportional to 1l/e, as we saw
above.

In Eq. (2.1) the frequency-shifted components present in the integral
interfere with the elastic term, yielding beats of frequency e/&. The

particle density given by Eq. (2.1) is

A
ugl? = Ja%]{1+2 f [by(e)] cos |22+ v ) ae
€
[o]
oA
T T
EO CO

the second term in large parentheses describes the particle density beats.
. - . ; . 12 2 2 .
If the particle fluctuation is defined by 89| = |u|° - < [v]“>, its

autocorrelation function will be

2 2 2 2 o 2
<sluly sholy> = <ol ol > - <lvl™>

A A/t
~2/al" f Ib()]” cos (%T—)de = 2]al" f hib(e) |’ cos 27f1 df
o fo (2.3)

which is proportional to !b(c)|” and hence proportional to 1/f. Therefore,
the spectral density of the particle concentration fluctuation (the Fourier
transform of Eq. (2.3)) 1is proportional to L/f.

The relative bremsstrahlung rate :b(:)i" can be derived as follows.

N 2

. . - R :
The constant spectral enersy density can be written as w(f) = «ek]qv( /3¢,
where e is electronic charge, « the dielectric constant of the medium,
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¢ is the velocity of light, and Av is the velocity change in the scattering
process. The relative scattering rate density with energy loss e, ]b(e)lz,

is obtained by dividing W(f) by the energy of a photon ¢ = hf.

42 (Av)2 2 9(a7)2
b(p)|? =2V e ZUHT _ od (2.4)
3 fic 3wkt «f -
3c3k2mhif
o 202
|b(€)l'~= be-(AV)© = %:- (2.5)
3c3xche
where
A n A
A= 287 F . A (2.6)
3TT ’ c ’ .

2 2
e . . e
and a = o 1is the fine structure constant. In the M.K.S. system a =B

where K, is the dielectric constant of vacuum. The spectral density of
the relative fluctuations is from (2.3), (2.5), and the Wiener-Khintchine

theoren,
sl'le(f) 1<ty = 2[l+:u\.,ln(f‘;/co)]—za.t‘\/r:f = 2.A/kf . (2.7)

2.2. The Allan variance transform theorem

The main link between counting statistics and particle current noise

(8]

is provided by MacDonald's theorem .

d 2 1 -1

—_ A = - in . - 2.

ar <AMp> T f Sm(w)w sin uT d. (2.8)
o]

with inversion
N d 2
;) = 2., sin T —= <5 > H 2.
Sm(“) sin .T dT< IT dT (2.9)
o

9
here <Aﬂ{;> is the variance of the total number of particles detected in
a time interval (t, t+T) and Sm( } the noise spectral density of the flux

fluctuations *m(t). This theorem is usetul for Poissonian statistics.

A
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Unfortunately, for 1/f noise Eq. (2.8) is not applicable, since the integral

diverges. However, a useful concept in this case is the '"two sample variance"

(9] . Let m%l)

or "Allan variance" be the average counting rate in (t, t+T)

and méz) the counting rate in (t+T, t+2T). Likewise, let M;l) (l)

(2) _ ( )

the total number counted in (t, t+T) and let MT T be the total number

counted in (t+T, t+2T). Then the Allan variance is defined by

5 2
0:; =-%— <(m§1)-m§2)) > (2.10)
and
21 [y @
OMT =3 <( ) . (2.11)

. A2 , Al .. .
The variance ¢ (which means (5°)”) turns out to be finite for 1/f noise.

[71

The transform theorem reads

"(T) =S j n" (%T-)d.: (2.12)
with inversion
1ys cos &
1 dp 4Tt A2
S (W) = - 3 “— T( f 2.13
m g '/’ Up-l 1_,,p 3 P) A ( )
—jor3

(Slightly more complicated inversion forms using partial Mellin transforms
are found in [7].) For Poissonian shot noise Sm(w) = 2mo, where m is the

average counting rate. Substituting Sm(u) into Eq. (2.12), one has

2 -C
*A"(T) =m T, For 1/f noise, with a spectrum of S (J) = v—r, vhere C is a

c
MT o e

. A2 el . ,
constant, the Allan variance J“T = 2CT &nﬁ. Now suppose that the noise is

composed of shot noise and 1/{ noise, i.c.,

A2 R
(T) = moT + 2CT" in2 (2.1%)

oﬁT
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We recall that ‘<MT>> = moT, so that a measurement of the relative Allan

A2

. - 2 .
var.lance R(T) OMT(T) /<MT> yields,

R(T) = -2 + 2¢'tn2 , (2.15)
m T
o
where C' = —Er is the characteristic strength of the 1/f noise Sm(f)/m; .
o2
o
For short-time intervals the term ELT is dominant, hence R(T) is proportional
o

to 1/T. When T is long enough, the term 2C'in2 becomes dominant. For large T
one cannot further reduce the relative accuracy by longer counting;
R(T_) = 2C'2n2 is therefore called the “"flicker floor".

We conclude from the above that the presence of 1/f noise in counting
statistics can be determined from a measurement of the Allan variance as a

function of T.

3. Experimental Method

3.1. Procedure
The block diagram of the counting system being used to investigate 1/f

fluctuation in the a-particle emission rate is shown in Fig. 25, The source
2

is alAm, which decays with a half-life of T1/2 = 458 years with the emission
of 5.48 (86%), 5.44 (12.7%), and 5.34 (1.32) MeV n-particles into -°/Np. The
detector, a silicon surface-barrier detector, is reverse biased at 80 volts,
and the dead times of the ND575 Analog to Digital Convertor (ADC) and ND66
Multi-Channel Analyzer (MCA) are 60 nsecs and 6 usecs respectively. There-
fore, no dead-time correction is necessary, as long as the counting rate is
kept below 1,000 counts per sccnnd[lol (or the averaged time clapse between
two counts is higher than 1,000 isecs).,

A typical full enerpy spectrum measured in these experiments is given

in Fig. 2o, in semi-logarithnic scale.  The spectrum is shown on a displav

screen while accunulating counts and the final result, after a chosen time T,
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is stored in the histogram memory units of the ND66 MCA. The full width
half maximum (fwhm) of the spectrum can be found by moving the CRT display
cursor across the alpha-peak channel regions, with the cursor display indi-
cating the number of counts within each energy interval (channel). The sys-
tematic range used in these experiments with respect to the 5.48 Mev peak
channel was from six fwhm's below the peak channel to two fwhm's above the
preak, in this manner spanning the three prince peak radiation types. There-
fore, with the range being a function of the detector resolution, the total
number of counts DH, which will be analyzed later, is always a fixed portion
of the full spectrum.

The counts MT of adjacent time intervals can be read directly from the

memory units of the ND66 MCA; thus the Allan variance can be calculated by

N-1
A2 1 1 (1) (i+1))
GM _T(_—N-].) z (MT -MTl H (3.1)
T i=1
since
N
<MT> =_% Z (1) (3.2)

the relative Allan variance, R(T), defined by Eq. (2.15), can be found by
using Eqs. (3,1) and (3,2),

Part of the data, mostly the total number of counts for T longer than
1000 minutes, were not read directly from the ND66 Multichannel Analyzer.

was obtained by adding up

An "add-up" method was adopted; namely, Mié%O

N¢H) 42 (2 (3) (4) .
"OO and 1 00° and 11000 equals the sum of MSOO and M'OO’ etc. Physically,
since M s werce measured in adjacent time intervals, of course the first two

500
can be added up as the total number of counts for the first 1000-minute

(2)

1000° However, in

interval, and the third and fourth can be summed up as M

order to check the validity of this method, the following experiment has been

done.
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By making use of a T-connector, the output signal of the Ortec 410 ampli-
fier was fed simultaneously into two ND575 ADCs (see Fig. 25). The first one
(Abc #1) counted 100-minute measurements for 310 times, and the second one
(ADC #2) accumulated 500-minute counts for 62 times; hence, both ADCs
covered exactly the same time span. The "add-up" method was applied to

M. s, obtained from ADC #1, to find out the calculated M

100 560°°

Table 1 lists the results calculated from both ADCs for 500-minute

measurements., The difference between them, in each category, is £ 1%. This

shows the validity of the "add-up" method.

ADC #1 ADC #2
<b%00> 9062464.36 9067009.84
A2
o, ) 7862171.3 7943285.5
M,
500
-8 -8
R(500) 9.573 10 9.662 10

Table 1. Comparison of the results
obtained from the "add-up" method (ADC #1)
and the real-time measurements (ADC #2).

Because of the existence of "variance of variance" (or "variance noise"),
the relative Allan variance itself is a fluctuating parameter. In order to
obtain an accurate value of R(T), a sufficient number of measurements must be
made, especially when T is short. Figure 27 shows R(T) versus the anumber of
measurements, ¥, for T = 1 min. When N is small, R(T) is spread over a wide
range. When N is increased, R(T) shows less spread and finally converges to
a stable value. he minimum value for N is about 70. Tigure 28 gives a
similar plot for T = 3 min. For a reliable value of R(T), N has to be larger
than 50.

Due to the presence of variance noise, the experimental results of R(T)

contain a fluctuation term 'R, i.e.,
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R (T) = L + 2C'2n2 + AR , (3.3)
exp moT

where the average value < AR> should be zero. The experiment was then

repeated several times, and the average of Rexp(T)’
- l to 9 I/
<Rexp(T)> = moT + 2C'4n2 + <AR> , (3.4)

is obtained. Although the value of <AR> in Eq. (3.4) can hardly be
exactly zero for a finite number of measurements, it should be reduced a
great deal compared with the value of AR for single measurement. The value
of <:Rexp(T)> gives the best estimation to the true value of R(T).

The distance between radioactive source and detector was adjusted
such that very close counting rates were obtained while repeating measurements.
However, it is difficult to obtain identical counting rates. Therefore, the
shot noise term in relative Allan variance, R(T), is slightly different betweeen
each series of measurement. -

Before the average of R Yp(T) is taken, the shot noise term,

e m T’
o

should be normalized to the same counting rate. Here a rate of 18,000 counts

per minute was chosen. The normalized relative Allan variance Rn(T) is then

R (T) = R (T) 1 1 - 1 + 2C'&n2. (3.5)

exp’) T m T * 18,000 T - 18,000 T

The value <(Rn(T)> is now used to estimate the true value of R(T). This
value is calculated as follows:

ZRni(T)XDFi

<Rn(T)> = ‘;DFi (3.6)

where Rni(T) is the value of Rn(T) obtained from the ith series and DFi

stands for the degrees of freedom of that particular value, which equals

the number of measured time intervals minus one.




3.2. Results

Fig. 29 shows the experimental data for <1Rn(T)> . The theoretical

curve (solid line) is based on R(T) = (1/18,000xT) + 1 x lO-7 versus 1/T,
which suggests that the value of 2C'Zn2 is about 1 x 10_7.

Fig. 30 shows the average value of the normalized Allan variance,

<cA“n>, which is obtained by

A2 2
<oMTn> = <R (D> x (18,000 xT)° . (3.7)

The theoretical curve (solid line) is based on oﬁi = 18,000 T + 1 x 10-7 X

(18,000 xT)2. Very good agreement is obtained as shown in these figures.
The value of <:Rn(T)> and 1/18,000 x T (shot noise level) are listed

in Table 2. It shows clearly that at this counting rate, 18,000 counts per

minute, for T longer than 100 nminutes, 1/f noise becomes noticeable. For T

longer than 1000 minutes, 1/f noise totally dominates the noise spectrum.

T(min.) 1 2 5 10 20 50

<R (T)> 537.4 261.0 123.3  55.66 27.86 11.56
1 . - A

15060 T 555.6 2 7.8 111.1 55.56 27.78 11.11

T (min.) 100 200 500 1000 2000 3000

<R (T)> 7.156 3.823 1.799 1.648 1.159 1.816
1 .

— 2,778 111 .555 G277 .1852
18,000 T 5.556 2.773 1.11 0.5556 0.2773 0.185

Table 2. The values of <1ﬂ1(r)> and 1/18,000% T3

all values x 1077,




4, Discussion and Conclusions

4.1, Possible systematic sources of error

Besides the fluctuation of emission cross section described in
Handel's theory, two other possibilities may contribute to the fluctuation
in the total number of counts. First, the pulse height, which is produced
when an g-particle is absorbed by the detector, can be a strong function of
the bias voltage applied to the detector[lll. If the bias voltage were
unstable, changes in the bias voltage could result in changes in the deple-
tion depth, varying the sensitive path length experienced by the a-particle,
and the depletion layer capacitance. Thus, a-particles with the same energy
would have been registered under different energy channels, and would intro-
duce unwanted fluctuations. To minimize such fluctuations, the detector
control unit selected for use in these experiments, Ortec Model 210, has
quite good stability: bias voltage variation with the line voltage is
< #0.005% for 105- 125V AC input, and the stability is iO.OlZ[lZ]. Also, the
use of a charge-sensitive preamplifier (Ortec Model 109) diminished the
svstem's sensitivity to changes on detector capacitance. Secondly, since
a fixed portion of the full spectrum is counted, whether particles with
energies near boundaries fall within or without the region ther bounded con-
tributes fluctuations to the total number of counts. However, basing the
range of spectrum integration on multiples of the fwhm reduces variation due

to peak spreading and gain shift,

Therefore, a wider cnercy range should have less fluctuations in the
total number of counts in a certain time period. This is indeed the case,
see Table 3. However, for T = 100 minutes, the difference between R(T)s for
wider range and narrower range is nepliasible. For T = 500 minutes, the dif-
ference is 4%, but the value of < RH(WOO) > is 627 higher than the shot noise

level (see Table 2). For T = 3000 minutes, the difference is 117, and the
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i
k.
i_ value of <:Rn(3000)> is ten times the value for the shot noise level. Hence
the energy range chosen in these experiments affected very little the final
3
1 rezults.
T Ch. 127-147 Ch. 112-157
i (Peak Channel: 142, FWHM: 2.5 channels)
3
4 100 min. <:Mloo> 1812492.94 1828630.89
]
A2
Iy 2430286.7 2472416.52
[ 100
' _ ~7 -7
1 R(100) 7.398 x 10 7.394 x 10
F 500 min.  <Mooo> 9067009.8 9147489.02
A2 -
} \ 7943285.5 7762255.74
4 500
- -8 -8
R(500) 9.662x10 9.277 x 10
1
3000 min. <ZM300> 54398712.1 54881014.1
A2
\ 698293362 634854514
3000
) -7 -7
R(3000) 2.360 x 10 2,108 x 10

Table 3. Comparison of experimental results for
narrover energy range (peak channel - FWHI x 6 to
peak channel + FWHM x 2) and wider energy range

(peak channel - FWHM x 12 to peak channel + FWHM x 6.

s B Bln bt s -

4.2, Comparison with the theorv of quantum 1/f noise

. a——————

According to Handel's theory, the constant C' in the 1/f noise term in

: the relative Allan variance is, cf Eq. (2.7),
c' = 8./« (4.1)

where - is a coherence factor: for w—particles it is expected to be close




.y
to one; o is the fine structure constant 1/137, and A = 2(Av)2/3mc? where

(5]

-
Av is the velocity change of the particles in the emission process ’

¢ is the velocity of light. For a~particles one finds

ol _ 3308 x 1077 « £
K K

where E is energy in MeV and k is the dielectric constant of the radio-
active material.
In these experiments E = 5.48 MeV, so that the value of 2C'in2 (the

value of the flicker floor, F) is

-7 ,
P e g 33:28 10K X 548 b o o5 x 107 L (4.3)

To the authors' knowledge, nobodv has every measured the dielectric
constant of Am02, the u-particle source used in these experiments; thus the
value of « in Eq. (4.3) is unknown, However, since the atomic structure
of AmO2 is similar to that for U02, the dielectric constant of UQ

0.4 +1.513) 21,7 20,5114 4nd 21,0 £1 (1O

2

can then be used as a refer-
eace.

If one considers the following factors that 1) the resulting aA in
Eq. (4.2) is the sum of contributions for all types of infraquanta partici- E
pating in the energy transfer, and mavbe only part of them were detected,
i.e., the actual value for aA in these experiments may be smaller than that
given in Eq. (4.2); 2) the coherence factor, 7, is zlways less than unity;
3) the dieclectric constant of AmO2 may be larger than 21: then the measured
value of F = 1 « lO—7 is in the right ballpark to verifyv Handel's theory.
In particular, for - = 0.05, « = 25, one obtains F = 1.01 « 10—7, in accord
with the observed value of Figs, 29 und 30. We believe, therecfore, that
these experiments constitute the first experimental verification of Handel's

quantum L/{ noise theory.
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In conclusion, a-particle decay has statistics which for large counting

intervals (::103 min) are non-Poissconian., We established the presence of a

flicker floor R(Tm) =1,0 x 10-7. In the frequency domain, this indicates the

presence of 1/f noise in the particle flux for frequencies of the order of

10—4 hz or less. The magnitude of the flicker floor can well be explained as

electromagnetic quantum 1/f noise, providing ¢ = 0.05 can be explained.

(Later note: We presently think the factor K = 25 does not belong in

the formula. Thus, in reality, the theoretical noise is a factor 500 too high.

See our NB at the end of Section V of this report (page 51).)
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V. Partition 1/f noise in pentodes. C.J. Hsieh and A. van der Ziel

It is well known that pentodes show partition noise, in addition to space-

charge suppressed shot noise. 1t is less known that a pentode also shows par-
tition 1/f noise. The effect was first observed by Schwantes and van der Ziel,
Physica 26, 1143 and 1157 (1960). This partition noise can be isolated by a
feedback procedure that reduces the regular flicker noise with a large resistor
Rc in the cathode. The then remaining noise is partition 1/f noise. This
noise was remeasured in an attempt to compare it with Handel's theory.

a) Quantum picture of flicker noise

According to Handel's theory[10], there is a quantum approach 1/f noise.
There should be a quantum 1/f noise part (vI°) present in partition noise in-
volving charged current carriers. The carriers also have infrared divergent

coupling to infraquanta. The spectral density of the relative fluctuations is

<(m)’>f |, aA 1)
<n>" £

The infraquanta we are going to consider here are photons, with
- b o)
V., -V, .. . -

2a final initial

3w c

A =

>
where o = 1/137 is the fine structure constant and Veinal is the velocity of

-S>
a carrier at the end of the process; v is the velocity before the

initial
process,

In the case of a pentode, three grids are present, but the screen grid
is the only one carrving a positive potential. Then, the three independent

noise sources present in a pentode include the partition noise Sp(f), the anode

noise Sa(f)’ and grid noise Sg. The spectral density are given by




e

TS T

PR N P

. —

- 38 -

oLAca 2
= 2 2
S, = T2l +2— (r2r)
aAc 5
S = r22eI + 2 —& (I21)
g g f g
ad 5

S = (1-T2)2I +2—8 [(1-1)1 .
D ( ) g F [( ) g]

Here we have denoted by I the space charge noise suppression factor and

»
]

1.224 % 107 (u_-u)
ca a Cc

-5
Acg 1.224 *x 10 (ug-uc)

A, = 1.226 1072 u

(3)

(3a)

(3b)

(4b)

where U.s U ug are the potentials of the anode, the cathode, and the screen

grid, while u gives the velocity of the smoothed electrons (fraction l—Tz), when

they arrive at the screen grid. Note that in order to take into account in-

coherence effects properly we have to replace f by Nf in all previous equa-

tions in the denominator. There N is the average number of electrons involved

simultaneously in the process considered (e.g., transition from the cathode to

the grid in the nonsmoothed way for GACg/Nf). From the current generator

defined above, we can ecasily obtain the spectral density of noises,

S_ (F) Sa(f) + sp(f)

w
—~
[N
~
i}

Sg(f) Sg(f) + Sp(f)

S; (D) =50 +5 (D) .

For the partition noise Handel presents the expression

211A
= -——& - T d B
Sp(f) F (1 c) Ig

(5)

(5a)

(5b)

(6)
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where Ag = 1,224 x ].0_5 u and u is the veleocity of the smoothed electrons

(fraction 1~ Tf). For this expression Dr. van der Ziel erxpects instead

20A

=4
Sp(f) =3 IaIg . (7)

The argument is as follows. Consider two pentodes, one with a screen grid

transparency A and one with a screen grid transparency (1-1). Then I; =1

. 2

é and Ié = Ia' The partition noises and the partition flicker noise should be
the same, so SI (f) should not change if Ia and Ig are interchanged, and

Q' Equation (7) accomplishes this., Moreover, all electrons arriving at the

screen grid should distribute and not only the fraction (l-FCZ). One might also

question the factor Ag; ACa is proportional to the anode potential u_s that is

o o o o

to the energy with which the electrons arrive at the anode; ACg is proportional

to the screen grid potential ug. So van der Ziel thinks it would be better to

SUSR

write
! 2\1 v:\ A‘

S (f) = ——=25E8 7171 (8)
‘ P f a’g
i In that case,
i

2x \’A A
ca cg Iy
= ——— - 9
Sla’lg(f) : ri-n 11, (9)

so that the fluctuations in Ia and Ig are fully uncorrelated if the cathode is

saturated (F; = 1). This looks intuitively right,

b) Feedback effect of the cathode resistor

JURUNIE™S N PG

We apply feedback in the cathode lead by inserting Rc, as shown in

Figure 31, Then,

o Al

= - (i o 10
vy ==+ s VIR, (10




T
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Simplifying the above equation, one obtains

-iCRC
v = —S5& (11)
g 1+ gmtRc

so that the noise current of the cathode with feedback is

gmtRc ic

: 0 . .

i'’=1 4g v =1 {l - '—————-~—} = —, (12)
c c mt g c 1 + gmtRc 1+ gmtRc

Now we assume that the ac signals distribute between screen grid and anode

in the same way as ic' In this case

g =g A3 8

ma mt = gmt(I‘ A) . (13)

m2

With feedback resistor RC, then,

iR
TR B + = M . _ Cc C - .1 . .
i =1, gmavg \1C + 1p gma~Ij;—g——§— ch + 1p (14)
mt ¢
So the spectrum of the anode with feedback is
A . — ic
T R \ IS B
i 1 AT+ 17 s 1 —_— (15)
: +
a ¢ p ¢ 1 gmtRc
or
2
SIC“
Sp () = === + 5, (D) (15a)
a (l+gmtRC) p

and we can also write Equation (15) and (15a) in terms of equivalent current,

AT

— eq,

i;” = 2qMf | ———— + qu (15b)
. 2
(L + g R P

so
qu = ,___I_\._.__T + B (lSC)
a (1 + gmtRc)

where A and B are constants. We now define the new pentode transconductance

with feedback
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&

mt 1+ gmtRc
g A
mt
g' - 3 (16a)
ma 1+ gmtRc
ip does not change since it flows from screen grid to anode. From Equa-
tions (12), (14), and (15) we can get
B ,
4KTR' df g2 = 4KTR df + 4KTR df g~ 7
na ma z np ma
(1+¢g R)
mt ¢
since
2 \2
12 _ gmt
ma 2°
(a+ gmtRc)
Dividing Equation (17) by (g%a)z, we find
' = Y !
Rna Rnt + Rnp(l + bmtRc) . (18)

According to Schwantes' results, the values of Rnp/Rnt were always of the
order of 0.1 and gx/gmp was alwavs less than 0,1, so that it is negligible for

most practical puposes.

¢) Feedback effect with correlation between iC and i

Next we consider correlation between ic and ip’ but no feedback. Since

ia = ick + ip’ the spectrum of the anode current is

12 =iV #2701 2+ i (19)
¢ ¢p P

and icip = 2qleq cor, f; so one obtains

i o= 9 n )T a
i _q(Ich. + 2leq cor. \ + Icqp)Af . (19a)

This is without feedback. 1If we consider feedback and correlation, we have

———— — i
A v, —_ ——
e e 2 T iy e — (20)

S 1+ fmeRe
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and we can get the final formula
qu " 2 X
, —_— I
1 112 = 2qaf £ eqcor. _ 4 1 . (20a)

+
2 (l1+g .R) eq
(l+-gmtRc) mt ¢ P

d) Transformer feedback from screen grid to control grid

As mentioned before, partition 1/f noise flows from screen grid to

anode, The partition 1/f noise can be eliminated by connecting a transformer
with proper turn ratio n between screen grid and control grid. The details
are given in C.J. Hsieh's Engineer's thesis. The transformer feedback measure-

ment is shown in Figure 31.

e) Experimental setup and device description

The circuit of the measurement system is shown in Figure 32. The noise
devices are three pentodes, 6AUGWC (RCA), 6AG5 (RCA), and 6CE6 (GE). Since the
pentode is a high-gain amplifier, we have to be careful with the input terminal.
Figure 32 shows the biasing circuit of the device under test, Since the control
grid is very senmsitive to 60 Hz induced at the input, a low-pass filter is used,

i so as to reduce the 60 Hz noise as much as possible. The biasing circuit with

low-pass filter consists of a 45V DC battery, a 100K potentiometer, and a

high-quality paper capacitor (2 WF) to give the correct bias voltage needed,

Similarly, we choose a wire-wound resistor Rc in the cathode lead, in order to
reduce the termal noise as much as possible. Two 70V batteries give the cor-
rect screen grid voltage, Six 70V batteries are used as a plate power supplv.

The anode current I, is monitored by an HP solid-state digital voltmeter.

¢ ettt B b ttn - e -

A 0.1 WF, 250 W,V coupling capacitor is set in between the load resistor Rp

and the Hewlett Packard 3582A spectrum analyzer to prevent the spectrum

o e A

analyzer from damaging by the high-load voltage. The HP 3582A spectrum analyzer

featuring a dual-channel Fast-Fourier Transform is emploved essentially as a

narrow-band, tunable filter,
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Two I~V measurements were done on each pentode. The DC current-
voltage characteristics of the pentode 6AU6GWC (RCA) have the conventional
form,

The whole system is first operated without cathode feedback resistor.
The variable potentiometer (see Figure 32) is set to produce different biasing
voltage and get different anode current. The room temperature noise current
spectrum (less than 25 KHz) for three anode currents is shown in Figure 33
[for 6AUGWC (RCA)].

We next consider the measurement with cathode feedback by inserting
several wire-wound resistors RC as shown in Figure 32. The low-frequency noise
spectra were measured for several resistors (Rc = 300q, 500q, 700Q, 1 K@,
1.5 Kg, 2 KQ, and 3 KQ) up to 3 KQ as shown in Figure 34 for 6AU6WC (RCA). The
magnitude decreases with increasing resistance up to about 3 KR; further in-
creasing of the cathode feedback resistor does not affect the magnitude very
much, but the slope becomes less than 1/f beyond 100 Hz. Figure 35 represents
the same results for the pentode 6CE6 (GE) which has a 8t about 2.6 milimho
aﬁd feedback resistor increasing from 500 Qup to 10 KQ. Table 1 lists the
data obtained for several different cathode feedback resistors. The noise

spectral density is obtained from the result

S
I
0

w
o"o

——, (21)
(1 + gl'TltRC)

Experimental results are compared with theoretical values for the pentode

6AL6WC (RCA) at 100 Hz and 1,000 Hz, and the comparison is given in Table 1
and Table 2, respectivelv, The comparison of the curve of SI/SO versus
RC with the theoretical plots at 100 Hz and 1,000 Hz is shown in Figures 3b

and 37, respectively. Ve note that the two curves almost coincide. Similarly,

the procedure is repeated for another pentode 6CE6 (GE). Experimental results
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are plotted and compared with the theoretical values given in Table 3 and

Table 4 and are shown in Figures 38 and 39. As mentioned previously, we have

2

+5, (£) = 2q0¢ [-——fL-——-7-+ B] (22)
- a (li—gmtRC) P

2
1+ R
(g R)
where A and B are constants. Equation (22) can be rewritten in terms of

equivalent saturated diode current.

. Ieqa = ~—-Ji——~——5 + B, (223a)
© (1+g;, R

E Thus, suppose we plot theoretically 1ogSI versus log (1+-gmtRC), the curve

: a

b is identical to a plot of log (Ieqa) versus log (l-ﬁgmtRc). Therefore, by

3 -— )

3 comparing the experimental curve of log (i;) versus log (1+—gmtRC)‘ and

TE 2 2. . -
log (la/lao) versus log (l%—gmtRc) with the theoretical curves for the pen

tode 6AU6WC (RCA., we get a result shown in Figures 40 and 41, respectively.

According to the experimental data, we can calculate the A and B values as

follows. From Equation (22a) and assuming gmtRc>>]” we have (14-gmtRc)2>>l,
l so that B = leqp and

¢ 2cTeqp = 2 % 1.6 % 10712 x Teqp = 3 x 1072,

hence

21 19

/3.2 x 10777 = 9.6 mA .

B = Ieqp = 3 x 10

As mentioned before,
\2 = : = 2 = = =
A (Ia/IC) (3.4/3.9) 0.76 (1a 3.4 mA, IC 3.9 mA),

From the experimental curve, we can find that B is less than A, So it is

: negligible for most practical calculatioca. So

A = legel = Teqc x 0,76

PP

and

2qleqe * 0.76 = S = 1,224 1071?

(o]




- 47 -

€100°0 $200°0 500°0 €L0°0 20°0 8L0°0 06170 1 saniep
. 1221324094}

220°0 £20°0 t€0°0 §¥0°0 60’0 GZL'o 22079 i sanjep
Juawt4adx]

gp G°9L gp €91 ap Sl gp 2°¢tl ap 9°¢1L P 6 aP v°9 ap 0 uotLjenually
3oeqpasy

gp 60L- 9P 8°80L- 8P §7L0L- gp

/501~ 9P 1'S01- 8P §T10L ap 6°86- 4P §7¢6" Amﬂmv 1Lnsay

oA oL UA §°L oA S

uX € oA §°¢ U 000l s 009 A2eqpasdd Iy
il

sanjeA snordea 38 (39) 9309 403 S

ZW 0OL = § pue “y 10
SNpeA |©I112403Y3 Y3 LM sINLeA |2juauiaadxd JO uosiaedwo) g 3lgel




€L00°0 ¥200°0 €00 £L0°0 20°'0 8L0°0 06L°0 L sanjep

{es13au03yy

i
I 2¢0°0 620°0 820°0 ¥0°0 S0'0 82L°0 0¢°0 L saniep
. Lejuauiaadx]
g v°9l gp 9l 8P 676l ap G°€El ap 8°¢l gp L6 gp 8°9 ar 0 uoLlenually
¥Jegpasy

P L°02L- 9P L°6LL- 8P 2°6ll- gp 2°LLl- 9P G'9Ll- gp 8'¢ll- &P G'OlLL- &P L7E0l- Ammmv 3Lnsay

A 0l OX §°L (). ] UA € UA §°¢ U 0001 U 00§ %Jeqpasj Iy
ON

ZUN | = 4 pue Y 40
SONLeA SNOLJRA 1B (39) 93)9 40j SSN|BA [BIL33403Y3 Y}LM San|BA |ejudwlaadxd jo uosiaedwo) ‘¢ ajqel

e s Bt el cn s A o ol o o liindhes ubendhi iy




s BN Bt s - e

e

- 49 =

19

I = (1.224 x 10'19) / (0.76 x 3.2 x 10°°7) = 503 mA

A=qu>\2=503mA><0.76=381mA.
C

If Equations (22) and (22a) do not fit too well, then we have to con-
sider the possibility of correlation between iC and ip. Results for the occur-
rence of this are found in Hsieh's thesis. See also Figure 42,

Results including transformer feedback are shown in Figure 43.

f) Effect of anode voltage on partition 1/f noise

Now we observe Figure 44; it has feedback but no transformer. We

measure i; at the higher R_at V_ = 133.74V and V_ = 453,6V. In each case

we do ten times and then calculate the average in order to improve the accuracy.

The measurement of SI may be done with a precision of 1.27% or better.
a

Here we measure at Vg = 133.26V, Va = 133.74V, and at Vé = 133.43V,
V; = 453,6V. This hardly changed I (from 5.78 mA to 5.81 mA), but changed
Ia (from 3,97 mA to 4.25 mA) and hence Ig changed from 1.81 mA to 1.554 mA.

As discussed in section a) for the partition noise, Handel! presents the

expression

2YA

S(f) = —f—ﬂ (1-r2)1g~ . (23)

But van der Ziel suggested that the partition noise mav be given as

2\1'\’ Ac Aca -
f aeg

S(f) = (23a)
so that
T ] [ ty? V' tyY
[SE(f)]Va - Aca IHIS - Y IHIQ &I
V V v y -
[Sp(f)]Va Aca IaIg P InIg




Now Voo L3000 = Y s ol ey Lanee U - T ) - .
) O
VP = 17,25V,  ience
\
S' f v' \rl [' L
[ 0( ) a4 _ P nIu - ,350.3) (Ioha - L 00
[Sp(f)]va vp L1 116,50 (L.81 - 3,

= 1.934 x 6,613

= 1.934 < 0,92 = 1,78 .

Experimentally, the noise at V; = 435,6V was about ‘1.7 times as large

as at Va = 133,74, [If we compare theoretical values with our experimental data,

we find very reasonable agreement,
Handel's partition noise theory, as modified, vields

AV )
s, (D) = —5— . (25)
L ;

The high frequencies partition noise theorv gives

LI
N = ) .a.__k.J__S— = N 7 v3;
°r, 7 -9 [1_1 n 1”] BV (23a)
AV ) )
5 = g : Y = “L_ + B(V (26
S sll(z) + SIq(l) < ( a)

where A(Vl) increases with increasing Vq, and B(Va) decreases, Hence

[S[(f)]\" 5 AV )/NE + B(V_ )
- '.1_ - ,d— ac . (264a)
[SI(t)]\dl A(Val)/Nf + B(\al)

At low frequencies the ratio is A(VAZ)/ A(val)’ which is about 1.70, and at
high frequencies it is about B(Vaj) /V(Bal)’ which is about 0,90, In betwceen
there is a point where the ratio is exactlv unity (crossover). So we conclude
that the quantum partition noisc is well verified at low {requencies by the
data, but we cannot verify it well at sufiiciently high frequencies,

As to the absolute magnitude of the 1/ partition noise, we have noticed

already that a factor N is necessary in the denominator of Equation (7), sce
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Equation (25). Van der Ziel indicated that Equation (7), without the factor

is off bv a factor 109. For let

20 2
= L8 A A’ /H
SIp(f) £ AClACZ IaIZ [z 27

where A__ = 1.224 x 107°V_, A )
ca a [

1.224 x 1072

V2, 4 = 1/137 and Ia and I2

are in amperes., Now if Va =V 133.6 volts, Ia =5mA, I, = 2 mA,

2 2

Equation (27) yields

1

S; (£) = (2.4 x 107 O/£ya’/m2 .

P

Experimentally, Hsieh observed

s; () = (4 1079 ya2/m2
P

This yields a ratio of 6 x 108! Thus it is certain that a factor N of
order 0.6 x 109, as in Equation (25), must occur. This N must be the number
of electrons in the system., If I.=7x 10—3A, then Ic/e = 4,4 = 1016

electrons/sec. The transit time is

N rramml -8 - , = ]
Ty T 2d/6 x 10 \/\av =0,48 % 10 ° sec. (Vav =50V, d = 1cm).

8 8

16 g.48 x 1078 = 2 x 10% .

N = (Ic/e)Td = 4,4 x 10

. . . - 8
This comes very close to the experimental value involving the factor 6 = 107,

Thus (25) is the correct result and not (27),

Note: It should be noted that the missing of large factors ¥, as indi-
cated here, is one of the profound problems of Handel's theory. The same
applies, in our opinion, to Handel's theory for emission noise involving radio-
active decay (see Section IV)., There a factor of N & 500 would be required in
order to give a more satisfactory agrecment with experiment. The apparent
coherence properties of scattering particles in Handel's theory is a fact that
has not yet adequately been solved, This remains one of the main obstacles of

Handel's theory.
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THEORETICAL WORK
I. Remarks on quantum 1/f noise in metal films. C.M, Van Vliet
Hooge's formula reads
S;(£)/1% = u/fN . (€))

In nondegenerate semiconductors N is the number of carriers contributing to
the noise in the entire device. For metal films, N has been interpreted as
the number of atoms in the film, multiplied by the valency. On the contrary,
we believe that N is to be the number of electrons near the Fermi surface

(a slice =~ 2kT around the Fermi level), since the other carriers cannot con-
tribute to mobility-fluctuation noise. An intuitive reascning was presented
in Section B-I. A more complete theory based on the Boltzmann transport
equation is being developed., A preliminary letter to the Editor, submitted

to Physica, is included herewith,
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Letter to the Editor

1/f Noise in Mobility Fluctuations and

the Boltzmann Equation

A. van der Ziell), C.M. Van VlietZ),

Dept. of Electrical Eng., U. of Florida, Gainesville, FL, 32611, USA
and

R.J.J. Zijlstra
Natuurkundig Laboratorium Ryksuniversiteit, Utrecht, The Netherlands

and
R. JindalB)
Dept. of Electrical Eng., U. of Minnesota, Minneapolis, MN, 55455, USA

I . ] »
alcainied 1 e o 1062
>4

The 1/f noise in mobility and diffusivity are discussed. The two noise
densities are related due to an instantaneous Einstein relation, valid for
times larger than the collision time. The Boltzmann equation treatment shows
that Hooge's relation for the collective band mobility noise, Su/(§)2==u/fx,
can be justified for a nondegenerate and spatially noncorrelated electron or

ion gas.

1) Permanent address: Dept. of Elec. Eng., U. of Minnesota, Minneapolis,
MN 35455, USA.

2) Permanent address: Centre de Recherches de Mathématiques Appliquées,
Université de Montreal, Montreal, Quebec H3C3J7, Canada.

3) Present address: Bell Laboratories, Murray Hill, N.J. 07479, USA.




2% 4.

- 54 -

1. Introduction

Several recent papers have discussed the result of 1/f noise for the
relative mobility-fluctuation spectrum Su(f)/(;—i)2 of carriers in semi-
conductorsl-s. Some papers equate it to a/f and others to a/fN; here a is
the Hooge parameter, f the frequency, and N the number of carriers in the
sample. The discrepancy is easily resolved by distinguishing between the
relative 1/f mobility-~fluctuation spectrum Su.(f)/(;i)z of a single carrier
and the 1/f mobility-fluctuation spectrum Su(?)/(;)2 for an ensemble of
carriers. This was shown recently by Hoogeé. The pertinent relations are

found to be

S (£)/(.)2 = a/f (1.1)
Ui 1

and

Su(f)/(;)z = afEN . (1.2)

In this note we point out once more that (1.1) is the basic relation
and that (1.2) follows for nondegenerate semiconductors; it may not hold for
metals, degenerate semiconductors, and in ionic solutions in which carriers

oy . . 7,8 ‘s
within a certain distance are correlated . Our proof for the validity of
(1.2) in nondegenerate semiconductors is based on the Boltzmann equation.
We also derive an Einstein relation for the fluctuations and find the corres~

ponding expression for the relative diffusivity noise SD(f)/(ﬁ)z.

2. Boltzmann equation approach

In the k-space approach we start from
{n(s,t) = - q.[.dikz(E)f(E‘E,c)yk (2.1)

where Jn(r,t) is the electron current density Z(k) = 1/4 23 is the density

of states, and Vi is the velocity in a one-particle state lk); f(r,k,t) is

the occupancy of a state k in the vicinity of r, averaged over manv collisions,
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but still fluctuating due to 1/f noise. It can be computed from the mode

occupancy operator average <cl:- ck

~ ~

'>t of the quantum field, compare
van Vliet et a19.
More simply, we obtain f from the Boltzmann equation, assuming that

the cross section for scattering, and thus the relaxation time t fluctuates,
either due to the fluctuating phonon populationl’z, or due to quantum 1/f
noiselo. Thus, putting f(E’E’t) = fO(E’E) + fl(s,g,t) where fo(g,g) is the
local equilibrium distribution, we find in the usual way in the relaxation
time approximation, keeping £0 in the streaming terms and £l in the collision

integral,
%@J)=qfd%upugbo

() + 28000 = @My e 00 . (2.2)

Writing still kao = hyksfola 6%, this yields the diffusion part

-

= . ni T . = -
gn,diff qV (an) [for nondegenerate semiconductors, ¥ (an) D Vn,

since 2“ does not depend on the chemical potentialll] and the drift part

Jn,drifr T Wy " E with
D (r,t) = <<r(_§,l_g,c)y§g§>> (2.3)
p_(r,t) = -q<Lz(r,k t)jLng—ig v, v, > (2.4)
'~ ST E, ~kek '

where << >> denotes a k-space average; the local, tdme-jluctuating average
X g

4

in k-space is defined by

<L HE, ) >> = f TRZ(K) (ka0 £7(2,K) (2.3

a(r)

where we notice the occurrence of the factor n(r) in the denominator,
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since . distribution in k-space is normalized to n:

fd3kz(5)f° = n(x) , (2.6)

(the bar denoting a time average). Restricting ourselves further to

scalar D and p and nondegenerate homogeneous semiconductors, for which

3 log £9/5 (‘,‘k

~

-1/kT, egs. (2.3) to (2.5) yield

D (t) L ffd3r SRz () (v2/3) t(x,k. ) £0(x, k) (2.7)
N ~

u () %ffd% 43kz(k) (q/kT) (v2/3) (r, k. ) £20(r, k) . (2.8)
N ~

These results show that:

(a) The fluctuating mobility, as found by the Boltzmann equation, is
of the form (1/N) E:kun(E,t) where un(E,t) refers to the mobility of the
state [E); thus, if :he spectrun for un(g,t) has the form (1.1), then the
spectrum of the mobility for the entire conduction band has the form (1.2)
if the carrier 1/f fluctuations are independent, as in nondegenerate semi-

conductors. For clearly, with § ) given by (1.1)

u, (k

s -L ¥ s -1
§

- = (2.9)
un,band N2 k un(E)

S
wo (k)

A more accurate computation of the band integrals involved shows that (2.9)
must be modified by a factor of 37/8, cf.Kleinpenning and Belllz. However,
in view of the experimental uncertainty of the Hooge paranmeter, this
correction is hardly significant.

(b) There is an instantaneous Einstein relation for the fluctuating

quantities D_(t) and un(t):

Dn(t) = (kT/q)un(t) H (2.10)
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Note that t >> T due to our assumptions of a vanishing collision integral

for fo(E,E,t) E fo(f,g). We thus have the spectral relation

= 2
SD (£ = (kT/q) Sp (£) (2.11)
n n

or

= - = \2
sp /()% =5 /GO . (2.12)
n n

13,14

This equation was conjectured before but never proven.

:
]
\

For metals and for ionic solutions above certain concentrations a

: . . . 7 .
coherence volume, in k-space or in position space’, comes into play., Then

AT(E'E’t)AT(E"E"t) #* F(E,E)S(E-E')G(E-E'). Clearly then, though (1.1)
might be valid for the individual state mobilities, the band mobility fluctua-
tions do not obey (1.2). A _omputation for degenerate semiconductors and

metals will be published elsewvhere,
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II. 1/f noise due to impurity scattering. Ganesh Kousik

A calculation is made of the mobility (impurity scattering limited)
fluctuations, assuming that the fluctuations in the scattering ion section
are given by Handel's theory of fundamental 1/f noise,

We start with

he —y 372
un(t) = __?Si__ ey / T(w,t)dw @9
3m f
and
2t o nv [ -cos o (t,w)dn (2)
t(t,w) ow Q7

(within the relaxation time approximation).

l ()
A[T(t,w)] = N vy -]11 - cos ?)Adﬂ(t,w)d“

<At > N y2 f(l - cos ) (1 = cos =") <Ao_(t,w)lio , (t,w) >dada'  (3)
TL& 0O w 3 ol

Assuming that scattering in different directions are not correlated and
finding the frequency spectrum on both sides of (3), we get

ST(w)
=N~ v? I(1 - cos 2)(1l - cos 0") SO(Q,Q',w)deQ' (4)

o w
T L

and

2;1.1\

SG(Q,Q',W) = <g(Q,w)> = §(Q=-0a")

20A

S
L. N; v; f(l - cos 2) < a(2,w) >? ar do . (5)

Th
Similarly, assuming that scattering of electrons with different energies are

not correlated, we get

5, = (-‘:_a_] f " Muls (v (6)
3m \ﬁ: 5




e

o

s w B B — e

P,

- ——

- 60 -

According to Handel's theory

20A = ——— (p _+mk_T/p )2 sin? 6/2 (7N
3mm - c? ° B °

{kaT/po term is neglected}, 9 is the scattering angle, and P, is the electron

momentum, Further,
* s
2 2m ze‘ “
<o (2w > = = - (8)
4mefi’ (4k? sin® 6/2 4 «%)

for a screened coulomb potential, k2 is the screening parameter which for
nondegenerate semiconductors is the Debye screening and for metals is given by
the Thomas-Fermi screening. Impurity scattering is assumed elastic (needed
for the relaxation time approximation) and therefore |k-k'| = 2|k| sin8/2.

Using (5), (6), (7) and (8), we get

w0 B'
' - 7 7
Sy =éf"f S I f 2 g 4w (9
o o an(l + j“:_) o see s
2
where 8' = tan_12k/x, and k2 = 2me/#° for spherical energy surfaces.

20 (16) eagk T
A' = 8 .

EalNe) 2
27 m “c No"z‘e6

Equations (1), (2), and (8) give

uw =B | ——F—— du (10)

where
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We now have
=] B'
S j' e_zww7dw/[2n 1+ ﬁ-’%” f tan’g dg
Mo l( A') 0 ) 0 sec®B
o) = ? —-5 © 2
Ma B f e-w widy
A an(l+ 4k?/k2)
8'
f -2w w’dw [ tan’g dg
S‘un leakyT [2n (1 +4k2/x2)]" sechs
— = ‘7 > . (11)
u - Im* 1 ¢ B
r n

f e_w widw
) n(l+ 4k2 /)

For nondegenerate silicon

KT_: me* n(')__ﬂ_)
EkBT ND

where n is the number of conduction electrons and ND

=~

tion., ¢ the dielectric constant is 11.9 "
At temperatures in the 10°-70°

To find n, we solve the neutrality equation

+
-1+ N -
p~-n VD 0

N.n E.~-E
D1 _ F c
where ND T+ o and n1 = NC exp [ T
1 B
n is

n- + nln - NDnl >0

Figure 45 shows S
Mn
In metals one uses the Thomas-Fermi screening

Ko o= évejJVTLF)

] I 2
neglecting terms with ny ~0.

(in CGS units)

f/ué

is the donor concentra-

K range, not all donors are ionized.

(12)

]. Therefore, the equation for

(13)

vs, T.
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where JV?EF); the density of states at the Fermi level,

3 N
u4/?EF) =5 -

€F

For gold:

-3
N = 5.9 x 1022 &

- _ 4
€p = kBTF = kB X 6,39 x 10" ergs.

S

and spherical energy surface (k? = 2me/h?) have been used. —2 vs. T for

n
gold are shown in Figure 46.

S f
Equation (11) implies —ﬁi-, the noisiness, is not a strong function of <
the doping density in semiconductors. It is nearly a linear function of T in
both Si and gold, in fact in semiconductors and metals.
The noise in gold (Fig. 45) is smaller, probably due to a much larger .
screening constant than in silicon., Thus the electron does not see the ion

potential as strongly as in Si.

For a purely coulomb potential, we find 7 -+ 0 and therefore

also, ‘ le, . dw
3 u —— et et ettt -
n .
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*
I1I. Noise Out of Equilibrium

by
Carolyn M, Van Vliet
Department of Electrical Engineering
University of Florida, Gainesville, 32611
and

Centre de Recherches Mathematiques
Universite de Montreal, Montreal, Quebec H3C3J7, Canada

Summary

We discuss six properties of stochastic processes which are generally
valid only in thermal equilibrium systems. In Part A of this paper we discuss
the first and most fundamental property, viz, the fluctuation-dissipation
theorem, Kubo's and Van Vliet's quantum statistical mechanical derivations
are reviewed, Next we discuss Gupta's thermodynamic theorem, which may hold
for a class of nonequilibrium systems., In Part B we discuss the other proper-
ties which mainly center around the principles of mesoscopic reversibility and
detailed balance, and the symmetrization property of the two terms in the
generalized second moment relaxation theorem (also called generalized g-r
theorem, generalized Einstein relation, or A-theorem). We then give two ex-
amples for which this symmetrization property does not hold. First we review
Van Vliet's model of nonequilibrium optical pumping in photoconductors with
traps, Finally, we review Tremblay's et al, derivation of Brillouin light

scattering as an example of a nonequilibrium hydrodynamic steady state,

1. Thermal equilibrium properti-s

There are a number of properties which render the description of noise
in thermal equilibrium considerably simpler than in a nonequilibrium, or driven
equilibrium, steady state. The main features for fluctuation processes are as

follows.

*Invited paper presented at the 7th International Symposium on Noise in

Physical Systems, Montpellier, France, May, 1983,
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1) validity of the fluctuwation-dissipation theorem

2) The principle of mesoscopic reversibility

3) The principle of detailed balance

4) The symmetrization property of the '"generalized second moment
relaxation theorem"

5) The equilibrium Einstein relation between generalized mobility and
diffusivity

6) The Onsager relation for reciprocal flow problems,

The derivation of (1) will be briefly given below. The fluctuation-
dissipation theorem is a genuine consequence of the existence of the micro-
canonical or canonical ensemble to describe equilibrium properties. It can be
derived from a purely thermodynamic point of view (Nyquist 1928, Callen and
Greene 1952) or from a quantum statistical mechanical approach (Kubo 1957).

The other five properties are somewhat more subtle and have a less
general form in that we must distinguish between a-variables, which are in-
trinsically time reversible, such as the position, and b-variables, which are
odd, i.e., change sign under time reversal, such as the velocity (Casimir 1945),
The details of this necessary distinction are often overlooked, and a number of
errors occur even in recent literature, A much more careful consideration than
hitherto given is necessary, and errors occur both in Lax (1960) and the author's
papers (1965) in this respect, Since the space of this conference paper is
limited, we shall make no attempt to rectify these errors hereby, restricting
ourselves to 3—vuriables. Some remarks on the other cases will be made in some
instances., The five properties 2) to 6) all hang together in a unique wav. One
can show that the validity of any one of the five implies the validity of the
others. Again, the writing of a comprechensive survey paper on this topic would
be extremely useful, but space is lacking here since we have been asked to write

on nonequilibrium,
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This paper will therefore be divided as follows. In Section 2 we
review the standard derivation due to Kubo, and its recent modification by
Van Vliet (1978, 1979) of the fluctuation dissipation theory. We also discuss
how a true general extension to nonequilibrium systems should be obtained.
Lacking such a general extension at this moment, we review in Section 3
Gupta's thermodynamic attempt to obtain a meaningful extension for electric
nonlinear circuits under a set of restricted but useful conditions (Gupta
1978, 1982),.

In the rest of the paper we discuss the extensions for nonequilibrium
when any of the properties 2) to 6) does not hold., This is relatively easier,
since full solutions for Markovian nonequilibrium systems have existed since the
initial work on optically excited generation-recombination statistics in
semiconductors by Van Vliet and Blok in 1956 (a&b). The first true non-
equilibrium example involving the "generalized nonequilibrium second order
moment relaxation theorem" (also called generalized Einstein relation by Lax
1960, generalized g-r theorem by Van Vliet and Fassett 1965, and pA-theorem by
Van Vliet 1971) was given by Van Vliet in 1964, This is discussed in Sec-
tions 4 and 5.

In recent years renewed interest in the nonequilibrium problem arose
from light scattering in the presence of a small temperature gradient, causing
nonsymmetric Brillouin peaks., This problem was treated by a number of authors
(Procaccia, Ronis and Oppenheim 1979, Kirkpatrick, Cohen and Dorfmann 1979,
Tremblay, Siggia and Arai 1980). We will here present the treatment of the
latter paper (Section 6), It will be shown that their example is inother
straightforward nonequilibrium application of the "generalized nonequilibrium

second order moment relaxation theorer'as originally set forth by the author
g y 3

and coworkers (1954, 1965, 1971).

!
|
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Part A, The fluctuation—dissipation theorem and extensions

2., Quantum statistical derivations

Kubo considers systems with a Hamiltonian

H H - AF(t) . (2.1)

total

Here H is the Hamiltonian of the system proper and -AF(t) the coupling to an

external field, For electrical conductors, F(t) - qE(t) and A =§: e where
T ~

r, are the position operators of all of the particles. The Von Neumann

equation for the density operator now reads
24 (£) mel = () woF@ 140 (2.2)

where u(t) indicates that the field was switched on at t = 0. If we are now
near a thermal equilibrium state, we can substitute p—»peq in the r.h.s. of

. . . -gH -gH
(2.2) where peq is the canonical density operator peq = e /Tr e , 8 = L/KT.
The equation (2,.2) can easily be solved for the average response of a flow

quantity B where B is an operator in the system, One finds in a straight-

forward way (Van Vliet 1978)
t

<AB(Et)> = Tr o(t)B - Tr ;:qu =f dr '31§A(t'T)F(T) . (2.3)

O

Here Qﬁ\ is the response function given bv the commutator
&

NN SRR 5 5
‘;éA(t) o ‘ﬁl Tr 4 [A’B(t)lweq} (-0‘*)
where the time dependence of : (Schrédinger picture) was transferred to the

time dependence of B (Heisenberg picture):

B elft BS =

B(t) - t’lHt/‘ﬁ BS e-th/‘ﬁ

Q " . 3
where B is the Schrddinger operator (the superscript § will henceforth be
omitted);gf is the Liouville superoperator acting in the Liouville space that

contains all operators A, B, ... ., In particular, let 8 be the current
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. = 3

g = i Q

tixe

, where @ is the sample volume, If we take the Fourier-

tre

=%zl:

Laplace transform of (2.3), then we have, denoting by -~ the transform,

1.

E(iw) = qg(q/Q)A,A(iw%ﬁ(iw) (2,6)

so that the conductivity becomes

o

2 .
LY ot ;
g(lw) ) 'ﬁlf dt e Tr {[é,é(t)]oeq
(o)
_ e-lwt‘ 1 ,
o [ de S g, g, ) 2.7)
o

We have here the beginning of Nyquist's theorem: the conductivity is related

to the correlation expression,

<[J,J(t)]> = <JJ(e)> - <J(e)JI> (2.8)

where J - JS = J(0).

Now to obtain the correlation function proper, it must be defined as

an anticommutator, since the product JJ(t) must be symmetrized:
Hr)y = <[J,3(0)] > (2.9

It is now possible to relate the commutator to the anticommutator with some
transformations involving contour integration for the Fourier transforms. It
is then possible to express the full (two-sided) Fourier transform of the
correlation anticommutator into the single-sided Fourier transform given by

(2.7), The result is the spectral expression

s, 5 () = 4€6,D {15! (1% + ila" (0]1%) (2.10)
‘\) y Vi VU

where v and ;; denote either two different (but correlated) currents or

Cartesian current components, g = g' + io", and

L a 1
=35 (0 + 0 = == - M
g 3 [ . ]a 8] 2 [O\'U 0'.1\)]’
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further, é;(w,T) = (fw/2) coth (Bfiw/2) is the mean energy of a harmonic
oscillator of frequency mode w. Eq. (2.10) is the fluctuation-dissipation
theorem in all its glory.

We have criticized Kubo's derivation in our 1978 paper, since nowhere
was a form for the Hamiltonian H, commensurate with dissipation, introduced!
In particular, the Heisenberg operators do not represent the required approach
to equilibrium. As we indicated in our paper, a partitioning of the Hamiltonian

is essentialj i.e., instead of (2.,1) we write

= o ] - 2
Htotal H™ + AV AF(t) . (2.11)

Here H® is the largest Hamiltonian that can be diagonalized for the many-body
system, e.g., an electron-phonon system; AV represents the interactions which
randomize the energy over the states of HO. In the Van Hove limit (A ->0,t
large, A"t finite) and large system limit, such randomization leads to irrever-
sibility (The Poincard cycle becomes "off limits" for observation in such a
system). In our second paper on linear response theory we indicated that (2.2
now is carried over in an irreversible master equation, which for the reduced

DR(i.e., after the Van Hove limit) now reads

R
%ﬁ; + (Ad+'iJ:O)JR(t) = F(t) [times a functional of p(t) and A]. (2.12)

Here Ad is the master operator

Klv>); (2.13)

AK = = Z' > <l Dy IR > - <y
YY

where {|v>} is the set of manv-bodv states of HO, J is the interaction
. . 120. -1l..0 . . - A
Liouville operator K =4 [H,K], and W _, is the transition probability
17
according to the golden rule, W __, = (2 /)| <vlvly! >]'5(é;y.- 6;')'
Tt

Equation (2.12) can be used similarly to (2,2) to obtain the transport co-

efficients o, v, and others, to be expressed in correlation functions involving
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the reduced operators JR(t)J(O), where now JR(t) = exp[-(Ad+-i1f5t]J(0).
The main problem with (2.12) is that the r.h.s. has so far only been evaluated
for a near-thermal equilibrium state, For a driven equilibrium, the Hamil-

tonian (2.11) should be further partitioned:

- O - -— - )
H o opar = B + AV = AF = Af(t) = Fa(t) . (2.14)

Here AF would be the steady driven equilibrium coupling to the sustaining

field Fo’ and f(t) would be a small time-dependent field perturbation, Could
Equation (2,12) be reformulated for this Hamiltonian with only the part

-Af(t) occurring in the r.h.s., then we could obtain a steady-state fluctuation-
dissipation theorem, Such a program has not yet been carried out. One state-

ment can be easily deduced from such a theory, however., We note that in the

above the two Hamiltonians AV and AF are on an equal footing. The noise due

to both is a function of the small signal transport coefficient caused by f(t).
Since traditionally 1V causes thermal dissipative noise and AF causes current

or shot noise, it is clear, then, that in a generalized nonequilibrium fluctuation-

"shot

digsipation theorem we will no lenger be able to separate "thermal" and
noise'; both will be contained in the new fluctuation-dissipation theorem. This

is born out by the theory due to Gupta, reviewed below.

3. Gupta's thermodynamic result

Since F is the driving pavameter which is fixed, typically a large d.c.
field, the entropy will contain intensive variables, as foreseen by Gibbs
(1902), a fact overlooked by Callen in his well-known monograph (1962), Thus,
properly the entropy is a Massieu-type lLegendre transform of Callen's entropv,

From (2,14) we arrive at a Gibbs entrepy production
Td§ =d€ - AdF (3.1

4
where TdS represents the dissipation caused by AV, This form satisfies

Gupta's thermodynamic theory. His basic assumptions are noted in his 1982
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paper. The most important are:

a) The entropy depends, besides on é;, on another variable F, which
can pass through the port of the system and which is fixed.

b) The system is purely resistive, so no energy is stored in AdF. We
should therefore be able to write A as a function of the instantaneous values
of Ft A= C <F> + C,<F>, etc.

c¢) The system has no quantum correction., This is, in our case, born
out by the use of the A operator,

For the present case of electrical conduction, A can again be inter-
preted as (Q/q)J = IL/q where I is the current and F = qE = Vq/L. Thus

AdF = IV, Gupta's theorem for the noise now reads

S_..(w) = 4kT Pex/AS . (3.2)

or

4kT P, /17, (3.3)

SW(AJ)

where Pex is the excess power dissipation caused by the presence of a
periodic zero average small signal a (or i) superimposed on the driven

steady state. For a nonlinear resistor with V = V(I)

_ v, L 14V s -
Pex— (Vo+d1 1+2 o i) (Io+1) -VOIO
I_.,
dv 7= d&’v ==
=[_¥ e h] : (3.4
- d
L I=1
o]

where the overhcad bar means time averaging. Clearly, from (3.3) and (3.4)

Syyle) = AkT[%‘Il + 1 d—‘] . (3.5)
- odrl it
Similarly, one finds
C e 4L _ L 41 fdl
S () = Syy() [@T/dV)” = 4k [dv 5 1 dv’/dv] (3.6)
1

"0
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Define now
1 {ad%1 f/dI
B =—é-[—'2'/a-{;] . (3.7)
dv Io

Then (3.6) reads

S (W) = 4kT [g(I) = BI,] (3.8)

I1 T

where we replaced IO by the more useful symbol IT (for total average
current),
Application: Schottky barrier diodes or p-n junctions at low fre-

quencies (no energy storage in extra term). Then

v
=1, (3.9)
1
3 g(Ip) = (dI/dV); = (q¢/kT) (I + I,) (3.10)
7 T
3 = 2
3 BIT (Q/‘-kT)ITI
3
' Thus (3.8) reads
Spp(w) =2 [ (I, + 1) + 1.1, (3.11)
indicating shot noise of forward and reverse current. Clearly, this com-
prises the thermal noise, for at zero bias
', L = = . 2
1) lyog = 4aly = 4kTgl ) - (3.12)
' As we noted before, no distinction can be made between thermal noise "proper"
5 k and shot noise.
L
k Whereas Gupta's theory is highly specialized, it has opened the way
) to show that steady state dissipation fluctuation theorems do exist, contrary
) to previous pessimistic claims (for a survey see van Kampen 1965), Gupta's
i
f result (3.6) or (3.8) is not a trivial result, Others have tried to generalize
d !
l
i“ ————
vunaiiiiitite.,
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the fluctuation-dissipation-theorem on more heuristic grounds. Van der Ziel

considered the following possibilities for Nyquist's theorem in non-
(1973) id d the followi ibiliti f yquist' h i

linear devices:

i
it

a) <v? (D> = &kT BOV/D): <i? (> = 4kT BW/D)|y(D)|

it

b) <ir; (£ >

GKT B(I/V); <v2(£)> = 4kT B(I/V) / |y()]’

(]

¢) <v7(£f)> = 4KkT B(dV/dI); <i2 (£)> = 4kT B(4v/dD) |y () |*

n

d <i7(f)>
n

4kT B(dI/dV) / |y(f) 12

4KT B(dI/dV); <vn2 (£)>

e) none of the above

In view of Gupta's result, possibility e) is the answer to this multiple choice
question, even though it can be shown that some devices satisfy some of the

other possibilities (which then must be equivalent to (3.6) or (3.8)).

Part B. The generalized nonequilibrium second moment relaxation theorem

(generalized g-r theorem, generalized Einstein relation, or A\-theoren)

4. The mesoscopic Markov process

In statistical mechanics the variables are the microscopic variables
P and a4 or their quantum operators, In stochastic processes we deal, however,
with much more coarse~grained variables, which are averapes over large ranges
of quantun states, even though the fluctuations in these variables cannot be
seen until after suitable amplification, Brownian motion and fluctuations in
carrier populations (conduction band, traps) are typical examples, We call
these variables mesoscopic (term of van Kampen 1962). They can be pictured in
"a-space" (De Groot and lazur, 1962),

From the microscopic master equation, see (2.12), one can derive a

mesoscopic master equation. The equation reads

aP(a,tla") _ S on "o, Ty 4
X ‘fd a[P(a '.t]d')Q/l".'l - P(d,tld')oaan] (4.1)
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where Qa”a is the transition probability per unit time for a change a" +a.
Assuming that a is a set of variables on (0,»), one can Laplace transform the

master equation, and one easily finds for the characteristic function (Van Vliet

1983)

-sea(t) ~se*a(t) R
a_at <e "7 >, = Z <e (—nii— s": F (a(e)) >, (4.2)
£ n=1 ~

where Fn is the nth order Fokker-Planck tensor

F_(a") =f(§-§")nQanadsa = <a(at)-a">), /at . (4.3)

~

Differentiating now repeatedly with respect to s, and setting s=0, one finds

the moment equations. The first moment equation is the phenomenological equa-

tion

R = M

ot <Ag(t) >av »-l<“‘3(t)>a' (4.4)
(sub a' means a conditional average in an ensemble with a(0) = a' fixed);

M is the phenomenological relaxation matrix; it is defined by

~ o~

3 "
Mij = —[ﬁ?g (ai-ai)Qa..a]E..= EO ’ (["5)

where ao z <a>, the unconditional stationary average. By differentiating
twice to s, setting s = 0 and letting t ==, one finds from (4.2) the generalized

nonequilibrium second moment relaxation theorem:

where B is the second order Fokker Planck moment; g is the transpoge, 2a is
a column matrix and A3 a row matrix.

The theorem was first derived for generation-recombination noise in multi-
level semiconductors or photoconductors (note that the theorem holds out of

equilibrium as in a photoconductor!); in this case a represents the various

RV Y,
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populations of carriers, a =A{nln2... ns}c The theorem was called the
generalized g-r theorem (Van Vliet-Blok 1956a). For three-dimensional Brownian
motion the theorem takes a special form (M.C. Wang and Uhlenbeck 1943), The
phenomenological equation for this type is dy/dt = -BV. Thus M>B, The second-
order Fokker-Planck moment is easily found to be B = ZDBZEQ where 1 is the
unit tensor, D is the diffusivity. Further, <4AvA¥> = (kT/m)I. Thus (4.6)
leads to mD = kT/B, which is the Einstein relation for Brownian motion. (For
carrier motion in a simple semiconductor model B = 1/1t, u = qt/m, so the above
leads to gD = pkT.) For this reason some authors (Lax 1960) have called (4.6)
the generalized Einstein relation, When dealing with transport processes,
< 8ad3> 1is to be replaced by the covariance kermel < Aa(r)A3(r')> and the
corresponding theorem has been called the A-theorem (Van Vliet 1971)., To us,
at present, the name "generalized nonequilibrium second moment relaxation
theorem" seems most appropriate.

We now state the equilibrium properties 2) - 6) mentioned in the intro-
duction,

a) Microscopic reversibility wYY' = wy, follows from the golden rule
in quantum mechanics. The mesoscopic transition probabilities will be denoted
by Qaa" Let now x(g)dg be the number of quantum states ly)> when a varies

between a and a + da. We then clearly have, since Z—*I x(a) da,
Y
" P Z
x{(a )Qaua X(a)Qaan . (4.7)
This is the principle of mesoscopic reversibilitv., In the microcanonical or
canonical equilibrium enscmble the probability W(a)da is proportional to the

number of accessible quantum states in da, i.e., y(a)da. Thus (4.7) leads to

the property of "mesoscopic reversibility"

w(a”)Qd”ﬂ = N(J)Qaun . (4.8)




|
|
i
1
!

. A e

Y

b) The above leads to detailed balance (Van Vliet 1964), Consider
that a labels the occupancy of a set of quantum levels, i.e., let a = m, n, ;

or k, which represent discrete population vectors, In particular, we consider

transitions k< m such that

T ees K P A = . . ‘,- --.k .
{kl L kj ks}<+ {m; M, M, m } ={k k, + 1, ks 1, o}

(4.9)
Let pij be the transition rate from levels éii to levels 6% (governed by mass

action laws or similar rates). Then

Qup = P33 5 Qe =0y (4.10)

Eq. (4.8) reads in this notation

W(E)ka = W(rlm)ka . (4.11)

~ o~

We sum this result over all m. Then from (4.9) and (4.10)

Y . Y . (k)
ké kz Z ZWkp K)

k

0 (=0 Kj=1 s=0
- 2: . 2: 2: e WP, | (m) (4.12)
M=0  Mi=1 Mj=0  Ms=0
or also ]
|
<Py (> = <py (>, (4.13) ;

The variables k and m are dummy variables; thus (4.13) simply says
<;{ji> = <:pij> . This is detailed balance for the rates between any two |
sets of quantum states in the system,

¢) From Bayes' theorem one easilv shows that (4.8) leads to the

symmetry of the pair correlation function for small intervals At

W,(a,at; a",0) = w, (a0t a,0) o (4.14)
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With the linearized phenomenological equation this leads to

<a(at)a(0) > = <aad> - M <dana> it (4.15)
and
<a(0)a(t) > = <aa> - <dada>at . (4.16)

When in (4.14) we multiply by gé" and sum over both variables, we easily see
that the 2.h. sides of Egs. (4.15) and (4.16) are equal. Thus, in thermal
equilibrium the r.h, sides of (4.15) and (4.16) must also be equal, which is
the symmetrization postulate of the "generalized second moment relaxation

theorem'"; in (4.6) both sides are now equal
<Aasa>M = M<Aara> . (4.17)

This property gives a tremendous simplification for thermal equilibrium

processes; for now (4.6) can at once be solved

M iala> = —,l,— B(a%) (4.18)
or
<apii> = 2 B . (4.19)

Since (4.18) is for Brownian motion, nothing but the Einstein relation between
mobility and diffusivity, it is clear that some authors (Lax) refer to the

full theorem (4,6) as the nonequilibrium generalized Einstein relation. Well,
whatever the name of Eq. (4.6), we do note that (4.6) is a genuine nonequilibrium

result, while (4.18) or (4,19) is an equilibrium result. Thus, the properties

<ilata>M = M<oasd> (4.20a)
<sara>¥ # M<hana> (4.20b)

delineate clearly between cquilibrium and nonequilibrium behavior.
We still mention the analog for transport processes (Van Vliet 1971),

Suppose we have a stochastic variable depending on a (vector) parameter vy,




. . . , s . .
which is continuous in D(-»,»)”, The stochastic process a(y,t) is then in-
finite dimensional, though we assume it to be still Markovian. The Langevin

equation is of the matrix operator form

aé(Yst)

+ 4 = 7 W2
e yg(y,t) Sly,t) o (4.21)

where A is some (matrix) integral or differential operator describing the

transport process. Let the covariance matrix kernel be
Liy,y" = <aa(y)aay")>. (4.22)
The analog of the matrix theorem (4.6) is now the A~theorem

t 1
AJLGY,Y") + L(y,y')gyf =5 Sa(v,v") (4.23)

where Acr acts from the right on ', This theorem was proven using Hilbert-
space methods by the author. Notice that S_ is the white spectral density of
the Langevin sources, Again, when both terms on the t.h.s, of the ‘=theorem
(4.23) are unequal, we deal with a true nonequilibrium state,

In the next two sections we give both a matrix and a transport example
of a true nonequilibrium situation, which, morecover, has been experimentally

verified.

5. Optical pumping in a nonequilibrium steadv state

In 1964 we considered a model of a phetoconductor in which free electron
hole pairs were created by optical absorption, whereas all of the recombination

was occurring via intermediate states, see Figure 1,

2 1
I lplq = n(I~-1)
| AT 2
Py 1z = Figure 1
Paq = xip
Y P V CNR 3

§ and v are capture constants. Clearly, there is no detailed balance, so we




- 78 =~

have a genuine nonequilibrium state. The M matrix follows from the linearized
mass action type kinetic equations for dAn/dt and dAi/dt (Ap = Al + 4n is a

dependent variable). One obtains

I

My o= 8(I-i), My, = -6n_

le = =§I + 610 + ki s M22 = 6no + KD + 2o<1O . (5.1)
[ For the B-matrix one finds, likewise,
Bll = 26n0(I- 10)
= E -1 9
B, =By 5no(l: i) (5.2)
322 = ZGnO(I—lo) .

Moreover, in the steady state one has

aZz =6n (I-1) =«xi (n +1 ) . (5.3)
(o] o] (o] (8] Q

One can now solve the nonequilibrium moment relation (4.6), expressing io into

n, via (5.3). Since (4.6) is homogeneous in &/k, the relative variance
<An22>/nO can be computed as a function of az(=Jf) for various values of the

! ratio y = «/8. The results are given in Figure 2 below.

S-SR, \ WV Oy
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The pecularity of this model is that <Ar12>/no may attain values >> 1, as

are indeed experimentally observed in cadmium sulfide. For a thermal equili-~

brium situation, cin the contrary, we always have <An2>/no <1, according to
ermi-Dirac statistics. Thus, the model of this section represents a true non-

equilibrium situation, in which familiar concepts like Fermi-Dirac statistics

are entirely eclipsed.

6. Brillouin scattering as an example of fluctuations

about a hydrodynamic nonequilibrium state

Tremblay et al, (1980) considered fluctuations in hydrodynamic modes A(k)

governed by a Langevin matrix equation »’
9A(k,t)
5t + I‘__‘I(E) 'f}(‘j) = C(L\,t) . (601)

Notice that g(g) is the A operator of the last part of Section 4, This is an
example of our transport formalism for infinite dimensional stochastic processes
(y >k) as considered in detail in our 1971 paper. For the Langevin forces

correlation we write as usual

<CL,D (R, E) > = 8 (kD s(e-t') = DG,k (et (6.2)

Solving from the Langevin equation for the spectrum, one finds

S, (kok',w) = 2[M(k) + iu;__l'l;ai,g') + 2r(k, k") [M(k) - m:]'l . (6.3)

In a nonequilibrium state T can be eliminated by pre~ and post-multiplying with

the resolvent; hence

M) + 1wI]S, (k, k") [(H(k) - LuI] = 20(k,k")H(K)

~

~

+ 2§f&)jﬁ5,5') = 'ka,k') (6.4)
where we used the f1l1l nonequilibrium second moment relaxation theorem (4.23).
Inverting (6.3) we have

(k) = 2000 + 1T D0k () - wyTh (6.5)
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(For comparison with Tremblay et al., notice our §ﬂ(5,5',w) is their ZLf(k,k')
with X =1|xaBH; our Eq., (6.5) is their Eq. (7).)

We now come to their specific model., They consider a fluid with a
fluctuating stress tensor, in a small temperature graiient. The linearized

hydrodynamic equations for such a fluid are

BP(}S,E)
._..a—E__—-_-_ipc‘:oy (6.6)
dkev N ”

= = =10 /0)p - [+ 4n/3) /o)K7 (ko) + (1/p)ke50k (6.7

where p is the pressure, p is the density, ¢ is the sound velocity, ¢ the bulk
and n the shear viscosity, There is no Langevin force associated with (6.6), but
there is with (6.7), see their Eq. (9). Equations (6.6) and (6.7), taken to-
gether as a column matrix equation, are of the form (6.1), though the details
are quite complex. One can thus solve for Spp(E',E",w). They obtain

eM2T(R' = k") [2n(k' k") + (5 -2n/3)Kk""K"]

S (E‘!Eu’“) = - - - - (6.8)
pP (@F = Tk + 12D K7 (7 = 7K™ = 1uD k™)
L

where D, = (c+4n/3)/0. Due to the temperature gradient contained in T = T(r),
the two Brillouin light-scattering peaks obtain an asymmetrical height. One
finds a difference spectrum éspp(w) for the peaks located at |w| = ck, see
Tremblay et al., Eq. (l4). The experimental values observed are in agreement

with the theory, thus once more confirming the basic nonequilibrium result (4.6)

or (4.23),
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