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1. INTRODUCTION AND SUMMARY

This report describes research on the distributed processing of
sensor data for situation assessment at the processing nodes in a dis-
tributed sensor network (DSN). This research has been performed at
Advanced Information & Decision Systems under the contract entitled

"Distributed Hypothesis Formation in Distributed Semsor Networks".

Distributed sensor networks have many positive attributes such as
improved performance, faster response time, more flexible communication,
and less vulnerability as compared with centralized or hierarchical sys-
tems. As a result they are attractive for many Department of Defense
applications. These DSNs can consist of a variety of sensor types
(e.g., microwave radar, SIGINT, IR, etc.) and are relevant to a variety
of defense systems (e.g., air defense, land warfare, space defense,
etc.). However, many research issues need to be addressed before such
DSN systems can be designed, built and achieve their military potential.
In this project we have addressed and resolved some of these issues.

This final report summarizes the results of our investigation.

1.1 PROJECT OBJECTIVES AND TECHNICAL APPROACH

The overall objective of this research project was to advance the
state of the art in distributed situation assessment in distributed sen-

sor networks. Specii cally,  set out to accomplish the following

b Aalta . ala ‘s 8l e W
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goals:
- investigate techniques of hypothesis representation, formation and _
evaluation, etc. in distributed sensor networks; - 1
- investigate various tradeoffs such as computation versus communica- fq
tion, and the performance of centralized, decentralized and distri- S
buted structures as a function of various parameters. ;-j
4
.
The basic system model consists of a distributed system of nodes o
which are connected in a packet switching network. Each node contains a :
—
processor and one or more semsors, whose coverage may overlap those of _?
sensors at other nodes. The input information at each node consists of: .
- own sensor data f:
- messages from other nodes :~i
- contextual information

Our approach has been to understand the main technical issues asso-
ciated with a DSN by concentrating on the hypothesis representation,
formation, and evaluation processes. The tracking and classification of

multiple targets in low signal-to-noise ratio and high clutter environ-

ment was chosen as the particular application area. Our rationale for

concentrating on hypothesis representation, formation, and evaluation L
was that in a dense target enviromment, with a low detection probability .*
and high false alarm rates, successful tracking and classification of .

targets depends very much on forming the correct (data association) U

hypotheses. Thus, multitarget tracking and classification provides a -;4

at

rich problem domain to study distributed problems. In addition, such

problems have many applications in the defense area.
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We have adopted an approach which is both analytical and heuristic.
A DSN is primarily an engineered information gathering and processing
system. Detailed mathematical models of sensors, targets, and the
environment are usually available. They are used to provide inputs for
generating optimal algorithms (in a precise mathematical sense) for pro-
cessing the data at the nodes. These algorithms are, however, only
applicable under ideal situations when there are no computation and/or
communication constraints. In a more realistic environment, where the
DSN is supposed to operate, these constraints cannot be ignored. They
are incorporated into the algorithms by the use of heuristics. In par-
ticular, picking che right hypothesis can be regarded as a tree search
problem. Some artificial intelligence (AI) based ideas are used to gen-
erate the heuristics for managing the search. Although AI provides use-
ful tools for handling distributed hypothesis formation problems, its
role in this project has been limited to hypothesis management. This
limitation was due to the fact that a mathematical foundation for dis-
tributed multitarget tracking was still lacking and had to be developed

before the consideration of more complicated issues.

1.2 TECHNICAL ISSUES

There are many technical issues associated with distributed sys-
tems. The following are the ones which are particularly relevant to
using a DSN for multitarget tracking and classification:

e Local situation assessment
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- how to represent and form hypotheses
- how to evaluate the goodness of a hypothesis
- how to keep the growing number of hypotheses within the computa-
tional constraints
e Communication level
- what to communicate
- data versus hypotheses

- information to accompany hypotheses

- when to communicate

-~ how to integrate the incoming information into the local infor-

mation ,
- ~ how to process incoming information
ié - how to avoid redundant processing of the same information
5 These are some of the issues which need to be addressed before a DSN can

be designed. We have studied these issues in the project, both analyti-

cally and experimentally through computer simulations.

1.3 PROJECT ACCOMPLISHMENTS

Little had previously been done on distributed multitarget tracking
and classification. Even in the centralized case, the existing results
are not good enough to provide a sound foundation for developing distri-

buted algorithms. To supply this foundation, we have developed a theory

for centralized multitarget tracking and classification. The resulting

algorithm, called the Generalized Tracker/Classifier (GTC), provides a

definitive treatment of hypothesis formation, evaluation, and management

in a centralized processing system. This theory addresses most of the

e N
o-e 0N

technical issues associated with local data processing for situation
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The centralized multitarget tracker and classifier has been used to

. .
(VPR

develop algorithms for processing the incoming information at a node and

<y

. .

A
4 a
A

VY, r‘:cv.v.‘rx
. .

integrating it with the local information. The resulting algorithm,

called the Distributed Genmeralized Tracker/Classifier, prescribes the

ROy

appropriate processing architecture at a node and represents a sys-

tematic treatment of distributed multitarget tracking. Each processing

node consists of three modules: the Generalized Tracker/Classifier for

processing the local sensor data, an information fusion module to handle

ol s

the information from other nodes, and an information distribution module
for transmission of messages to other nodes. Many issues dealing with
information integration at a node have been addressed. One of the most
important has been the development of ways to avoid redundant use of the

same information at a node.

e R 2 R

The algorithms have been coded and simulations have been performed

for various distributed scenarios to resolve the issues dealing with the
trade-off of communication versus computation. We have discovered that
there is a delicate trade-off. Because the number of hypotheses tends
to grow rapidly as the amount of data increases, having more data, as in
a centralized situation, is not necessarily better unless resources are
available to process the data. In general, the quality of the informa-
tion is more important than the amount of data. With a proper distri-
buted algorithm, performance similar to that of the centralized scheme

can be achieved.
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1.4 REPORT ORGANIZATION

Results obtained earlier in the project have been documented in an
interim technical report and several papers. The interim technical
report (1] and the paper [2] contain a description of the centralized
Generalized Tracker/Classifier. A summary of the overall project has
been reported in [3], and [4] describes a framework for the general dis-

tributed estimation problem.

The rest of the report is organized as follows. In Section 2 we
describe the system and the major components at each processing node in
the network. The three modules are the Generalized Tracker/Classifier
(GIC), the information fusion module and the information distribution
module. Section 3 describes the Generalized Tracker/Classifier (GIC),
which carries out the processing of local sensor data at each processing
node. The GTIC also defines hypothesis representation, hypothesis forma-
tion, and hypothesis evaluation for general multitarget tracking and
classification problems. The information fusion module in a distributed
GTC is described in Section 4; it contains submodules which are analo-
gous to those of the GIC except they deal with processed information
from various nodes instead of sensor data. Section 5 considers informa-
tion distribution and problems associated with general estimation prob-
lems in a network. An example illustrates some pitfalls which can
result from careless information processing for a network. Two numeri-
cal examples are described in Section 6 to illustrate the tradeoffs of
computation versus communication and their effects on system perfor-

mance. Specifically, the performance of centralized, decentralized and
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distributed systems as a function of various parameters is considered.

Section 7 contains conclusions and suggestions for future research.

Three appendices contain the details of the algorithms described in
the main body of the report. Appendix A is a paper on the theory behind
the centralized Generalized Tracker/Classifier. Appendix B presents the
theory on distributed estimation over a network. In particular, it
gives the distributed fusion formula for each node in a network. Appen-
dix C describes a theory for distributed multitarget tracking and clas-
sification. This theory serves as the basis for the information fusion

algorithms used in each processing node.

et et O . L o
DG A SR S _— Lt aiamta e o s p o o= o e e

e

,,
I

I8

‘a
P

AP l. l. 1v
oo l O SRR

o AAI.‘J‘J" TN

,

l.'-
:

B T
AR 1'i4|, "

)

P RO T T
.nl‘“ ‘L'

]
RIS,

280

DR
g s s




| NN A ANE %

e
.

ROSEAS *°3 s
"
A A

2, SYSTEM DESCRIPTION AND NODAL ARCHITECTURE

2.1 SYSTEM DESCRIPTIONM

In this section we describe the structure of the system under con-

sideration. The distributed sensor network (DSN) consists of a collec- T

tion of processing nodes, each with one or more sensors and a communica-

tion network which connects the processing nodes. The structure of the

system is shown in Figure 2-1.

Each sensor generates measurements from the targets which are
within its field-of-view. The sensors are supposed to be generic and
not of a particular type. They have the following characteristics:

1. The probability of detection of the targets by a senmsor is less
than one and depends on the relative positions of the targets to
the sensor. If the target is not within the sensor”s field-of-
view, it will not be detected. For certain types of sensors, such
as the MII radar, only targets whose radial velocities with respect
to the sensors lie above a certain threshold are detected.

2. False alarms are generated and correspond to ground clutter, etc.
The reports from the sensors may contain (discrete) feature meas-
urements as well as the usual (continuous) measurements such as
position and velocity. e

S - SAR
Al

-“
Each processing node collects measurements from a set of sensors. -0

- ‘I
E It is convenient to assume that the sensor sets for different processing .

nodes are disjoint. The function of each processing node is to process
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the local sensor data to form an assessment of the state of the world,
to distribute information to other nodes, and to combine the information
obtained from other nodes with the local information to update its
assessment about the state of the world. The processing nodes are thus

the main information processing units in the DSN.

The communication network communicates messages from one processing
node to the other processing nodes. The actual network may be a packet
radio or other kind of networks. Our study has not gone into any
details on the communication network but has only considered it as a

means of allowing certain nodes to share information.

2.2 STRUCTURE OF EACH PROCESSING NODE

The purpose of each processing node is to integrate the data from
local sensors with information from other nodes to form an assessment of
the state of the world. There are three generic functions of the pro-
cessing node.

- processing of the local sensor data
- information fusion from other nodes

- information distribution to other nodes

These three functions are implemented as three separate modules
within each processing node. The structure of each node in the system
is shown in Figure 2-2. The three modules are discussed briefly below

and in detail in Sections 3, 4 and 5.
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2.2.1 Local Processing of the Sensor Data

This function is responsible for the local data processing before
any communication with the other nodes is carried out. Since the objec-
tive of the system under consideration is the tracking and classifica-
tion of multiple targets, this function will be a multitarget tracker.
In our system, it is called the Generalized Tracker/Classifier (GIC).
The GIC forms multiple hypotheses, each consisting of a collection of
tracks to explain the origins of the measurements in each data set.
These hypotueses are then evaluated with respect to their probabilities
of being true. To stay within the computational constraints of each
node, the hypotheses are pruned, combined, clustered, etc. The result
of this processing is a set of hypotheses and their probabilities, a
collection of tracks corresponding to possible targets and the state
distributions of these tracks. These quantities together constitute the

information state for multitarget tracking.

2.2.2 Information Fusion

This module combines the local information with information
obtained from the other nodes to obtain a new assessment. The informa-
tion from the local nodes consists of the information described above.
The information from other nodes is also similar. Information fusion
then consists of the following steps:

1. Hypothesis Formation - Given a set of hypotheses from other nodes,

this submodule generates new global hypotheses. Tracks from the
hypotheses of different nodes are associated in all possible ways,

12

VL Lo

Laant Al sasih consiediii AR e e AR ARt A S S S

e ', "
PR I DA e lad




W, W Ty vl T e e W W e R e s « 0 P - a s, @ = ¥ W
— —~—~— " v Ll Bt ine i et St Sttt B L YIS EEAC B A ST T e . . . - et ~ . * . <%, v .
T T ~— T . - Dl - e A .

“RF

e 3 v

.'.'.i.‘v core

whether they correspond to the same or different targets.

2. Hypothesis Evaluation - Each of the hypotheses formed above is then
evaluated with respect to its probability of being true. The 3
statistics of the tracks from different hypotheses are used in this -
evaluation. For example, if two tracks are widely apart in their .
position or velocity distributions, they are more likely to have S
come from different targets than the same target.

3. Hypothesis Management - This is again needed to make computation ,
feasible within the available resources.

'
aadhan

2.2.3 Informition Distribution

This module decides what information is to be tramsmitted, who gets
. the information, and when it should be communicated. It thus specifies
the information available to each node at any time, i.e., the informa-

tion structure of the system.
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3. GENERALIZED TRACKER/CLASSIFIER (GIC)

In this section, we describe the Generalized Tracker/Classifier
(GTC) which is the module for processing the local sensor data within
each node in the DSN. The GIC structure is shown in Figure 3-1 and the
theory upon which it is based has been described in more detail in an
earlier report [1) and in Appendix A. A summary can also be found in
[2]. The GTIC represents the most complete theory thus far available for
Bayesian multitarget tracking and classification. It can be shown, as
in Appendix A, that many existing algorithms are special suboptimal
cases of the GTC when the appropriate approximations are made. In addi-

tion, the GIC can handle complex situations such as targets moving as a

group and state dependent detection probabilities which are not con-
sidered in the existing algorithms. We shall first describe the models ]

used in the GTC and then the modules in the actual tracker.

.
P

APDE I B

3.1 TARGET AND SENSOR MODELS .

This section describes the target and sensor models. These models

provide the mathematical foundation for the modules of the tracker.
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3.1.1 Target Model

A novel feature of the target model used in our approach is that
the targets are modeled together as one target system state. More

specifically, the target system state at any time t is (X(t), NT(t))

where NT is the number of targets and X(t) is the composite state of all
targets. Information about the total number of targets is very useful
in multitarget tracking. For example, if it is known that the maximum
number of targets is 10, any sensor report containing more than 10 meas-
urements would most likely (unless there are split measurements) contain
some false alarms. In the current approach, knowledge on the number of
targets is viewed as an integral part in the target model. NT can have
arbitrary probabilistic descriptions, but a particularly useful assump-
tion is that NT is a constant and has a Poisson distribution with mean

v . Thus,
o

\)n

Prob.{N; = n} = n—°,— exp (- ). (3.1)

Given NT(t) = n, the composite state for the n targets in general
consists of two parts: a part corresponding to the common target state
such as the group position, velocity or type if we are dealing with a
group, and a part corresponding to the individual target states. This
structure allows us to handle complex target structures such as targets

moving as a group.
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In many applications, the group part is absent and the individual
target models are independent and identically distributed random

th

processes. The state of the i target, X is then characterized by

the initial distribution/density

Prob.{xi(to) € dx} = qo(x)u(dx) (3.2)

and transition probability density

Prob.{xi(t+At) € dxlxi(t) = x°) = fAt(xIx’)u(dx). (3.3)

In general, xi(t) is an element in a hybrid set X, where the continuous
part corresponds to position, velocity, etc., and the discrete part
corresponds to the type of targets, sudden structural changes in dynam-
ics (maneuvering targets), changes in operational modes, etc. U is the
hybrid measure on X, i.e., the direct product of the usual Lebesgue
measure for the continuous state space and the counting measure for the
discrete state set. The usual linear continuous models assumed in mul-
titarget tracking are then special cases of this model. For the rest of
this report, we consider the case where no group information is avail-
able and the target models are independent and identically distributed

random processes.
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3.1.2 Sensor Model

At a scan or observation time t, a sensor s generates a data set

- Ny
((yj) » Nys t,s) where Ny, is the number of measurements in the data

j=1

set, and yj is the jth measurement in the set. Each yj takes a value in

the measurement value space Vs for the sensor s. Vs is, in general, a

. hybrid set with measure ug. The continuous part of Vs corresponds to an
observed position or velocity, etc., while the discrete part corresponds

to observed features.

N

T
- Given a target system state ((xi(t)) » Np), the generation of a
. i=1
tf data set 1is characterized by the following four steps:

e Target Detection: The set of detected targets by sensor s at fuime t

?f is a random subset ID(t,s) of the target index set {l,...,NT}. 1t
% can be characterized by the detection function FD(t,s) which is the
) random indicator function of ID(:,s), i.e., FD(t,s)(i) =1 if

.f i € ID(t,s) (target i is detected) and FD(t,s)(i) = 0 otherwise

' (target i is not detected).

3: We assume that

Prob.{F (t,s) = lIx,(t)} = pD(xi(t)lt,s)

(3.4)

with a common detection probability function pD(.It,s). Thus the




detection of a target i is a conditionally independent event deter-

mined only by the target state xi(t), the sensor s and the time t.

1

The number of targets detected by sensor s at time t is given by

..
v
Farwn

.
t

ND(t,s) = #(ID(t,s)) (3.5)

PR
BV RTRTT

v

where # denotes the number of elements in a set.

Ty

e Number of False Alarms: The number of false alarms, NFA(t,s), gen— K

- erated by sensor s at time t depends only on the time and the sensor
il- and is independent of the target state or any other sensor data.

Specifically, its probability is given by

Prob.{NFA(t,s)} = Py (NFA(t,s)lt,s). (3.6)

FA

The total number of measurements in the data set is then given by

Nn(t,s) = ND(t,s) + NFA(t,s). (3.7)

Let JM(t,s) = {1,...,Nn(t,s)} be the set of measurement indices

from sensor s at time t

o Measurement Random Assignment: Given the set ID(t,s) of detected

targets, the measurement indices of the detected targets are modeled

by the assignment function A(t,s). This is a random function
defined on I (t,s) and taking values in Jy(t,s) such that for each

ié€ ID(t,s) and j € JH(t,s),

SURAINRS TSPt

j = Alt,s) (i) (3.8)

e
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&

means that the jth measurement originates from target i. A realiza-
tion of A(t,s) is an one~to-one mapping from ID(t,sj to JM(t,s). We y
assume any particular order of measurements in the data set does not
contain any information about the targets, i.e., it is completely

random. Thus, given ID(t,s) and JM(t,s), any realization of A(t,s)

| SERiidie- NN

is equally likely and its probability is given by

sninniamati b i

(Ny(t,8)-Np(t,8))! R

NM(t,s)l

M

Prob.{A(t,s)INM(t,s), ID(t,s), X(t), NT} =

NFA(t,s)!

NM(t,S) (3-9)

& Measurement Values: Given the set of detected target indices
ID(t,s), the set of measurement indices JM(t,s) and the random

assignment function A(t,s), the measurement (value) Yale.s) (i) ori-

ginating from a detected target i is conditionally independent of
the other measurement values and depends only on the target state

xi(t), the sensor s and the time t, i.e.,

P

ILL

PrOb'{yA(t,s)(i) € dyla(t,s), X(t),N.}

P

1 , . e
PARIPIPIPER, ~ NG RO W

= pm(yA(t’s)(i)lxi(t),t,s)us(dy) (3.10)

4,

where pm(.lxi(t),t,s) is the common probability density function.

Cale" amraany
1

i1

1
F‘ Given the set JFA(t,s) of false alarms, each measurement value '4
e
T yj for the jth false alarm in JFA(t,s) is completely independent (of
liﬁ each other and of the targets) and has a common probability density
- N
E! PFA(leC.S). -—11
- ;
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The main feature of this sensor model is its generality. The
number of measurements, as well as the actual measurement values them-
selves, are considered an integral part of the sensor report. Further-
more, pD(xIt,s), the detection probability of a target, not only depends
on the time t and the sensor s, but is also a function of the state of
the target. This state dependence is particularly useful when there is
masking of the targets or when sensor detection depends on the radial

velocity of the target, as in a MTI radar.

3.2 HYPOTHESIS FORMATION

Hypothesis formation is the first step in the GTIC operation. It
forms the feasible associations of data from different times and dif-

ferent sensors.

3.2.1 Tracks and Hypotheses

Since the origins of the measurements in each sensor report or data
set are uncertain, one of the crucial steps in multitarget tracking is

the formation of the data~to-data association hypothesis, or simply the

hypothesis. Each hypothesis corresponds to a possible explanation of
the origins of the measurements. These hypotheses would then be
evaluated with respect to their probabilities of being true in the later

steps.
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We can index each data set by k = (t,s), the time t when it is gen-

erated and the sensor s reporting the data. Each data set

((yj) » Ny» t,8) can then be represented by z(k). Let K be the col-
j=1

lection of all the data set indices, called the data set index set. The

order in which the data sets arrive define a natural lexicographic order

IA

on K.

Consider the cumulative measurement index set at time k defined as

(k) . .
Jy © = U J (k) x {k"}.
M ek B

(k)

Each element (j,k) = (j,t,s) in Iy

represents the jth measurement in
the data set from sensor s at time t. Our objective is to explain the

origin of each of these elements.

According to the sensor model, the uncertainty in the measurements
for the detected targets is due to the random assignment A(k). For each

target i, the set of measurement indices originating from i is given by
T(i) = {(A(k)(i),k) Ik € K,i € ID(k)). (3.11)
Since ID(k) and A(k) are random, each T(i) is a random set. Let

A={T(i)lie U ID(k)}
k € K
= {T(i)li € {1,...,NT},T(i) ¢ ¢} (3.12)

Then A is a random set identifying the measurement for all
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.

; the detected targets. At any k, the restriction of A to k is defined as B
- Ny = @03 e a1 4y, (3.13) .
A " |
- which identifies the measurement indices for each of the targets :j

detected up to k.

For each target i, T(i), its measurement indices, has realized

values which are subsets of Jék). Each of these subsets is called a E@
track at k and denoted by T. Since we assume that a target can generatec :¥
at most one measurement in a data set, then the set of possible tracks
are those containing at most one measurement index from each data set.

il
Let the set of possible tracks at k be T(k). E#

A data-to-data association hypothesis A (henceforth called a

—
hypothesis) at k is a (possibly empty) collection of non-empty tracks. ;i
A hypothesis X is thus a particular realization of the random set Alk' ]
Again, since we assume no merged measurements, then in the set of possi- -

ble hypotheses, each hypothesis cannot have intersecting tracks. Let

H(k) be the set of all possible hypotheses at k.

Thus, H(k) is the set of all possible realizations for the random
set Alk’ i.e., H(k) consists of all possible explanations of the origins

of the measurements in the data sets up to k. An event {A,, = A} means

k
that:

.
‘>l
o
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1. #()) targets have been detected and included in at least one of the

data sets prior to and including k;

2. each track T in A corresponds uniquely to a target detected prior

to or at k;

3. for any k” < k,(j",k”) € T implies that the jth measurement in the

data set k’ originates from the target identified by T;

4. if the intersection of T and JM(k') x {k“} is empty, then the tar-

get is falsely dismissed in k”;

5. any measurement indices not in U A are false alarms.

*C e STYTTW
A

Similar to (3.13) for each k in K and each k” < k, we can define

the restriction of T to Jék') (or simply to k“) as

. b L (k")

i T = =T NI T (3.14)
,;- The restriction of A to k” can be defined similarly as

& AT = A = AT 1T € AN(6). (3.15)

In the above T° and A" are called the predecessors of T and A, respec-

tively.
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3.2.2 Tree Representation

j?{' Although the hypotheses are defined as collections of tracks which

o

.o

are in turn collections of measurement indices, an equivalent represen-

tation is by means of a tree. In this representation, each level in the

a ‘i"'.".“r" ’l-"l .

tree corresponds to a measurement index and a node corresponds to a tar-

S e

get. Hypothesis formation given a new sensor report then reduces to
the expansion of the tree and a branch of the tree represents a particu-
lar data-to-data association hypothesis. The concept of the predecessor

of a hypothesis is obvious from this representation.

Figure 3-2 shows a hypothesis tree for two data sets with two meas-
urements in each. The tracks associated with each hypothesis are also
given. For example, hypothesis 24 associates yi and yf with the same
target (track 5), and y% with a different target (track 2). It thus
hypothesizes y% to be a false alarm. Note that from two data sets with

two measuremenis each, we have eight possible tacks and a total of 34

possible hypotheses.

3.3 HYPOTHESIS EVALUATION

Many data-to-data association hypotheses are generated by the
Hypothesis Formation Module. In order to rank these hypotheses, the
Hypothesis Evaluation Module evaluates the probability of each
hypothesis. This evaluation is based on the target models, sensor
models and the measurement values. For general target models, the

evaluation formula can be found in Appendix A. The following describes
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the evaluation scheme for independent and identically distributed target

models, which are the emphasis in this report.

(k)

Let 2 be the cumulative data set at k, i.e.,

(k) (k)
M

like to evaluate Prob.(AIk = Alz(k)} = P(AIZ(k)). Let k° be the immedi-

z = {z(k“)Ik” < k}, and XA be a hypothesis defined on J We would
ate predecessor of k, the latest data index and assume Prob.{AIk,IZ(k ))

is known. Suppose z(k) = (y,m,k). Then each hypothesis can be

evaluated as

Pz = ey, 12%7)) L a0 1 e N L (0, u16)

TEA

where C is a normalization constant and the L°s are likelihouvd func-

tions. The False Alarm Likelihood Function is:

L,,(k,2A) = n_,(Alk)! py (n.,(Alk)) n Pea (y: 1K) (3.17)
FA FA No, "FA jeigy (rmlk) FA'Yj
where nFA(Alk) is the number of false alarms in 2(k) according to A, and

jFA(A,mlk) is the set of false alarms in z(k) according to A.

The Track-Measurement Likelihood Function is:

€(T)

(v(k”)) Lk(Y(T,k).T) (3.18)

'd

o a4
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where :E
v(k') = the expected number of targets which are not detected .=
up to or at k', !
€(T) =1 if T is a new track in z(k); 0 otherwise, -j
Y(t,k) = the measurement for track T in the data set k; (if track ﬁ
T is missed in k, Y(1,k) = 0) ﬁ
. -.4
"
- = (k) ]
L G0 = fg (ylxp " (x)uldx) (3.19) -
X fa
—(k) [ . . ' _J
Pr (x) = p(x(t)|Z(k ),T) is the density of x(t) given Z(k') and
track T, and
pM(ylx,k)pD(xlk) if y + 0
g (V|x) = (3.20)
1-p, (x k) ify=296

There are thus three types of track-measurement likelihood func-

tions to be evaluated.

1. the likelihood Lk(Y(T,k),T) of measurement Y(T,k) # ¢ originating

from a previously detected target (le. £ 9);

2. the likelihood Lk(Y(T,k),T) of a previously detected target

(le, # ¢) being undetected (Y(T,k) = 0) and,

3. the likelihood v(k')Lk(Y(T,k),T) of a measurement Y(T,k) # @ ori-

ginating from a newly detected target (le, = ¢).

- 1
o In addition, Lk(0,¢), the likelihood of an undetected target remaining :
:f undetected is also used. The evaluation formula is very gemeral and -
F! reduces to the standard ones used in multitarget tracking when the -
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appropriate approximations are made.

3.4 FILTERING AND PARAMETER ESTIMATION

This module generates all the necessary statistics used in

hypothesis evaluation. In particular, if ;(k)(x) is the (prior) proba-
(k)

|

k
bility density/distribution of x(t) given Z and T, and p (x) is the

(posterior) probability density/distribution of x(t) given Z(k)

(k)
then for every T €T |

and T,

r

. 1]
./; t:.(x|x')pﬂ§k )(x')u(dx') if k has an immediate
t- predecessor k' = (t',s")

5(k)(X) = {

ft—t (x|x')q0(x')u(dx') otherwise. (3.21)
)

M () = 1 (11,10, 07! g (1,10 1P () (3.22)

In addition, the expected number of undetected targets can be updated

via
v(k')Lk(G,¢) if k has an immediate predecessor k'
v(k) =
VoLk(6,¢) if k is the minimum in K. (3.23)
29
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3.5 HYPOTHESIS MANAGEMENT -

1! The hypothesis management module controls the growth in the number
of hypotheses and makes the implementation of the GIC feasible. It is
e model-independent in the sense that the techniques involved are applica-
ble to a wide class of scenarios. The user, however, should select cex-
tain parameters to conform with the computational and memory require-

ments or to reflect his knowledge about the complexity of the situation.

No general theory on hypothesis management techniques exists at the
present moment. The purpose of this section is to summarize some exist-
ing techniques and describe any modifications to such techniques that
have been adopted in our work. We divide the hypothesis management

techniques into the following four classes.

1. Pruning .... cutting branches
2. Combining .... binding branches together
3. Windowing .... data validation

4. Clustering .... data partition

In the following, we discuss the techniques according to the above
classification. Although some of the techniques described below may
apply to the general target models, for the most part we restrict our

attention to the i.i.d. target case.
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- 3.5.1 Pruning

Pruning techniques can be further classified into (1) thresholding,

(2) breadth control, and (3) adaptive pruning techniques.

The basic philosophy behind thresholding is to cut (or remove) the
"insignificant" hypotheses which in turn tend to produce more insignifi-
cant hypotheses. In [5], it is proposed to cut any hypothesis with pos-
terior probability less than a fixed predetermined threshold. In the
i.i.d. target case, thresholding may be performed at the track level
using the track likelihood functions. One of the disadvantages of this
fixed thresholding is that it is performed without considerating the
available computational resources or the external condition (e.g., clear
versus confusing, etc.). For example, given the same computational
resources, one should be able to keep more hypotheses for a small amount
of data than for a large amount of data. This adaptivity, however, is

not present in the fixed thresholding scheme.

This consideration leads to the second subclass of breadth control
techniques in which a fixed number, say M, of the best hypotheses are

chosen and propagated forward. This technique is proposed by Keverian

in [6]. Choosing a fixed breadth M makes sense when we regard the
number of hypotheses kept as a measure of the computational and memory -
requirements. However, fixed breadth control may deviate from its ori-

ginal rationale quickly when some form of clustering is used since the

resources cannot be efficiently allocated among the clusters. Also. the

breadth control or fixed breadth method requires a sorting algorithm

R PRI
e s e e
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which requires additional effort (although this issue may not be impor-
tant since many good sorting algorithms do exist). When breadth control N

is used extensively to its limits, only one (best) hypothesis is

[

selected and propagated forward. In [5}, this model of pruning is

called a zero-scan algorithm.

Although fixed-threshold pruning may be viewed as adaptive

., - .
L“4'A bbbl nia

breadth-control pruning, and vice versa, these techniques do not really

adapt to the complexity of the situation. The third subclass of pruning

PO )

techniques introduced in this project is called adaptive pruming. In N

this strategy, the hypotheses are first sorted in descending order of
their posterior probabilities. Then, when the cumulative sum of the
probabilities exceeds a given threshold, the remaining low probability
hypotheses are pruned. This method may be called adaptive-
threshold/adaptive-breadth pruning since it adjusts both the absolute
threshold and the breadth according to the complexity of the external
condition, i.e., the more complex the situation is the more low proba-
bility hypotheses are retained. This adaptive pruning technique makes
more sense than aother pruning methods when clustering is used and may be
viewed as a way of automatically allocating computational and memory
resources among the clusters. However, it still suffers from the same
drawback of any fixed thresholding scheme in that the actual (absolute)

computational and memory resources cannot be predicted. Furthermore,

some form of sorting is still needed..

AN
.
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From a theoretical point of view, the posterior probabilities of
hypotheses may be considered as a discrete distribution. Hypothesis
pruning may then be viewed as picking the approximation techniques for
the distribution. Figure 3-3 displays the approximation involved in the
three schemes. Thus the theoretical issues in hypothesis pruning are
what a good approximation should be and how it influences the future
evaluation of multitarget tracking. Although some theories on the
approximation of probability distributions (e.g., Sorenson and Alspach
[7])) may give us some insight, we believe that hypothesis pruming is

still an open research area.

3.5.2 Combining

The existing combining techniques can be divided into two subc-
lasses: (1) distribution-oriented techniques, and (2) measurement-

index-oriented techniques.

The philosophy behind the first subclass is to combine two similar
hypotheses, where similarity is interpreted in a certain way. According
to Reid [5], two hypotheses are similar if they have the same number of
tracks and each track in one hypothesis has a unique companion track
which is similar to it in the other hypothesis. The similarity of
tracks is measured by the state estimate distributions, which accounts
for the name of distribution-oriented techniques. The rationale behind

this approach is that each track state distribution should reflect all
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the relevant information which affects any future event due to the

underlying Markovian assumptions. Thus, if two state distributions of

YT T
. PRI P
¢ PR

—

tracks are close enough, we would expect the future behavior of the two j

E' tracks to be similar. ﬁ?
- 3
- —d
Suppose two hypotheses Al and Az are similar, where ]

T, = {T}""’ Ti}, i =1, 2. Then hypothesis combining leads to a new

hypothesis A = (Tl,...,Tn} with

p(A2) = p(X,12) + p(A,12) (3.24)

and for j=1,...,n

1
p()‘llz)p(xm"[i) + p()\ZIZ)p(x|Z,T121Li))
PO 12) + pA,12)

- p(xITj,z) = (3.25)

3 where JI(.) is a permutation which maps a track into a similar track.

However, there still remains the crucial question of choosing a
good measure of "“similarity" and a good threshold for that measure.
When each track distribution is Gaussian, Reid [5]) proposes inequality

tests using the means and the diagonal elements of the covariance

matrices. However, no theoretical justification for the use of those
particular inequalities is given., His intuitive reason is that for N
tracks to be similar, both their means and their variances should not be b

widely different. This test may work well for Gaussian distributions,

but cannot be applied to more general distributions.
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Distribution-oriented combining is used to its extreme in [8] and

-
rerata aa A L'. -

(9] where all the hypotheses are combined after proper windowing
(described below). This is only possible when a fixed number of targets
are assumed, i.e., every hypothesis has the same number of tracks. When
two Gaussian distributions are combined, the combined distribution
becomes a Gaussian sum distribution because two different hypotheses
represent two disjoint events. When a Gaussian sum distribution is
approximated by a Gaussian distribution, the means and the variances are
usually equated. Unlike the results in [5] or [8], the Gaussian sum
form is preserved to a certain extent in [10} where each track distribu-
tion remains a Gaussian sum rather than Gaussian. In this case, the
hypothesis trees are extended to include one lower level, namely the
distribution level. The hypothesis management (pruning and combining)

techniques must then be extended to include this level.

In summary, unless each track distribution is assumed to be and
forced to be Gaussian, the similarity criteria proposed in [5], [8],
etc., may sometimes be unjustified. Theoretical results on similarity

criteria are still lacking in our opinion.

On the other hand, the measurement-index-oriented combining tech-

niques consider each track as a subset of the past cumulative measure-

la.

T e

ment index set. This technique has been proposed by Singer, et. al.,

PRSP SV S SrEeY 4

[11} and is a classical technique in the multitarget tracking litera-
ture. In these schemes, the tracks whose measurement indices on the

past N scans are the same are regarded as "similar" and identified.

e

o
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Thus they are often referred to as N-scan or depth-N methods. In Figure

)

3-4, hypotheses 1 and 2 can be combined if N = 3.

8

The justification is that since each track distribution is driven )

by the measurements assigned to it, if two tracks share the same meas- !
urements in the recent scans (data sets) they should be similar. This

scheme is criticized by Reid [5] on the ground that some events in the

ANy |

past may have a greater influence than the most recent N scans. How-

ever, since the Markovian nature of a target model removes this possi-

bility, the N-scan approach is attractive because of its simplicity.

After identifying tracks according to the N-scan or depth-N cri-

terion, we may have several identical hypotheses, i.e., hypotheses with

the identical set of tracks. Then those hypotheses are combined in a
natural way. In a sense, this approach may be actually viewed as com-
bining tracks rather than combining hypotheses. In fact, since similar-
ity is initially defined at the track level even in distribution-

oriented methods, one may further classify the combining techniques

according to where combining takes place. For example, distribution-

oriented combining may be performed at the track level or at a

..‘
-

hypothesis level. While track-level combining may seem to be more

BRI LS
P ) "

straightforward, it creates the problem of how two distributioms should

- be combined, since there is no natural weighting formula (similar to ;i
5
i&; that of (3.25)) used in distribution-oriented combining at the .
! hypothesis level. f
! B
[ "4
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Figure 3-4: N-Scan Hypothesis Combining

38

VAPPSR PR § ) —— o -l PR i RPN NP
P P DS N T SIS SEr N W Sl i SN ey 1 " PP S S S s P Var




— 3 p EERA- S ot Boas Jbtee Be @eacibii T “Ein iac e —Hhe ISR S S SR A P
YN Lt et e e M sare S S N Tt it it St S ORI B . ‘ .

To summarize, N-scan or depth-N methods have two major disadvan-

tages, namely, the unresolved issues of (1) how to choose a right depth

il N, and (2) how to combine track state distributions. Just as in the ¥
&7 case of pruning, many theoretical questions remain in combining :?
éif hypotheses. Our current preference is distribution-oriented combining :3
- at the hypothesis level since there is a clcar way for combining two fé
probability distributions. The similarity condition, however, should be i

carefully chosen according to the physical nature of the particular 'G

problems and the chosen representation of each track distribution, etc. :j

g

3.5.3 WVindowing é;

When i.i.d. target models are used, each measurement in a data set 5

can be individually evaluated by likelihood functions. When a track i?

state distribution has a reasonable variance and the measurement errors 51

are not exceptionally large, one can expect the track-measurement likel-
ihood to be very small for a measurement which is geometrically far from
the expected position based on the state distribution associated with
the track. Windowing techniques are generally designed to set an
appropriate threshold so that the track-measurement likelihood in such a

case becomes zero rather than a small positive number.

Thus, one may consider such techniques to be a special kind of

pruning, i.e., immediate pruning of branches based solely on one likeli-

hood function. In other words, windowing is a method for preventing all

but a certain set of data from being even tentatively associated with
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each track. For this reason, such a process is often called data vali-~
dation. When track state distributions and measurement error distribu-
tions are both Gaussian, windowing can be accomplished by a a classical
chi-square test. As described in [12], this test may be performed in
several steps. For example, the first step may consist of % test
(square test), and then a normalized square-of-innovation test (ellipse

test), and finally, the likelihood function test itself.

Another view of windowing is that it is part of the distribution
representation and modeling process. According to this view, when the
track state and measurement distributions are modeled as Gaussian, they
really are approximations of reality since such distributions can only
have compact supports in the real world. For example, when the standard
deviation of the measurement error is one mile, a data point 100 miles
away from the mean of the track distribution should yield zero as its

likelihood rather than a very small but positive number. We prefer this

point of view to the pruning or approximation view. Thus any windowing

process should be carefully designed to reflect the particular physical

nature of the problem.

3.5.4 Clustering

The basic idea behind clustering is that two events taking place at
locations far apart should be independent and can be evaluated
separately. Clustering techniques have been described in algorithmic

form in [5) for general cases and more rigorously in [8] for a special
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case. When adequate windowing is performed, there is a natural way to

avoid redundant calculations in evaluating hypotheses since the poste-

rior probability of each hypothesis is the product of an appropriate set

of likelihood functions. This constitutes another view of clustering.

Mathematically, clustering can be defined as follows. Let H be the
set of all non-zero-probability hypotheses at a given data set, i.e.,

for all )\ € H,
p(alz) > 0. (3.26)
For each possible track T, the posterior probability of T is given by
p(tlz) = I p(Al2). (3.27)
TELEH
Let T be the set of all non-zero-probability tracks, i.e., for all TE€T,
p(tiz) > 0. (3.28)
Let C be any partition of T which satisfies the following condition:

For any pair (C°,C") of elements in C, such that C° # C , and any

T € C and T € C":

TN =6, (3.29)

This condition means that the non-zero-probability tracks are parti-

o '8

tioned so that no two tracks which are in different elements (clusters)

of the partition share a common measurement index. For each C in C,
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let:
Ho = (A Ncix € H) (3.30)

and
I, =uUc. (3.31)

Then clustering is the process of generating {(IC,HC)I C € C}. Each HC
is the set of local hypotheses which consists only of tracks in C. For
each cluster C € C and each local hypothesis Ac in HC’ define the local

posterior probability Pc by
pc(kclz) =L {p(AlZ)IN € H, ANC= Xc}. (3.32)
Then it is clear that

p(M2) = T p.(3l2) (3.33)
cecC

Each global non-zero-probability hypothesis can thus be represented
as a union of local hypotheses (one from each cluster) and its posterior
probability is the product of the local probabilities of the local
hypotheses. From this definition, we see that clustering involves par-

titions at all levels: hypotheses, tracks and measurements.

Equation (3.33) is called the orthogonality condition. According
to the above definition of clustering, the orthogonality condition
should hold whenever the non-intersection condition of the tracks given

by (3.29) holds. However, when some approximation techniques such as
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pruning and combining are employed, orthogonality condition may not

hold. The clustering technique described in [5] is a method in which

W

the orthogonality condition is maintained without checking the non-
intersection condition of the tracks. This technique can be described

in terms of algorithmic procedures as follows:

1. Initialization of a Cluster - Whenever there is a measurement such
that the newly detected target likelihood is not zero but the
track-measurement likelihood with every existing track is zero, a

new cluster should be created out of the measurement.

2. Cluster Merging - Whenever there is a measurement such that each of
the corresponding track-measurement likelihood functions with two
or more tracks in different clusters is non-zero (in other words,
there is a measurement lying in the intersection of the validation
regions of two tracks in two different clusters), such clusters
should be merged before the measurement can be processed. The
merging of the clusters is accomplished by forming the union of the
tracks in the clusters, generating the global hypotheses and
evaluating the global probabilities as the products of the local

probabilities.

3. Cluster Splitting - Whenever a track with probability one, i.e.,

one contained in every local hypothesis in a cluster is found, it

is split to form a new cluster consisting of one hypothesis with

]
g
i

the sole track. Of course, the local probability of such

hypothesis is one.

8T
»

;Li
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We believe that any serious attempt on practical problems should
not be made without clustering, particularly in a problem involving a
large geographic area. One may even assert that clustering is probably
the most powerful hypothesis management technique in controlling the
number of hypotheses. Of course, how successful a clustering technique
is depends on the external conditions such as target density, measure-

ment errors and target dynamics.

The clustering procedure described above does not necessarily
guarantee the finest clustering. The finest clustering may be found
according to our mathematical definition of clustering. The test of the
non-intersection condition can be easily implemented if we identify two
tracks with the same measurement indices in a certain number of the most
recent scans just like in a measurement-index-oriented combining scheme.
The orthogonality condition can be met by modifying the local probabili-
ties using appropriate approximation techniques whenever possible. This
constitutes a3 new cluster-splitting technique which may improve on that
described above. Although this newly proposed version of clustering
seems promising, we do not have any actual implementation experience

yet L4
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4. INFORMATION FUSION IN DPISTRIBUTED GENERALIZED TRACKER/CLASSIFIER

. ) et l. . L
MYV N LA““‘A'_A._L P LR

Each node in the DSN receives information from other nodes. This

information has to be fused with the local information to obtain an
improved assessment of the state of the world. In this section we shall
discuss the fusion carried out at each node. While many ways of fusion
are possible, our work is based on the following philosophy:
Sufficient statistics for multitarget tracking are communicated
through the network. Upon receiving these sufficient statistics,
each node attempts to reconstruct the global sufficient statistics

that would be available if the actual sensor data sets were commun-
icated.

We shall present the distributed version of the Generalized
Tracker/Classifier of Section 3. Our discussion in this section will be
restricted to broadcast communication, where each node broadcasts its
results to all the other nodes periodically. The derivations of these
results, as well as their generalizations to more complex situatioms,

are given in Appendix C.

4.1 PROBLEM STATEMENT

In this section we state the distributed multitarget tracking and

classification problem.
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4.1.1 Models

The target and sensor models are the same as those discussed in
Section 3. Our emphasis is still on independent and identically distri-
buted target models. The system now consists of a set of processing
nodes called N. Each node n in the set processes the measurements from
the set of sensors called Sn' We assume that the sensor sets for dif-
ferent nodes are disjoint, i.e., San Sn' =¢ for n # n°. On the other

hand, the sensors of different nodes may have overlapping coverage.

In a general DSN, the nodes may communicate in many different ways.

In this section, we restrict our attention to the broadcast type commun-
ication (more general communication for distributed estimation systems

. will be discussed in Section 5). The processing nodes communicate with
ll each other at various times (the times need not be periodic and the com-

munications need not be synchronized). When messages are broadcasted

4

and received, each node in the network then updates its assessment on

the state of the world.

We assume that between broadcast times, each node receives a large

amount of data from the senors. Thus it is more efficient for the nodes
to process the local data first before communication. In particular,

each node broadcasts a set of possible hypotheses and the probability of

each hypothesis, a set of possible tracks and the state distribution of
each track, and the expected number of undetected targets based on the
local information. These quantities from various nodes are then to be

integrated or fused to obtain a better estimate. In order to define the
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problem properly, we need to generalize the definitions of tracks and "

hypotheses introduced in Section 3.

=

1
4.1.2 Tracks and Hypotheses =
L
S
Let K be the data set index set as defined in Section 3, i.e., the i
set of all data set indices k = (t,s). For e."h k in K, the data set ~€
and the measurement index set are Zf
o
z(k) = ((y.(k)) N, (k) , k) (4.1) .
j g M B
J

and
Iy(k) x {k} = {1,..., 8} x {k). (4.2)

Py

The set of all data sets is then

s
. A

-4

z= U z(k) (4.3) z=

k € K

and the set of all measurement indices 1is ;3
-4

d= U JM(k) x {k}. (4.4) 5

k €K :

3 .
) N
- Since each processing node generates hypotheses and tracks based on -
. e
e different information, we now generalize the definitions of tracks and v
- 2
hypotheses in Section 3 so that they can be defined on arbitrary subsets -

o

of J. Let J be any subset of J. Then a track on J is a (possibly

empty) subset of J and a possible track is one which contains at most
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one measurement index in each single data set. A (data-to-data associa-

,' tion) hypothesis on J is a (possibly empty) collection of tracks on J
and a possible hypothesis is one containing only nonempty possible
tracks such that no two distinct tracks intersect. Let T(J) and H(J) be

. the sets of possible tracks and possible hypotheses respectively. -

Since there is a unique correspondence between the elements in the j
sets J, Z and K, we may call a track (or hypothesis) on J & J a track —-j
(or hypothesis) on K or Z if K C K such that -

J= U {,...,80)} x {k} (4.5)
k € K
and
zZ = U z(k). (4.6)
k € K

For each subset Z of Z, we can define an information state I(Z)

consisting of the set of all possible tracks, the set of all possible

T

A"" 20
.

hypotheses, the posterior probability of each hypothesis, the state

g )

distribution/density of each track, and the expected number of

I3

undetected targets, i.e.,

1(2) = {T(2),H(2),(P(A|2),X € H(Z)), (p(x(t)|Z,T),T € T(2)),v(Z)

B E ~GOAEACAERERENT. 5 S
LI a e 2Lt T e

(4.7)

where p(x(t)|Z,T) and v(Z) are as defined in Section 3. I(Z) is called

the information state because it summarizes all the information about

rd
.

o w o
‘ t. 4
.
.
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the targets contained in Z and is used in the recursion in the GTC. -4

4.1.3 Information Fusion Problem fﬁ

The nodes are assumed to communicate in a broadcast mode. 1f the 7

actual data sets were communicated, after one such communication time,
all the agents would have the same information Z which is a subset of Z.

Let I(Z) be the information state of Z. Until the next communication

time, each node n receives data sets from the sensors in Sn so that its
; information increases. The increasing information can be processed

{ using the GTC. Let Zn be the information of node n just before the next
ii; communication, and I(Zn) be the information state. If again the actual

data sets were communicated, the information of each node would change

j‘: to
zZ= U Zn (4.8)
n €N
;{ with information state I(Z). Our assumption, however, is that the nodes

only communicate their information states. Thus the problem is how to

recover the information state I(Z) from (I(Zn)) and I1(Z). Figure

n €N

4~1 illustrates the structure of the problem.

There are two parts to this problem:

e Hypothesis Formation: Given I(Z) and (I(zn))n € §* hov should all ;i
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Figure 4-1: Structure of Information Fusion Problem
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the possible tracks and hypotheses on Z be formed?

e Hypothesis Evaluation: Given I(Z), (I(Zn))n €N’ and all the possi-
ble tracks and hypotheses on Z, how should the probabilities of the
hypotheses and the state distributions of the tracks be computed to

complete the description of 1(Z2)?

The information fusion module consists of three submodules which
carry out these two functions of hypothesis formation and hypothesis
evaluation and the additional function of hypothesis management. These

will be discussed separately.

4.2 HYPOTHESIS FORMATION

The objective of this submodule is to generate all the possible

hypotheses and tracks from the local hypotheses and tracks.

4.2.1 Example

The following example (Figure 4-2) shows that one has to be careful

in forming the global hypotheses from the local hypotheses.

Consider two nodes each with one sensor. Node 1 has sensor 1, and

node 2 has sensor 2. Sensor 1 (s=1) generates a data set with only one

_measurement at time 1 (t=1). This measurement can be indexed by (j,t,s)

vhere j=1 indexes the only measurement within the measurement set. Node
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Figure 4-2: Local and Global Hypotheses - an Example
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1 forms two hypotheses and broadcasts to node 2. Thus

J = {(1,1,D}. (4.9)
N
5
o At time t=2, each sensor generates another data set with one measurement
N
k3 each. These measurements can be indexed by (1,2,1) and (1,2,2) respec-—
r
l_ tively. The new cumulative measurement index sets at the two nodes are

then for n = 1, 2,
3_ = {(1,2,0)) uJd = {(1,2,n),(1,1,1)}. (4.10)

Local hypotheses are formed for each node. The global cumulative meas-

urement index set is
J = JlL) J2 (4.11)
= {(1,1,1),(1,2,1),(1,2,2)}.

Figure 4-2 shows the five local hypotheses defined on Jn,n = 1,2, and

the fifteen (15) global hypotheses defined on J.

Note that if we compose the local hypotheses without any restric-
tion, there would be twenty-five (25) hypotheses. This is in excess of
the actual number of global hypotheses if all the data were processed in
a centralized manner. Thus some of the compositions are inadmissible.
On close examination, we discover that some compositions are incon-
sistent. For example, Ail) from node 1 implies that (1,1,1) is a false
alarm and A;z) from node 2 implies that (1,1,1) is a target. These two

obviously conflict and cannot be compbsed to form a global hypothesis.

We also note that these two local hypotheses are expanded from different
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A’s, i.e., they have different predecessors. This suggests that we

should only compose pairs of hypotheses with common predecessors. -

If we do that, the number of possible compositions is 13, which is

T ¥
. '

2 . .
‘e o o

2t . . . . .
PRV T T D ey | —

less than the number of global hypotheses. This means that some compo- ';i

sitions of local hypotheses should produce more than one global

U
bk

TUT T UK. C.T T T
|
kit b

hypothesis. Table 4-1 shows how this happens. On the horizontal axis,

we have local hypotheses for node 2; on the vertical axis, we have local
hypotheses for node 1. Each entry in the matrix contains the global

hypotheses composed from the pair of local hypotheses. An empty entry -

‘ : e e e
ISR O N P R

indicates an impossible composition. We note that two of the composi-
tions yield more than one global hypothesis each. For example, both
Ail) and XEZ) have one track each. These two tracks can correspond to

the same target or two different targets, thus resulting in two global

hypotheses.
Table 4-1 Hypothesis Composition
;o S|
- T (
2
A2 A{2) 22 a2 Y
. ..
1) "
Ag 9 i
0 .
1) :
L Xg 12 X3' Aa -:,-
(1 . Ty
"2 xS >‘6 X7 -_{
X 1
Al o A:(; ) AB Ag AIO -%
R
\ xgl) M A2 M3 Mg =
-

. . . [ s
Ot ' s
oo . o0
2 a .

'''''''''''' -
AP T . PP PP S R

A i L aw,  W S e . . oe N . .
RIS L . R N N SR . . - P
s AR P AN P ) T I L st a miala.alt LinSa®a



| SUARRANA TN LA SSRGS A AR A AR G A N e T S - T
s :
L ;
b d
e
e !
b
N
N
=
{
R
K|
p

4.2.2 Hypothesis Formation Procedure
We have the following two level procedure for hypothesis formation:
1. Hypothesis—to-hypothesis compositionm:

a. For each A , identify the predecessor hypothesis A = Anlj; the

restriction of An to the past common cumulative measurement

index set 3.

b. Exhaust all possible compositions of local hypotheses with the b

same predecessor.

ol moadih A

2. Track-to-track composition: For each collection of local

Tty

hypotheses which can be composed,

a. Construct a unique extension T for every T in X.by letting

T= U 1T where T is the unique extemsion in A of T. Let
n €N

AOLD be the set of such tracks.

b. Exhaust all possible compositions of tracks which are not
extensions of tracks in A. Let ANEW be one such set. Then
any hypothesis composed from a given local hypothesis composi-

tion is of the form AOLDLJ ANEW‘

3
:
b
i
:
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he
fl. For the example in Figure 4-2, the operations of Level 1 generate

5 altogether 13 possible hypothesis-to-hypothesis compositions with 4 from

I

the predecessor X; and 9 from the predecessor Xl. Except for the compo-

sitions of (Ail), A{z)) and (Ail), AZZ)), Aygw is unique, and thus there

| P

is only a single global hypothesis for each composition. For the pair

(Ail) A§2)), AoLp = (¢} and there are two Ayp,"s, resulting in two glo-

bal hypotheses. For the pair Xgl) and A£2), XOLD = {(1,1,1)} and there

Y

.
PR

are again two ANEW’S’ resulting in two global hypotheses.

.' - Ll.

4.3 HYPOTHESIS EVALUATINN

Given the global hypotheses and global tracks constructed from the
local hypotheses and tracks, the objective of the hypothesis evaluation
submodule is to compute their probabilities and state distributions
using the communicated local information. Specifically, we need to
evaluate p(A|Z) for all global hypotheses, p(x(t)|Z,1) for all global

tracks and v(K), the expected number of undetected targets.

4.3.1 Static Target Models

We first state the hypothesis evaluation algorithm for static tar-
get models. Since deterministic random process models can be reduced to
static models, this algorithm is also useful when the targets can be
approximated by deterministic random processes, e.g., when the driving
noise in a linear stochastic system is very small. The following

results are derived in Appendix C.
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Fusion Algorithm

For stationary targets and broadcast communication, we have for every

A€ HQ),

p(M2) = ¢ D 1 Loz

e n n)) 2 (4.12)

TEA

where C is a normalization constant, #N is the number of elements in N,

and

nn E(xlz »T)
g = n €N n

G x|Z,1)) N1

u(dx), (4.13)

The expected number of targets undetected up to K is:

n ﬁ(xlzn.¢)

n €N
u(dx) (4.14)
G x|Z,¢) ™!

v(K) =

p(xIZ_,T) and p(x|Z,T) are given by
n

P(xlzn,'r) if T 4 ¢
plx[z ,T) =
V(Kn)p(xlzn,¢) if 1= ¢ ' (4.15)
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p(x|Z,1) if T4¢
p(x|Z,7) =
v(K)p(x|Z,¢) if T = ¢ (4.16)

p(len,T) and p(xlE,T) are the state distributions at the time of fusion
conditioned by track T, Zn and Z. Furthermore, the state distributions

can be fused to obtain

n pxlz ,7)
ofl o ¢! (4.17)
(p(x|Z,1))

pixlz,1T) =

where C is a normalization constant.

L
Similar to hypothesis formation, this fusion formula (4.12) has ?
again a two level structure. At the high level, we consider the proba-

bilities of the local hypotheses. The probability of the global

hypothesis is a product of the probabilities of the local hypotheses. f*

However, because each of the local probabilities has been computed using "

the prior probability of the predecessor hypothesis, the product has to E

be divided by the (#N-1)-th power of the probability of the common

predecessor hypothesis to prevent any double counting of this probabil- :?
. ity. This elimination is quite standard in distributed estimation prob- Ny

lems. When the information from multiple dependent sources is to be B

combined or fused, the redundant information has to be removed. A more :;

complete discussion of this will be found in the next section and in

a

i

Appendix B.

v
- _a
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Given each hypothesis-to-hypothesis composition, the lower level

1?‘ considers the likelihood of each track. Specifically, lT evaluates the

.
. L -, . «
o "‘, t.

v .

i likelihood that the multiple local tracks correspond to a single global A
T vV
': track. QT is related to an integral of the product of the state distri- )
; butions of the local tracks. Thus if the local tracks have very similar ?A
- =
- 4
l. statistics, e.g., position means and variances, the product will be a .
b non—zero function and the integral will be large, resulting in a high -
E; likelihood for the track. On the other hand, if the state distributions ;A
of the local tracks are very different, they will have little overlap v
and the integral will be small or zero. In this case, the likelihood
that the two local tracks correspond to the same target will be small.
-
The division by the state distributions of the common prior tracks is ;ﬂ
again to prevent double counting of any common information. jﬁ
e
The updating of the expected number of undetected targets and the i}
state distributions of the global tracks have similar equations. In the R
case of Gaussian distributions, the computation only involves means and E
—
covariances. ’%
K
o
|
N
.".1
T T
4.3.2 Dynamic Target Models T
=
}j 1f the targets are dynamic, as in more realistic situations, the RY
- o
) . . .
- hypothesis evaluation formula has the same form as in the static case.
\°, ‘.
F: However, the track likelihood functions must now be computed dif- —
b _ -
.- ferently. All the conditional probabilities of x must now be replaced
;' by those of X7, where x; is the target state evaluated at the set N
i'i ~-a
. i
- v
'“ 59 =
- -
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T, = {tl(t,s) € K-K}, (4.18)

|

1

the times when sensor observations are made since the last communication

.
«
Aoy

.
&

time. In other words, to decide whether two local tracks could have

come from the same target, we consider the probability distributions of

i

ey
PP MRS

the state for these two tracks over the entire time interval.

1
)

|

For a special class of random processes, called deterministic

processes, where the state at any time uniquely determines the

processes, the track likelihoods depend only on the state distributions =

of the tracks at min(TI). Figure 4-3 illustrates how the likelihoods

are computed for the three different processes. For both static and
deterministic random processes the densities of the target states at a
single time are neede? in track likelihood computation. For a general
random process, the densities of the states over one time interval are
needed. This, of course, makes hypothesis evaluation more difficult.

In many situations, however, such processes can be approximated by

deterministic random processes. This is the case when the noise driving

the linear system which models the target motion is very small,

4.4 HYPOTHESIS MANAGEMENT

Hypothesis management is again needed to keep the number of
hypotheses manageable within the computational resources of each node.

The same hypothesis management techniques discussed in Section 3.5 are

P 'v
. L. . .
bl “‘“—‘

again applicable.

Lok
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Computation of Track Likelihoods
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5. INFORMATION DISTRIBUTION AND PROBLEMS IN DISTRIBUTED ESTIMATION

The information distribution module in each node distributes the
local information to the other nodes in the network. It thus determines
the following:

- when to send a message
- where to send the message

- what to include in the message

The three items above together constitute the information structure
of the system. The design of information structures is one of the most
difficult problems related to the DSN since it is not amenable to ana-
lytic studies. However, an efficient design can serve the objective of
getting the needed information to the right node at the right time
without using too much communi:cation resources. In this project, we

have studied these issues through simulation experiments.

In Section 4, we have discussed the information fusion problem for
distributed multitarget tracking assuming a broadcast type communica-
tion. A key feature of the information fusion algorithm is that any
redundant information contained in dependent data sets has to be
removed. If the communication pattern is different from the broadcast
type, information fusion becomes more complicated. Since not much has
been done in this area, our discussion will be restricted to general

estimation problems rather than multitarget tracking. A more detailed
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description can be found in Appendix B and (4].

5.1 WHAT TO DISTRIBUIE

We adopt the philosophy that each node, upon receiving messages
from other nodes, attempts to reconstruct the best assessment of the
state of the world as if the actual sensor reports were communicated.
Thus the messages should represent the information state at each node.
In the context of multitarget tracking and classification, this informa-
tion state corresponds to the set of hypotheses, the set of tracks, the
probabilities of the hypotheses, the state distributions of the tracks
and the expected number of undetected targets. When all of these are
communicated, as discussed in the previous section, each node is then

able to reconstruct the global hypotheses and their probabilities.

If communication constraints are present, the information to be
distributed to the other nodes may have to be reduced. In this case,
only a subset of the hypotheses may be distributed. The information
fusion algorithm described in the previous section will no longer be
optimal. The question is them: how many hypotheses ought to be kept.
This problem is similar to the hypothesis management problem discussed
in Section 3. Again, no general theory is available. Rather, communi-
cation is dictated by practical considerations such as the bandwidth of

the network. Frequently, only the best hypothesis from each node can be

sent.
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A more adaptive strategy is to vary the communication based on the

information present in the set of hypotheses. For example, one adaptive
strategy is to transmit a sufficient number of hypotheses until the
cumulative probability exceeds a certain prescribed value. This is
similar to the adaptive pruning strategy described in Sectiom 3.5.1. If
one hypothesis stands out as being highly probable, then only that
hypothesis will be distributed. On the other hand, if several
hypotheses are equally probable, then they should all be distributed.

In some situations, it may be desirable to go one step further. The
information distributed should not only be decided by the transmitting
node, but depend on requests from potential receivers. Thus a node
which is highly confused may request a lot of information from other
nodes to help to disambiguate the situation. Although we have not
implemented these adaptive strategies in our current system, they should

be included in an improved version.

5.2 1SSUES RELATED TO DISTRIBUTED ESTIMATION NETWORKS

A DSN is a special case of a general distributed estimation net-

work. A main advantage of such systems is that there is no single cen-

R RS . - e,
PR . v St
PRV VP ArErYeet a L i

tral node whose failure or destruction may disable the entire system.

For such a distributed system to be really effective, the communication g
network supporting the nodes should have a certain amount of redundancy. -!
Otherwise, some nodes may be isolated from others in a failure. A .

redundant network, however, means that the messages arriving at a node

by different paths may contain the same information. If this redundant
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information is not removed in the processing, the same information may

?‘ be used multiple times, resulting in an incorrect assessment of the

) state of the world. o

Appendix B contains a theory for handling the distributed estima-
tion problem for arbitrary network structures. A distributed fusion
formula for combining the local conditional probabilities of the state
of a system to obtain the optimal global conditional probability is
given. This theory, together with the theory of multitarget tracking

described in Section 3, is then used to develop a theory for distributed

multitarget tracking and classification. In the following, we outline
this theory and illustrate the importance of proper processing with an

example.

5.2.1 Basic Results

Let x be the state or random variable to be estimated. Let S be a

set of sensors. At a given time t in T, a sensor s generates an output
- or measurement z(t,s). Let Z be the set of all such measurements.
Assume that the measurements are all conditionally independent given the

state x.

Let N be the set of processing nodes or estimation agents, each

receiving the reports from a subset of S. The information available to

-~ b Al e i ae) A3 o
', .
NENEN | $PENE oo

an agent at any time is a subset of Z. We assume that each agent n at

R
.

=,

time t computes the conditional probability of x given the available

.
!
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information denoted by Z(t,n). Agents also communicate the conditional
probabilities to other agents. When a conditional probability is 4
received by an agent, it fuses this with its local conditional probabil-
ity to ébtain the conditional probability which would have resulted if

the actual measurements, instead of the conditional probabilities, had

TN

been communicated through the network.

To carry out this fusion properly, the redundant information con-
tained in the conditional probabilities has to be removed. The follow-
ing lemma contains the basic results.

Lemma: Let Z,, Z, be two subsets of 2. Then

p(lel)p(xIZZ)

p(xlZ, Uz, =C¢C (5.1) -
where C is a normalization constant. o]
This lemma can be regarded as a distributed version of Baye s rule and .

is crucial in distributed estimation problems. Its proof can be found

in Appendix B. The set ZI\J 22 is the joint information in Zl and Zz "]
while the set ZI(W 22 is the common information. In combining the con-

ditional probabilities p(lel) and p(x[Z,) to obtain p(xlZ2; U 2,), we 3
note that both of these local probabilities have used the common infor-
mation. Thus, if we combine these probabilities with a naive rule,
e.g., by a product rule, the common information represented by

p(X|Zl r\Zz) would have been used twice. The redundancy can be removed

by dividing with p(xIZI(\ Zz). In other words, the lemma states that

the probabilities (p(xlzl),p(xlzz)) do not contain enough information to
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recover p(xIZIKJ Z,) and that an additional probability p(le1 Nz, is

also needed.

This lemma can be used as a basis for developing optimal fusion
formulas for arbitrary information structures. In a general case, each
node would have to know the history of the messages and remember some

statistics from the past.

5.2.2 Example

The following simplified example illustrates the removal of redun-
dant information in an arbitrary network. Consider a network with three
nodes {1, 2, 3}. Node i gets the measurements from semnsor i. The state
x is a discrete random variable with three possible values {a, b, c}.

The a priori probability of x is uniform, i.e.,

p(x=a) = p(x=b) = p(x=c) = % (5.2)

The sensor measurement z(t,s) also takes values in {a, b, c}, and the
conditional probabilities of the measurements for all the sensors are

given in Table 5-1.
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Table 5-1 Sensor Characteristics

p(z(t,1)Ix) = p(z(t,3)Ix) p(z(t,2)|x)

x | | i | x | | | ]
2 l a | b | ¢ | l’\l a I b | ¢ |
| i | i | ] | | | |
| | | | | | | | | |
| a 0.4 |03 ]0.3 | | a 10.6 0.2 |0.2 |
| i | | | | | | | |
| i | | | | | | | |
l b 103 0.4 [0.3 | I b 10.2 10.6 | 0.2 |
| | [ | | | | | | |
| ] | | | | | | | |
} ¢ 103 103 | 0.4 | |l ¢ 10.2 10.2 [0.6 |
| | ] | [ | | I | |

a: I

>

At each time t = 0, 1,..., each node processes the sensor data and
computes the conditional probabilities of x given all the available
information. At a time s =t + d, where d is a small time interval,
each node sends the conditional probability to its immediate neighbor
according to the graph of Figure 5-1. The communication is cyclic and
counter-clockwise. Note that the information sent from one node eventu-
ally returns to the same node. Upon receiving the conditional probabil-
ities, each node combines them to improve on the local estimate. Three

algorithms for information fusion are considered.

e Optimal Algorithm: Let Z(t,i) be the data available to a node i at

time t if the actual measurements were communicated through the net-~

- work instead of the conditional probabilities. Then the optimal

. fusion algorithm is

' . 1 i 3

L p(x12(s,i)) = ¢ 2Lxlz€e,i))  plxlzCe Lird])) o 17(6-3,i)) (5.3)

p(x12(t-2,i)) p(xlz2(e-1,[i+1]))
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Figure 5-1: Communication Structures g

where C is a normalization constant and [i]) is i modulo 3. 1In this -

algorithm, in addition to the local conditional probability
p(xlz(t,i)) and p(x!Z(t,[i+1]))) from the neighbor, each node has to

remember some of the earlier probabilities in order to remove the

redundant information. In addition, the history of the message is

also needed.

o Heuristic Algorithm 1: In this algorithm, we assume that the condi-
tional probabilities from the nodes do not contain any redundant

information. Thus the fusion algorithm is given as a product

p(x12(s,i)) = C p(xlz(t,i))p(x1Z(t,[i+l1])) (5.4)

vhere C is again a normalization constant.

o Heuristic Algorithm 2: Heuristic algorithm 2 is similar to 1 in

that it assumes to redundant information. However, it includes
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Ve explicitly the suboptimal nature of the algorithm and tries to

=
.1 remain more objective. This is accomplished by having {

.
r e
L

p(x12(s,1)) ~ ¢ [p(xIZ(t,i))p(xlz(t,[i+1]))]0*> (5.5)

makiats

!! Since the square root operation has the effect of flattening out a

[}

N

|

"

!

P.
L

0

probability distribution, this algorithm is less likely to have com-
plete confidence in any particular conclusion and is more willing to
incorporate new information. Thus it may be viewed as a hedging

strategy.

The results of the simulation studies are shown in Table 5-2. The
optimal algorithm and heuristic algorithm 2 both converge to the true -
value of x, although the convergence of heuristic algorithm 2 is slower. 4
Heuristic algorithm 1l converges very fast but frequently to the wrong

value of x. In terms of memory requirements, the two heuristic algo-

rithms are quite similar while the optimal algorithm requires more

memory.

Table 5~2 Simulation Results
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| | Percentage | | |
| Algorithm |  of Correct | Memory |  Convergence |
| l Classifications| Requirements | Speed |
|========= '======‘========= IE--—- ==== l== 4 2 4 £ 3 111t = l
| I | | |
| Optimal | 100 | High | Fast | :
| ] I | I -
| | | I | R
| Heuristic 1 | 60 | Low | Very Fast | 8
| | | | | o
I | | | | -
| Heuristic 2 | 100 | Low | Med ium | o
I | I I I g
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Figure 5-2 shows a typical simulation run where heuristic algorithm
1 converges to the wrong value b while the true state is a. The condi-
tional probabilities at each node are displayed for the states x = a and
x = b. We can explain the behavior of heuristic algorithm 1 as follows.
At time t = 1, sensor 2 gets an erroneous measurement b. Since sensor 2
is assumed to be quite accurate, the local conditional probability is
biased towards x = b. Node 1 incorporates this into its local probabil-
ity at time 2, resulting in a high value for the conditional probability
of x = b, This bias is propagated to node 3 at time 3. In the mean~
time, node 2 has obtained some correct measurements. However, the com-
munication from node 3 arrives and increases its confidence in x = b.
From then on, the process gets out of control and the conditional proba-

bilities all converge rapidly to x = b.

If we observe the behavior of heuristic algorithm 2, we notice that
it never concludes that the state is any value with probability l. With
this kind of hedging, the algorithm is more likely to recover after an

error has been made.
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NODE 1

#00E 2

NODE 3

5 10 t

5 10t

OPTIMAL ALGORITHN
------ "HEURISTIC ALGORITHM 1
...... HEURISTIC ALGORITHM 2

TRUE STATE = a

Figure 5-2: A Typical Simulation Run
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6.1 INTRODUCTION

In this section, two numerical examples are described to illustrate
the performance of the distributed Generalized Tracker/Classifier (GTC)
and to compare its performance with those of alternative structures.

For both examples, simple target dynamics were chosen; in fact, the
first example assumes stationary targets. Simple dynamics were chosen
for the following reasons. First, target dynamics affects mostly the
filtering problem, which, although is always at the bottom of the GIC or
distributed GTC algorithm, is not the main focus of our research.
Second, if complex dynamics are to be used, many numerical approxima-
tions, sometimes very bold ones, must be employed, making it difficult
to single out the major factors affecting the performance. Third,
although as discussed in earlier sections, general target dynamics can
be treated at least in principle, meaningful performance analysis for
complicated dynamics requires further improvements in the efficiency of
the GIC and distributed GIC computer codes. For the same reasons, very

simple sensor models were chosen.

The underlying basic assumptions are:

1. Targets are distributed along a straight line (e.g., on a road or
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in an air corridor).

2. Targets are either stationary (the first example) or moving at
almost constant velocities (the second example).

3. Sensors measure position and velocity along the road. These models
roughly approximate range-range rate radars whose angles are very
narrow, and which point to the line segment at very shallow angles,
so that the range readings can be regarded as a linear function of
the l-dimensional position corrupted by some noise.

4. In the first example, it is assumed that either the target speeds
are very small compared with sensor revisit times or sensors are
tuned to detect stationary targets.

5. In the second example, it is also assumed that the sensor readings
include noise~corrupted linear measurements of the target positions
and velocities.

Furthermore, we also assume the independent and identically distributed
target models for which the current version of GTC and distributed-GTC

have been designed.

6.2 STATIONARY TARGET EXAMPLE

We first consider the case of stationmary targets. This can be used
to approximate targets whose movements are small within the observation

interval.

6.2.1 Example Scenario

In this example, each individual target is represented by a one-
dimensional position and is aséumed to be stationary. Therefore, the
state of each target is a real number. The field-of~view of each sensor
is assumed to be identical and to be the line segment [O,L]. Each sen-

80r creates a measurement of the form

74

Y

AP ' § 2

Al

,.
e |

| RS

deaana

| P

4

|
|

P Y U P S ._L.__-‘,._‘._LM‘_._-_..,\._A_._,L_\_;__L.J_J



y = x + noise (6.1)

when it detects a target at x. The noise is an independent Gaussian
random variable with standard variation ¢ which is small compared to L.

The probability of detecting a target at x is given by

Pp - "% (y__xf
_ max o /. .
P, (x) = = _é' e dy (6.2)

if x € [-30,L+30] and 0 otherwise. The probability demsity function

Pm(.lx) of a measurement y given that it originates from a detected tar-

get x is given by:

2
1 fy=x
p (ylx) = = i ( ° ) X (6.3)
J}e—%(¥;)d
n

if y € [0, L] and zero otherwise. It is assumed that all the sensors

are modeled identically.

The target positions are independent and identically distributed

and the common distribution is uniform on {-30, L+30]. The total anumber -

of targets is constant but random and unknown; its a priori distribution 0

1

is Poisson with mean y,. The target density is then ~%
C N

)

- (6.4)

By = vp/(1+60) 3

»-4

?_1
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The number of false alarms in each scan is also Poisson with mean Vea
for each sensor. The adaptive-breadth/adaptive-thresholding pruning
technique described in Section 3 is employed for the GTC and the distri-

buted GIC. The threshold level is represented by € € (0, 1).

6.2.2 Commmunication Schemes and Performance Measures

Three communication schemes are examined:

o [Scheme 1] decentralized ---- single sensor (15 scans),

o [Scheme 2] centralized ---- two sensors (15 + 15 scans),

o [Scheme 3] distributed ---- two single-semsor nodes with
communication/information -
fusion every 5 scans. T
.
In the distributed scheme, all the hypotheses at each node are communi- . id
cated. The centralized scheme can be regarded as the case when the sen- ,51

sor data are communicated every scan. Since we assume identical sensors

with identical fields-of-view and with the same performance, the differ-

B
ence between Scheme 1 and Scheme 2 is only in the number of sensors or Eiﬁ
<

equivalently the number of scans in a centralized GTC system. fﬁ
4

For each scheme the baseline parameters are given in Table 6-1. o

N
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. ]
;: Table 6-1 Baseline Parameters for Statiomary Case ;
. 4
Pruning Threshold € .05 -
Target Density Br 5/L »
!
Measurement Error o/L .001
Expected Number of FA Vra 5/scan =
-
Probability of Detection Ppmax .7 f?
To determine the sensitivity of the schemes to parameter variations each ;ﬁ
4
parameter in the above table was varied and used in Monte Carlo simula-
tions which examined the performance of each scheme. ij
y
The performance is measured by several indices which are shown in 5’
the following table: ]
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Table 6-2 Performance Indices "~
4
| l | |
I NAME | SYMBOL l MEASURE [ g
l ———————————————— R R R R S S S R E R R R E S EEEEE R EEEEE RS l - -1
| | I I ]
| Average Number of | N | False Alarm Rate | é
| False Tracks | FT | of GIC Systems | -4
| l | _ k
l | | ! X
| Average Number of | N | False Dismissal | -4
| Missed Targets | MT | Rate of GIC Systems | E
l l | _ j
| | I |
I | | Overall Performance | =
| Probability of | P | Criterion of GIC | ]
| Perfect Association | PA | Systems | i
I | | | =
| | 1 ! ~3
| | o | Accuracy of Position | 4
| Position Estimate I pos | Estimates Given | 2
| Error I | Correct Association | ]
| | i _ o
| | | I -]
| I T | Actual CPU Time | :j
| Average Execution i E | Consumed by GTC I P
| Time | | Systems Per Scan | N
[ | | | .
| | | |
| | | Number of Tracks | “
| Average Number of ] Nor | Stored in GIC Systems | -4
| Tracks | | Per Scan | o
| I I _l -
R
At the end of each simulation run, the best hypothesis is examined 4
and compared with the true positions of targets according to the follow- 9
ing procedure. A pair (i, T) of a target i and a track T in the best 3
hypothesis is called permissible if [x - x| <€2E where x is the position "4
of the target, X is the best position estimate base on the track T and
€ is the evaluation threshold. Then a maximum number of independent
(non-overlapping) permissible pairs is obtained by running a modified, }%
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rectangular, threshold Munkres algorithm [13]. The result yields a set f¢

1T Y W
LI s
Tt

of correctly associated pairs. A track T in A is said te be correctly

A.J.AA.‘I —

a. associated with a target i if (i, T) is a correctly asscciated pair. _
Ej Otherwise it is declared as a false track. A target i is said to be -3
i; missed if there is no T in A such that (i, T) is a correctly associated }ﬂ
- S
i_ pair. Perfect association is by definition the case when there is no fj
F; false track and missed target. The first three performance indices,

NFT’ NMT and PPA’ are thus calculated. The position error is then aver-

A
i

aged over all the correctly associated pairs to yield opos' The last two

indices are rough measures for the computational requirements. TE is

measured by the average CPU time used to complete one entire Monte Carlo

run. NTR is the average number of tracks processed at each moment.

6.2.3 Experimental Results

Because of the stationary targets and the simple sensor model, the
filtering required is very simple and, in most cases, reduces to one of
the simplest forms of Kalman filtering. Whenever necessary, such as ;
when a track state distribution is centered at the edge of the sensor’s
field-of-view and should be updated as a missed measurement, an
appropriate quantization approximation is used to perform filtering or
to calculate the track-measurement likelihood functions. A quantization
approximation is also used to calculate the distribution of undetected

targets.
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Table 6-3 Baseline Quantitative Comparison

P N Y | o T I N

: PA : FT | MT I pos : E I TR :
| Prob. | Average | Average | Posi- | Average | Average | .
| of | No. of | No. of | tion | Execu- | No. of | 1
| Perfect | False | Missed | Esti- | tion | Tracks | J
| Associ- | Tracks | Targets | mation | Time | | :
| ation | | | Error | | | 5
| | | [ (%) [ (*%) | | ]
| | | | | | | R
| [ | | | I | | N
| | | | | | | | o
| Decentralized | .62 | 0 | 54 | 1.19 | 2.69 | 7.32 |
| | | | | | | | y
| | | _ _ | __ _
| | | | I I | |
| | | | | I | | ]
| Centralized | .70 | .02 | .32 | .238 | 4.29 | 5.27 | =
[ [ | | [ | [ [ |
I | | _ | | | |
| | | | [ | | | &
| | I | | | | | .
| Distributed | .78 | .04 | .24 I| 403 | 5.95 | 6.01 : 1
| | | | | | >
| | _ | | | _ _ = |
(*) Normalized by the standard deviation (= .00l x field of view) ﬁ
(**) Average execution time for one run: 4
Decentralized: 15 Data Sets ﬁ
Centralized: 30 Data Sets
Distributed: 30 Data Sets + 3 Fusion Operations B
Table 6-3 shows the results of a 50-run Monte Carlo simulation. g

The table compares the performance of the three schemes using the base-

LY |
N

line parameters shown in Table 6-1. For each scheme we have assumed

M- |

V.

N that every statistical parameter is known exactly and is used to calcu-

.
P

?z late the track-measurement likelihood functions. As far as the first

.

three criteria (which represent the target detection capability of the

. '
Acnamiondh
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1 4
. GTC or the distributed GIC) are concerned, the performance of the cen-

tralized (Scheme 2) and the distributed (Scheme 3) schemes are almost _j

h identical. Since the expected number of true targets is 5, both NFA and !

i NM.r are very small. Thus both schemes perform very well and screen out E

EE the false alarms, five of which appear on the average in every scan. :}

. —

i. This similarity in performance is not surprising since the information 'i

&z fusion algorithm used in the distributed scheme is designed so that the fj

' results of the centralized scheme may be reconstructed from the partial :j

i; information of the nodes. The performance of the distributed scheme is, :j

: however, slightly better than that of the centralized case, indicating ;i

the advantage of distributed calculation when hypothesis pruning is -

o

employed (pruning threshold = .02). On the other hand, the performance ?%

of the decentralized scheme (Scheme 1) shows how poorly the system per- T;

forms when the amount of data is half that of the other schemes. Table R

6-3 indicates an apparent performance degradation due to the the rela-
tively small amount of data. However, this degradation is highly depen~
dent on the quality of data (false alarm rate), the pruning threshold,

etc., and will be discussed later.

Because of the relatively low probability of detection (poax = .7)

and the hypothesis combining used in both the centralized GIC and the ;?

:

distributed GTC, the position error oﬁos is much larger than that from

filtering with known origins of all the measurements. In particular, in

— viw e
BACPRAT)

the decentralized scheme with small amount of data, Oﬁos exceeds even

AEE)
v

the sensor measurement error level. The difference between the central-

v BTY
[
[ Y

ized and distributed schemes seems to result from the pruning and com-

T T Y T
oA t’ ’ I :0'
S

A
0y

-~
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bining in the information fusion program used in the distributed scheme.
The last two criteria, TE and Ny, roughly reflect the computational
time and space requirements of each scheme. The number of hypotheses
and tracks increases rapidly as the amount of data increases. This
rapid growth is, however, controlled by the pruning and combining of
hypotheses. As seen in Table 6-3, the resultant increase in the CPU
time is about 60%Z compared with 100% increase of data. The distributed
scheme uses up about 40%Z more CPU time than the centralized scheme.

When we consider the fact that the distributed scheme maintains two
copies of data and processes them separately and that a relatively com-

plicated fusion program is used, this increase seems very moderate.

When hypotheses are evaluated successively as every new data set
arrives (as in the current implementation), the uncertainty in the ori-
g;n of each measurement is resolved rapidly after enough data is accumu-
lated. With less data available, the confusion may not be resolved to
the end of one run, and thus many hypotheses (and accordingly many
tracks) must be stored. The difference of NTR between the decentralized
and the centralized schemes reflects this effect correctly. The distri-
buted scheme needs to store slightly more tracks than the centralized
scheme. However, when we consider the fact that each node has its own
copy of the tracking data (significant redundancy), this difference is
surprisingly small. The qualitative comparison of the three schemes is

summarized in Table 6-4. It should be noted, however, that the space

requirement comparison does not include the size of the program itself.
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Table 6-4 Baseline Qualitative Comparison

| | | | (*) 1
I Criteria | | | | |
| | Detection | State | CPU Time | Space |
| | (Tracking) | Estimation | Requirement | Requirement |
| Scheme | | | | I
| | | | | |
| | ] | | |
| Decentralized| Fair | Poor ] Low | Large |
| | | I I I
| I | | | |
| Centralized | Good [ Good I High | Small ]
| | . | ] R |
| | | | | |
| Distributed | Good | Fair | High | Small |
| | | | | |

(*) Excluding the program space.
The same program is used both for the
decentralized and the centralized schemes.
The distributed scheme’s program size is at
least twice as large.

Figures 6-1 to 6-5 show the comparative statistics and are obtained
by varying the base parameters shown in Table 6-1. Each point has been
created by a 50-run Monte Carlo simulation. For each run, we have
assumed that all the a priori statistics are exactly kuown and the

track-measurement likelihood functions are calculated accordingly.

6.2.3.1 Effect of Pruning Thresholds

The first set of curves shows the effect of varying the pruning
thresholds €. In _Lhe distributed scheme, the same threshold is used for
both the GIC of each node and the information fusion program. The first

three criteria shown in Figure 6-1 indicate that, with a low enough
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pruning threshold, an almost perfect performance is obtained in each of
2

- the three schemes. As the last two sets of curves indicate, however,
the cost of obtaining this performance varies from scheme to scheme.

Almost over the entire range of €, TE and NTR show the same trend as

that in the baseline case result. Namely, the decentralized scheme
vhich utilizes only half the amount of data uses the least amount of CPU
time but the largest memory space. The distributed scheme consumes the
largest amount of time while its overall average space for tracks is
almost the same as the centralized scheme although it maintains two

copies of data most of the time.

As the pruning threshold increases, the performance becomes
degraded in every scheme. The deterioration is however much more gra-
dual in the distributed scheme than that of the other schemes. From the
NFT and the NMI curves in Figure 6-1, it is observed that the perfor-
mance of all tbree schemes is biased so that the false-track generation
is supressed far more than the missed-target generation. This trend is

obvious in the decentralized case and the cases with higher pruming

thresholds for every scheme. This bias is caused by the fact that the
'/ exact statistics, particularly the expected number of targets and false
alarm rates are used to calculate the likelihood functions. By doing
80, each scheme tends to falsely dismiss targets by pruning. This
aspect will be discussed later. The points of convergence as the thres-

hold approaches zero represent the performance limit of the given sensor

1

systems. Although a slight degradation is observed as the pruning

R

threshold is raised, the relation of the position error statistics of

o

-
el ]
)

Ly
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the three schemes remains almost identical.

6.2.3.2 Expected Number of Targets .

. .
l'. o
AL

.~
MY

Figure 6-2 shows the effect of the varying target density. Since

the field-of-view is tixed, the expected number of targets is exactly

P

proportional to the demsity. As the target density increases, the per-

formance generally degrades and the computational requirements increase.
Performance degradation is most likely due to the creation of false
tracks. These tracks may be created by wrong combination of measurement
points. The false track statistics in the high target density region
are particularly high in the distributed scheme although its overall
performance, PPA’ remains superior to the other two schemes. This type
of degradation appears probably because the effect of pruning in the
fusion program is more crucial than the local GIC program in high target
density cases. Since the false alarm rate is kept at the same level,
the memory requirement represented by NTR is almost proportional to the

target density. The required CPU time increases rapidly, however, in

the centralized and the distributed schemes. It is again noteworthy to
observe that the distributed case performs better than the centralized
scheme. The position estimation deteriorates as the target density

increases. This is a result of frequent combining both in the local GTIC

) 2R W) '.'.l"‘l‘_

and the information fusion. This degradation is also caused by the fact

that some of the tracks in the best hypotheses are entirely or partially _:'

formed by false alarms but, because of high target density, they may be

considered "good" enough tracks of actual targets which “happen' to be
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in their neighborhoods.

6.2.3.3 Measurement Error

e The effect of varying the sensor measurement error standard devia-

tion O is shown in Figure 6-3. In general, as O increases, the valida-

tion regions tend to intersect often so that many clusters become large
in size. As a result, there may be a number of equally probable

hypotheses in a cluster. As indicated by the NTR curves, the hypothesis
combining keeps the number of hypothesis under control. However, in the

current implementation of GTC and distributed GIC, all the track-

measurement combinations are first exhausted, then hypotheses are

- pruned, and finally combined after updating every track. Thus, even
though the resultant number of tracks is reasonably low the CPU time
requirement increases rapidly in accordance with o. The information
fusion program seems particularly susceptible to this kind of explosion
of CPU time requirement as indicated by a jump in the TE curve at

o/L = .005.

This seems to create a noticeable performance degradation of the
distributed scheme for large O when it seems to lose its defimite
superiority over the other schemes. The overall detection (tracking)
performance, however, remains relatively unchanged. It is hard to judge
wvhether some variation in some criteria. particularly NFT’ reflects some
significant performance characteristics or they are merely created by

random effects. This is so because the sample size is relatively small
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(50 runs). On the other hand, the position estimation does not :}

j deteriorate considerably as o increases. In fact, the filtering —
improvement of estimates is better when 0 is large. The effect of the

amount of data is again obvious in the opos curves although it becomes

insignificant when O is large.

6.2.3.4 False Alarm Rates

4 The effect of varying the false alarm rates is shown in Figure 6-4.
An increase in the false alarm rate has two effects: (1) the increase

in the amount of data to be processed, and (2) an increase in the ten-

Y

dency to dismiss tracks., The first effect forces the GTC and the dis-~
tributed GTIC to discard more hypotheses and the second effect results in
missed targets, as seen in the PPA and the NHT curves. When the false

alarm rates are very high, there may be many occasions where they align

T e AEL D SR )
> o v e v e e e

80 well that they seem to originate from real targets. However, since

the false alarms are independent, such events may be still rare. Even
if they are not rare, the GIC with non-zero pruning threshold tends to
dismiss many measurements as false alarms. Thus, the performance degra-
dation due to the increase in the false alarm rates is the most apparent
in the NMT curves. On the other hand, the NFT curves behave rather
strangely. This seems to be created by the complicated results caused
by the two different factors: aligned false alarms and tendency of
dismissing measurements. When the false alarm rates are high, all three
schemes have almost identical performance. It is particularly signifi-

cant to observe that the advantage of having twice the amount of data
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disappears in such cases. This is interesting because we do not observe

such phenomena in conventional filtering or estimation problems. In

[

fact, when the amount of data is doubled, the number of false alarms is

e

also doubled so that the benefit of having additional data diminishes. ¥
Howvever, the advantage of the large amount of data is reflected by the 'E

*
Opos curve. The centralized and distributed schemes are able to select

-

data more accurately without excessive combining as indicated by the

l, r
TR W

opoa curve. In the decentralized scheme where the amount of data is
half, there is a tendency to dismiss measurements frequently, as is

apparent from the decreasing NTR curve.

6.2.3.5 Probability of Detection

The last parameter varied is the probability of detectionm, Ppmax’
in Equation (6.2). The result is shown in Figure 6-5. As to be
expected, a8 the probability of detection decreases, the performance
deteriorates gradually. The difference in the behavior of the three
schemes is however not obvious. In particular. there is no significant
difference when the probability of detection is high. The performance
is dominated by the missed-target statistics whereas the NFT curves

remgin at very low level and show only random changes. The position

estimate errors behave rather strangely. This again reflect the fact

that, when the origin of each measurement is not certain, the amount of

data is sometimes advantageous but not always. As seen in the NTR

curves, when the number of scans is small (the decentralized scheme),

the low probability of detection requires more hypotheses and thus more
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memory space. However, for the centralized and the distributed schemes
where the number of scans is twice as many as the decentralized scheme,
this trend is not so obvious. The CPU time requirement increases as the
probability of detection decreases in every scheme. However, the rela-

tion among the different schemes remains substantially unchanged.

6.2.4 Summary of Results and Supplemental Discussions

The observations from the comparative statistics obtained by the
varying key parameters may be summarized as follows:

1. In general, as the parameters move to more difficult values, the
performance degrades accordingly in every scheme. In most cases,
however, the relative performance displayed in the baseline case
of the three schemes remains unchanged.

2. When the external conditions are severe (e.g., with high target
density, high false alarm rates, and large measurement errors), the
difference in performance sometimes becomes less obvious. However,

there is no cross over in the performance ordering of the three
schemes.

3. The advantage of using less data (the decentralized scheme) appears
only in saving the CPU time. Under mild external conditions, the

decentralized scheme requires more memory space than the other
schemes.

4. The CPU time requirement increases rapidly with high target den-
sity, high false alarm rates, large measurement error and low prun-
ing threshold, both in the centralized and the decentralized
schemes.

In order to evaluate the performance, we have used the two demerit

indices, N__ and NHT' In the baseline comparison and the subsequent

FT
sensitivity studies, we have occasionally observed some bias toward more
NMT’ i.e., a trend to dismiss targets than creating false tracks. These

two indices correspond exactly to the two basic sensor parameters, the
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false alarm rate and the probability of false dismissal (1 - prob. of

[T N

detection). Thus, like the false alarm rate and the probability of

false dismissal, N_. and Nyp are complementary. For example, when any

pruning schewme is employed, there is always some chance of dismissing a

“true" hypothesis comnsisting of true tracks of the real targets. This

possibility has not been comsidered in deriving our basic hypothesis

evaluation equations. Although how to take care of this is an open

AR PN A
R e
i }

b theoretical problem, the pair (NFT’ NHT) may be affected by changing

ﬁr some parameters used in the likelihood functions, such as the a priori

N
AN
'

. target density, the probability of detection and the false alarm rates.

v

R I )
N
K

The last analysis in this section shows how the two indices change when

the a priori target density is modified from its true value.

Figure 6-6 shows the performance variation when the expected number
of targets used in the algorithm ig wmodified to Vg from its true value
VT' As expected, NFT increases and NHT decreases as V¥ increases. An
index representing the overall performance, PPA’ has a peak in every
scheme. The peak is however at a different point for each scheme. The
determining factor seems to be the amount of data. Namely, when the
amount of data is large, the chance of missing targets is low so that
there is less need for large compensation. The increase of v:, however,
forces the GIC and the distributed GTIC to maintain more hypotheses and

to use more computation time.

Figure 6-7 shows the two dimensional change of (NFT' NHT) according

to vg. The curves in this figure may be regarded as trade-off curves.
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They may help the user of the GIC or the distributed GTIC in choosing the
right parameters. Other parameters which may be modified are the false —?
alarm rates and the probability of detection. Moreover, the calculation
of the likelihood functions for newly detected targets can also be modi-
fied. Which parameters should or should not be modified is still an —y

open question.

6.3 AN ALMOST CONSTANT VELOCITY TARGET EXAMPLE

In this section we consider a class of dynamic target models where
the velocity is almost constant. Such models can approximate targets

which do not maneuver during the sensor observation interval.

6.3.1 Example Scenario

Almost constant velocity target models are next in complexity to
the simplest *2rget model, i.e., the stationary target model described
in Section 6.2, but are commonly used in the multitarget tracking
literature. By an almost constant velocity target model, we mean a
dynamical model in which the position and the velocity constitute a
state and the time-derivative of the velocity is a white noise vector
with small intensity. In this section, we shall explore a one-
dimensional almost-constant-velocity target model, in which each target

state x(t) at time t has a dynamical model given by:

ol e o LIPS N PP W PN it o
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u(t) u. + f v(T)dT
. 0¥
p; X(t) = - (6.5)
_v(t) v, + w(t)

0

where u(t) is the position, v(t) the velocity at time t, and w(.) is a
Wiener process with Var.(w(At)) = QAt. We assume two nodes each of
which has a sensor measuring the velocities of targets as well as their
positions. The node layout is shown in Figure 6-8. The initial velo-
city of each target is assumed to be much larger than the intensity of
the white noise which excites the state, and thus targets always move in
the same directions. Therefore, we assume that each sensor has a pre-
processor which filters through only moving objects and divides all the
measurements by their directions into two separate sets and that we do
not need to associate measurements across the two sets. Moreover, when
each target is viewed as an object moving in a two-dimensional space
(position, velocity), targets never cross each other although they may
pass each other. For this reason, in our experiments we assume that

targets move only in one direction.

As shown in the figure, the two sensors have non-overlapping i

o

fields-of-view. The distance between the two fields~of-view is assumed

to be the same as the length of the field-of-view of each sensor. The

two sensors have identical characteristics. The detection probability

N '1 'l ‘L

for each sensor n is given by:

* » |.' I.l
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Figure 6-8: Node Layout ;;
( )(X) = (")(u v) f
= Ppmax f g(um-u;Ru)dumf g(vm-V;Rv)dvm (6.6) i
U(n) v B
N
4
where Tf
g(E3R) = (VZTR) ! exp( - % £2/R) (6.7)

is the one-dimensional Gaussian density function and

( ) - = [u (n) (n)] = field-of-view of sensor n N
min’ “max

(6.8) '#

V=([v_, v ] = velocity interval observable f

min o

(same for both sensors) -]

s |

A

-
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The measurement error probability for sensor n is given by:

Vo = pM v [uw)

g(um‘U;Ru) g(vm-v;Rv)

S 8GEuiR e fen-viR dn
U(n) v (6.9)

By choosing the left end of the field-of-view of sensor 1l as the origin,

we have:
u(l) =0, u(l) =L,
min max
(2) _ (2) _
umin = 2L, and uox 3L.

(6.10)

Thus, the sensor performance is determined by PPmax in (6.6) and the

measurement accuracies

o, = YR, and (6.11)

o= yR_ . (6.12)

The initial velocities of the targets have the distribution shown
in Figure 6-9. The initial positions were assumed to be uniformly dis-

tributed on an interval Uo which is chosen so that we could expect a

101

VR A N S I S S S SRS S S S a P A VA D U R U G S W




o v —— C B AN A e Jhan ran o o Bl Sy Saancd ey
& 5 A e A S e SN A e A S IR Chal AR

S " ' ]
; 4
.: -J
-4
. =
<
- Prob.
Density
4 .6
- .2 .2
- _ L
e —
;o .15 .25 .35 .45 At
o (st = scan interval)
‘:4 Figure 6-9: A Priori Distribution of Initial Velocity
-:j target at any position on [0, 3L] when the first scan was made and a new
o
= target could appear at the last scan. We further assumed that the two
o
sensors were synchronized with the identical scan interval At and that
g Voin = (+15) (L/at) and v = .45 (L/At) so that (6.6) - (6.9) made
- sense. The number of false alarms from each sensor was assumed to be
Poisson with mean VEa® and each false alarm is distributed uniformly on
:. U(n) x V. ::
The baseline conditions chosen for this example are shown in Table -?
AN
. 6-5. )
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- L
-4
102 j




. T L N S F W F VW w W e R S Lom Ry T Ty Te e e R T T e e e
r L il - e - PO AU LT R R TR N R iy A S N . T )
L NS I -~ N T . . .

Table 6-5: Baseline Parameters for Alwost Constant Velocity Case

Pruning Threshold € .02 f3
Target Density By 0.5/L %]
—

Position Measure- -3 .
1

ment Error %, 10 "L B
Velocity Measure- -3 ﬂ&
ment Error o, 10 “L/At o

Expected Number

of FA vFA 4/scan

Probability of

Detection .7

poax

6.3.2 Communication Schemes and Performance Measures

The three communication schemes introduced in the previous section
(decentralized, centralized and distributed) were examined. The simula-
tion time is chosen to be 10 scan intervals. In the decentralized
scheme, each node processes only the data available to it. In the cen-
tralized scheme, all the data is processed in a centralized manner
either by a single processing node or redundantly by two nodes with
every data set exchanged at each scan between the two nodes. On the
other hand, in the distributed scheme, the communication between nodes
is much less frequent and is at the hypothesis level rather than the
sensor measurement level. In this example, the distributed scheme com-

municates every 5 scans, i.e., only twice in the total length of
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scenario.

Since in this example the targets move only in one direction (left

IO T

=

to right), we cannot compare the node performance in the decentralized

[

scheme with other schemes using the same performance measures of the

|
id

previous example. For example, the downstream node 2 may have a chance
of seeing only half of the targets getting into the region and the role
of the upstream node 1 is asymmetric with respect to the other node 2.

For this reason, we evaluate the decentralized scheme by assuming an

additional ad hoc coordination system which integrates the outputs of
the two nodes. First, the best bhypothesis is extracted from each node.
Tracks in the best hypotheses from the two nodes are then tested by a
thresholding modified rectangular Munkres algorithm [13]. A track Tl
from node 1 and a track Tz from node 2 are declared to originate from a
single real target when the distance between the best estimates of the
position-velocity pairs is less than a given threshold. Let Tl and Tz

be the hypotheses from the two nodes in the decentralized scheme and TST

be the set of pairs (Tl, Tz) vhich are judged to originate from a single
target as described above. Then, we consider the following two sets of

tracks as outputs of the two different coordination systems:

(1) AND-LOGIC SIMPLE FUSION

{t, urzl(Tl, 1,) € TST}
(2) OR-LOGIC SIMPLE FUSION

{tr, v 12‘(11. 1,) € T}

Ulr, € Allthere is no 1, such that (1, T,) € Tgr }

LJ{TZ € AZ there is no 1, such that (Tl, TZ) € TST]
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The reason that we have named such coordination as "simple” is apparent.
as well as the adjectives "and-logic” and "or-logic". The introduction
of these coordination systems for the decentralized scheme serves a
two-fold objective: to test the effect of the frequency of communica-
tion at the hypothesis level; and to see how well or poorly such simple
“heuristic" operations as described above perform when compared with
more well-defined outputs from the centralized and the distributed

schemes.

The same set of performance criteria as those described in Section

6.2.2 is used; N NHT’ PPA' cpos’ TE and NTR shown on Table 6-2 are

FT’
used to evaluate the performance of every scheme. Since we have the
velocity component in a target state and the velocity measurement in
every sensor measurement, an additional criteriom, i.e., the velocity

estimation error ovel is included. The evaluation procedure for each

scheme is the same as that described in Section 6.2.2.

6.3.3 A Sample Run

In this section we describe the results of a single sample runm.
First we describe the data from this run, and next we summarize the

operation of each of the three schemes.
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6.3.3.1 Sample Run: Data

Figure 6-10 shows a typical sample of the 10-scan position measure-
ments from two nodes under the baseline condition. There are 73 meas-

urements in total from the two nodes (sensors) in the 10 scans. Out of

L A"AAL'}'J -‘L.'A.A'

these 73 measurements, only ten originate from the real targets while

the rest are false alarms. As seen in this figure the nominal condi-

2

tion can be characterized as a high-false-alarm-rate, low probability-

of-detection case which makes the tracking difficult. From these data.
it is almost impossible to extract tracks by human eye. Of course, this A;
is true particularly because Figure 6~10 shows only position measure- e
ments. Figure 6-11 shows the same sample where velocity measurements ﬁi
are attached. In this figure, each velocity measurement is represented

by a unit-length arrow originating from its position measurement and

pointing to the expected position at the next scan time. Thus an arrow &’
pointing straight down indicates zero velocity and an arrow pointing to ”i
- the right indicates infinite velocity. With the high false alarm rate. }:
the relatively low probability of detection and the existence of the Fi

masked region, it is still very difficult for human eye to extract tar-

get trajectories.

Figure 6-12 shows the true target trajectories of this sample, and X
Figure 6-13 is the superposition of the measurement data (Figure 6-11) o
and the true target trajectories (Figure 6-12). Target 1 appears in the
masked region and moves eventually into the field-of-view of sensor 2 >]
where it has the opportunity of being detected four times, but is actu- 4;

ally detected only twice. The rest of the targets, 2, 3, and 4, appear ;ﬂ

gty
a0
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in the field of view of Sensor 1. Only target Z moves across into the
field-of-view of Sensor 2. Targets 2 and 3 are detected whenever they
have a chance of being detected. On the other hand, target 4 is never

detected.

6.3.3.2 Sample Run: Decentralized Scheme

At the end of Scan 5, node 1 confirms target 2, i.e., all the
hypotheses contain the track of the three measurements while the other
targets have not yet been detected. By Scan 10, target 3 has been con-
firmed by node 1, and targets 1 and 2 have been confirmed by node 2.
Thus, at the end of the sample rum, the best hypothesis contains three
tracks corresponding to targets 2 and 3 in node l, and targets 1 and 2
in node 2. Consequently, the simple AND-logic fusion should form onme
track corresponding to target 2 while the simple OR-logic fusion should
form three tracks corresponding to targets 1 to 3 if the fusion mechan-
isms work properly. However, due to the particular value for tlke thres-
hold used by the Munkres assignment algorithm, the two tracks which
should be identified are not judged to originate from the same track.
As a result, the simple AND-logic fusion forms no track, i.e., no false
track but four missed targets, while the simple OR-~logic fusion forms

four tracks, i.e., one false track and one missed target.
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6.3.3.3 Sample Run: Centralized Scheme

At the end of the last scan, there are 18 clusters. Three of them
have confirmed tracks which correctly correspond to the real targets, 1
to 3. All other clusters have only tentative tracks with small proba-
bilities. Thus, there is no false track and one missed target. Since
the missed target is undetected by all the sensors, there is no chance

for it to appear in the output of any scheme.

6.3.3.4 Ssmple Run: Distributed Scheme

Up to scan 5, everything works in exactly the same way as in the
decentralized scheme, i.e., target 2 has been confirmed by node 1 while
other targets have not been detected yet and all other tracks are tenta-
tive. At the end of scan 5, the information, in terms of clusters,
hypotheses and tracks, from the two nodes is “fused". In the first step
of this fusion, the track-to-track likelihood function is calculated for
each pair (T,, Tz) of tracks from nodes 1 and 2. It turns out that the
only feasible (positive likelihood) pairs are in the form of either
(Tl, ¢) or (¢, Tz). This reflects the true situation that no target has
appeared in both of the fields-of-view. One of the tentative tracks
from node 1 indicates that, if it had originated from a real target. it
should have been detected also by node 2. Since it has not been
detected, this tentative track is rejected. Thus, out of 7 possible
tracks from node 1 and 8 tracks from node 2, one (correctly) confirmed

track and 13 tentative tracks become common tracks to both nodes.
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Node 2 correctly extends the confirmed track when the target enters
the field-of-view of sensor 2. With respect to the other targets, 1, 3
and 4, the distributed scheme performs in a way very similar to other
schemes until the last scan after which the second information fusion is
performed. At the end of the last scan (before the second fusion),
several of previously fused tracks have been eliminated by each node.
There are ten new tracks (including the confirmation of target 3) from
node 1 and 2 tracks (including the confirmation of target 1) from node
2. When the track-to-track likelihood function is calculated, four pre-
viously fused tracks are eliminated because one of the nodes has
rejected them. Subsequently, the confirmed and previously fused track
is fused again with new information being provided by node 2, while the
other five previously fused tracks have not gained any additional infor-
mation because any real target is not expected to have appeared within
the field~of-view of any sensor. Thus, the information(clusters,
hypotheses and tracks) obtained by this second fusion is the same as
that obtained by the centralized scheme except for small errors in track
distribution parameters, track likelihood and probabilities introduced
by approximations in the information fusion program. In this sample
run, the performance of the centralized scheme is almost identical to
the distributed schemes. This means that the hypothesis management used
in the centralized GTC, the distributed GTIC s and the information fusion
program have not altered the objective of the distributed system, i.e.,
to produce the performance of a centralized system while distributing

the tracking tasks among the two nodes.
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6.3.4 Monte Carlo Simulation Results

Although what is discussed above is only a sample, it turns out 1
that this performance comparison of the centralized and the distributed ]
schemes is quite typical at least for the baseline case. This result is -;
in contrast to that of the previous section where we saw a slight advan- -

tage of the distributed scheme over the centralized scheme. The similar
\

performance of the two schemes is probably due to two factors. First, ;ﬂ

only a small fraction of targets appear in the field-of-view of the sen-

sor because of the relatively large masking. Second, false alarms do
not disturb the performance greatly despite the relatively high density
because the velocities in the measurements serve as strong discrim-
inants. Table 6-6 shows the base case comparison of the four schemes

obtained by 100-run Monte Carlo simulations.

It is obvious from Table 6-6 that the two decentralized schemes
perform worse than the centralized and the distributed cases. This

result shows a clear advantage of frequent communication over less fre-

quent communication and of rigorous fusion algorithms over heuristic
fusion algorithms. As could be expected, the simple AND-logic scheme’s 1
performance is the worst because of its extreme cautiousness. Since
there is little chance that both nodes confirm the same target, this g

scheme tends to create many missed targets. On the other hand, the sim—

I P

ple OR-logic performs almost as well as the centralized and the distri-

buted schemes with respect to the missed target statistics. However,

P

since this scheme accepts non-agreed-upon tracks rather blindly, the

AL 4

number of false tracks is exceptionally high. However, when we view

adh
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Table 66 Baseline Comparison for Dynamic Targets

: Ppa : Ner : Nur :G’Sos :"321 : TE**: Nrr
IProb. |AveragelAveragelPosi- |Veloci-|Average|Average
lof INo. of INo. of | iton | ty |[Execu- |No. of
|Perfect [False [Missed [Esti- |[Esti- | tion [Tracks
|IAssoci-|Tracks |Targets| mation| matio [Time |

lation | | |Error |Error |

I (%) | (x%) [ (%%%)
I I

|

|

|

i

|

[

| I

| | | |

| I | I I

| | [ | [ | | I

|Decentralized| | | | | | ! )
|(Simple AND | .09 | O | 2.97 | 8.91 | 3.53 | 6.42 | 26.3 | :
| Fusion) | I | I | | I | ;
| I I I | I | | [ !

] ! | | | | | | |
IDecentralized]| I | I | | | l !
I(Simple OR | .29 | .27 | 1.08 | 6.06 | 1.91 | 6.42 | 26.3 | ]
| Fusion) I I | I I I | l 4
| | | | | | l ] ! !
I I I I I I I I I ]
I | | | I I | I | :
{Centralized { .34 | .05 | 1.04 | 5.29 | 1.70 {10.93 | 20.1 | !

| | I I | l [ | |
I | | | I I I I | .
] | I | | | | I I 1
| | | | | | | | | )
IDistributed | .34 | .06 | 1.04 | 5.29 | 1.70 |11.82 | 32.2 | |
| | | | ! | | ! | 1

! I ! ! I I I I I

(*) Normalized by the standard deviation of the position
measurement error.

(**) Normalized by the standard deviation of the velocity
measurement error.

(***) Average execution time for one rum:

Decentralized: 20 Data Sets
Centralized: 20 Data Sets
Distributed: 20 Data Sets + 2 Fusion Operations
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PPA' the probability of perfect association, as a single proxy of per-
formance for each scheme, the simple OR-fusion decentralized scheme per-

formance is quite close to the centralized and distributed schemes.

The comparison of performance between the centralized and the dis-
tributed schemes is not conclusive since both perform equally well. The
trend in the computational requirement is very similar to that we have
observed in the previous example. The decentralized system uses much
less CPU time but requires more space. The distributed scheme requires
more time and space than the centralized scheme. The average estimation
error is comparable to the measurement error for the velocity and is
about 5 to 9 times bigger for the position. This is so because the
average number of measurements in a track is very small due to the low
probability of detection and the large masking. The position estimatiom
errors are further worsened since the random change in the velocity is

accumulated and added to the positional uncertainty.

Comparative statistics were obtained by 100-run Monte Carlo rums
For each of the six key parameters (i.e., the pruning threshold, the
target density, position measurement error, velocity measurement error,
false alarm rate and probability of detection). The parameter values
used in these tests are summarized in Table 6-7. The results are sum-

marized in Tables 6-8 to 6-13.
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::: Table 6-7 Parameter Values for Sensitivity Study j

-]

I

4

| | Values I 1

| Parameter | | -
| | Low | Baseline | High |
I | [ | I
| I I I |
| Pruning Threshold -€ | 0.001 | 0.02 | 0.1 |
| | I I |
| | I I |
| Target Demsity-v, | 0.25/L | 0.5/L | 5/L |
| I I | |
I I | I I
| Position Meas. Error -0, | 0.0001L | 0.001L | 0.01L |
| | | ! {
| | I | I
| Velocity Meas. Error-o, [0.0001L/At] 0.001L/At| 0.01L/At |
| | | | I
| I I | I
| False Alarm Rate-\p, | 2 | 4 | 8 |
| | | | I
I | | | |
: Prob. of Detecuon—PDmax: 0.5 : 0.7 : 0.9 :
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Table 6-8 Sensitivity to Pruning Threshold

| | | i I & T |
| ©
vel

I | [ [

o
pos

- Decentralized (Simple AND Fusion) -

| I I | | | l | {
| .001 I .08 | 0 | 3.01 [10.21 | 3.94 112.00 | 44.2 |
| I I | | | | | {
| .02 | .09 | 0 | 2.97 [ 8.91 | 3.53 | 6.42 | 26.3 |
[ I | I I | [ | |
| .1 | .07 | 0 | 3.02 [12.03 | 3,10 | .87 | 2.8 |
| i I | l l | | |
- Decentralized (Simple OR Fusion) -
I | | | | [ | l |
| .001 | .21 | .56 | 1.22 | 6.12 | 1.86 112.00 | 44.2 |
I I | | | | | [ |
| .02 I .29 | .27 | 1.08 | 6.06 |1.91 |6.42 | 26.3 |
I I | [ | | | | {
| .1 | .12 .30 | 2.13 | 7.49 | 2,22 | .87 | 2.9 |
I l ( ( { | ] | |
- Centralized -
| | | [ | | | | N
| .001 ] .38 | .11 | .89 | 5.43 | 1.80 130.55 | 40.4 |
| | | [ | | | | |
| .02 | .34 | .05 | 1.04 [ 5.29 | 1.70 110.93 | 20.1 |
| | | | | | | | ]
| .1 | .11 | .01 | 2.23 | 5.85 [ 2.01 | 1.17 [ 2.2 |
[ | | | | | | | !
-~ Distributed -
| [ | | | | | ! |
| .001 | .39 | .08 | .90 | 5.42 | 1.80 [33.43 | 62.8 |
[ | | | | | | | |
] .02 | .34 | .06 | 1.04 | 5.29 | 1.70 |[11.82 | 32.2 |
[ | { ! | | | | | '

i | .1 | .11 | .ol | 2.23 | 5.85 [ 2.01 | 1.17 | 3.2 | -
.. I [ [ | | | | | | -

' T
D'.. '.\
b (*) Normalized by the standard deviation of the position .
&: measurement error. "

(**) Normalized by the standard deviation of the velocity ;q
tg measurement error. R
E{ (**x) Average execution time for one run.
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Table 6-9 Sensitivity to Target Demnsity b
4
| | [ | [ e T ae | ek | | ;i
‘ Vr b Ppa b Npr I Nyr b %os b Oer | Tg 1 Npg b
I I | | I I _ _ ]
- Decentralized (Simple AND Fusion) - »
- ]
| | | | | | I I | :
I .25/L | .32 | 0 | 1.37 | 8.84 | 2,06 | 2.08 | 9.4 | P
I | | | | I | | I ¥
| .S/L | .09 | 0 1297 |89l [3.53 |6.42 |26.3 | n
| | | | | I | I [ ;
| 5/L | 0 I .05 128.04 | 9.04 ] 3.54 ]22.90 | 60.6 | .
I | I I I I I [ [ :
- Decentralized (Simple OR Fusion) -

I I I | I I | | I

| .25/L | .60 | .08 ] 1.93 [ 7.08 | 2.06 | 2.08 | 9.4 |

I | I | I | I | |

| .S/L ! .29 | .27 |1 1.08 | 6.06 | 1.91 | 6.42 | 26.3 |

I | I | | | I I |

| 5/L | 0 | 8.86 | 6.31 | 6.73 | 2.44 [22.90 | 60.6 |

| I [ l | [ | | !

- Centralized -

| I | [ I I | I |
| .25/L |l .58 | .02 | .52 | 6.48 | 1.92 | 3.20 | 7.3 | 3
| I ! I | I | | I -
| .5/L I .34 | .05 1 1.04 | 5.29 1| 1.70 110.93 | 20.1 | q
I I I | I I | [ [ K
I 5/L | 0 | 2.96 | 5.82 | 5.77 | 2.15 | 57.4 | 53.5 | N
l ! | | | | | | | :i
"
- Distributed - *4
5
I I | I | I | | I R
{ .25/L I .57 | 02 | .53 16.52 | 1.93 | 3.26 | 11.38 | -3
I I I I I [ I I I 9
I .5/L | .34 | .06 | 1.06 | 5.29 [ 1.70 [11.82 | 32.2 | R
I | l l | | | | | -
I 5/L | 0 | 2.89 | 5.87 | 5.78 | 2.11 57.24 | 83.4 | :
I | I I I I I | I R
&5 (*) Normalized by the standard deviation of the position :
X measurement error. 1
d (**) Normalized by the standard deviation of the velocity A

measurement error.
(¥%%) Average execution time for ome run.
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Table 6-10 Sensitivity to Position Measurement Error

| I I I I

* &k kkk I I

(*) Normalized by the standard
measurement error.

(**) Normalized by the standard
measurement error.

(*%*) Average execution time for

120

one run.

deviation of the position

deviation of the velocity

P Y

| I
(o
: u : Ppa : Ner : Ny | pos : Svel : Te : Nrr :
- Decentralized (Simple AND Fusion) -
i | | | | | | | | |
}:‘ | 0001 L | .09 | 0 | 2.98 [ 7.21 | 2.73 | 6.18 | 26.3 |
e | | i | | [ [ | |
h | .001 L | .09 | 0 1 2.97 | 8.91 | 3.53 | 6.42 | 26.3 |
| I | I I I | I [
- I .01 L I .10 | .59 | 2.77 [10.59 | 1.62 | 6.14 | 26.0 |
o I I I I I I I I [
S' ~ Decentralized (Simple OR Fusion) -
| | | I I | ! I |
| 0001 L | .30 | .23 | 1.02 | 6.15 | 1.88 | 6.18 | 26.3 |
! | | | I | I | |
I .001 L I .29 | .27 |1.08 |6.06 | 1.91 | 6.42 | 26.3 |
| | | | | | | | |
I .01 L I .20 | .59 | 1.10 [10.59 | 1.62 | 6.14 | 26.0 |
| [ ( | { | | | |
- Centralized -
I I I I | I | | |
| ool L | .37 | .02 | 1.00 | 5.22 | 1.67 110.36 | 20.1 |
I | | I | [ | [ |
| .001 L Il 3¢ | .05 |1.06 | 5.29 | 1.70 {10.93 | 20.1 |
I I | | | I | | |
I 01 L I .29 | .23 | 1.04 | 8.32 | 1.84 1I10.12 | 19.7 |
! I I | I I I i |
-~ Distributed -
| | | | [ | | | |
| .0001L | .38 | .02 | 1.00 | 5.22 | 1.67 |11.65 | 32.2 |
I I I I o I I | I
I .001 L I .34 | .06 | 1.06 | 5.29 | 1.70 [11.82 | 32.2 | ;
I | I I I I I I | 1
| 0l L | .29 | .21 [ 1.04 | 8.31 | 1.84 1{11.27 | 31.6 |
| | | | | | | ;
9
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Table 6-11 Sensitivity to Velocity Measurement Error

s I | I I | * | xx | xxx | f
- l Ov I PPA I N FT I NMT | 0pos ' 0ve 1 | TE | 5
I I I | | | | I :
- Decentralized (Simple AND Fusion) - ;i
| | [ [ | | [ | '| '
- | 0001 L/Ae | .09 | O | 2.96 |9.59 | 2.83 | 5.94 | 26.4 | B
. | I | I | I | I I 1
| 001 L/Ac | .09 | 0 | 2.97 [8.91 |3.53 |6.42 |26.3 | -
I | | | I | I I | -
| .01 L/6c |l .08 | O |2.99 [9.71 |2.28 |6.74 | 27.5 | .
| | | | | | | | | -
- Decentralized (Simple OR Fusion) - '%
| l | | | l | | | 3
| .0001 L/at | .30 | .21 | 1.03 | 5.99 | 1.8 [ 5.94 | 26.4 | «q
I I ! I I | I I I
| .001 L/at | .29 | .27 | 1.08 |6.06 | 1.91 | 6.42 | 26.3 | 3
I | I I I | | [ I -
| .01 L/ac | .14 | .95 1 1.32 | 7.5 | 2.18 | 6.74 | 27.5 | g
I | I I | I I I _ :
~ Centralized - 51
N
- l [ [ [ [ [ [ | | ]
| .0001 L/At | .36 | .03 | 1.01 | 5.04 | 1.61 110.24 | 20.1 | C
| I | | [ | I | ] -
| .001 L/at | .34 | .05 | 1.04 | 5.29 | 1.70 110.93 | 20.1 | s |
- I | | I I | I I I
- | .01Lr/at | .27 | .38 | 1.22 |5.94 | 1.96 111.96 | 21.3 | -
_ | | | | | | | | | -
- - Distributed - -4
2 |
| | | I | I | I i A
| .0001 L/at | .36 | .04 | 1.02 | 5.06 | 1.60 [11.32 | 33.7 | X
| I I I | | I I I
I .00l L/At | .36 | .06 | 1.04 | 5.29 | 1.70 |11.82 | 32.2 |
I I | I [ | | | I
| .01vL/At ! .23 | .39 | 1.26 | 6.21 | 2.05 [18.18 | 33.6 |
| I I I | | I

(*) Normalized by the standard deviation of the position
measurement error.
(**) Normalized by the standard deviation of the velocity
measurement error.
(**%) Average execution time for one run.
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Table 6-12 Sensitivity to False Alarm Rate _?

| | | [ N T | ]

I Vpa L Ppy | N | Ny | O b ey | T 1 Npg -]

| | | I | | | | ]

- Decentralized (Simple AND Fusion) - >

[ | [ | | [ [ [ | &

| 2 | .06 | 0 12.73 19.37 | 2.72 | 3.18 | 16.5 | N

| | | | | | [ I | B

| 4 | 09 | 0 | 2.97 18.91 |3.53 | 6.42 | 26.3 | =ﬂ

| | | | | | | | | .

[ 8 | .08 | 0 | 2.69 112.87 | 3.69 | 5.38 | 19.4 | 3

| | | | | | | | | )

N

- Decentralized (Simple OR Fusion) - ;3

| ] | | | | [ | | = |

[ 2 | .32 | .21 |1.02 | 6.3¢ | 2.02 | 3.18 | 16.5 | i

i | | | | I | | I o

| 4 | .29 | .27 11.08 |6.06 | 1.91 | 6.42 | 26.3 | "
| | | | | I | | |
| 8 l .25 | 1.26 | 1.26 | 6.94 | 2.10 | 5.38 [ 19.4 |
| { | | { | | | a

- Centralized -
[ | | [ [ | [ [ 1
[ 2 [ .38 | .04 | .98 | 5.17 | 1.77 1|5.20 | 12.8 |
| | | | | | | | |
| 4 | .3& | .05 | 1.04 1| 5.29 | 1.70 110.93 | 20.1 |
| I | I | | I | |
I 8 | .22 | .12 |1.37 |6.11 | 1.98 | 8.79 | 14.9 |
| | | | | | | | |
-~ Distributed -

[ | I | | I | | [
| 2 | .38 | .04 | .98 | 5.17 | 1.77 | 6.27 | 20.6 |
| | | | | | | | |
{ 4 | .36 | .06 | 1.06 | 5.29 | 1.70 111.82 | 32.2 |
| I | I | | | | |
I 8 | .22 | .12 | 1.40 | 6.17 | 1.99 ! 8.57 | 23.4 |
| I | | | | | | |

(*) Normalized by the standard deviation of the position

b A
< L
ISR

measurement error.
(**) Normalized by the standard deviation of the velocity
5 measurement error.
5— (**%) Average execution time for one run,

3
-
-y
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Table 6-13 Sensitivity to Probability of Detection

| I | I I I wiex |
: PDmax : Ppa : Npr : Nyt : %bos : Ivel | Tg | N
- Decentralized (Simple AND Fusion) -
| | | | | | | |
i .5 I .10 | 0 | 2.57 | 8.79 | 1.91 | 7.50 | 30.8
| | | | | | | |
I .7 I .09 | 0 |l 2.97 | 8.91 | 3.53 | 6.42 | 26.3
| I | I | | | |
| .9 I .09 | 0 | 2.82 | 9.70 | 2.08 | 2.55 | 10.8
I | I I | | | I
~ Decentralized (Simple OR Fusion) -
| | | | | | | I
| ) ! .21 | .16 }1.37 | 272.02 ) 2.03 | 7.50 |} 30.8
| | | I | | | |
| 7 | .29 | .27 |1.08 | 6.06 | 1.91 | 6.42 | 26.3
| | I | | | | |
| .9 | 46 | .29 | .56 | 6.47 | 1.94 | 2.55 | 10.8
I | | | | | | |
- Centralized -
| | | | | | | |
| .5 I .23 | .17 11.34 | 5.60 | 1.85 113.61 | 24.4
| | | | | | i |
| .7 | .34 | .05 | 1.04 | 5.29 | 1.70 1[10.93 | 20.1
| | | | | | | |
I .9 l .51 | .09 | .63 | 4.89 | 1.71 | 3.97 | 8.39
| | | | | | I |
- Distributed -
| | | | | | | |
| .9 | .24 ] .12 | 1.36 | 5.64 | 1.86 | 15.3 | 38.8
| | | | | | | |
I .7 | .34 | .06 | 1,06 | 5,29 ] 1.70 [11.82 | 32.2
| | | | | | | |
| .9 | .51 | .09 | .63 | 4.89 | 1.71 ]11.89 | 16.8
[ | | | | | | i

(*) Normalized by the
(**) Normalized by the

(***) Average execution

measurement error.

measurement error.

standard deviation of the position
standard deviation of the velocity

time for one run.
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6.3.4.1 Pruning Threshold

Table 6-8 examines the effect of the pruning threshold. The cen-
tralized and distributed schemes perform quite equally and show the same
tendencies. With a low pruning threshold, both schemes perform better
but require more computational resources, and with a higher threshold,
perform worse but with less resources. On the contrary, it is more dif-
ficult to explain how the two decentralized schemes’ performance varies
with the pruning threshold. The worse performance under high pruning
threshold is naturally expected. However, the two decentralized schemes
also perform worse than the baseline with the lower pruning threshold.
This result is probauiy due to the failure of simple fusion schemes used
in the two decentralized schemes, or the infrequent communication which
tends to produce very different situation assessments among the two
nodes, or a combination of these two factors. As far as the computa-
tional requirements are concerned, the two decentralized schemes behave

normally.

6.3.4.2 Target Demsity

The response to the change in the target density, shown in Table
6-9, also displays a similar trend. When the target demsity is high, we
see a clear difference in performance between the two groups of schemes,
i.e., (1) the two decentralized schemes and (2) the centralized and dis-
tributed schemes. When the target density is low, however, the differ-
ence in performance becomes less obvious. Even the two decentralized

schemes perform well since the chance of missing targets is very low.
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On the other hand, with a high target density, the two decentralized

schemes” performance obviously deteriorates. As in the previous com-

parison, the responses of the centralized and the distributed schemes

oy

are very similar.

6.3.4.3 Other Parameters

The effect of measurement errors, shown in Tables 6~10 and 6-11.

shows more or less expected gemeral trends. Namely, the larger the
measurement error, the more confusing the measurements become and the
more the performance of all of the schemes degrades. However, the
response of the two decentralized schemes is rather flat compared with
the centralized and distributed scheme. This indicates a certain degree
of robustness of the relatively simple decentralized schemes and their
inability to take advantage of the improved external condition (due to
the infrequent communication and use of a rather heuristic fusion
scheme). In the last two comparisons, shown in Table 6-12 (false alarm
rate) and Table 6-13 (probability of detection), we see generally the
same trend. However, as we have observed in other comparative statis-
tics, the performance of the two decentralized schemes does not change

much. In particular, the simple AND-logic responds to the external con-

ditions in a direction opposite to the expected direction.
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6.4 SUMMARY OF NUMERICAL EXAMPLES J
2 ]
3! This section summarizes the results obtained in the two numerical ij
;g' examples. The two simple examples were chosen so that we could isolate E
E; the basic characteristics of each of the three communication schemes ii
ii more readily. These examples, however, represent two radically dif- i
E;; ferent situations. i
I Example 1: —a
1

The targets were stationary and both nodes had the same field-of-

view. Thus, there was a high degree of informational overlap (i.e.,
redundancy), and each node could have performed tracking adequately by
itself under normal conditions. This situation results in fairly
respectable performance for the decentralized scheme (no communication).
On the other hand, since the data from the two nodes are highly corre-
lated (being from the same set of stationary targets), the performance

is sensitive to the frequency and type of communication (decentralized

versus centralized versus distributed). Furthermore, since correlated ]

data implies the storage and evaluation of a large number of hypotheses,

any change in a key parameter such as the pruning threshold affects the ;]
performance differently for different schemes. §
4
3
Example 2:

On the contrary, in Example 2, the targets were moving in one

direction and the fields of view of the senmsors in the two nodes were k

disjoint. therefore, the two nodes received mostly independent and =

3
19

‘.
b
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complementary information. In such a case, communication becomes essen-
tial and can improve the performance substantially. Particularly. when
each node is operating independently (distributed or decentralized
scheme), proper coordination (both communication and information fusion)
becomes more important. Moreover, since targets were moving, the timing
of communication would be quite critical. For example, in a distributed
scheme, a set of measurements may be erroneously dismissed as false
alarms if it 1s obtained right after a communication instant; the node
would have to wait a long time before the next round of communication.
The same set of measurements could have been confirmed correctly to have
come from a target if the other node could communicate the presence of a

track at a crucial time.

In short, Example 1 is a case where the centralized scheme is
vulnerable because of the large amount of correlated data, while Example
2 is one where the distributed scheme is vulnerable. As a result, we
have observed a slight advantage of the distributed scheme over the cen-
tralized scheme in Example 1, and almost identical performance in Exam-
ple 2. When we consider the non-zero pruning threshold as a proxy of
the computational resources, the results of Example 1 clearly show an
advantage of distributed processing. The external environment in Exam-
ple 2 is generally unfavorable to the distributea scheme. However, the
results indicate that with proper coordination such as the information
fusion algorithm used in the distributed GTC, the same performance as

the centralized scheme can be achieved.
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From both examples, we notice the quality of information is as 1
important as the quahtity of information. We have found that when the _j
quality of information is low (e.g., when the false alarm rate is high), ‘}
the quantity of information does not positively correlate with the per- ;i
formance. This observation is, to some degree, contrary to the results %

of conventional filtering systems where it is 2lways beneficial to have

more data.

It is difficult to draw general conclusions from the simulation

experiments since performance depends on envirommental factors (target

4“0 PR
s et 2 at
PLET I Y ST

density, false alarm rates, measurement error) as well as computing
resources (pruning threshold). Based on the simulation results, how-
ever, we can draw the following conclusions. When the amount of data is
large and the quality is low (high target density, low detection proba- N
blity, and high false alarm rates), a distributed scheme where only
hypotheses are communicated is generally prefered since the amount of

data handled at each node is smaller. The advantage can only be real-

ized, however, if proper coordination in terms of communication times c
N |

and fusion algorithms is used. An ad hoc coordination algorithm. such .
©

as that used in the decentralized schemes in Example 2, may not perform :;
well., These advantages are in addition to others such as reliabiliy, k
cost, etc. mentioned in the introduction of this report. 4
- 4
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7. CONCLUSIONS

In this report, we have described the results of our research on
the distributed situation assessment problem using a distributed sensor
network. We had two specific goals for our research:

- investigate techniques of hypothesis representation, formation,
evaluation, etc., in a distributed sensor network;

’ - investigate various tradeoffs such as computation versus communica-

N tion, and the performance of centralized, decentralized and distri-
2 buted structures as a function of various parameters.

Although we dealt mostly with general but highly idealized models,
the tracking and classification of multiple targets in a low signal-to-
noise ratio and high cluttered environment was chosen as an application
area to focus our attention. Our approach had been both analytical and
heuristic. Exact algorithms were developed using precise mathematical
models and combined with more heuristic rules in their implementation.
N Simulation experiments were also conducted to understand issues which

. are not amenable to analytic studies.

';: To provide a mathematical foundation for the multitarget tracking

problem, we have developed a theory for multitarget tracking and clas-

sification. The centralized version has been implemented in the form of

4

the Generalized Tracker/Classifier, which includes many existing trackers

as special cases. This theory addresses the issues of how hypotheses
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should be represented, formed, evaluated and managed in the processing

of local data.

The centralized algorithm was decomposed to obtain the Distributed
Generalized Tracker/Classifier. The processing architecture at each
node was specified and consists of the following three modules: the Gen-
eralized Tracker/Classifier for processing of local sensor data, the
information fusion module, and the information distribution module. We
have thus addressed many of the issues associated with information
integration in a network. The general problem of distributed estimation
by a network of agents has also been considered. Algorithms which allow
each agent to integrate or fuse the information from other agents

without redundant use of the same information have been devised.

The algorithms have been tested on two different scenarios to
evaluate their performance. The sensitivities of the performance of
various communication schemes to several parameters were investigated.
We found that having more data, as in a centralized situation, is not
necessarily better unless resources are available to process the data.
In general, the quality of the information is more important than the
amount of data. With a properly coordinated distributed scheme, where
only hypotheses are communicated, performance similar to that of the

centralized scheme can be achieved.
Our research has addressed some of the basic issues related to the

design and operation of a DSN. Specifically, we have developed algo-
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rithms for distributed multitarget tracking and classification, investi-
gated their performance and compared it with other communication

schemes. To fully capitalize on the potential of a DSN, we need to

PR Py

address some other issues. These include: -
- how to handle large networks with many heterogeneous sensors -3
- how to schedule the communication among the nodes efficiently

- how to allocate the sensor resources to optimize the performance of
the network

- how to make the nodes adapt to changing network conditions such as
failures of nodes and communication links

- how to evaluate the performance of such a distributed system

how to reduce the vulnerability of the DSN to hostile activities

Some of these issues can be addressed mathematically, while others have
to be handled by more heuristic or symbolic teéhniques such as artifi-
cial intelligence. In addition, the real time implementation of these
algorithms in a node also poses some very relevant problems in computer

(VLSI) architecture design.
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APPENDIX A

MULTITARGET MULTISENSOR TRACKING PROBLEM - PART 1:
A GENERAL SOLUTION AND A UNIFIED VIEW ON BAYESIAN APPROACHES

S. Mori, C.Y. Chong, E. Tse, and R.P. Wishner

ABSTRACT

Based upon a general target/sensor model, a very general solution to
the multitarget tracking problem is derived. When this solution is applied

to a special class of models consisting of independent, identically distr-

buted (i.i.d.) target models, a less general but more implementable class

of multitarget tracking algorithms is obtained. Some existing algorithms are
then examined based upon a unified view createq'by our derivation of general
tracking algorithms. Part 1 covers most of the analytic results, while in

Part 2, hypothesis management and other issues pertaining to implementation

of multitarget tracking algorithms are discussed with a simple numerical

example.
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I. Introduction

During the past decade, the multitarget tracking problem has attracted
a great number of researchers, especially in the fields of control and esti-
mation. The problem is both theoretically interesting and very important in
terms of applications. Technically, it calls for a new body of theory or a
large collection of standard techniques from various fields such as modelling,
stochastic inference, nonlinear filtering, etc. 1Its wide range of applications
includes anti-missile/aircraft defense, air traffic control, ocean/battlefield
surveillance, etc. Past achievements in this area are well documented in the
survey paper by Bar-Shalom [1] and the Naval Ocean Surveillance Correlation
Handbooks, [2] and [3]. The introductory section of the paper by Reid [4]

also contains a short but excellent survey.

Despite many efforts in this area, the present stage of research may well
be characterized as an unorganized collection of numerous “named" or "unnamed"
algorithms. An attempt to create a unified view of these algorithms is des-
cribed in a recently published paper [5]. However, the focus is on the relation-
ship between multitarget tracking and other new topics such as event-driven
linear systems, etc., and on the interpretation of Reid's algorithms described
in [4]. The object of our paper is to provide a general Bayesian solution
to a general but mathematically rigorous model and to provide a unified view
of Bayesian approaches to the multitarget tracking problem. In doing so, we
may have clearer interpretations of many existing algorithms and a better
understanding of what is necessary for future theoretical developments in this

area.
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In short, the multitarget tracking problem is.COHCGIHEd with tracking an
unknown number of targets using noisy measurements whose origins are not certain
and which may not originate from any target at all (false alarms, clutters,
etc.). The basic and crucial deviation from conventional estimation problems

l' is the

sensor outputs) are modeled properly only when they are considered as

fact that targets (objects to be tracked) as well as measurements (returns,

random sets in the sense defined in [6]. Namely, (1) the number of targets,

the number of measurements, etc., are random and (2) the targets and the mea-
surements are essentfally unordered tuples. For example, targets do not have
a priori labels and the measurement tuple (a,b) has the same meaning as (b,a).

We may (tentatively) call such a nature a random-set property or feature.

In other words, one of the fundamental features of multitarget tracking is the

random-set feature. Thus the uncertainty of origins of the measurements data

is naturally modeled as a stochastic system which converts a random set (the set

of targets) into many other random sets (the measurement data sets).

Theories of random sets are mainly concerned with uncountable-set-valued y
random sets and are mathematically highly sophisticated. Fortunately, when we
restrict ourselves to random sets whose cardinalities are finite with probability

one, we can still apply standard probabilistic techniques. For example, a

random finite set X of reals can be probabilistically completely described by

‘ma ..A.ALLALA "

specifying a probability Prob. (#(X)=n} (In this paper, #(A) is the cardinality

L.

of a set A.) for each nonnegative integer n and a joint probability distribution
density function pn(xl,...,xn) of elements of the set for each positive n. In

order for this specification to be appropriate, we must require every P, o be

N T

interchangeable (permutable). This is the basic approach which we take in this

paper. As in almost all the existing literature on multitarget tracking, the
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basic task is to hypothesize the origin of each measurement and to evaluate

P R A A
R
satb ha o il e

every possible hypothesis, or in other words, to create and rank all the possible

combinations. Although one may discern some similarity between multitarget track-

« 1

L P
STUS DTN

ing algorithms and classical hypothesis testing formula, especially chi-square
testing, the difference in underlying models is very obvious. To achieve this 1
basic task, we propose new definitions for tracks and hypotheses, which we f
believe are both mathematically rigorous and intuitively appealing, and in fact ’j
are included, at least implicitly, in almost all the existing multitarget )
tracking algorithms. E
el
;Nf
In many cases, in order to broaden one's perspective and obtain deeper 3
understanding, it is best to start with a general model and go into greater
detail later with a more restrictive class of models. In the:rest of this

paper we will proceed according to this philosophy, defining a fairly general
model in the next section and following that with two sections in which the

definition and the Bayesian evaluation of hypotheses are described. Then we

will discuss an important subclass of problems, i.e., what we may call {.1.d.

«
’J
&

(independent, identically distributed) target models. The importance of this

NN

subclass is two-fold: (1) It provides us with a set of implementationally

P 7N

feasible algorithms; (2) A unified view of existing algorithms will emerge.
Part 1 covers most of the theoretical issues whereas Part 2 describes hypothe-

sis management and other implementation issues with a simple numerical example.

RN
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b II. Target and Sensor Models '
b A. Target Model 1
i. In our terminology, a target is a generic name for the smallest unit of ;;
;S object which, when detected by a sensor at a certain time, generates some

S measurement (s) in the sensor's output with a certain probability. In our gene-

S DD

ral model, all targets of interest are modeled as one entity rather than as a

collection of individual targets. Formally, a target system state at time t -

is a realization (X(t),NT(t)) at time t of a continuous-time stochastic process

(X'NT> on a target system state space which is the direct-sum space

[}

U X x{n}

n=0 ,

of a system {3%} of hybrid sets. By a hybrid set, in this paper, we mean a

direct product space of a subset of a Euclidean space (called continuous part)
and a finite set (called discrete part). The use of hybrid sets allows us to 'E
consider different kinds (types) of targets, sudden structural changes in :
dynamics (maneuvering targets), changes in operational modes, etc., as well as

the usual physical states such as positions and velocities. The second element,

NT, represents the total number of targets in the system. When n=0, 3;1 is

defined as {6} where 0 is merely a symbol for '"no target" and Otjrn for all n.

For this paper, we make the following assumption:

. Assumption l: (Constant Number of Targets and Markovian Property)

L

The component N of the target system state (X,NT) is a constant but

T
random nonnegative integer with a given probability distribution. For each

A-5
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positive integer n, given NT=n, X is a time-homogeneous Markov process on
n

associated with an initial distribution
n
Q, (dx) = Prob.{x(to)EdXINT=n} (1)

for a fixed to and a transition probability

th(dxlx) = Prob. {X(t+At)edX|X(t)=X, N_=n} (2)
for each (X,At)effnx[o,w) and each tE[tO,‘”).

The time-homogeneity (stationary transition) assumption can be easily
removed but helps the notational complexity in this paper. The requirement
for NT to be constant is not very restrictive. For example, to consider the

possibility of disappearing targets we may include a component such as

{act:i»-e, inactive} in the target system state space and construct an appropriate

birth-death-type Markov process.

For each positive n, we assume that the component f{n of the target system

state space is further decomposed into two parts as

x = xCxxt

n n n

C
where In is the space for the part representing the common target state and

3..1 i ,

= ceens th d t oduct

2‘; N x ,(_'x‘n is e irec produ
‘w

n
of n identical individual target state spaces._’r:. A simple example is the one

A-6
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in which SCS={O] (no common state space) and _‘Xj'l is a Euclidian space. Another

example is a model with .'Iﬁ= x;=R2(the set of pairs of reals), in which
(xo,xl,...,xn)s:.':f‘n represents a target system state for a group with a hypothe-

tical centroid X, and X4 being the deviation of the i-th target from x The

0
inclusion of such a component ."EII‘ is necessary in order to model the random-set
nature of targets. For this purpose, we must require a priori interchangeability

of individual targets as precisely defined in Assumption 2 below. In the rest

of this paper, we call a function I: In '*.'Zn a n-target permutation homeomorphism

n C 1
(induced by permutation m) 1if, for every (XC, (Xi)i**l)exn :rnx.‘rn,
n n

with a permutation 7 on {1,...,n}.

Assumption 2: (Interchangeability (1))

For each positive n, Qg and th are interchangeable (or permutable) with

respect to the individual target state partl‘; of :xn, i.e.,

n n
QpI(aN)) = QGdax) )

and
Fp, (100 [T0) = Fy (ax[0) (5)

for any n-target permutation homeomorphism Il on .'In.

Assumption 2 assures us that we can use any of the equi-probable target

system distributions caused by permutation of targets. In other words, under
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>
l Assumption 2, we can choose any one of the permutations and assume that the :‘4‘
order of the targets 1is given in that way. Under Assumptions 1 and 2, we can _-:
:. construct a wide range of target models, including those in which targets move ;
i in a group rather than individually, i.e., thelr motions are not independent 4

but correlated.

‘i
B. Sensor Model ,““
Let S be a finite set of sensors in the system. In this paper, each }-:‘-
sensor se€S is modeled as a generic mechanism which observes the target system g_‘
state space and generates a finite set of measurements, called a data set, .
intermittently according to a certain sampling pattern. Each measurement in
a data set from a sensor s€S is an element of the measurement value space a‘ls j

which is a hybrid space with the direct-product measure us of the Lesbegue
measure on the continuous part and the counting measure on the discrete part.

The continuous part of Q)s is used for analog information such as positions and

velocities whereas the discrete part is for feature-type information such as
size/cross-section classification of aircraft radar images, track/wheel

classification of ground vehicle images, etc.

Formally a data set is a random element ((yj):?:l’ N“. t, s) in the data

set space ._-‘:
- ®
U U (@) ™{nlx(t,,=Ix{s}. B
RS s 0
- m=0 se$ j
3 where._ ( le)ms lex....x‘lls when m>0 and (Q}s)oa{a} (8 is a symbol for "no mea- L

R

m N

ment.") A quadruple ((yj )j‘:l,NM,t,s) in this space is interpreted as a data set

IRl W W, DAY
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generated by sensor s at time t and containing N measurements, Yyo-

N A
NM

In our generic sensor model, the generation of data sets by sensors is modeled

M

by a four-step mechanism: (1) detection, (2) number-of-false-alarm generation,
(3) random assignment and (4) measurement value generation. First we assume 4

a certain sensor scheduling mechanism which determines what sensor is activated

(t,s)

when. Once a sensor s€S is activated at time t a data set ((yj(t,s))?h_‘[1

NM(t,s), t, s) is generated instantaneously through the following mechanisms:

(1) Detection:

A detected target set is a unit which generates one measurement in the

sensor's output. Such a set is modeled by a detected target set collection

which is a random collection D(t,s) of nonempty subsets of positive integers

such as :
Prob. {Un(t,)ST [N} = 1, (6) ]
where ]
*
L = {1,....,NT} . (7) <
{11,12}€D(t,s) means that the il-th and the 12-th targets are detected and -
create one measurement in the data set. Thus [JD(t,s) is the set of all the
detected targets. The random nonnegative integer defined by
.1
|
Ny(e,8) = #(D(t,s)) (8) 1
!
1
1

is called the number of detected target sets.
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] (2) Number of False Alarms

3; A measurement in a data set is called a false alarm (a generic name for

“~
L
b
A

- of false alarm measurements 1is represented by a random nonneagative integer

-
:

clutter, false return, etc.) if it does not originate from any target. In our

‘.

model, the origins of non-false-alarm measurements are D(t,s) and the number

NFA(t,s). Thus the random nonnegative integer NM(t,s) is determined by
NM(t,s) = ND(t,s) + NFA(t’s) . : (9)

(3) Random Assignment

Each of the NM(t,s) measurements in the data set originates from one of the
ND(t,s) detected target sets or is one of the NFA(t’s) false alarms. Each

origin is determined by a random assignment A(t,s) which is a one-to-one

integer -valued random function such that

Prob.{Dom(A(t,s))aD(t,s),Image(A(t,s))de(t,s)lNM(t,s)} =1 (10)
where

JM(t,s) = {1,....,NM(t,s)}, (11)

and Dom(f) and Image(f) are the domain and the image of a function f. Define a

random set JFA(t,s) by

JFA(t’S) = JM(t,s)\ Image(A(t,s)). (12)

deD(t,s) and A(t,s)(d)=j means that the j-th measurement originates from a

detected target set d, whereas jeJFA(t,s) means the j-th measurement is a false

alarm.

A-10
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a (4) Measurement Values 41
éi Finally, given the number of measurements, NM(tﬁs%E a§d the origin of each i
- j in J(t,s), the measurement value vector (yj(t’s))jz1 »S s generated, com ;
-_ pleting the data-set-generating mechanism. ‘

For the rest of this paper, the following five assumptions are made:

Assumption 3: (Known Exact Timing)

Every sensor generates a finite number of data sets within any finite time

interval. The time at which any data set is generated is exactly known and com-

pletely determined by each individual sensor (not by any other factor cor-

related with the target system state).

Assumption 4: (Memory-less Sensor)

There is no memory in any sensor, so that any single-data-set statistics
conditioned on the current target system state and any other statistical condi-

tion are the same as the ones conditioned only on the current target system state.

. §
Assumption 5: (No Merged Measurements) '

No measurement in any data set from any sensor originates from two of more

targets.

Assumption 6: (No Split Measurements)

- No target generates more than one measurement in any data set.

Assumption 7: (Random Order)

The order of measurements in any data set contains no information about the

A-11
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target system state. -
B

Assumptions 3 and 4 are standard in filtering problems and allow us to ﬁ

use standard techniques used in sampled-data or discrete-time filtering problems. i

Assumptions 5 and 6 imply that, for any (t,s)e[to.w)xs, D(t,s) is a disjoint

collection of singletons so that we can define a random set ID(t,s) by

K

I (t,s) = {1]{1}eD(e,s)} (13)

such that Prob.{ID(t,s)QQITINT}=I and a binary random function FD(t,s) by

FD(t,S) = x(1 ; ID(t.S)) (14)

where X(°*;A) is the indicator function of a set A. The random function FD(t,s)

is called the detection function. Then, due to Assumptions 3 and 4, the detection

mechanism 1s completely modeled by specifying the detection probability function

P (6[X,n,t,s) = Prob.{FD(c,s)'-Glx(t)-X,NT=n} (15)

for every (6,X,n,t,s)e || D(n)x X X{n}x[to,‘”)xs such that z PD(GIX,n,t,s)=1
n=0 n 8e D(n)

for any positive n, where 9D(n) is the set of all the binary function defined on
{1,...,n}. The same couple of assumptions allows us to describe the number-of-

false-alarms generation by specifying the number-of-false-alarms probability

function

pNFA(m|6,x.n,t.s) = Prob.{NFA(t.s)-mlFD(t,s)-G,X(c)-X,NT-n} . (16)
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values in J. Then we have
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Prob.{A(c,s))e.Jp(D(C,s),JH(t,s))lD(c,s),JM(t,s)} =1 a7

7.

and Assumption 7 implies

Prob. {A(t,s)=a lD(t,s),JM(t,s)} = Prob.{A(t,s)=a'ID(t,s),JM(t,s)} (18)

for all pairs (a,a') of elements in ~AO(D(t,s),JM(t,s)). Hence we have

(NM(t,s) - ND(t.s)) !

} = (19)

Prob.{A(t,s)-aINM(t,s),D(t,s).x(t).NT
(Nu(t,s)) !

for each a in LXO(D(t,s),JM(t,s)). Finally the sensor model is completed by

specifying the measurement value probability density function PM defined by

PM(yIa,m,G,X,n,t,s)u:(dy) = Prob.{ysdy|A(t,s)=a,NM(t,s)=m,FD(t,s)=6,X(t)=X,NT=n}

(20)
for every (y,qa,m, $,X,n,t,s) where ug is the m-tuple direct-product measure of

u, -
It is clear that our general sensor model as well as our general target model
allows us to consider a variety of modern sensor systems. One should particu-

larly note that the probability of detection is generally dependent on the target

system state. Therefore, the absence of returns is at least potentially as infor-
mative as their presence. For example, for a sensor monitoring the radio communi- =

cation of target(s), the probability of detection is zero when the equipment is -

shut off, and the on/off of such equipment should be included in the target

A-13
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m system state. In particular, NM-O or no measurement is a data set in our model 4
é{ and considered a potential piece of information. It should also be noted that i
> s
N in our gereral sensor model every data set contains 'number-of-measurements" g
: -
information, and hence, every sensor is a type 1 sensor in Reid's terminology q
in [4]. A type 2 sensor in his terminology is a sensor which creates data sets .
with NM(number-of-measurement)=0 or L with probability one in our model and is

not (at least in principle) treated separately. Of course, Assumption 3 has a

crucial role in such a treatment as ours.

For sensor systems which involve measurement time delays dependent on
the target state (e.g., acoustic sensor systems described in [7]), a straight-
forward model in which the target state is a pair (position,velocity) and the sensor
measurements are ranges and/or bearings violates Assumptions 3 and 4. 1In such
a case, in order for our formulation to be applicable, careful mcdeling is
called for so that our assumptions are valid at least in an approximate sense.
On the other hand, although Assumptions 5 and 6 are quite standard in multi-
target literature, they are not essential to the development in this paper.

Recently, an attempt was made to relax Assumption S to deal with merged measure-

ments in [8]. We make these assumptions in this paper largely to minimize non-
essential complexity. Another way to state the last assumption, Assumption 7,

is that a data set is the smallest unit of sensor data in which the order of
measurements does not contain any information about the target system state. For

example, the measurements from a radar with a fixed scanning pattern may result

in the order of measurements containing information about the targets. In such

a case, the data sets should be further divided so that the measurement order

does not contain any significant information.
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Our general sensor model is completely described by specifying the

detection probability function, P the number-of-false-alarms probability func-

DD

tion, PN , and the measurement value probability density function PM'
FA

since our sensor model is a mechanism in which a random set generates other

Finally,

random sets, we need one more assumption on the target interchangeability

(permutability) corresponding to Assumption 2:

Assumption 8: (Interchangeability (2))

P, P and P are invariant under the permutation of targets, i.e.,

D NFA M
PD(GonIH(x),n,:,s), Py
FA

all invariant with respect any n-target permutation homeomorphism Il induced

(m|8om,N(X),n,t,s) and PH(ylaoi,m,GOW,H(x),n,t,s) are

by any permutation T where 7({i})={m(4)} and o is the function compositicn

operation (fog(x)=f(g(x)) for all x in Dom(f)).
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IXI. Tracks and Hypotheses

Tracks and hypotheses are among the most frequently used terms in the
multitarget tracking literature. Often, however, these are not precisely
defined. Our definitions of tracks and hypotheses, given below, closely follow
Morefield's notations in [9] but differ in one crucial aspect, namely the

separation of the measurement-value information and the number—of-measurements

information in each data set.

Let 2 be the collection of all the data sets. Due to Assumption 3, Z
is countable. Without loss of generality, we can assume that & has a

one-to-one correspondence to a subset K of [to,m) ®S through the isomorhpism,

(Yrmrt's) —f——————  (t,S)
m ™M

Z K

Hence, for every k in K , we can denote the unique member (y,m,k) in £ by
Z(k). We may also call Z(k) data set k. It is then natural to call X the

data set index set. Let < be any total order on K such that (t,s) < (t',s’)

whenever t < t*. (k < k' if k £ k' but k # k'.) Such an order may not be

unique but its existence is obvious.

For each k in K . define the cumulative data set Z(k) up to k by

2% o U za) (21)
k'< k
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. and the cumulative measurement index set JM up to k by

T J(k)

_ . . 22
M U 3, xix'} (22)

k'£2k

where Jy, is defined by (11).

b
|
? N

Due to Assumption 3, we may treat K as a completely deterministic set

(k) (k)

whereas Z M are random. Every (j,t,s) in Jb({k) indicates the j-th

and J
measurement in a data set from sensor s at time t. Then, for each k in K

a track at k is a subset of Jl(ik) and a data-to-data association hypothesis

(henceforth referred to simply as hypothesis) at k is a (possibly empty)

collection of nonempty track(s). A track T at k is said to be possible if

#C @, kOx{kHNT ) 21 (23)

for all k'<£ k (Assumption 6). Let the set of all the possible tracks at k be
denoted by (k). A hypothesis A at k is said to be possible if it is a subset

of I(kIN¢ and TMAT'=d for all the pairs (7,T') of tracks in A such that T#T'

(Assumption 5). Denote the set of all the possible hypotheses at k by (k).

p
-4
3

Define a random set, via the random function A(K) and the random set ID(k),
as
A= {taw @y lker) | e 100} (24)
keK

- A
-
")
-
R
-y
<]

.

Its restriction to k is defined by
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for each k€K . Then it is clear that, for a A ed(k), event {A,, = A} should be

A.I

|k
- interpreted as an incidence in which (1) there are #( .U ID(k'))=#(k)

:S- targets which are detected and included in at least one o? i;ﬁ data sets prior

to and including k, (2) each T in A corresponds to a target (which has been de-
tected in at least one data set k'£k) in a one-to-one fashion, (3) (j,k')eT means
- that the j-th measurement in data set k' originates from the target identified by

[ T (4) TfKJM(k')X{k'})=¢ means that the target is "falsely" dismissed at k',

and Jék)\\(ux) is the set of all the false alarms up to k.

<. Therefore, every A in (k) is a hypothesized set  of tracks which are in
turn the sets of measurement indices which are hypothesized to originate from
e targets. The term "hypothesis” is thus suitable for wuse in our formulation.

Assumptions 5 and 6 imply

y (k) (k)
- Prob.{A;, € S | 3.7} = F pzob.{Alk-x |3y 1 =1 . (26)

|x AEA(K)

In other words, (k) is the mutually distinct and collectively exhaustive
- set of all the possible "explanations" of the origin of each measurement in the

data sets up to k.

iy At this point a few words of caution are in order, because a straightforward
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expansion such as 4

[}

Prob.{x(t)edX.NT=n|Z(k)} = 3 2 Prob.{X(t)edX|N_=m,A
T
A e (k) n=0

ik=>"z(k)}°

;..Ll_ ,".,._.. REREEE

_ o (k) g (K)
Prob.{NT-nMIk)\,Z }pzob.{AIk)\lz }

(k)}

is in general meaningless and Prob.{x(t)edx,NTlA =\,2 may not be a part

[ x
of an appropriate set of variables which may constitute a state of multitarget
tracker (information state), as we will see in the next section. Nonetheless,
our primary objective is to evaluate every hypothesis A or calculate PrOb'{AIk
Before closing this section, let us introduce a few notations which will be useful

later.

Similar to (24), for each k in K and for each k'X£ k,

(k")

le, = TﬁJM (27)
in 9(k') 1s called the restriction of T (€ 9(k)) to Jék')(or simply to k'), and
Alk, = {le,lTeA}\{d)} (28)
(k")

in H(k') is called the restriction of X (e H(k)) to J

M
[ ]
(A', resp.) is the restriction (to some J;k )) of a track Ted(k) (a hypothesis

(or simply to k'). When

Ae H(x), resp.), T' (A', resp.) is called a predecessor of T ( A, resp.).

Successors are defined by the inverse relation. Then, it is obvious that, when

1

@ cumulative measurement set J;k) is given, the set of all the hypotheses up b
k >1

to k, J((k)AU H(k'), and the set of all the tracks up to k, q! )ék'gk Ik, )
k'€k .
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are both (partially) ordered with respect to the order determined by the —j

predecessor/successor relation. Both of these ordered sets are

T X R KT S a e

arborescent, i.e., the set of predecessors of any element is totally ordered.

y—vseLv,

For this reason, approaches similar to the one described in this paper are

often referred to as hypothesis-tree or track-splitting methods.
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IV. Recursive Bayesian Evaluation of Hypotheses -

Y
dod il adomd

Tra e

In this section, a recursive Bayesian evaluation of every hypothesis A,

(k)}

caal

namely, a recursive calculation of Prob.{A;, =)A|z is described. The

|x

main result is presented as Theorem 1, the proof of which is given in

o)

LI
MSTETUTY N

Appendix A. The calculation is made recursively with respect to the total

order £ on K .

In this section, the symbol P will occasionaliy be used with a slight

R
c I[ st

notational abuse. It will represent a conditional probability, a conditional

probability density function or a mixture of both. Using P in this way, we

can write our basic recursive equation as

P(A [z ) (29)

for each k in K which has an immediate predecessoxr k'. If we assume that

L]
P(Alk'lz(k )) has already been calculated, since the denominator of the right T
hand side of (29) is the normalizing constant, the left hand side of (29) is -
] R
given completely by calculating P(Z(k),Alklz(k ),Alk,). Roughly speaking, this -
|
4
term can be expanded as —
(k) (k') (k") 5
P(Z .Alklz 'Alk')= 2 pNl Alk"z ) ¥
N ¥
T .-
-

(x) (k') (k")
Jp(z ,Alklx(t),NT,AIk,,Z )P(dx(t)lNT,f\lk..Z ) (30)
N

T
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k') -
with k=(t,s). Therefore, assuming that P(NTIAIk"Z( )} and P(dX(t)INT'AIk"Z(k )) _ ,ﬂ
are provided by recursion, (30) can be calculated if we know
(k) (k') .
P(2 'A|RIX(t)'NT'A|k"Z ) which can , in fact, be calculated using the

generic sensor model described in Section II.

Before proceeding with further discussion, we make a few preparatory

observations. For each k in K, define a random set,

¢ ()

b = U 1.4, (31)

k'<k P

of the cumulative index set of detected targets. Then the definition (24) of A

implies that #(Alk) = #(Iék)) with probability 1. Even when we hypothesize

NT=n and Aik=k for some Ac (k) and some qzﬁ(k), the true origin in IT of each

track T in A is still uncertain. This uncertainty can be modeled by a random

(k)

. . (k)
integer-valued function Qk such that Prob.{Dom(Qk)=A ,Image(Qk)=ID IAb('ID }=1

|x
and defined by

Q (1)=1 if and only if = {(A){i),k") |k'Sk} . (32)

Then Assumptions 2 and 8 imply with a simple recursive argument that

L, (- HOn
Prob.{Qk=w|Alk=A,NT=n} = (B(W,n)) ~ = (33)

n!

for each A ¢ H(k), each n > #(}) and each weW(A,n) where GW(X,n) is the set

of all the one-to-one functions defined on A taking values in {1,...,n}.
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Moreover, the same set of assumptions implies that, for any k=(t,s) in K, 7;
any A in M(k), any n > #()), any w € W(A,n), any permutation m on {1,....,n} , Lf
and any we W(\,n), we have :

Prob.{X(t)edxlﬂk=w,A‘k=l,NT=n} = Prob.{x(t)en(dx)IQkéﬁ,Alk=x,NT=n} (34)

if w(t)=n(wlt)) for all t iniand [I(*): In - .‘I'n is the n-target permutation

homeomorphism induced by the permutation .

Since our sensor medel described 1in Section II is based on a
“fixed” order of targets, we must further hypothesize the correspondence between

a hypothesis A and i- : origin in IT in order to calculate (30), For this reason,

_ (x)
Prob. {X(t)edx|N,, n.Alk-A.z }

= Prob. {X(t)edX|Q, =w,N_=n,A =2,z%} prob. (8 =w|N,_=n,A =2,z
k T [k x e Mk
WEPKA . n)
= @_:;_Lm ¥  Pprob. {X(t)edx]ﬂk=w,NT=n.A|k=)\,Z(k)} (35) -
) w €W(A,n) s
]
cannot be a part of the information state to be propagated to complete the =

recursion. Also, (35) is, in general, not a good candidate for the tracker

output either. For example, suppose that n=2 and A={1}. Then the quantity,

_ N (k)y _
prob.{x(t)edx(NT-n.Alk—k.Z }

(k)
1 prob.{xl(t)edxl,xz(t)edlewl.n.l,z }

k
+ % Prob.{xl(t)edxl,xz(t)edlewz,n,k.z( )}.

. N .. . . . . , B PR . N
R Lo te ) AL
. - L
s . o e RO
als mata’alalalia 2
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with wl(T)=l and w2(1)=2 does not make much sense. It is actually an over-

aggregation of information.

As seen in the subsequent theorem and Appendix A, however, the following
three functions can constitute an information state of the tracker: For

each k in K, define

(k) (k) (k)

Py Az prob.{Alk-xlz . (36)
(k)( |A.z ) Prob.{NT=n|A =A,Z(k)} , and GnH
Ny [

(x) (k)

(k)} (38)

’

(ax|w,n,X,277") = Prob.{x(t)edx|0k=w,NT=n,A|k=A,Z

for each A e.!((k)

(

,» each n>#(X) (by the definition (24) of A, obviously
k)(nlk z ))=0 if n<#(X).) and for some wed/A,n). Because of (34), just one
T

w is enough for (38). Again, with a somewhat notationally abusive usage of

P, we have the following Bayesian expansion:

~

-
g
)

-

v v
‘..5. a
,r. ]

(k) (x*) (k) (k")
P(Z Iklz 'A|k')-§: Y )Y e ,Qk.l\lklnk,,n,r.l\‘k,,z )

:‘ Q ' N
- k k T
(k') (k")
(Qk.lNTrAlk. .Z )P(NTlAlk, :z ) (39)

In the first term of the right hand side of (39), there is no longer ambiguity

in the origins of measurements. The rest of the terms is given by (33) and (37).

The final form of our main result is stated by the following theorem:
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Theorem 1l: Undexr Assumptions 1 to 8, for any k=(t,s) in K with an immediate

predecessor k'=(t',s'), when Z(k)=(y,m,k) is given, we have

(k') (k")
) 2% o K Apel2™ ) @ - nofon
S Pék) (209 2 &), —
® (n - #(X] )t
k! (k') A (k") .
(n - #(A)Nn PNT (nl Iko'z ) .C(y,m,n,l,k) 40)
n=# (A)

for each A in M(k), where . X) (z®) |2 k")

2 ) is the normalizing constant,

nD(AIk) is the number of detected targets at k which A hypothesizes, i.e.,
nD()\lk) = #((TE)‘I (3,k)ET for some 3}) , (41)

L(y,m,n,A,k) is the likelihood of (y,m) given (n,A) at k and is defined by

L{y,m,n,A,k) =

ﬁM<yla,m.6,x,n.k)pN (m—nD(Almls,x.n.k) P, (8]X,n,k)
FA
Xn

n o (KY) - (k')
prtmxlx el ax fur i), 2 %) 42)
In

with At=t-t', for some w'e‘W()\lk, n), 6ePD(n) and

oe A ({{1}}8(1)=1},{1,...,m}) which are determined by

0 if i ¢ Image(w)
6(i) = (43)
gt ny,...,mx{x})) if i=w(t) and T € A
and
a(w(t)) = § 4if and only 1f TNAL,...,m}Ix{k}) = {(j,k)}
for all TEA, (44)
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1‘ using an arbitrary we W()A,n) such that w(r)=w'(1lk,) for every Tel such that -
s PR :

. Proof: See Appendix A. ‘f

The above theorem does not state how to start the recursion, i.e., a

formula for the minimum k in K. For such a k, the left hand side of (40) is
(k (k') (k') (k')

by
3
»

R AP A
N

. . ') .
obtained by replacing gﬂ (Alk‘lz ) and PNT (nlAlk,,Z ) on the right
'..j:' . 40 _ . (k') ' . k'),
=N hand side of (40) by 1 and Prob.{NT—n}, resp., and replacing Px (ax lm ,n,AIk,z ):
'E’ in (62) py Q: (ax') with At=t-t .

In order to complete the recursion, we need the updating equations for
P(k) (k)

% and PN . These equations are obtained by Bayesian expansions which are
T

very similar to the one used to obtain (40) and are stated

below without proof. Under Assumptions 1 - 8, for each k in K with 4

an immediate predecessor k' and for each A €4k}, we have <
[ g
. P)((k) (dxlw.n.)\,z(k)) =
_ + 4
& (L (y,m,n,A,Kx)) lPM(ylo.,m,G,x,n,k)pN (m-nD()\‘k)|6,x,n,k)PD(6|x,n,k)
Py FA
o 1
o n (k") (k*) 'l
"~ fFAt(dXh(‘)P (dx‘lw‘:n:Xh(. A ) (45) 1
.!’ and 1
L.j 1
- R
P Al
- |
- A-26
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(n - #(\; , , .
et a2ty ik .L'(y.m.n.A,k)Ph('k ’(n|x|k..z“‘ )
(k)(nlxz k) o T (n - #())N T
Np . if n > #Q)
(46)
(0] otherwise,
where (w,w'}) and (a,8) are chosen or determined in exactly the same way as in
Theorem 1. The normalizing constant in (46) is given by
Ld (n - #(A ’ ! ] *
:" a2z - [x [(y,m,n,)\,k)Ptsk )(nl)\lk,,z(k N .
T n=f{A) (n - #(A))! T
47)
Consequently, we have
. N__(k)!
9<z"",/\lk|z“‘ ),I\lk,) -2 W (Ao 2Ky, (48)
N, (k)1 T
M
When k is minimal, P;k') and P(k ) in (45) and (46) should be replaced

T
by 93 and Prob.{NT=n} with At=t—to. Thus a fairly general multitarget tracking

algorithm with the information  state,

(x.((p)‘("’vlw,n,x,z‘k’), e a2 pk) (Alz(k))

T

=#)’ Aed

has been completely described. With this algorithm we may, at least theor-
etically, handle complicated situations such as targets moving in a group.

It is obvious, however, that implementation poses a serious problem. One of
the difficulties is due to the high dimensionality of the information state

of the multitarget tracker, which essentially covers all the :rn's, possibly
from n=0 to infinity. The likelihood [ defined by (42) must also be calculated

for a great number of combinations of variables. Thus, even when we use
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k' extensive hypothesis reduction (management) techniques (which will be dis- ]
3 -
i cussed in Part 2), further research may be necessary for implementing the %1
:f general algorithm developed in this section. -]
- _:]
: =
On the other hand, if we introduce an appropriate set of independence :
assumptions, P§k) can be decomposed into a product of factors which can be '{ﬁ
shared among different hypotheses. More importantly, a finite set of dis- ;

tribution functions may cover all the Aﬁh's. The likelihood .[ is also
decomposed in a similar way. Roughly speaking, in such a case every evalu-
ation can be done at the track level rather than at the hypothesis level.

This will be clarified in the next section. Actually, almost all the existing
multitarget literature assumes such a case. As discussed in the subsequent
section, existing multitarget tracking algorithms can thus be viewed as being

included in the general formula shown in this section as a subset.
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V. Independent, Identically Distributed Targets

By i.i.d. (independent, identically distributed) target models, we actually
mean a class of models for which several independence conditions are assumed.
With such assumptions the general algorithm shown in the previous section can
be greatly simplified since many terms can be reduced to the products of

many factors which can be shared among other products.

We now assume that the target/sensor model satisfies the following additional

set of assumptions:

Assumption Al:
For each positive integer n, we have Irg={0} (ng is ignored henceforth) and
fr:=1' y where ¥ 1s a common hybrid space with a hybrid measure (Lebesgue-measure X

. , C
counting measure), Y. By ignoring :rn, the target system state space becomes

(49)
n

X = (X)) = Xx cenne. xX
N~ s’

n

Given NT=n. X=(x.)?

ili=1 is a system of time-homogeneous, independent and iden-

tically distributed Markov processes on X with the common a priori statistics

defined by the initial distribution density,

(50)

=
o

Prob.{xi(to)edx} = qo(x)u(dx)

fa'a

el

and the state transition probability density,
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Prob.{xi(t+At)edx|xi(t)=x‘} = fAt(xlx‘)U(dx) . (51) -:

-

In other words, we have :

et}

n D n R

Q(iIyax;) = ;Tyaq0x;dutax,) o .

and -

n |

At(l- dax; |(x ) ) = 121 fAt(inxi)u(dxi) : (51" 'i

Assumption A2:

The a priori distribution of N the total number of targets, is Poisson

with mean vo, i.e.,

n
\Y]

)
Prob.{NT=n} = exp(—vo) . (52)

n!

Assumption A3:

The event pertaining to the detection of a target i depends only on its

state Xg i.e., for each k in K, each n, each (x ) 1€ :r and each §e9Xn), we

have

n §(1) (1 - 6(4))
P (6|(x ). 1,n X)) = 11 pD(xi|k) (l-pD(xi|k)) (53)
i=1

with a common detection probability function pD(-lk):JC -+ LO.l]

«
bl
‘
«

Assumption A4:

The number of false alarms for each data set k is independent of any
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target state or any other data set variable and has the distribution Py (-lk) .

FA -3

i.e., ':‘:
P, m[&,x,n,%) =p  (n|k (54) =

FA FA 4

for all (6,x,n,k). Given the number of false alarms in a data set k=(t,s), :

the values of the false alarms are i.i.d. with the common probability density

B o

function pFA('lk) on Q}s.

Assumption A5:

The measurement error in a measurement which originates from a target i in
any data set k=(t,s) depends only on the target state xi(t) and is modeled by
a common transition probability density function pM(°|',k) :Q]S"I - [o,w) from

X to 9, for each k. Thus we have

\

m n n m
PM((yj)j=1|a,m,6.(xi)i=1,n,k) 131 pM(ya({i})lxi,k) . jfl pFA(yjIk) (55)
§(1)=1 j¢Image(a)

for every n>0, (xi);;lex“’ §eD(n), m>0, aed’({{1},..,{n}}.{1,..,m}) and
m m
(yj)j=le(a/s) .

We should note that Assumptions Al - AS are assumptions which are “additional"
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to Assumptions 1 - 8. For example, equations (53) through (55) satisfy the

1]
Ay B

requirement of Assumption 8. First let us discuss an important implication -

R

S

of the independence assumptions (49) to (55): For each k=(t,s) in K and each

(k)

track T €9(k), we define the cumulative data set 2 restricted to track 1

e v rof
N MHENOD

by

Ve

zi"T" = U ver,kx{k} (56)
g k'< k
»
o where Y(+,*): U T*xk + (U Y )U(6) is defined by
o XeK St S
B¢
0 1f TO@, K%k} = ¢
N Y(T,k) = (57)
< yj(k) if (j.k)et

for each (T,k)e U g‘k)xx. where yj(k) is the j-th measurement in data set k.

kexX (x)
The usage of 2 is again symbolic, i.e., (8,k)e ZIT

in track T. ©n the other hand, (y,t,s)ez{:) means that yVEQ& is the measure-

means no measurement at k

ment (value) which is hypothesized (by T ) to originate from a target creating

track T.

Then consider a Markov process x on X, which is defined by 9 and fAt'
and an incomplete observation mechanism which creates a measurement Y(T,k) if

it succeeds in creating a measurement and provides nothing (represented by 0) if

it fails, according to Pp and Py described in (53) and (55), i.e., assume that

Prob. {Y(T,k)edy|Y(T,k)#8,x(t)=x} Prob.{Y(T,k)#0|x(t)=x} =

pM(ylx,k)pD(xlk)us(dy) (58)

—
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and

Prob. {¥ (T,k)=0]|x(t)=x} = 1 - pD(x]k) . (59)

Then the problem of calculating the state distribution of x at time t conditioned

by zl”;) (k=(t,s)), can be solved by applying standard filtering theory, i.e.,
by extrapolation using fAt and updating using (58) or (59). Let us denote the
solution to this "mini" or "single-target" problem by pék) , i.e., for every Te U g(k),
keK
let
pék) (x)u({dx) = Prob.{x(t)edxlzf:)} . (60)
The independence assumptions Al to AS5 then imply
n n
(k) k), _ _ _ (k)
Py ((I,dx, |w,n,A,2777) = Prob.{x(t)eil_lldxi[Qk-w,NT—n,A|k=A,Z }

(k) (k)
M p.  (x )u(dx ) n p,  (x,)u(dx ))
<re>\ T w(T) “’(T)><izxmaqe(w) ¢ i ( )1
61

for each k in K, each A eM(k), each n>#()) and each weW(A,n). Although (61)
can be shown without difficulty, it is yet to be proven (actually, (61) is

included in Theorem 2 below ).

Let us introduce another useful notation: For each k=(t,s) in K, define

the track-measurement likelihood function Lk:(Q/S u{eh x g(x) +~ {0,») by

"
Lk(y,‘r) = /gk(ylx)p(k) (x)H(dx) (62)

T
x
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where gk(-lo):(Q)sU{e))x:}‘_‘ + [0,o) is defined by ‘,:4
pM(ylx,k)pD(xlk) if y#6 .
gk(ylx) = (63) "
1 - p(x|k) if y=0 1
D #
-
k .
and, for every Te¢ 9’( ), -
|
fft-t‘ (x[x')pik )(x')u(dx') if k has an immediate
'E\;,:.k) (x) = x predecessor k'=(t',s") 64)
] t [ Y
fft-t (xlx )qo(x yu(ax:*) otherwise.
x o
The main result of this section is shown below:
Theorem 2: Under Assumptions 1 to 8 and Al to A5,
[1! For each k in K, we have
vik) {n - #(Alk))
exp(-v(k)) if n># (Alk)
- (k}y _ n = #(A; )Y !
Prob. (N nlAlk'z } |k (65) g
(o} otherwise -]
where (v(k))kex is given by !
v(k')Lk(6.¢) if k has an immediate predecessor k' :
v(k) = (66) 7}
"
vOLk(e.qa) if X is the minimum in K , ..!‘
12) for each k in K which has an immediate predecessor k' and each ) in X(k), .
when Z(k)s((yj)?sl,m.k) is given, we have ‘

.
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(k) (k), _ p(k") (k') vy, E(T)
By (Az) = By ()‘ik,lz )oLgA(\)(k)) L (Y (T,k),T)

((m-n_(A]|k))1)p,, (m-n_(A|k)|k) n p. (y.|k)
b Nea D jejFA(A.mlk) FA 3

(67)
P(k)(z(k)lz(k )

2 )e(m!)cexp(v(k*') (1 - Lk(9,¢))

where

jFA()‘fmlk) - {js{l,'. .'m}l'rhere is no T in A such that}

TAUL, .. .mx{kD) = {(5,10)) (68)

0 if le.f¢
e(T) =.{ (69)
1 if le'=¢

whereas nD(AIk)=m-#(jFA(A,m|k)) is as previously defined, and
L3] for each k in K, we have (61) for each X eMd(k), each n># (1)

and each weW(A,n), and moreover,

k -1 n(k
p; )(x) = Lk(Y('r,k).r) gk(Y(‘t,k)lx)P: )(x) (70)

for each Te (k).

Proof: See Appendix B.

We should note that an empty track ¢ is always included in (k) for any

k in K according to our definition. Thus, Sék) () is the a priori distribution A

. - density function (at k) which is common to all the undetected targets up to k _,4
-4
ﬁ, {(not including k), and p‘;k) () is the a posteriori distribution density function

-
'LLLLA
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(at k) of targets undetected up to and including k. The definition, (62) and (63),

of the track-measurement likelihood functions Lk gives us the following verbal
expression of (67): The posterior probability of any hypothesis is the
product of

(k") 'Z(k')

(1) a priori probability, gﬂ (Alk' ). or the probability of the

parent of A,
(2) the likelihood of the set of measurements, jFA(X). to be the false
alarm set, ((m-nD(AI);)mpN (m-noulk)lk) I
FA 33 (A,m|k)
(3) the likelihood Lk(Y(T,k),T) of measurement Y(T,k) (#0) originating

from a previously detected target (rlk'¢¢)

(4) the likelihood Lk(Y(T,k),r) of a previously detected target (1,  #¢)

k'
being undetected (Y(1,k)=8) and

(5) the likelihood v(k')Lk(Y(T:k),r) of a measurement Y(t.,k) (#6)

originating from a newly detected target (le,=¢)

divided by the normalizing constant. Likewise, we may call Lk(e,¢) the likeli-~

hood of an undetected target remaining undetected.

As seen in (67) and (70), the evaluation of hypotheses can be done

at the track level due to the independence assumptions. When k is the minimum

. k k*
in K, the left hand side of (67) can be calculated by replacing P; )(z(k)lz( )

' (k*) (k') (k) (k) Lo
v(k'), e(1) and Py Ik'lz ) by P, ' (2 Y. Vo 1 and 1, resp. The initial

condition for the filtering equation (70) is already included in the definition

(A

~
(64) of p(k’. Thus we have given a complete description of the (so called)
T g

i.i.d. multitarget tracker, whose information state at k {s
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that is to be propagated forward.

Although the algorithm shown in Theorem 2 is less general than that shown

in Theorem 1, it covers nearly all the existing multitarget tracking algorithms

as its subset,as shown in the next section. As 1s well known, the cardinality

of (k) and 9I(x) grows very rapidly. Hence any inplementation of the general

algorithm described in this section requires further consideration. Such issues

are discussed in Part 2.
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VI. Relation to Existing Results

. .
_Ll'A'L_‘A’A a4 4"..

(R -y

5 In this section, we use the 1i.1.d. model; i.e., we retain

Assumptions Al to A5 in addition to Assumptions 1 to 8. These assumptions _;

are inherent in most of the multitarget tracking literature published thus

far, although they are sometimes not stated explicitly.

Before discussing the relation of the general algorithm described by
Theorem 2 to existing results, let us describe a batch-processing version of the
same algerithm. The theorem described below is easily obtained by applying

(67) repeatedly. Hence the proof is omitted.

Theorem 3: Under Assumptions 1 to 8 and Al to AS with the notation,

nFA(llk)=#(jFA(l,NM(k)lk), for any k in K and any A in 4(k), we have

e 2™y = ¢ ™) B oy on o

B FA TEA T (72) S
where
ekl g™y L p) Ky (0 N (k') D) eexply, - (K)), (73)
B 2 e 0
k'£k
(k) g
L. = o (n. Ak Dp, (n_ (A]k*)][x") I p.. (y.(k')[k") (74) -
FA k'S k 0 Nea FA je3, Ay FA 3 !
and
N S LT N {5 P S P S IR S AL P R oY (75)
K (1)%k '$x k'S k

for every Te€ 9(k) where k(T) is the minimum of set {k‘ex(k'Sk,rn(JM(k‘)X(k'})#¢}, B
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It is possible to prove Theorem 3 without using Theorem 2 and to deduce (67)
from (72). Theorem 3 states that a posteriori probability of each hypothesis A

at k is the product of the track likelihood 2ék) of each track T in A and

the false alarm likelihood divided by the normalizing constant, and provides us

with a unified view of what we may call “track likelihood" approaches such as the

algorithm described in {10) and [11]. The track likelihood updating equation,

k k'
Li )-li )Lk(Y(T,k),T), follows immediately from (75) with k' being the immediate
kl
predecessor of k. When each Bik) and Py are gaussian, Lk(y.T) (y#8) is the

exponent of the negative square innovations norm (times some constant), which is
sometimes called "scores." (see [12].) As is well known, the squared innovations

norm or its sum over a track may be considered a X2 random variable.

Let us make one more assumption:

Assumption A4°':

P (-]k) is Poisson with mean v__(k) for each k in K,
Nea FA

Then we can rewrite (72) as

z(k))--l

P [z ) < EH)

( AL (72)
teh T
where

B FA

&R @)y 2 G exprou k) T
k'€ k jCNM(k')

(73")
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and
(k) a
T =v on T, 751 -
T 0 4igy K (75") :
| E
I L (8,1) if y=p ]
) v
: Lk(y,-r) = Lk(y'_t) . (76) g
; . if y#6 o
‘ Vea *)ppy (v [K) "'f’
i Take the logarithm of (72') and ignore the normalizing constant. Then we have

a function h: (k) + (-»,») defined by

hA) = E 1og(?fr‘k’) = I 1og&f")x(r;>n (77)
TEA T e I(kI\D

for every A in (k) (x(<;A) is the indicator (characteristic function) of set A.).
With (77), we can interpret Morefield's 0-1 integer programming algorithm
described in [9]. Namely, the problem of obtaining the maximum a posteriori

(k)

probability (MAP) hypothesis A at k given 2 is equivalent to maximizing (77)

with respect to A in H(k). In (77), (x(1:))) is the 0-1 vector to

.
(A
LR AR

L ST
e Yy fe e 0T,

v
e

PRSI I

PR S R O )

Ted(kIN}
which the 0-1 integer programming is applied. Then the constraint imposed by

“t
PR

)

Assumptions 5‘ and 6 can be written in a 0-1 matrix-vector ‘inequality as des-

s
[t

cribed in [9].

In most of the exicsting multitarget tracking literature, in addition to -

Assumptions 1 to 8, Al to A5 and A4', the following assumptions are made:

(1) fAt is defined by a linear dynamical system driven by a white noise,

(2) pM(ylx,k) is defined by a linear-gaussian measurement equation,

; 0

8
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i y = Hkx + Vk .:4

with an appropriate matrix HK and an independent additive gaussian noise v , and

PRI T L

I_ (3) pFA(' | k) is uniform over Q[s.

BT

-
-

In many cases, the initial distribution (modelled by qo(')) of undetected targets

as well as Bb(k) is relatively "uniform" or has a large variance when compared

with the variance of the measurement noise v, . Furthermore, if

k
. . . (k) v(k)
pD(olk) is constant over the field of view of each sensor, Rr and pT with

T#) may be reasonably well approximated by gaussian densities with relatively

small variances compared to the size of the field of view; hence, we have

approximately
py (v] k)p( (x)u (dx) = i exp(-4] |, .|| 7-D)
' (22 (get 1) V2 k| k'1T
Lk(YrT) = m
if y#0
(78)
1- LIS if y=6
where ¢ is the innovations,r=Var(vk)+H z HY is the innovations

x| k™Y ke

K*k| kK
variance, % (k)

and I are the mean and the variance of p ., resp.

k[k' k[Xx'

(lellnéxTAx and a’ is the transpose of vector or matrix a.), and T, is the

constant value of pD(-Ik), When updated by (70), an approximation similar to

(78) leads us to the usual Kalman filter equation if y#6 and no updating

(0 (k) '\«(k)) if y=p.

Therefore, with all the additional assumptions described above, it is easy
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to see that (67) becomes Reid's algorithm described in [4] with 51
Byp(K) = v(k"L (y,T) (79) *
l for T such that tlk,-¢ vwhere k' is the immediate predecessor of k. BNT is called
f the "density of previously unknown targets that has been detected" in {4]. More-
h over, the constant pD('|k) implies that ND?Q#({rellrlk,#¢ . T{](JM(k)x{k})#¢})

has a binomial probability distribution given NTGT-Q-#O‘lk')’ enabling us to use
NDT (among others) to expand (39), which is actually done in [4]. On the other
hand, BNT given by (79) should be a function of k and y. If it is fixed to a certai'::
value, newly detected targets acquire increasingly (w.r.t. k) unjustiffably high
possibilities. To prevent this from happening, Reid proposed to adjusc'BNT as
described in a paragraph in ([4]:

"eeies, @ calculation of BNT' the density of new (i.e., unknown) targets,

is performed whenever a data set from a type 1 sensor is received. ceanae
BNT depends upon the number of times the area has been observed by a type 1

sensor and possible flux of undetected targets into and out of the area."”

Aside from this description, there is no further discussion of this calculation

of BNT in [4].

In contrast, according to our formulation, B.. is analytically given by (79).

NT
In the original report [13] by Reid, a rather heuristic method for calculating BNT

is described, in which the sensor field of view is divided into many cells and

the inflow/outflow from cell to cell of undetected targets is calculated. As

seen in the previous section, however, the likelihood (79) of a measurement y
Sk .
originating from a newly detected target is calculated from v(k') and pi ), both -

e
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of which are calculated recursively for all k's. The exact calculation of

p(k) (k)

1 or p. ", and accordingly (79), is, however, not generally possible due to

3
v

the nonlinearity of pD(-lk). Therefore -effective approximation techniques must

.; be exploited. With an appropriate approximation of pik)

S
'4 »

and (79), we can
properly consider the fact that a newly detected target would most likely appear

on the edges of sensor fields of view and not in the middle. In many cases,

when only a small number of measurement indices are in a track T, p. or ;T may

not be well approximated by gaussian densities. For example, consider a case
where targets moves in a l-dimensional space, the a priori target velocity in-
formation contained in qo(') is represented by a uniform distribution on a
possible velocity range and there is no velocity meésurement (position-only meas-
surement). In such a case, gaussian approximations of P, OF ;} are very poor.
Appropriate approximation methods are, therefore, called for in order to calculate
pT and ET , and accordingly, the likelihood function Lk' As mensioned in [4],

such approximations coupled with hypothesis management techniques (described in

Part 2) can be viewed as so called "track initiation processes."

On the other hand, when a separate track initiation mechanism is assumed,
such as in [14], one of the most difficult parts of the multitarget tracking
problem is removed automatically. Any tracking algorithm with a separate track
initiator can be incorporated into our framework as follows: First extend the

set S of sensors to §-{so}US where s, is a track initiator as a "super" sensor

: which creates a probability-one hypothesis, xo-(?l,....?ﬁf with ;1-(1,c0,s0)

- being the i-th a priori track. Then, if we replace K by E-KU(to,so), Theorem

u 2 or 3 provides a general Bayesian formula for cases in which a separate track
initiator is employed. Those cases in which a track initiator provides new

.

- tracks in the middle as well as the beginning of the tracking may be similarly
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incorporated. Although the use of a tr'acker and a track initiator in parallel
can be handled in our general framework, such a use may be seen as a departure
from a purely Bayesian approach. A track initiator does have memory. Unless the
track initiator does not share the data sets with a tracker, the correlation
between the data sets and the outputs of the track initiator cannot be ignored.
Therefore, we must either divide the data sets, one for the track initiator and
the other for the tracker, or use more or less heuristic methods to discount

such an effect as double counting or too much reliance. For this reason, we may

say multitarget trackers used with separate track initiators are either

restrictive or "sub-optimal.”

As discussed in greater detail in Part 2, since H(k) is the collection of
mutually distinct and collectively exhaustive hypotheses, aggregation or combining
of hypotheses, such as {Alk-xl or Alk-lz}, is compatible with our formulation
and is a great help from the view point of implementation. However, in order
to perform such operations properly, we must know the correspondence among
tracks in hypotheses to be combined. When we assume a separate track initiator
and there is no newly detected target, such correspondence is obvious and it is
possible to combine all the hypotheses so that there is always ounly one (and
hence probability-one) hypothesis to be propagated forward. The JPDA (Joint
Probabilistic Data Association) method described in [14] thoroughly exploits

such condition.

One of the points which we have stressed in the previous two sections is
that multitarget tracking requires a hierarchical algorith; the evaluation of
hypotheses is at the top and (generally nonlinear) filtering at the bottom.
Thus, the construction of multitarget trackers in many different situations
creates a wide range of nonlinear filtering problems. The use of hybrid-state
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Markovian models enables us to treat a wide range of complicated situations,

at least in principle. Fairly complicated dynamics are occasionally used in
multitarget tracking literature, e.g., [15] with birth-death processes. To

the best of our knowledge, however, there is still no satisfactory nonlinear
filtering for maneuvering targets. When there is no discrete-part dynamics

.; (target classification problems, etc.), the required filtering is substantially
simple. Particularly, if, in addition, the continuous-part dynamics is linear-
Gaussian, the sum-of-Gaussian filtering described in [17]) may be the most appro-
priate. On the other hand, even when there is no discrete-part state, and all
track statistics are Gaussian, because of the huge computational requirement
generally associated with any multigarget tracker, efforts to develop filtering
techniques by which each track-measurement likelihood can be quickly calculated

are always worthwhile. One of such efforts is described in [16].
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VII. Conclusion

According to our viewpoint, targets and sensors in a general multi-
target tracking environment are properly modeled only when targets are
modeled as a random-set process and each sensor is regarded as a mechan-
ism which maps this set to other random sets, i.e., measurement data
sets. A very general target/sensor model has been defined and a general
recursive multitarget tracking algorithm has been derived based upon
this viewpoint of ours and Bayes' rule. Then a special case with a so-
called i.i.d. (target) model, has been examined in more detail, and-a
general multitarget tracking algorithm both in recursive and batch-
processing forms have been derived. Besides the generality of (indivi-
dual) target dynamics and sensor models, two previously ignored but
realistically very important factors have been pointed out: (1) state-
dependent probability of detection and (2) precise definition of likeli-
hood of a measurement originating from a newly detected target. Our
general i.i.d. tracking algorithm has been been compared with existing
algorithms which share the common concepts of tracks and hypotheses. We
have succeeded in providing a unified view of existing algorithms by
showing that the general algorithm is in fact a generalization of many
well-known algorithms. We have also shown that the general multitrack-
ing algorithm is hierarchical in nature and always contain a nonlinear

(or linear) filtering algorithm as a sub-algorithm.

This paper, Part 1, covers most of our theoretical developments on

multitarget tracking. Part 2 of this paper will consider hypothesis
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management techniques and other implementatin issues. The term "hypothesis

N PRI

management' is borrowed from the artificial intelligence (AI) terminology.

In our context it means a set of procedures which keep the number of hypotheses,

2 b
Lo

and hence, a multitarget tracking algorithm under control. Due to the rapid

[

growth of the number of hypotheses, no multitarget tracking algorithm is

implementable without appropriate hypothesis management procedures. At
Advanced Information & Decision Systems (AI&DS), we have developed a system
called GTC (Generalized Tracker/Classifier) which implements all the problem-
independent parts of the general (i.i.d.) tracking algorithm. In Part 2 we

will present some numerical results to illustrate the use of this system.
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Appendix A: (Proof of Theorem 1)

As mentioned in the early part of Section IV, the most crucial part of

1
the proof of the theorem is how to calculate or expand P(Z(k),A IZ(k ),A ),

[x [

which is outlined in (30) and (39)., The precise meaning of (39) is

(k") 3 (x*)
Prob.{y(k)eY, N (k)=m, A =A|A, =X, ,.2 = Prob.{N_=n|A, ,=X;, ,:2 }
rob.{y M Ix ||k |x } n=§()\) (Ny=n A=Ay
(k')
3 Prob.{Q ,=w'|N_=n,A, =\, ,.2Z }
w' E(W(Alk.'n) k T lk lk
2: Prob.{y(k)EY,NM(k)=m,Alk=X,Qk=w|Qk,=w'.NT=n,A|k,=llk..Z(k.)}
w EPYHA,n)
(al)

for every A e (k), every m>0 and every measurable set Y in (Q}s)m. The first
and second terms are already given by (37) (part of recursive assumptions)

and by (33). The third term in (Al) is further expanded as

- (x*)
. =m, =A, = =| " =n, =A ' =
Prob {y(k)CY,NM(k) m Alk A Qk_lek‘ W' No=n Alk' he! z }
= = = - et N = = (k")
/PrOb-{Y(k)EY:NM(R)"mlAIk‘)‘er"U’Ix(t) X'le w 'NT n'Alko Alkl'z }
' N = - (x*)
¥ Prob.{X(t)eXmQk'—w Ny n'A|k' Alk"z } . (a2)

The conditional probability measure on 2% in (A2) is given by (38) (part of

the recursive assumptions), i.e., we have
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- - (k')y _ (k*) vl (x*)
Prob.{x(t)eax|Q,, =w' /N_=n, Alk' Ik..z } !At(dxlx )P T (ax [w ’""\Ik"z )
n (A3)
with At=t-t°'.
On the other hand, the integrand in (A2) can be further expanded as
- - . - - (k')
PrOb-{y(k)CY:NM(k)'m'AIk A,QK-UIX(C) K,Qk.'w 'NT n'AIk' A|kl'z }
= = = ' - = (k')
. ) Prob. {Fy (k) =8|X (£) =X, R, =o' N oAy Alk"z }
14}
Prob. (N, (k) =m| F_ (k)=8,X (£)=X,Q_, =" ,N_=n, Ay 'k,.z‘k"}
2 Prob. {A(k)-alN (k)=m, F (k)=8,x(t)=x,Q ."w"NT"n' lk"xlk' 'Z(k‘)}
aeA® ({{1}]6(i)=1}, {1,..,m})
- = - = = ="' = = (k‘)
- = = = ' = = (k')}
PrOb-{QkWIA(k)w'NM(k) m,FD(k) G,X(t) Xothgm INT n'Alk' Alk' »Z -
= = = = = 4 = = (k')} S
Prob.{y(k)EYIQk-w,A(k)—a,NM(k)—m,FD(k) §,X(t) x,Qk,=w oNoy "'Alk' )‘lk"z . >
(ad) -
Under Assumptions 1-8, the first, the second, the third and the sixth terms .2
are given by (15), (16), (19) and (20). The fourth and the fifth terms merely -
check the consistency among (A,w,w',x). The fourth term, Prob.{l\lk]...},
is 1 if
A =( U {T'U{(a((w'(T')}),k)}}> U ( U {(a({w' (" )H,K)} -
el [k ifImage(w') R
(AS) ”
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ii and 0 otherwise. Likewise the fifth term, Prob.{Q =w|..} , is 1 if

w'(t,,.,) if T, # o
|x Pl -:

w(t) = (A6)

a unique i such that N ‘
t={({ih),k)} otherwise

and is 0 otherwise.

When a subset {‘rekl‘rlk,=¢} of new tracks in A is not empty and

n - #{ter|t,, ,#$} > #{Tekl‘rlk,=¢} p

[x:

there are more than one (a,8) which satisfies ae A°({{i}|6(i)=1},{1,..,m}) and (A5). _
On the other hand, for given A and w, there exists one and only one (a,5) such

that ae A°({{1}]6(i)=1},{1,..,m}) and (A6) hold.

Therefore, for any m>0, for any measurable set Y in (QJs)m, any A e4(k),

any n>#(A), any ern and any ' E‘W(Xlk, /n), if wegXA,n) satisfies

!
w(t) = w'(rlk,) for all TeA such that rIk.f¢ ' (A7) o
we have

(k*)
= = = =" = =\ R
Prob.{y(k)eY,NM(k)-m,A'k X,Qk=w|x(t) X, R, =w' Np=n,A|, [ z }

(m-n (A [Kk)) ¢

= P (§|X,n, k)P (m-n (A]k)[8,X,n k)
FA m!

m
[PM(yla,m.d.X.n.k) us(dy)

Y (AB)

where nD() , § and @ are defined by (41), (43) ana (44), resp. Otherwise E

the left hand side of (A8) is zero. Substitute (A8) into (A2) and perform

integration using (A3). Then the integral (A2) has the same value for every
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(w.w') in 9Y(A,n) X‘W(Alk,,n) as long as (A7) is satisfied, due to Assumptions
2 and 8.

Suppose A e 4(k), n>#(A) and w' e‘W(AIk,,n). Then there exist (:(A-)-: 3!}(';)
Ik’

combinations to choose sets of newly detected target indices for {‘rs)\l‘rlk,=¢}

and, for each of such combinations, there exists (#(A)-#(A )y ! isomorphisms

|
from a chosen target index set to {Teklrlk,=¢}. Therefore,

(n ~ #(Ay,,
Ny o= Pk

(n - #(A))!

(n - #()\Ik.)

#(A)-#(Alk.)) ) - #0 (a9}

%

is the number of w's in qY(A,n) which satisfy (A7) for fixed Aedf(k), n>#(A),

and w's‘W(Alk, ,n). On the other hand, when we replace k by k' in (33),

we have

VN = - - -1
Prob.{Qk,=w ]NT—n,Alk,—Alk,} (#‘W(Alk,,n)) .

Consequently (Al) is reduced to

(k")
ke e 12 } =

Ptob.(y(k)eY.NM(k)=ch| =A[A
(k' )} (n - #(Ajkn))'

2 Prob. {NT=n|A
n=# (1)

v= o'z
LI (n - $O))!
- (k")
prob.{y(k)ey,NM(k)=m,Alk-A.nk=m|ak "N =n, Alk' lk"z }

(a10)

for any w' e'W(Alk, ,n) and any weW(A,n) which satisfies (A7).
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Substitute (AB8) with nD() , 6 and a defined by (40), (43) ana (44), resp.,

and take density on (Q/s)m with respect to u:. Attach the prior -

(k") (k'"), _ _ (k")
Py (Alk,lz ) = Prob.{Alk,—Alk,lz }

" Y alit g i
o, '.v-’A-‘..'.. <.
[ .

| PR

p to it and divide it by the normalizing constant Pz(k)(z(k)lz(k ))
g have (40). Q.E.D.

. Then, we
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Appendix B: (Proof of Theorem 2) N
-
L 1

.'1
:::" We will prove the three parts (1] - [3), more or less simultaneously. "
N
L Part [1] and part [3] will be proved by recursion. First, let us assume 5
. that (61) and (65) hold with k replaced by k'. By (61') or (65'), we mean -

(61) or (65) with k' instead of k. For any A EM(k), any n>#(})), any m_>_nD(XIk)

and any (yj);'=1€(¢l]s)m, it follows from (51'), (53) - (55), (57), (61') and
(62) ~ (64) that

m
.L‘((yj). l.m,n.k.k)

J'—'
A n m
s (m-n_ (A |x) |k ( ) - )
Py, @ p 10 [0 R NGNS & Ppa 41
x? §(i)=1 j¢Image (a)
n
8 (i) (1-8 (i)
( 1p_(x, ] (1~p_ (x, ]x)) )
i=1° i D i
(k) v (k)
. p. o (x , . Jdu@x , ) I P,  (x )u(x,)
(TeA T w* (1) w' (1) iﬂmage-(w')" : ‘1)
T,k,#¢
m
=p, (m-n_(A[k)|k) « I P, (¥.|X)
NFA D =1 FA 73
jé¢Image (a)
~ (k) :
.[ n . f Py o (fw(ry 1y 100y (kIR (x)u(dx)]
're}JUk s
:
.[ I o f(l - pD(x]k))B;k) (x)u(dx)]
TEAN x X f:
(n - #(\)) R
[ Sa - eyl ouen ] X
X A
=p, men AR - T e, ) L v, L e, M)
A _ 3 , K X
jedg, (Aim|k) Te (B1)
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4 :4
E; "
3 where Jza{l.....m}x{k}. (w,w') in WA, n)xqv(klk,.n) is an arbitrary pair satisfyin gl
I“ . <
" i
!I (A7), and nD(XIk). jFA(X.mlk), § and a are defined by (41), (68), (43) and (44), A@
%y resp. %
'?: According to Theorem 1 (Equation (40)), it follows from (Bl) and (65') 3
, 3
,. that ..»_-_
. (k') (k')
W o, M ApelzT ) mo- Al
u Az - (x),, (k) (k") Py (m-nD(AIx)lk)
Pz (z ' z ) m! FA

-[ B A (Y lkﬂ [ (Y (TX) rﬂ
jejn(k,mlk) reA

(#(A) -~ #(Alk.)) (B2)

. exp(-V(k'))'exp(V(k')Lk(9,¢))'(V(k'))

(67) follows immediately from (B2), and hence, part [2] has been proved.

It follows from (Bl), (46) and (65') that, for any n>#(}),

pgkinlx,z‘k’) = ggk)(A,Z(k))-l'exp(-v(k'))°v(k')(#(v)-#(vlk'))
T T (n - #(A))
(V(k')Lk(en¢))
. (B3)
(n - #(QA))!

where g:k)(x'z(k)) is the normalizing constant. (B3) proves part [1] since d
T K
(B3) holds true even when k is the minimal in K by letting Alk'=¢ and V(k')=Vo- -J
(70) is an obvious consequence of the definitions, (60), (62), (63) and <

(64), of p( ). L 9, and ;:k), resp. (61) follows from (45), the assumptions,

(k)

(51'), (53), (55) and (61'), and the definition of p_ Q.E.D.
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where J:={1,_.,.m}x{k}, (w,w') in qu(x,n)xqu(klk,,n) is an arbitrary pair satisfying -

f

. ]

(A7), and ny(A|k), i, (A,m|k), 6 and & are defined by (41), (68), (43) and (44), —3
cess. 4
..:4

o

According to Theorem 1 (Equation (40)). it follows from (Bl) and (65") -

4

that .

(x*) (x*)
Py, (A, 027 ) mo-a_(A]x))1
rg” Az - dﬂ(k) li) L > "By m=ny (A[x) [x) 4
P,z |z ) m! FA :

z

.[.

I P (y.lk)] [ mL (Y(r,k),r)] s
Jt-:J'FA(’\.mIk)FA ) ex X ' -d

. exp(-V(k'))‘exp(v(k')Lk(8,¢))‘(v(k'))(#(X) S HOAR) gy

(67) follows immediately from (B2), and hence, part [2] has been proved.

It follows from (Bl), (46) and (65') that, for any n># (),

P;k{nll,z(k)) - ggk)(A.Z(k))-1°exp(-v(k'))°v(k')(#(V)-“(vlk')’

T T
k)L, (8,6) " 7 ko
. (B3) |
(n - #(2)) .
where Egk)(x,z(k)) is the normalizing constant. (B3) proves part [l] since .
T ——

(B3) holds true even when k is the minimal in K by letting A =¢ and V(k')=v,_..

[ 0

(70) is an obvious consequence of the definitions, (60), (62), (63) and

(64), of p:k), Lk' 9 and Bik’, resp. (6l) follows from (45), the assumptions,

. .{1 e, L.
. o e

(51'), (53), (55) and (61'), and the definition of pik). Q.E.D.
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f* where Jk={l..-.,m}X{k}, (w,w') in qp(x,n)qu(klk,,n) is an arbitrary pair satisfyiny
]. (A7), and nD(Xlk), jFA(A,mlk), § and a are defined by (41), (68), (43) and (44), fﬂ
NS resp. k
s | ¥
i According to Theorem 1 (Equation (40)), it follows from (Bl) and (65') r
& that ‘ﬁ
i 4
- (k") (k*)
) o0, M QpelzT ) @ Aoyt #
pg (A2 = 00— Py (m-n (Ax) k) -
P, (Z |z ) m! FA =

[ I pm(yjlk)] [ n Lk(Y(‘l',k),'F)]

N
JEJFA(A,mIk) TEA q
A - #(A -
+ exp(-V(k')) exp(v(k*)L, (8,0))« (vix)) HH = k) (82) :
. 4
i
(67) follows immediately from (B2), and hence, part [2] has been proved. y
'y
It follows from (Bl), (46) and (65') that, for any n>#(}\), _£
R
a2 - ggk)(A.Z(k))-l'exp(-v(k'))'v(k‘)(“(V)-#(vlk')) 8
T T - :
vk, 0,40 0 7 #O) !
. (B3) -
(n - #(A))!
where ggk’(X,z(k)) is the normalizing constant. (B3) proves part [1] since )
T .
(B3) holds true even when k is the minimal in K by letting A|k,=¢ and v(k')=v0. -
(70) is an obvious consequence of the definitions, (60), (62), (63) and '
(64), of p:k), L.+ 9, and 3:*’, resp. (61) follows from (45), the assumptions,
(51"), (53), (55) and (61'), and the definition of pik). Q.E.D.
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APPENDIX B

DISTRIBUTED ESTIMATION IN NETIWORKS

C.Y. Chong, E. Tse and S. Mori

ABSTRACT

In this paper, we consider the distributed estimation problem by a
set of agents connected by an arbitrary communication network. The
agents communicate conditional probabilities of the random state over
the network. From these conditional probabilities, each agent then
tries to re-construct the conditional probability given all the measure-
ments if these were communicated instead of the probabilities. It is
discovered that in general the agents have to remember some of the past
conditional probabilities and may even have to request additional infor-
mation. A method for generating the fusion algorithm for each agent
based on the network structure is presented and applied to some exam-

ples. The results are applicable to both dynamic and static states.
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1. INTRODUCTION

The traditional approach to estimation has been centralized. Even
though the measurements are generated by a large number of sensors, it
is usually assumed that they are sent to a central site where processing
is carried out by one agent (computer). In this context centralized
estimation theory is well developed and has found applications in many

real world problems.

In recent years, there has been growing interest in distributed
estimation problems. In such problems (Figure 1), the sensor measure-
ments are not all transmitted to a central processor. Instead, a set of
local processors, which we call estimation agents, are present. The
agents are connected by a communication network. Each agent collects
the measurements from a subset of the sensors, performs some local pro-

cessing, and communicates the results with other agents.

The advantages of such a distributed estimation system are many.

It is more reliable (or less vulnerable) since there is not a single i
central site which is respomsible for the proper functioning of the sys- :i
tem. Communication is cheaper since only the results of processing, and
not the raw data, are communicated. Furthermore, each distributed agent ;1

has the use of the processed data locally and does not have to wait for

A

communication from the central processor. From a technological point of

view, such distributed systems are made possible by the availability of P
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Distributed Estimation System
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cheap computing hardware. These advantages make distributed estimation
systems extremely attractive for many military and civilian applica-

tions. One such application is the distributed sensor network [1], [2]

for tracking and surveillance.

Research in distributed estimation has progressed along several
directions. A team-theoretic approach has been taken by Barta [3] for
decentralized linear estimation and by Tenney and Sandell [4] for dis-
tributed detection. Extensions of this work in detection have been made
by Teneketzis [5] and Ekchian and Tenney [6]. Another approach, based
on finding constrained decentralized filters, has been taken by Tacker
and Sanders [7]. The approach of fusion or combining of local estimates
to recover the globally optimal estimate has been used in [8] to [12].
The linear problem was considered by Speyer [8], Chong [9], Willsky et
al. (10} and Levy et al. [1l] while Castanon and Teneketzis [12] con-
sidered the nonlinear extension. In all of the above [8]-[11], the sys-
tem structure is hierarchical with no feedback communication or coordi-
nation from the fusion agent. Similar problems of this type have also

been considered in the management science literature [13].

The network aspect in the distributed estimation problem has been
the emphasis in [14], [15] and discussed in [2). Borkar and Varaiya
[14] presented results on the asymptotic agreement among agents for
estimation while Tsitsiklis and Athans [15] considered asymptotic agree-
ment for more general decision problems. It has been demonstrated in

[2] via an example that agreement may not be desirable since the common
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conclusion may be wrong.

In this paper, we elaborate the results obtained in [2]. The phi-

~N
%} losophy of fusion or combining of local conditional probabilities to
P
i;i obtain the probability conditioned on all available information is again
- used. However, arbitrary network structures are considered explicitly.
‘i; They may be hierarchical with or without feedback from the higher level
:?, or fully distributed. The presentation is at a fairly elementary level
Tn to simplify the notation but can be made more sophisticated if desired j
t;i by introducing sigma fields. The results may provide the theoretical j
‘;;; basis for the analysis and design of systems such as the distributed a
ﬁ_ sensor network.
;;: The rest of this paper is organized as follows. In Section 2, we ‘
- present the model to be used for distributed estimation. Section 3 !
. y
i;ﬂ describes the distributed estimation problem. Section 4 describes the ]
iéﬁ basic results for static random states. A method for generating the ]
ey fusion formula for arbitrary networks is given. The fusion algorithms {
;%“ for some examples are also described. Section 5 extends the basic 1
;&; results to the case of dynamic random states. Section 6 is the conclu-
9 sion.
- ; 1
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! 2. MODEL FOR DISTRIBUTED ESTIMATION -]

2.1 STATE AND OBSERVATION MODELS

We consider the estimation of a random process x(t), t € T where T
= [to, ©) and x(t) € X. The random process x(.) can be static, deter-
ministic or a general Markov process. We assume the statistics which

specify the random process completely are known.

Let S be a finite set of sensors. At a given time t in T, a sensor

§ generates an output or measurement z in the measurement space Zs' The

triple (z,t,s) is then called a data set and (t,s) is the data set
index. Let Z be the set of all data sets and K be the set of all data
set indices. If we assume that each sensor can produce only a finite ;l

number of outputs in any finite time interval, the sets Z and K are at

e e
g

most countable. Furthermore, for each t T, the restrictions

e

th = {(z,t",s) e Z| t” <t} (2.1)

and

Klt = {(t",s) € K| t~ <t} (2.2)

.
o
A

o
b,

are both finite.
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We make two additional assumptions:

1. The sensor origin and time of each data set are known, i.e., for

any data set (z,t,s) € Z, t and s are known quantities.

2. The measurements are all conditionally independent given the state
process, i.e., for any finite subset {(zl’tl’sl)""’ (zk,tk,sk)}

of Z,

k
Prob.(-r\ {zi € dzi)lx(tl),..., x(tk))

i=1
k
= 121 Pl'Ob.(Zi € dzllx(tl)) (2.3)

With the second assumption, the observation process can be charac-
terized completely by the transition probabilities (or probability den-

sities) from X to Zs'

2.2 DATA BASES

We are interested in estimation of the process by a network of
agents. At any time t, due to communication constraints, each agent may
not have access to all available data sets. 1In general, an agent will
have only a subset of the available th at t, corresponding to only a
subset of Klt' A data base Z at time t is a subset of 2|, and a data
index base K at time t is a subset of Klt' According to this defini-

tion, th (Klt) is the maximum data (index) base at t and ¢ (the empty
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set) is the minimum. Given any data base
Z= {(zl,tl,sl),...,(zk,tk,sk)}, the corresponding data index base

K = {(tl,sl),...,(tk,sk)} is found by the operation
K = In(z) (2.4)
where the definition of In is obvious and the actual measurements
(zl,...,zk) are found by
(zl,...,zk) = Mv(z)l (2-5)

When Z = ¢, In(¢) =08, and M (¢) = 6 where @ is a symbol representing

"no information".

For each data index base K = {(tl,sl),...,(tk,sk)) with correspond-
ing data base 2 = {(zl,tl,sl),...,(zk,tk,sk)} we define the conditional

probability P(.|Z) to mean P(.IMV(Z),K) .

All the definitions above can be given more rigorously in terms of
sigma algebras. This will not be attempted in this paper so as to sim~

plify the development.

2.3 COMMUNICATION MODEL

We assume there is a finite set N of estimation agents. Each agent
n has its own set of sensors, i.e., a subset Sn of 5. Furthermore, the

sensor sets are disjoint for different agents, i.e., Sn(W S,- = ® for
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n + n”. Each agent n also receives
communication. Communication among

communication schedule C which is a

O 2t mam LA AN R TR T ET VRN

information from other agents via
agents is specified by the known

subset of T x N x N. (t,nl,nz) € C

means that agent N, transmits some messages to agent n, at time t. The

exact form of the messages will be discussed later.

Just as in the data set index set, we assume the communication fre-

quency cannot be infinite, so that,

schedule up to t,

for any t € T, the communication

Clt = {(t',nl,nz) € Cjt” <t} (2.6)

is finite.
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{(t,n) € T x N|(t,s) € K, s € S},

3
4
i 3. DISTRIBUTED ESTIMATION PROBLEM

-

" 4

4

3.1 INFORMATION GRAPH g

The distributed estimation system (N, S, C) thus consists of the ;;

) wd

sensor set S and the estimation agent set N together with the communica- 1

tion schedules. Four types of events affect the change of information o

in the system. These events, the times when they occur and the nodes _J

o

(sensors or estimation agents) which are affected, are given below: J

tﬁ

- sensor observation: K, fﬁ

- reception of sensor data by an estimation agent: ii

R

|

RS

« r o
e

- transmission by an estimation agent:

wal ol

P

{(t,n) € T x N|(t,n,n") € C},

.‘,,..
. .l .
Yaud A

- reception of transmission by an estimation agent:

.
?

Leladasa

-
O

{(t,n) € T x N[(t,n",n) € C}.

"- »
.

R

Consider a subset I of T x (S \UN) which is the union of all the :f;
sets defined above. Define an anti-symmetric and tramsitive binary fff
relation (or partial orderimg) < on I such that 5

B-10 —
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N . . . j
b i. For each (n,t,t") e NxTx T, (t,n) €1, (t",n) €1 B
N and t < t° implies that .
(t,n) < (t",n); J

ii. (t,s) € K, s € Sn and (t,n) € I implies that ﬁ

(t,s)< (t,n); _J

E

iii. (t,n,n") € C implies that

(t,n) < (t,n").

This binary relation or partial order on 1 thus satisfies all the

constraints associated with perfect communication as defined by C as

well as perfect memory at each processing node. (I,<) characterizes the

Z(t,i) = {Z(s,j)1(s,j) => (t,i)};

information tlow in the system and is called the information graph. If 2
all the sensor measurements (data sets) can be communicated perfectly j;
through the communication network, the data base Z(t,i) for each node _
(t,i) in the graph (1,4 ) can be defined by beginning with the minimal i
.‘J

elements and following the rules shown below: n
A

~a

i. I1f (t,i) is a receiving node, 3

4

ii. I1f (t,i) is a transmitting node,

Z2(s,j) if (s,j) -> (t,i)
Z(t,i) =
{(z(k),k)} if (t,i) = k €K
¢ otherwvise.

In the above (s,j) -> (t,i) means that (s,j) is an immediate predecessor

of (t,i) and (z(k),k) € Z is the unique element whose second component

i_! B-11
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i8 k.

With this construction of the data base, we see that (t,i) < (s, j)
if and only if Z(t,i) € Z(s,j). Similar remarks can be made for the

data index base K(t,i).

N Since there is a natural direction (along increasing time) in the o
; graph, the arrowheads on the edges in a pictorial representation of the _;
ﬂ graph can be omitted. We would also omit those edges which are due to ";'
5 transitivity. From the graph, the flow of information in the system :§E
; becomes very obvious. A node (t,i) is a parent of (s, j) if information Lﬁ

flows from node i at time t to node j at time s. Note that in the

"
wdaiith

information graph, the receiving nodes correspond to the events when

estimates have to be updated with the arrival of new information. For

t

S .
T A S
’L"L'&A'A LT

| many applications, it is sufficient to use a reduced information graph,

which is obtained by considering only these receiving nodes.

rooe e
Ml o,

Several examples of distributed estimation networks and their :?f

ﬂ information graphs are shown below. %1
N ‘_1
) . : . -
Example 1: (Fusion Without Coordination) .

Of the agents in N, agent 1 is a fusion agent and the rest are ]

"
.

(4
4
ol el

. local agents. The local agents transmit to the fusion agent after they -
receive the data from the sensors and perform local processing. Figure

2 shows the structure of the system (for three agents) and the informa-

tion graphs. 1In this case

B-12
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A
N = {1, 2, 3}
g= U ((51,2,1),(51'_,3,1)}
i=1

where {SO < 8] < 85 < ...} are the communication times, and

(to < t < t, < ...} are the sensor observation times.

Example 2: (Fusion With Coordination)

This is similar to Example ] except that right after fusion, Agent
1 communicates with the local agents again. This structure is also
equivalent to a broadcast system where all agents communicate with each

other. For N = {1, 2, 3}, the communication schedule is given by

g= . ) {(si’“l’nz)}
i=1

where s <

0 <8 8g < tuennan Figure 3 shows the structure of the system

and the information graphs.

Example 3: (Cyclic Communication)

This is the example considered in [2]. The agents are arranged in
a circle as in Figure 4. Each agent transmits only to its immediate
neighbor in a cyclic manner at the specified communication times. Fig-

ure 4 shows the example for N = {1, 2, 3}

€= v {(si’1’3)’ (si’3’2)’ (siazal)}
i=]1
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Example 4: (Multipath Pattern)

The agents are arranged as in Figure 5. Agent 1 can only get

information from Agent 4 via Agents 2 and 3. For N = {1,2,3,4} and

(o]
It
" C8

| {(si,Z,l), (51’3’1)’ (si,4,2), (si,4,3)},

the information graphs are given in Figure 5.

3.2 DISTRIBUTED FUSION PROBLEM

The problem is to compute p(x(t)|Z(t,i)) for each node (t,i) € I in
the graph (I,<). Since the conditional probabilities or any estimates
are updated only at the receiving nodes (extrapolation is carried out at
the other nodes), we need only to consider the computations at the fol-

lowing two types of nodes in the reduced information graph:
- a sensor data reception node,

- a communication reception node.

At a sensor data reception node (t,i), computation of
p(x(t)]Z(t,i)) is straightforward. The standard Bayesian update formula

would suffice. At a communication reception node, the objective is to

B-17
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- reconstruct p(x(t)|Z(t,i)) from the conditional probabilities

{p(x(t)12(s,j))I(s,j) <(t,i)}. This problem is the distributed fusion

problem: construction of the conditional probability given all the data
sets which would have been communicated through the network using only

the conditional probabilities available at the predecessor nodes in the

information graph.
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4. STATIC RESULTS -
In this section we develop the main results for fusion for each ;:f
agent i, assuming the random process is static, i.e., x(t) = x for all ~3
t. Since the information from different agents may overlap, care has to f?ﬂ
-
o e . 9
be taken when the conditional probabilities from different agents are .
i

combined. In particular, any redundant information has to be identified

T
‘adlena,

so that it is not used more than once. The following lemmas provide the
mechanism for doing this. In the following x denotes a random vector

with prior probability p(x) and Z is the set of all data sets. s

AT
s

4.1 BASIC RESULTS

rr"

té‘
—
a e at .'-L- .i‘ L“._LA'.'..'..' o

T4

t

Suppose Z, and Z, are data bases at two information nodes 1 and 2. ;i%

w0

Then w:i
p(x12)) p(xIz,) od

where C is a normalization constant. "
T

Proof f}f
—3
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In the following A~B denotes the difference of two sets. By Bayes”

rule,

p(Z; U Zzlx) p(x)

p(lel\J 22) = p(leJ Zz) (4.2)
Since Zlkj 22 can be written as
ZlkJ Z2 = (Z1 ~ Zz) k)(Zz‘\ Zl) U(Z1 F\Zz), (4.3)

where the three disjoint data bases are conditionally independent given

X,

p(lelLJ Zz)

) p(zy N Zylx) p(Zy N 2 1x) p(Zy N Z,1x) p(x)

(4.4)
p(ZlkJ Zz)

But
p(lex) = p(Zl~\ Zzlx) p(erﬁ Zzlx),
P(Z,1x) = p(Z, ~ lex) p(Z; NZ,lx). (4.5)
Thus,

p(lex) p(ZZIx) p(x)
p(xlzlLJ 22) = (4.6)

p(ZlfW Z,lx) p(Z2; U Z,)

which reduces to (4.1).
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- B
s This lemma states that since p(xlzl) and p(x12,) both include 1
information contained in the data base Z1 N zz, this common information ]

; has to be removed so that it does not get double counted. Lemma 1 plays .j
E. a central role in distributed estimation theory similar to the usual -]
;_j: Bayes® rule in centralized estimation theory. o
4

1

Lemma 2, which is a special case of Lemma 1, is also quite useful.

Lemma 2

Suppose Z1 N Z2 = Q. Then

p(xiz}) p(xlz,)
p(x)

p(xlzluzz) =C . (4.7)

When the conditional probabilities from multiple agents are com-
bined, the fusion formula can be obtained by repeated applications of

Lemma 2. The following gives the results for three agents.

Lemma 3

Suppose Zl’ Z, and Z3 are data bases at the information nodes 1, 2

and 3. Then

p(xlz1 U 22) p(le3)
p(x1(2; U Zz) N Z3)

p(xlzlu ZyUzZy) =C

p(xIZ;) p(xIZ,) p(le3) p(xlz1 NZ,N 2,)
P(le1 M zy) p(xlz, N Z4) p(xlzgNzy)

=C (4.8)
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This lemma again has a very intuitive explanation. The terms in

‘., [ARY

"
b
»
5.

the denominator consist of pairwise redundant information to be removed.

When these are removed, all information which is common to

Zl’ ZZ’ and Z3 1s also removed. This then has to be restored.

If all the random elements involved are Gaussian, the lemmas above
can be simplified so that only the conditional means and covariances are ]
involved. Suppose X is Gaussian with mean m and covariance P(0). Let J
X(Y). and P(Y) be the mean and covariance corresponding to the condi-

tional density p(x|Y). Then lemma 1 becomes

R
Lemma 1 Ei

-1 _ -1 -1 _ -1 -
P(z, UZ,)) " = P(Z)) T P(z,) P(Z, N Z,) (4.9) A

and
_1 ~
P(zlu 22) x(Zl U zz)

-1~ -1~ -1~
= P(Zl) x(Zl) + P(Zz) x(ZZ) - P(zlﬂ zz) x(z1 N zz). (4.10)

Lemma 2 and Lemma 3 can be simplified in a similar way. Lemma lA
is identical to that used in [9] for deriving the optimal algorithms for

combining estimates of linear Gaussian systems.

We now state the static fusion problem for each agent assuming that
x(t) = x for all t. The problem is stated for the case when messages

are received from only one agent. But the extension to multiple agents

B-23
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is obvious.
Static Fusion Problem

Suppose agent i receives a message from agent j at time s in the
form of a conditional probability p(xI|Z(s,j)). Let (t,i) be the immedi-

ate predecessor to (s,i) for agent i. Agent i’s data base then changes

from Z(t,i) to

Z(s,i) = 2(t,i) U 2(r,j). (4.11)

where (r,j) is the immediate predecessor to (s,j) for agent j. The
objective is to find p(x|2(s,i)) in terms of p(x|Z(t,i)), p(xlZ(r,j))
and possibly other conditional probabilities defined on the information

graph, i.e., {p(xIz2(t",i"))I(t",i") < (s,1)}.

We do not specify a priori which conditional probabilities are
involved except they have to be conditional on some data base Z defined
on the information graph and that they should be available through com-
munication. The following recursive algorithm allows us to find the set

of needed conditional probabilities and how they should be combined.

Algorithm for Static State

The algorithm consists of repeated applications of the following steps.

Step 1

B-24
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Since Z(t,i) and Z(r,j) are subsets of Z, Lemma 1 gives 1

p(x1Z(s,1)) = p(xlz(t,i) U Z(r,j))

Aeadendiide

- D(xZ(t.,i)) p(x|Z(xr,j))

¢ p(x1z(t,i) N z(r,j)) (4.12) ]

‘o

4

b

If Z(t,i) N Z(r,j) is the data base for some node in the information -
graph, i.e., 2(t,i) N 2Z(r,j) = Z(q,k) for some (q,k) in I or if it is E
empty, then the algorithm terminates. If not, Step 2 is used. In terms 3
of the information graph representation introduced in Section 3, this f
1

step 1s particularly simple. We start from two information nodes {(t,i)

and (r,j) whose conaitional probabilities are to be combined. 2(t,i)

Z(r,j) corresponds to the information of all those nodes which are

parents of both (t,i) and (r,j).

Step 2

Let {(tl,kl), (tz,kz),...} be the set of commcn predecessors of

(t,i) and (r,j) in the information graph. Then

2(t,i) N 2(r,j) = Z(tl,kl) k)Z(tz,kz)LJ cee (4.13)

Step 1 can now be repeated with the help of Lemma 1 (and its multiple
agent version) to express p(x|Z(t,i) M Z(r,j)) in terms of the condi-

tional probabilities p(xIZ(ti,ki)), i=1, 2,..., and

-
L)

p(XIZ(ti,ki)(ﬁ Z(tj,kj)), i=1,2,..., j=1, 2, ..., etc. The algo-
rithm terminates when all the conditional probabilities are defined on

nodes in the information graph or coincide with the a priori distribu-

tions.

LS Y
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By applying this algorithm, p(x1Z(t,i) U Z(r,j)) can be expressed

,j
&
',"

»

in terms of products and ratios of conditional probabilities defined on

information nodes. Each product corresponds to the fusion or combining

oo
I,.
i pevwey

of information whereas each division corresponds to the removal of

-

redundant information. Note that in general it is not sufficient to use

only the comditional probabilities p(x{Z(t,i)) and p(x|Z(r,j)) unless

-

At adite

Z(t,i) and Z(r,j) happen to be disjoint or there is a node (s,k) such
that Z(s,k) = Z(t,i) M Z(r,j). Additional conditional probabilities

from the past are also needed so that the redundant information in

b o

Z(t,i) and Z(r,j) can be identified and removed. Two cases are possi-

ble. ..::
Y
<
Case 1: The additional conditional probabilities are all available to -
agent i, i.e., they are either generated locally from measurements, or ‘;
J
they are received from other agents. ;d
‘-"J
|
Case 2: The additional conditional probabilities may not be available =
to agent i. In this case, additional communication may be added. How- :
ever, from the algorithm, it can be seen that existing communication -f
"4
paths are available to pass along these conditional probabilities. -
We have thus solved the fusion problem for each agent in a distri-
buted estimation network. This algorithm also provides us with the set -
of conditional probabilities which needs to be stored at each agent plus
the additional set of conditional probabilities which needs to be com-

L
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@ When the random elements involved are all Gaussian, the sufficient 3{!
statistics for the conditional probabilities become the conditional
. means and covariances. With the help of Lemma 1A, we can again apply —il
h the algorithm. Instead of multiplication and division of probabilities

however, we now have operations involving conditional means and covari-

ances. The results are straightforward and will not be presented here.

4.2 STATIC EXAMPLES

In the following we assume the measurements are made at times {eve,
t-1, t+l,...} and messages are received at times {..., s-1, s+l,...}

with s-1 < t < s.

Example 1: (Fusion Without Coordination)

Consider the fusion time s. Let t be the observation time jmmedi- .
ately before s. With the information graph it is easy to see that ;§
z(s-1,1) N 2(t,2) = 2(t-1,2). (4.14) o
Thus .;:

-

L

o

- e o P{x]Z(t.2)) p(x|Z(s~1,1))
p(x12(s-1,1) U 2(t,2)) = ¢ TS W) .

5 . ’-'
X e
: PPN N

By a recursive argument, we can show that
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p(x12(s,1)) = ¢ n —Rxl2(e.d)) _ yy2¢5-1,1)). (4.15) :

it p(x1Z2(t-1,1)) g

1 4
i' Each term in the product contains the new information contained in L
g the new measurement z(t,i) of agent i. All other information is already :tq

known to agent 1. The fusion problems of the other agents are similar.

.
o' e A e b b

Example 2: (Fusion with Coordination or Broadcast System) From the

. . e ..
e e e T
c 0 S e e
. !

information graph, we see that for all j,

N z(t,i) = 2(s-1,3), (4.16) K
1 .

Thus, the algoritbm gives for j,

Syy o p(x[Z(t, i)) -1
p(xlzZ(s,j)) =C I p(x1Z(s-1,1)) p(x1Z(s-1,3)), (4.17)

Each term in the product is the new information contained in measurement

z(t,i).

Example 3: (Cyclic Communication)

z(t,1) N2(t,2) = Z(t-2,1) U z(t-1,2), (4.18)

and ;

z2(t-2,1) N 2(t-1,2) = z(s-3,1) T
= Z(t-3,1) U Z(t-3,2). (4.19) .
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Thus, the algorithm gives for genmeral i = 1,2,3

- 3y = ¢ Bx1Z(e,i)) _plxiz(e,[i+l])) a - -
El p(xlZ2(s,1)) = C S(#1Z(t=2,1)) p(xlz(t-1, ir11)) p(x1Z(s-3,1)) (4.20) ﬁ
-.': -
:i where [i] is i modulo 3. *a

Thus, in addition to the most current conditional probability .
p(x1z(t,1)), agent 1 has to remember three other probabilities. Note

that p(x|2(t-1,2)) is available to agent 1 from earlier communications.

-
P
o sihis

This indicates that in a distributed estimation network, knowing the

P R PR
a1

most recent estimate is frequently not sufficient if one wants to

2.
aded

.
s

recover the globally optimal estimate. In fact, it has been shown via

l'.‘ﬁ

simulation in [2] that if a suboptimal rule of combining estimates is

used, such as

SRR
NI gy ¥ O S N

p(xlz(t,1) U Z(t,2)) = ¢ p(xlz(t,1)) p(xlz2(t,2)) (4.21)

for agent 1 and similar rules for agents 2 and 3, the agents agree
asymptotically. This is consistent with the results on asymptotic ™
agreement in distributed estimation as given in [14]. However, the

agents can converge to the wrong estimate as demonstrated in [2]. Thus,

although optimal fusion algorithms are in general more complicated, =

TSI YV

requiring more memory and more computation, they are nonetheless neces-

sary if good performance is needed. A suboptimal algorithm has also

‘j" A.i.!‘ .

been tested in [2] and shown to have some nice properties.
Example 4 (Multipath Pattern) -
.
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The fusion problems of agents 2 and 3 are straightforward. For
agent 1, repeated use of the algorithm (with the help of the information

graph in Figure 5) gives

p(xlzZ(s,1)) =

p(x]z2(t,2)) _p(x{z(t,3)) p(x|z(t-2,4))
p(x|1Z(t-1,2)) p(xl2(t-1,3)) p(x1z2(t~1,4))

p(x1Z(t,1)) (4.22)

b In addition to the conditional probabilities from agents 2 and 3,
[:::: conditional probabilities by agent 4 are also needed. These would have
E':f-' to be relayed by agents 2 or 3.

R~

‘_:::j In the above examples, general fusion formulas are given. If the
::::: random vectors are all Gaussian, these formulas can be simplified using

Lemma lA.
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5. DYNAMIC RESULTS

Assume now that x(.) is a Markov process. The fusion problem for
each agent will now be considered. Since the data sets are no longer
conditionally independent given x(t), one immediate question is the
choice of an appropriate "state" y whose conditional probabilities would
be computed, transmitted and combined by the various agents. Let T(t,i)

be

T(t,i) = {t" € T](t",1") € K(¢,1)}, (5.1)

and

y = (X(t'))t' € T(t.1) (5.2)
for each information node (t,i) where fusion is to be performed. Then
the problem is effectively reduced to a static problem of the type con-
sidered in Section 4. Using the independence assumptions on the meas-
urements in the data base given y, the algorithm in Section 4 can be
applied. However, this means that the conditional probability of a high
dimensional random vector y would have to be storeh and transmitted.

From an implementational point of view, this may not be feasible.
For deterministic random processes, which can be characterized by

the state at one given time, an obvious choice is to estimate x(to)

where t, is the minimum in the set T. Again, due to the Markov
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property, the conditional independence assumption is satisfied and the

algorithm can be used. However, if there are substantial changes in the

process, x(t ) may not be the state of interest.

In this section, we

characterize the more current states whose conditional probabilities

ought to be transmitted and combined.

The following generalization of Lemma 1l is needed.

Lemma 4

Consider a random vector y and data bases Zl and Z2 defined on the

information graph. Suppose
P(Z\Zy,ZN\2,12) MZ,,y)

= p(ZI\ZZIy,Zlﬂ z,) P(ZNAZyly,2y M2Z,y).

Then

p(ylzl) p(ylzz)
p(ylZl(ﬂ Zz)

p(ylleJ Zz) =C

where C is a normalization constant.

Proof

By Bayes” rule and (5.3), we have

P(Z, U 2,,y) = p(ZNZ,y,2)\2),2) M Zy,Y)

B-32
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= = p(Z)\25,202¢12; N Z,,y)p(Z) N 2,,7)

= p(Zl\Zzlzl N Zz,y)p(Zz\ lezl N Zz,y)p(Zl M Zz,y)

P(Z1\Z5,2) N Z,,y)p(Z) 21,2y N Zy,y)
p(Z1 F\Zz,y)

) p(Zl,y) p(Zz,y)

TG (5.5)

The lemma then follows naturally.

Lemma 4 states that even though the individual measurements in Z do
not satisty the conaitional independent assumptions given y, Equation
(5.4) (which is the same as (4.1)) is still valid provided the private
data bases Zl\Zz, ZZ‘\Zl are conditionally independent given the state y

and the common information Z, N 2

1 2°

We can now state the following theorem which characterizes the
state vector which should be estimated for deterministic dynamic random

processes.
Theorem
Consider the fusion problem for the information node (t,i) assuming

a deterministic random process x. If the algorithm of Section 4 yields

i the fusion formula

p(xIzZ(t,i)) = F(p(xlZ(t",i"));(t",1i") € L(t,i)) (5.6)
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where F is a function consisting of products and ratios of 1

p(x12(t",i")) s in the set L(t,i), and L(t,i) is a subset of the prede-

cessor information nodes of (t,i). Then for a deterministic random pro-

cess x(.), equation (5.6) holds with x replaced by x(t*), where

t* = min{t" (t,s) € L(t,i\{(t",s")}} (5.7)

and (t",s) is the minimal element in L(t,i).

The proof 1s straightforward and is based on the algorithm of Sec-

tion 4 and Lemma 4.

This theorem states that for random processes, in general the fil-

tered estimate represented by the conditional probabilities

p(x(t)12(t,i)) may not be adequate for optimal fusion at time t. Some-

times the agents need to have the conditional probabilities of the j
states at some earlier times. Thus, smoothed estimates are frequently E
needed. From this, the estimates of the current states can be obtained 4?

easily by extrapolation, e.g.,

p(x(t)1z2(t,i)) =./Fp(x(t)|x(s)) p(x(s)1z(t,i)) dx(s). (5.8)

When this theorem is applied to the examples in Section 4, we

obtain the following results.

Example 1: (Fusion without Coordination)

A
3
=
N
N
"]
R
3
1
-4
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In the fusion equation (4.15), the state to be estimated is x(t).

This is consistent with the results in [8]-[12].

As a variation of this, consider a periodic fusion situation where
the local agents acquire measurements at a higher rate than they commun-
icate with the fusion agent (Figure 6). Specifically, let the new
fusion time set for agent 1 be {...,s-M,s,s+M,.., }where M is the number

of time units between communication.

Then application of the theorem yields

_ - p(x(t-M+1)12(t,i))
plx(e-Mr1)12(s, 1)) © 5 PG DIz, )

p(x(t-M+1)[Z(s-M,1)) (5.9)

Thus, the state of interest is now x(t-M-l1), and each term im the

product contains the new information of agent i about this state.

Example 2: (Fusion with Coordination)

In equation (4.17), the state is x(t).
Example 3: (Cyclic Communication)

In equation (4.18), the state is x(t-2). Thus, extrapolation is
needed if the estimate of x(t) is needed.

Example 4: (Multipath Pattern)
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In equation (4.22), the state is x(t-1). Thus, extrapolation is

I
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again needed.
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6. CONCLUSION

We have presented a formalism for the distributed estimation prob-

lem. Using this formalism, the optimal fusion algorithm for each agent

NP Y WO

in the network has been developed for arbitrary network structures. ks

Both results for static and deterministic dynamic random states have

T

PPN

*

N

been described, and illustrated with examples.

xk

The results have been presented for very general state and observa-

tion models. Special cases such as linear models with Gaussian noises

can be considered. An interesting special case for distributed multi-

re

target tracking and classification has also been investigated and

briefly reported in [2]. The details will appear elsewhere.
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APPENDIX C

DISTRIBUTED MULTITARGET TRACKING AND CLASSIFICATION -

A BAYESIAN APPROACH

C.Y. Chong and S. Mori

ABSTRACT

The tracking and classification of multiple targets by a network of
processing agents (processors) is considered. A Bayesian approach is
adopted as the theoretical basis. Each agent processes the local sensor
data to obtain the local information state consisting of the local
hypothesis, tracks and the relevant probabilities and state distribu-
tions. These are communicated to the other agents by means of the com-
munication network. From these, each agent tries to construct the glo-
bal information state conditioned on the data which would be available
if they were communicated through the network. Both results for static

and dynamic target models are presented assuming broadcast type communi-

cation.
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a 1. INTRODUCTION - 4
T
2
<3 The tracking and classification of multiple targets is very impor- o
- - 4

tant for many civilian and military applications. It is also interest- ~,§

ing from a theoretical standpoint since it is essentially different from ;g

classical estimation problems in that the origins of the measurements ;;;

are uncertain. Many algorithms for multi-target tracking have been pro- ?i

posed. Surveys of the area can be found in the paper by Bar-Shalom [1] ff

o

and the Naval Ocean Surveillance Correlation Handbooks [2], [3]. The :;j

paper by Reid [4] also contains a good survey of the then existing
methods. Recently, a general theory for the tracking and classification
of multiple targets based on a Bayesian approach has been proposed in
[5] and [6). Much of the work, however, assumes a centralized process-

ing architecture in that the sensor measurements are transmitted to a

single processor where they are processed.

In many applications, however, the sensor measurements are not all

transmitted to a central processor. Instead, a set of local processors

are present and each processor handles the measurements from a subset of

;

FY

the sensors. Each processor does some local tracking and communicates

v
et
O

ke aa Al

the results to other processors where the incoming information is com-

bined or fused with the local information. Such architectures are :é
present whenever tracking is carried out by multiple processors who com- iﬁ
™

municate. The distributed sensor network is an example of such systems -ié
(71, [8]. w3
Cc-2 -
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In recent years, there has been growing interest in distributed
estimation problems [9] - [21]. Most of the work deals with the estima-
tion of a random process or hypothesis testing assuming the origins of
measurements are known. Exceptions can be found in [22], [23] which
presents some ad hoc schemes for distributed multitarget tracking and
[8], which briefly outlines some theoretic results. Some specific
results have also been considered in [24], [25] which consider the prob-
lem of correlation of tracks from multiple nodes. This work is, how-
ever, quite ad hoc and not related to any theory of multitarget track-

ing.

In this paper we present a theory for distributed multitarget
tracking and classification assuming the independent and identically
distributed target models of [5] or [6]. Each processor forms the
data-association hypotheses, tracks and the various associated probabil-
ities and communicates these to the other processors through the net-
work. Upon receiving these, each node tries to reconstruct the global
hypotheses, tracks, probabilities of hypotheses and the state distribu-
tions of the tracks as if the sensor measurements were available through
the network. The theoretical framework introduced in [21] for distri-
buted estimation and the theory of multitarget tracking of [5], [6] are
used to derive the fusion algorithms for each processor in the network.
Although the philosophy can be used for general communication struc-

tures, the special case of broadcast communication has been used to

illustrate the algorithm.
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- The structure of this paper is as follows. In Section 2, we present ﬁj
i‘ the basic target and sensor models used. The information structure of 4
Ef; the system, which depends on the communication network, is also intro- f;
i? duced. Section 3 deals with the notions of tracks and hypotheses and E
ii defines the distributed multitarget tracking and classification problem. %
N The main results for tracking of stationary targets assuming broadcast
EE type communication are described in Section 4. In particular we discuss |
: the construction of the global hypotheses from the local hypotheses and :¥
. the hypothesis evaluation problem. The extension of these results to :f

'41

dynamic target models is given in Section 5. Section 6 contains the

conclusion.
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2. MODELS

The main difference between distributed multitarget tracking and

centralized multitarget tracking is in the presence of multiple tracking
agents. Thus the target and sensor models would be identical to the
centralized case [5], [6], but additional comstraints or models would
describe the information available to each node, i.e., the information
- structure. In the following we shall discuss the three models

separately.

2.1 TARGET MODEL

A general target model used in multitarget tracking and classifica-

tion has been described in [5], [6]. Although a theory of distributed

i 3

multitarget tracking and classification can be developed using general

models, our emphasis in this paper is on a special but widely applicable

target model, namely, independent and identically distributed (i.i.d.)

target models. Specifically, the target system state at any time t is

D s

M t
. . * v . . . .
RTINS DRI ML O WA

Ny
((x;(0)) , Np) (2.1) |
i=1 :
~—
where NT is the constant but unknown number of targets and xi(t) is the 5
state of the i‘P target at time t. The a priori distribution of N; is ;
Ny
Poisson with mean Vo+ Given N, (xi(t)) is a system of independent -
i=1 :
Cc-5 e
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. and identically distributed Markov processes on the common target state
j!l space X. Each x.(.) has the same init:al distribution/demsity q; and
e the transition probability density f, i.e.,

[_._:_.

e Prob. {x;(ty) € dx} = qp(x)u(dx) (2.2)

Prob.{xi(t + At) € dxlxi(t) =x"} = fAt(xIx’)u(dx) (2.3)

where M is the hybrid measure on X which is a hybrid set. A hybrid set
is the direct product of a subset of Euclidean space and a finite set
and a hybrid measure is the direct product measure of the Lebesgue and
counting (discrete) measures. Thus each xi(t) consists of a continuous
part corresponding to position, velocity, etc., and a discrete part

corresponding to target type, maneuvering mode, etc.

2.2 SENSOR MODEL

We assume there is a system of sensors called S. For each sensor s

in S, the sensor output space Zs is

@

Z,= U (Ys>“‘ x {m)} (2.4)
m=0

vhere Ya is the measurement space for sensor s. Each sensor output

m
((yi) , m) means that m measurements are generated and the measurement
i=1

values are Yys+-+» ¥u+ in general, YS is a hybrid set, where the con-

tinuous part is used for analog information such as position and velo-

city and the discrete part is used for feature-type information such as

Cc-6
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size/cross-section, classification, etc.

A Random Element

Ny

. ’ NM’t’s) € ) ZS xT x {S} (2.5)

((y.)
I 3=1 s €5

is called a data set. It represents the event that NM measurements

Yyseees yNM are generated by semsor s at time t. Given a target system

Np

state ((xi(t)) » Np), the data set is generated via the following four
i=1

steps:

a. Detection

Let I, = {l,...,NT} be the set of target indices. Then the set of
targets detected by a sensor s at time t is a random subset ID(t,s) of
Ly which can be characterized by its indicator fumction FD(t,s).
FD(t,s) which is a random binary function with domain Iy, is called the
detection function. Fp(e,8)(i) = 1 means that target i is detected by
sensor s at time t and O means that it is not detected. We assume that
every F;(t,s)(i) depends only on target i’s state x;(t) and that ther~
exists a common detection probability function pD(xIt,s) such that

Prob.(FD(t,s)(i)=1lxi(t),NT} = pD(xi(t)lt,s).
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The number of false alarms, NFA(t,s), generated by sensor s at time

t depends only on t and s. Specifically,

Sl )

Np

Ptob.{NFA(t,s) = mlFy(t.s), (xi(t))i=1

, N.} =p, (m|lt,s) (2.6)
T NFA

Sl i et

The total number of measurements in the data set is then given as

NM(t,s) = ND(t,s) + NFA(t,s) (2.7)

vwhere ND(t,s) is the number of detected targets.

¢. Random Assignment

We assume that the order in which th; measurements arrive in a data
set does not contain any information about the targets. If not, the
data set should be further subdivided until this assumption holds. Let
A(t,s) be the random assignment function which assigns the detected tar=-

gets to the measurements. Since the order of the measurements does not

contain any useful information, the probability of A(t,s) taking on any

possible assignment O is uniform.

4
g

d. Measurement Value Generation
The value of a false alarm is an independent random variable (vec- -
-
tor) and has a common probability distribution/density pFA(yjI:,s). For :
any detected target x., given an assignment A(t,s) =0, the correspond- B
ing measurement value ya(i) is an independent random vector with a tran- _:

sition probability density
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Pm(ya(i)lxi,t,s). (2.8)

In the above description of the general sensor model, we have made
the usual assumptions that there are no merged measurements or split

measurements.

2.3 1INFORMATION STRUCTURE

The information structure is the additional component which defines
a distributed multitarget tracking and classification problem. Let N be
the finite set of tracking agents (nodes). Let Sn be the set of sensors

reporting to node n. We make the following assumptions on the Sn's:

a. S = L)sn,
n
b. Snfj S,- =¢ forn#n’. (2.9)

These assumptions state that the sensor sets for the various tracking

nodes are mutually disjoint but collectively exhaust all the sensors.

The tracking nodes communicate to one another according to the com-

wmunication schedules C. (t,nl,nz) € C means that node o, communicates

to node n, at time t.

. . . A
Let T be the time interval of interest and (z,t,s) = (z(k),k) be
the data set from sensor s at t. Let Z be the set of all data sets and

K be the set of all data set indices (t, s) = k. At any time t, the
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maximum information available to the entire system is given by the sets =

th = {(z,t",s) € ZIt" <t} (2.10)

and
K|t = {(t",s) €Kt < t}. (2.11)

Because of communication constraints, the actual information available
to a node s at time t is less. Consider the set of events when the
information in the system changes (either through transmission or recep-
tion). The times when these events occur and the nodes (sensors or

tracking nodes) which are affected are given below:

- sensor observation: K

reception of sensor data by a tracker:

{(t,n) e T x N|(t,s) ¢ K, s ¢ Sn}

- transmission by a tracker: ]
{(t,n) € T x N|(t,n,n") ¢ C} p
- reception by a tracker: fa

{(t,n) € T x N|(t,n",n) e C}

To avoid unnecessary complexity, we assume (without loss of gen-
erality) that the four sets defined above are disjoint. Let I be the
union of the four sets. A binary relation or a partial order < can be

defined on the set I as follows:

c-10 -
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i. For (n,t,t") e NxTxT, (¢,n)el, (t',n)el
! and t < t° implies that

|

e

(t,n) < (t",n);

ii. (t,s) e K, s € S and (t,n) € I implies that
(t,s) < (t,n);

iii. (t,n,n") € C implies that

(t,n) < (t,n").

7
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This binary relation or partial order on I thus satisfies all the
constraints associated with perfect communication as defined by C as
well as perfect memory at each processing node. (I,<) characterizes the
information flow in the system and is called the information graph. If

all the sensor measurements (data sets) can be communicated perfectly

through the communication network, a subset Z(t,i) of Z (called the data

base at (t,i)) for each node (t,i) in the graph (I1,<) can be defined by

IV

beginning with the minimal elements and following the rules shown below:

i. 1f (t,i) is a receiving node,

D

U

2(t,i) =U{Z(s,j)1(s,j) -> (t,i)},

ii. If (t,i) is a transmitting node,

) 9 IO

Z(s,j) if (s,j) => (t,i) i
z(t,i) ={ {(z(k),k)} if (t,i) =ke K
¢ otherwise. -i
]

-

- 1
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-1

=

y
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In the above (s,j) -> (t,i) means that (s,j) is an immediate prede-
; cessor of (t,i) and (z(k),k) € Z is the unique element whose second com-—

ponent is k. Y-

e

With this construction of the data base, we see that (t,i) < (s, j)
if and only if 2(t,i) C Z(s,j). Similarly, for each (t,i) € I, we can

define the data index base K(t,i), which correspond to the indices for

LR UL, 55 T

the data sets in Z(t,i).

i i)

Tra e A

Since there is a natufal direction (along increasing time) in the
graph, the arrowheads on the edges in a pictorial representation of the
graph can be omitted. We would also omic those edges which are due to
transitivity. From the graph, the flow of information in the system
becomes very obvious. A node (t,i) is a parent of (s,j) if information

flows from node i at time t to node j at time s.

Note that in the information graph, the receiving nodes correspond
to the events when estimates have to be updated with the arrival of new
information. For many applications, it is sufficient to use a reduced
information graph, which is obtained by considering only these receiving

nodes.

Thus the maximum information available to each information node
(t,i) in the information graph is given by the data base 2(t,i) or
alternatively by the data index base K(t,i). We are particularly

interested in information nodes which correspond to the tracking nodes.
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3. PROBLEM FORMULATION

NECEF I
.

gl e A

Our objective is to consider a distributed version of multitarget

N s e

PP

e
e

4
-

tracking and classification problem as given in [5], [6]. 1In particu- -]
2

lar, we would like to evaluate the probability of each data association ji
hypothesis using information communicated from other nodes. To this ;ﬁ

..
T

end, we shall first define the notions of tracks and hypotheses in this

RN

»
A
PSSV N

distributed framework.

3.1 TRACKS AND HYPOTHESES
We define the measurement index set J by

d= v A{l,..., Nm(k)} x {k}. (3.1)
ke K

An element (j,t,s) in J (called a measurement index) indicates that the

jth measurement in the data set generated by semsor s at time t. Any

subset of J is called a track and any collection of nonempty tracks a

urement index in each data set. A hypothesis is called possible if it
contains only possible nonempty tracks and no two tracks in it inter-

hypothesis. A track is called possible if it contains at most one meas- “{
|
|
|
sect. Let ﬂiand Srbe the set of all possible hypotheses and tracks. -{

{

When K is a subset of K, define

J(K) = {(j,k) e Jlk € K}. (3.2)

Cc-13 }«
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Then J(K) is the measurement index set restricted by the data index base

]

.! K. Similarly, if J is a subject of J, define i
= ;
o TW) = {tnJl 1T} (3.3) -3
\i‘.;-. .3
‘4

1

and :

H) = (Lrnalterr \ o W (3.4) 3

Thus J(J) is the set of all possible tracks defined on J and‘H(J) is the

set of all possible hypothesis defined on J.

., ﬂ{.;

.ot

3.2 DISTRIBUTED FUSION PROBLEM

Consider the reduced information graph which is constructed from
the information graph by picking out the tracking nodes. Each node in

the graph is of the form (t,n) where t is a reception time (from a local

sensor or other nodes) and n is a tracking node. Let

J(t,n) = J(K(t,n)), i.e., the measurement index set available to agent n
at time t. Assume that the information state for multitarget tracking
and classification is given at each node, i.e., for each node (t,n), we

have the following set of quantities:

Ha(e,n)), (p(riz(r,n))) re H(I(e,0))’

<J(t,n)), (p(X(t)'Z(t'n)’T))-rg‘aTJ(t,n))’ v(K(t,n)) (3.5)

where v(K) is the expected number of targets which are

C-14
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Etﬁi undetected in K and p(x(t)|Z(t,n),T) is the probability
. distribution/density of x(t) given the track T and the data base Z(t,n).
To simplify the notation, we denote the above by the information node

(t,n), i.e.,

H(t,n), (p(AIz(t,n))) e¥(t,n)’

J(t,n), (p(x(t)lz(t,n),T)) T eJ(t,n)’ v(t,n) (3.6)

At each information node (t,n), the information state is to be
updated. For a node corresponding to reception of sensor data at a
tracking agent, the problem is straightforward and is the centralized
multitarget tracking problem. For a node corresponding to reception of
messages from other tracking agents, the problem is one of distributed
fusion, i.e., to construct the information state using the information
states from the predecessor nodes in the information graph. This prob-
lem can be interpreted as follows. Suppose the information states for
multitarget tracking and classification (hypotheses, tracks, probabili-
ties, etc.) are the messages communicated in the network. Each agent
then tries to construct the results of the optimal tracker if the actual
measurements were communicated through the network using only informa-

tion states which can be communicated.
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4. STATIONARY TARGETS WITH BROADCAST COMMUNICATION

In this section, we consider a special case to develop the basic
results. These results would then serve as a basis for studying more
complex situations. The target state is assumed to be stationmary, i.e.,
xi(t) =x; for all t. The communication is assumed to be the broadcast

type, i.e.,

Cc = 'U U {(ti,nl,nz)} (4.1)
i=]1 n1#n2

With this, the information graph and reduced information graph are given

in Figure 1.

Consider two consecutive communication times tb and t'b.

40k, ), (4.2)
ltb

and

74 J(Klt,b), (4.3)

i.e., the cumulative measurement indices at t, and t'b respectively.

Also, define for each n in N,

C-16
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- J = {(m,t,8) € Jls € S }U J. (4.4)

Then Jn is the cumulative measurement index set available to each track-

ing agent n just before communication. Kn can be defined similarly.

Let K = K and K = K, . . Let Z s, Z and Z be the cumulative measure-
ltb it b n

ments corresponding to Jn’ J and J respectively.

-

1

DT T
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We have to answer the following basic questions.

Ql. Given T(J), H(Q), (T(Jn))n €N’ (H(Jn))n

can we construct T(J) and H(J)?

€ N’

emadith o

o n :
s A - ]
. (ex() |2, ¢ 15y (&ep|z 1) ¢ @) n € v .
- v(K) and (\)(Kn))rl e N» can e calculate (p(K\Z))}\ € HWJ)’

2 px(t) [z,T) and V(K)?

T € TJ)

These questions will be considered separately.

4.1 HYPOTHESIS RECONSTRUCTION

We first address Question 1, which focusses on the construction of

the global hypothesis from the local hypotheses.

Definition: Let T £J(J) be a track and J CJ, the restriction of T ~
onto J is defined as TIJ = 1 NJ. T = 117 is then a predecessor of T

and T is a successor of T. Similarly, when ) € '){(J) and J C J, the

predecessor X = A|J is defined as

: c-17 5
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MI = {T|J IT € AN\ {¢}. (4.5)

Then X is the successor of K.

The following two lemmas are then obvious.

Lemma l: Let J1 and J2 be two measurement index sets such that J, C J

1 2
and T, be a track in a hypothesis A f31I‘(J1). Then for any successor >\2
of %, i.e., for anmy AZ E}J(Jz) such that >\2|J1 = Xl, there exists a [,

in A, such that T2|J1 = T;. For given >\2, such a track T, is unique.

Lemma 2: Let J1 and J2 be two measurement index sets such that Jlg; J2.

Then for any A EQi(JZ) we have

Prob.{)\IJ1 lk,Jz} =1 (4.6)

whenever Prob.{A,Jz} > 0.

Definition: A hypothesis X in N(J) is said to be composed of

(An)n en € . 2 3&({2 if Mg = A for all mn € N. The relationship is

denoted by

A (L)

. (4.7)

An immediate property as a result of this definition is that, if )

is composed of (1)) e I Qd(%ﬂ, then all the Mn“s should share
n‘ne N ne N

the same predecessor. Namely, we have
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Lemma 3: If = ( n)n € N’ :
‘ AT =T (4.8) i
o for all n € N. .
. >
The proof is obvious from the fact that J Q;Jn for all n € N, j;
A useful criterion for any (A, (>\n)n € N) to be tested for composa- -
. |
bility is given by the following lemma. ]
Lemma 4: A :> ()\n)n €N if and only if, for any T in A, there exists a |
tuple L2 |
(Tn)n eNE I ()\n U {9}) (4.9)
n €N
such that T= U T, and
n €N
T3 = TIT. (4.10)

for all n in N.

Proof of Lemma 4: The "if'" part is obvious. For "only if" part, sup-

pose > ()\n)n ¢ yand TEL . For eachn €N, let T = TIJn. Then,
since An = AIJn, we have either T € An or T = d. Since J = . % \ I

v T = U TIJn = U TN J, = TN J =T, On the other hand,
n €N ne€N

1
R
;
|
;

c-19




J CJ implies that Tn|3= (riJn)II =T NI N J=1NTJ="1|J. Thus,
(Tn)n e N is an appropriate element which satisfies the lemma. W
The following theorem forms the basis for hypothesis reconstruc-

tion.

Theorem 1: For any A e W(1) and any (Xn)n en© . Iel NH(JH)’

A > () o if and only if,

(1) for any T in A there exists a tuple (Tn)n ey € ] g " ()\n u {¢})

such that

b. Tn|3 = T|J for all n € N, and

(2) for any n € N and for any Tn € An there exists a unique T in A
such that T|J_ = T_,
n n

Proof:

The “only if" part is obvious from the definition of >\>()\n)n e N
The "if" part is as follows. Suppose (1) and (2) hold. (2) is
equivalent to An c MJn for all n € N. On the other hand, (1) implies
that Ang MJn as can be shown below. Let n be an arbitrary index in N
and Ta be an arbitrary track in HJn. Then, by Lemma 1, there exists a

unique extension T in A such that T,& T and TIJn = T - For this T, by

N ~
(1) there exists a tuple (Tn, )n’ cNE ] 2 . ()\n, U {$}) such that

Cc-20
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T = U T . and T .|J = T|T for each n"€ N. Then we have
neN " n

N
T = ( U T 13
neN

« U Tona

n" € N
= U %.nyg
nn €N D n
=T UCu ®nD
3 n n" € N n
_::: n’ # n
- T U@ -7 (4.11)
L‘:
- .
- Theretore, T, = TIJn =T‘_‘€ )‘n U {¢}. But, since T;1 e)‘n (and hence

T FP), T,E N\

»
_3

This theorem provides the following way of constructing 'H(J) and :,’i

*3

. o

l. For each S\GH(.T), exhaust all the combinations of

Qn)n en€ n.gN'H(Jn) such that )\nl.T = X\.

g SO

2. For each such () € 1T M), -
n’n € N n

n €N

a. construct a unique extended track ‘T such that TNJ =T by ___1
letting T= U T where T_ is the unique extension in A_ of

neN " n n

c-21 .
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T for each TTeX and }\OLD be the set of such tracks, and

] b. exhaust all the combinations : ]
:; Tlen€ T OyU PN}y, ) (where

n €N n 5
: 3
: AOLDD = {TN Jané%LD}) and construct new tracks

T = U ‘C_. This should be done in such a way that every T
n €N n

in every >\1 is included in one of the tracks in the composite

' "2 . + .
. I P IEE S .
PPN IR § WP IREPRPe-

b

N
structed in this way. Then, all the hypotheses ) in "W(J) such

that ')\>('An)n €N

{%LDU)‘NEw')NEwe Lugw?* (4.12)

hypothesis. Let L EW be the set of all the hypotheses con-

Y
PULPR Iy 1

is the set

The construction of J(J) is obvious in the above description.

4.2 HYPOTHESIS EVALUATION

We now address Question 2, which focusses on the construction of

the global probabilities of hypotheses and state distributions of tracks

from the local values. We state the following lemma, derived in [5],

[6], for the recursive evaluation of hypothesis.

Lemma 5: Consider an information node with cumulative measurements Z
and cumulative measurement index set J. Consider an immediate successor
with cumulative measurements Z and cumulative measurement index set J. __4

Let k = (t,s) be the most current data index. Then the recursive

C-22 —_—
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evaluation of any ) in W(J) is given by

p(Nz) = c(z)7} p(S\lE)LFA(k,')\) T L (TR, (4.13)
TEN

8
"
=)
o
. .‘
]

where Y(T,k) is the measurement for track T in the current data set

N

indexed by Xk, LFA and Lk(Y(T}k)fT) are likelihood functions defined as

follows:

False Alarm Likelihood Function

L, (&N =0, AlK)! py (a ,(NK)) TV Pra (¥ 1K) (4.14)
FA FA N, FA jeig, OMI) FA'Yj

where np, (Alk) is the number and jp,(Alk) the set of false alarms in the

(AR

2

current data set according to A,

1.0
Alua's

Track-Measurement Likelihood Functions

B ‘- ,‘". lrf

s

’

For previously detected targets which are detected again,

AR . & B
ALV ST

Lk(yft) = pm(yIx,k)pD(xlk)gf(x)P(dx). (4.15)

v
)

For previously detected targets which are missed,

s W v

L (y,T) = (l—pD(xlk))p%(x)H(dx). (4.16)

For newly detected targets

L(y,D =V |p (yix,k)pp(xIk)q(x)p(dx). (4.17)
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In equations (4.15) and (4.17), y is the measurement associated

! with track T, pf(.) = p(x(t)1Z,T) is the state distribution/denmsity for _]
, the track restricted by Z and q(.) = p¢ = p(x(t)l-i,¢) is the density of :
'.;.' undetected targets associated with Z. 2

A recursive application of Lemma 5 yields the following.

Lemma 6: Let Z be any data base, J the corresponding measurement index

4

-d
set and K be the data index base. Then for any Z such as Z €z (with ?
:

the corresponding J and K),

j
(1) for each NEW(I), a
Nz) =c@ @ADL, M T (4.18) y
% P FA T ’ . ' o
TEN -:
-
where C is a normalization constant, ;*
]
. .4
X =Ald, (4.19) .
T,= T 1t (4.20)
(t,s)EK\K
I L (Y(T,t,s),T) if t|J#0¢
. (t,s)eK\K (t,s)
L. -
v(K) n _L (Y(T,t,s),T) otherwise
(t,s)eK\R (E»8) .
(4.21) _
and 14
1
1
C-24 -
R T S T A R G R g




-
I

R 5
- . " 13
. L

(2) for any TEHI U (¢},

Il - GT(t’S)F(t,S)p? if -‘[: = ‘[Ij * ¢
(t,s)eK\K

n _ GT(t,s)F(t.s)E otherwise
(t,s)eK\K

(4.22)

vith q = P= ;(.IZ,Q)) and U-Dz‘,. G,c(t,s) and F(t,s) are operators

defined as

g t,8) (x)p(x)
((G,r(t.S)(p))(X) = W)(x)p(x)l‘(dx)g (4.23)
(F(t,8)(p))(x) = S:‘:’At(xlx')p(x’ ),nl(dx') (4.24)
and
pm(ylx,t,s)pn(xlt,s) for detected targets
g‘t(t,s)(x) s{l-pn(xlt,s) for missed targets. (4.25)

Using Lemma 6, we can prove the following theorem.

Theorem 2: For stationary targets and broadcast communication, we have

for every 2€MW(J),

p(NZ) = Tlpnz)y -1 T pOy 1200 TT Qg (4.26)
n€N TEN

~N
where C is a normalization constant, #N is the number of elements in N,

and

2
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I x|z ,7)

n €N
——  u(dx) (4.27)
G (x[z,1)) !

A,
The expected number of targets undetected up to K is: Y
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n pixlz,
n €N Bx| a*® (4.28)

- T M(dx) "
G (x|Z,4)) ™!

‘ :

v(K) =

L 28 N

3’(xlzn,'f-) and P(x|Z,D are given by
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p(x|z ,T) if T£9¢
Plx|z 1) = (4.29)
v(Kn)p(xlzn,¢) if T =¢
p(x|Z,1) if 1 4¢
p(x|Z,1T) =
v(K)p(x|Z,0) if 1 =¢ (4.30)

p(xlzn,'l') and p(x|Z,T) are the state distributions at the time of fusion
conditioned by track T, Zn and Z. Furthermore, the state distributions

can be fused to obtain
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n P(X|Z »T) )
n € N n C—l
(P(XIE,T))#N_I (4.31)

p(x]Z,T) =

S YO

VY

where C is a normalization constant.
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Proof If we use the formula of Lemma 6 for D\, and ()h) Theorem 2

n €N

follows if the stationarity condition is assumed.
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E! . 5. DYNAMIC TARGET MODELS WITH BROADCAST COMMUNICATION
¢
Suppose the data index base after the current broadcast is K and
the data index base after the last current broadcast is K.
Let
= {tl(t,s) € K\K} (5.1)

and

Then the following theorem which can be proved readily holds for dynamic

target models represented by a Markov process.

Theorem 3: For dynamic target models with broadcast communication, we
have for every ME€N(J)

p(Nz) = T lpBuz)y -1 TT PO IZ_ >)1T S (5.3)
né€&€ N

~
where C is a normalization comstant and.‘LTis the same as that in
Theorem 2 with x replaced by Xpe
Note that this theorem states that the likelihood of track associa-
tions is now computed using the entire state trajectory over the inter-

val defined by T, instead of at just one time.
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The following two corollaries are easy to show.

Corollary l: Suppose TI contains only one element, such as when broad-
cast communication is carried out at every time instant, then the
evaluation formula of Theorem 3 holds with X, reduced to x(t) if the

most recent communication time is t.

Corollary 2: Suppose xi(t) is a deterministic process, i.e., there

exists a group of homeomorphic operators on X, (i%) such that

te (-“,m)

£,,(xIx) =8(x -8, () (5.4)

where 8(.) is the delta function on (X,y). Then Theorem 3 holds with x;

replaced by xmin(TI)'

In the two special cases mentioned above, only the state distribu-
tion of the target at a single time is needed in evaluating the track
association likelihoods. Otherwise, one would have to compute the dis-

tribution of the target state over an interval.
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6. CONCLUSIONS .

We have investigated the distributed multitarget tracking and clas-
sification problem. The approach is based on a Bayesian theory for cemn-
tralized multitarget tracking and classification. Specific results are

given for a case when the communication is of the broadcast type and

algorithms for hypothesis formation and evaluation are presented for
independent and identically distributed target models. The target

dynamics can be both static or dynamic random processes.
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