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Long Range Scientific Objectives:

The accuracy of the location parameters is a function of delay measure-
ment variance, apriori variance, and number of sensors. Depending on the
other parameters, the number of sensors can be traded against accuracy and
cost.

Summary of Work, 1 Nov. 1982 - 30 Sept. 1983:

The second year of this contract has considered the effects of spatially
correlated noise on delay estimation in linear arrays. The nonlinear
equations for the multiple (M-1) Maximum Likelihood (ML) estimators have
been derived. Either delays with respect to the lst (end) sensor or any
independent M-1 delays in the array are usable as unknowns. Cramer-Rao
Matrix Bound elements have been formulated, computed, and plotted for a
number of realistic values of noise correlation and other parameters.

The variation of the variance bound with correlation is not as
significant as the variation with array look angle; up to 5 dB differences
were noted.

Most significantly it has been shown that adding more sensors is not
always fruitful when spatial noise correlation is present. In the ranges
of our parameters little is to be gained in a change from 9 to 15 sensors
compared to the change from 3 to 9. More data production would be useful
on this subject.

A considerably briefer version of the enclosed report will be submitted
to ASSP for publication. Last year's work has been revised per reviewer's
suggestions and is re-submitted.

Opportunity was taken following ICASSP-'83 (where a paper was given

on the early work of this years research) to visit NUSC in New London in
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in April. There discussions with a number of peorle solidified some of {

the details and focus of this years work. In particular, the work and

data involving spatially correlation noise in towed arrays was brought

to attention. This allowed practical values of parameters and clustered

configurations to be considered.




ABSTRACT
OPTIMAL DELAY ESTIMATION IN A MULTIPLE
SENSOR ARRAY HAVING SPATIALLY CORRELATED NOISE

by
R. L. Kirlin and Lois A. Dewey
Electrical Engineering Department

>~ =

University of Wyoming

The maximal 1ike1ihood/(ML) estimation of time-of—arri&al differences
for signals from a single source or target arriving at M > 2 sensors has
been the subject of a large number of papers in recent years. These time
differences or delays enable target location. Nearly all previous work has
assumed noises which are independent among all sensors. Herein noises are
taken to have complex correlation between sensors. A set of nonlinear
equations in the unknown delays is derived and possible simplifications
discussed. The unknowns are in one case the M-1 delays referred to the first
sensor and in another case an M-1 dimensional subset of independent delays from
the M(M-1)/2 pairwise delays. The Fisher information matrix (FIM) for the
estimates is also derived. The Cramer Rao Matrix Bound (CRMB), which is the
inverse of FIM, will show optimal estimator covariances; these are q;fferent
than the covariances of correlator delay estimators derived by Hahn [4].
Computer evaluations are giveﬁ for CRMB elements with varied SNR and noise
covariance values typical of turbulent boundary layer noise in towed arrays.
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OPTIMAL DELAY ESTIMATION IN A MULTIPLE
SENSOR ARRAY HAVING SPATIALLY CORRELATED NOISE+

I. Introduction

The estimation of time~of-arrival differences for signals from a
single source or target arriving at multiple sensors has been the subject
of a considerable number of papers in recent years. These time delay
differences, or simply delays, enable target localization through straight-
forward geometrical considerations when the signal path is non-dispersive
[1,2]. Although target location is the primary goal, delay estimation is
essentially equivalent as there is a one-one*, although nonlinear, relation
between the maximum-likelihood (ML) delay vector and ML location vector.

Essentially all of the results of available literature (except [9] have
been based not only upon the geometric and non-dispersive assumptions stated
above but also upon noise spectra which are independent among sensors. The
independent noise assumption is adequate if either the sensor self-noise is
dominant or the sensors are spatially separated sufficiently such that the
environmental noise is indeed independent or uncorrelated among sensors.
However, this is not always a reasonable assumption and the effects of
spatially correlated noise in the estimation of delays and delay variances
must be considered. Thus appropriate analyses are herein undertaken to
consider correlated noise from diffuse sources. Results are compared to
those previously published for independent sensor noises.

Owsley and Fay [11] have considered correlated noise when clustering
sensors and optimizing beamformers. The comparable optimization of delay
estimation has not previously been approached. By choosing the correlation %
parameter p, we may include the proportionality of correlated turbulent
boundary layer tow-noise and isotropic sensor noise.

The basic approach is to assume that complex Fourier coefficients Xi(k)
at the iﬁh sensor for the kEE frequency are available, having been obtained
from T-second time records, where T is long with respect to the signal

correlation time.

* For an array with three sensors in line there is an ambiguity in the

sign of bearing angle, which we assume may be solved with additional

information.

+ This study funded under office of Naval Research, contract number
N00014-82-K-0048.
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The time data records are

xi(t) = s(t-di) + ni(t), i=1,2,...M. 1)
where di are the delays from the reference sensor to the iEE sensor

(d, = 0), s(t) is a zero-mean, Gaussian, stationary signal, and ni(t) is the

1

additive Gaussian noise at the 1'.5-ll sensor.

II. Background

The problem of delay vector estimation for multiple sensors has been
studied with the above approach in original papers by Hahn and Tretter [3],

Hahn [4] and Schultheiss [5]. Closely following their presentations, let

T/2
X, (k) = = J
1 -T/2

-3 = 2 2
T xi(t) exp{ kaot}dt, k 1,2,...,K, (2)

where wy = 21/T. Define a vector X containing the above MK Fourier

coefficients as elements. If S(w) and Ni(w) are the signal and noise
spectra at the iEh-sensor, the probability density for x can be written
K K

MK 1 det R(k))L exp[-I XT(K)R™L(K)X*(K)] (3)
k=1 k=1

p(X) =@

where

X(k) = [X) (K), X, (k) ,=-=,X, (k)17

X = X'); X'@,-—-,x ®]"

V(k) = [1, exp(-jku d,),---,exp(-Jlw d V1"
N(k) = [Nij(k)]’ an MxM matrix of noise

Cross-power SpeCtra
R(K) = N(k) + S(k) V*(k)VI(k)

and where * superscript denotes complex conjugation.
In order to obtain the ML estimate of delays, determinant and inverse

theorems of use are

1sv*vT[ = |N[(1 + svIN Lyx) (4)

IR| = |N + svavT| = |N||1 + N~




R = n Lo Nl ouroTNtur + 1757 vIn? (5)
Defining elements of N_l as Nik, the likelihood function of the delay vector
T .
: D = (d2, d3,..., dM) is, using (4),
A = 2n p(X) = -Qn(nMK) -3 [N @+ svTN'lv*)]
B+
: G e I e e
B+ T -1 (6)
V'N VX + 1/S
where z means sum over positive frequencies.
B+
Hahn and Tretter {3] have shown that, when N is diagonal, [Nl’NZ""NM]’
the Fisher information matrix for D (FIM = - <grad<grad fn A>> where <*> is

expected value) is

2
[(tr N'l)Np'l— Np—lllTN -1 (7

FIM = | 2w2 S
P

B+ 1+ ] s/Ng

where Np-l is N_1 with the first row and column removed. The Cramer-Rao

'k Matrix bound (CRMB) for the delays D is (FIM)_l. The ML estimate covariance
is known to asymptotically approach the CRMB. The ML estimate for small

# delays (D is the error when D = 0) and independent noise is

D = -<c>'1BT, (8)

where
: <>l = F, (9)
B =) juw S B 1TN'1[xxp*T-x*xpT]Np"l, (10)

B+ 1+ Zs/Ni

and xp is X(k) with the first element (Xl(k)) removed.

Hahn and Tretter also show that the ML D estimate can be implemented

either as a beamformer (ideally in real time only when the N, are propor-

i
tional, because of phase-matching filter criteria), or as a cross correlator




system which produces the M(M-1)/2 delay estimates. The correlator system

has cross-spectral filters

S/NiN

|F1J|2=—_—Z——j/— s 1, ] =1, 2, ..., M, (11)
1l + S/N .
k k i#3.

The error covariance matrix for the pair-wise delay estimates of the cor-

relators is shown by Hahn [4] to have elements

2 4
%1 JB w IFij| [Nigir+ S(N; + N.)Jdw

J (12)
2
<ij 75

covar(dij, dkl) =0, i, 3, k, £ all distinct

var (Qij) =

l2 Sdw)

~ 2 2 2
A _om J wlF, . |°]F.,|° SN.dw
covar(dij,diQ) =1 1B ij i¢ i , 1# 2 (13)
2 2 2
JB w |Fij| Sdw JB w !FiQ|de
= - covar (dij’ doy) » J# L

It is emphasized that these are correlator error covariances of the Sij
and not ML estimator error variances, which are derived herein.

The delays having covariance matrix defined by (12) and (13) are not
the M-1 delays referred to a single sensor. Hahn and Tretter have shown how

to use weighted linear combinations of the M(M-1)/2 cross correlation delay

estimates, dij’ to form an estimate for D = (di) which achieves the CRMB of
7).

With independent noises maximization of A in (6) over the vector D
concentrates on the second term in the second summation, because other terms

are not dependent on the d This is not generally the case, and an analytical

i
solution is not available, as was pointed out in the multipath analysis
given by Owsley [6]. However, the generation of a set of nonlinear equations

in the unknowns d,, may be obtained.

ij
In the next section ML estimator equations for the M(M-1)/2 pairwise
delays are derived, Section IV produces the CRMB for these delays. Section

V considers the M-1 delays di ~ dl’ and Section VI derives the CRMB for the

M-1 delays di - dl'

R




III. Estimation of an Independent Subset of M(M-1)/2 Delays

This section will determine equations for ML estimates of an independent
subset of the M(M-1)/2 delays di - dk = dik'
referenced find ML estimates of either the M-l delays (di - dl), 2<1i<M, or

other parameters such as range and bearing, functions of which the di may be

In contrast most other papers

written. The reason for our choosing the d is that a-priori information

ik
about linear relationships among them may subsequently be used as in [10]

to improve the delay estimates 31 - d, or any other subset.

1
Because we will find equations for real variables and real unknowns,
and we wish to be able to show effects of correlated noise on various parts
of the formulations, double sums throughout the paper are usually broken into
several pieces.
Now consider the two summations in (6), the only functions of D,
A=Y [ +s TNP4+s T NPlerdwd, = ddy g
B+ P P 9fp
NirNtk eJw(dr - dt)

ik
! 1) X INT-1 ] - — 1X* 14)
B+ ik T tr ] NPP 4T T NPaIwld, - dp) %- K
P P afp
Thus we would like to solve for the Sik which maximizes
{; At =Y gn /s + §§ NPAeTIwdyg)
i B+ P q
1 mr _tn Jwd
1 N N e rt
; +3 1Ixx]] - as
i B+mn "% rt 1/S+)) nPle jwdpq
g T -1 P9
: 4 T -1 -
P * %
' =] [ta(e) + 2R TIN X2 (16)
I B+ g
i where, using (15),
g=1/S+ VN yx = 1/s + INP + 2 7 T (cos wd  Re{NPI}
R P P ¢>p
+ sinwd 1 (89 a”n
Differentiating A'' with respect to dik (assuming all dik independent) gives
. _ v N v
sa- - L) ¥y
ik B+
g
gx L a(vavT )N e - XTn vyt Lxa 3 (v v a8)
ad ad
ik ik
+ )
8

iR e

e ya. 2

- 4T
[ VIR A



Setting this equal to zero and rearranging gives

I -aevivhn 1 Iyt sty -1 veyT .« o ovTylys) [NIxsd=0 (19)

B+ 3 dik g 9d, g 2 ) dik

ik g
The square-bracketed terms in (19) are a matrix U(i,k) = (umn(i,k)) A typical

element umn has values which differ according to whether or not (m,n) =

(i,k) or (k,i). Using

(V*VT) = ejwdmn, (20a)
m,n
jwe 34k, @) = (1,k)
s —jwe 4K, (@) = (k1) (20b)
oy 0 . (m,n) # (i,k),(k,1)
and
vy Lyx ik—-jwd ki +jwd
g, = — =" - ju(-N e ik + N e ik)
1 9 d,
ik
. ik, . ik
=2a(-Re {N" " }sin wd., + Im{N"“}cos wd.,) (20c)
ik ik
in umn(i,k) gfve
/ ejwdik Gw - gllg) , (m,n)=(i,k)
w =i e 394k (cjw - g /) , (m,n)=(k, 1) (21)
mn g 1
\\-ejwdmn gl/g ,(m,n)#(i,k), (k,1)

Insertion of (21) into (19) constitutes M(M-1)/2 equations, nonlinear, to be

solved for the d This is pursued further in Appendix A for diffuse noise.

ik*
Note that only M-1 delays can be independent. We now turn our attention
to the CRMB.
et o o | PR S Sy Rt st o PR R T S
YA A )




7
IV. The Cramer-Rao Bound for an Independent Subset of the M(M-1)/2 Delay
Estimates of dik
As is well known, maximum likelihood estimators have variances which
approach the Cramer-Rao bound. The variance bounds for the &ik are the
elements in the diagonal of
CRMB = (FIM)“1 = (-<grad(grad n A")T>)_l, (22)

wherein FIM is the Fisher Information Matrix, grad A'' is a row vector
whose tn-tiﬁ element is the derivative of A'' with respect to the mE-ll delay

(the tn-t-}—1 d,, here), A'' is the expression in Eq. (17), and <> denotes

ik
expectation. The outer gradient operator creates a matrix whose elements

tt
are 33—— (%%——). We have already found the inner partial -- the result
rt ik

is Eq. (19) and following. For any M-1 independent delays the following applies.

Taking and negating the second partial with respect to drt gives

) A" 3 ovTN Lyx a(vINtyxy d(vinLys
- (=) = - ] {-lg gy— L5 Y5, - ) 2R W)
adrt adik B+ dre adik a‘dik Bdr:
2
g
T T T, -1
1 - 9 * - - - «
+ =5 [z XN P (%V—)N Les ~ xTyt _BL%ZLV_)_ N Lxs «3(_\;_1‘1___"_")
g rt ik ik drt
_ _ 3 T -1
_ XTN lV*VTN 1X* . (av N “V* )
d 9d,
rt ik
avINtuny T o-1 aquevTy 1
TTad, XN g N
ik rt
- - T, -1 T -1
+ ——1—1:[(XTN LyayTyLga ag N V9 yt2g aéz N ¥y -
- A ik ‘
=5 1 % Be S o | a2y B2 avwv’y
B+ & _adrt 3 _ _adrcadik g adik
g T :
1°°%) T 1 VRV 2 T .-1 i
“gsd VWV -2-8 + 5 8.8, VAV | N Ux*}
god g8 1 3d g2 182 ]
-7 2 (8)5 = 8;8,/8) - Ly x"wlanlxs (23)
B+ 8 8 n+
bl - N - o T R T T TR . ot T e e

. ; R
<




8
where
8 = 3%§; = zu(-Re{le}sinwdik + Im{le}COSwdik) (24)
- g _ NI 4 SN v 2 S 5
8, :E:; 2w(-Re{N }Slnidrt + ImiN ;coaudrt) (25)
/ A
and B ='b__'is found using
i mn
\ v
i'l 09(r’t) # (1y1‘-)
.2
gy, = B = ) (26)
12 - 3d__id, 3
rt ik ! 9 ik ik
\ 207 (Re{N"Ticosd,, - Im{N"sinud. ), fr,t)=(i,k)
N ik ik
3 /’
S0, (r,t) # (i,k)
. \\
\
PoawDy S M @ = L
W ad. }
rt ik mn /
: o i, ) =, 5 (SO0
\
0 y (m’n) # (k’i)’ i
\ (i,K) 27
-
Then bmn has the following values: i |
!
(m,n) = (i’k)a (koi) 3
4 g .8 :
o 2 B 1. 152, jwd
= 782 jw - M+ =+ = ju)+ 2 —= i .
by ( ©2 jw - Hw . 2 j 7 Ye ' ik (22a)
g g
Pri = Py
where u = 0 if ¢r,8)#(i,k),u = 1 if (r,t) = (i,k)
(myn) = (r,t), (t,r) ; (r,t)#(i,k)
b= "B ju + 2818
re (==~ —5) (28b)
g
8
= %*
btr brt
(myn) # (i,k), (k,i), (r,t), (t,r)
2 g.g
bn =C 2122 By )ejwdmn (28¢)
2
g g
b = ph *
nm mn

. L il S Apraiy e s
. R e A o




Using
..ju)d *
<XX*>=(S€ rt+Nrt,r#t (29)
rt ‘
i + =
\E Nl , t
and writing
T.-1 _.-1_. _ 2 , mm 2
X'N " BN X* =) bmm[ixml (N
m
+2 Refx N T x *N"9)
q¥m
+ 7 7 xx wNPTN )
p#m q#m P q
+11 .
o nem [Re{bmn} Re{G(m,n)}
- Im{bmn} Im{G(m,n)} ] (30)
where
G(m,m) = § X NP™ § x »N97" (31)
p P q q

The elements of the FIM are

(FIM>rt,ik =

1
g+ S (81— 818,/8)

i

1 mm, 2
- §+ 3 { g b [(SHN) ()

+ 2 2 ((Scoswd + Re{N* H Re{Nmmqu}
a#n mq mq

X
-(Ssinwd_ + Im(N D Im{NTN"})
mq mq

X
+27 §  (fscoswd_ + Re{N_}) Re{NP"™y"9}
ofn 4>p Pq Pq
. * m, mq
—(-Ssinwd _ + Im{N 1) Im{NP™N
( n pq m{ qu) m{ H

pm, 2 *
+p§m N7 (Scosw dpm + Re{Npm})]

+

2 é §>m [Re{bmn} < Re{G(m,n) }>

- Im{bmn} < Im{G(m,n)} >} (32)




10
where
<Re{G(m,n)}> = T § (Re{NP™N™} (5 coswd  + Re{N* 1)
b G Pq Pq
~Im{N""N"Y} (=5 sinwd_ + Im{N® 1)) (33)
Pq Pq
and
< Im{G(m,m) 3> = § 7 (Re{NP™N™}(-Ssinud + Im{N* 1)
b G pq Pq

+ Im{NP"N9} (S coswd  + Re{N* '))
pq Pq

Use of these elements in the FIM is restricted for inversion to the
CRMB to M-1 independent delays. Further examination of (32) for diffuse

noise is given in Appendix C.
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We now investigate for the M-1 di changes in these earlier results
caused by consideration of noise which is spatially correlated.
V. Maximum Likelihood Estimation
of the M-1 Delays di~dl
We again maximize ! by maximizing
A =-3 tng+ ) XN tueyTylxesg (34)
B+ B+
Writing
Xyt
1 2
= (F x NPT, T xNPe L, Y x P (35)
P p p
and the m,nEE-element
(V*VT) =v = e jw(dm—dn)
m,n mn
gives
xIn tusy Ty Ixx/g =2 7 Vv (x NP™ Tx_#n9D)
g mn q
mn p q
*
19T aN™ T x P x A+ ) xq v
g mn m n
mn p#m q¥n
17Ty x4 x N x aydD
g mn  m n
m n q#n
+x %N Y X NPT
pfm P
+ 7 7 x x x NPT, (36)
pfm q#n 4

In this form it may be seen that (34) differs from the spatially uncorrelated

noise case only in the -X fn g term and the terms in parentheses in (36)

B+
other than men* NmmNnn. If o = 0, ¢n g is not a function of the delays
and all Npq’ p # q, are zero. Then as the literature cited shows [3,4],
maximization of (6) reduces to either a beamformer (choosing M-1 di) or a

system of M(M-1)/2 correlators (choosing di—dk).

Further manipulation of Eq. (36) when noise is diffuse is given in

App. A for a special "worst case" when all correlations are real and

equal.

Y L
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Maximizing A means solving for di in
aA' - *
W=-y —g1-35—+2{;xT I%V_‘L_) Lyw
i B+ i B+
T-1 .. T -1
* *
JEN VN XE S8y (37)
g
Using
gy = -g—d&— = 2w ) (Re{N" P}sinw(d -d ) + Im{N plcos,J(d -d )) (38)
p#i
and
—ejw(dl_di) \\
- juw(d,-d )
a(V*VT) _ 0- -e 2 i’ _p-
3d1 jw :
Quldymdp) Juldi=dy) o5 ... Juldi=dy) (39)
\l .
\ .
\ -0- _edw@y=d) oo
in (37) gives \\
%g— =-) 2: y (Re{Nip}sinw(di—dp) + Im{Nlp}cosw(di—dp))
i B+ p#i
+ 7 xTwlanIxs (40)
B+
where A = (a_ (1)) and
mn fw(d ~d )
1 —gier m n/g)i;mn#tiorm=n-=1
amn(i) Y w(d,-d )
8 (Gw - gi/g) e sm=1i, n# i (41)
(-jw - g4/g) e wldmdy) g i, n=1i

e,

. - "
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Now note that
XN tanIxx = T a (1) (X x *NTy"?

o mn mn

mn

+ X NTYOx ok NI 4 x aNTY T ox NPT

qfn 1 pfm P
+7 7 x x x NPTy (42)
pfm qfm P 9

Ignoring the first summation in (40) (from the in g term of ) and setting

(42) equal to zero for i = 2,3,...,M constitutes M-1 nonlinear equations

in the M-1 unknowns d2’ d3, cees dm (dl = 0).
Equations (42) may be made real by observing that every (m,n) term has

its conjugate. Thus

T -1, -1 2 2 :
XN TANX* = g a (1) (|| (N"™° + 2 Re{memZ;mx *N"4}
+7 ¥ x x x xPTN"Y
p#m gq#m
+2) )  (Re{a__(i)}Re{G(m,n)}
m n>m mn
—Im{amn(i)}lm{c(m,n)}) (43)
where
G(m,n) = § X NP x #N"9, (44)
b P g @

Because the amn(i) are functions of 84 and g, and 8 and g are functions of
all delay differences dp-dq, the solution for di cannot be found in terms

of Xi and xl alone nor even as a linear combination of the X X * ejw(dp—dq)

correlators.
Vi. The Cramer-Raoc Matrix Bound for the M-1 Delays di-dl.
It is well known that ML estimators approach the Cramer-Rao bound

(CRMB). The variance bounds for the delay estimates di are the diagonal
elements in

CRMB = (FIM)_1 = (-< grad (grad A')T>)-1, (45)

b
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wherein FIM is the Fisher Information Matrix, grad A' is a row vector whose i

mEE element is the derivative of A' with respect to the mgl delay dm+1,

A' is the expression in (16), and <+> denotes expectation. The outer gradient

operator creates a matrix whose elements are - The inner partial

3 .
2.
8dk udi

has already been given by (37) and (40). Continuing we find with —— Bd =&

that
- A G ='2"{ng'gigk1
r k B+ B 8
+ 3Tyt 2evevhy Bk avmvT)
3d 3d g od,
9
;__g_ N VRV
g ad g Bd
2 T, -1
= * *
+ 75 8,8 VFVIN X+ (46)
8
If k # i, then
= EEE = sz(Re{Nik} cos w(d,-d,) *‘Im{Nik} sin w(d.-d.)) (47a)
Bik ad, i %% ik
and 0, (mn) # (k,i) or (i,k)
32 (vrvTy _ ea
Gaaa, 792N, @ = D) (47b)
wre I ) o ny = (4,k)
These give
IN! 1
( =) =g, -g.8/g
B+ B ik ik
_2 1 XTN lUN 1X* (48)
where Un have the following values
m# i,k; n# 1,k

-8 28,8 -
u = (—-:L-‘i +—k ) ejw(dm dn) (49a)
mn g 82

b
f
13
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(m,n) = (k,i) or (i,k)

8 2g.8 8 g
2 ik ik k i jw(d, -d.)
= -——-+__.__+ — o ——
UL (w 2 2 jw(g 2 )) e k i
g
= %*
Yik T Yki
m=k; n# ikorn=k%k; m# ik
8 2g. .8 8.
ik i°k i jw(d, ~-d )
2 (0w —— + ————— - —
ukn ( 2 5 . jw) e k n
g
= %*
umk ukm
m=1i; n#1i, korn=1; m# i,k
-8 2g.g g -
a, = ( ik , ik ok jw) ejw(di dn)
in g 2 g
g
= *
umi uim
m=n
-8 2g.8
u = ( ik + ik )
mm g g2

Now the (FIM) may be written ( i # k)

COMED IS SRR WL
B+

1 2, 2
-5« §+ [‘% w X 1700

+2 Re{x N™ T x #N"9)
m q
qfm

+7 7 xx NP
pfm q#m

+2 7 ¥ (Relu__} Re{G(m,n)}
m n>m m

-Im{umn}Im{G(m,n)})]>

where G(m,n) = Z X NP® Z X #N"? as in (44).
p P q 1

(49b)

(49c)

(49d)

(49¢e)

(50)
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f Writing all xpxq* as in (29 ) gives
|
f *
-jw(d ~d )+ N_, p¥q
Se P Pq
< X %> = 51
*p%q s+ N»P =4 G
<Re{G(m,m) > = J T (Re{NP"N"9}(S cosw(d -d ) + Re{x }
b g P q Pq
~Im{NP™N"Y} (-5 sinw(d ~d ) + Im{n¥ (52)
(-S sinuw( > q) m{ pq}))
<Im{G(m,n)}> =) T (Re{NP™N"%}(s sinw(d -d ) + m{N* })
b q P q Pq
pm, nq *
+ Im{N d -d ) + Re{N } 53
m{N"N }(S cosu o q) eld . )) (53)
and
T NP x x x>
pfm g#m Pa
=27 T (ReIN"™"1(S cosw(d -4+ Re{N;q})
pPm @>p, # m P
PmM _Mmq c >
“In{wW7W ) (-8 sinw(d ~d ) + Im{N" D)
P q Pq
”
I RS (54
p#m
giving
v 1 _
B+
1 mm, 2
- = +
. g+ { 5 U [ (SHN) (V)

+2 7 (Re{N"N"9}(S cosw(d_-d ) + Re{N* }
q#u m q mq

mmmq - -
-Im{NN ‘} (-S sinw(d dq) + Im{N;h}))

+25 7 (Re{NP™"} (S cosw(d -d ) + Re{N* })

1 ~Im{NP"N"} (-5 sinw(d -d ) + Im{N* }))
m q mq

+7 W% g4y
1 1

+257 ) [Re{u__} < Re{G(m,n)}>
m n°m ma

-Im{umn} < Im{G(m,n)} >]} (55)




For the diagonals of the FIM, let

k = 1, then
og
— =g, = -2 ) (Re{N*P}cosw(d, -d )
adk ii 41 ip
k=i P
- ip -
Im{N"F} sinw(di dp))
and
Jwd -d)
-0- jud,-d)
2wy 2 0 e "2 717 -0
2z - .
8di .
_ jw(d,-d,) . jw
QJed mdy) e 20 e (d4-d)
-0- . " _ -0-
er(dM d;)
These give
20
é‘ﬁ*g -1 = {lgyy - giz/g] - XNl )
ad, B+ 8
i
where LA have the following values.
m#i, n#¥i, m#n
= jw(d -d ) 2,2, jw(d -d)
L —(-gii/g) e m n + 2(gi /g7) e m n
m=i, n#¥ 1iorn=1i,mfi
= (- 2 2,2 jw(d--d )
win ( W - gii/g + 2 gi /g - z(gi/g)jw) e 1 n
= *
wmn wim

2, 2
Vim = " 8378+ 28,7/8

Using the above results gives

(FIM),, = §+ é (844 - gizlg)

17

(56)

(57)

(58)

(59a)

(59b)

(59¢c)

4',;‘?.& SIS I

)

-
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1 2
- §+ {} v [(S+N1)(Nmm)

m

+ 2N™ 7 ((S cosw(d -d ) + Re{N" })Re{N"}
q#m m q mq

- ing - * mq
(6 sinw(d dq) + Im {qu}) Im{N })

+27 T (S cosw(d ~d ) + Re(N" }) Re{NP"N"9}
p#m q>p#m P9 P4

*
-(-S sinw(d -d ) + I NPPy™e
( ;1nw( o q) m{Npq}) Im{N""N 1})

+

N (s 41
p;m N (s + )]

+27 7} [Re{wmn} < Re{G(m,n)} >
m n>m

-Im{wmn} < Im {G(m,n)} >1} (60)

To compare with previous results observe in (55) and (60) that if noise

is spatially uncorrelated, g; = 0, and only Ui = ui} = wz eth(di_dk) and
2 *jw(d,-d
L = w&i = -1 e Ju( i n) are non-zero. Further, in (52) and (53) p = m

and ¢ = n are the only non-zero terms. Utilizing the above,

wz ii kk
(FIM)ik = -zg+ 'y (cosw(di—dk) NN S cosw(di—dk)

R ii kk .
+ 51nw(di—dk) NN S 51nw(di—dk))

2
T YD ybigkkg
B+ &
11

where g = T + ) N,
i

v

and similarly

2
w ii nn
F = 22 )‘ — NN S.
( IM)ii B+ n#ig

It is readily seen that this FIM is identical to Eq. 7 (the same as Eq. 12
in [3]).

Unfortunately the FIM defined by (55) and (60) has elements which are
in general functions of the delays themselves, making analysis difficult.
However, in the next section we will assume a signal source at infinity,

allowing some simplification.

o i, et b it




VII. Evaluation of the CRMB

It is unreasonable to evaluate and invert the FIM in sections IV or
VI in general because it is a function of all di' However, if wavefront
curvature is ignored, each delay may be written di = iA where A is the
delay between adjacent sensors. We may also let A vary between zero and
wA =1 for a single frequency. Then dp - dq = (p~q)A for example. This
is the beam former case.

Because of the generality of the formulas we may also vary the elements

of N, using the symmetric matrix (as in [11])

N =Ny e TR |
{\ - |
. . {
N 1 /
= -r0_ w3 Lo
wherein pr =p, e e Such a correlation is appropriate for turbulent

boundary layer noises and its magnitude with respect to the unity diagonal
accounts for isotropic noise. In the following simulations we choose !Oll=
0, 0.2, 0.4 and wB having values O through 1/2.

Figures 1-24 show the CRMB (1,1) element, center element, or last
element as a function of the various parameters. Table I is presented as
a guide to comparisons.

The formulas for the FIM may be applied to arrays with clustered
elements as well, if the spacing between clusters is considered. We have
done this in producing the data in Figures 25 through 30. Zero correlation
between clusters is assumed.

The clustered (or grouped) arrays studied are as shown here.

. . . + 3 sensors
o o e . . o .o + 9 sensors
s s e s s s s s s s e s s « o« + 15 sensors

The spacing between array ends and ends-to-center remains fixed. The
effect of adding sensors to the cluster when spatially correlated noise
is present can then be observed.

Comments derived from the Figures are as follows

~ Al
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Figures 1 through 9 show that variance decreases monotonically
with SNR and that variations in p from O through 0.4 /45° have
unpredictable, but not large effects.

Figures 1 and 7 for example show that more sensors (from 3 to

15) will reduce the variance of a delay.

Figures 1,2 or 3,4 or 5,6 or 7,8,9 show that variance bounds for
delays end-to-center will vary with p differently than those for
end-to-end, but not a lot. Also the end-to-end delays vary

least.

Comparing Figs. 1 and 3 for example shows that the effect of p

on a delay estimator will vary with wA ( look angle.) This variance

is easier to see in Figures 10-24.

Figures 10-24 demonstrate that the bounds are effected by look
angle to a much larger extent when p is increased to 0.4, As much
as 5dB (Figs. 11,17) is observed at SNR = 0.1.

Comparing Figures in 10-24 with like SNR and M shows that different
delays are effected quite differently as wld varies; i.e. CRMB(1,1),
(2,2), (7,7) or (14,14) all vary differently with p and wA.

Grouping sensors when spatial noise correlation is present has

a detrimental effect at low SNR. This may be seen in Figures

25, 26, which also show that the midpoint and end delay variances
are equal at wA = 0. (They are not equal at other wA per comment
4 above). The difference between curves A and B is that the 9 x 9
noise covariance matrix for curve B has 3 x 3 blocks on the
diagonal while curve A's noise matrix is full. Thus curve A
represents a ciuster of nine sensors while curve B assumes each
cluster of 3 has noise independent from the other clusters. For

p = 0.2 and wA= 0 the effect is 0.3 dB at SNR = 0.1.

Pursuing the question of how much clustering is effective when
spatial noise is present, Figures 27 through 30 plot the variance
bounds vs sensor number M while holding array length constant.

We conclude that delay variances are reduced much less for M

changing from 9 to 15 than for M changing from 3 to 9.
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The last comment is meant to be one of the basic conclusions of this
study: that for significant spatially correlated noise, there is a point
beyond which it does not pay to increase sensor number in a cluster when

the purpose is to reduce delay variance between clusters. L

R e
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Figure 3. CRMB(1,1) vs SNR.M=3. A--p=0, B--p=0.2, C--p=j0.2;
D--p=0.4, E--p=j0.4, F--p=0.4(1+j).wh=7/4
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Figure 22. CRMB(1,1) vs wA. M=15. A--p=0.0, B--p=0.2;
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Figure 27. CRMB(1,1) vs M. SNR=1.0. A--p=0.0, B--p=0.2,
C--p=0.4. Equally spaced sensors, full N-matrix.
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GROUPED ARRAY, SNR=1.,L=M-1,W0=0.
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C--p=0.4. M sensors have constant array length;
clusters of 1, 3, and 5 elements at center and ends
of array.
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VIII. Conclusions

Although a closed-form solution for the ML estimate of the dik has not
been obtained, nonlinear equations which theoretically may be solved are
derived. These show considerable complexity which might be somewhat
reduced under rather confining conditions. No simple hardware analogy is

apparent.

The fact that the ML estimators of the di are functions of all the

other delays may be a positive observation, thgt is, no one delay is estimated
without consideration of the others. However, it has been shown (at least
for uncorrelated noises) by Schultheiss [5] that M-1 delays are sufficient
in practicality except when all sensors have small SNR. In fact the CRMB
may not be found from (FIM)-1 using the formulas given herein unless an
independent set of dik is used.

The variances computed for the delays di show considerable - several

dB - deviation as p varies and as M varies. The effect is greater at some
look angles than others, and also depends on which delay is considered.

For sufficient spatially correlated noise, clustering sensors is not

efficient beyond a certain number. Here we show 6 to 9 sensors is a

reasonable number.




Appendix A. Evaluation of the M(M-1)/2
Delay Equations for Dispersive Noise

Cron and Sherman [7] have found spatial correlation factors as a

noise and for diffuse volume noise. If distances between all sensors

clustered. At half wavelength the correlation is zero for volume noise,

a worst case in which noise at any two sensors has a maximum correlation
p = p(k). Due to the symmetry of the diffuse noise source, there is no
time delay associated with the correlation; i.e., all noise cross spectra

are real. Thus let the cross spectral matrix for diffuse noise be

1'
NeN T W
BN
1

For this N, use of the theorem

- T
(1 + rcT) 1. I- ——‘;Lﬁf— re
1+rec
gives
N1 Py
where
8 = Nii - 1 1+ (M-2)p
N, (1-p) 1+ (M-1)p

- 1 -0
a=N N, (1-p) (1 ¥ (M-l)o> » P fa.

function of sensor separation distance and wavelength for diffuse surface

considered are small with respect to half-wavelength, the correlations are
1 all essentially a constant. Although long arrays span much more than half

a wavelength, a constant correlation is useful when some of the sensors are

but the zero location varies with other geometrical parameters for surface
noise. Both Cron and Sherman [7] and Piersol [8] have suggested exploiting

the correlation zero distances to improve delay estimation; the implication

being that the less correlation the better. Thus it is reasonable to assume

(A1)

(A2a)

(A2b)




Eq. (19) may be written

] (- gl/g + X8 ton Ik} = o, (A3)
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where the elements umn are given in Eq. (21), and gl is in (20c¢).

A simplification may be obtained by observing the relative magnitude of

sviNlyx = g7 7 P9 (JWdpg

Pq
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Substituting (A2) into (A4) gives
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Thus under the very tolerable conditions that MS/(N1(1+(M—1)p)>>l or

p<<(%§ - 1)/(M~1), we note that in (21)
1
ZSNikwsinmdi

1+svIyN Lyx

-2wp sinwdik

. MS (A7)
N -0 (oD ey [

EECER

3

1A

R

Zmpsinwdik/(M(l-D))

Using (A7) in (21) gives
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The following steps will lead to an equation, nonlinear, for dik

in terms of the other delays and having only real quantities. Thus the dik

terms are separated from others in the summations. The set of M(M-1)/2
equations could theoretically be solved for any M-l independent unknowns

d Further, assumptions about large M, small p, or small d lead to

ik’ ik
simplifications and linearizations, but these are not pursued here.

Using the approximations (A8) in (A3) gives
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Grouping index pairs (p,q) according to matches with either m or n or
both in eijwdmn and using o and B for the N—l elements gives (see Appendix B)
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where p' and q' indicate omission in their sequences of r and t for the

oJud jud

rt terms or i and k for the e’ ik terms.

Noting that the coefficients of eijqun are complex conjugates, we may
write, using
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Note that all elements in Eq. (All) are real because for example
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First simplifications of (All) may be obtained by observing 8>>|a| when
1+ (M-2)p>>|o| which is often true. The 2wasinuwd, ik term is negligible
with respect to any of the B or Ba terms, particularly at large SNR. Also

at large SNR, terms such as Re{XrXP*} are approximately equal to S coswdrp,
and terms such as Im{XrXp*} are approximately Ssinwdrp. 1f 20/ (M(1-p))<<1,
many terms drop out.
If the double sum over r,t could be omitted, and if wdik<<1’ the
equation could be linearized, but this is not generally feasible. There
are M(M~1)/2 terms in the double sum, each of comparable magnitude to the

dik terms, and the double sum is multiplied by 2pw sinwdik/(M(l—D)). So

roughly to drop out the double sum over r, t, we require >

M(M-1) , 2p sinwd
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or (M-1)p/(1-p)<<1. This is not likely.
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Appendix B. Separation of Terms, Diffuse Noise

In Eq. (A9) the double sum over r,t is broken into parts for (r,t) #
(i,k), (k,i) and (r,t) = (i,k), (k,i). Each part then has terms such as

| 3% T xpxq*upiukq + e 39 ¥ T x x *aPkyid

P q P q
wherein r and t replace i and k for the other part of (A9). The double sum
over p, q may further be broken down into parts for which p or q or both
are equal to i or k or both, each case giving different values for Npi or
qu. These give the following results, using R and o from (A2) and e+ and
e~ for the exponentials. (Similar results are obtained for the difference

of the conjugate exponentials, yielding sinwdik terms).
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Appendix C. Evaluation of FIM for Diffuse Noise,

An Independent Subset of M(M-1)/2 Delays
The following applies to any subset of M-1 independent delays dik'

To determine the FIM, we must calculate the expected values of ert*
using the noise matrix in (Al). This gives
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<X X *> = { 1°
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We also note that (23) becomes for'real N
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The elements of A(m,n) = (a ) are (using (24)-(28) and real N)
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Now from (C2) we may expand
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Applying (Cl), (C3) and (C4) to (C2) and using the separation-of-
terms process in Appendix B gives for the diagonal elements of the FIM,

= - 2 4a? 2
(FIM) Y w® {ZOLcosmdik + . sin“wd,
B+ g
2ocoswd 8a2 1n2md
+ (-1 + ik + > 8 ik ) [40B(S+N )cosuwd,
g 2

g

+ 2(a2+82) le coswd,, + 2828 + ZaZS cos deik

ik

+4(M-2) le(a2+aB)coswd

ik
+2 S z (chosw(d. ) + azcosw(d +d ) + azcosw(d )
q' ik ik~ kq
+ chosw(dik kq))

+ 202((M—2)(S+Nl) +2(m-2)2 - (1-2)) N,

. +275 % S coswd_ )coswd
Pq
' ql>pl

4asinwd
- ik.)[4aB(S+N1)sinwdik

2 .2 2
+ 2(a’+87) le sinwdik + 20”8 sin2wdik

ik]

-«

2
+ 4(M-2) le(a +aB) sinwdik

2 2
+2S 2 (chosw(dik iq) - o cosw(d +d1k) + o cosw(d, iK™ k )

chosw(dik dq ))

+ 202 (M-2) (S+N) + 2((M-2)% - (M-2)) PN, + 2 Z 2 jcosud ) sinud

|
p'q">p’ ik

2w2acoswd 8w2azsin2wd
+ ( ik + 1k) E 2

[4aB(S+N1)coswdtt

g 82 (r,t)#(i,k) :
(ks 1) "




et R

C3

2 .2 2 2
+ 2(a"+R )le coswdrt + 2R”S + 2a°S cos dert

2
+ 4(M—2)le(a +0LB)coswdrt

)

2
+ - +
2s 2' (chcosw(drt drq) a cosw(drq+dr

t
q

+ azcosm(drt—dtq) + chosw(drttdrq))
+ 207 (@2) (54N + 20022 - (-2))oN,

+2) 7 Scoswd_ )coswd 13 €s5)
p' q'>p" Pq r

Some reduction in the number of terms may be obtained by gathering
coefficients of sines and cosines, but this will not be done here. Rather
the various terms are left for better inspection and identification with
their sources. However, let it be observed that the diagonal elements
(FIM)vv may be written

2 2

2
= w 4o .
(FIM)vv = §+ . {Zacoswdik + . sin‘wd,

2 .2
2acoswdik + 80" sin"wd

3
& g

+ (-1 + ik) Al(i,k)

a (4asinwdik ) Az(i,k)

g
2 22 2
2w acoswd1 + 8w a"sin wdi

+ ( k

3
& g

are as indicated in (C5). These will be used again in

k) J

' A3(r,t)] (cé)
(r,t)#(1,k), (k,1)

where Al, A2, and A3

the off-diagonal elements' expression.

The off-diagonals are found similarly.

Utilizing functions Al’ A2. and A, as in (C5) and (C4) the

3
off-diagonals are

2
w 2
(Fn) = - ) s {4 a“sinwd iK sinwd_ /g

B+
+ 8azsinwdrt sinwdik Al(i,k)
82
4 2osind,, A,(1,k)
8




2 . .
+ 8a suudrtsuxwdi

k A, (r,t)
3 1
24
4 2 ¢ sinudyy A, (r,t)
124
3 2 . i nwd
4 Su Sln“drt sinwd, Z z A3(m,n)} (C7)
2 (m,n)#(i,k), (k,i)
& (r,t),(t,r)

A few remarks are in order at this point. The obvious feature is that

expressions (C6) and (C7) for the FIM elements are very complex; they are
functions not only of the delavs whose covariance is sought but also of

all other delays. One simplification is to discard az and/or o- factor terms
with respect to 82 terms. Another is to consider the case where all delavs
are equal to zero. For a zero delay vector, the covariances in (C7) are

also zero, the inversion of the FIM is considerably simplified, and the

diagonal elements of FIM and their inverses are functions of p,M,S and Nl only.

It is interesting that in this zero-delay situation the covariance
of two delays is zero. This differs from the ML estimation of the M-1 r
de’ays referred to a single sensor (see Eq. 7). Those delays have a non-
zero covariance with or without ccirelated noise. Mathematically the

* *
difference is between 9 ( 3v VT ) and 9 av VT . ;
adr adik

(53—
de adl

t

The second-order partial with double subscripted variables is zero, while

*
that with single subscripts is not. This is because the elements of V VT

= d, and
i

are of the form exp(Jw(di-dk)) = exp(deik). For example if dl

3 av'yT 2
d2 = dk’ then 53;’(—5317——— ) yields an element w exp(jw(dl~d2)) # 0, but
32 * T
=———— (V V) = 0. Further, if p = 0, then the off-diagonal elements of
8'dx:t'.adik

the FIM of the dik
noise, ML estimates of the dik are uncorrelated, although either the
which yield ML estimates

are always zero. Evidently with spatially uncorrelated

generalized cross-correlator measurements of dik

of the dj [3,4] or the ML estimates of the M-l delays di are correlated,
as shown in Eqs. (13) and (7).
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