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ABSTRACT

For fiber reinforced cement based composites, the principal beneficial
effects of fibers (metallic, mineral or organic) accrue after the matrix
has cracked. For loads beyond which the matrix has initially cracked, the
further crack extension and opening is resisted by bridging of fibers across
the cracks. The resistance provided by the fibers will depend principally

on the debonding and the pull-out resistance of fibers.

A theoretical model based on the concepts of nonlinear fracture mechanics
to predict the resistance provided by the fibers against the fracture of
matrix is presented in this report. The theoretically predicted response
is compared favorably with the experimental data on notched beams and double
cantilever beam specimens of steel fiber reinforced concrete. The proposed
theoretical model provides a method to calculate fracture resistance for a

crack extension in a specimen of any geometry.

One of the key parameters required for the model is the relationship
between the uniaxial post-cracking stress and the corresponding displacement.

This relationship will depend on the bond-slip function of fibers. A method

to estimate this relatiomnship is presenteir




by INTRODUCTION AND SUMMARY OF CONCLUSIONS

Research conducted during the last twenty years has shown that the
fé addition of fibers significantly improves penetration, scabbing and frag-
mentation resistance of concrete. The possible applications of fiber
reinforced concrete (FRC) include explosion and shock resistant protective
structures. Even though the enhanced "cracking resistance" is the most
important attribute of FRC, there are no rational methods of measuring or

predicting this important materialproperty.

For fiber reinforced cement based composites, the pricipal benefi-

cial effects of fibers (metallic, mineral or organic) accrue after the
cracking of matrix has occured. For loads beyond which the matrix has
initially cracked, the further crack extension and opening is resisted

by bridging of fibers across the crack. To incorporate the effects of
fibers bridging, many investigators have used the classical linear elastic
fracture mechanics concepts. These past attempts however assume one or
more of the following: (1) the closing pressure due to the fiber-bridging
is constant, (2) the extent of the fiber bridging zone is small compared
to the length of the traction free crack length, and (3) ignore the energy
absorbed in the fiber-bridging zone. In this report the results of a

theoretical model which does not make the above assumptions are presented.

An existing crack in a cement based matrix is replaced by an effective

crack length which consists of three zone: (1) a traction free zone,
(2) fiber bridging zone (lf), and (3) the matrix process zone (lp)
resulting from the aggregate interlock and microcracking (Fig. 5). It is

assumed that the stresses and deformations due to the applied loads and

i1
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the closing pressures can be calculated using theory of elasticity. The
fiber bridging closing pressure depends on the crack opening displacement
which in turn depends on the geometry of the specimen, external loading
and on the closing pressure itself. An iterative procedure was developed
to account for this coupling between the closing pressure and the crack

opening displacement.

Experiments with fiber reinforced concrete specimens subjected to uni-

axial tension in a relativelw stiff testing system indicate that the post~
peak displacement are essentially a result of opening of a single crack.
Thus it was assumed that the relationship between fiber bridging closing
pressure and the crack opening displacement (COD) are equivalent to the
uniaxial, tensile, post-peak stress-displacement function. A method to
estimate this relationship is proposed (Fig. 8) for steel fiber reinforced
concrete. Experiments to verify this concept are currently underway at
Northwestern University. Based on these experiments it is expected to
derive closing pressure vs. crack opening displacement relationship from a

single fiber pull-out vs. slip function.

Based on the theoretical model, load vs. crack mouth displacement curves
for notched, steel—fiber.reinforced concrete beams were derived and compared
with experimental data (Fig. 26). The crack opening displacements for the
theoretical model were calculated using some simple approximations. A more
rigorous method of calculating COD by modelling crack as distributed dislo-

cations is currently underway.

Fracture resistance vs. crack extension relationships (R-curves) were

calculated and compared with the experimental data on the double cantilever




beam specimens of steel FRC (Fig. 20). The theoretical curves were obtained
by assuming that the displacement resulting from the fiber bridging forces
are irreversible. A good correlation was obtained with the experimentally
observed R-curves as well as load vs. load-line displacement curves (Fig.22).
Note that if the asymptotic value of R~curves is considered a material

parameter, then that value can be a useful quantity in identifying the bene-

fits of fiber addition. For examplé the predicted steady state value for

specimens reinforced with 37.5 mm steel fibers is approximately 40 times
that for plain unreinforced matrix (Fig. 25). This relative improvement in
fracture energy is comparable to that obtained by using an empirical method

called toughness index suggested by American Concrete Institute.




PREVIOUS THEORETICAL MODELS

Many investigators have attempted to predict the fracture behavior of
fiber reinforced composites based on the fiber bridging concept [2, 3, 4,
12, 13].

Lenian and Bunsell [2] proposed that the stress intensity factor (Kg)
required for crack propagation was the algebraic sum of the stress intensity
factors resulting from the external load applied to the cracked specimen and
without considering the presence of fibers (K,) and the stress intensity
factor due to fibers bridging across the crack (K.), i.e.,

KR = Ky, - K = K, (1)
where K. = experimentally determined critical stress intensity factor for
the unreinforced matrix.

They calculated the effect of fibers bridging (Kr) in Asbestos Cement
by employing Paris and Sih's analytical expression [14] which was derived
for an internal crack in an infinite sheet under a region of uniform closing
pressure o applied at the crack tip (Fig. l-a). This relationship is given
as:

oVa -l¢ -1 b c?
=715 _isin " = - g1 - - - £
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vhere a, b, and c are crack length, and the boundaries of the applied uni-~
form pressure ¢ , as shown in Fig. l-a.
They assumed that the closing stresses produced by the asbestos fibers
were the same for microcracks as for the main crack, and that a zone of

microcracking of length zp can be represented by an imaginary increase of

crack length, xgp, where x is a factor less than unity, to which the closing

stress was uniformly applied (Fig. 1-b).




The stress intensity factor (KR) was then calculated as:

Kp = K, fJ§=(a + xzp)% ‘% - sin”!
v

~~

2
CEETR] :°xzp) + [1 + Tt :°x£p)2] ] 3)
where x was the fraction of the microcracked zone ip: Note that ¢ is the
uniform bridging pressure of asbestos fibers which was assumed equal to the
maximum value of the post-cracking stress (9nax) and was calculated from
[15]:

Tmax = Al Vp 9, + 4 1y My T Ve _’&_ (4-a)

Where A1 is a factor related to the extent of matrix cracking and which is
equal to or less than unity, Vm and o, are the percent volume fraction of
the matrix and the matrix tensile strength. The second term in Eq. (4-a) is
primarily the contribution from fibers being pulled out. "1 is the effi-
ciency factor for the embedment length of fibers. L) is the coefficient for
fiber orientation and distribution, while 7, Vg, and 1§-are the bond
strength of fiber-matrix interface, fiber volume fraction, and the aspect
ratio, respectively.

The matrix-cracking factor A; is usually small and can normally be neg-
lected (equals zero). The values of "2 » Mg and 7 are generally a func-
tion of specimen geometrics, casting procedure, type and size of fibers,

fiber volume fraction, and fiber distribution (1-D, 2-D, or 3-D).

By introducing Ay = 4 "l ”0 r, Eq. (4-a) can be rewritten as:
- L -
Tomax = A1 Vm %+ Ay Ve g (4-b)

The values of A) and A, are varied depending on different testing con-
figurations, conditions of matrix cracking and fiber debonding. 1In this
study, the value of A; was assumed to be zero while different values of Ay

were selected, depending from different testing and cracking conditions.




Their theoretical model did not provide good correlation with the ex-
periment results. This may be explained from the fact that, firstly, they
used a solution which was derived for a crack in an infinite sheet to rep-
resent a specimen with finite boundaries. Secondly, the actual fiber
bridging pressure depends on the crack surface displacement. This implies
that the assumption of constant fiber bridging pressure is not an accurate
one. Thirdly, their method of including the effect of the matrix process
zone by a factor x may not be very .ccurate because X reduces the effective

crack length which influences K, and K,.

Foote, Cotterell and Mai [3] provosed a model using the LEFM analyses
for a semi-infinite crack (Fig. 2). Thev also assumed that the stress in-
tensity factor (Kg) for propagating a crack in fiber reinforced concrete
specimen consisted of two components, i.e.,

Kg = K, - K, (5)
where K, is the stress intensity factor at the tip of the crack if there
were no fibers bridging and K, is the stress intensity factor due to the

bridging fibers which tends to close the crack and was therefore considered

as negative (this is similar to Lenian and Bunsell's model [2]).

However, they realized that the fiber bridging stresses (crack closing
stresses) were coupled to the crack-surface disnlacements which in turn was
a function of the external loading and the crack closing stresses. To solve
this problem, they assumed a fifth order polynomial for the crack closing
stress, ¢(t). By employing the semi-infinite crack concent and the ana-
lytical expression from Muskhelishvili's potential function [16] which gives

the displacements of the crack faces due to closing pressure ¢(t), they




4 calculated the displacement and stress intensitvy factor due to fiber

bridging as: ®

1 (t
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where u, and K, are the displacement and the stress intensity factor due to
the bridging fibers.
The displacement for the crack without fiber bridging (u,) was deter-

mined from theory of elasticity as:

uo-z_xg\j';t— 9
E T

where Poissons' ratio v was neglected in Eq. (9), (v= 0).

With the calculated total displacement, u = u, + u,, an iterative
method was adopted to determine the Ky curve for asbestos-cement composite,

using the initiation criterion as Ky equalled X, (a critical initiation

value for matrix)
Kp = K, +K. =K, (10)
The comparison of the predicted results with the experimental values |
was poor. They attributed it to the fact that the assumed crack closing
pressure was inaccurate due to lack of experimental data. Besides, the

semi-infinite crack solution was clearly not the actual solution for a

finite specimen and crack growth.

- -




Since the crack closing stress o¢(t) on the crack surfaces depends on
the displacement, u(r), and in turn the displacement u(r) depends on the
stress function ¢ (Z), Eq. (6) cannot be solved directlv without knowing
the exact ¢ (t) and therefore an iterative method is used. By assuming a
fifth order polynomial function as the initial value of ¢ (t), u(r) was

then calculated from Eqs. 6 and 7, and the crack closing stress o(t) was

determined and iterated.

Using two types of test.specimens, double cantilever beam and single
edge notched, Bowling and Groves [4] explained that as the crack propagated
in the DCB specimen and became bridged by the aligned nickel wires (Fig. 3),
the measured critical stress intensity factor, for further propagation,
increased.

The increase was clearly due to the presence of wires bridging the
crack and exerting crack closing pressure which reduced the actual stress
intensity factor pertaining to the matrix crack tip. Thus a stress inten-
sity factor due to wires bridging (K;,) must be subtracted from that due to
the applied force (K;) and the initiation criterion was set as the net
stress intensity factor (K, - K,) reached the critical value of Kics 1L.e.,

Kz - K, = KIC (1)

The KIC value here was taken as that required for proragating an un-
bridged crack past a wire. The value of Ka for the case of DCB was cal-
culated from an expression given by Wiederhorn et al [17] as:

K = . Pa_ (3.457 + 2.315 <4 (12)

a wipka3/2
where P was the applied load, a was the measured crack growth, and w, b,

and d were specimen dimensions as defined in Fig. 3.




Tt R e

To calculate the contribution of the bridging wire (K,)» P in Eq. (12)

was substituted by the tensile force in the wire, and a was replaced by the
distance from the wire to the crack tip.

The main argument for this proposed model was that the assumed crack
bridging force P was independent of crack opening displacement which is un-
likely to be the case of fiber reinforced concrete [3, 12, 13, 19, 20, 21].
The effect of matrix process zone in front of the crack tip was also neg-
lected. The analysis was primarily designed for the aligned fibers and
therefore cannot be used for the case of random distributed fibers. The
formula given in Eq. (12) was also based on the elastic analysis which is
unlikely to be applicable, without any modification, to nonlinear materials
such as concrete and fiber reinforced composites.

Petersson and Hillerborg (12, 13] introduced a fictitious crack model
using finite element analysis to determine fracture toughness of concrete
and fiber reinforced composites. Their model was based on the Dugdale-
Barenblatt concept [10, 18] which primarily depends on the stress- displace-
ment relationship in the nonlinear zone (fiber bridging and matrix process
zone). Their stress-displacement relationship (o vsn) can either be ob-
tained from a uniaxial tensile test or from a notched beam specimen. A set
of linear stress-displacement relationships was assumed in the analysis.

By keepring the work done or area under the ¢ - % curve constant, the maxi-
mum pulled-out displacement ( 7."¥) which was later used as the initiation

critericn (Fig. 4) was calculated from:

"max

£
¢, -/ ¢ d(1) 13)

0
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With the linear ¢ - 7 relationship, the maximum pulled-out displace-

ment ”fmax can be expressed as:

" - < (14)

It can be seen that the value of "fmax was calculated as a function

of only G, and ( o) . However, " MaX should be primarily a function
C c’/max f

of fiber geometry and distribution. For example, it is shown that the

L
fmax equals = whether fibers are steel or glass

even though the values of Gf/ dﬁax may be different for these two types of

upperbound value of "

fibers.




BASIC CONCEPTS OF THE PROPOSED MODEL

A crack just prior to its extension in Mode I opening in a fiber rein-
forced concrete specimen is shown in Fig. 5. The length of the crack can
be divided into three regions: 1) a traction-free crack length which con~
sists of initial cast notch and the zone of crack length where fibers are
completely pulled out of the matrix, 2) the region of fiber bridging ( !f),
and 3) the matrix process zone (generally due to aggregate debonding and
interlocking) in front of the crack tip. Both fiber bridging and matrix
process zone provide resistance to crack opening. The effect of the fiber
bridging is normally much more significant than that contributed from the
matrix process zone, and as a result, the crack closing pressure in the
matrix process zone is neglected in this study.

Region 1 (traction-free crack) and region 2 (fiber bridging) were
separated at the point where the crack surface disnlacement was equal to
"é;x (the maximum crack displacement where fiber bridging stress is zero,
since all fibers at that point are completely pulled out, Fig. 6), while
the fiber bridging zone and the matrix process zone were divided at the
point where crack surface displacement equalled to ":ax (the maximum dis-
placement of the matrix in the descending branch of the uniaxial tensile
test where stress is equal to zero, Fig. 6).

The value of ":ax has been reported by Wecharatana and Shah [19, 20,
21]. This value is about 0.8 x 10-3 in. for matrix mix 1:2:0:0.5 (c:6:A:w).
The n ;ax value used in this study was half the fiber length. This may be
justified (as shown in Fig. 6) from the observation that fibers are randomly

distributed across the crack. The smallest pulled-out distance is equal to

zero (labelled 3 in Fig. 6) and the largest pulled-out distance is half the




fiber length (labelled 2 in Fig. 6). This implies that if the two crack
surfaces are separated by a distance of half the fiber length, there will
not be any fibers left bridging across the crack which subsequently means
the fiber bridging pressure is zero.

If fibers are randomly distributed rather than aligned, then the maxi-
mum embedment length approaches £/2 in. Similarly, the 1 :ax refers to
the crack surface displacement where zero aggregate bridging and inter-
locking pressure is assumed (Fig. 6).

If the stresses in these nonlinear zones (fiber bridging and matrix
process zone) are assumed to be purely under uniaxial tensile behavior,
then crack length "a'" can be replaced by an effective (elastic) crack
"agg¢'" such that a ge = a + L,, where lp is the idealized length of the
matrix process zone (Fig. 5). This effective crack "aeff" sustains two
tyres of crack closing pressures: one due to the fiber bridging and another
due to aggregate bridging which was neglected as explained earlier. The
concept of this model is somewhat similar to that originally proposed by
Dugdale [10] and Barenblatt [18].

For a given applied load and an effective crack length, the crack open-
ing process is primarily resisted by the bridging of fibers across the crack.
It is necessary to first calculate the size of the fiber bridging zone.
Since it 1s a function of the crack profile and the length of the fibers
used, an approximate crack profile was first assumed (a linear crack pro-

file was assumed in this study). Knowing the crack profile, crack length

and ":ax (half the fiber length), the size of fiber bridging zone was then

determined. From the uniaxial tensile stress-displacement relationship and

the assumed crack profile, the fiber bridging pressure can also be obtained.
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The stress displacement relationshivs for different fiber volume fraction
and aspect ratio are given {n Table 1. Details of how to obtain such re-
lationships will be discussed later.

In this analysis, it is assumed that crack will initiate as the crack
surface displacement at the tip of the effective crack length "a" reaches
a value ":ax (defined in Figures 5 and 6).

As the fiber bridging pressure distribution depends on the crack sur-
face displacement, which in turn is a function of the applied load, speci-
men geometry, the size of fiber bridging zone, the length of the matrix
process zone 2p and the closing pressure itself, an iterative procedure
was then needed in the analysis as follows:

Consider a given crack length "a" in a fiber reinforced concrete
specimen just prior to its further extension.

1. Assume a crack profile and a matrix process zone of length lp.
With the given length of fibers used, the size of fiber bridging
zone lf can be calculated using 9 :ax as the limit of the fiber
bridging zone.

2. Knowing zf and the assumed crack profile, calculate the closing
pressure distribution, using the stress-displacement relation-
ship given in Table 1. Note that for simplicity the closing
pressure distribution in the matrix process zone is neglected.

3. For a given specimen geometry (double cantilever beam and notched
beam specimens were considered here), the applied load P and the
crack closing pressure, calculate using theory of elasticity, the

crack opening displacements for the effective crack ag¢¢.

e
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4. 1If the crack opening displacement at the end of matrix process

zone ( zp) is equal to ,':ax’ then the initiation criterion is
satisfied and the assumed value of Qp is partially a correct one;
otherwise a new value of Lp is assumed and the above steps are
repeated until the initiation condition is satisfied.

5. To further ensure that the iterated lp and the assumed crack
profile are correct, the load line deformation ( ﬂp) is cal-
culated based on the same elastic principle and then compared
with the experimentally observed values. If these values do not
correspond to the measured data, a new crack profile is assumed
and the above procedure is repeated until this condition is

satisfied.

NORMALIZED UNIAXIAL TENSILE STRESS-DISPLACEMENT RELATIONSHIP

Experiments with fiber reinforced concrete specimens subjected to uni-
axial tension in a rigid testing system have shown that the post-peak dis-
placements of the specimens are essentially a result of the opening of a
single crack [22]. Thus the uniaxial tensile stress-displacement relation-
ship in the post cracking region can be taken as the crack closing pressure
(¢ ) versus crack surface displacement (7 ) relatiomship.

Since the uniaxial tensile stress~-disnlacement is important to the
fracture behavior of fiber reinforced concrete, careful study of this rela-
tion is essential, particularly in the post cracking region. Many inves-
tigations have conducted uniaxial tensile tests of fiber reinforced con-

crete with different fiber volume fractions and aspect ratios [12, 22, 23].

These results were used for the analysis here.
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The stress-displacement relationship of fiber reinforced composites in
the post-cracking region is bounded by two parameters (Fig. 7) : the maximum
post-cracking strength ( ’max) and the maximum pulled-out displacement of
fiber (0 :lax) .

The maximum post-cracking strength is generally known to be a function
of fiber volume fraction (V), aspect ratio ci}Q, fiber distribution and
embedment length coefficient ( g or 4 ng Mg in Eq. 4-a) and the bond

strength of fiber matrix interface () [15] where:

max = BT V4 (1s)

The maximum fiber pulled-out displacement normally depends on the em-
bedment length and the fibers orientation. It can be seen (Fig. 6) that
fibers may bridge over a crack in different ways; some fibers may have most
of the length embedded on one side, and have only a small portion left on
the other side of the crack (labelled 1); some fibers may be totally em-
bedded on one side of the crack (labelled 3); and hardly but possibly that
a fiber may be equally embedded on both sides of the crack (labelled 2 in
Fig. 6). Since the smaller side of the embedment length is the one which
will be pulled out of the matrix (this is due to a smaller total resisting
force or frictional force), it can then be concluded that the maximum
pulled-out displacement cannot exceed half the fiber length which is used
here as the value of ":ax .

By normalizing the post-cracking stress with the maximum post-cracking

£
strength ( 9/ ¢ ,.) and the post-cracking displacement with " oax’ ( ),

n
"max
it was found that there exists a unique relationship between the

normalized post-cracking stress and displacement for a given type of fiber.




This relationship was independent of the fiber volume fraction and aspect

ratio as can be seen in Fig. 8. To generalize a unique normalized stress-
disrlacement relationship for steel fiber reinforced concrete, it was
assumed that the maximum post-cracking strength occurs at the end of the
matrix process zone or the beginning of the fiber bridging zone, and
smoothly decreases to zero as the crack-surfaces displacement reaches half
of the fiber length. Therefore, the boundaries for this relationship can

be summarized as:

at X =0 or 7= o : g = 1.0
Tmax
(16)
at x = zf or n= nf : 9 = 0.0
max Tmax

where x is the distance from the crack tip, % is the crack surface dis-
placement at x. For the condition of monotorically decreasing stress, we

can write:

do £
an < o for o0 ¢ 1 <« nmax (17)

At attempt to predict the normalized stress-displacement relationships
for steel fiber reinforced concrete based on the experimental results re-
ported in [11, 22, 23] is made here. To satisfy all the required boundary

conditions given in Eqs. (16, 17), one of the possible solutions is:

(4 n 2
= l- 18

max

f
where Y nax is the maximum post-cracking strength and " max is the maximum

pulied-out displacement of fibers.




For other types of fiber reinforced composites, the normalized stress-

displacement relationship given in Eq. 18 may be modified with an exponen-

tial factor of e‘A[—%}—JB where Eq. 18 can be rewritten as:

.
3 19)
n:ax N max
where m and n are constants which will depend on the type and the pull-out

behavior of fibers.

It can be seen that the post-cracking strength at any pulled-out dis-

placement (7 ) can be predicted provided that N nax and ":ax are known

( 9pax 1s 2 function of Ng +Ng 5T, Ve, and 2/4q while n :ax equals
half the fiber length). Thus the normalized relationship shown in Eqs. 8,
18, 19 could be very useful in design of fiber reinforced concrete com-
posites.

To predict the tensile stress-displacement relationships in this
study, the value of A} in Eq. 4-b was neglected and the factor Ay which is
a function of My , Mg , and 7 has been selected from the literatures
[15, 24 - 26] as follows:

For the double cantilever beam specimen, with the method of casting,
the type of fibers used and the critical specimen thickness of 0.5 in. [11],
the value of A, was selected as 600 psi. In the case of the notched beam
specimens, the different fibers size, the method of casting, and specimen
thickness of 1.5 in. [6], lead to the value of Ap as 300 psi. With these

selected values of Ay, the stress-displacement relationship can be predic-

ted, using Eqs. 15 and 18.




Different g-n relationships for different fiber volume fraction

and aspect ratio used in this study are given in Table 1.

CALCULATION OF CRACK SURFACE DISPLACEMENT

Most fracture studies for cementitious composites in the past were
based on the calculation of the stress intensity factor K using the linear
elastic fracture mechanics concept. In this study, a method is proposed

to calculate the strain energy release rate G based on the change of global

compliance gg approach.

Approximate and simple methods of calculating compliances of a
cracked double cantilever beam and centrally notched beam are described in

the following section.

DOUBLE CANTILEVER BEAMS

The compliance of the double cantilever beam specimens was calculated
using the so-called DCB approach [19, 20].

A single cantilever beam model under the applied load P and the crack
closing pressure is shown in Fig. 9. The deformation for the double can-
tilever beam in this analysis was calculated from the beam bending theory
where deformation due to the applied point-load P for a single cantilever

beam (Fig. 9) can be determined from [19]:

2
v(x) =122 | feff® 1 . HGO 1 x] 1 + 1
P T [meme) G o) T2 2@ §e)

+Q—Z-il_1_ 1n B | . (20)

c, H(x) i Cp=0

where yp(x) is the deformation at any point x from the effective crack tip,
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aggg. Ci and C) are the beam depths at the free end and the slope of the
tapered beam. E and v are material constants, and B, H(x) and H(QO) are
beam width and thicknesses at distance x from crack tip and at the crack
tiv. These variables are shown in Fig. 9.

For the deformation due to fiber bridging pressure, with the nonlinear
crack closing pressure, a numerical integration was emploved to solve the

beam bending governing equatiom:

dzy M k. _dv (21)
oI T E + ac dx

where A and 1 are cross sectional area and moment of inertia, E and G are
elastic and shear modulus while K is the average shear constant. M.and V

are moment and shear which are given as:

. 2 2 .
for 2p<x< £ * H

R.f +R.p
M(x) =
f th. o(t) (t=x) 4t
X
Le s L, (22)
V(x) -f th. o(t) dtc
X
for o< x<?, . L L
P f+
M(x) =
th. o(t) (t-x) dt
2]
28 + % (23)
V(x) =
= ta. 9(c) dt
ot for x>, + ; P
; etk
b M(x) =0 : V(x)=0 (24)
)
k

e
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The total deformation is equivalent to the deformation due to annlied

load P subtracted bv those due to fiber bridging.

(n = (n (25)

P rotal P applied load =~ ('P)fiber bridging

Details of the test setun and snecimen dimensions are given in Fig. 10.

CALCULATION OF CRACK MOUTH DISPLACEMENT FOR XB SPECIMENS

A fiber reinforced concrete beam with an initial cast notch of length,
a,, subjected to pure bending, is shown in Fig. 1ll. As similar to the case
of double cantilever beam analysis for a given load P and crack length *a",
all nonlinear zones (matrix process zone and fiber bridging zone) were re-
placed by a regicn of crack closing pressure. The crack closing pressure
within the matrix process zone was assumed to be small compared to those
due to fiber brideing and therefore was neglected.

The fiber bridging stress again denends on the assumed crack profile
which is a function of crack growth "a" and crack mouth displacement 'CMD".
Using the normalized stress-displacement relationship given in Eq. 18, thsa
calculated maximum post-cracking strength ( ¢,,.) and the assumed crack
profile, the fiber bridging stress distribution can then be deterr.ined as

follows:

For the assumed linear crack onrofile:

cMD - T
a y
(26)
cMD
and n - - .y

Note that Eq. 26 gives n = 0 when v = 0 which 1s in fact not true. Only

for the simplicity in calculating the fiber bridging pressure, this assump-

tion is made.




Substitute N from Eq. 26 into the normalized stress-displacement re-

lationship (Eq. 19). Eq. 18 can be rewritten as:

o1 cMD 2
o(y) = dmax 1 n f ( a )y 27
max

where n;ax is the maximum pulled-out disvlacement (equal to half the fiber

length).
By introducing Ak = (——12%;~—9 » Eq. 27 can be rewritten as:
2. N max
2
o(y) = 9max [l -AY (28)

Knowing the fiber bridging stress acting along the length of lf on
the effective crack of length a + En , the change in rotation of the beam
resulting from the effective crack - aggf can be calculated from the rela-

tions derived by Okamura et al [27, 28] :

e-xm.F+AM.M (29

where § is the relative rotation of the crack front, F is the axial force

resulted from the fiber bridging pressure, M is the resultant moment due to
the external load and those resisting moment due to F (Fig. 11), and XFM
and XM are the increments of the compliances caused by the presence of the

effective crack - a and are given as:

eff
§
- 20-vH
M .__.ﬁ‘.’_. —w—bf E Yp (§) Yy (&) d§ (30-a)
A, = 20=vH 62 E v (&) d (30-b)
M e ) ] F (8 ek
o
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a
where £ = ;ff and Yp(£), Yy(E) are given as:

Yo(£) = 1.99 - 0.41(§) + 18.70(§ )2 - 38.48(£)° + 53.85(¢)"
(30-¢)

YM(g) = 1.99 - 2.47(¢) + 12.97(&)2 - 23.17(¢ )3 + 2&.80(&)4
(30-d)

Note that Eqs. 29 and 30 are applicable only for § = 0.6.
For the case of non-uniformly distributed fiber bridging stress, the

total F can be determined from:

A
f
F = B [ oly) dy (31)

0
substitute a(y) from Eq. 28
zf _
2
F = Bo . f l—Aky] dy (32)
o L
B ? 2
F = BoOpax - ¢ |1 =4 L+ A e ] (33)
L 3

Note that.the size of fiber bridging zone was again controlled by half the
fiber length; however, in the case of notched beam specimen the value of
COD was always smaller than half the fiber length. As a result, the size

of zf was equal to:

for COD g L/2

gf = a-a, (34)

The resisting moment due to force F depends on the distance between

the neutral axis and the crack tip. The problem then depends on where the




location of the neutral axis is. Accordins to Hannant [15], the neutral
axis of an unnotched fiber reinforced concrete beam is approximately one-
auarter of the beam depth (or the unnotched distance) from the compressive
surface. Therefore, the distance between the crack tip and the neutral axis

a
was assumed to be equal to (_%_.w + .ZQ— - a)

The resisting moment can then be determined from:

f
Mr-ch(y) [(_%w-l-:o-a)c{-y]dy (35)
0

Introducing dp = —%— W+ az -~ a , and substituting 0(y) from Eq.28:

b 2
My = Bf Omax (1 = AY)" (4 +v) gy (36)

o}
2
MT-B'O .2. £ _
max £ fdp + - a-2 Akdm)
2 2 2,3
S -2 )
3 A'k% Ak)+Ak f 37
4
For a given value of the applied bending moment, the dimensions of the

beam and the length of the notch, a value of 1p can be iterated such that

the calculated value of 6 from Eq. 29 is equal to N :ax / lp (the value of

n :ax was considered from the matrix and was found to be 0.08 x 10— in.

according to [19, 20, 21] ).

Once the initiation condition is satisfied, the crack mouth displace-

ment is calculated from:

CMD = 9 (a+ !b) (38)
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the calculated value of CMD is then checked with the experimentally ob-
served data. If this condition is satisfied, the assumed crack profile
and the iterated QD are correct, otherwise a new crack profile is assumed
and the above procedure is repeated until such displacement condition is
satisfied.

Details of the test setup and the specimen dimensions for the notched

beam specimen are given in Fig. 12.

CALCULATION OF FRACTURE ENERGY

The resistance to crack extension can be expressed in terms of the
strain energy release rate. This term should include, in addition to the
elastic energy, the energv absorbed in the fiber bridging zone (as wellcas
in the matrix process zone, which was ignored here). In terms of the
global compliance concept, the terms for strain energy release rate should
include both the unloading compliance (Cg in Fig. 13) and the permanent
deformation ( 6p).

To determine the actual amount of energy required for crack propaga-
tion, it has been shown that the classical concept of strain energy release
rate must be modified to include the effect of nonlinear zone (in this case,
the fiber bridging zone) [7, 9, 19]. It was also shown that the energy
required for incremental crack growth should be the area under the load
deformation curve between two unloading lines at those corresponding crack

growths (shaded area in Fig. 13), i.e.,

PP dc P P 48
¢ o NP2 R L[1e 2}_3_3_%2 (39)

m 2tﬂ daeff. l Pl PZ

it




where P) and P, are two consecutive neighboring loads, t, is the critical
thickness in the crack plane, CR and ‘P are the unloadine (elastic) com-
pliance and the permanent deformation, respectively. To calculate Gy from
Eq. 39, it is clearly indicated that the change of unloading compliance and
permanent deformation with crack growth must be determined.

During the unloading process, the fiber slipping distance or pulled-
out displacement was assumed to remain constant. This behavior was exper-
imentally observed by Hawkins, Lin and Jeang [29]. They reported that the
slip in reinforced concrete during unloading remains constant (Fig. 14).

It implies that the same fiber bridging pressure which resists the crack
from opening during the loading orocess also acts as frictional force and
resists the crack from closing during the unloading process. As a result,
we can conclude that the existing permanent deformation at the end of the
unloading period (P = 0) is equal to the load-line deformation due to fiber
bridging stress which prevents the crack froﬁ opening. If the fiber bridg-
ing stress was assumed to remain constant throughout the unloading, the
deformation 2 (due to fiber bridging during loading) must equal the defor-
mation 3 (due to fiber preventing crack from closing during unloading)
(Fig. 15).

To determine R-curve (fracture energy vs., crack extension) from a given
set of load P and crack a, the procedure mentioned earlier for DCB and NB
was used to iterate for the size of the matrix process zone and calculate

the total load-line deformation (Np ) total. From the same crack closing

pressure, the permanent deformation (Np ) perm can also be calculated from
the elastic beam bending theory. Knowing both the nermanent deformationm
and the total load-line displacement, the elastic deformation can be deter-

mined from Fig. 15:
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( np) total = ( Np) perm. + ( mp) elastic (40)

The unloading compliance (CR) can then be calculated from:

c, = (nplelastic . 1)

By onlotting C and (np) perm. with crack length, the change of un-
loading compliance and permanent deformation with respect to crack growth
can be determined. Cons.equently, Gy can be calculated from Eq. 39, and
eventually R-curve can be obtained by plotting the obtained Ggp with the

actual crack growth, A..
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EXPERIMENTAL INVESTIGATION

SPECIMEN CONFIGURATION

The double cantilever beam specimens (Fig. 10) used in this study
were 24 in. long tapered beams developed bv Visalvanich and Naaman [ll].
The specimens were 2 in. thick with double zrooves along the center line
of the specimen which provided a 0.5 in. critical thickness. Details of
the specimen setup were given in [li].

The notched beam specimens were tested by Velazco et al (30). The
specimens were 1.5 in. thick with 3 in. width and a span length of 15 in.

Details of the specimen and test setup are shown in Fig. 12.

MATERIAL PROPERTIES AND MIX PROPORTION

The matrix mix-proportion used in this study was (1:2:0.5) (Cement :
Sand : Water). The cement used was high early strength ASTM Type III ce-~
ment; the sand was a siliceous sand with a maximum particle size passing
sieve No. 8 (0.0937 in. opening).

The fibers used were straight cut, brass coated steel fibers with the
specific gravity of 490 lb/ft3. Three different volume fraction of fibers,
0.5, 1 and 2 percent were selected to study the effect of fiber content.
Two different sizes of fiber: 0.25 in. long with 0.006 in. diameter, and
0.75 in. long with 0.016 in. diameter, were used. In this report, four
series of fiber volume fraction and ‘aspect ratio (as listed in Table 1),
with two specimens each, were theoretically studied. Only the series of
Ve = 1Zwith £ =0.25", and d = 0.006" which were tested by the authors
with the loading-unloading technique [7, 19]; all other series of DCB
specimens were tested by Visalvanich [li] without the unloading process

and therefore could not be used to obtain the experimental R-curves.

il SR G
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The notched beam tests were conducted by Velazco [30]. The data used
in this study have a constant fiber volume fraction of 1 percent with the
initial cast notch varied from 3/8 in. to 1.5 in. The steel fibers used
were brass~coated, 1 in. long, and 0.0l in. in diameter ( /4 = 100). The
fibers specific gravity was 490 1b/ft3, and the matrix mix~proportion was
1:2:0.5 (Cement : Sand : Water). The experimental data provided by Velazco
Bﬂwﬂe&ewﬂmdbw,uukywﬂaﬁthcm&mwmduﬁummn

no unloading was reported in the testing procedure.
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COMPARISON WITH EXPFRIMENTAL NCB DATA

Since only the series of V_ = 1 %, & = 0.25", and d = 0.006" for the

£
double cantilever beam specimens were tested with the loading-unloading
technique, only the experimental R-curves of these series were then cal-
culated and compared with the theoretical values in this section, while

the results of all other series will be reported later.

With the assumed crack profile, the iterated Zp was calculated by
satisfving the initiation criterion (i.e., crack displacement at the end of
the matrix process zone equals r‘:ax of the matrix, Figs. 5 and 6). To
ensure that the obtained zp and the assumed crack profile were correct,
the predicted total load-line deformation must be in good agreement with

the observed values.

Fig. 16 shows the plot of total load-line deformation (flP)total with
crack growth while Fig. 17 reports the load-deformation curves. It can be
seen that the predicted values are in good agreement with the experimentally
observed values. (Note that the solid points refer to the experimental data
while the blank point represents the predicted values; the same notation
will be used throughout this study.)

Since the fiber bridging pressure primarily resulted from the fric-
tional bond strength and the slipping distance was assumed to remain con-
stant during unloading [29], the permanent deformations can easily be deter-
mined from the obtained fiber bridging pressure, using the elastic beam
bending concept. Fig. 18 shows a nlot of permanent deformation versus
ecrack growth and it can be seen that the predicted results are in good

correlation with the experimental data.




In Fig. 19, a good correlation is also observed for the predicted and

measured unloading compliances at small crack growth. The correlation is
poorer at the larger crack growth. This may be because of the so-called
end-effect. The end-effect in the double cantilever beam specimen is re-
lated to the size of the uncracked portion of the specimen since the DCB
analyses assume the beam to be fixed at the crack tip. As a result, the
smaller she uncracked ligament, the more inaccurate the fixed-end concept.
For the double cantilever beam used in this study, the valid region without
the end-effect is for crack growth of less than 16 in.

Knowing the change of permanent deformation and unloading compliance
with crack growth (Figs. 18 and 19), R-curves can be determined from Eq.
(392, The predicted R-curve was compared with the experimentally observed

R-curve in Fig. 20 where good agreement was observed in general.

COMPARISON WITH OTHER DCB DATA

Other DCB experimental data which will be used for comparison with the
predicted results are the series of V. = 0.5 2, £ = 0.25", d = 0.006";
Ve= 22, % =0.25",d=0.006"; and V; = 12, % =0.75", d = 0.016".

The comparisons of the theoretically predicted load~line deformation
with the experimental results reported in [11] are presented in Figs.(2la -
21c) which are the plot of load-line deformation with crack growth. It can
be seen that all predicted results were in good correlation with the exper-
imental data. This implies that the assumptions of linear crack profile and
the negligibility of crack closing pressure within the matrix process zone

are satisfactory. It was also found that the higher the fiber volume frac-

tion (V¢), the larger the total load-line deformation.




The load-deformation curves predicted, using the proposed model, were
found to be in good agreement with the experimentally observed values re-
ported in [11], as can be seen in Figg. 22a - 22c.

Fig. 23 shows a plot of predicted permanent deformation for all four
sets of fiber reinforced concrete. It was observed that the higher the
volume fraction, the longer the predicted permanent deformation. It can
also be seen that the larger the value of fiber aspect ratio, the larger

the permanent deformation. The rate of change in permanunt deformation

(with respect to crack growth also increased with fiber volume fraction

and aspect ratio.

e Y

A plot of unloading comnliance with crack growth for all four sets of
fiber reinforced concrete was shown in Fig. 24. For Vg = 0.5 Z, the pre-
dicted CR-a relationship was close to linear. It was also observed that
u; the larger the amount of fibers (higher volume fraction), the more non-
linear behavior exists for the unloading compliance and crack growth rela-
é tionship.

¥Fig. 25 shows the comparison of the predicted R-curves for all four
series of fiber reinforced concrete. It can be seen that increasing the
amount of fibers (volume fraction) resulted in an increase in the fracture
resistance. For the same volume fraction, increasing the fiber aspect

ratio (length) also increased the fracture toughness of the composites.

Note that if the asymptotic value of the R-curve is considered as a

material parameter, then that value can be a useful quantity in identifying

the benefit of fiber addition. For example, by comparing the R-curves of

specimens reinforced with 0.75 in. long fibers and plain mortar, it can be

observed that the asymptotic steady-state value of fracture energy is

L .
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increased more than 40 times due to fiber addition. This relative value is
somewhat comparable with the reported value of "toughness index" (relative
values of areas under the load-deflection curve in flexure) by other inves-
tigators [33, 34, 35]. Thus, the model pronosed here seems to provide a

tool for predicting the effectiveness of fibers in improving the fracture

pryengeevemes v g

resistance of concrete.

COMPARISON WITH EXPERIMENTAL NOTCHED BEAM DATA !

* i

Using the theoretical model proposed for the notched beam specimens, E

i

the theoretical load-crack mouth displacement relationships were predicted I
for plain mortar and fiber reinforced concrete (Fig. 26). The mix-propor-
tion for plain mortar was 1:2:0.5 (Cement : Sand : Water). Three different )

sets of initial notch a, with Vg equalled to 1 percent and "7 __ = 300 psi"

eyt

were studied.

A good correlation is observed for the nredicted and the measured
crack mouth displacement for plain mortar (Fig. 26). These results were
calculated using the observed neak loads and the initial crack lenzth from

(30].

For fiber reinforced concrete, the comparisons in Fig. 26 show that

AT N TRIIE BB S e e g

the analysis does not correlate exactly with the experimental results.

However, the predicted values were still in good agreement with the ob-

served data. These variations may be attributed to the fact that: 1) the

actual neutral axis for the notched-fiber reinforced beam is not known, the ;
neutral axis used in this analysis was based on what has been proposed by ;
Hannant [15]—- (d/, from the compression face where d is the depth of the

unnotched beam); 2) the theoretical concept proposed by Okamura et al
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[27, 28] is valid only when the a/, ratio is less than 0.6, with fiber re-
inforced concrete, most observed crack growths revorted in Ref. [30] had
a/,, much larger than 0.6. The assumed linear crack profile might not
be accurate enough for the case of notched beam specimens which leads to a
wrong estimation of the fiber bridging pressure.

Additional theoretical analysis for predicting crack mouth displace-

ment more accurately for notched beam specimens is currently under way.

MATRIX PROCESS ZONE, FIBER BRIDGING ZONE AND CRITICAL COD

The value of the matrix process zone 20 can only be obtained through
the iteration procedure which must satisfy the initiation criterion that
the crack tip opening displacement equals N zax used here for the matrix

was 0.08 x 102

in., as revorted in References[lQ, 20, and 21]. The fiber
bridging zone was calculated from the assumed crack profile with the condi-
tion that fibers will be completely pulled out when the crack surface dis-
placement equals nﬁmax (half the fiber length, Fig. 6). In this study,
since the value of crack opening displacement was always less than ﬂfmax
(half the fiber length), the size of the fiber bridging zone was then equal
to the crack length subtracted by the length of the initial cast notch.
Fig. 27 shows the plot of both the calculated matrix process zone and
the fiber bridging zone ( Zp and Zf, respectively) for the DCB specimens.

It can be observed that the matrix process zone is essentially constant with

respect to crack growth. The value of zp calculated from fiber reinforced

mortar specimen was almost identical to those obtained from mortar svecimens
[19, 20, 21]. The conclusion of constant process zone was also confirmed in

other materials like DMMA [31, 32]. The obtained value of lp was found to

3
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be approximately about 3 in. and seemed to be independent of different fiber

volume fraction and aspect ratio (Fig. 27).

A plot of the matrix process zone and the fiber bridging zone with the
uncracked ligament in the notched beam snecimens is shown in Fig. 28. The
predicted matrix process zones, using the proposed model, were found close
to what has been reported for the unreinforced mortar [19, 20]. Fig. 18
also shows that the fiber bridging zone increases with crack growth, or as

the uncracked ligament decreases.
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Table 1. PREDICTED STRESS-DISPLACEMENT RELATTONSHIPS
FOR DIFFERENT V. AND L/4 FOR DCB SPECIMENS
| ; T
Ve ‘ . E . ' d g - n relationship **
{ /d | ! '
%z ; (in.) | (in.) | (psi)
: ! 1 '
i i |
: |
0.5 | 41.67 { 0.25 0.006 | 125 (1 ~ 80 )2
' |
1.0 41.67 | 0.25 0.006 250 (1 - 8N )2
1.0 46.88 | 0.75 0.016 281.28 (1 - 2.67n)2
2.0 41.67 | 0.25 0.006 500 (1 -~ 8n )2

k%

These stress-displacement relationships were predicted, using
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Br = 600 psi, and the proposed normalized relationship (Eq. 15)
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APPENDIX I - YOTATIONS

cross sectional area

a factor for composite strength that related to the extent
of matrix cracking

a factor for composite strength that related to fiber

bridging ( = 4 NgNg T )

f
max

a constant obtained from the ratio of CMD/(a - 1 )
crack length

traction-free crack length

effective crack length ( = a + zp )

beam thickness

boundaries of the zone of uniform crack closing pressure
compliance ( = 6/p )

DCB ~ beam depth at free end

slope of the tapered DCB specimen

unloading - reloading compliance

crack mouth displacement

crack opening displacement

diameter of fiber

distance from crack tip to the assumed neutral axis
modulus of elasticity

total axial force in notched beam specimen

shear modulus of elasticity

critical strain energy release rate

modified strain energy release rate

strain energy release rate - resistance curve




H(0)

H(x)

DCB - beam depth at crack tip

DCB -~ beam depth at x

moment of inertia

average shear constant

stress intensity factor due to applied force P

critical stress intensitv factor

stress intensitv factor at crack tip calculated without
considering the nresence of fibers

streés intensity factor for crack porpagation in fiber
reinforced matrix

stress intensity factor due to fiber bridging

stress intensity factor due to wires bridging

critical stress intensity factor under mode I opening

fiber length

zone of fiber bridging

microcracked zone or matrix process zone

fiber aspect ratio

applied moment

exponential constants for variation of fiber pulled-out
behavior

applied load

two consecutive neighboring loads in the loading sequence

critical beam thickness in the crack plane

crack-surface displacement of a crack without fiber

bridging




on g I AR R C TR " e e

o

u crack-surface displacement due to fiber bridging
v shear force
Ve volume fraction of fibers
Vo percent volume of matrix
W depth of notched beam specimen
X distance from crack tip
y distance from crack tip in fiber bridging zone of notched
beam specimen
yp(x) crack-surface displacement at distance x from crack tip
due to applied force
YF( £), YM( £) polynomial functions due to force and moment in
terms of £ for notched beam specimen
a a factor (less than unity) for the effective process zone
8 efficiency factor due to fiber distribution and embedment
length
o uniform crack closing pressure
Om tensile strength of matrix
Omax maximum post-cracking strength of fiber reinforced composites
o(t) non-uniform crack closing pressure
a(y) crack closing pressure at distance y in notched beam specimen
( ac)max maximum strength of fiber reinforced comnosites
n crack-surface displacement
n2 efficiency factor for the embedment length of fibers
o coefficient for fiber distribution and orientation
"p load-1line deformation
( np)elastic elastic load-line deformation (reversible)




n
p’perm

¢n)

np total

max

max

permanent load-line deformation (irreversible)
total load-line deformation

maximum pulled-out displacement of fiber reinforced

matrix ( = half the fiber length)

maximum displacement of matrix in the descending branch

of the uniaxial tensile test

shear strength of matrix and fiber interface
effective crack over depth ratio in notched beam

a¢
specimen ( = —%f—f—)

permanent deformation

relative beam rotation of the crack front in notched

beam specimen

increments of the compliances caused by the pressure

of force and moment, respectively
Muskhelishvili's pentential function

Poissons' ratio
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APPENDIX II - LIST OF FIGURES

Uniform Crack Closing Pressure Applied on a Crack in an

Infinite Sheet [Paris and Sih] .

Assumed Uniform Crack Closing Pressure due to Fiber
Bridging and Microcracking in a Cracked Asbestos-Cement

Specimen [Lenian and Bunsell] .

Semi-Infinite Crack Model with an Assumed Fiber Bridging

Stress - o(t) [Foote, Cotterell and Mai] .

Double Cantilever Epoxy Beam Reinforced with Aligned Nickel

Vires [Bowling and GrOVes] .

Assumed Linear Stress-Displacement Relationship Compared to
that Obtained from Uniaxial Tensile Test [Petersson and

Hillerborg ] .
Fracture Model for Fiber Reinforced Concrete.

Uniaxial Tensile Behaviors and Crack Closing Stress

Distribution.

Uniaxial Tensile Behavior of Fiber Reinforced Concrete.
a) Small Fiber Volume Fraction

b) Large Fiber Volume Fraction

Normalized Post-Cracking Tensile Stress-Displacement

Relationship.
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14

15

16

17

18

19

A Sinele Cantilever Beam and the Applied Loads.

Double Cantilever Beam; Test Setup.

A Model for Fiber Reinforced Concrete; Notched Beam

Specimen.
Dimensions and Test Setup; Notched Beam Specimen.
Concept of Modified Strain Energy Release Rate.

Bond Stress vs. Slip Relationships in Reinforced Concrete.

[Hawkins et al.].
Characteristic of Load-Line Deformation.

Comparison of Experimental and Theoretical Load-Line
Deformation vs. Crack Growth for Fiber Reinforced Concrete

(Ve = 1%, L =0.25", d = 0.006") - DCB.

Comparison of Experimental and Theoretical Load-Deforma-
tion Curves for Fiber Reinforced Concrete

(Vf = 1%, L = 0.25", d = 0.006") - DCB.

Comparison of Experimental and Theoretical Permanent
Deformation for Fiber Reinforced Concrete

(Vf =17, L = 0.25", d = 0.006") - DCB. J

Experimental and Theoretical Compliances for Fiber

Reinforced Concrete: (V. = 1%, L = 0.25", d = 0.006") . pcs.
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Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24

Fig. 25

Fig. 26

Fig. 27

Fig. 28
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Experimental and Theoretical Gg - Curves - DCB :

(Vf = 1%, L = 0.25", D = 0.006")

Experimental and Theoretical load-Line Deformation and
Crack Growth Relationships :

a) V. =0.52, L =0.25", d = 0.006"

f

b) V 2% , L =0.25", d = 0.006"

f =
c) Vf =17 , L =20.75", d4 = 0.016"
Experimental and Theoretical Load-Deformation Curves :
a) Vf = 0,5%, L = 0.25", d = 0.006"
b) Vf =27 , L=20.,25", d=0.006"

c) Ve = 12 , L =0.75", 4 = 0.016"

Comparison of Theoretical Permanent Deformation for

Different Fiber Volume Fraction and Aspect Ratio.

Comparison of Theoretical Unloading Compliance for

Different Fiber Volume Fraction and Aspect Ratio.

Comparison of Theoretical Strain Energy Release Rate for

Different Fiber Volume Fraction and Aspect Ratio.

Comparison of Experimental and Theoretical Load-Crack
Mouth Displacement in Notched Beam Specimens.

Matrix Process Zone and Fiber Bridging Zone in Fiber
Reinforced Concrete - DCB Specimens.

Matrix Process Zone and Fiber Bridging Zone in Fiber

Reinforced Concrete - Notched Beam Specimens.
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Fig.9 A Single Cantilever Beam and the Applied Loads
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