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1. INTRODUCTION

Let {Xn, n21) be a sequence of independent and identically

distributed random vectors taking values in R®. Denote the. com-
.mon distribution function (d.f.) by F. Let Sn = xl + ...+ Xn,
where addition is by coordinates. The d.f. F is called
recurrent if, for every open set N containing the origin, the
random walk Sn visits N infinitely often with probability 1.
Otherwise F is called transient. '
Let PF denote the probability defined on R" by the d.f. F.

The dimension of F can be défined in a natural way as follows.
Degenerate distributions have dimension zero. The dimension is
1 if P_ is not degenerate and concentrates all probability on a

F
line. The diwmension is = 3 if P_ does not concentrate its mass

on any plane. Chung and Fuchs ({951) proved that every d.f. F of
dimension = 3 is transient. Shepp (1962) has considered the
recurrence of symmetric unimodal distributions when F has dimen-
" sion 1 or 2. For distributions on the line, there are natural
definitions of symmetr} and unimodality. Using these and also a
concept of peakedness given by Birnbaum (1948), Shepp showed
that i{f F 1s‘symmetric, unimodal and less peaked than a symmetric
d.f. G, then the recurrence of F implies the recurrence of G. He
also éxtended this result to distributions of dimension 2. But
here his definitions of "symmetry" and "unimodality" are somewhat
& restrictive. In this paper, we weaken his requirements and extend
his results to a wider class of "symmetric" and "unimodal"
\ distributions on Rz;

2. PRELIMINARIES

A d.f. Pon R is called unimodal about a mode v if F is

convex on (~©,V) and concave on (V,®). Further F is called

symmetric (about 0) if PF[(a,b)] = PF[(-b,-a)], for all a < b.
It is easy to show that, if F is uniwmodal and symmetric, then O
is a mode of F, 1t is also known (see Olshen and Savage (1970))
that the class of all symmetric unimodal distributions on R

'
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coincides with the closed convex hull of the set of all uniform
distributions on symmetric intervals (-a,a).

For distributions in higher dimensions, unimodality and
symmetry can be defined in several different ways. Shepp (1962)
has used mirror sfmmetry about the coordinate axes and defined
unimodality as follows.

_ Definition 1. .A distribution is called symmetric unimodal (SSUM,
for short) if it is in the closed convex hull of the set of all

uniform distributions on symnetric rectangles with sides parallel
to the coordinate axes.
We note, however, that'Shepp's definitions of symmetry and

unimodality are quite restrictive. Theser can be weakened as
follows. If ACR", write -A for {-x: x€A). We call A centrally

symmetric 1f A = -A. A d.f. F on R® is called centrally

symmetric 1f PL(A) = Pp(-A) for all (Borel) sets A C R'.
Definition 2. A distribution is called central convex unimodal
(cCuM) if it is in the closed convex hull of the set of all uni-
form distributions on centrally symmetric convex sets.

Lemma 1. Every SSUM distribution is CCUM. The converse holds

only in the one-dimensional case.

Proof. The first assertion is immediate because (a) a set which
has mirror symmetry about the coordinate axes is also centrally
symmetric and (b) a rectangle is also a convex set. On the real
line, a symmetric convex set is also a symmetric rectangle
(interval) and therefore the notions SSUM and CCUM coincide. 1In
higher dimensions the CCUM class is strictly wider than the SSUM
cliss. To see this, let P denote the uniform distribution on the
unit ball in Rn, m 2 2. Then P is CCUM but not SSUM. The lemma
is thus proved.

While the CCUM class is fairly wide, it does not include all

centrally symmetric distributions whose densities are "unimodal"

s i

along rays.
Example 1. 1In Rz, let A denote the triangle defined by x 2 O,
y20, x+y< 1. Let P be the uniform distribution on AU(-A).
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Then P i8 centrally symmetric but it is not CCUM and, a fortiori,
canndbt be SSUM. .

The SSUM class is quite narrow compared with the CCUM class.
Observe that: a) If F is a bivariate d.f. with density f(x,y)
then the condition f(x,y) = f(4x, +y) {s necessary for F to be

- SSUM.

b)  The bivariate normal distribution with zero
mean vector is always CCUM, whereas it is SSUM if, and only if,
the correlation coefficient equals zero.

c) More generally, if the density of F decreases
along rays and has elliptic contours, then F is CCUM. For F to
be SSUM it is necessary that the axes of the ellipses lie along
the coordinate axes.

d) As noted above, the bivariate normal distribu-
tion with a nonzero correlation coefficient is not SSUM. But the
distribution becomes SSUM if the axes are suitably rotated.
However, there are CCUM distributions which cannot be so placed
in SSUM even if the axes are rotated. An example of this type is
the uniform distribution on an ellipse.

The above remarks provide a motivation for generalizing
Shepp's results to a wider élass of distributions.

Birnbaum (1948) defined peakedness for distributions on the
line. Sherman (1955) gave a generalization to R" as follows.
Given two d.f.'s F and G, F is said to be less peaked than G, and

we write F < G, 1if PF(C) < PG(C) for every centrally symmetric
convex set C.

The final concept we need is that of a unimodal correspondent.
Let F be the d.f. of a random vector X. The unimodal correspon-
dent (U,F) of F is defined to be the d.f. of UX, where U is a real
random variable independent of X and uniformly distributed on (0,1).

Proof. Let Fc assign probability %-to each of the points + c.
Then (U,Fc) corresponds to the uniform distribution on (-c,c).
The latter distribution is clearly CCUM. If F concentrates all




probability on the finite set {+ Cprenn s

CCUM, because it is a mixture of the CCUM distributions (U,l"c ).
‘ i
Suppose now that F is a general centrally symmetric distribution,

+ c“} , then (U,F) is

Then F is the limit of a sequence {F(n)} of centrally symmetric
(n) puts all probability on a finite
set. Since each (U,F(n)) is CCUM, the limit (U,F) is also CCUM.
"Let X have d.f. F. If C is a centrally symmetric convex set,
then, for every u€ (0,1), PF(uxec) 2 PF(XGC). Integrating over
u€ (0,1), we see that. P(U,F) (c)zPF(C). The lemma is thus proved.
Finally, recall the following result of Sherman (1955). The
symbol FaH denotes the.convolution of F and H. A

Lenmma 3. If F< C and H is CCUM, then FxR < GaH.

d:lstributions, where each F

3. _RECURRENCE AND PEAKEDNESS

Shepp (1962) proved that if F, G are symmetric d.f.'s on R,

. P is unimodal and F< G, then the recurrence of F implies the

recur.rence of G. He also extended this result to SSUM distribu-

" tions on R%. 1In this section we show that his result is valid
for the wider class of CCUM distributions in RZ. In view of the
result of Chung and Fuchs (1951) mentioned earlier, the problem
is trivial for distributions of dimension = 3, because all 4.f.'s
are then transient,

For the remainder of the paper F is a centrally symmetric
d.f. on Rz with characteristic function ¢ and Y denotes the char-

acteristic function of (U,F). The definition of (U,F) shows that

Y(u,v) = rﬁw d F(x,y) (1)

e, (ux+vy)
The symbol F™* denotes the n-fold convolution of F with itself and
'P;* denotes the probability determined by Fn*. According to
Chung and Fuchs (1951), either of the foliwing two conditions is

necessary and sufficient for the recurrence of F.

o
*
a X P; (C) = =, for every centrally symmetric open convex set C.
n=1

» [ -9 (u,v)) tdudy =
-1~1
Lewma 4. 1f (U,F) is recurrent themn F is recurrent.
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Proof. As observed by Shepp (1962), for some c> 0,

1-cos(ux+vy)$c[_1-81(':’(‘———u¥v7v)ﬂ.- ].

Integrating w.r.t. F and using (1), we get
1 -p(u,v) < e[l - ¥(u,v)]

Therefore
11 -1 11 -1
cf -.r [l-cp(u,v)] dudv 2 .r '.r [1-y(u,v)] “dudv. (2)
00 00
If the right side of (2) is infinite, then so is the left side.

The lemma now follows from the condition (b) above.
Lemma 5. If F and G are CCUM and F < G, then the recurrence of

A T W
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F implies the recurrence of G.

n* n*
Proof. By Lemma 3, F < G , for all n. Therefore
© ]
* *
Z PL() s T P (C)
F G (3
n=1 n=1
for all centrally symmetric open convex sets C. If the left side
of (3) is infinite, then so is the right side. The lemma now
follows from the condition (a) above.
Corollary. A CCUM d.f. F is recurrent if, :and only if, (U,F) is
recurrent.
Proof. Let F be CCUM. By Lemma 2, F < (U,F). Therefore, Lemma 5

shows that the recurrence of F implies the recurrence of (U,F).

The converse also holds by Lemma 4. The corollary follows.
Theorem 1. Let F, G be centrally symmetric and let F be CCUM. If

F £ G, then the recurrence of_ F implies the recurrence of G.
Proof. By Lemma 2, F< G < (U,G). Now F and (U,G) are both CCUM

and F is recurrent. So by Lemma 5, (U,G) is recurrent. Hence G

is recurrent by Lemma 4.
4. CRITERION FOR RECURRENCE

In this section we obtain a criterion for the recurrence of

bivariate CCUM distributions. For nonzero u and v in R, let
A(u,v) be the set of points (x,y) in Rz such that 0<(x(u)+ (y/v)%1.
The set B(u,v) will correspond to (x/u) + (y/v) > 1. Write

D(u,v) = ,r .r (vx'-uy)zdF(x,y)-l-uzvz.r 'f dF(x,y) (4)

A(u,Vv) B(u,v)

It is possible to write D(u,v) in a more convenient form. If F




b

is the d.f. of (X,Y), let ’Gv u denote the d.f. of vX+uY. Then
]
U,V 2

D(e,v) = [ " e, () + uzvzu-c‘.m"(uv)].

0
Now, given any univariate d.f. H, we can use integration by parts

to show that

k 2 2 ! k
,l‘o- tdH(t) + k{1 - ()] = 2 e[1 - H(t))ae.
0

Therefore
'.x).(u;\f') - %rou\rtil - Gv’u(t)] dc. ‘ (5)

Theorem 2. Let F be a CCUM d.f. on Rz. Then F is recurrent if,

and only if, the integral

- I [ inGu, v ]'1 + [D(u,-v) ]‘1} du dv (6)
11

diverges. .
Proof. Since F is CCUM, the recurrence of F is equivalent to the

recurrence of (U,F). From (1) we have

1= yu,v) =f 11--’2%:,‘:—“:};)&11&(:,;7). o

However, we can find positive constants ¢ and d such that

c(ux+vy)2s1--*-‘—i(-§§‘3_'_’-‘v—‘;3)'3as d(ux+vy)? 1f Jux+vy] < 1
sin(ux+

(ux +vy)
Therefore, if we define

and c<s 1 - s d if Jux+vy] > 1.

I(u,v) = ‘f 'r (ux+vy)2 dF (x,y) +.r f - dF(x,y),
: O<uxtvy<l ux+vy 1

then (7) shows that

2¢ I(u,v) £ 1 ~« ¥Y(u,v) £ 2d I(u,v).

It follows, from the ctiter.ion (b) stated in Section 3, that

(U,F) is recurrent if, and only if, the integral
.l‘l-.l‘lu(u,v)]’l du dv (8)
~1-1

diverges. By the central symmetry of F, we have I(u,v) =I(-u,-v).

Therefore the divergence of (8) is equivalent to the divergence of




11 :
.f .f {[1(u,V) ]-1"' [I(u,-v)-ll du dv 9)
00

If we now note that D(u,v) - uzvzl(u-l,v.l), ve see that Theorem 2
follows from (9) via the substitutions u' =u L and v'=v L.
Remark. The criterion for recurrence given by Theorem 2 is, in
reality, a criterion for the recurrence of (U,F). We therefore
see from Lemma 4 that the divergence of (8) is sufficient for the
recurrence of F, even if F is just centrally symmetric and not
CCUM. ' '

The :lmpott'aﬁce of Theorem 2 is that the criterion for recur-
rence is given in terms of the d.f. In contrast, the Chung and
Fuchs criterion (condition (b) of Section 3) is given in terms of
the characteristic function. Therefore, Theorem 2 can be used in
some situations when the characteristic function is not available
in a8 convenient fotm.'

Example 2. The application of Theorem 2 is particularly simple if
the distribution has circular symmetry. Under this condition the
distribution of X cos 6+ Y gin & is the sawe for all values of 0.

 Therefore, if F, denotes the x-marginal of F, then

1
g, () = PluX+vist] = 171(t/./(u2 +v?) (10)
If we write ' 1

t
E(t) -_l'oxll - F, (x)]dx,

then (5) and (10) show that
D(u,v) = 2(u2 +v2)5[quu2 +v2] .

Since D(u,v) = D(u,~v) in the present case, we see that the diver-

gence of (6) is equivalent to the divergence of

.rjf’[(uz-i-vz)E(uv/ w2 +vH1T au av ’ (11)
11

If we change to polar coordinates, we easily see that (1l1) diverges
1f, and only if,

[Peem 1! ar (12)
L

- o
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diverges. Thus, if (12) diverges, then F ié recurrent. Converse-~
ly, if (12) converges and F is CCUﬁ, then F is transient.

Suppose now that F has a density f(x,y)'=g(x2+y2). Then F
is CCUM as soon as g is nonincreasing on (0,2). For F to be SSUM,
however, g has to be convex. Thus Theorem 2 enables us to decide
the transience of a wide class of "unimodal" and "symmetric" dis-

tributions. As an example, suppose g(t) =c logt/t2 for large t.

1
Then it is easy to check that 1-Fl(t)-c210gt/t2. Therefore
t . C t
Ee) = [ x[1-F, (x)1dx ~ ¢, [log x/x] dx = c,(log ).
0 0

Therefore (12) converges and F is transient.
Remark. If F does not have circular symmetry, results of the
type considered in Example 2 can still be proved. One needs to

put conditions on the asymptotic behavior of

t t .

rfxll-F {x) ]Jdx and r-yll-F (y))dy, where F, and F, are the
"o 1 ‘o 2 i 2

x~ and y~marginals of F. The calculations are tedious but
straightforward. A éatalog of the values of the integral (5) for
various types of CCUM &istributions would be quite useful.

Tweedie (1975) has considered ergodicity and recurrence of
Markov chains on general state spaées. For the present paper, the
relevant condition for recurrence is given by his Corollary 5.4.
Consider, for simplicity, the one~dimensional case. Suppose F has
mean zero. Then F is well known to be recurrent. But this result
does not follow from Tweedie's conditions. His sufficient condi-
tion requires that '

Tyl aFG-x) < |x] (13)
for all large lxl. Since F has mean zero,

fydF(y-x) = x.
Therefore, by Jensen's inequality,

Tyl ary=» = Ixl.
Thus the inequality sign goes the wrong way and (13) cannot hold.
So, in the context of our paper, Tweedie's conditions are too

strong. It should be noted, however, that Tweedie's results

e
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toncern Markov chains on general spaces. In his set-up, chains
on three or higher dimensional spaces can be recurrent. Conse-
quently, the thrust of his results is away from space-homogeneous,
renewal-type chains considered in this paper.
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