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recurrent. Shepp (1962) has used certain definitions of unimoda-

lity and peakedness to show that if F and C are symmetric uni-

modal and F is less peaked than G, then the recurrence of F
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1. INTRODUCTION

Let {X , n k i be a sequence of independent and identically
n

distributed random vectors taking values in R7 . Denote the. com-
mon distribution function (d.f.) by F. Let Sn - X + ... + Xn,

where addition is by coordinates. The d.f. F is called

recurrent if, for every open set N containing the origin, the

random walk Sn visits N infinitely often with probability 1.

Otherwise F is called transient.

Let PF denote the probability defined on Rm by the d.f. F.

The dimension of F can be defined in a natural way as follows.

Degenerate distributions have dimension zero. The dimension is

I if PF is not degenerate and concentrates all probability on a

line. The dimension is a 3 if PF does not concentrate its mass

on any plane. Chung and Fuchs (1951) proved that every d.f. F of

dimension 2: 3 is transient. Shepp (1962) has considered the

recurrence of symmetric unimodal distributions when F has dimen-

sion 1 or 2. For distributions on the line, there are natural

definitions of symmetry and unimodality. Using these and also a

concept of peakedness given by Birnbaum (1948), Shepp showed

that if F is symmetric, unimodal and less peaked than a symmetric

d.f; G, then the recurrence of F implies the recurrence of G. He

also extended this result to distributions of dimension 2. But

here his definitions of "symmetry" and "unimodality" are somewhat

restrictive. In this paper, we weaken his requirements and extend

his results to a wider class of "symmetric" and "unimodal"

distributions on R
2

2. PRELIMINARIES

A d.f. F on R is called unimodal about a mode V if F is

convex on (-,V) and concave on (v,-). Further F is called

symmetric (about 0) if PF[(a,b)] - PF[(-b,-a)], for all a < b.

It is easy to show that, if F is unimodal and symmetric, then 0

is a mode of F. It is also known (see Olshen and Savage (1970))

that the class of all symuetric unimodal distributions on R

- .......... X - .... .._ , .. .. . .. V



coincides with the closed convex hull of the set of all uniform

distributions on symmetric intervals (-a,a).

For distributions in higher dimensions, unimodality and

symmetry can be defined in several different ways. Shepp (1962)

has used mirror symmetry about the coordi'nate axes and defined

unimodality as follows.

Definition 1. A distribution is called symmetric unimodal (SSUM,

for short) if it is in the closed convex hull of the set of all

uniform distributions on symmetric rectangles with sides parallel

to the coordinate axes.

We note, however, that Shepp's definitions of symmetry and

unimodality are quite restrictive. These- can be weakened as

follows. If ACR, write -A for [-x: x EA]. We call A centrally

symmetric if A - -A. A d.f. F on R is called centrally

symmetric if PF(A) = PF(-A) for all (Borel) sets A C Rm .

Definition 2. A distribution is called central convex unimodal

(CCUM) if it is in the closed convex hull of the set of all uni-

form distributions on centrally symmetric convex sets.

Lemma 1. Every SSUM distribution is CCUM. The converse holds

only in the one-dimensional case.

Proof. The first assertion is immediate because (a) a set which

has mirror symmetry about the coordinate axes is also centrally

synetric and (b) a rectangle is also a convex set. On the real

line, a symmetric convex set is also a symmetric rectangle

(interval) and therefore the notions SSUM and CCUH coincide. In

higher dimensions the CCUM class is strictly wider than the SSU

class. To see this, let P denote the uniform distribution on the

unit ball in Rm, m a 2. Then P is CCJM but not SSUM. The lemma

is thus proved.

While the CCUM class is fairly wide, it does not include all

centrally symmetric distributions whose densities are "unimodal"

along rays.

Example 1. In R, let A denote the triangle defined by x X 0,

y k 0, x + y 9 1. Let P be the uniform distribution on AU(-A).

464-
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Then P is centrally symmetric but it is not CCUM and, a fortiori,

cannbt be SSUM.

The SSUM class is quite narrow compared with the CCUM class.

Observe that: a) If F is a bivariate d.f. with density f(x,y)

then the condition f(x,y) - f(ft, +y) is necessary for F to be

SSU.

b) The bivariate normal distribution with zero

mean vector is always CCUM, whereas it is SSUM if, and only if,

the correlation coefficient equals zero.

c) More generally, if the density of F decreases

along rays and has elliptic contours, then F is CCUM. For F to

be SSUM it is necessary that the axes of the ellipses lie along

the coordinate axes.

d) As noted above, the bivariate normal distribu-

tion with a nonzero correlation coefficient is not SSUM. But the

distribution becomes SSUM if the axes are suitably rotated.

However, there are CCUH distributions which cannot be so placed

in SSUH even if the axes are rotated. An example of this type is

the uniform distribution on an ellipse.

The above remarks provide a motivation for generalizing

Shepp's results to a wider class of distributions.

Birnbaum (1948) defined peakedness for distributions on the

line. Sherman (1955) gave a generalization to Rm as follows.

Given two d.f.'s F and G, F is said to be less peaked than G, and

we write F G 0, if PF(C) £ PG(C) for every centrally synumetric

convex set C.

The final concept we need is that of a unimodal correspondent.

Let F be the d.f. of a random vector X. The unimodal correspon-

dent (U,F) of F is defined to be the d.f. of UX, where U is a real

random variable independent of X and uniformly distributed on (0,1).

Proof. Let F assign probability 1 to each of the points + c.

Then (U,F ) corresponds to the uniform distribution on (-cc).

The latter distribution is clearly CCUM. If F concentrates all

.......... ..



probability on the finite set ,++ cn I then (U,F) is

CCUM, because it is a mixture of the CCUM distributions (U,F c).

Suppose now that F is a general centrally symmetric distribution.

Then F is the limit of a sequence {F(n) ) of centrally symmetric

distributions, where each F(n) puts all probability on a finite

set. Since each (U,F~n ) is CCUM, the limit (U,F) is also CCUM.

Let X have d.f. F. If C is a centrally symmetric convex set,

then, for every uE(0,1), PF(uXEC) I PF(XEC). Integrating over

uE(0,1), we see that P(U )(C)2PF(C). The lemma is thus proved.

Finally, recall the following result of Sherman (1955). The

symbol F*R denotes the convolution of F and H.

Lema 3. If Fa G and H is CCUH, then F*H r GH.

3. RECURRENCE AND PEAKEDNESS

Shepp (1962) proved that if F, G are symmetric d.f.'s on R.

F is unimodal and Ft G. then the recurrence of F implies the

recurrence of G. He also extended this result to SSUM distribu-

22
tions on R2 . In this section we show that his result is valid

for the wider class of CCUM distributions in R 2. In view of the

result of Chung and Fuchs (1951) mentioned earlier, the problem

is trivial for distributions of dimension k 3, because all d.f. 's

are then transient.

For the remainder of the paper F is a centrally symmetric

d.f. on R2 with characteristic functioncp and It denotes the char-

acteristic function of (U,F). The definition of (U,F) shows that

(uv) - .-r(ux+vy) d F(x,y) (1)

The symbol Fn* denotes the n-fold convolution of F with itself andU* n

FF denotes the probability determined by Fn . According to

Chung and Fuchs (1951), either of the following two conditions is

necessary and sufficient for the recurrence of F.

a) 1 Pn*(C) = e, for every centrally symmetric open convex set C.
Un1

b) 111111-T (u,v)]- dudv =
-e-1

Lem __4. If (U.?) is recurrent then F is recurrent.

-... -. *. t-- * -



Proof. As observed by Shepp (1962), for some c > 0,

sin(ux +vy)
1-cos(ux+vy)•c[.- (ux + vy)

Integrating w.r.t. F and using (1), we get

1 -CP(uv) C c[1 - *(uv)]

Therefore11 -11-

c. r [l-cp(u,v)] -dudv 2r r [1- 4(u,v) I dudv. (2)
00 0

If the right side of (2) is infinite, then so is the left side.

The lemma now follows from the condition (b) above.

Lema 5. If F and C are CCtJM and F r G, then the recurrence of

F implies the recurrence of G.

Proof. By Lemma 3, Fn * c Gn*, for all n. Therefore" n* M 3*
1P1F (c ) < Z E P G C 3

nl n= G

for all centrally symmetric open convex sets C. If the left side

of (3) is infinite, then so is the right side. The lemma now

follows from the condition (a) above.

Corollary. A CCUM d.f. F is recurrent if. :and only if, (U,F) is

recurrent.

Proof. Let F be CCUM. By Lemma 2, F s (U,F). Therefore, Lemma 5

shows that the recurrence of F implies the recurrence of (U,F).

The converse also holds by Lemma 4. The corollary follows.

Theorem 1. Let F. C be centrally symmetric and let F be CCUM. If

F C C. then the recurrence of F implies the recurrence of C.

Proof., By Leuma 2, F G •c (U,C). Now F and (U,G) are both CCUM

and F is recurrent. So by Lemma 5, (U,G) is recurrent. Hence C

is recurrent by Lemma 4.

4. CRITERION FOR RECURRENCE

In this section we obtain, a criterion for the recurrence of

bivarlate CCUM distributions. For nonzero u and v in R, let

A(u,v) be the set of points (x,y) in R 2 such that 0<(x(u)+ (y/v)!.l.

The set B(u,v) will correspond to (x/u)+ (y/v) > 1. Write

D(u,v) -r fr (vx+uy) 2dF(x,y)+u 2v2f dF(x,y) (4)
A(u,v) B(u,v)

It is possible to write D(u,v) in a more convenient form. If F

-. '---



is the d.f. of (X,Y), let C denote the d.f. of vX+uY. Then'Vt~d~v~u~t
D(u,v) - .U UV2  22 -CuU)]

D~u~v t 2dG Wt + u 2v 2(1-C. (uv)].
0 .VU v tu

Now, given any univariate d.f. H, we can use integration by parts

to show that
k k
.td(t) + k2(1 - H(k)] 2r t[l - H(t)]dt.

(Y 0

Therefore

D(u,v) til - c (t)] dt. (5)
0 vu

2Theorem 2. Let F be a CCUM d.f. on R2 . Then F is recurrent if,

and only if, the integral,
imm

.r r {[D(u,v)] + [D(u,-v)]l} du dv (6)
11

I diverges.

Proof. Since F is CCUH, the recurrence of F is equivalent to the

recurrence of (U,F),. From (1) we have

1- *(uv)r,[1- s( ]d(x,y).(ux + vy)

However, we can find positive constants c and d such that

c(ux+vy)(ux+vy) d(ux+vy) if Iux+vyI , 1
c sCI in (ux + I)

and z inu~y d if jux+VY1 > 1.
(ux+vy)

Therefore, if we define

I(uv) - ' (ux+vy)2 dF(x,y) + C dF(xy),
O<uxrvyl ux+vy 1

then (7) shows that

2c l(u,v) f 1 - *(u,v) a 2d I(uv).

It follows, from the criterion (b) stated in Section 3, that

(U,F) is recurrent if, and only if, the integral
1 -l(u,v) du dv (8)

F -1-1

diverges. By the central symmetry of F, we have I(u,v) -I(-u,-v).

Therefore the divergence of (8) is equivalent to the divergence of



.r.r ([I(u.v)] +II(u.-v)-1  du dv (9)
00

If we now note that D(uv) - u v (u v ), we see that Theorem 2
follows from (9) via the substitutions u' -u - 1 and v'- v-1 .

Remark. The criterion for recurrence given by Theorem 2 is, in

reality, a criterion for the recurrence of (U,F). We therefore

see from Lemma 4 that the divergence of (8) is sufficient for the

recurrence of F, even if F is just centrally symmetric and not

CCUM.

The importance of Theorem 2 is that the criterion for recur-

rence is given in terms of the d.f. In contrast, the Chung and

Fuchs criterion (condition (b) of Section 3) is given in terms of

the characteristic function. Therefore, Theorem 2 can be used in

some situations when the characteristic function is not available

in a convenient form.

Example 2. The application of Theorem 2 is particularly simple if

the distribution has circular symmetry. Under this condition the

distribution of X cos 9+ Y sin 0 Is the same for all values of 9.

Therefore, if F1 denotes the x-marginal of F, then

G (t) - P[uX + vYs t] -F (tl/l' (0)

If we write
(t) -.'tx[ 1 - F I (x) ]dx,

0

then (5) and (10) show that

D(u,v) - 2(u
2 +v2) [uv/q + v2 .

Since D(u,v) - D(u,-v) in the present case, we see that the diver-

gence of (6) is equivalent to the divergence of

'(u2+V2) (uv/ u 2+v 2)] du dv (11)
11

If we change to polar coordinates, we easily see that (11) diverges

if, and only if,

.rtr&(r) 1-1 dr (12)
1



diverges. Thus, if (12) diverges, then F is recurrent. Converse-

ly, if (12) converges and F is CCUH, then F is transient.

Suppose now that F has a density f(x,y) -g(x 2+y2). Then F

is CCUH as soon as g is nonincreasing on (0,-). For F to be SSUM,

however, g has to be convex. Thus Theorem 2 enables us to decide

the transience of a wide class of "unimodal" and "symmetric" dis-

tributions. As an example, suppose g(t) - c1 log t/t2 for large t.

Then it is easy to check that 1- F (t) ~ c2 log t/t
2 . Therefore

t t 2
(t) f x(l-F1 (x) ]dx - c3.- [log x/x] dx c3 (log t)

0 0
Therefore (12) converges and F is transient.

Remark. If F does not have circular symmetry, results of the

type considered in Example 2 can still be proved. One needs to

put conditions on the asymptotic behavior of
t t

r.-x[l-F (x)]dx andfy[1-F2(Y)]dy, where F, and F2 are the
0 0
x- and y-marginals of F. The calculations are tedious but

straightforward. A catalog of the values of the integral (5) for

various types of CCUM distributions would be quite useful.

Tweedie (1975) has considered ergodicity and recurrence of

Markov chains on general state spaces. For the present paper, the

relevant condition for recurrence is given by his Corollary 5.4.

Consider, for simplicity, the one-dimensional case. Suppose F has

mean zero. Then F is well known to be recurrent. But this result

does not follow from Tweedie's conditions. His sufficient condi-

tion requires that

.rjyI dF(y-x) t ixI (13)
for all large lxI. Since F has mean zero,

fydoF(y-x) - x.

Therefore, by Jensen's inequality,

fyl dF(y-x)a lxi.

Thus the inequality sign goes the wrong way and (13) cannot hold.

So, in the context of our paper, Tweedie's.conditions are too

strong. It should be noted, however, that Tweedie's results
&
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concern Markov chains on general spaces. In his set-up, chains

on three or higher dimensional spaces can be recurrent. Conse-

quently, the thrust of his results is away from space-homogeneous,

renewal-type chains considered in this paper.
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