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ABSTRACT

'A flexible, high-speed digital voice processor has been designed for use

in conjunction with the JTIDS communication terminal to be installed for

testing on board F-15 fighter aircraft and in Army JTIDS installations. The

processor, known as the Advanced Linear Predictive Microprocessor (ALPCM),

has an architecture which is similar to that of its predecessor [1] but

contains significant improvements in speed, memory, and software development

aids. The design includes an arithmetic section (four AMD 2901C bit-slice

RALUs and an AMD 29517 16x16 multiplier), a doubly pipelined control path,

and an I/O section based on a finite state machine implementation. Microcode

development is enhanced by the presence of an interactive debugging system

consisting of a plug-in monitor board controlled from a host computer. The

ALPCM is capable of implementing conventional 2400-bps LPC vocoders in real

time and is sufficiently powerful to accommodate more sophisticated,

computationally intensive algorithms should the extra performance they

provide be required in the severe F-15 operational environment.
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I. INTRODUCTION

Lincoln Laboratory has been actively engaged in developing techniques

for improving the performance of narrowband voice digitizers for use in

airborne and ground-based military operating environments. Specifically,

Lincoln has been asked by the USAF JTIDS Joint Program Office to develop a

2400-bps voice capability for the JTIDS class 2 terminal (fighter aircraft

and selected ground installations) with an emphasis on compatibility with the

DoD narrowband standard for 2400 bps. During the past two years, Lincoln has

measured the acoustic ambient and electrical noise associated with aircraft

and surface installations which will use JTIDS equipment (e.g., F-15, E-3A),

studied the speech distortions introduced by oxygen face masks and gradient

microphones, and studied the effects these noises and distortions have upon

the intelligibility and quality of narrowband digitized speech.

In order to validate the use of various 2400 bps vocoding techniques in

actual operational environments, it has been necessary to design a small,

low-power, fast digital signal processor capable of functioning in an

environmentally hostile F-15 test aircraft. This signal processor, called

the Advanced Linear Predictive Microprocessor (ALPCM), has sufficient speed,

memory and flexibility to support real time emulation of a number of

candidate 2400-bps vocoders. With such a flexible, programmable processor,

it will be possible to test the acceptability of several 2400-bps coding

algorithms in live aircraft or ground environments populated by military

users.

The basic architecture of the ALPCM is that of a general purpose

computer with a single input bus and separate output bus. Besides a 16-bit
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arithmetic unit comprised of four, 4-bit slice Register-Arithmetic Logic

Units (RALUs), the computer has a stand-alone 16x16 multiplier and separate

program and data memories to allow overlapped pipelined operation in a single

machine cycle (Harvard architecture). The ALPCM's use of a bit slice

implementation approach was made necessary by the need for both speed and

flexibility of operation. Although various single chip microcomputers and

signal processing chip sets are now commercially available, none of them

allows the realization of a processor structure that is both fast enough

(cycle time 100-150 ns) and flexible enough to implement a wide class of

speech coding algorithms at 2400 bps. In the case of general purpose single

chip microcomputers, the cycle time is much longer than 150 ns. In the case

of fast signal processing chips, the limited on-chip memory implies the need

for a multiple processor structure containing several such chips. This

limits the ability to implement a large class of vocoder algorithms without

special purpose techniques.

The ALPCM is the second generation of a similar processor [1] that was

designed and built in 1976 to implement an autocorrelation type LPC

vocoder [2]. The present computer is smaller, requires less power, has twice

the data and program memory and runs with a faster cycle time than the

earlier machine. All of these properties make it suitable for use as a

flyable algorithm evaluation tool for fighter and surface environments.

II. THE ALPCM SYSTEM

A. Architecture

The basic block diagram for the ALPCM is shown in Fig. 1. All

instructions for this machine including the multiply are executed in 100 ns.

2
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The computational section of the system is based on a 16-bit CPE fabricated

from four AMD 2901C 4-bit RALUs coupled with a carry-lookahead chip. The

2901C is architecturally identical to its predecessor, the 2901, but is much

faster because it uses ECL technology internally. A simplified block diagram

of the 2901C is shown in Fig. 2. From this diagram, it is seen that the

2901C consists of an ALU capable of addition, subtraction and Boolean

operations coupled with an internal, 16-word, two-port register file.

Multiplexers at the input of this file permit a one-bit up- or down-shift

prior to writing into the file. An additional register, the Q-register, is

supplied to facilitate double precision shifts. The ALU inputs can be chosen

from the register file, the Q-register or the outside world via the D input

pins. The operation performed by the 2901C is determined by the state of the

inputs to its various control pins. These inputs, as well as all other

control lines in the ALPCM, are controlled directly by bits in the

instruction register to be described in detail later. The manufacturer's

data sheet should be consulted for further details.

Reference to Fig. 1 shows that the CPE is connected to an input and an

output data bus. The input bus is connected in a tri-state fashion to 7

sources: the 16-bit data memory output register (MOR), the 12-bit

analog-to-digital converter (ADC), the 8-bit serial-to-parallel converter

(SPC), the 12-bit memory address register (MAR), the 16-bit upper and lower

products coming from the multiplier chip (UP, LP), and a 12-bit immediate

field (IF) coming from the instruction register. A 3-bit field in the

instruction register controls which device is activated onto the input bus.

The data memory consists of 2048 words of RAM plus 2048 words of PROM used to

4
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store the various tables needed for the speech dig, ization algorithms.

The output of the CPE is routed to 6 devices: the 16-bit memory buffer

register (MBR), the 12-bit MAR, the 12-bit digital-to-analog converter (DAC),

the 8-bit parallel-to-serial converter (PSC), and the 16-bit multiplier and

multiplicand inputs (X,Y) to the multiplier chip. The various output devices

are clocked under control of a 3-bit field in the instruction register.

The multiplier chip is an AMD 29517 which can perform a 16x16 multiply

yielding a 32-bit product in less than 80 ns (military specifications). Both

inputs and outputs are fully buffered on chip thus eliminating the need for

any additional hardware. The chip will perform either fractional or integer

multiplies under the control of a single format adjust pin which is connected

to a dedicated bit in the instruction register.

Referring once again to Fig. 1, it is seen that the instruction register

is 48 bits wide and is driven by a 4096 word program PROM. The address is

obtained from the next-address logic which determines the next address using

information coming from the instruction register, the CPE status bits and the

interrupt request lines. The central component of the next address logic is

an AMD 2910 program sequencer chip for which a simplified block diagram

appears in Fig. 3. This diagram shows that the 2910 generates a 12-bit

program address which can be selected from among the following choices: the

last program address plus one, an absolute branch address obtained from the

12-bit instruction field, a 12-bit address popped from an internal LIFO

stack, or an internal register. The last option is not used in the ALPCM.

The choice between the incremented program counter and the branch address

depends on whether a branch instruction is presently in the instruction

6
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register and whether the branch condition is met. Any branch instruction

also can be a subroutine call by causing a return address to be pushed onto

the 2910's internal stack. Subroutines may be nested four deep when

interrupts are active and five deep otherwise. The next address is popped

off the stack only when the subroutine return bit is set in the instruction

register.

Note that the address generated by the next-address logic is first

buffered in the P register before being used to address the program memory.

This additional level of pipelining in the control path was needed to make

the speed of the control path commensurate with that of the arithmetic path.

The I/O system for the ALPCM consists of two input channels, the ADC and

SPC and two output channels, the DAC and PSC. The ADC and DAC run on a

common clock that is derived from the system clock. The PSC and SPC run on

external modem generated clocks which must have the same nominal frequency

but are otherwise asynchronous. The ADC/DAC clock period is derived from the

system clock using an AMD 9513 System Timing Controller. This is a

programmable chip which, among other things, will allow the ADC/DAC clock

period to be set under program control.

Each of the I/O channels generates an interrupt request whenever its

associated clock presents a rising edge to the system. A simplified block

diagram of the interrupt logic is shown in Fig. 4. The input edge detectors

convert the rising edge of the I/O associated clock into a pulse whose

duration is equal to the system clock period, 100 ns. The remainder of the

interrupt logic is realized as a finite state machine using a single MMI

PAL16R8 programmable array logic (PAL) chip. The 4-bit state memory serves

to remember pending interrupt requests that result when a request arrives at

8
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a time when interrupts are locked out by an instruction register bit

controlled by the software. These state bits are cleared, one by one, and

interrupt acknowledges (int, dint) are produced as the corresponding

interrupts are granted when the interrupt enable bit is again set by the

software. Along with each interrupt acknowledge, a 2-bit interrupt vector

(vi, vo) is produced. This vector and the acknowledges int and dint are used

to override the 2910 sequencer and force the machine to execute the two

instructions located at addresses 111111111v 1v00 and 111111111vlv 01. The

interrupt sequence also causes the proper return address to be pushed on the

2910's stack so that a return from the interrupt service routine can be

effected by issuing a subroutine return instruction. The detailed logic

equations governing the finite state machine are given in Appendix D.

The mechanism whereby the return address is pushed onto the 2910's stack

when an interrupt occurs is not foolproof. Situations can arise when an

incorrect return address will be saved. It is the responsibility of the

programmer to avoid these situations by locking out interrupts during certain

code sequences. The rule for accomplishing this is to lock out interrupts on

every instruction where either of the following two instructions to be

executed contains a jump. It is also the responsibility of the programmer to

lock out interrupts during an interrupt service routine if this effect is

desired. Interrupts may be nested as long as the 5-word stack capacity is

not exceeded. Other situations requiring care on the part of the programmer

are discussed in the next section.

B. Instruction Format

The format of the 48-bit wide instruction word is shown in Fig. 5. This

word is divided into fields of various length whose functions now will be

detailed.

10
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Figure 5. Instruction format.
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The Co, Is and 10 fields go directly to the CPE and determine the

exact operation it is to perform, e.g., add the contents of the internal

register at address A to the contents of the internal register at address B,

or take the contents of the internal register at address A and logically AND

it with the external data present on the D-pins. A detailed list of useful

combinations of these fields and the other fields to be described in this

section along with a mnemonic for each is given in Appendix A.

The Id field also goes directly to the CPE and determines where its

ALU output is to go. Some examples are: the output of the CPE alone, the

output of the CPE and the internal register file at address B or the output

of the CPE and the internal register file at address B, but first shifted up

or down by one bit.

The IC and OC fields determine from where the CPE gets its D input and

where its output is to be stored, respectively. The decoded IC field

controls the tri-state enable pins of the various devices connected to the

input bus and the OC field controls logic that generates clocks for the

registers connected on the output bus. The A and B fields go directly to the

CPE where they determine the addresses for the 2-port internal register

file. The single FA bit goes to the multiplier where it is used to select

fractional or integer format for its output.

The JPC field, along with the S and R fields, go to logic that enables

the 2910 program sequencer to implement conditional program branches,

subroutine calls and subroutine or interrupt returns. A detailed list of the

possibilities appears in Appendix A. Conditional jumps in the ALPCM are

12
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somewhat unconventional in that the condition to be sensed by the juip

instruction must be established by the programmer by means of the '1'T field

in an instruction prior to the instruction containing the jump. For example,

if one wishes to jump conditionally depending on whether one of the CPE's

internal registers is zero or not, the contents of this register must be made

to appear at the CPE output during an instruction that also has the TST field

active (LOW). This strobes the 3-bit CPE status into the status register

which then may be tested by a subsequent instruction containing the

appropriate conditional jump code. The three status bits are: F=O (ALU

output zero), the sign bit at the CPU output, and the most significant carry

out. Only the first two status bits are used as jump conditions. ALPCM

jumps also have the unusual property that the instruction following the jump

instruction is executed before the actual jump to the new address takes

place. This behavior is a consequence of the fact that the control path is

doubly pipelined due to the presence of both a P register and an instruction

register. Clever programming can be used to exploit this fact or else a

"noop" can be inserted after the jump instruction.

The status register is not saved during interrupts. If an interrupt

service routine alters the status register, then the background program must

lock out interrupts at appropriate times. Interrupts must be locked out on

the instruction doing the test, on the two preceding instructions and kept

locked out until the result of the test is sensed by a conditional jump. The

necessity for this odd protocol is the fact that when an interrupt request is

granted, the following two instructions will be performed before the

interrupt service routine is entered.

13



The immediate field IF consists of 12 bits that are connected in a

tri-state fashion to the input bus where they can be used as data. They also

are connected separately to the direct input of the 2910 where they are used

as the branch address during successful jumps.

The remaining fields are all 1 bit long. The machine will halt when it

encounters an instruction with the HLT bit set. This feature is useful when

writing diagnostic programs. When the ECY bit is set, the carry in to the

CPE uses the output of the carry-save flip-flop instead of CO from the

instruction word. This feature is used to implement multiple precision adds

and subtracts. An instruction with the IE bit set can be interrupted as

discussed above. Finally the TCE bit is used to enable the 9513 System

Timing Controller chip. When LOW, the 9513 will interpret the A address

field as one of its instructions. This mode usually is used only when the

machine is being initialized. One bit of the instruction register is unused.

The state of the multiplier is not saved automatically during

interrupts. If necessary, this must be done by the programmer by locking out

interrupts from the time the multiplier and multiplicand are loaded until the

product is read. The technique described above for locking out interrupts

during a test/conditional-jump sequence also is required here.

C. Data Memory Addressing

Addresses of the ALPCM data must be generated in the CPE and then

deposited in the MAR. Direct addressing of data memory is achieved by having

the desired address in the IF field of the microinstruction word and passing

It through the CPE to the MAR. Indexed addressing can be accomplished by

having a base address In the immediate field, adding to it the contents of a

14
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CPE internal register, and depositing the result in the MAR. It should be

noted that the contents of the addressed location in data memory are

available only as a CPE input one instruction cycle after the desired address

is placed in the MAR. This is due to the fact that the memory output is

buffered in the MOR. Writing data memory is also a two-step process in the

sense that the address first must be calculated and deposited in MAR before

the datum itself may be read out into the MBR. The hardware has been so

configured that the contents of the MAR can be used as an input to the CPE.

This was done so that the contents of the MAR could be saved when entering an

interrupt service routine and restored when exiting.

D. Firmware Considerations

Two 2400-bps vocoder algorithms have been implemented on the ALPCM, the

Lincoln LPC-10 algorithm [2] and a DoD standard LPC-10 compatible algorithm

[6]. The Lincoln algorithm uses approximately 1000 data memory locations

(60% ROM and 40% RAM), 1000 program locations, and requires 45% of real time

for execution. The corresponding data for the DoD algorithm are 1600 data

memory locations (75% ROM and 25% RAM), 1150 program memory locations, and

45% real time. A single set of data and program PROMs implementing both

algorithms was produced and tested. Selection between the two algorithms is

effected by means of a sense switch during the initialization phase of the

program. It is of interest to note that the Lincoln LPC-10 algorithm

requires approximately 65% of real time when executed on the LPCM [1].

E. Engineering Considerations

The ALPCM was designed to be a flyable narrowband vocoder test bed for a

prototype JTIDS class 2 terminal resident in F-15 or F-16 fighter aircraft.

15



The space available in the aircraft (.25 ATR) was commensurate with the size

of a standard 16"x7" universal wire wrap board. The entire ALPCM, including

its analog input and output audio system, fits onto one such board. Use of a

universal style board is virtually a necessity because the ALPCM uses IC

packages that range in size from 6-pins to 64-pins. The final design

comprises a total of 85 integrated circuit packages and draws approximately

40 watts of AC power. The machine runs reliably in a laboratory environment

at a cycle time of 100 ns, which is consistent with the worst-case commercial

specifications for the components. Worst-case military specifications would

dictate a cycle time of about 110 ns. For this reason, the units to be

flight tested are being operated with the conservative cycle time of 125 ns.

A picture of the completed unit is shown in Fig. 6. The power supplies

are located beneath the wirewrap board. The 7"x7" vertical board is not part

of the ALPCM proper; it is a monitor board used as part of the development

system to be described in Section 11. A complete set of specifications for

the ALPCM is presented in Appendix E.

III. DEVELOPMENT SYSTEM

A. Monitor

The finished ALPCM is a stand-alone unit with its control program and

constant tables residing in PROM's. During the debugging phase, however, it

is necessary to be able to replace the program PROM with a computer loadable

RAM so that diagnostic programs can be run on the machine and so that the

vocoder programs can be debugged. Additionally, it is extremely desirable to

have the facilities for setting program breakpoints, examining memory

locations and single-stepping programs.

16
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All of these requirements were obtained in an extremely simple fashion

by the design of the monitor board mentioned above. A block diagram of the

monitor is shown in Fig. 7. The monitor plugs into two of the ALPCM's edge

connectors which supply both DC power and a 2-way data link to it. The main

data lines consist of the 12 bits of the program counter (PC) which are used

to address the monitor RAM, the 48-bit instruction supplied by the monitor

RAM to the ALPCM's instruction register (IR), and the CPE's output bus.

The other lines, start and stop, are used to control the ALPCM's system clock

from the monitor.

The interface between the monitor and its host computer, a PDP11/44

operating under the Unix i operating system in this instance, is via two

DR11C general-purpose I/O ports. The DR11Cs supply information to the

monitor by means of two 16-bit channels DROUTBUF1 and DROUTBUF2.

Communication from monitor to host is through the 16-bit channels DRINBUFI

and DRINBUF2. DROUTBUF2 is used strictly to supply control bits which are

distributed throughout the monitor. DROUTBUFI is the data channel which

serves to supply either the monitor's version of the ALPCM's instruction

register or the breakpoint register. The proper destination for the data

coming from DROUTBUFI is determined by clock enable bits supplied by

DROUTBUF2.

The monitor hardware is extremely simple. The power of the monitor is

due almost entirely to the control software residing in the host computer.

It is this software that orchestrates the monitor's operation by supplying

the proper sequence of control bits to the DROUTBUF2 and the proper data to

'UNIX is a trademark of Bell Laboratories.
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DROUTBUFI. This process perhaps is understood best by means of an example.

Consider the task of downloading a 48-bit ALPCM instruction word from the

host computer into the monitor's RAM at a specific address. The first task

is to set the PC in the ALPCM to the desired address. The host does this by

first assembling an ALPCM instruction implementing an unconditional jump to

the desired address. The enable bit for the lower 16-bits in the monitor

instruction register then is set by writing the appropriate word to

DROUTBUF2. Next, the lower 16-bits of the assembled jump instruction are

written to DROUTBUFI, thus causing the New-Data-Ready pulse to write this

word into the the lower 16-bits of the instruction register. A similar

procedure then is followed to load the middle and high order 16-bit pieces of

the jump instruction into the monitor instruction register. The host now

sets DROUTBUF2 bits that enable the monitor instruction register output,

place the RAM in the high impedance state and cause the ALPCM to emit exactly

one clock pulse. The latter action is accomplished by setting the start bit

with the stop bit already set. The jump instruction in the monitor

instruction register now has been written to the ALPCM instruction register

with the consequence that the 2910 output is the desired value of the program

counter. Cycling the ALPCM once more will cause this address to be loaded in

the P register whose output is the RAM address bus as well as the ALPCM

program memory's address bus.

The RAM now is being steered to the desired address. The instruction to

be downloaded is now loaded into the monitor instruction register following

the procedure just outlined for the jump instruction. DROUTBUF2 is next

manipulated to enable the monitor instruction register output, disable the

21i.
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RAM output and enable the write enable line. The contents of the monitor

instruction register now have been written to the RAM. The write is

completed by using DROUTBUFI to reset the write enable line. In this

fashion, instruction by instruction, an entire ALPCM program can be

downloaded to the RAM.

The same general ideas behind this downloading technique can be used to

implement all the desired monitor functions. For example, to read a given

CPE register, the host first assembles an ALPCM instruction that will place

the desired register's contents on the Y bus. DROUTBUF2 then is adjusted to

steer the monitor board MUX to the Y bus and DRINBUF2 is read to obtain the

desired register's contents. It now should be reasonably clear how all other

monitor functions can be realized by suitably programming the host to issue

the appropriate sequence of reads and writes to the two DR11C's.

There is a very important point to be observed here: the sophistication

and complexity of the present monitor system depends almost exclusively on

the system software and not on the monitor hardware itself. This is a very

desirable state of affairs because software, especially when written in a

high level language, is very easy to write, debug and modify whereas hardware

has just the opposite characteristics. The present monitor softwa-e consists

of two major parts, the command line parser and the monitor board manip-

ulator. The latter is a collection of subroutines, all written in C [2],

each of which implements a basic monitor function such as "set breakpoint",

"read CPU registers" and "start". The parser was written using two program

development languages called Yacc [3] and Lex [4]. These languages enable

the parser to be specified on a very high level, from which they are

22



translated automatically into C and then compiled in the usual manner. A

complete list of the commands understood by the parser is given in

Appendix B. All commands are terminated with a carriage return <CR> and

optional arguments are enclosed in square brackets [].

B. Assembler

The ALPCM assembler is a straightforward, two-pass assembler that

understands ALPCM mnemonics and symbolic addresses. Code is generated using

a UNIX editor running on the host PDP11/44. The assembler generates binary

code that can be downloaded to the ALPCM by the monitor software. Fully

debugged binary code also can be sent to PROM programming hardware where it

is used to prepare the program and data memory PROMs that make the finished

ALPCM a stand-alone vocoder.

Experience with this assembler and its close relative the LPCM assembler

[1] has led to the conclusion that a microcode assembler should really be

equipped with a macro handler. This feature would allow the programmer to

replace many lengthy and commonly occurring sequences of mnemonics with

simple macro statements. The resulting code would be both easier to writ-

and comprehend.

C. Simulator

The ALPCM simulator was conceived as a non-real time tool for use in

developing and debugging ALPCM microcode in a user interactive environment.

Work on the simulator proceeded in parallel with the development of the ALPCM

hardware and allowed the vocoder software to be tested and debugged prior to

the availability of the processor itself. The simulator was written entirely

in C and ran on a PDP11/44 under the UNIX operating system. Routines were

23
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included which accurately reproduced the ALPCM arithmetic and logic

functions, control structure, interrupt handling logic, and timing.

Particular care was devoted to the proper simulation of latencies created by

pipelining which affected multiplies, data memory fetches and instruction

fetch and execution.

The simulator was designed to operate at either a command or execution

level. At the execution level, a file of ALPCM object code specified by the

user is run by the simulator until a terminating condition is encountered.

The command level brings the user into an interactive environment and permits

either an examination and modification of various machine states or a return

to execution level. Execution in continuous mode allows the microcode to be

run until the simulator encounters a breakpoint, an end-of-file condition, or

an interrupt from the terminal. In single-step mode, only one instruction is

executed after which the user is provided with an extensive display of the

various internal states of the machine and returned to the command level.

Many commands were included in the simulator to provide aids for testing and

debugging ALPCM microcode. These include the ability to set breakpoints and

examine and modify the values of registers and memories. A complete listing

of simulator commands is presented in Appendix C.

ALPCM programs are run on the simulator by identifying the appropriate

binary object code file as produced by the ALPCM assembler. The

initialization procedure also requires the user to specify the input and

output files which are to be associated with the ADC and DAC I/O channels,

respectively. The simulator then displays the current values of the I/O

interrupt intervals. It should be noted that the simulator assumes that the
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serial data produced by the processor is routed to the serial-to-parallel

converter ("loop" mode). Thus, no provision is made for the specification of

serial input and output files. After completing the initialization sequence,

the simulator places the user at the command level and the testing can

begin. The simulator monitors program execution and warns the user of a

variety of suspicious conditions such as a stack overflow or underflow, an

unserviced interrupt, or an illegal instruction. The Lincoln LPC-1O vocoder

algorithm [2] was fully debugged using the simulator with a single speech

sentence requiring approximately eight hours of processing time on the

PDP11/44.

IV. SUMMARY AND CONCLUSIONS

We have presented the design issues involved in implementing a small,

flexible, low-power signal processor suitable for realizing computationally

intensive speech compression algorithms. Significant improvements over

previous designs were made possible by utilizing newer, integrated circuit,

digital logic technology and developing a flexible support system.

The availability of the high speed AMD 2901C RALU and use of double

pipelining in the control path allows the processor to run with a 100-ns

cycle time. The use of new 16x16 multiplier chips in the arithmetic path and

PAL-based I/O logic permitted considerable simplification of elaborate

discrete logic realizations used in the LPCM. Higher density program memory

for both ROM and RAM also contributed to size and power reductions.

The support system developed for the ALPCM, consisting of a monitor

board connection to a Unix-based PDP11/44, provides a simple structure with

great flexibility. The monitor board allows the ALPCM to be tested using the

full software power of the PDP11/44 in conjunction with control and data
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lines from the DR11C ports. This arrangement permits standard debugging

operations to be performed with a minimum of additional hardware.
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APPENDIX A

THE ALPCM ASSEMBLY LANGUAGE

The following is a compilation of the bit assignments that must be made

to the fields of the ALPCM microinstruction word to achieve various

functions. Each of these assignments is preceded with a mnemonic that can be

used when preparing codes for the ALPCM assembler. The first group of these

assignments are the so called "op codes" which affect the CO, 10, and Is

fields. The format of the presentation consists of a mnemonic followed by a

three-digit octal number giving the values assigned to CO, 10, and Is,

respectively, followed by a brief description of the operation accomplished

by the assignment. The result of the operation appears at the internal ALU

output port. The following notation is used in the descriptions:

R(A) Contents of internal register addressed by the A field

R(B) Contents of internal register addressed by the B field.

Q Contents of the Q-register.

D Data at input port of the CPE.

& logical AND.

I logical OR.

logical EXCLUSIVE OR.

Ylogical complement of X.

It should be noted that not all possible operations that the CPE is capable

of performing are included in the following list.

ADDAQ 000 R(A)+Q ADDABI 101 R(A)+R(B)41

ADDAB 001 R(A)+R(B) ADDDA1 105 D R(A)4I

ADDDA 005 D R(A) ADDDQ1 106 D Q*1
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ADDDQ 006 D +Q SUBQA 110 Q-R (A)

ADOAQi 100 R (A) +Q+1 SUBBA ill R (B) -R (A)

SUBAD 115 R(A)-D DECD 027 D-1

SUBQD 116 Q-D CSQ 122 -Q

SUBAQ 120 R(A)-Q CSB 123 -R(B)

SUBAB 121 R(A)-R(B) CSA 124 -R(A)

SUBDA 125 D-R(A) CSD 117 -D

SUBDQ 126 D-Q ANDAQ 040 R(A)&Q

SUBQA1 010 Q-R(A)-l ANDAB 041 R(A)&R(B)

SUBBA1 011 R(B)-R(A)-1 ANDDA 045 D&R(A)

SUBADI 015 R(A)-O-1 ANODQ 046 D&Q

SUBQDI 016 Q-D-1 ORAQ 030 R(A)jQ

SUBAQ1 020 R(A)-Q-1 ORAB 031 R(A)JR(B)

SUBABi 021 R(A)-R(B)-1 ORDA 035 DJR(A)

SUBOAl. 025 D-R(A)-l ORDQ 036 DIQf

SUBDQ1 026 D-Q-1 XORAQ 060 R()

t4OVQ 032 Q XORAB 061 R(A)(B(B)

MOVB 033 R(B) XORDA 065 tD(A)

MOVA 034 R(A) XORDQ 066 D

IIOVD 037 D BICAB 051 (W7))&R(B)

INCQ 102 Q+I BICDA 055 (g)&R(A)

INCB 103 R(B)d1 Ct4PQ 022 0

INCA 104 R(A)+1 CMPB 023 R~

INCO 107 D+1 CMPA 024

DECQ 112 Q-1 CMPD 017
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DECB 013 R(B)-1 CLR 042 0

DECA 014 R(A)-I NOOP 100

The next set of assignments concerns the destination field Id which

determines where the output of the ALU is to go. The format is mnemonic,

one-digit octal number and description. The notations F for ALU output and Y

for CPE output are used in the descriptions.

Q 0 F+Q, F+Y

Y I F+Y

RAY 2 F+R(B), R(A)+Y

R 3 F+R(B), F Y

SDD 4 double precision down shift

[F,Q]/2+[R(B),Q]

F+Y

SD 5 F/2+R(B), F+Y

SUD 6 double precision up shift

[F,Q)*2+[R(B),Q]

F+Y

SU 7 F*2+R(B), F+Y.

The next set of assignments concerns the IC field which controls the

input multiplexer to the CPE. The format is mnemonic, one-digit octal number

and description.

SP 0 serial-to-parallel converter

ADC 1 A/D converter

LP 2 bits 0-15 of the product

UP 3 bits 15-30 of the product if FA=O

bits 16-31 of the product if FA=1
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MOR 4 memory output register

FO 5 12-bit instruction field

MA 6 memory address register

The clocking of the various registers connected to the output of the CPE

is controlled by the output control field OC. The format is the same as for

the input control field.

NIL 0 default

MAR 1 clock memory address register

MBR 2 clock memory buffer register

LDX 3 clock multiplier X-register

DAC 4 clock D/A converter buffer register

PS 5 clock P/S converter

LDY 6 clock multiplier Y-register

The final group of assignments concerns the jump control field JPC, ,

and R. The-format is mnemonic, three-digit octal numbers giving the

assignment to JPC, , and R fields, respectively, and a description.

NIL 000 no jump

JP 014 unconditional jump

JPZ 024 jump if positive or zero

JZ 054 jump if zero

JN 034 jump if negative

JNZ 044 jump if not zero
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JSW 064 jump if switch w on2

JSV 074 jump if switch v on2

JPS 010 unconditional jump to subroutine

JPZS 020 jump to subroutine if positive or zero

JZS 050 jump to subroutine if zero

JNZS 040 jump to subroutine if negative

JSWS 060 jump to subroutine if switch w on
2

JSVS 070 jump to subroutine if switch v on
2

SBR 016 return from subroutine.

2Switches v and w are internal sense switches.
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APPENDIX B

MONITOR COMMAND DESCRIPTIONS

enter assembly mode and assemble
instructions at current address using
assembly language

exit assembly mode

initialize monitor

e on/off enable/disable ALPCM memory

[address] b set/print breakpoint

b on activate breakpoint

b off turn off breakpoint

beep on turn on beep mode

beep off turn off beep mode

[address] p set/print pc

rr print 2901 registers

value wr reg write value to reg

address [n] rm read n data memory locations starting at
address

rp read current program memory location

value wm adr write value to ram[adr]

ri read monitor instruction register

(CR> clock ALPCM once

[address] g start ALPCM

<RUBOUT> stop ALPCM

I [filename) download file
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v verify mp

? print this list

q exit from monitor

(CR> UNIX-coninand escape to UNIX
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APPENDIX C

SIMULATOR COMMAND DESCRIPTIONS

q quit

help

b [brkpt] [count] list or set breakpoint

d delete breakpoint

c continuous mode

<CR> single step mode

v view display

vm view multiplier

rr read ALU registers

wr reg# data write ALU register

rd addr [#read] read data memory

wd addr data write data memory

-rp addr [#read] read program memory

wp addr data write program memory

spc newpc set program counter

! <CR> UNIX-command escape to UNIX

vs view stack

sw [-] change w-switch status

sv [-) change v-switch status

va view ALU

vis view interrupt status

sic ctr set instruction counter

clk change clock
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vt view timers

clri clear interrupt timers

rs t reset timers
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APPENDIX D

INTERRUPT LOGIC EQUATIONS

Vo (3+rl72).-nt v0.int

int ie. (int-+d-i nt) (r 3 +r2 +r 1+r0)

dint:= int

S3 = (-i-efi nt -dint) -r3

S2 = ("ieslnt+dint).r2 + r3.r2 )r

si (iTe-ints-dint).rj + (r 3 +r24)rc

where rksk+irk, =,.3

and means equal after rising edge of clock

means logical AND

+ means logical OR
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APPENDIX E

ALPCM SPECIFICATIONS

Cycle time: 100 ns

Basic Logic Family: TTL, with high-power Schottky where necessary in
critical paths

Program Memory (ROM): 4Kx48 bits 6-Intel 3632(4Kx8)

Data Memory (ROM): 2Kx16 bits 2-Intel 3636 (2Kx8)

Data Memory (RAM): 2Kx16 bits 2-lDT 6116 (2Kx8)

Multiplier: AMD 29517

Basic CPE: 4-AMD 2901C (4-bit slice)

Microsequencer: AMD 2910 (12-bit address)

System Timing Controller: AMD 9513

Audio Conditioning: 12-bit A/D, D/A conversion
Switched capacitor 8th order elliptic prototype input
and output filters, Reticon 5609

Electrical: 115 VAC, 50-440 Hz, 40W power dissipation

Total DIP Count: 100 chips and carriers

Size: 4"x8"x18 1/4"

Weight: 10 lbs.

Construction Technique: One universal wire wrap-board

7"x16"

Center plane voltage

Two outside planes ground
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