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FOREWORD

On 1 May 1982, Flow Research Company was awarded a one year contract from
the Air Force Office of Scientific Research to investigate some unsteady
phenomena in boundary layers; in particular, the stability of a decelerating
laminar boundary layer. The contract monitor at AFOSR was Captain Michael S.
Francis, and the principal investigator at Flow Research was Dr. Mohamed
Gad-el-Hak.

The stability of the decelerating laminar boundary layer was investigated
experimentally and numerically. The experiments were conducted in an 18-m
towing tank, using a flat plate geometry. Flow visualization and probe
measurement experiments were conducted. The flow field was visualized and
probe measurement experiments were conducted. The flow field was visualized
using fluorescent dyes and sheets of argon laser light. The instataneous
longitudinal velocity was measured using an array of miniature hot-film probes.

A Blasius boundary layer subjected to uniform deceleration underwent a
vell-defined route to complete transition. The visualization experiments
revealed the onset of two-dimensional waves that appeared after the decelera-
tion had started, three-dimensionality was then apparent and led to the
formation of hairpin vortices that lifted away from the wall and burst into
turbulence.

The formation and growth of the vorticity waves in the decelerating
laminar boundary layer were also observed using hot-film probes. The probes
vere moved with the plate, and indicated high speed (relative to the plate)
fluid coming from the outerparts of the ambient fluid towards the wall region.
The probes also indicated a return to the laminar state after the deceleration
ceased. The probe measurements indicated the "degree" of two-dimensionality
of the vorticity waves observed in the decelerating plate experimeat. The
waves vere truly two-dimensional, and that suggests the study of their
instability in order to determine the mechanism and characteristics of the
development of three-dimensionality. If there is a well-defined transition
from laminar two-dimensional waves to laminar three-dimensional waves through
an instability process, one has indentified a major link in the transition

process.
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The unsteady boundary layer equations were gsolved numerically to generate
instantaneous velocity profiles for a range of boundary and initial condi-
tions. The resulting velocity profiles were inflexional, with the inflexion
point initially at the wall. The unst=ady flow field was subjected to
stability analysis using the Orr-Sommerfeld equation applied to the instan-
taneous, locally parallel velocity fields. The generalized matrix eigenvalue
problem was solved using Chebyshev polynomial spectral methods (QR method).

For profiles at a given station x=x,, the stability calculation shows
that the inflexional case has smaller wavelength, smaller phase speed and
lower critical Reynolds number than the corresponding Blasius profile. All
these trends are consistent with the observations and measurements made. This
gives us confidence that the mechanics of the initial instability is well
understood. However, the observed appearance of two-dimensional instabilities
occurs earlier in the deceleration history than one would predict from the
"most dangerous" profile obtained from the stability calculations. In this
calculation we used profiles consistent with the measurement station at
x*X,. Although one canmnot rule out nonlinear effects, the more likely
reason for such "earlier" instability is the non-self-similarity of the
decelerating boundary layer. Self-similarity of the flow implies that
profiles at all stations are "equivalent" in terms of stability character-
istics. When the flow is not self-similar, the profiles at different stations
are not equivalent, each profile needs to be examined separately and the "most
dangerous" station selected. The early appearance of instabilities im the
present observations suggest that there are more unstable profiles at neigh-
boring stations whose instabilities propagate to the observation station and
are seen before the local profile itself becomes unstable.

In summary then we have both flow visualization and point measurements for
the instability and transition processes of flows on decelerating plates. We
have obtained theoretical descriptions of the unsteady boundary layer and its
instability of two-dimensional laminar waves. These give a consistent picture
of the early picture of the early steps of the transition process.

The work on the stability of decelerating laminar boundary layers is a

step toward understanding the more complicated problem of the effects of

acceleration or deceleration on turbulent boundary layers. This problem has

ok 1
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obvious relevance in accelerating or decelerating vehicles, vehicles exper-
iencing turn and other maneuvers, rotating propellers, and many other practi-
cal situations.

On a more basic side, the deceleration experiment offers a convenient way
to modulate laminar and turbulent boundary layers; in a way analogous to using
pressure gradient, heating or roughness, to help determine the exact nature of
the apparent analogies between the different transition events in a laminar
boundary layer and the intermittent events that characterize fully-developed
turbulent boundary layers, namely the bursting cycle.

Progress to date was presented at the 35th Annual Meeting of the American
Physical Society, Division of Fluid Dynamics (Appendix I). A manuscript was

submitted to the Journal of Fluid Mechanics and is included with this report

as Appendix II. The flow visualization techniques used during this investiga-

tion will be presented at the forthcoming Third International Symposium on

Flow Visualization. A preprint from the proceedings is given in Appendix

1I1. These publications very much summarize the results of the present

investigation and are used in lieu of a final technical report.

1596R

il et S e S B 8 4




CAI N CRP RIS TSI,

NPy

1
&

[
0led

i Lot

RS

Y

APPENDIX 1

Abstract From Bulletin of the American

Phiysical Society 27, P. 1188, 1982

A A A et at

o . - - .'1‘_'_-. A P PR
S L T I R PR TR T T Y R S




Abstract Submitted
for the Thirty-fifth Meeting of the
American Phiysical Society, Division of Fluid Dynamics

November 21-23, 1982

Physical Review Bulletin Subject Heading in
Analytic Subject Index which paper should be placed
Number Transition

Experimental and Numerical Investigation of the Deceler-
ating Boundary Layer*. M. GAD-EL-HAK and J. T.
MCMURRAY, Flow Research Company -- The stability of a
decelerating boundary layer flow is investigated
experimentally and numerically. Experimentally, a
flat plate having a Blasius boundary layer is decel-
erated in an 18-m towing tank. The boundary layer
becomes unstable to two-dimensional waves which break
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mined by solving the Orr-Sommerfield equation using
Chebyshev matrix methods. The code incorporates a
search algorithm to find the critical Reynolds and
wavenumber for a given eigenvalue and velocity pro-
file. Correlations are made between the numerically
obtained critical Reynolds number and the experiment-
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Abstract

The stability of a decelerating boundary layer flow is investigated
experimentally and numerically. Experimentally, a flat plate having a Blasius
boundary layer is decelerated in an 18-m towing tank. The boundary layer
becomes unstable to two-dimensional waves which break down into three-
dimensional patterns, hairpin vortices, and finally turbulent bursts when the
vortices lift off the wall. The unsteady boundary layer equations are solved
numerically to generate instantaneous velocity profiles for a range of
boundary and initial conditions. A quasi-steady approximation is invoked and

the stability of local velocity profiles are determined by solving the

Orr-Sommerfeld equation using Chebyshev matrix methods. Comparisons are made
between the numerical predictions and the experimentally observed

instabilities.




1. Introduction
The classical vehicle for studying shear-flow transition to turbulence

consists of s uniform steady flow toward the leading edge of a fixed flat
plate. Somewhat downstream of the leading edge a Blasius boundary layer
develops. In various stages and in various sequences (to be detailed below)
this Blasius layer undergoes small amplitude instability, nonlinear development
and transition to turbulence as the displacement-thickness Reynolds number

RG* increases (Klebanoff, Tidstrom & Sargent, 1962). 1In effect, RG* measures
the distance from the leading edge of the plate.

Linearized stability theory can be applied to Blasius profiles treated as
locally parallel flows (Lin, 1955; Drazin & Reid, 1981). Squire's (1933)
theorem shows that two-dimensional travelling waves, Tollmien-Schlichting
waves, are the most ."ingerous for instability and become unstable when RG*
exceeds about 520 for long waves having downstream wave number a* = 0,30
(Jordinson, 1970). When the above Orr~Sommerfeld theory is modified to take
account of non-parallel effects in the boundary layer, the critical RG* is
reduced to about 420 (Saric & Nayfeh, 1975). However, as soon as nonlinear
effects are allowed, three-dimensional disturbances can no longer be excluded.

Observations in experiments having "natural” transition show that clean
tvo-dimensional waves are rarely attainable; rather three-dimensional structure
is immediately seen. Efforts to "control" the disturbances have led to the
introduction of vibrating ribbons (Klebanoff, Tidstrom & Sargent, 1962)
oscillating in ostensibly two-dimensional motions. Although these ribbons are
introduced to develop two-dimensional structure, clear three-dimensional fluid
motions are still seen. Longitudinal strips of tape have subsequently been
introduced to at least fix the spatial structure of this three-dimensional
flow (Klebanoff et al., 1962). Given the three-dimensional character of the
flow, the road to transition involves amplification of the three-dimensionality,
development of "hairpin" vortices and finally the "bursts" of turbulence.

The difficulty in the attainment of purely two-dimensional disturbances
and the seeming simultaneous occurrence of both two- and three-dimensional
waves has led to several recent attempts at wave-interaction theories (Craik,
1971, 1980; Nayfeh & Bozatli, 1979). Here, Tollmien-Schlichting waves and
oblique waves are sought that can lead, through weakly non-linear interactions,
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to resonant-like behavior that selects the observed structure prior to burst-
ing. The selection of three-dimensional structure must thus overcome the
higher growth rates (Squire's theorem) of the Tollmien-Schlichting waves.

Each of these analyses models certain features of the early transition process
but no one is completely catisfuctory.* Finally, there seems to be no theory
that is yet capable of the prediction of the hairpin vortices, although there
is substantial agreement that intensification of longitudinal vorticity gives
rise to locally inflexional (unsteady and three-dimensional) velocity profiles
(Stuart, 1965). These profiles seemingly break down (Klebanoff et al., 1962)
giving small (spatial) scale features associated with the burst.

An alternative vehicle for the study of the transition process is the
decelerating-plate experiment (Fales, 1955; Hegarty, 1958; Davis & Gad-el-Hak,
1981). Here a plate of length L moves steadily normal to its leading edge; L
is short enough that the Blasius layer remains laminar along its full length.
At time t = 0, the plate is decelerated from a constant initial speed Uo to a
new constant final speed U_. Flow visualization seemingly shows that a
sequence of two-dimensional structures, three-dimensional structures, hairpin
vortices and then turbulent bursts results. When the deceleration takes

place, the instantaneous velocity profiles are inflexional. If the inviscid

instability associated with the instantaneocus inflexion point has large enough
growth rate, then there is an instability which will cause two-dimensional
waves to i v in the unsteady flow (Drazin & Reid, 1981). Subsequently, there
is a breakdown (perhaps a new instability of the two-dimensional structure)
into three-dimensions, an intensification of the three-dimensional structure,
the development of hairpin vortices and then turbulent bursts.

The deceleration experiment differs from the fixed-plate experiment in
several respects. First, given the inflexional character of the initial insta
bility, the two-dimensional waves would have substantially larger growth rates
than their Tollmien-Schlichting counterparts (Drazin & Reid, 198l1). Hence,
there may develop a "clean", strongly two-dimensional wave field during the
initial stages of the transition process. This contrasts with the wixed two-
dimensional - three-dimensional field for the fixed plate experiment (Anders &

*Orszag & Patera (1983) have shown that a pure two-dimensional structure is
prone to strong three-dimensional instabilities.
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Blackwelder, 1979). Careful point measurements are required to determine
whether this is the case. If this is the case, it suggests the study of this
instability in order to determine the mechanism and characteristics of the
development of three-dimensionality. The isolation of this problem is one of
the main advantages of the deceleration experiment over the fixed-plate
experiment. If this picture is correct and there is a well-defined transition
from laminar two-dimensional waves to laminar three-dimensional waves through
an instability process (Orszag & Patera, 1983), one has identified a major
link in the transition process. An understanding of this instability allows
one to contemplate means of interferring with the process to delay transition
or reinforcing the process to foster transition. It gives one a handle in
examining the subsequent evolution to hairpin vortices since these might be
examined through the nonlinear evolution of the three-dimensional structure.
In summary, the deceleration experiment might be one that clearly separates
two-dimensional structures from three-dimensional ones and allows analysis of
the change from one to the other.

The present investigation was undertaken to address some of the questions
raised above. Experimental and numerical investigations were carried out to
determine the mechanics of transition on a decelerating flat plate. A flat
plate was towed in the Flow Research 18-p towing tank. Visualization and
probe measurements techniques were used to study the different instabilities
resulting from decelerating the plate. The unsteady boundary layer equations
were solved numerically to generate instataneous velocity profiles for a range
of boundary and initial conditions. The stability of such profiles was deter-

mined by solving the Orr-Sommerfeld equation using Chebyshev matrix methods.
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2. Experimental Equipment and Procedure

2.1 Towing Tank System
- The 18 m long, 1.2 m wide, and 0.9 m deep towing tank and associated

equipment have been described by Gad-el-Hak et al. (1981). The flat plate was
rigidly mounted under a carriage that rides on two tracks mounted onttop of
the towing tank. During towing, the carriage was supported by an oil film
vhich insured a vibrationless tow, so that the flow field had an equivalent
free-stream turbulence of about 0.1 percent. The carriage was towed with two
cables driven through a reduction gear by a 1.5 hp Boston Ratiotrol motor.

The towing speed was regulated within an accuracy of 0.1 percent. The main
frame supporting the tank could be tilted and levelled by adjusting four screw
jacks. This feature was essential for smooth operation of the carriage, whose
tracks are supported by the main frame. The towing tank was designed so that
flow visualization can be made from the top, sides, bottom and ends. The
bottom and side walls are made of 19 mm thick plate glass with optical

quality. The end walls are made of 38 mm thick Plexiglas.

2.2 Model and Test Conditions
A unique, modularly designed flat plate was built for the present

experiment. Figure 1 is a schematic of the plate, which is 2.7 m long and
1.1 m vide. The working surface is made of Plexiglas and contains two dye
slots each with four separate compartments. The working surface is placed on
a sheet of 6 mm Plexiglas that is bonded to a 13 mm honeycomb. The NOMEX
honeycomb, covered on the bottom side with fiberglass resin, provides buoyancy
as vell as bending strength. A system of cables and pulleys on the bottom
surface insures the flatness of the working surface to within 0.2 wm.

Separation and premature transition at the leading edge is prevented by
using & 12:1 elliptic nose and an adjustable lifting flap at the trailing
edge. In the range of towing speeds of 20 to 60 cm/sec, a Blasius laminar
boundary layer is generated on the working surface.

Uniform deceleration was attained by decreasing the voltage to the
Ratiotrol motor. The initial and final speeds were changed in the range of 60
to 0 cm/sec and the deceleration rate varied in the range 1 to 60 cn/lecz.




2.3 Flow Visualizaton

The transition events vere made visible by novel techniques which utilized
fluorescent dye, i.e. dye which is visible only when excited by a strong light
source of the appropriate wavelength (Gad-el-Hak et al., 1979). This provided
an extra degree of freedom in observing the flow because both the dye and light
location could be controlled within the limitation of the experimental appara
tus. A 5 watt argon laser (Spectra Physics, Model 164) was used vwith a
cylindrical lens to produce a sheet of light that could be projected perpen-
dicular to each of the three axes as required. The light sheets were approxi-
mately 1 mm thick, which was sufficient to resolve the large structure within
the transitioning and turbulent regions.

Two different methods of dye injection were employed. In the first, a dye
sheet seeped into the laminar boundary layer through either of two 0.15 mm
wide, 30 cm long spanwise slots located 40 cm and 75 cm downstream of the
leading edge. The slots were milled at a 45° angle inclined towards the
trailing edge to minimize flow disturbance. Each slot was divided into four
separate sections, each vith its own dye source, so the spanwise mixing and
diffusion of turbulent fluid could be studied. The dye remained on the plate
surface until an upward motion caused it to lift. In the second, discrete
lines of dye could be sllowed to seep into the laminar boundary layer by
masking the spanwise slot with a 32 cm long strip of electrical tape, in which
thirty longitudinal slots, 1 cm apart and 0.5 cm long, were cut with a surgical
knife. The resulting dye lines were less than 0.5 mm wide near the trailing

edge of the plate.

2.4 Hot-Film Probes
Miniature hot-film probes, manufactured by Thermo Systems Inc., were used

in the present investigation to measure the instantaneous longitudinal velocity
before, during and after deceleration. The probe diameter was 0.025 mm and its
sensing length was 0.25 mm. The probe support was 0.9 mm diameter and 32 mm
long. To obtain a velocity profile, a probe traverse powered with a stepping
motor controlled through an APPLE-II microcomputer was used. For data
scquisition and analyses, a NOVA 800 and a PRIME 750 minicomputers were used.
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3. Analyses

3.1 Theoreticaf Considerations

3.1.1 Basic State: The Unsteady Boundary Layer

The flow that initially becomes unstable is an unsteady boundary layer
caused by plate deceleration. The initial and final states are Blasius layers.
Hence, one must solve (Rosenhead, 1963, and Schlichting, 1968):

vyt + v,w,y - wxwyy - Wyyy (1a)
VW(x,»,t) =0 »0<x<l,t>0 (1b)
w‘(x,o,t) =0 »,0<x<1,t>0 (1lc)
wy(x,o.:) =-U()/U ,0<x<1l,t>0 (1d)
W(x,y,t) = Yy(x,y) ,0<x<1l,t<0,y>0 (le)

Equation (la) is the non-dimensional longitudinal momentum equation, with

the familiar boundary layer approximations applied. In this equation, the
downstream coordinate x is non-dimensionalized by L, the normal coordinate y by
L/\/ij the time t by L/U,, and the stream-function { by UOLAJiT'vhere the
Reynolds oumber R = 2%& . Here, Uy,(t) is the speed history of the plate, VYp
signifies the streamfunction of the Blasius solution prior to deceleration.

The unsteady term in Equatin (la) makes the boundary layer non-similar.

; The unsteady boundary-layer solution of system (1)

¥ = ¥(x,y,t) (2)

® is of a combined Blasius-Rayleigh type (Stewartson, 1951).

3.1.2 Linear Stability Analysis for Locally Parallel Flow

The onset of shear instabilities is obtained by linear stability analysis
¢ of the flow (2). Here ¥ is unsteady, but one can argue (Davis, 1976) that

it is sufficient to examine the "quasi-steady" stability problem in which the

instantaneous profiles

b, = b (x,y5t) = ¥W(x,y,t = ¢) (3)

I are treated as steady, parallel flows with the Orr-Sommerfeld equation. Such
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® an approximation is valid if the time rate of change of ¢ (measured by & viscous J
diffusion time) is slow compared to the rate of growth of disturbances of Vv, :
(measured by a convection time). This is guaranteed if the steady-flow Reynolds 1
number is sufficiently large. The following Orr-Sommerfeld system defines a 3
° critical value of Ry, for each profile (parameterized by to): }
-
2 2 p
(Dz - az) ¢=iR (aU(y)ﬂn)(sz - uz) ¢-a g—g ¢, (4a) K
dy -
® ¢(o) = o0 , (4b)
D¢(o0) = o , (4c)
¢(=) = o0, (4d)
o vhere we have written the normal modes as follows:
V(x,y,t) = ¢(y)el(°x-wt) . (5)
L Here o is the downstream wavenumber and w is the complex frequency; D = -d-;,
and R is related to the standard displacement thickness Reynolds number RG* by:
R= -~ (6)
®
U
=2 “w &%
RG* = R ‘U— L [} (7)
o
Civen that we have used the quasi-steady assumption, Squire's theorem
® applies and allows us to confine our attention to two-dimensional disturbances

only. This is reflected in the form (5).
There is a "most dangerous” profile that corresponds to t, = to s vhere to.
is a measure of the time delay between deceleration and the appearance of the
® first two-dimensional instability. Presumably, the instability is due to the
inflexional nature of the profile. Here the point of inflexion at t = 0 is at
the vall and moves outward on a diffusion time scale. 1Its location is y = Yips
if Yip is too small, viscous effects stabilize the profile. If y;p is too
® large, the inflexion point is in a region where U is very small so the inste-
bilicy is is not important. The "most dangerous" profile corresponds to an

intermediate value of Yip and hence of t,
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® 3.2 Numerical Methods
A code was developed to solve the unsteady boundary layer Equation (1) as
follows. First, the flow variables are expanded in mapped Chebyshev poly-
nowial expansions. Thus, the variable y is mapped to a new variable Z using:
1+2
@ y'sl_—z (-l<z<1) (8)
vhere S is a suitable scale parameter. In terms of Z, y derivatives take the
form:
® 2
OF _ _(A-2) oF (9)
dy s(1+A) 3z °
Second, the various functions are expanded in Chebyshev polynomial series
in 2:
L
N
F2) = )£ T (D). (10)
o=0
® Here the nth Chebyshev polynowmial rn(z) is defined by:
'rn(z) = cos (n arccos Z), (11)

for all non-negative integers n (see, e.g. Fox & Parker 1968). Some examples
e are 'ro(z) =1, TI(Z) =2, 'rz(z) - 2721, Also, if F(Z) is represented as in

(10), then:

N
F'(2) = z ff‘” T (2), 12)
* =0
with: (1 _ (1)
fo-1 = foep = 20f) sy (0> 1), (13)
° Third, the boundary layer equation is solved by discretizing x and t using
Crank-Nicolson implicit space and time differencing, in which the difference
spproximations:
} (_g%) . - rl(kmazl-r(ut) , (14)
Y (k*i) At
oF Fl(3+1)Ax])-F( jAx)
= 15)
5;) 1 Ax ’ ¢
(i07) &
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are used. At the centered points (j + 1/2)Ax and (k + 1/2)8t, these dif-

ference approximations are second-order accurate in both x and t. The fact
that (14) and (15) involves functions at the discrete points (j + 1)Ax and
(k- ¢ 1)At implies that implicit equations must be solved for the dependent

variables. These implicit equatins are set up using the Chebyshev derivative

matrix operator D defined by:
N

Pz = z(nf)n T2, (16)
=0

where Zj are the Chebyshev collocation points:

z; = cos %‘-1 . an

The resulting equation for the streamfunction is nonlinear. This non-

linear equation is solved by quasi-linearization (Newton's method). The

resulting iterative scheme is:
A= .Z%t. D - 3%; [‘!-’;q)(xj,tkﬂ) D+ -}‘ {‘P(xj*l'tk)
. "("jﬂ"kﬂ) - "("j"k) - v(q)(xj,:ku)}nz -
* 3117 ["yy(xj’tk) * "yy(xj*l’tk) *Yyy ("J‘*l’tk*l)

- \y;;) ("j"ku)] (18)

A 'y(q*l)(xj'ckﬂ) - ?(Q)(xj’tkﬂ): -
1

- . l\}'iq) (xj'tk¢1) + yy("jﬂ’tkﬂ) - "y(xj'tk) - vy("j*l’tk)]m
’[’y("ju"u)z i)’ Tyt TN ()
- %(Y(xjﬂ.tk) + "(’.‘jol'tkﬂ) -Y(xj.tk) Y(“) (xj.tkﬂ) x

'yy(‘j*l’tk)‘ 'yy(xj'tk)’ 'yy('j#l'tkol) + ";;)(*5-%1)) z—}‘;
(19)
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Typically, only a few iterations are necessary to converge. The advantage of j
this method is that it is unconditionally stable.

At the inflow location X5 Blasius flow is imposed. The Blasius equation

. .o
LW S

is solved by the Chebyshev spectral scheme outlined above, also using Newton's
method. ]
At each downstream location, the flow field can be subjected to stability

o aal .

analysis using the Orr-Sommerfeld equation applied to the instantaneous velo~
city profile. The Orr-Sommerfeld system (4) is solved using Chebyshev poly-

nomial spectral methods on the same zj grid described above. The Chebyshev
approximations permit simulations of very high accuracy. The Orr-Sommerfeld
eigenvalue problem for temporally unstable mode is forwulated as a generalized

matrix eigenvalue problem of the form:

Ad=)B o . (20)

The eigenvalues of the resulting matrix problem are found by first reducing
the problem (20) (with a singular matrix B) to a standard eigenvalue problem
of the form Ax = Ax with scalar A and then finding the eigenvalues of this
problem using the QR method (Orszag, 1971). If a good guess for an eigenvalue
is available, then the code is able to avoid the global QR computation by
using a local iuverse Rayleigh iteration method to efficiently improve the
guess. In all cases, the matrix method is designed so that the only unstable
modes that are computed (either globally or locally) are approximations to
physical modes; there are no spurious unstable modes. This feature is achieved
by writing Orr-Soumerfeld equation in such a form that the numerical method
would give a stable forward time-integration method for the linearized Navier-
Stokes equations, so spurious unstable modes (that would lead to numerical
instablity in time) cannot be present.

The code also has the optional features of obtaining the minmum critical
r’ Reynolds number at a given x-station and the neutral curve at the given

x-station. These computations are done using variants of Newton's method.

Thus, qQuick convergence of a guess to the neutral curve Im w = O is gotten

by the iterative method:

w-w(a i) , (21)
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(23)

ntl n almwz’ almwz
9 ok

Once one point on the neutral curve is obtained, additional points on it are

obtained by using as a first guess a point of the form:

dco+qlmou , (24)
oR

i-i-qg—lmw (25)
a ’

which is obtained by moving along the tangent to the neutral curve at the
computed point. .
The minimum critical Reynolds number program also uses Newton's method.

Here the iterative equations are:

unﬂ-un*da ’ (26)
R, =R +& , (21
Im w(x ,R +a—1mwa'iAu+a—-InwaiAR-0 (28)
n’ n sa n’n 9K n'' n ’
2

- In m(o X )AR =0. (29
3a 3R pn

In sumpary, the above described code uses an unconditionally stable,
spectral, accurate integration program for the solution of the time-dependent
non-self-similar boundary layer equations and both global and local spectral
methods for the solution of the Orr-Sommerfeld equation. The code is reason-

ably robust, having significant difficulty only in cases when the flow

reverses.
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&. Results and Discussion

4.1 Flow Visualization Results

. When the Blasius boundary layer was subjected to & uniform deceleration, a
wmost interesting series of events was observed. Figure 2 represents six
selected frames from a movie of the observed instabilities. The left-hand side
of each frame was at x = 92 cm, and the right~hand side was at x = 108 cm.
Fluorescent dye seeped into the laminar boundary layer through the spanwise
slot, and was illuminated by a horizontal sheet of laser light at y = 0. The
thickness of the laser sheet was about 1 mm, several times the thickness of
the undisturbed dye sheet. At a uniform speed of 40 cm/sec the boundary layer
wvas of Blasius type (see Section 4.2), and the dye sheet appeared smooth and
uniform as shown in Figure 2a. The plate was then decelerated uniformly to a
speed 30 cm/sec in 5 seconds. Two seconds after the deceleration had started,
the two-dimensional pattern depicted on Figure 2b was evident. The alternating
bright and dark bands are consistent with the passing of two-dimensional vorti-
city waves. The wavelength of the disturbance was about 5 to 6 boundary layer
thicknesses § as compared to a wavelength 88 for a Tollmien-Schlichting
wave occurring in a non-decelerating Blasius boundary layer having the same
Reynolds number. The wave phase-speed relative to the plate was about
10 cm/sec as compared to 14 cm/sec for the corresponding TollmienSchlichting
wave. The two-dimensional waves developed s three-dimensional pattern as
shown on Figure 2¢. This pattern evolved into several hairpin vortices
characterized by the bright triangles in Figure 2d. Since the thickness of
the sheet of light is larger than the thickness of the undisturbed dye, bright
regions indicate lifting and accumulation of dye. The vortices appeared in
several regular rows with a spanwise distance between two vortices of about
58 (or about the same as the wavelength of the two-dimensional waves). The
patterns continued to convect towards the trailing edge of the plate, and new
ones appeared near the leading edge. Side views of the hairpin vortices
indicated that their heads moved away from the wall. When the vortex head
reached 8 height of about half a boundary layer thickness, it then burst into
turbulence as shown in Figure 2e. The turbulent regions grew in size as shown
in FPigure 2f, and adjacent bursts coalesced. Shortly afterward, the dye

pattern indicated that the flow over the entire plate was turbulent.
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The experiments where repeated with different initial velocities in the
range 20 to 60 cwm/sec and different deceleration rates in the range 1 to
60 cu/necz. The same sequence of events described above was observed in all
runs. The length scales were not sensitive to the changes in the deceleration
rate. However, the time to complete the transition process was approximately
inversely proportional to the deceleration rate. The stages of transition are
sumnarized in the schematic depicted in Figure 3.

To gain more physical insight into the transition process in the deceler-
ating boundry layer, the above described sequence of events was also observed
using discrete lines of dye embedded into the laminar boundary layer
(Section 2.3). Figure 4 shows six selected frames from a movie of a typical
run. Before decelerating the flat plate, the dye streaks were parallel to the
flow and remained on the plate surface. The plate was then decelerated from a
speed 40 cm/sec to a speed 30 cm/sec in 5 seconds. A short time after the
deceleration had started, the two-dimensional waves with their fronts perpen-
dicular to the dye streaks appeared as alternating bright and dark bands on
each stresk as shown in Figure 4a. The waves moved in the same direction,
relative to the plate, as the ambient fluid. As the amplitude of these
twvo-dimensional waves increased, as evident by the intensification of the
contrast between the bright and dark bands, three-dimensionality developed,
the dye lines began to show a waviness that has the same wavelength as that of
the original two-dimensional waves (Figures 4b and 4c). Liepmann, Brown and
Nosenchuck (1982), in observing a somewhat similar transition process initiated
by a dynamic-heating technique, speculated that the waviness of the dye lines
indicates a loczl development of longitudinal vorticity corresponding with the
local warping of the initially parallel vortex lines. The dye became con-
centrated in regions that has been lifted away from the wall into a higher-
velocity region of the boundary layer, thereby catching up with that released
at an earlier time. The transition process continued as before until the dye

pattern indicated turbulent flow over the entire plate (Figures 4d-4f).

4.2 Hot-Film Probe Measurements

Miniature hot-film probes were used to measure the instantaneous longi-

tudinal velocity in the decelerating boundary layer. The probes were moved
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with the plate, so that all velocities recorded were relative to the plate.
Before the deceleration started, the boundary layer was of Blasius type as
shown on Figure 5. The velocity profiles are plotted in the normal boundary
layer coordinates, where the ambient speed U, is used as a velocity scale and
the length ocaliigg_ia proportional to the laminar boundaryulayer thickness 6.
5= = 6.7 x 10

(Rs* = 1400). The solid line in the figure is a numerically generated

The Reynolds num ef for the two runs shown on Figure 5 was

Blasius profile.

Figure 6 represents the instantaneous longitudinal velocity U(y) at
y/8 = 0.1, for a plate decelerated from an initial velocity v, - 40 cm/sec
to a final velocity U_ = 32 cm/sec in a time t* = 4.6 seconds. The two arrows
on the abscissa represent the starting and ending of deceleration. Initially,
the flow is laminar and the velocity at this particular elevation is propor-
tional to the towing speed. A short time* after the deceleration starts, a
sinusoidal instability is observed. 1Its peak to peak amplitude grows rapidly
as shown in Figure 6. Characteristic turbulent fluctuations are then observed,
followed by a return to the laminar state when the plate is again moving at its
nev constant towing speed. The turbulence, on the average, brings high speed
fluid from outside the boundary layer to replace the low speed fluid near the
wall. A second probe at y/8§ = 1 recorded the signal shown in Figure 7. It

is seen that the turbulent fluctuations, on the average, bring low speed fluid

from the wall region to replace the high speed fluid at y/6 = 1. Close
inspection of the instability waves near the wall and away from the wall
reveals that the two wave trains are out of phase, consistent with a spanvise
vortical motion.

The instability waves appeared from the visualization experiments to be
two-dimensional initially. To check the "degree" of two-dimensionality of
these vorticity waves, three hot-film probes were located at y/§ = 0.1 at the
same streamwise position x/L = 0.8, with a spanvise leparition of two boundary
layer thicknesses. The plate was decelerated from 40 cm/sec to 30 cm/sec in 5
seconds. The streamwise velocity signals from all three probes are plotted in

*The exact delay time betveen the start of deceleration and the onset of in-
stability is difficult to determine, since the observed waves are infinitesimal
at first.




Figure 8. The waves sre quite two-dimensional, although they have grown to

® relatively very large amplitude. Thus, the development of a “clean," two-
dimensional wave field during the initial stages of the transition process on
the decelerating flat plate contrasts with the mixed two-dimensional/three-
dimensional field for the fixed plate experiment (Anders & Blackwelder, 1979).

® The probe measurements are consistent with the qualitative visualization
experiments. The "relaminization” observed in the hot-film signal after the
plate returns to a uniform speed does not shov in the dye pictures, however,
since the dye delineates the regions of the flow which have been marked by it,

) and st any instant of time it wmainly gives information which is time-integrated

over the history of the flow from the time of release of the dye.

4.3 Numerical Results
@ The unsteady-boundary-layer system (1) was solved by expanding the flow

variables (dependence on y) in mapped Chebyshev polynomal expansions, and
discretizing x and t using Crank-Nicolson implicit space and time differencing.
The code uses an unconditionally stable, spectral, accurate integration program

® for the solution of the time-dependent non-self-similar boundary layer
equations. The code is reasonably robust, having significant difficulty only
in cases vhen the flow reverses so the boundary-layer approximation is not
valid.® This occured for deceleration rates larger than 4 cn/ucz.

o The resulting velocity profiles for a typical deceleration rate are pre-
sented in Figure 9. Here, the initisl and final speeds were 40 and 22.5 cw/sec,
respectively, and the deceleration rate was 3.5 cn/lecz. At t=0, the velocity
profile is of (inverted) Blasius type with the inflexion point at y=0. The sub-

@ sequent velocity profiles are inflexional, with the point of inflexion moving
avay from the wall on a viscous-diffusion-time scale. At large times, a new
Blasius profile is established after the inflexional point returns back to the
wvall.

o The unsteady boundary layer equation was solved for a range of initial and
boundary conditions comparable to the experimental runs., Since the solution is

non-self-similar, it is obtained at selected streamwise locations. The migra-

tion of the inflexion point for seven different deceleration rates is shown in

*Plow reversal changes the parabolic partial differential equation to an ellip-
tic one requiring both inflow and outflow boundary conditions.
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Figure 10. The position yIP(t) of the inflexion point is normalized with the

length ocale'-k-, and the time t is normalized with the deceleration time t*.
R
The initial speed wvas Uo = 40 cm/sec, and the plate vas decelerated in a

time t* = 5 seconds to a final speed U = 37.5, 35.0, 32.5, 30.0, 27.5, 25.0
and 22.5 cm/sec. The dip in the curve corresponding to s final speed

U_ = 22.5 cm/sec is an indicstion of the incipient breakdown of the k
numerical simulation as mentioned above, The inflexion point migrates farther
from the wall for high deceleration rate., It reaches a particular position
above the wall in a time that is inversely proportional to the deceleration
rate. This is consistent with the experimental observation that transition
occurs sooner for higher deceleration rates, provided that there is a “most
dangerous” location above the wall for the inflexion point.

The flow field resulting from solving the unsteady boundary-layer equation
was then subjected to stability analysis using the Orr-Sommerfeld equation
applied to the instantaneous velocity profiles. The linear stability equation
was solved using Chebyshev polynomial spectral methods (Orszag, 1971). As
expected, the inflexional velocity profiles yielded lower critical Reynolds
numbers and larger growth rates in the unstable region as compared to the
Blasius profile. The neutral stability curves during a typical deceleration
are depicted in Figure lla, and enlarged in Figure 11b, The plate was decel-
erated from an initial speed 40 cm/sec to a final speed 30 cwm/sec in 5 seconds.
At t=0, the neutral stability curve for a Blasius profile resulted. As the
plate decelerates, the inflexion point migrates away from the wall and the
neutral stability curve moves toward the left, reaching its foremost left
position at the end of the deceleration period (t=5 sec). Note that the
inflexion point for this run reaches its maximum distance from the wall at
t = 6.25 sec (see Figure 10). Finally, the inflexion point moves toward the
wall and the neutral stability curve moves back toward the neutral curve of
the Blasius profile. The unstable modes for the inflexional velocity profiles
tend to have larger wavenumbers (smaller wavelengths) as compared to the
unstable modes for a Blasius velocity profile.

The critical Reynolds number for a particular velocity profile is the
smallest value of Reynolds number for which an unstable eigenmode exists. The

behavior of the critical Reynolds number for seven different deceleration rates
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is shown in FPigure 12. The critical Reynolds number R, is normalized with

clllalius = 520),
and the time t is normalized with the deceleration time t*. The plate was de-

celerated from an initial speed U° = 40 cu/sec to a final speed U = 37.5, 35.0,
32.5, 30.0, 27.5, 25.0 or 22.5 cm/sec in a time t* = 5 geconds. The critical
Reynolds number decreases with time then tends back to the Blasius value as the

the critical Reynolds number for a Blasius velocity profile (R

inflexion point migrates back toward the wall. The lowest critical Reynolds
number decreases as the deceleration rate increases, and occurs at t/t* = 1,
For a deceleration rate of 3.5 cn/secz, the lovest critical Reynolds number
is about 20Z of the corresponding Blasius value.

The critical Reynolds number indicates qualitatively the "degree" of insta-
bility for a particular experimental condition, where the actual Reynolds
number usually far exceeds the critical one. For a certain decelerating
boundary layer, the Reynolds number changes with time at a prescribed
streamwise location on the plate. Of particular interest to the experiment is
then to determine, at & particular location on the plate, the most unstable
mode at each instant of time. Vertical scans of the stability diagrams were
conducted at the experimental Reynolds number st x = 160 cm, corresponding to
a typical observation station. The results are depicted in Figures 13 through
16,

The imaginary part of the eigenvalue w; indicates the exponential growth
(or damping) of the disturbance amplitude. Figure 13 shows the growth rate w;
versus vavelength A (E %1) for the unstable modes as a plate is decelerated
from 40 cw/sec to 30 cm/sec in 5 sec. It is seen that, for each velocity pro-
file, there exists a "most-dangerous" wavelength corresponding to the maximum
grovth rate. As time increases, this most-dangerous wavelength decreases
slightly. This is consistent with the experimental observation (Section &4.1)
that the observed wavelength in the present decelerating plate experiment is
shorter than the Tollmein-Schlichting wave in a Blasius boundary layer. In
particular, at t = 5 sec, the most-dangerous wvavelength is about 6.5 cm,
vhereas at t=0, it is 8 cm. The computations were repeated for a plate
decelerated from 40 ca/sec to 25 cm/sec and 35 cw/sec in 5 sec. The most
dangerous wvavelength at the end of the deceleration period varied in the range
of S to 7 ¢m, decreasing as the deceleration rate increased. This relative
insensitivity of the length scale to changing the deceleration rate vas
observed in the flow visualization experiments (Section 4,1).
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Unlike the wavelength, the growth rate of the disturbance depends strongly
on the deceleration rate. The maximum growth rate during deceleration for all [
three deceleration rates (1, 2 and 3 cm/oecz) is shown in Figure 14. It

increases as the deceleration takes place reaching & maximum at the end of the

deceleration period t = 5 sec, then declines moving back towards the Blasius
value. At a particular time during the deceleration, the growth rate
increases as the deceleration rate increases. At the end of the deceleration
period, the maximum growth rate for a plate decelerated to a final speed

U_ = 25, 30 and 35 cm/sec is about 5, 4 and 2 times, respectively, that

for a Blasius velocity profile.

The real part of the eigenvalue w, is proportional to the phase velocity
of the two-dimensional disturbance cp(é‘:i). Figure 15 shows the phase velo-
city versus wavelength for the unstable modes for different times during a de-
celeration from 40 cm/sec to 30 cm/sec in 5 sec. For a particular wavelength,
the phase velocity decreases as the plate is decelerated, reaching a minimum
at the end of the deceleration period. The phase velocity for the most-
smplified disturbance during deceleration is shown in Figure 16, for three
deceleration rates 1, 2 and 3 cm/lecz. Consistent with the flow visuali-
zation results, the phase velocity for the inflexional velocity profiles is
less than that for the Blasius boundary layer. For a plate decelerated to a
final speed 25, 30 and 35 cm/sec and at the end of the deceleration period
(t = 5 sec), the phase velocity for the most-amplified disturbance is 63, 74

and 87 percent, respectively, of that for a Blasius velocity profile.
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5. Concluding Remarks

The stability of the decelerating laminar boundary layer was investigated

e athea hoe ot

experimentally and numerically. The experiments were conducted in an 18-m
toving tank, using a flat plate geometry, Flow visualization and probe

measurement experiments were conducted. The flow field was visualized using

—tingh Aot

fluorescent dyes and sheets of argon laser light., The instantaneous longi-
tudinal velocity was measured using an array of miniature hot-film probes.
A Blasius boundary layer subjected to uniform deceleration undervent a
vell-defined route to complete transition. The visualization experiments
revealed the onset of two-dimensional waves that appeared after the de-

celeration had started, three-dimensionality was then apparent and led to the
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formation of hairpin vortices that lifted avay from the wall and burst into
turbulence.

The formation and growth of the vorticity waves in the decelerating laminar
boundary layer were also observed using hot-film probes. The probes were moved
vwith the plate, and indicated high speed (relative to the plate) fluid coming
from the outerparts of the ambient fluid towards the wall region. The probes
also indicated a return to the laminar state after the deceleration ceased.

The probe measurements indicated the "degree" of two-dimensionality of the
vorticity waves observed in the decelerating plate experiment. The waves were
truly two-dimensional, and that suggests the study of their instability in
order to determine the mechanism and characteristics of the development of
three-dimensionality. If there is a well-defined transition from laminar two-
dimensional waves to laminar three-dimensional waves through an instability
® process, one has identified a major link in the transition process.

The unsteady boundary layer equations were solved numerically to generate

instantaneous velocity profiles for a range of boundary and initial conditioms.

The resulting velocity profiles were inflexional, with the inflexion point
@ initially at the wall, moving upward on a diffusion time scale and finally
going back to the wall, The unsteady flow field was subjected to stability
analysis using the Orr-Sommerfeld equation applied to the instantaneous,
locsally parallel velocity fields. The generalized matrix eigenvalue problem

9 was solved using Chebyshev polynomial spectral methods (QR method).




FPor profiles at a given station x=x, the stability calculation shows
that the inflexional case has smaller wavelength, smaller phase speed and
lower critical Reynolds number than the corresponding Blasius profile. All
these trends are consistent with the observations and measurements made. This
gives us confidence that the mechanics of the initial instability is well
understood. However, the observed appearance of two-dimensional instabilities
(say, in a 5 sec deceleration run) occurs earlier in the deceleration history
(e.g. at t = 2 sec) than one would predict from the "most dangerous" profile
obtained from the stability calculations (for which one would have
t=5 sec). In this calculation we used profiles consistent with the measure-
ment station at X=X . Although one cannot rule out nonlinear effects, the
more likely reason for such "earlier" instability is the non-self-similarity
of the decelerating boundary layer. Self-similarity of the flow implies that
profiles at all stations are "equivalent” in terms of stability character-
istics. When the flow is not self-similar, the profiles at different stations
are not equivalent, each profile needs to be examined separately and the "most
dangerous” station selected. The early appearance of instabilities in the
present observations suggests that there are more unstable profiles at
neighboring stations whose instabilities propagate to the observation station
and are seen before the local profile itself becomes unstable.

In summary then we have both flow visualization and point measurements for
the instability and transition processes of flows on decelerating plates. We
have obtained theoretical descriptions of the unsteady boundary layer and its
instability to two-dimensional laminar waves. These give a consistent picture
of the early steps of the transition process.

The work on the stability of decelerating laminar boundary layers is a
step toward understanding the more complicated problem of the effects of
acceleration or deceleration on turbulent boundary layers. This problem has
obvious relevance in accelerating or decelerating vehicles, vehicles
experiencing turn and other maneuvers, rotating propellers, and many other
practical situations.

On a more basic side, the deceleration experiment offers a convenient way
to modulate laminar and turbulent boundary layers; in s way analogous to using
pressure gradient, hesting or roughness, to help determine the exact nature of
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the apparent analogies between the different transition events in & laminar
boundary layer and the intermittent events that characterize fully-developed

turbulent boundary layers, namely the bursting cycle.
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Figure 2. Instabilities in a Decelerating Boundary Layer
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Ug =40cmisec, Ueo = 225cm’sec, t* = Ssec




. - w
A AT AR St St s St e B e

NN

. "y R
PATPIrRy BN

2.5

RO

2.0 Uo =22.5 cmisec

b 0.0 0.5 1.0 1. S .0 e ¢
th*
Fp Figure 10. Migration of the Inflexion Point During Deceleration

Up = 40 cmisec, t* = Hsec
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VISUALIZATION TECHNIQUES FOR STUDYING
TRANSITIONAL AND TURBULENT FLOWS¥*

M. Gad-el-Hak, R. P. Blackwelder** & J. J. Riley
Flow Research Company
Kent, WA 98032

A comparative analysis of different slot injection techniques were used
to visualize a transitional boundary layer. The methods included injecting
either conventional dye, a fluorescent dye excited by a sheet of laser light,
or reflecting micro-platelets which tend to align themselves with the instan-
taneous shesr stress in the fluid. All three techniques were used to visualize
two different transitional flow fields; a turbulent wedge behind a single
roughness element and a turbulent spot developing in a laminar boundary layer.
Each method gives a different, unique and complementary view of the flow
structure.

1. Introduction

Flow visualization is the oldest method known for the study of fluid
wechanics. Historically, visualization methods have included fluid marker and
particle techniques. In the former method, a colored marker is injected into
the flow, with as little disturbance as possible, and the resulting streak
lines or sheets are observed to learn more sbout the flow field. In the second
technique, particles sufficiently small to follow the fluid motion are placed
in the flow field and their trajectories sre followed to obtain information
about the fluid displacements and velocities. The major disadvantage of the
first method is that the observed marker illustrates the integrated history of
its motion and it is difficult to glean information about the present velocity
field. Consequently the observed results are often strong functions of the
point of injection, By tracking individual particles, on the other hand,
* This work is supported by the Air Force Office of Scientific Resesrch,

Contract No. F49620-82~C-0020 and the Office of Naval Research, Contract
Wo. NO0O14-81-C-0453, '

**Permanent address: Department of Aerospace Engineering, University of
Southern Californie, Los Angeles CA 90089-1454.
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larger scale correlated motions associated with eddy structures are often
overlooked because the particle responds equally well to the smaller scale ]
uncorrelated motions. 1
During the past few decades many improvements have been made in flow vis- :
ualization. In liquids, the use of photochromic dyes, fluorescent dyes, hydro- g
gen bubbles, and related methods have been instrumental in increasing our .
understanding of low-speed fluid mechanics. Recently, a new visualization )

method of eddy structures in a transitional flow was reported by Carlson,
Widnall and Peeters [1]. They filled a 0.6 cm x 80 cm x 410 cm channel flow
with titanium-dioxide~coated mica platelets which were 10-20y in diameter, 3-4y
thick, and had a specific gravity of 3. These disks were sufficiently small
that they presumably align themselves with the instantanecus shear stress
present in the fluid as long as the length scales of the eddy structures are
greater than the dimercsions of the platelets. Although the mica particles are
larger, the technique is similar to the aluminum flakes used by Cantwell, Coles
and Dimotakis [2].

In the channel flow study of Carisom ot al. [1] a transitional turbulent
region embedded within the laminar fiow field was observed to grow as it moved
downstream similar to the turbulent spot in a transitional laminar boundary
layer. Waves were observed to emanate txom the turbulemt region into the sur-
rounding laminar flow. The waves were oblique with respect to the mean flow
and were the predominate structure observed in the photographs., Since they had
not been observed before using more conventional visualization techniques, it
wvas conjectured that similar wave patterns may be present in a transitional
boundary layer flow. Thus the present coaparative study in boundary layers was
undertaken to determine if this new technique might divulge some nev informa-
tion on turbulent regions in a transitional boundary layer.

2. Experiwental Apparatus

The visualization tests were conducted in g towing tank that is 1.2 m
vide, 0.9 m deep and 18 = long as described by GCad-el-Hak, Blackwelder and
Riley [3]. The flat plate plexiglas test model was 210 cm long and 106 cw
wide and had a trailing edge flap to adjust the stagnation point on the working
side of the elliptical leading edge. The stresamwise coordinate, x, is taken
from the leading edge, y is perpendicular to the plate and z is the spanvise
coordinste. The plate was aerodynamically smooth so that natural transition
only occurred at lcx>106. Turbulent wedges were formed behind 1.0 cm diameter,
0.6 cm high cylindrical roughness elements placed at x = 120 and 128 cm.
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Turbulent spots were initiated by small momentary jets of fluid emanating from
a 0.5 sm hole 46 cm dovnstream of the leading edge. The plate was towed at
25 cm/sec in the experiments reported here.

For the mica platelets experiments, a water suspension of the platelets
was made at s concentration of 22 by weight. This suspension and the dyes
were injected through two different slots located at x = 75 c¢m and x = 123 cm.

Each slot was inclined 45° with respect to the downstream direction and had a

slot width of 0.4 sm. The upstream slot spanned 50 cm and the downstream slot

P

was 15 cm wide.

3

In the fluorescent dye experiments, a dye (trade name Fluorescein) was

) v

excited by a 5 watt argon laser (Spectra Physics, Model 164). A sheet of light

1 mm thick in the x~z plane was produced by reflecting the laser beam from a
small mirror which oscillated at 500 Hz., Flood light illumination was used
for the conventional food coloring dye (Red dye No. 40). Six 600 watt flood

lights were projected onto the plate from an acute angle of 45° with respect

¥

to the y axis. For the platelets, four 600 watt lamps were sligned parallel
to the x axis on each side of the tank at y = 0.

p Photographic records of the flow fields were obtained using 35 mm cameras
and also 16 mm cine films. Both cameras were located perpendicular to the

plate over the desired streamwise location.

3. Turbulent Wedge Results
o Figures 1, 2 and 3 show the flow field behind roughness elements for the

conventional dye, the platelet suspension and the Fluorescein dye respectively.
In all three cases, one roughness element is located 3 cm upstream gnd one

5 cm downstream of the dye slot. The roughness element introduces a horseshoe
vortex into the flow field with its legs downstream of the element. First,

» consider the element positioned after the injection of the marked fluid. The
horseshoe vortex removes the dye from the wall directly upstream and to the
sides of the eslement. This fluid is displaced upward as the vortex continues
to vrap the marked fluid around its legs, leading to a different visualiza-

tion in all three cases. In the conventional dye method, Figure 1, an inte-

) grated view across the entire boundary layer is seen. The marked fluid gives
the appearance that the wake is narrower 3-6 diameters downstream than is
indicated by the other figures. PFurther downstresm, filaments of dye are seen
crossing the wake at oblique angles. 1In Figure 2, the additional platelets in
the edges of the vake 3-6 dismeters downstream are aligned by the stress

9 imposed by the legs of the vortex. Being sligned perpendicular to the light
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source provides greater reflection and hence a sharper contrast in that region.
In Figure 3, the sheet of laser light is 5 mm above the wall. Consequently no
visual results are obtained until the flow field elevates the Fluorescein to
that location. In addition, the relaxation time of the stimulated dye is much
shorter than the time scales in the flow, so only dye within the laser gheet is
seen. The turbulent structure observed in Figure 3 must be associated with the
filaments of dye seen in the integrated view of Figure 1.

The roughness elements placed upstream of the injection slot create a dif-~
ferent image of the wake. In all three figures, this configuration shows that
the wake is much more turbulent than it appears behind the dovnstream element
even though the wake structure must be similar in both cases since their
Reynolds numbers are comparsble. This results from the marker being injected
into the flow after it had become turbulent in contrast to the previous case

in which the marker was injected into a laminar flow that subsequently became

turbulent. Io all three figures, the horseshoe vortex around the downstream
element removed the marked particles from the wake region prior to tramsition
thus creating a wake devoid of marked particles. The contrast in each figure
illustrates that the present location of the marker is a strong function of its
past history which can make it difficult to obtain quantitative data from such

photographs.

4. Turbulent Spot Results
When initiated from a point gource in an unstable laminar boundary layer,

it is well documented that a turbulent spot maintains ap arrrowhead shape ss
it grows downstream. Examples of this classical phenomenon are shown in
Pigures &, 5 and 6 for the conventional dye, the platelet suspension and the
Fluorescein dye respectively. The classical arrowhead-shaped patch of turbu-
.. lence is readily apparent in sll three figures; however each technique displays
different features. In Figure 4, the dye provides g spatially integrated view
of the turbulent spot, without any details of its internal structure. The tips
of the spot, i.e. the spanwise extremities, are relatively darker because they
are continually engulfing new marked fluid as the spot moves downstream. In
e the triangular-shaped region behind the spot where the velocity profiles are

stable (4], thin streamwise filamente of dye are observable. These are felt
to be remnants of streamwise vortices associated with the spot.
The eddy structure within the spot appears more vividly vhen visualized
with the platelet solution as seen in FPigure 5. The approximately instantaneous
@ response of the mica platelets is particularly more evident around the leading
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edges of the spot, vhere much more details of the breakdown of laminar fluid

into turbulence are observed. In the calmed region, the elongated streamwise
streaks are present at least 1-1/2 gpot lengths upstream as in Figure 4. Since
the streaks disappear approximately one second after the spot passage, their
disappearance may be due to the relaxation time of the platelets rather than
the disappearance of a strong stress associated with streamwise vortices. The
regions near the tips sppear to contain more randomness suggesting s greater
mixing. Similar results were also found by Carlson et al. {1} in turbulent
regions developing in plane Poiseuille flow.

A cross sectional slice of the spot visualized by a sheet of light roughly
5 mn above the wall is seen in Pigure 6. As in Figure 3, no manifestation of
the spot is evident until the dye has been elevated into the light sheet.
When the light sheet was lower, as in Gad-el-Hak et al. [3], evidence of the
trailing streaks was quite evident. Since they are not as prominent in
Figure 6, the streaks must only occur very near the wall. Near the edges of
the spot the dye lines are sharp, indicative of the initial breakdown into
chaotic motion. Toward the middle of the spot, the dye becomes more diffused
because the turbulence there is older and more mixing has occurred.

The platelet solution was used to obtain the magnified view of the nose
of the spot seen in Figure 7. A higher flow rate through the injection slot
wvas used than for Figure 5; consequently a different impression of the
turbulent spot is obtained. Disturbances in the laminar flow are seen before
the breakdown into turbulence becomes apparent. With suspensions having higher
concentrations of platelets, these disturbances are seen further upstream as
found by Cantwell et al. [2]. Inside the spot, greater evidence of the turbu-
lence is seen in Figure 7 than in Figure 5.

Figure 8 shows a magnified section of the spot's nose at an elevation of
5 mm using Fluorescein dye. Greater detail of the turbulent eddies can be seen
in this slice through the spot compared to the integrated view in Figure 7.
S8ince the dye has not been elevated into the sheet of laser light, the precur-
sive disturbances shead of the spot are not seen here.

5. Conclusions

Comparing results from the three marker techniques illustrate that each
responds differently to the same flow field. The conventional dye is strictly
passive and slways provides a spatiaslly integrated view of the observed
structure. Thus, details of the internal structure of the flow field are
difficult to obtain. The Fluorescein dye disperses in the same manner as the
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conventional dye, but is only observed when excited by light of a given wave-
length. By using sheets of such light, cross-sectional views of the flow can
be obtained, yielding greater detail of the eddy structures. The platelet
suspension is dispersed as are the two dyes. But the platelets align them-
selves with the shear stress imposed upon them by the flow, thus giving a more
instantaneous view of the stress within the flow field. Since they reflect
the imposed illumination, the platelet results also depend, to some extent, on
the direction of the illuminatiom.

The visual images obtained by all three techniques are sensitive to the
flow rate at the injection slot. The only known systematic study of this para-
meter has been by Oldaker and Tiederman [5] during a study of low-speed streaks
in a turbulent flow. Comparison of Figures 5 and 7 indicate that this parameter
is quite important in interpreting visual results and understanding the eddy
structure in the near wall region. For example, with the low injection rate in
Figure 5, stresmwise stresks are observed under the nose whereas with the higher
injection rate in Figure 7, eddy structures similar to Falco' pockets [6] are
seen.

Lastly, no wave structure comparable to that reported by Carlson et al.
[1] was found surrounding a turbulent spot in a laminar boundary layer suggest-
ing that they may be only manifested in the transitional channel flows and not
in boundary layers. However, this result can not be regarded as conclusive
because the waves may be on a higher elevation above the wall than the slot
injected particles and thus would not be visualized. The trailing waves of
Wygnaoski, Baritonidis and Kaplan (7] were also not observed for possibly the

same Teason.
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