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ABSTRACT

This paper discusses l ..lnatory s acguisition, a learning technique with
several interesting properties. It does not require a teacher or concept matching
predicate to be provided. It does not rely on searching a concept space to produce
generalizations. It can acquire a new concept based on only one input example,
although later inputs might result in refinement of learned concepts. These features
are made possible by taking a very knowledge-based approach. The concepts that are
learned are problem-solving schemata. Thus, the technique is not applicable to all
types of learning. However, it provides a unique perspective on a large and
interesting class of learning.

Subfield: Learning and Knowledge Acquisition
Category: Short Paper
Text Length: 2217 words

This paper gives an overview of a learning technique being developed at the
University of Illinois. The technique, called exaltoyie a isiU has
some interesting properties. For example, it does not require a teacher or other
oracle to select important examples; it is capable of one trial learning; and con-
trary to Mitchell's recent taxonomy of learning systems [141, it does little or no
searching in the process of acquiring a new concept.

Before describing the technique we will pause briefly to consider what we might
call the "standard theory of concept formation." This approach underlies much of the
concept learning work in psychology and AI. In the standard theory, a system Is
given a number of inputs. Each input is composed of a set of features. A concept is
a conjunctive and/or disjunctive combination of features. An input with the proper
combination of features is an instance of the concept; otherwise it is not an
instance. A teacher, usually a human, supplies sample inputs to the system together
with the information of which concept (if any) the input is a concept of. The
system's task is to discover the combination of features that compose each concept.
This approach has been fruitfully applied to many diverse domains (for example, [12],
[13], (21]) and is a cornerstone of the field of inductive inference.
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under grant Fi9620-82-K-0009 and in part by the National Science Foundation under
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Now we can ask how we might construct an untutored concept learning system. At
first this seems a bit of a nn sgultur. Removing the teacher appears to result in
no learning at all. Also the notion forming a concept from a single input seems
suspicious.

N The key is to adopt a much more knowledge-based approach. The learning algo-
rithm to be described requires access to a large amount of domain knowledge. It is
through reconciling a new input to the domain knowledge that learning and generaliza-
tion occurs.

This is NOT to say that the proposed learning technique is domain specific.
-Techniques specific to a particular domain would be ja ho= and of very limited
theoretical interest. Rather, explanatory schema acquisition is domain independent.
Indeed, it has already been applied to three very different domains. The approach
doest however, require access to a rich domain model. It is interaction with this
rich domain information that determines whether or not concept acquisition is possi-
ble or desirable for a new input. The interaction also guides the generalization
process.

Z. ExpanatrX ZgJ1ema Acui~ion~
The process involves three logically distinct (but possibly temporally con-

current) processes:

1) The new input is understood.
2) The input is evaluated to see if schema formation is warranted.
3) The input is generalized to a new schema.

For illustrative purposes we will assume that the input is the following brief
natural language story. The assumption of natural language input is not necessary
and, indeed, one of the current applications involves robot arm planning which, of
course, is non-linguistic.

John, a bank teller, discovered that his boss, Fred, had embezzled $100,000.
John sent Fred an inter-office memo saying that he would inform the police
unless he was given $15,000. Fred paid John the money.

.. Understanding the In
The requirements on the understanding process are not controversial. By "under-

standing" we mean nothing more than constructing a causally complete representation
of the input. This requires that any crucial information missing from the story must
be inferred and that the causal relations between components be discovered and made
explicit. While this is not an easy task, it is one which has been the focus of a
good deal of research, particularly for natural language texts ([1], (3], (10), (17],
E19]).

We require that our representation have one component that is not generally
included by understanding systems. We require that the understander maintain data
dependency links ([41, [6]) justifying each element in the representation. The links
connect each representation event with all of the inference rules from the domain
model that were used to justify the event during the understanding process. This
includes all causal information, goal enablements, planning information, etc. This
makes explicit in the final story representation the reasons the system had for con-

.necting events In a particular way. For example, in the blackmail story John'sdemanding that Fred give him $15,000 is explicitly mentioned. The system must infer



- - -. -. - . -. - - -. '.... - 7- . -
'  7 X 7. -. 7..-. .. . .

P.

that John has the goal of possessing the $15,000. This is a necessary inference. A
system cannot be said to have "understood" the input (in any sense of the word) if it
does not make this inference.

We require not only that the inference be made but that it be Justified by
including data dependency links to the appropriate inference rules. In this example,
the relevant inference rules state that all volitional actions are done in service of
goals and that any kind of reguest is probably done in service of the goal of pos-
sessing the requested object.

By and large, current understanding systems do not include these backpointers to
inference rules in the final representation. References to the inference rules
exist, rather, only in a trace of the understander's processing. In most current
systems they are available but simply not included. We will insist that they also be
explicitly stated in the understood representation. We call the amalgam of all of
these data dependency links the I c Justification etwork.

*. a. 22 Generalizg = k otoemnlize
There are five aspects to be considered when deciding whether or not to general-

ize an input into a new schema. By hypothesis we will assume that the input did not
match an existing schema (if it had then the system already possesses the desired
schema and indeed that schema would have been used to process the story). If any of
these five conditions does not hold, constructing a new schema from this input is
inappropriate.

The criteria are:

1) Is the main goal of a character achieved?
2) Is the goal a general one?
3) Are the resources required by the goal achiever generally

available?
.4) Is this new method of achieving the goal at least as

effective as the other known volitional schemata to achieve
this goal?

5) Does the input match one of the known generalizedable
patterns?

These criteria are tested for all goals in the story. The first criterion "Was
the goal achieved?" is self explanatory and easily judged. The second "Is it a gen-
eral goal?" and the third "Are the resources generally available?" require some dis-
cussion.

Novelty alone in an approach to achieving a goal is not sufficient to warrant
constructing a new schema. Consider, for example, a plot from the "Mission Impossi-
ble" television series. These plots are noteworthy in that they are very novel. They
all use bizarre methods to achieve rather peculiar goals. Furthermore, they are
always successful. However, the goals achieved are not the type that arise in ordi-
nary life and the resources and skills needed are so specialized and uncommon that
the same solution would never be applicable again.

Clearly a new schema should be constructed only if there is a reasonable expec-
tation that it will be helpful in future processing. If a schema will never be used
again, it should not be constructed in the first place.

How can the utility of a particular goal be judged? The answer to this is
closely tied to where goals come from. Achieving a goal which arises from general
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conditions important to an individual's well-being and using readily available

resources is likely to result in an interesting new schema, one which will arise
again and again. For the solution, we use an aspect of Schank & Ableson's theory of
planning [16]. In their view t g give rise to the highest level goals (goals
which are not simply subgoals in the achievement of other goals). Interpersonal and
L themes are what we are interested in. An example of the former is a husband
offering (and therefore, at some level, wanting) to type a term paper for his over-
worked student wife. Examples of the latter are attempting to satisfy one's hunger,
to gain money, or to relieve boredom. Life themes give rise to goals that require no
further justification. Our example, which demonstrates a new way to gain money,
relates directly to a life theme and therefore satisfies this criterion.

Criterion 4 is self-explanatory. The idea is that the system should not bother
constructing schemata that are much less efficient than similar already-known sche-
mata. In a natural language input this would occur only if a character were using a
highly sub-optimal plan. This criterion is somewhat application dependent. For cer-
tain applications one might wish to construct all possible new schemata, even those
stemming from bad examples.

The fifth criterion has been discussed elsewhere [2]. As this is a short paper
describing on-going research it is not appropriate to repeat it here. Suffice it to
say that there is a taxonomy of explanatory acquisition techniques: schema composi-
tion, secondary effect elevation, volitionalization, and schema alteration. The
technique that is matched has implications for exactly how the generalization is per-
formed.

Z.M. &he Generalization Process

Assuming the input is completely understood (with data dependency links to
inference rules justifying the understanding) and the five tests for learning have
all been met, we must now perform the actual generalization. The generalization pro-
cess consists in replacing the objects and actions in the understood representation
with abstract counterparts. These counterparts are the most abstract possible while
still preserving the validity of the inference justification network.

Consider again the example of John blackmailing Fred. One proposition that is a
part of the understood representation is that Fred decided to pay John $15,000. This
decision event is not mentioned in the story; it is one of the events that must be
inferred during understanding to build a causally complete representation. This
action is justified to the system by a number of other propositions. Among these
supporting propositions are some supplied by the schema DECIDE (which we assume the
system already possesses). These inferences from DECIDE are:

1) The decider must be at least a higher animate.
2) The decider must be capable of a number of alternative

possible actions.
3) The decider must know what the alternatives are.
4) The chosen alternative will be among the most beneficial/least

detrimental to the decider.

Thus, these (and other) justifications are tied to the representation of Fred's
decision through data dependency links. Fred's decision is believable to the system
because Fred, in fact, is a higher animate, he knows at least two alternatives - pay-
ing John or losing the $100,000 and being arrested, and 3) he probably sees losing
$15,000 as less detrimental than losing $100,000 and going to jail. These



justifications are supplied in the form of pointers to the above inference rules dur-
". Ing the understanding procedure.

Now consider the process of generalizing the amount of $15,000. This money
appears several places in the representation. Among them is Fred's decision to give
the money to John. The generalization process asks "What are the constraints that
the $15,000 must satisfy?" They are: 1) Fred must possess it or be able to get it
and 2) Fred must value it less than the alternative. Thus, the system realizes that
values other than $15,000 would also work. Any amount would work such that 1) Fred
can raise that-amount and 2) Fred would still prefer giving it up to the alternative.
Thus the amount of $15,000 is replaced by a schema variable with the appropriate
binding constraints. Of course, Fred is also generalized. He is replaced by a
schema variable that must be a human who has performed an illegal act that is known
to a person who is the schema variable replacing John. Thus the binding constraints
on the variable that replaces $15,000 are specified in terms of the variable that
replaces Fred. Events are generalized as well. The event of John sending Fred an
interoffice memo is generalized to any communication method. The system realizes via
the inference justification network that the important effect of that event is to
achieve a certain mental state in Fred. The precise method is of no importance.
Some elements of the input story are totally discarded. For example, the fact that
Fred is John's boss is not mentioned in the inference justification network. It is
therefore eliminated the new schema.

Through these and other generalizations the system can construct a first version
' of a BLACKMAIL schema. The schema might not be perfect. There may be later stories

that do not quite fit and require further modification of the schema. However, it is
* a reasonably general schema that is likely to help a good deal in processing future

similar stories.

There are several concluding points

1) Unlike many learning system (e.g., [9], [12], [21], [23]) explanatory schema
acquisition does not depend on correlational evidence. It is capable of one trial
learning, but the learning is not based on analogical reasoning like [20] and [22].
It is somewhat similar to Soloway's view of learning [18]. There is also some resem-
blance to the MACROPS notion in the STRIPS system [5].

2) The approach is heavily knowledge-based. A great deal of background knowledge
must be present for learning to take place. In this respect explanatory schema
acquisition follows the current trend in Al learning and discovery systems perhaps
traceable to Lenat [11].

3) The learning mechanism is not "failure-driven" as is the MOPs approach ((153, [8],
[10]). In that view learning takes place in response to incorrect predictions by the
system. In explanatory acquisition learning is usually stimulated by positive inputs
which encounter no particular problems or prediction failures.

4) The absolute representation power of the system is not enhanced by learning new
schemata. This statement is only superficially surprising. Indeed, Fodor [7] shows
that this must be true of all self-consistent learning systems. Explanatory schema
acquisition does, however, increase processing efficiency. Since all real-world sys-
tems are resource limited, this learning technique does, in fact, increase the
system's-processing power.
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