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I. INTRODUCTION

The objective of the wind tunnel test program was to obtain data on a
nonaxisymmetric projectile shape which could be used for comparison with
computation. Most of the computational effort within the Aerodynamics
Research Branch of the Launch and Flight Division has been directed toward
axisymmetric projectile shapes; however,recent efforts have been in the direc-
tion of increasing the computational capability for nonaxisymmetric shapes,
including finned bodies. The specific projectile shape with a nonaxisymmet-
ric boattail, as shown in Figures 1 and 2, was chosen for the experiment as a
result of our past experience with this nonconical projectile shape. The
aerodynamic characteristics of nonaxisymmetric boattail shapes have been
examined to some degree at the BRL since 1974. The terms nonaxisymmetric,
nonconical, and unconventional are used interchangeably in this report. The
nonaxisymmetric boattail is wusually formed by a number of flat surfaces
inclined to the model axis as opposed to the conventional axisymmetric conical
boattail. For example, three surfaces of sufficient length would develop into
a triangular base (Figure 2), or four flat surfaces would develop into a
square base. All data for this report are for the one-caliber seven-degree
triangular boattail shown in Figure 2. Platoul™ has examined several non-
conical boattail configurations in recent years including triangular, square,
cruciform, and modified square and triangular boattails with added 1lifting
surfaces. The general findings of Platou are that nonconical boattails
reduce drag and increase the static stability of projectiles when compared to
conical boattails. For spinning projectiles, the boattail surfaces must be
twisted at the same rate as the rifling twist to avoid an excessive despinning
moment. Zumwalt's® trough-like base region has similarities to the cruciform
configuration of Platou. Zumwalt found that the effect of adding the trough
to the base was to increase the base pressure by a factor of two at Mach 2

1. Platou, A.S., "An Improved Projectile Boattail," ARBRL-MR-2395, U.S. Army
Ballistie Research Laboratory, ARRADCOM, Aberdeen Proving Ground,
Maryland 21005, July 1974  (AD 785520).

2. Platou, A.S., and Nielson, G.I.T., "An Improved Projectile Boattail. Part
II," BRL R 1866, U.S. Army Ballistic Research Laboratory, ARRADCOM,
Aberdeen Proving Ground, Maryland 21005, March 1976 (4D A024073).

3. Platou, A.S., "An Improved Projectile Boattail. Part III,'" ARBRL-MR-2644,
U.S. Army Ballistic Research Laboratory, ARRADCOM, Aberdeen Proving
Ground, Maryland 21005, July 1976 (AD B012781L).

4. Platou, A.S., "An Improved Projectile Boattail. Part IV," ARBRL-MR-02826,
U.S. Army Ballistic Research Laboratory, ARRADCOM, Aberdeen Proving
Ground, Maryland 21005, April 1978  (AD B027520L) .

5. Zumalt, G.W., "Experiments on Three-Dimensional Separating-and-Reattaching
Flows," AIAA Paper No. 81-0259, AIAA 19th Aerospace Sciences Meeting,
January 1981.



and a factor of four at Mach 3. Reference 6 compares measured pressures on a
nonconical boattail with pressures obtained by inviscid computation. Quali-
tatively, the inviscid computation predicted the correct trends: however, the
quantitative agreement was generally poor. More recent computations by
Sturek’? using a parabolized Navier-Stokes code showed a much improved agree-
ment 1in comparison of pressure distributions over the nonconical boattail.
Reference 6 also reports comparisons of experimental nonconical static
stability results with computational results for axisymmetric shapes having
similar moments of inertia characteristics. The results show that the non-
conical boattail increases the static stability and in some cases the stabil-
ity is greater than that of a straight cylindrical (0°) boattail. Danberg
and Tschirschnitz® obtained pressure measurements in the boattail region of
axisymmetric and nonaxisymmetric configurations at transonic speeds. Inte-
gration of pressures over the boattails showed that the nonaxisymmetric
(triangular) boattail reduced total projectile drag by approximately 15% and
increased the static stability with respect to the conical boattail configura-
tion. The static stability for the nonconical shape was, however, not as
good as the high drag straight cylindrical configuration. Platou® has extend-
ed the concept of the nonconical boattail to forward facing flats on the
model, which gives the model corkscrew -like characteristics. Reference 9
describes a study of corkscrew configurations which have the potential of
further decreasing projectile drag.

[T. EXPERIMENTS

The wind tunnel tests were conducted in the Supersonic Wind Tunnel No. 2
of the Naval Surface Weapons Center (NSWC), White Oak Laboratory, at Mach
Numbers of 0.91 and 3.02. Data were acquired at angles of attack of -5 to 15
degrees for M = 0.91, and -5 to 12.5° for M = 3.02. The procedure of acquir-
ing the data was to fix the roll orientation to one of the positions shown in

6. Kayser, L.D., and Sturek, W.B., "Aerodynamic Performance of Progjectiles
with Adxisymmetric and Non-Axisymmetric Boattails," ARBRL-MR-03022, U.S.
Army Ballistic Research Laboratory, ARRADCOM, Maryland 21005, May 1980
(AD A086081).

7. Schiff, L.B., and Sturek, W.B., "Numerical Simulation of Steady Supersonic
Flow Over an Ogive Cylinder Boattail Body," ARBRL-TR-02363, U.S.
Army Ballistic Research Laboratory, ARRADCOM, Aberdeen Proving Ground,
Maryland 21005, September 1981 (AD A106060).

8. Danberg, J.E., and Tschirschnitz, R.H., "Transonic Pressure Distribution
and Boundary Layer Characteristic of a Projectile with an Asymmetric
Afterbody," Technical Report 243, University of Delaware, June 1981.

9. Platou, A.S., "Decreasing the Flight Time of Bullets by Improving Its
Aerodynamic Characteristice," ARBRL-MR-03103, U.S. Army Ballistic Research
Laboratory, ARRADCOM, Aberdeen Proving Ground, Maryland 21005, May 1981
(AD B058203L).



Figure 4, and then pitch the model through the angle-of-attack range. Aerody-
namic force and moment measurements were obtained by means of an internal
strain-gage balance. The following forces and moments were measured: normal
force, pitching moment, side force, yawing moment, and rolling moment. Supply
pressure and temperature for the M = 3,02 runs were 221 kPa (32 psia) and 322°
K, respectively,which yielded a model-length Reynolds number of 5.0 x 108, The
supply pressure and temperature for the M = 0.91 runs were 101 kPa (14.7 psia)
and 322 K,which gave a model-length Reynolds Number of 4.5 x 106,

ITI. DATA PROCESSING

Data were supplied by the NSWC with the usual bias corrections for flow
angularity; for example, it is assumed that normal force and pitching moments
must be zero at zero angle of attack for appropriate configurations. An
initial examination of the data showed that the effects of varying the roll
attitude of the model were very small; for this reason, the data were further
processed with the hope that the effects of roll could be adequately extrac-
ted. The pitch plane data, for a given roll orientation, was fitted with a
cubic spline; Figure 4 is an example of such a curve fit. When all data had
been curve fitted, incremental coefficient values were computed by subtracting
coefficient values at zero roll angle from coefficient values at positive
angles of roll. Figures 5a, b, c are examples of some results. Some of the
results are reasonably good (Figure 5a) and other results are rather poor
(Figures 5b and c). Conditions of symmetry dictate, theoretically, that Cy

and C, are symmetrical about ¢ = 60° and that Cy, C,, and C2 have odd symmetry

about ¢ = 60°, Therefore, in an attempt to further improve the quality of
results, conditions of symmetry were forced upon the data by appropriate
averaging.

IV. ERROR ANALYSIS

Initially, it was considered that the order of magnitude of the error
could be estimated by assuming a measurement accuracy of one percent of the
full -scale measuring capacity. Table 1 shows this error in percent of the
maximum coefficient value measured. For normal force and pitching moment
coefficients, the 1% criterion would indicate good quality data. The 1%
criterion for incremental coefficient values at Mach 3.02 gives large errors
which are in the range of 94 to 500%, but at Mach 0.91, the 1% criterion is
not so severe although it still suggests moderate to large errors of 9 to 52%.
It may be difficult to show by conventional error analysis that measurement
errors are substantially less than one percent; however, experience has some-
times shown that when bias errors are removed from the data, considerable
improvements are exhibited.

Because of symmetry, as indicated above, many comparisons of data repeat-
ability could be made. If it is "assumed" that the correct data value is the
average of all repeated measurements, then an indication of the error is the
difference between the average value and the measured value. For each coeffi-
cient, approximately 10 errors were computed for the angle-of-attack range and
a standard deviation computed for each coefficient. These values are tabula-



ted in Table 1 and are believed to be reasonably good indication of error
magnitude. The normal force and pitching moment errors vary from 0.1 to 0.3%,
which is considered very good. The incremental coefficient values, due to
change in roll orientation, vary from good to poor in quality. The standard
deviations for Mach 3.02 are seen to be much smaller than the error determined
by the one-percent criterion, which indicates that the balance and measuring
systems were functioning well. It s surprising to note that the standard
deviations for side force and yawing moment at Mach 0.91 are larger than 1%
errors. This situation may indicate that some unexplained flow phenomena have
existed at the transonic Mach number.

V. COMPUTATIONS

Recently, Sturek” has been using the thin-layer parabolized Navier-Stokes
(PNS) code to compute flow over various projectile shapes. The PNS code used
is that reported by Schiff and Steger. (Details of the notation, the PNS
assumption, derivation of the algorithm, the associated stability analysis,
and application of the boundary conditions may be found in Reference 10.) PNS
computations were carried out for the nonconical shape at Mach 3 and angles
of attack of 4, 6, and 10°. For each angle of attack, a solution was obtained
over the axisymmetric portion of the projectile shape; then the solution was
picked up and marched over the nonaxisymmetric boattail for boattail orienta-
tions of 0 to 60° (see Figure 3) in 10° increments. Generally, 36 circumfer-
ential points are used for axisymmetric shapes; however, for this computation
the number of points was increased to 72. At each of the 72 points, in the
circumferential direction, were 50 points normal to the surface. Thus,at each
computational plane normal to the axis of the model there were 3600 points.
It should be noted that the spacing of the points was not constant in the
normal direction, but the spacing in the circumferential direction was constant
at 5° intervals. The total number of computational planes over the entire
model was approximately 700 with 120 (of the 700) being placed over the boat-
tail section of the model. The spacing of the points along the longitudinal
direction was constant.

VI. RESULTS

Tabulated results of the experimental data are presented in Appendix A.
The tables include normal force and pitching moment coefficient data and
incremental coefficient data for normal force, pitching moment, side force,
yawing moment, and rolling moment. The incremental coefficient values are
referenced to the ¢ = 0° roll orientation; therefore, for side force, yawing
moment, and rolling moment, there is no difference between the actual coeffi-
cient values and the incemental values.

10. Schiff, L.B., and Steger, J.L., "Numerical Simulation of Steady Supenr-
sonic Flow," AIAA Journal, Vol. 18, No. 12, December 1980, pp. 1421-1430.
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Normal force and pitching moment data at zero roll are presented in
Figures 6a and 6b. Mach 3 computations at 4, 6, and 10 degrees angle of
attack are included and the agreement between computation and experiment is
very encouraging. Similar plots at other roll positions are not included
because the effect of roll, as will be shown, is very small. Figures 7a and
7b provide a summary of the static force and moment data for the nonconical
boattail (SOCBT-NC) configuration along with data for two axisymmetric config-
urations -- an ogive cylinder (SOC) and and ogive cylinder with a 7° conical
boattail (SOCBT). Coefficients for the axisymmetric SOC and SOCBT shapes are
independent of roll orientation and are therefore shown as constant values in
Figure 7. At Mach 0.91, we see that the static moment for the nonconical
shape does not vary significantly with roll orientation. Also, it is seen that
the static moment for the nonconical shape is smaller (more stable) than that
of the SOCBT shape, but it is still larger than that of the high drag SOC.
Danberg® made similar comparisons at Mach 0.94 for the following three after-
body shapes: (1) 1.44 caliber, 7° triangular boattail; (2) 1.44 caliber
straight cylindrical boattail; (3) 1.46 caliber axisymmetric boattail (0.96
caliber cylinder + 0.5 caliber, 7° conical). Their findings are similar to
the above results and show that even in the most unfavorable orientation, the
triangular afterbody is more stable than the conventional conical boattail
shape but not as stable as the high drag cylinder. Although no drag results
were obtained in this investigation, Danberg found the boattail drag of the
triangular shape to be only 48% of the drag of the conventional boattail,which
resulted in an estimated overall drag reduction of 15.5%. At Mach 3, Figure
7b, computational results are compared to experiment; the agreement with CNa

is very good but the agreement with Cma is not quite as good. Both computa-

tion and experiment chow only slight variations with roll orientation. Again,
the nonconical boattail is seen to decrease the static moment with respect to
the conical boattail, and at this Mach number (3.0) the static moment is
approximately equal to that of the cylindrical boattail shape (SOC).

The small variation of normal force with roll is illustrated, computa-
tionally, in Figure 8a where normal force coefficient is plotted on a highly
expanded scale and data for all roll positions fall within a rather narrow
band. The normal force is seen to increase with distance along the boattail
which, acting on the aft end of the model, provides a restoring moment or
increased stability; this trend is opposite of that typically observed on con-
ical boattails. The longitudinal variation in side force is shown in Figure
8b. The side force is seen to increase to a maximum at Z/D values of approxi-
mately 5.6; then the side force decreases over the remainder of the boattail.
This unexpected behavior also occurred at 4° and 6° angles of attack. The
final values of side force are seen to be very small and the variation with
roll is nearly an order of magnitude smaller than normal force variations.
These small values of side force coefficient make it impossible to get a rea-
sonable comparison with experiment.

Incremental coefficient values for the five components of measurement are
presented in Figures 9 and 10. Coefficient values at -5° angle of attack
would not be expected to equal values at +5° angle of attack. Conditions of
symmetry permitted adjustment to the -5° data so that, theoretically, it
should equal the +5° data. The difference between the -5° and +5° data is,
therefore, an indication of the data quality. The Mach 0.91 normal force and

L



pitching moment data of Figure 9a and b show a good consistency with angle of
attack and are believed to be good quality data. The side force, yawing
moment, and rolling moment show a fair degree of consistency and should indi-
cate, qualitatively, the variation of coefficient values with roll. The
incremental coefficient values at Mach 3.02, Figures 10 a-e, do not show as
good a consistency as the Mach 0.91 data but, nevertheless, the data appear to
be of sufficient quality for making qualitative comparisons to computational
data. Incremental values of normal force coefficient for computation and
experiment are compared in Figure 11. The magnitude and trends of the data
compare reasonably well although there is some difference in the overall shape
of the curves. The agreement is considered to be fairly good considering the
accuracy of the experimental data and the small values being compared.

VII. CONCLUSIONS
1. The ogive-cylinder model with a 7° nonconical boattail exhibits a
smaller static moment (greater static stability) both transonically and super-

sonically than a similar body with a conventional conical boattail.

2. The variation of CNa and Cma are nearly independent of roll orienta-
tion for the nonconical shape (SOCBT-NC).
3. The accuracy of the coefficient data are not as good as desired but

the data are of sufficient quality to help evaluate computational codes for
nonaxisymmetric bodies.

12
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TABLE 1. ESTIMATED ERRORS

M= 0.91 M= 3,02

SD 1%* SD 1%
CN 0-2 2'0 0.1 2.1
A CN Sl 29 27 500
& 0.3 0.8 0.3 1.7
A Cm - 2.0 6.2 19.0 100
a Cy 85 23 18 400
A Cn 29 9 40 70
A Cl 44 52 63 170

Errors - percent

SD = Standard Deviation x 100
Max. Measurement

*1° Criterion = ,01 (Full Scale) x 100
Max. Measurement
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LIST OF SYMBOLS

Cz rolling moment coefficient
Ch pitching moment coefficient
Cma slope of the pitching moment coefficient at o = 0
Ch yawing moment coefficient
Cn normal force coefficient
CNa slope of the normal force coefficient at a = 0
Cy side force coefficient
M, free-stream Mach number
SOC figure 1 geometry with zero degree boattail angle
SOCBT figure 1 geometry
SOCBT-NC  ogive-cylinder geometry of figure 1 with the boattail geometry of
figure 2
a angle of attack, degrees
A C( ) increminga1=cge§ficienf ga;ues, fo; :xSTple,
N N = A N'¢ = 0°
) roll orientation of model, see figure 3

NOTE: The model diameter (d), model cross section area (wd%/4), and the free-
stream dynamic pressure were used to nondimensionalize forces and
moments.
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