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l. Introduction

\::S 'S ‘

It haajpeon known £es—some_tiﬁ§>that periodic structures
will act as filters for bending waves%fr The equations for an
infinite ribbed bar have been published.wtgp some limited
confirming evidence**fﬁﬁThe ;Sje¢£ive“§£ this study is to get
extensive quantitative results, both aﬂalytical and experimental,
for a finite number of tuneé ribs and to extend the work to
plates and possibly shells. In the process, we intend also to
investigate the differences between symmetric (two-sided) and
asymmétric (one-sided) cantilever ribs. This first technical
repoft gives analytical and experimental results for the uniform
bar (unribbed) and for the same bar with fifteen pairs of
tuned caniilevers which approximates the infinite ribbed bar.(A\\
Section 2 gives the ne;essary equations, Sec.ion 3 describes ‘\
the experimental methods, Section 4 discusses the results
(good agreement!) and Section 5 describes future work.

The work has been facilitated by a number of discussions

with the Technical Monitor, Dr. N. 1. Basdekas. o o .o
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* G. SenGupta "Vibration of Periodic Structures" Shock and
Vibration Digest, 12, 3, 1980, pp. 17-31.

*#* Gruzin, V. V., V. P. Kandidov and V. I. Shmalgavzen "Filtering
of Elastic Waves in a Bar with Ribs". Izv. AN SSSR. Mek.
Tverd. Tela. 12, 4, pp. 180-184, 1977, Trans. Allerton
Press, 1977.




2. Analysis

2.1 Uniform Beam.

The Bernoulli-Euler differential equation for bending
wave propagation in a uniform beam is*:
4 2
D>y +oa Y=o (2.1.1)
ax at

If we assume a sinusoidal wave traveling to the right:
y = a exp i (kx-wt) (2.1.2)

and substitute into equation 2.1.1, we get:

k% - paw? = 0 (2.1.3)

This shows that the wave is dispersive with the phase velocity

given by

® - (w2E1/pn) /4

C=x

= (thr//IT)l/z (2.1.4) **

where
D = EI is the bending stiffness

o = frequency in rad/sec

t = beam thickness for a rectangular cross section

C vE/p is the rod phase velocity

r

Thus, if we have a bending wave traveling to the right

and the bending strain at x as a function of time is:

c(x, t) = £(x, t) (2.1.5)

* W. Goldsmith "Impact" Arnold, London 1960, eq. 3.118

**The anticlastic curvature restraint is not effective for a thin
rectangular cross section at small strain levels and so the

l- term is omitted.
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we can find the time function at x + x5 by taking the Fourier
transform of f, shifting the phase by T = wxo/c and taking the

inverse transform. Thus:

Fix, ) = %# I f(x, t) exp(-int)dt (2.1.6)
F(x + X w) = F(x, w)exp(ib) | (2.1.7)
8 = ax_ /C = xg(w/ﬁ/tcr) = eolmo (2.1.8)

where eo is the phase shift at the reference frequency fo

and f(x + X s t) = fQF(x + X s w) exp(iot)dt (2.1.9)

The time history of the bending wave computed from equation

2.1.9 is compared with the measured one in section 4, Results.

2.2 Periodic Beam

e, .

A periodic structure was constructed by fastening double
cantilevers to the uniform beam at equal intervals, fig. 2.2.1.
We can analyse a traveling wave in a infinite periodic

structure by considering the boundary conditions at each end
of one section of the beam, fig. 2.2.2. If we have a wave

of frequency «® traveling in an undistorted fashion, it must
attenuate by the same fraction in each section. If we assemble
the four components of force and displacement into one vector

v 2

yisq'ei b = .} vj_ b (2.2.1)
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we may write
Yiel = 25 (2.2.2)
where A is the ratio between each two successive periodic
* repeats. Ifwe now find the components at one end in terms of
those at the other
Zi41 = liz:.L = >\zi (2.2.3)

then we have an eigenvalue problem where H is a function of
frequency. We can find H from the solution for the uniform
beam (fig. 2.2.3) with the sign conventions shown in figures

2.2.2 and 2.2.3; our equations of equilibrium at point i are

F; = F)3.7 Ppy + Pyy

. M, =M

i 14 ~ My - M

24 3i (2.2.4)

Py = Py v Fyy = Fyy

> gWA AL 24T

Compatibility for deflection and slope is automatically

satisfied by the conventions shown. 1In addition to the bending

oLk 2

wave equation (eq. 2.l1.1l), there is an extensional wave

equation
2
EA%+pAg—g= 0 (2.2.5)

t

P e e e

For a sinusoidal wave of frequency ), the general solution

of equation 2.1.1 for the beam piece is

P PR oy Jony

vs=Acosh Bx +Bsinh Bx + C cos 8x + D sin Bx (2.2.6)

where 84 = 12 pw?/Et? (2.2.7)




so that v' = AB sinh Bx + BRcosh Bx - C Bsin Bx + DB cos B x

%ar pfv" = ABzcosh Bx + Bstinh Bx - CB2cos Bx - D82 sin Bx

ﬁhf "V' = A B3 sinh 8x + B 83 cosh Bx + CB3sin Bx - DB3cosBx

Substituting in x = L, solving for A, B, C and D then substituting

in x=0 we find that

z; = Gzi+1 (2.2.8)

where G is given by equation A.6 in the Appendix and we have

changed the definition of z to

( w
vy

vi'/B

z. = ! (2.2.9)
1 Mi/p.::rs2

: 3
L-Fi/EIB )
If we now make the change to local coordinates for the short
cantilevers, and put in the boundary conditions

M=0.and F=0at x=nh

we get

2
Mzi/EIB Vi2
' = A (2.2.10)

3
FZi/EI 8 V.' 12/8

where A is equation Alin the appendix. The corresponding

solution for equation 2.2.5 is

u=Ecos yx + F sin yx (2.2.11)

...........................
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where v = m/cr.
Using the fact that P = AEu', solving for E and F in terms
of Pi+1 and Ui+l’ we find that
u,
= B i+l (2.2.12)
i Pi+1
If we now change to local coordinates and put in the boundary

condition that P=0 at X, = h, we find that

P2i tan a3 uZi (2.2.13)

where 0(3 h/cf Substituting from equations 2.2.8, 2.2.9,

2.2.10, 2.2.12 aﬂd 2.2.13 into 2.2.4, we finally get that

n = - - e e S® = - - - (2.2.14)

S

where B, C, D, G and F are given in the Appendix and now

o

Pi/pEA
v

Z, = < i

iy

Mi/EIB

f (2.2.15)

3
‘-Fi/EIB

s

Because of symmetry, there is no coupling between the first
two and the last four terms so that we may solve a 4x4 eigenvalue
problem. If the cantilevers and the beam are the same thickness

and made from the same material, the only parameter remaining
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is the ratio h/L. If h/L = 0.470, and it does for our experiment,
o = 0.4700(, and we may solve for A as a function of 0/22, the
dimensionless frequency. At each frequency there are four
roots,a which occur in pairs corresponding to right and left
traveling waves. There are three possible types of root pairs:

1) conjugate complex, modulus 1

2) two pairs of conjugate complex roots (4 roots total)
in which the modulus of one is the reciprocal of that of the
other

3) two real reciprocal roots.

Type 1 governs an unattenuated pair of waves,one traveling
right and one left. Type 2 governs two stationary waves,
in each direction one wave is increasing and one is attenuating.
Type 3 governs two stationary, exponential modes; one is damping
and one growing for positive x and they reverse roles for
negative x similar to the stationary oscillatory modes of
type 2. Our solution is strictly valid only for an infinite
set of cantilevers. If any of the roots are of type 1, at
least some of the bending energy will propagate unattenuated.
If all of the roots are of types 2 or 3, then all of the bending
energy will be attenuated by multiple reflections. The
eigenvalues and eigenvectors were found numerically as a function
of w on a CDL Cyber 176 using the IMSL routine EIGCC. If we
express the complex:\'s in polar form, the argument is the phase
shift of the eigenvector. Figure 2.2.4 shows a plot of the
phase shift as a function of frequency for L = 5.00in, h = 2.47 in.,
E= 3x107 psi and t = 0.25 inch for a steel bar. The passbands

and stop bands are also indicated for comparison with the

........
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measured values. As can be seen, type 3 stop bands are

T

necessarily 0° (cos 8 =1) or 180° (cos 8 = -1) phase shift.
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3. Experimental Technique

2 e
3

3.1 Instrumentation

y3
Y ‘c'_.
ta¥22

ol Yt
s hen?,
gL IR

The bending waves were detected by a pair of strain gages

LN
% P

on opposite sides of the beam connected to Vishay 1011 signal

conditioners. The dynamic output was then connected to the

Faedrias
24

Ak

:Q input terminals of a Hewlett Packard 3582A Spectrum analyser

Q and, in parallel to the input of a Nicollet 3091 digital

,f oscilloscope (Fig. 3.1.1). A HIPlot x-y recorder was used to

fg make hard copies of the stored signals. The oscilloscope has a
é? pretrigger feature which can be set to show the signal which

i occured up to one full time sweep of the screen before the

léﬁ trigger; the Spectrum Analyser does not have a pretrigger feature.
8 The bending wave in the beam was excited by a simple pendulum

7 with a spherical bob (fig. 2.2il). A photodiode was illuminated
ZE by a focussed light beam (not shown in fig. 2.2.1) which was

i; interrupted by the pendulum extension. The step signal from

the photodiode was used to externally trigger the analyser;
the pre-impact time was adjusted by moving the light beam away

from the impact point.

} A dey

; 3.2 Beam

2 A uniform steel beam, 0.250 inch thick by 2.00 inch wide
e and 36 feet long was hung in a horizontal position by 0.030 inch
53 piano wires fastened at 4 foot intervals to the thin edge by
..fq!

3 welding to 3/4 inch, 6-32 screws in drilled and tapped holes;
e

. the screws were locked by .cknut- The wires were fastened
]

,.-3 to an overhead pipe 4 feet aLuve and adjusted by turnbuckles
3

#

"y
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to equal tension by tuning to the same note. The impact point
was 16 feet from one end. The traveling waves were measured
at point A, 10 inches from the impact point and point B, 82
inches from the impact point, both on the 20 foot end.

After the uniform beam measurements, 15 pairs of cantilevers
each 2.35 inch long were fastened to the beam at 5 inch inter-
vals starting one inch from position A. Each pair was tested on
a short beam 2 inches long on a vibration shaker. After the
bases of the cantilevers and the milled surfaces of the support
had been carefully polished with 400 grit emery paper, the
natural frequencies were measured'to be between 1332 and 1386 Hz,
both cantilevers of a pair had the same phase angle at resonance
within 3° and the estimated n was less than 0.003. The resonant
frequency of a 2.35 inch cantilever calculated by using the
phase velocity measured later is 1394 Hz; if we assume the length
(arlb.crarily) to be 2.40 inch to account for the elasticity of

the base, we get 1340 Hz.

3.3 Measurements Made

3.3.1 Uniform Beam

As stated, the uniform beam was 36 feet long with strain
gage bridges at 10 inches and 82 inches from the input point.
The impact point was 16 feet from the other end. No attempt
was made to measure the bending pulse immediately under the
impact point. Standard impacts were repeated at the impact

point for 10 time spectrum averages of channels A (10 inch)

and B (82 inch) with gain settings at 30 mv max, fregquency

hiianie Adlh At dSd
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X range 10 kHz (12.5 ms time signal) and AC coupling. The light
beam was moved to trigger the spectrum analyser 4.5 m sec before
impact. This time was chosen just long enough to make the
coherence almost 1.0 for the full frequency range while making
the low frequency cutoff for point B as low as possible. We
assume that difficulties at shorter time delays are caused by
reflections from the free ends. Records were made of the A

and B spectra (Fig. 3.2.1) and magnitude and phase of the
transfer function (B/A spectra),figures 3.2.2 and 3. Figure
3.2.3 shows a plot of the unwrapped argument (phase) with an
arbitrary zero. The transfer function is 1 within + 0.5 dB

from 2.5 kHz to 10 kHz except for small blips at about 4 and

8 KHz. The travel time after impact was 12.5 - 4.6 or 7.9 msec.
This is the phase velocity travel time for 82 inches for a 1

kHz wave so the rolloff shown in figure 3.2.1 is appropriate.

A hard copy of a 13.4 msec time trace with about a 0.5

ar dhipiee S .

msec time delay was recorded from the digital oscilloscope,

fig' 3.2.4.
3.3.2 Beam with cantilevers

The time delay was left at 4.6 msec to make sure that the
signal was the same as in the previous section while the
spectrum from Channel A was observed, it was not recorded since
there is no convenient way to separate the incident wave from
the reflected wave. The spectrum modulus gt point B was recorded
for the same amplitude settings as in the previous section.

The 10 kHz (12.5 msec) spectrum and coherence are shown in figures

Coet et T e o L TR
PP WAPI TOF W V. Wl TR PO A W PP UL W W)
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3.3.1 and 3.3.2 with a time delay of 4.4 msec. Those for 5

kHz (25 msec) and 2.5 kHz (50 msec) are shown in figures 3.3.3,

3.3.4 and 3.3.5 with longer time delays appropriate to the i
longer time signals. The predicted pass bands are shown in all ‘
figures; the longer time $8ignals were taken to show the pass band l

from 0 to 856 Hz.
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4. Results

a
'
]
»
+
[ 1)
N4
i

4.1 Uniform Beam

The phase velocity of bending waves in a uniform beam is

DI AR DN il PV

proportional to the square root of the frequency (equation 2.1.4)
so that the beam is a dispersive medium for bending pulses. As
a result, the time history of a given pulse depends on how

far the pulse has traveled. In.section II, we found that

b 1/2
3 C = (utec /vI2) (2.1.4) bis

The phase shift for two spectra a distance L apart is
) 6 = -t = -wL/C (4.1.1)

From figure 3.2.3, 0 = -88.25/f degrees for 72 inches.
Substituting this value into equations 4.1.1 and 2.1.4, we find
2 C_ = 190,400 inch/sec or E = 26.7 x 10° psi.

The phase velocity C is then 29,400 inch/sec at 10 kHz
and the group velocity is twice that or 58,800 inch/sec.

It should take 1.22 msec to travel 72 inches which agrees quite
well with figure 3.2.4.

Goldsmith* shows that the force-time history of a sphere
impacting on a beam is approximately a half sine pulse. A 16 point
half sine pulse was FFTed over a 1024 point time interval,
the phase of the spectrum shifted proportional to the squaré
root of the frequency and the inverse FFT taken. Figure
4.1.1 shows the calculated time trace for a 56.6 radian shift

at the highest frequency; figure 4.1.2 shows it for a 464 radian

* W. Goldsmith, "Impact” Arnold, London, 1960, fig 57, p. 119
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shift (82/10 * 56.6 = 464). The 56.6 radian shift was chosen
to make the ratio of the positive spike and the negative
spike agree with that of figure 3.3.4. The qualitative
agreement is gratifying but the analysis in detail is yet to
be made. It is clear that the pulse shape cannot be exactly
a half sine wave.

As was mentioned in Section 3.2, the transfer function
is almost never less than -0.5 dB; the wave length of a
10 kHz bending wave is about 3 inches which gives 288 waves
in a 72 inch distance which corresponds to a damping factor of
less than 4 x 10-4 which is reasonable. Of course, the damping
could not be measured to this accuracy for lower frequencies

and longer wave lengths.
4.2 Periodic Beam

Fifteen sets of cantilevers give a reasonable approximation
to an infinite periodic beam stop band (figures 3.3.1, 3.3.3,
3.3.5) with a maximum attenuation of about 25 dB. A close
examination shows some attenﬁation at each end of the pass
band and little attenuation in the stop band from 6263 to 6582.

This will be investigated in future work.

5. Future Work

5.1 Finite Length

The analysis of Section 2 is now being extended to a
finite number of cantilevers. This is being accompanied by
experimental work. A first quick look shows appreciable attenua-

tion at some frequencies with as few as three cantilevers but

the spectra are not nearly as smooth as the ones shown here.
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The next step will be to investigate the effects of

Y ATt al i K u FEBE A

assymmetric assemblies so that there is coupling between
longitudinal and bending waves. In addition, the ratio of L to

h will be changed by leaving out cantilevers.

|

5.2 Impedance Measurements

We also plan to make impedance measurements to investigate
the possibility of steady state experiments which are simpler
and more accurate than transient ones. If this can be perfected
it will make measurements in ribbed plates and shells easier
to interpret. We will need information on both input and
transfer impedance to cope with those problems of reflecﬁion

which have been avoided in the transient measurements.

. T e . . .-
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