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ACCURATE EFFICIENT EVALUATION OF CUMULATIVE OR

EXCEEDANCE PROBABILITY DISTRIBUTIONS DIRECTLY FROM

CHARACTERISTIC FUNCTIONS

INTRODUCTION

The performance of a signal processor can often be evaluated in terms of

the characteristic function of the decision variable, either numerically or in

closed form; see for example, refs. I and 2. However, a closed form for the

corresponding probability density function or cumulative distribution function
is seldom available, and numerical procedures must be employed. Several such

procedures have been published in the literature, refs. 3-8. However they

have limited accuracy or they require extensive storage or analytical

manipulations and calculations.

We present a technique which is limited in accuracy only by the round-off

noise of the computer or by the errors of the special functions requi-ed in

the characteristic function calculation. The amount of storage depenas only

on the number of cumulative or exceedance distribution function values

requested and does not influence the accuracy of the final probability

values. The entire cumulative and exceedance distribution function values
result as the output of one fast Fourier transform (FFT). The size of the FFT

dictates the storage required and the spacing of the calculated probability

values, but not their accuracy.

The addition and subtraction of integrand functions given in ref. 7 can

be entirely circumvented and yet enable use of an FFT, through proper
manipulation of the origin contribution of the characteristic function.

Specific connections with past results will be noted at appropriate points in

the derivations.

S ,I
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DERIVATION OF PROCEDURE

Shifted Random Variable

The primary random variable of interest is the real quantity x with given

characteristic function fx(f) which is related to the probability density

function px of random variable x via Fourier transform *

fx( =fdv exp(ilv) p(V). (1)x (x

We define secondary random variable y as

y x~b, (2)

where bias (shift) b is a constant, chosen such that random variable y has

insignificant probability of being less than zero. However, we also pick b as

small as possible, so that the characteristic function of y,

fy(*)* f (5) exp(itb), (3)

will vary slowly withT. In fact, b can be negative, as for example if x were

limited to values larger than some positive threshold. The approach here is

not limited to positive random variables x, as were some of the results in

ref. 7, but ii applicable to any random variable distribution.

By way of example, for an exponential probability density function for

,I random variable x, we choose b-O; while for a Gaussian random variable,
I b-ux+sox yields a probability less than IE-15 of y being negative. The

probability density function of random variable y therefore apoears as

depicted in figure 1.

I. • Integrals and sums without limits are over -

!.
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Figure 1. Probability Density Function of Secondary Random Variable y

The cumulative distribution functions of random variables y and x are

related according to

V

fdt p y(t) P y (v) P x(v-b); P (v) P y (v+b). (4)

Tnus we can inspect Px(v) in the neighborhood of v=-b (the lower edge of

interest of x) by looking at cumulative distribution function Py (V) in the

neighborhood of v-O. More precisely, we will investigate Py (v) for values
of v greater than zero, since this is the region of s'gnificant variation of

P y(v); this is called the positive neighborhood of vwO.

Approximation to Cumulative Distribution Function

From ref. 4. eq. 7, we have the cumulative distribution function of

random variable y irn terms of the characteristic function according to

P Y (v) 1 r g(f.v), (5)

where we have defined auxiliary function

4 • g(•',V) =IM exp(-'Sv) (6

Observe for later use that

9(0+V) li1 Q J-p 7
where y is the mean of rarndom variable y.

y 3

I)
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For v in the neighborhood of zero, exp(-i~v) in (6) varies slowly with T,

and we have the approximation, via the Trapezoidal rule, to (5) as

Py(v) eZ -y g(Ov)- a g(na,v) r C(v), (8)
n-l

where the right-hand side of (8) has been defined as C(v). Here, a is the

sampling interval in 5, and is small enough to track changes in exp(-irv)*

fy(5)/5- We choose the Trapezoidal rule in (8) over other integration rules,

such as Simpson's; rule, because it results in minimum aliasing for Fourier

transforms relative to all other rules; see appendix A for elaboration and
proof.

Observe from (8) that

I (0) u C(O) means C(O) v 0, (9)

since P (0) is insignificant by the choice of b in (2); this relation will
Y

be used later.

Relationship of Approximation

Although we want to evaluate the exact cumulative distribution function

Py(v), we have instead arrived at an approximation C(v) via (8). sow are

ttiese two related? To deter-nine the relationship, we manipulate (6)-(8) as

fol lows:

QCv) I " M xI(-inav)

n-I

6n.1I f j."a)

- ~2 2K exo(-inav)7

7 - n

III•IIBII I II I I I• lII • I I I4
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The removal of the imagin4sry operation from within the summation in (10) i- a

crucial step; it does not create a problem in divergence since n > 0. This is

in contrast with the integral of (5) and (6), where removal of the imaginary

operation would create a divergent integral. This postponement of the removal

of the imaginary ooeration, until after the approximation to the integral wa?

developed in (8), is the major difference with the results in ref. 7.

Taking a derivative of (11), we obtain

C (v) 4 exp-inav) f (na)

4~0

exp(-inav) f (n6)=
y

n

where infinite impulse trainy 92 (v)13)

n

whereO denotes convolution, and where we have used the relationL f tep-w)aat
This last result follows froa ref. 9, p. 28, rule 11, with -jft) - S(t), T-a,

F=IIT, and ".2,f. Relation (1}) indicates that C'(v) Is an infinitelv aliased

version of the probability density function p (v). with resultant period
Y

-va in v. For small enough s..mplinq Increment a in (8). there will be very

little overlap of the displaced versions of p in j12), thereby yielding the

good approximat ion
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py(v) = p (v) for 0 < v < 2w/A. (15)

The situation for relation (12) is depicted in figure 2.

V
A A

Figure 2. Infinitely Aliased Probability Density Function "y(v)

There now follows from (12),

C(v) = C(0) + v du y(u) B C(0) + P (v), (16)

where C(O) is given by (10) as

C(O - - I --4 (17)
2-2r. n J

n=1

Relatiun (16) is an exact relation, snowing that C(v) is the integral of the

infinitely aliased version of Py(v), starting at v-0, plus an additive

constant which is substantially zero; see (9).

So for v in the positive neighborhood of zero, (4), (8), (16), and (9)

yield

Px (v-b) - Py(v) a C(v) - C(O) + P'y(V) a y(v). (18)

Thus the quantity we want, the left-most term in (18), is

well-approximated by calculated quantity C(v), which itself is approximately
the integral of the infinitely aliased version of py(v).

-6

|| - _
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Calculation of C(v)

Let v = 2 in (10), where M and k are a•oitrary integers. Then

C(2M'•.) j½+~ R - Im exp(i2nk/M) 3 =n(9
i + K I im{• exp(-i21nk/M)Zn.(9

r pa

wnere we define complex sequence

ia4y for n-0

n f (n4)In for n>_.1 (20)

Now define collapsed sequence (ref. 7, pp. 13-16) as

AZn = Zn+Mj for 0 < n < M-1. (21)

J.0

Then since zn receives tne same weight as Zn+Mj in (19), regardless of the

value of k, (19) can be expressed as

M-1
C(-•-) Ma• 7 9 -1 111 _ exP(-i2*nk/M4) .(22)

nut)

Relation (24) is exact and valid for all K. Since we are only interested

in tne positive neighbornood of v.0 in (18., we confine attention in (22) to

U < K < M-I.* Relation (2e) can then ue accomplished Oy an M-polnt FFT If M
is cnosen to be a power of 2. Notice that storage only for the M complex

"numoers fi l in (21) is required, even though the 1zn, sequence in (20) is

of infinite length.

SValues for otner k are available from (22) when we ooserve that

u1 A(vK for all k.S• 7

* • ,••,.I•J• .. * . ..... ~ • ` '',-:` '• • ' : T • 2 •r: ';- T: • `:: 5" '' . : -,. -,. • •w -÷--,* -, ... ... .. .
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Observe that the size nf M in no wdy affects the error of the calculation of

"C(,-) or estimation of P (v). Rather, M specifies the spacing at which C(2ff-) is
calculated, and can be coarse if desired. The accuracy of the estimate of
Sy(v) is governed thus far by 4, through the iliasing depicted in fijure 2.

Reference to (18) now yields

p (2lk b) W C -(2F) for 0 < k< M-2)

where the latter quantity is given by (22). Thus the M-point FFT sweeps out
the argument range (-b,-b+2w/a) for the cumulative distribution function i.

If we want the exceedance distribution function of y instead of the
cumulative distribution function, we use (13) and (22) to get

1 - k 1 k 1- - 1I exp(-i2vnk/M) 1 for 0 < k < M-1. (24)
n=0

(By the footnote to (22), we have I-C(2uIA) -C(O).)

Since a must oe Known in (20) in order to use this approach, we need
tne mean uw of random variable x, since from (2)

"V M ux+b. (25)

The quantity uw can be found analytically from characteristic function

x(f ) according to

f (0) -(251
x

see (1).

*
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In addition to the error caused by aliasing associated with nonzero
sampling increment A, an additional error occurs because we cannot calculate

fall the coefficients fZn in (20) and (21) out to n=+,v. Rather, we

terminate the calculation at integer n=N, such that IZn) is sufficiently
small as to be negligible for n > N. Letting

L : NA, (27)

this is equivalent to ignoring the contribution to (5) of the tail error

S-ý g(f,v) -Im df exp(-iyv) • (28)

L L

If the asymptotic behavior of fy(•) for large is known, this error can

sometimes be e\ iluated in closed form and used to ascertain an adequate value

,f L. Instead, we have observed that tail error (28) causes a characteristic
low-level sinuqoidal variatic., in the calculated cumulative distribution
fuiction for small v near 0, and in the calculated exceedance distribution

function for large v near 2,,/A. When this sinusoidal variation is deemed
excessive, L can be increased ,intil the effect disappears or decreases to

acceptable levels. This trial and error approach avoids the necessity of
analytically upoer-bounoing the magnitude of error (28), which is often very

tediuus and generally nessimistic.

So there are two errors to be concerned with: aliasing due to nonzero

sampling interval a and cail error due to nun infinite .imit L. Later
"- examples will demonstrate how t',..e errors mani'est themselves in the

- cumulativP and exceedance distribution functions and how they can be

• 1controlled by a trial and error approach.

9
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Relation to Requicha's Method, ref. 5

From ref. 5, eqs. 7, 9, 10, the cumulative distribution function is given

by an expression that can be manipulated into the form (using current notation)

F im exp(-i2tkn/M) n 1+ IM (29)
k . M nm n~n=- •1 tn 1

"Although this is similar to the upper line of (19) here, it differs in several

important respects:

1. Fk does not use mean y at all; it is therefore not using a

direct approximation to the specified integral in (5) and (6).

2. From (29), there follows F0 = 0, FM = 1; however, these results

are not strictly true for the actual cumulative distribution function at these
end points, thereby leading to poor estimates in the neighborhoods of these

points. This is due to the arbitrary origin established in ref. 5, eq. 6.

3. The sums in (29) utilize characteristic function samples fy(nA)
only for n < M12, where M is the size of the FFT. This is a very severe and

unnecessary restriction; in fact, the sum on n in (29) ought to be conducted

to the point where the tail contribution, (28), is negligible, regardless of
the value of M.

4. In ref. 5, if eq. 4 is substituted into eq. 1, and the summation
limits are extended to±c, we get exactly the second line of (12) here. When

the probability density function is integrated to get the cumulative

distribution function in ref. 5, eq. 6, the resultant cumulative distribution
function is arbitrarily set to zero at v=0. We instead have from (9) and (17),

SP(0 CO) Im ( , (30)

ln=1

which is small, but not necessarily zero. This consideration is very

important on the tails of the cumulative and exceedance distribution functions.
10
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Summary of Procedure

The cumulative distribution function of y is given by
-- • ~M-1•n

(21rk) sC(-ý.k) 1 k m 1
y11XP-" MA = - - Im exp(-i27rnk/M) z

Sfor 0 < k < M-1, (31)

where M is the size of the FFT and storage employed. Also

Zn = Zn+Mj for 0 < n < M-1, (32)

j=0

where

i-Au for n=O I

zn = fy(nA)/n for 1 < n < N (33)n yJ
0 for n > N

(The value for n=N should be scaled by 1/2 for the Trapezoidal rule).
The zero values for Zn, when n > N, serve to terminate the collapsed sum in

(32) at a finite upper limit. The value of N is given by the integer part of
L/A, where A and L must be chosen so as to minimize aliasing and tail error,

respectively. The characteristic function of random variable y needed in (33)

is given by

fy) f ) exp(ibf), (34)

in terms of the characteristic function of the primary random variable x,

where shift b must be chosen such that y = b~x is positive with probabilty

virtually 1. The mean vy = b+ux can be determined analytically from
knowledge of characteristic function fx(j)' Finally, the exceedance

distribution function for random variable y is obtained by subtracting (31)

from 1.

: .t1
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EXAMPLES

Programs for the following five examples are listed in appendix B.

1. Chi-Square

A chi-square variate of 2K degrees of freedom has probability density

function (ref. 10)

p (v) =K-1 exp(-v/2) for v > 0 (35)x2K(K-I)!

and characteristic function

fx(f) = (l-i2?F)-K. (36)

Since random variable x is obviously nonnegative by (35), we can choose shift

b=0; i.e. y=x. A plot of the cumulative and exceedance distribution functions

of random variable y obtained from characteristic function (36) with K=4 is

given in figure 3 for 0 < v < 2r/A. The values of 4 and L have been chosen

such that aliasing and tail error are insignificant.

The ordinate scale for figure 3 is a logarithmic one. The lower right

end of the exceedance distribution function curve decreases smoothly to the

region IE-Il, where round-off noise is encountered. The exceedance

distribution function values continue to decrease with v until, finally,

negative values (due to round-off noise) are generated. For negative

probability values, the logarithm of the absolute value is plotted, but

mirrored below the 1E-12 level. These values have no physical significance,

of course; they are plotted to illustrate the level of accuracy attainable by

this procedure with appropriate choices of 4 and L.

For this example, N=L/4=2666, while M=256. Thus collapsing, according to

(21) or (32), by over a factor of 10 has been employed and a small size FFT

has been utilized. Nevertheless the error realized for the cumulative and

exceedance distribution functions is in the 1E-12 range, the limit of accuracy

of the Hewlett Packard 9845B Desk Calculator used here. Flner spacing in the

distribution outputs is achievable by merely increasing M.

12
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Figure 3. Chi-Square; L-200. A-.075, b-O, M-256

"13



TR No. 7023

2. Gaussian

The characteristic function for a zero-mean unit-variance random variable

is

f exp(-ý/2), (37)

and the probability density function and cumulative distribution function are

(ref. 11, eq. 10.5.3)

p (v) -(22r)I 2 exp(-v 2 /2), P (v) =1(v). (38)

For b 5w/2, using (4),

Py(0) Px (-b) =•(-b) = 2E-15. (39)

Ay

which is negligible, as desired.

Plots of the cumulative and exceedance distribution functions for random

variable y are given in figure 4 for L=7, A=.3. The logarithmic ordinate
gives rise to the characteristic parabolic shape on the tails of the

distributions. Once again, the probabilities decrease to the level of the
round-off noise and fluctuate around IE-12 near the edges of the fundamental

aliased interval (0,2r/a). The fact that the cumulative distribution function
of y starts in the round-off noise at v=0 indicates that b=5r/2 was large

. •enough to guarantee y > 0 with probability virtually 1. Also indicated on the
_� figure is the origin for random variable x. We have, from (4),

Px(u) Py(u+b); (40)

thus for example

Prob(x < 0) Px(O) Py(b) .5. (41)

14
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In figure 5, the only change is to decrease limit L from 7 to 6. The

tail error mentioned in (28) et seq. then dominates the round-off noise and

has a sinusoidal variation. Aliasing is not a problem, as witnessed by the

fact that the cumulative and exceedanca distribution functions of random

variable y have decayed below 1E-12 well before the edges of the interval are

reached.

When limit L is restored to 7, and sampling increment a is increased to

.5, aliasing becomes significant, as shown in figure 6. The exceedance

distribution function has not yet decayed to the round-off noise level at

v=2w/a, and the cumulative distribution function shows a large negative

probability region near v=O. Shift b has been maintained at the value 5w/2,

corresponding to (39).

When L and a are restored to their values 7 and .3 as for figure 4, but b

is decreased to 5v/3, the probability of y becoming negative is, from (4) and

(38),1(-5w/3) = .82E-7. This is reflected in the cumulative distribution

function for y in figure 7 at v=O, where the probability value is well above

the round-off noise level. Also, the exceedance distribution function

develops significantly negative values near v = 2w/a.

Accurate evaluation of the cumulative and exceedance distribution

functions can only be achieved when L, a, and b are properly chosen. Probably

the optimum combination for the Gaussian variate is displayed in figure 8,

S.rere a has been increased to .4, the distributions are centered on the

fondamental aliased interval (0, 2,/a) by choice of b, and L is taken at 7 to

avoid tail error.

3. Smi rnov

The limiting chiaracteristic function of a measure of goodness of fit

based on the sample distribution function was derived by Snirr:ov and is given

by (ref. 12, eq. 30.104)

fA (s•nnTs') where s = (1*i) for 50. (42)

16
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An expansion about f=0 yields

f 1+'i ~ ~ ; i.e., vx 116, a 1/45. (43)
x x

And since the goodness of fit is always positive, random variable x is

positive and we can choose

b-0. (44)

Since

sin( (I+ i) ) i½ exp(fy (l-i)) as •-+do, (45)
1

it follows that

~ 23/4 1/4 1x(~~ (f-) as r-*+v. (46)

The phase of this term rotates according to J'/2; if we were to choose bO,

fy(j) would rotate faster than fx(F) (linear with f rather than[). This

could necessitate a faster sampling rate, which is undesirable.

The cumulative and exceedance distribution functions are plotted in

figure 9. L and a have been chosen so as to avoid tail error and aliasing.
The exceedance distribution function is seen to decay exponentially until it

, reaches approximately 2E-11; the bump in the curve at this point is a

manifestation of the limited accuracy of the trigonometric functions built

1 into the calculator employed. Larger value- of v lead to round-off noise
1 around the IE-12 level.

A comparison of results for thiP characteristic function, with Requicha's

method described in (29) et seq., is given in figure 10 for FFT size M-1024.
The plot labeled with N-L-512 is precisely Requicha's method. Aliasing is

known to be insignificant for a-1, as seen by reference to figure 9 and
observing that extrapolation of the straight line section of the exceedance
distribution function would result in probability values near 1E-13 at

v=2u/a. The dashed portion of the N=L.512 curve in figure 10 in fact

21
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corresponds to negative probability estimates; these grossly inaccurate

-N • results are due to an inadequate value of limit L, leading to large tail error.

When N is simply increased to 1023, the middle curve in figure 10 results

from Requicha's method. Again, negative estimates are indicated by the dashed
portion of this curve, although two orders of magnitude smaller than above.

The reasons for these errors have been delineated in (29) et seq.

The bottom-most curve in figure 10 (solid curve) is that obtained by the

method proposed in this report for L = 1023. Exceedance distribution function

estimates in the 1E-10 range are obtained, but the error returns to the 1E-8

*. range at v=2v/A. No negative probability values occur. Also, by simply

increasing limit L, while keeping FFT size M fixed, the error can be reduced

significantly further, as already witnessed by figure 9.

"4. Noncentral Chi-Square

Here the random variable x is given by

K
x • + dk) 2  (47)%•,_x = (gk k)7

k=1

where tdki are constants, and fgkl are independent Gaussian random

variables with zero-mean and unit variance. The characteristic function of x

is

K/22
f (1-i2) exp /i d (48)

"where daflp'tinn d is defined according to

K
d . d .(4 9 )

k'1

We actually consider a more general characteristic function than (48), namely

24
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f (1i2F_) exp T-112 ?) exp - i2), (50)

where v is an arbitrary positive real constant. Suppose that we use the
principal value logarithm for jn(z), where the branch cut lies along the
negative real axis of the complex z plane (ref. 13, sect. 4.1.1). Then since

the argument of the logarithm in (50) never crosses the branch cut, form (50)

gives the correct characteristic function values automatically for all real5,

and any v.

The probability density function and exceedance distribution function

corresponding to (50) are (ref. 14, 6.631 4)

Px (v) = ½ exp ) I2 _(djt?) for v > 0,

x 2V1

1- Px(V) fdt t exp 2 d ) _1(dt) 7 Q,(d,ylv for v >0. (51)

Since the probability density function in (51) is never negative (ref. 13,

* sect. 9.6.1), (50) is a legal characteristic function. Also because random

- variable x is always positive according to (51), we choose shift b=O. Plots

of the exceedance distribution function, as determined from characteristic

function (50) are displayed for various values of d in figure 11. The values

of L were chosen for each d value so as to control the tail error below the

1E-1O level plotted. Direct calculation of the exceedance distribution

function directly from (51) would be a formidable task for arbitrary v values.

S5. Product of Correlated Gaussian Variates

Let

x st (52)

where s and t are zero-mean unit-variance Gaussian random variables with
correlation coefficient o. The joint probability density function of s and t

is

25
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Pst(U,V) = 2irjP/ exp 2,1J2 (53)

The characteristic function of x is then

fx(5) - exp(ilst) -(Tdu dv exp(ifuv) pst(U,V) =

= [-i2p5+(_-p 2 ) 21 1 = [,- i+i+ - 1/2 11+i( 1 /291  (54)

via repeated use of ref. 14, eq. 3.323 2. The corresponding probability

density function of x is

Px( (v) P(y) I exp "v K0 (L-9) for all v, (55)

via ref. 14, eq. 3.478 4.

(If we transform this probability density function according to (1) and

use ref. 14, eq. 6.611 9 and ref. 13, eq. 4.4.15, we get precisely (54).

Alternatively, if we transform (54) and modify the contour to wrap around the

branch line along the imaginary axis and then use ref. 14, eq. 3.388 2, we get

(55). Or we can use ref. 14, eq. 3.754 2.)

We actually consider a more general characteristic function than (54),

namely

f F [i 2 p1 0 )5 21' V C exp (-v.n [1-2ol+ (1-P. 2)52]j)~

r -{P + f -7 1) -3 ] (56)

The mean of this random variable x is given by

li 2vo. (57)

27
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The probability density function corresponding to (56) is

Px(V) = r_•h d exp(-i~v) fx(') =

1 dy ex(P58) i i + -8

where we let

y - . (59)

We can move the contour in (58) to the real y-axis, because the branch points

of the integrand are at y i/F- which are outside the path of

integration, since 1,3 < 1. Then using ref. 14, eq. 3.771 2 and ref. 13,

eq. 6.1.17, we obtain

px(v) () ["M _) exp( K 1 (E for all v. (60)

Since this probability density function is never negative (ref. 13, sect.

9.6.1), (56) is a legal characteristic function. If we Fourier transform (60)

via ref. 14, 6.699 12, we get (56) directly.

There is no simple relation for the cumulative distribution function of

this random variable. Nevertheless, it is a simple matter to evaluate

directly from characteristic function (56). The.An in (56) causes no problems

since its argument never crosses the branch cut. A plot for v4.7 and o--.3

is displayed in figure 12. The rate of decay of the distribution is different

for each tail. The round-off noise is clearly visible at both ends of the

range of v values.

28
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APPLICATIONS

We now have the capability to handle the following type of statistical

problem in a fairly easy fashion. Consider random variable

K vk (1
x = K- rkv , (61)

k =1

where trk k are arbitrary random variables, statistically independent of each

other, and with different distributions. Power vk is arbitrary (except that

Vk must be a positive integer for those rk that can become negative). Let

the probability density function of random variable rk be Pk(V). Then the
•kk

characteristic function of r k is

v 6\~rk) fdv exp4vk) Pk(v)
gk(F) exp ir k = vexp •yv PkV-

I d texp(it) t ./vk (62)

If (62) is r-t integrable in closed form, it can be evaluated by means of an

FFT (one for each k if the probability density functions or vk are all

different). Then tie characteristic function of random variable x in (61) is

given by

K

f X 7F) g() (63)
k-1

Now the techniques of this report are directly applicable to (63).

An additional example is afforded by

30
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where (ckI, Jokj, and {ykQ are constants, and fVkl are independent
random variables with arbitrary probability density functions. The
characteristic function of x .i

fx = exp(iOx) = dPv(V) exp(ifI2akvk + SkVk)2 + YkVk]), (65)

where V (V1 , v2, ... , VK). Now since

(-ia 112 2 yib 2ý

J dy exp(-iay +iby) exp VU= for a j 0, (66)

we identify a = f/4, b =SkVk, eliminate the square in the exponent,
and express (65) as

fX(Y) =fdv p,(V) exp(i120okv + i2YOOk

*(~)"2 dy exp(2Z + ivy5 13v)

- ()12 dy exp(~Y 1 fvk 0 (v) exp(if~(oa V2 kVk ye y~vk (67)

where
K

P (V) - PkiVk). (68)

k-I

The inner integrals in (67) can either be done analytically or numerically.

Then the remaining single integral on y must 6e numerically evaluated to find
characteristic function f 1 (•). As an example, if vk is exponentially

distributed

31
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Pk(V) = ak exp(-aakv) for v > 0, (69)

then the inner integrals in (67) are w-functions; see ref. 13, ch. 7. A

simpler method of handling general quadratic expressions like (64) with

Gaussian V is presented in ref. 15.

4
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SUMMARY

An accurate method for efficient evaluation of the cumulative and

exceedance distribution functions has been derived and applied to several

examples to illustrate its utility. Choice of the sampling increment a

applied to the characteristic function controls the aliasing problem, and

selection of the limit L minimizes the tail error; the effects of both of

these parameters can be observed from sample plots of the distributions and

can be modified if needed. Additionally, shift b must be chosen so as to

yield a positive random variable with probability virtually 1. The number of

distribution values yielded depends on the size of the FFT employed and can be

independently selected to yield the desired spacing in distribution values.

3
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APPENDIX A. SAMPLING FOR A FOURIER TRANSFORM

Suppose we are interested in evaluating Fourier transform

G(f) dt exp(-i2yrft) g(t). (A-i)

If we sample at interval A in t in (A-i), and use integration weighting w(t),

we have the approximation to G(f),

'i• (f) i dt exp(-iZwft) g(t) S"(t) w(t)

S(f i - 1 (f) o W(f)
A

- • G(f- ) W(f), (A-2)

n

where infinite impulse train (sampling function)

S A(t) = ýS(t-ne), (A-3)

n

andi denotes convolution.

The term

.'.ZG(f- n) (A-4)

n

*, in (A-2) is an infinitely aliased version of desired function G(f); this

aliasing is an unavoidable effect due to sampling at increment A. However, to

minimize any further aliasing in (A-2), we would like W(f) S(f), which

requires w(t) = 1. for all t; strictly, all we need is

w(nA) I for all n. (A-5)

A-i
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TR No. 7023

That is, the best weighting in (A-2) is uniform.

As an example, for Simpson's rule, we have weighting

w(nA) 242 4,2 1,, )n or 1 1 (A-6)

which can be represented as sample3 of time function

w(t) = 1 + ½ exp(int/l) or 1 - . exp(int/A). (A-7)

The corresponding transform is

W(f) = fdt exp(-i2wft) w(t) =

*~~ ~ ~ T()A ~ -) or S() ~ (f -h)(A-8)
But this window function substituted in (A-2) results in an extra aliasing

lobe in G(f), halfway between the unavoidable major lobes of (A-4) at
multiples of i/a, of magnitude 1/3 as large. This effect very adversely

affects the quality of ý(f) insofar as its approximation to the desired G(f)
is concerned. Thus the best sampling plan in (A-2) is the equal weight

structure of (A-5) when one wants to approximate the Fourier transform of
(A-i). For a bounded region, this is modified to the Trapezoidal rule, i.e.,

half-size weights at the boundaries.

A-2

j•r • •. -
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APPENDIX B. LISTINGS OF PROGRAMS FOR FIVE EXAMPLES

The following listings are programs in BASIC for the Hewlett Packard

9845B Desktop Calculator. The FFT utilized is one with the capability of a

zero subscript and is listed at the end of the appendix. Mathematically, the

FFT programmed is

* IM-1

Zm = exp(-i2nmk/M) zk for 0 < m < M-1,

k=O

where the arrays and-0 n are handled directly, including the zero-

subscript terms zo and Zo.

A detailed explanation of the first program below for Chi-Squared random

variables is as follows: line 20 specifies the parameter K, where 2K is the

number of squared-Gaussian random variables summed to yield random variable

x. Lines 30-60 require inputs L, a, b, M respectively, on the part of the
user. Line 110 is the input of mean u x of random variable x, as evaluated

analytically from characteristic function fx(5). Lines 180-210 specifically

evaluate the characteristic function fy () at general point f. All of these

lines mentioned thus far require inputs on the part of the user and are so

noted in the listing by the presence of a single ! on each line; the comments

after a double !! are for information purposes only and need not be modified.
This convention is also adopted in the remaining listings.

Lines 220-240 accomplish the collapsing operation of (32)-(33). The

cumulative and exceedance distribution functions are finally evaluated and

stored in arrays X(*) and Y(*) in lines 400-410.

Some further elaboration is necessary for the listing of the Smirnov

characteristic function as given by (42). Since a characteristic function is

a continjous function of real f, the square root in (42) is not a principal

value square root, but in fact must yield a continuous function in . In

B-i
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order to achive this, the argument of the square root is traced continuously

from f:0 (line 110). If an abrupt change in phase is detected, a polarity

indicator takes note of this fact (line 250) and corrects the final values of

characteristic function fy(T) (lines 260-270). No problems are encountered
with complex sin(z) since it is analytic for all z.

18 CHI-SL:UARE CHARACTERISTIC FUNCTION 1<1-i 2 xi)A4

26 K=4 2K=8 degrees atf freedom
38 L=200 Limit on integral of char. function
46 Delta:.075 Sampling increment on char. function
50 Bs=(j Shift b
66 M=2-8 Size of FFT
70 PRINTER IS 0
88 PRINT "L =";L, "DeIta =";Delta, "b =";Bs,"M =";M
98 REDIM X(O:M-1),Y(0:M-1)
108 DIM X(8:1023),Y08:1823)
118 Mux=2*K Mean of random variable x
123 Muy=Mux+Bs
130 X<0()
140 Y(8=).5*Delta*Muy
150 N=INT(L/Delta)
160 FOR Ns=1 TO N
1780 X<i=Delta*Ns Argument xi of char. fn.
180 C=Xi+Xi Calculation of
198 CALL Mul (1,-C, 1,-C,A,B) characteristic
288 CALL Mul(R,B,A,B.C,D) .function fy(xi)
218 CALL Div(1,8,C,D,Fvr,Fyi) {`or K4

220 Ms=Ns MOD M Collapsing
230 X(Ms)cX(Ms)+Fvr.Ns
240 Y(Ms)=Y(Ms)+Fyi'Ns
250 NEXT Ns
260 CALL Fftl0z(M. ,*),Y(*) I 0 subscript FFT

--2

S-- - - . -q- - -4
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i 270 PLOTTER IS "GRAPHICS"
280 GRAPHICS

}if290 SCALE 0,M,-14,0
300 LINE TYPE 3
310 GRID M/8,1
320 PENUP

5i 330 LINE TYPE 1
2340 B=Bs*M*Delta/(2*PI) Origin for random variable x
350 MOVE B,0
360 DRAW B,-14
370 PENUP
380 FOR Ks=O TO M-1
390 T=Y(Ks)/PI-Ks/M
0 0 X(Ks)-.5-T Cumulative probability in X(*)

1410 Y(Ks)=Pr=.5+T 6 Exceedance probability in Y(*)

420 IF Pr>=1E-12 THEN Y=LGT(Pr)
430 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
440 IF ABS(Pr)<IE-12 THEN Y=-12

S450 PLOT Ks,Y
460 NEXT Ks
470 PENUP
480 PRINT YKB);Y(1);Y(M-2);Y(M-1)
A90 FOR Ks-0 TO M-1
508 Pr-X<Ks)
510 IF Pr>=lE-12 THEN Y=LGT(Pr)
520 IF Pr<z-IE-12 THEN Y=-24-LGT(-Pr)
530 IF ABS(Pr)(IE-12 THEN Y=-12
540 PLOT Ks,Y
550 NEXT Ks
563 PENUP
570 PAUSE
580 DUMP GRAPHICS
590 PRINT LIN(5)
600 PRINTER IS 16
610 END
620
630 SUB Mul'X1,Y1.X2,Y2,A,B) ZI*Z2
640 A-XI*X2-YX*Y2
650 B-XI*Y2+X2iY1
660 SUBEND
670
680 SUB Div(XIYI,X2,Y2,A,B) Z1/Z2
690 T-X2*X2+Y2*Y2
700 A-UX1*X2+YI*Y2).'T

710 Bu(YI.X2-XI.Y2)>..T
720 SUBEND
730
740 SUB FNtZOZ,.K*),'&*fl I N 4= 2A10 - 1024, N=2^INTEGER 0 subscript

B-3
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10 I GAUSSIAN CHARACTERISTIC FUNCTION exp(-.5 xiA2)a20 L=7 Limit on integral of char, function

t 30 Delta=.3 I Sampling increment on char. function
40 Bs=.375*(2*PI/Delta) Shift b, as fraction of alias interval
50 M=2^8 Size of FFT
60 PRINTER IS 0
70 PRINT "L =";L,""Delta =";Delta,"b =";Bs,"M =";Mi:1 80 REDIM X(O:M-1),Y(O:M-1)
90 DIM X(0:1023),Y(0:1023)
100 Mux=0 Mean of random variable x
110 MuX=Mux+Bs

* 130 Y(O)=.5*Delta*Muy
140 N=INT(L/Delta)
150 FOR Ns=l TO N
160 Xi=Delta*Ns Argument xi of char. fn.

S170 A=EXP(-.5*Xi*Xi) Calculation of
180 B:Bs*Xi characteristic
190 Fyr=A*COS(B) functionI 200 FYi=A*SIN(B) fy(xi)
210 Ms=Ns MOD M Collapsing
220 X(Ms)=X(Ms)+Fyr/Ns
230 Y(Ms)=Y(Ms)+Fyi,'Ns

240 NEXT Ns
250 CALL Fftl~z(M,X'C*),Y(*)) I0 subscript FFT
260 PLOTTER IS 'GRAPHICS"
270 GRAPHICS
280 SCALE 0,M,-14,0
290 LINE TYPE 3
300 GRID M/8,1
310 PENUP
320 LINE TYPE 1
330 B=Bs*M*Delta/(2*PI) Origin for random variable x
340 MOVE B,0
350 DRAW B,-14
360 PENUP
370 FOR Ks=O TO M-1
380 T=Y(Ks).'PI-Ks/M
390 X(Ks)=.5-T I Cumulative probability in X(*)
400 Y(Ks)=Pr=.5+T ! Exceedance probability in Y(*)
410 IF Pr>=lE-12 THEN Y=LGT'Pr)
420 IF Pr<=-IE-12 THEN Y=-24-LGT(-Pr)
430 IF ABS(Pr)<IE-12 THEN Y=-12
440 PLOT Ks,Y
450 NEXT Ks
460 PENUP
470 PRINT Y(0);YQ8);Y(M-2);Y(M-1)
480 FOR Ks=0 TO M-1
490 PruX(Ks)
500 IF Pr>-1E-12 THEN Y=LGT(Pr)
510 IF Pr<--IE-12 THEN Yu-24-LGT(-Pr)
520 IF ABS<Pr)QIE-12 THEN Yx-12
530 PLOT Ks,Y
540 NEXT Ks
550 PENUP
560 PAUSE
570 DUMP GRAPHICS
580 PRINT LIN(5)
590 PRINTER IS 16
600 ENfl
610 1
620 SUB Fftl0zýN,X,.*),Y,*,t N , 210 m 1024, N=24INTEGER 0 subscript

B-4
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10 SMIRNOV CHARACTERISTIC FUNCTION [S/sin(S)^Jl/2 where s=(l+i)sqr(xi)
20 L=3000 Limit on integral of char. function
"30 Delta=1 Sampling incr-.ment on char. function

"40 Bs=O Shift b
50 M=2A8 Size of FFT
60 PRINTER IS 0
70 PRINT ' =";L,"Delta =";Delta,"b =&%as,"M =";M
80 REDIM X(O:M-1),Y(0:M-1)
90 DIM X(0:1023),Y(0:1023)
100 Mux=l/6 Mean of random variable x
110 R=O Argument of square root
120 P=1 Polarity indicator
130 Muy=Mux+Bs
140 X(0)0=
150 Y(O)=.5*Delta*Muy
160 N=INT(L/Delta)
170 FOR Ns=l TO N
180 Xi=Delta*Ns Argument xi of char. fn.
190 A=SQR(Xi) Calculation
200 CALL Sin(R,A,B,C) of
210 CALL Div(A,A,B,C,D,E) characteristic
220 CALL Sqr(D,E,R,B) function
230 Ro=R fy(xi)
240 R=ATN(B/A)
250 IF ABS(R-Ro)>1.6 THEN P--P
260 Fvr=A*P
270 Fvi=B*P
280 Ms=Ns MOD M Collapsing
290 X(Ms)=X(Ms)+Fyr/Ns
300 Y(Ms)=Y(Ms)+Fyi/Ns
310 NEXT Ns
320 CALL FftlOz(M,X(*),Y(*)) ' 0 subscript FFT
330 PLOTTER IS "GRAPHICS"
340 GRAPHICS
350 SCALE 0,11,-14,0
360 LINE TYPE 3
370 GRID M/8,1
380 PENUP
390 LINE TYPE I
400 B=Bs*M*Delta/-(2*PI) Origin for, random variable x
410 MOVE B,O
420 DRAW B,-i1
430 PEAUP
440 FOR Ks-0 TO M-I
450 TzY(Ks)/PI-Ks/M
460 ':(Ks)=.5-T Cumulative probability in X(*)
470 Y(Ks)3Pr=.5+T Exceedance probability in Y(*)
480 IF Pr>-IE-12 THEN Y=LGT(Pr)
490 IF Pr<-IE-12 THEN ';=-24-LGT(-Pr)
500 IF ABS(Pr)sIE-12 THEN Yu-12
510 PLOT Ks,Y
520 NEXT Ks

.I
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53,0 PENUP
5 40 PRINT Y(0);Y(1);Y(M-2);Y(M-1)
550 FOR Ks=0 TO M-1
560 Pr=X(Ks)
570 IF Pr>1IE-12 THEN Y=LGT(Pr)

580 IF Pr<=-1E-12 THEN Y=-24-LGT(-Pr)
590 IF ABS(Pr)<1E-12 THEN Y=-12
600 PLOT Ks,'?
610 NEXT Ks
620 PENUP
630 PAUSE
640 DUMP GRAPHICS
650 PRINT LIN(5)
660 PRINTER IS 16
670 END
680
690 SUB Div(X1,Y1,X2','2, A, B) 21/fl
700 T=X2*X2+Y2*Y2
710 A=(X1*X2+Y1*Y2x>'T
720 B=(Y1*X2-X1*Y2),/T

7730 SUBEND
740
750 SUB Sqr(X,Y,A,B) PRINCIPAL SOR(Z)
760 IF X<>0 THEN 800
770 A=BSQR'ý.5*ABS(Y))
780 IF '(<0 THEN B=-B
790 COTO 910
800 F=SQR(SQR(X*X+Y*Yfl
810 T=.5*ATN(Y/'X)
820 A=F*COS(T)
830 B=F*SIN(T)
840 IF X>0 THEN 910
850 T=A
860 A-B
870 B=T
se88 IF Y>=0 THEN 910
890 A=-A

*900 B--B
910 SUBEND
920 1
930 SUB Sin(X,Y,A,Bl SIN'2)

*940 EnEXP(Y)
950 PA.5*SIN(X)*4E.1.'E)
960 IF ABSKY)<.1 THEN 990

*970 S-. 5* (E- 1,'E)
*980 COTO 1010

990 S-V.'?
1000 S-Y*.Q20eS.'k20+Snial0
1010 BUCOS(X).S
10 2 0 SUBEND
1038
1040 SUB FftlO:ýN,X'*,k u,£ 04 3'NEE 0 subscript

B-6
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10 NON-CENTRAL CHI-SQUARE CHARACTERISTIC FUNCTION
20 I exp(i d-2 xi / s) / s-.nu where s = 1-1 2 xi
30 Nu-2.7 Power law nuI 40 Ds=3 Deflection d
o5 L=500 Limit on integral of char. function

• ! 60 Delta=.05 Sampling increment on char. function
70 B s=I Shift b
80 M=2^8 Size of FFT
90 PRINTER IS 0
100 PRINT "L =";L, "Delta =";Delta,"b =";Bs,"M =";M

4•" 18 RE]DIM X<O:M-I),Y<O:M-I)

I 120 DIM X(0:1023), Y(0:1023)1 130 Di2=Ds*Ds Calculate parameter
140 Mux=2*Nu+D2 Mean of random variable x

: 150 Muv=Mux+Bs
160 X(0)=0
170 Y(8)=.5*Delta*Muy
180 N=INT(L/Delta)

j 190 FOR Nsil TO N
200 Xi=Delta*Ns I Argument xi of char. fn.
210 T=Xi+Xi I Calculation of
220 CALL Div(0,D2*Xi,1,-T,A,B) I characteristic

'A 230 CALL Log(I,-T,C.D) I function
240 CALL Exp(R-Nu*C,B-Nu*D+Bs*Xi,Fyr,Fyi) I fy(xi)
250 Ms=Ns MOD] M Collapsing
260 X(Ms)=X(IMs)+Fyr/Ns
270 Y(Ms)=Y(Ms)+Fyi/Ns
280 NEXT Ns
290 CALL FftlOz(M,X(*),Y<*)) !1 0 subscript FFT
300 PLOTTER IS "GRAPHICS"
310 GRAPHICS
320 SCALE 0,M,-14,0
330 LINE TYPE 3
340 GRID M/8,1
350 PENUP
360 LINE TYPE 1
370 D=Bs*M*Delta,/2*Pl) Origin for random variable x
380 MOVE B,0
390 DRAW B,-14
400 PENUP
410 FOR Ks-O TO M-1

" 420 TUY(Ks)/PI-Ks"M
430 X(Ks)=.5--T 'I Curulative probability in X(*)
440 YKKs>uPru.54T '' Ecceedance probability in Y(*)
450 IF Pr>-IE-12 THEN Y=LGTtPr)
460 IF Pr<--IE-12 THEN Y--24-LGT'-Pr)
470 IF ADS(Pr)<IE-12 THEN Y'-12
480 PLOT Ks,Y
490 NEXT Ks
Iee PENUP
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510 PRINT Y(0);Yd1 );Y(M-2);Y(N-1)
520 FOR IKs*0 TO M-1
530 PruX(ks)
540 IF Pr,>=lE-12 THEN Y*LGT(Pr>
550 IF Pr<--1E-12 THEN Y--24-LGT(-Pr>
560 IF ABS(Pr)<1E-12 THEN Yw-12
570 PLOT Ks,Y
580 NEXT Ks
590 PENUP
600 PAUSE
610 DUMP GRAPHICS
628 PRINT LIN(S)
630 PRINTER IS 16
640 END
650
660 SUD Div(X1,Y1,X2,Y2,A,D) Z1',22
670 TmX2*X2+Y2*Y2
680 Au(X1*X2+Y1*Y2)/T
690 Ds(Y1*X2-X1*Y2>/T
700 SUDEND
710
728 SUD Exp(X,Y,A,D> EXP(Z)
730 T-EXP(X)
740 AuT*COS(Y)
750 DsT*SIN(Y)
760 SUDEND
770
788 SUB Log<X,Y,A,D> PRINCIPAL LOG(Z)
790 Aa.5*LOG(X*X+Y*V>
1900l IF X<>8 THEN 830
810 Du.5*PI*SGNC?)
020 GOTO 850
830 D*ATNCY'X)
040 IF X<0 THEN DuD+PI*t.1-2*(Y<0))
858 SUDEND
860
870 SUB Frtl0z(N,X(*),Y(*)) IN <a 2Aý10 a 1024, NU2 AINTEGER 0 subscript
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10 G ARUSSIAN PRODUCT CHARACTERISTIC FUNCTION (56)
20 Nu=?.? 1 Power Nu
30 Rho--.3 I Correlation coefficient
40 L=5 Limit on integral of char. function
so Dolta. 6 ! Sampling increment on char, function
60 Bs=.5*(2*PI/Delta) tShift b, as fraction of alias interval
70 M=2-8 Size of FFT
80 PRINTER IS 090 PRINT "L =";L,"Delta =";Delta,"b ='°;Bs,,"M =11;M
100 REDIM X(O:M-I),Y<O:M-1)

110 DIM X(0:1023),Y(0:1023)
120 T1=1-Rho*Rho Calculate
130 T2u2*Rho parameters
140 Mux=2*Nu*Rho I Mean of random variable x
150 Muy=Mux+Bs
160 X(0)=0
170 Y(0)=.5*Delta*Muy
180 N=INT(L/Delta)
!90 FOR Nssl TO N
?00 Xi-Delta*Ns A! Argument xi of char. fn.
210 CALL LogkI+TI*Xi*Xi,-T2*Xi,A,B> Calculation of
220 CALL Exp(-Nu*A,Bs*Xi-Nu*B,Fývr,FVi)! characteristic function fy(xi)
230 Ms=Ns MOD M II Collapsing
240 X(Ms)=X(Ms)+Fvr/Ns
250 Y(Ms)=Y(Ms)+Fyi/Ns
260 NEXT Ns
270 CALL Fftl0z(M,X(*),Y(*)) H 0 subscript FFT
280 PLOTTER IS "GRAPHICS"
290 GRAPHICS
300 SCALE 0,M,-14,0
310 LINE TYPE 3
320 GRID M/',m
330 PENUP
340 LINE TYPE 1
350 B=Bs*M*Delta/b2*PI' II Origin for random variable x
360 MOVE B3,
370 DRAW B,-14
380 PENUP
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390 FOR Ks=0 TO M-1
400 T-Y(Ks)/PI-Ks/M
410 X(Ks)..5-T 11 Cumulative probability in XC.)
420 Y(Ks)=Pro.5+T 1! Excnodanee probability In Y(*)
430 IF Pr>=lE-12 THEY" .:*LGT(Pr)
440 IF Pr(u-IE-12 V*HR.,i Yu-24-LGT(-Pr)
450 IF ABS(Pr)<1E-12 THEN Yw-12
460 PLOT Ks,Y
470 NEXT Ks
480 PENUP
490 PRINT Y(0>;Y(1>;Y(M-2);Y(M-I)
500 FOR KimO TO M-1
510 Pr-X(Ks)
520 IF Pr>u1E-12 THEN Y=LGT(Pr>
530 IF Pr<u-1E-12 THEN Yo-24-LGT(-Pr)
540 IF ADS(Pr)<1E-12 THEN Yw-12
550 PLOT Ks,'?
560 NEXT Ks
570 PENUP
580 PAUSE
590 DUMP GRAPHICS
600 PRINT UIN(S)
610 PRINTER IS 16
620 END
630 1
648 SUB Exp(X,Y,A,B> I EXP(Z)
650 T=EXP(X)
660 A-T*COS(Y)
670 DuT*SIN(Y)
680 SUDEND
690
700 SUB Log(X,Y,R,E> PRINCIPAL LOG(Z)
710 Au.5*LOG(X*X+Y4Y)
720 IF X<>8 THEN 750
730 Eu.5*PI*SCN(Y>
740 COTO 770
750 D-ATN(Y'X)
760 IF X<0 THEN EuD+PI.k1-2*(Ys<0>)
770 SUDEND
780
790 SUEB~1ZXwo N <a 2^1G w 1024, Nu2AINTEGER 0 subscript
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10 SUB f1ztX*,k) N <= 2-10 -1024, N-2'INTEGER 8 subscript
20 DIM C<0:256)
30 INTEGER I1,12,13,14,15,16,17,I8,19,II0,J,K
40 DATA 1, .999981175283, .99992-4701839, .999830581796, .999698318696, .99952.94175
01, .999322384588, .9990Of77727753, .998795456205, .998475580573, .998118112908
50 DATA .997723066644, .9972490456679, .996828299291, .996312612183, .995767414468
.995184726672Z, .994564570734, .993906970002, .993211949235, .992479534599

60 DATA .991709753669, .990302463548S, .990058210262, .989176589965, .988257567731
,.987301418158, .986308097245, .985277642389, .984210092387,,.983105487431
70 DATA .981963869110, .980785280403, .979569765685, .978317370720, .977028142658
,.975702130039, .974339382786, .972939952206, .971503890986,.970031253195

g 80 DATA .96852'2094274, .966976471045, .965394441698, .963776065795, .9621214842-69
,.960430519416, .9587-03474896, .956940335732, .955141168306, .953306040354
90 DATA .951435020969, .949528180593, .947585591018, .945607325381, .943593458162

,.941544065183,.937 -922r3602,.937339011913,.935183509939,.932992798835
100 DATA .9307669tý13?9,. 9 2'85 0608 0473 ,.92r6 2^1O24 2l3 S,. 92 3 879S32 5 11,.9 2 15l40 3 93 42'
,.919113851690,.916679059921 ,.914209755704,.911706032-005,.909167983091I110 DATA .906595704515, .9039892-ý9312-3, .901348847-046, .898674465694, .895966249756
,.893224301196, .89044872-3245, .38763962r0403, .884797098431, .881921264348
1210 DATA .87901222642ý9, .876070094195, .873094978418, .87-0086991109, .867846245516
,.863972856142,.869.368 728108 8459835 815130
130 DATA .848128344803, .844853565250, .841554977437, .838224785555, .834862874986

.8146 9il12303, .828045045e-_58, .8324589382 785, .82 1102514991, .817584813152
140 DRIP .81403,-632ý9706,.8104571982-53,.806847553544,.883287531481,.799537269108

.75836904609, .79210657730G.,.788346427627, .784556597156, .78073722C572
1450 DATA .788573.700533.61374C.765167265622,.7612Z023854;d4

160 ATA 7368656$77,.32642.7416742, .7284439044e8,.424,7408951,.70025896

7.157308252884, .71143 329545, .70710673118?, .702754744457, .6983762440
170 DATA .693971460890, .689540544737, .685e83667773, .680600997795, .67609270357!

1ý30 DATA .64851440-1042L,.-43-33154.-'890,.63912i-4444864,.6314393284164,.62-9638238915

190 DATA .066734.9'9349,505715,559875,501989

2L00 DATA.505923,552882,401423,549I98.590666

,210 DATA.482EE3,429123,475114,418709,469303

*.359$9.50365 35,. 354 1 35 25420, . 34-8418680249, . 3 42-660 717 312,. 3 368898k5 3392
24k DAT .331106 305s76k..32S3b121 262', .3Ias:0230,q 6, .313017,40 399, .30-84960400Z

3102~tk59ý493 19, .4-916 1'5V8S44.. 2`30Z28416 77,254, .2$,44075 37!&211..Z7$51 9689365
250 DATA 2761540.612545.209171,245590.4$705-46

260) DATA .213'a11*031199 16,-2071 113761?2, .201!10463464', .19-5090-2206.196664,150

270 DATA.127155,160445,405233,143080,149104

`9O DA TA .429 3)$Z56 3k34 9E -1,.3Ej$,0 7,24`44 14CE-I 1,.0i748so 3766E -1.2 4 54 122S52 29E I,

300 READ Ct-.'
310 K a1024 ,

33) C-------C , -
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380 N4nNI+N3
390 Log2nmINT(I.4427*L0G<N)+.5)
400 FOR II1 TO Log2n
418 12=2^(Log2n-I1)
420 13a2.12
438 I4=N/13
448 FOR I513 TO 12
450 166(I5-t)*14+1
460 IF 16<*N2 HEN 500
470 N6=-C(N4-16-1)
480 N7w-C(16-NI-l)
490 GOTO 520
500 N6=C(16-1)
510 N7--C(N3-16-1)
520 FOR 17=0 TO N-13 STEP 13
530 18=17+15
540 19-18+12
550 N8-X(18-1)-X(19-l)
560 N9=Y(18-1)-Y(19-1i
570 X(I8-I)=X(I8-l)+(1I9-1)

• 580 Y(18-1)-Y(I8-I1+Y'19-1p

V 590 X(19-1)uN6*N8-N7*N9
600 Y(19-1)=N6*N9N7T*N8
610 NEXT 17
620 NEXT 15
630 NEXT II
640 alLog2n+1
650 FOR 12=1 TO 10 210=1024
660 C(12-1>=I
670 IF I2NLog2n THEN 690•" 680 C(I2-I1 =2 ^I-I-2>

690 NEXT 12
700 Kul
710 FOR I11- TO Ck9i
720 FOR 12-II TO Cr,' STEP C,'
730 FOR 13=12 TO Ci7, STEP C,$'
740 FOR 14&13 TO Ck6) STEP CI7-
S758 FOR 15n14 TO C,5, STEP Cký,
760 FOR 16=15 TO C,4, STEP C5:5.
770 FOR 17-16 TO C.3) STEP C14)
780 FOR 18I17 TO CZ, STEP C,3,
790 FOR 19-18 TO Cil STEP Ck2l
800 FOR 110-19 TO C,O• STEP Ct1
810 10110
820 IF tŽJ THEN 890
830 AxK-1)- -

850 J•-.-

0 06 0 -Y(K-1 )*

•.990 K-k-!

900 NEXT 110
.910 ME M 19

9 2O NEYT 18
930 NEXT 17

940 NEXT 16
950 NE.,t .3

•:960 NEWT 14

970 NEXT 13
•:980 NEXT 12

.•990 NEXT I1
!0O00 SU•EmDI{
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