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™ The size of the fast Fourier transform determines the number of distribu-
tion values available, but has no effect upon the accuracy of the result.
Regardless of the number of characteristic function evaluations required for
accurate results, the storage required is just that corresponding to the size
of the fast Fourier transform.

A program for the procedure is presented, and the inputs required of the
user are indicated. Several representative examples and plots illustrate the
utility of the approach.
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Z L limit on integral of characteristir functicn; (28)
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ACCURATE EFFICIENT EVALUATION OF CUMULATIVE OR
EXCEEDANCE PROBABILITY DISTRIBUTIONS DIRECTLY FROM
CHARACTERISTIC FUNCTIONS

INTRODUCTION
The performance of a signal processor can often be evaluated in terms of

the characteristic function of the decision variable, either numerically or in
closed form; see for example, refs. 1 and 2. However, a closed form for the

corresponding probability density function or cumulative distribution function
is seldom available, and numerical procedures must be employed. Several such
procedures have been published in the literature, refs. 3-8. However they
have limited accuracy or they require extensive storage or analytical
manipulations and calculations.

We present a technique which is limited in accuracy only by the round-off
noise of the computer or by the errors of the special functions requi-ed in
the characteristic function calculation. The amount of storage depenas only
on the number of cumulative or exceedance distribution functinn values
requested and does not influence the accuracy of the final probability

values. The entire cumulative and exceedance distribution function values
result as the output of one fast Fourier transform (FFT). The size of the FFT
dictates the storage required and the spacing of the calculated probability
values, but not their accuracy.

The addition and subtraction of integrand functions given in ref. 7 can
be entirely circumvented and yet enable use of an FFT, through proper
manipulation of the origin contribution of the characteristic function.
Specific connections with past results will be noted at appropriate points in
the derivations.
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DERIVATION OF PROCEDURE

Shifted Random Variabnle

The primary random variable of interest is the real quantity x with given

characteristic function fx(i) which is related to the probability density
function p  of random variable x via Fourier transform *

f,.(5) =Jdv exp(isv) p (v). (1)
We define secondary random variable y as
Y= X*b, (2)

where bias (shift) b is a constant, chosen such that random variable y has
insignificant probability of being less than zero. However, we also pick b as
small as possible, so that the characteristic function of y,

F(0) = £ (§) exlivp), (3)

will vary slowly with §. In fact, b can be negative, as for example if x were
limited to values larger than some positive threshold. The jpproach here is
not limited to positive random variables x, as were some of the results in
ref. 7, but i3 applicable to any random variable distribution.

By way of example, for an exponential probability density function for
random variable x, we choose b=0; while for 3 Gaussian random variable,
beu_+8o, yields a probability less than lE-15 of y being neqative. The
probability density function of random variable y therefore appesrs as
depicted in figure 1.

* [ntegrals and sums without limits are over (-e,+w),
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f,(V)

v

0

fFigure 1. Probability Density Function of Secondary Random Variable y

The cumulative distribution functions of random variables y and x are

retated according to
y
dt L) = P {v) = P (v-b); P2_{v) a P (v*b). )
fpy() JV) =P (v-b)s 2 (v) & P (veb) (4)
- b
Thuys we can inspect P‘(v) in the neighborhood of v=-b (the lower edge of
interest of x) by looking at cumulative distribution function Py(v) in the
neighbornhood of va(. More precisely, we will investigate Py(v) for values
of v greater than zero, since this is the region of significant variation of
Py(v); this is called the positive neighborhood of v=0.

Approximation to Cumulative Distribution Function

From ref. 4, eq. 7, we have the cymulative distribution function of
random variable y in terms of the characteristic function according to

0
ZUREINIE ETXE (s)

whare we have defined auxiliary function

f,(9)
9($.v) = Im § exp(-§v) Lg—t. (6)

Ghserve for later use that

I*i u -V
§(0*.¥) = lin lsa{{l-i§‘4) suy}s I, (7
Foor *§ '

where 2y is the mean nf random variabie y.
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For v in the neighborhood of zero, exp(-i§v) in (6) varies slowly with ¥,
and we have the approximation, via the Trapezoidal rule, to (5) as

+©

P(v) = 3 - B gon) - 2> 4 glnav) = Clv), (8)
n=]

where the right-hand side of (8) has been defined as C(v). Here, a is the
sampling interval in &, and is small enough to track changes in exp(-ifv)#
fy(§)/§. We choose the Trapezoidal rule in (8) over other integration rules,
such as Simpson's rule, because it results in minimum aliasing for Fourier

transforms relative to all other rules; see appendix A for elaboration and
proof.
Observe from (8) that

Py(()) = C(0) means C(0) =0, (9)

since Py(O) is insignificant by the choice of b in (2); this relation will
be used later.

Relationship of Approximation

Although we want to evaluate the exact cumylative distribution function

Py(v). we have instead arrived at an approximation C{v) via (8). How are
these two reiated? To determine the relationship, we manipulate (6)-(8) as
follows:

V-u, paine f (na}
Civ) = % . %——’—i - z lm{exp(-inav) -L—--—} =

vh
ne] ~

4e0 ¢ na)

V-u (5}
- %— . %-—'—--‘f - la Zenp(-inav) —z-;-n— = (10)

nel

V-u 1 f "{ﬂé)

.%o%—rl-T%:Eexp(-inav) — (11)

né0

&

e e —— 7 < e i e Y=
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The removal of the imaginary operation from within the summation in (10) {: a
crucial step; it does not create a problem in divergence since n > 0. This is
in contrast with the integral of (5) and (6), where removal of the imaginary
operation would create a divergent integral. This postponement of the removal
of the imaginary operation, until! safter the approximation to the intagral was
developed in (8), is the major differencc with the results in ref, 7.

Taking a derivative of (11}, we obtain

C(v) = % + %; Eexpﬁnbv) fy(nA) z
n40

a . _
= 37 Zexp(-m,.w) fy(na) =
n

l . :
= 37 fds exp(-ifv) £ (§) 8§(5) =
s Dy(V)QSZS(V) = zpyG-n -i—’)a P v), (12)
8" n

where infinite impulse train

§,(5) « 2(5-ne), (13)
n

where @ denotes convolulion, and where we have ysed the relation

%—'- fﬂl exp(~iat) ASA{!) v g?’(a)- (19}

—

3

This last result follows from ref. 9, p. 28, rule 11, with uit) « §{t}, Tea,
Fel/T, ang wwlef. Relation (12} indicetes that {'{v} is an infinitely aliased
version of the prodbapility density functlion py(v), with resultant period

2efa in v, For small envugh s.mpling fncrement & fn {8), there will be very

l1ttle overlap of the displaced versions of b, in {12}, thereby yr1elding the
good approximation

R I R X
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P (v) =p (v) for 0 <v < 2/, (15)

The situation for relation (12) is depicted in figure 2.

Cl(v) = F’B (V)

f.,(v}

¥ =l V
_2m 0 Viid
A A

Figure 2. Infinitely Aliased Probability Density Function Sy(v)

There now follows from (12),

B (u) = C(0) + P (v), (16)

where C(0) is given by (10) as

1 fﬂl Eéi f (na)
C(0) = 5 - 5= - Im : —L"n- . (17)
N=

Relatiun (16) is an exact relation, snowing that C(v) is the integral of the

infinitely aliased version of Dy(v), starting at v=0, plus an additive
constant which is substantially zero; see (9).

So for v in the positive neighborhood of zero, (4), (8), (16), and (9)
yield

P (v-b) = Py(v) = C(v) = C(0) + By(v) . ﬁy(v). (18)

Thus the quantity we want, the left-most term in (18), is
well-approximated by calculated quantity C(v), which itseif is approximately
the integral of the infinitely aliased version of py(v).

6
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Calculation of C(v)

Let v = gﬁ% in (10), wnere M and k are arpitrary integers. Then

)

kK, 1 k M . £ (na)
C(%ﬂ—) = + - 2?}: - Im 2 eXp(-‘IZuﬂk/M)—%—- =
n=1
1 1 =
K .
=3 + M1 Im :Ei exp(~i2ank/M) z.ts (19)
n=0
wneire we define complex sequence
i 3 £ 0
7 uy or N=
2 = « (20)

fy(na)/n for n>l

Now define collapsed sequence (ref. 7, pp. 13-16) as
$@

Toe Dy fOr gl (21)
3a0

Tnen since z, receives the same weight as Zneyy 0 {19), regardless of the
value of k, (1Y) can be expressed as

M-
MELLI .i, - % I 2 exp(~i2enk/M) 2 {. (22)
DSQ

Relation (2¢) is exact and valid for all x. 3Since we are only interested
1n the positive neighoornood of val in (18;, we confine attention in (22) to
U< k¢ M-1.* Relation (2¢) can then pe accomplished by an M-point FFT if N
is chosen to be a power of 2. Notice that storage only for the M complex
fwumoers {in} in {21) is required, even though the {zn} sequence in (20) is
of infinite length,

* values for otner k are avaiiable from (22) when we ooserve that

2u(Mex ek .
C(—I&K-—-)-) el *( (R—A-—) for all «.

R AR C s AN a A et ey A s =

A PR TR RN RS e AR N 2 T N AR T e, R B i 3 TUE B e et e e MR
- . — e e et i e m e e } R - R
% RV TR T TR T TR AR v pry . ok . A*- - )
A WA W - A _«.| a sk O ® Lan «§§E:~ SEOE TR el . ., o S e v '.') N
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c(

Observe that the size of M in no way affects the error of the calculation of

2nk
M~

) or estimation of Py(v). Rather, M specifies the spacing at which C{

calculated, and can be coarse if desired. The accuracy of the estimate of
Py(v) is qoverned thus far by a, through the 1liasing depicted in fiqure 2.

where the latter quantity is given by (22).
the argument range (-b,-b*2r/a) for the cumulative distribution function T

Reference to (18) now yields

PRk _b) o CEK)  for 0¢k ¢ M1, (

x
It we want the exceedance distribution function of y instead of the
cumulative distribution function, we use (18) and 22) to get
-1
" k . A
L- o) =3 -f o LS exp(cizenksm) 2l for0ck Ml (
n=yJ

(By the foatnote to (22), we have 1-C(2x/4) = -£(0).)

Since by must oe xnown in (20) 1n order to use this appreoach, we need
tne mean u, of random variable x, since from (2)

uv = ux¢b. (

v

The quantity u, can be found analytically from characteristic function
f.(F) according to

fx(o) = fux; (

see (1}).

. RS A P I AT e D R i DLART - B e . 5 2 - R :

>

i

25)

Thus the M-point FFT sweeps out

24)

25)

28)

it e - el T
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In addition to the error caused by aliasing associated with nonzero
sampling increment A, an additional error occurs because we cannot calculate
all the coefficients fz 1 in (20) and (21) out to n=+=. Rather, we
terminate the calculation at integer n=N, such that fzn} is sufficiently
small as to be negligible for n > N, Letting

L = Na, (27)

this is equivalent to ignoring the contribution to (5) of the tail error

T T f,6)
= 198 9(§,v) = ~Im gdf exp(-i¥v) —f}.—— (28)
L L

[ the asymptotic behavior of fy(E) for large § is known, this error can
sometimes be e\ aluated in closed form and used to ascertain an adequate value
~f L. Instead, we hive observed that tail error (28) causes a characteristic
low-level sinucoidal variatica in the calculated cumulative distribution
fuiction for small v near 0, and in the calculated exceedance distribution
function vor large v near 2,/A. When this sinusoidal variation is deemed
excessive, L can be (ncreased 'mtil the effect disappears or decreases to
acceptable levels. This trial and error approach avoids the necessity of
analytically upoer bounaing the magnitude of error (28), which is often very
tedious and generaily nessimistic.

So there are two errors to be concerned with: aiiasing due tc nonzero
sampling interval & and cail erros due to non infinite Timit L. Later
examples will demonstrate how t'..~e errors mani“est themselves in the
cumulative and exceedance distribution functions and how they can be

coatrolled by a trial and error approach.
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Relation to Requicha's Method, ref. 5

From ref. 5, egs. 7, 9, 10, the cumulative distribution function is given
by an expression that can be manipulated into the form (using current notation)

Im Z exp(-i2zkn/M) —L— + 1 = Im 2 (29)
n=1 n=1

-n
~
i
<
}
=% |

Although this is similar to the upper line of (19) here, it differs in several
important respects:

1. Fk does not use mean uy at all; it is therefore not using a
direct approximation to the specified integral in (5) and (6).

2. From (29), there follows FO = 0, Fy = 1; however, these results
are not strictly true for the actual cumulative distribution function at these
end points, thereby leading to poor estimates in the neighborhoods of these
points. This is due to the arbitrary origin established in ref. 5, eq. 6.

3. The sums in (29) utilize characteristic function samples fy(nA)
only for n < M/2, where M is the size of the FFT. This is a very severe and
unnecessary restriction; in fact, the sum on n in (29) ought to be conducted
to the point where the tail contribution, (28), is negligible, regardless of
the value of M.

4. In ref. 5, if eq. 4 is substituted into eq. 1, and the summation
limits are extended totes, we get exactly the second line of (12) here., When
the probability density function is integrated to get the cumulative
distribution function in ref. 5, eq. 6, the resultant cumulative distribution
function is arbitrarily set to zero at v=0. We instead have from (9) and (17),

1 1 :gi f (na)
Py(0) = C(0) = 7 - ?;l =< _L-n , (30)

which is small, but not necessarily zero. This consideration is very

important on the tails of the cumulative and exceedance distribution functions.
10
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Summary of Procedure

The cumulative distribution function of y is given by

M-1
k :
py(%%i) o c(%%-) =5 % - % Im{ > exp(~izenk/M) z
n=0
for 0< k< M1, (31)

where M is the size of the FFT and storage employed. Also

4+
Qn = ::S 21w for 0<n< M1, (32)
J=0
where
‘i%—Au for  ns0
z, = fy(nA)/n for 1 < n < N (33)
0 for n > N

(The value for n=N should be scaled by 1/2 for the Trapezoidal rule).

The zero values for Z,, when n > N, serve to terminate the collapsed sum in
(32) at a finite upper limit. The value of N is given by the integer part of
L/a, where Ao and L must be chosen so as to minimize aliasing and tail error,
respectively. The characteristic function of random variable y needed in (33)
is given by

F 5) = £, (§) exp(ivF), (34)

in terms of the characteristic function of the primary random variable x,
where shift b must be chosen such that y = b+x is positive with probabilty
virtually 1. The mean My = b+u, can be determined analytically from
knowledge of characteristic function fx(g), Finally, the exceedance
distribution function for random variable y is obtained by subtracting (31)

from 1.

11
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EXAMPLES
Programs for the following five examples are listed in appendix B.

1. Chi-Square

A chi-square variate of 2K degrees of freedom has probability density
function (ref. 10)

K-1
px(v) =y R exp(-v/2) forv >0 (35)
2™ (K-1)!
and characteristic function
TR oK
! f F) = (1-i2p7. (36)
?é%
%% Since random variable x is obviously nonnegative by (35), we can choose shift
z} E

b=0; i.e. y=x. A plot of the cumulative and exceedance distribution functions
of random variable y obtained from characteristic function (36) with K=4 is
given in figure 3 for 0 < v < 2v/a. The values of 4 and L have been chosen

] such that aliasing and tail error are insignificant.

The ordinate scale for figure 3 is a logarithmic one. The lower right
end of the exceedance distribution function curve decreases smoothly to the
: region lE-11, where round-off noise is encountered. The exceedance
.g distribution function values continue to decrease with v until, finally,
L negative values (due to round-off noise) are generated. For negative
probability values, the logarithm of the absolute value is plotted, but
mirrored betow the 1E-12 level. These values have no physical significance,
of course; they are plotted to illustrate the level of accuracy attainable by
this procedure with appropriate choices of a4 and L.

For this example, N=l/A=2666, while M=256. Thus collapsing, according to
(21) or (32), by over a factor of 10 has been employed and a small size FFT
has been utilized. Nevertheless the error realized for the cumulative and
exceedance distribution functions is in the 1E-12 range, the limit of accuracy
of the Hewlett Packard 98458 Desk Calculator used here. Finer spacing in the
distribution outputs is achievable by merely increasing M.

12
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2. Gaussian

oot cRt b e e e SR e
v,

b R The characteristic function for a zero-mean unit-variance random variable
< is

.

Tl ]

- £,(5) = exo(-5%12), (37)

and the probability density function and cumulative distribution function are
(ref. 11, eq. 10.5.3)

b, (v) = (207 exp(—v¥/2), P (v) = F(¥). (38)

For b = 5#¢/2, using (4),

P,(0) = P, (-b) =F(-b) = 2E-15. (39)

which is negligible, as desired.

Plots of the cumulative and exceedance distribution functions for random

#’ variable y are given in figure 4 for L=7, 4=.3. The logarithmic ordinate
Yy

. gives rise to the characteristic parabolic shape on the tails of the

jj distributions. Once again, the probabilities decrease to the level of the

| round-off noise and fluctuate around 1E-12 near the edges of the fundamental

| aliased interval (0,2n/a). The fact that the cumulative distribution function
of y starts in the round-off noise at v=0 indicates that b=5r/2 was large
enough to guarantee y > O with probability virtually 1. Also indicated on the
figure is the origin for random variable x. We have, from (4),

Pelu} = Pylutd); (40)

thus for example

Prob(x < 0) = P (0) = Py(b) a .5. (41)
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In figure 5, the only change is to decrease limit L from 7 to 6. The
tail error mentiored in (28) et seq. then dominates the round-off noise and
has a sinusoidal variation. Aliasing is not a problem, as witnessed by the
fact that the cumulative and exceedanca distribution functions of random

variable y have decayed below 1E-12 well before the edges of the interval are
reached.

When limit L is restored to 7, and sampling increment a is increased to
.5, aliasing becomes significant, as shown in figure 6. The exceedance
distribution function has not yet decayed to the round-off noise level at
v=2n/4, and the cumulative distribution function shows a large negative
probability region near v=0. Shift b has been maintained at the value 5x/2,
corresponding to (39).

When L and a are restored to their values 7 and .3 as for figure 4, but b
is decreased to 5#/3, the probability of y becoming negative is, from (4) and
(38), §(-52/3) = .826-7. This is reflected in the cumulative distribution
function for y in figure 7 at v=0, where the probability value is well above
the round-cff noise level., Also, the exceedgnce distributian function
develops significantly negative values near v = 2x/a.

Accurate evaluation of the cumulative and exceedance distribution
functions can only be achieved when L, a, and b are properly chosen, Probably
the optimum combination for the Gaussian variate is displayed in figure 8,
w~t.ere 3 has been increased to .4, the distributions are centered on the
fundamental aliased interval (0, 2x/4) by choice of b, and L {s taken at 7 to

avoid tail error.
3. 3mirnov
The limiting characteristic function of a measure of goodness of fit

based on the sample distribution function was derived by Smirrov and is given
by (ref. 12, eq. 30.104)

1/2
f‘(g) . éTFSTST) where s = (1*if¥ for ¥20. (42)
16
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An expansion about $=0 yields

£,(8) = 141 £§ - 4782 fiew, u = 1/6, of = 1/45. (43)

And since the goodness of fit is always positive, random variable x is
positive and we can choose

b=0. - (44)
Since
sin((1+i ¥F)~ iz exp(fF(1-1)) as S+e, (45)
it follows that
£,08) ~ 2/ 8 exp(- HF (G - B) as fave, (46)

The phase of this term rotates according to y§/2; if we were to choose b#0,

fy(g) would rotate faster than f,(§) (1inear with § rather than/?"). This
could necessitate a faster sampling rate, which is undesirable,

The cumulative and exceedance distribution functions are plotted in
figure Y. L and a have been chosen so as to avoid tail error and aliasing.
The exceedance distribution fuaction is seen to dacay exponentially until it
reaches approximately 2E-11; the bump ia the curve at this point is a
manifestation of the limited accuracy of the trigonometric functions built
into the calculator employed. Larger values of v lead to round-off noise
around the 1E-12 level.

A comparison of results for thi+ characteristic function, with Requicha's
method described in (29) et seq., is given in figure 10 for FFT size M=1024.
The plot labeled with Nal=512 is precisely Requicha's method. Aliasing is
known to be insignificant for sel, as seen by reference te figure 9 and
observing that extrapolation of the straight line section of the exceedance
distribution function would result in probability values near 1E-13 at
vele/a. The dashed portion of the Nale512 curve in figure 10 in fact

21
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corresponds to negative probability estimates; these grossly inaccurate
results are due to an inadequate value of limit L, leading to large tail error.

When N is simply increased to 1023, the middle curve in figure 10 results
from Requicha's method. Again, negative estimates are indicated by the dashed
portion of this curve, although two orders of magnitude smaller than above.
The reasons for these errors have been delineated in (29) et seq.

The bottom-most curve in figure 10 (solid curve) is that obtained by the
method proposed in this report for L = 1023. Exceedance distribution function
estimates in the lE-10 range are obtained, but the error returns to the 1E-8
range at v=2n/A. No negative probability values occur. Also, by simply
increasing limit L, while keeping FFT size M fixed, the error can be reduced
significantly further, as already witnessed by figure 9.

4. Noncentral Chi-Square

Here the random variable x is given by

2
(g *dy)

>
i
M=

k=1
where {dkl are constants, and {gk} are independent Gaussian random

variables with zero-mean and unit variance. The characteristic function of x
is

. .2
fx(s) = (l‘i2§)—K/2 exp(}ngé) ) (48)

whare deflertian d is defined according to

K
¢ - z 2. (49)
ka1

We actually consider a more general characteristic function than (48), namely

24
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2 2
£.5) = (1-i28)™ expG%{?> - expé%%; - v,tn(l-izg)>, (50)

where v is an arbitrary positive real constant. Suppose that we use the
principal value logarithm for An(z), where the branch cut 1ies along the
negative real axis of the complex z plane (ref. 13, sect. 4.1.1). Then since
the argument of the logarithm in (50) never crosses the branch cut, form (50)
gives the correct characteristic function values automatically for all real§,
and any v.

The probability density function and exceedance distribution function
corresponding to (50) are (ref. 14, 6.631 4)

2 v-1
1 dtv [AV
px(v) =3 exp<— 5 ) (—d-) Iv_l(dW) for v >0,

T d2+t2 & y-1
1- Px(v) = dt t exp(~ —— (H) Iv_l(dt)s Qv(d,YV$ for v > 0. (51)
W

Since the probability density function in (51) is never negative (ref. 13,
sect. 9.6.1), (50) is a legal characteristic function. Also because random
variable x is always positive according to (51), we choose shift b=0. Plots
of the exceedance distribution function, as determined from characteristic
function (50) are displayed for various values of d in figure 11. The values
of L were chosen for each d value so as to control the tail error below the
1E-10 level plotted. Direct calculation of the exceedance distribution
function directly from (51) would be a formidable task for arbitrary v values.

5. Product of Correlated Gaussian Variates

Let

X = st (52)

where s and t are zero-mean unit-variance Gaussian random variables with
correlation coefficient p. The joint probability density function of s and t
is

25
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-1 2,2
pst(u,v) = (Zn VI-p2> expE-“—II—'—'—%—")}-‘l} . (53)
2(1-p

The characteristic function of x is then
fx(;) = exp(ifst) =L[[6u dv exp(ifuv) pst(u,v) =

172
- E—in}*'(l-pz)Ez] = [t-i1roig] 2 [iri(-008] 12, (54)

via repeated use of ref. 14, eq. 3.323 2. The corresponding probability
density function of x is

d v 1 v vl
px(v) = X‘Tfr pst(y’y) = T exp(lipé> KO(l-o%) for all v, (55)

via ref. 14, eq. 3.478 4.

(If we transform this probability density function according to (1) and
use ref. 14, eq. 6.611 9 and ref. 13, eq. 4.4.15, we get precisely (54).
Alternatively, if we transform (54) and modify the contour to wrap around the
branch line along the imaginary axis and then use ref. 14, eq. 3.388 2, we get
(55). Or we can use ref. 14, eq. 3.754 2.)

We actually consider a more general characteristic function than (54),
namely

(8 « [1-izo5+ 162 7] exp(-un [-125+ (105187 |

e *{\E?fd v‘;}jw. (56)

1-02 1_02

The mean of this random variable x is given by

u, = 2vo. (57)
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The probability density function corresponding to (56) is

) = - fdg exp(-igv) (%) =

+¢°-io/vi:)?

-\
1 deexp oV WY 1 2

2n 1- oo 19/4[1—_—? R Vl':? 1-p

where we let

L}

1-o

i—2— . (59)
W7

We can move the contour in (58) to the real y-axis, because the branch points
of the integrand are at y = % i/Vl-p2 which are outside the path of

integration, since Jo| < 1. Then using ref. 14, eq. 3.771 2 and ref. 13,
eq. 6.1.17, we obtain

1

oo () )yl o o

Since this probability density function is never negative (ref. 13, sect.

9.6.1), (56) is a legal characteristic function. I[f we Fourier transform (60)
via ref. 14, 6.699 12, we get (56) directly.

There is no simple relation for the cumulative distribution function of
this random variable. Nevertheless, it is a simple matter to evaluate
directly from characteristic function (56). The An in (56) causes no problems
since its argument never crosses the branch cut. A plot for v=7.7 and o=-.3
is displayed in figure 12. The rate of decay of the distribution ts different

for each tail. The round-off noise is clearly visible at both ends of the
range of v values.
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APPLICATIONS

We now have the capability to handle the following type of statistical
problem in a fairly easy fashion. Consider random variable

K Vi
x=2rk . (61)

k=1

where {Pk} are arbitrary random variables, statistically independent of each
other, and with different distributions. Power v is arbitrary (except that

v, must be a positive integer for those Tk that can become negative). Let
the probability density function of random variable r, be pk(v). Then the

v
characteristir. function of rkk is

gk(g) = expé rkk) = j‘dv exp(ifvvk) pk(v) =

1y 1y
- f’—;ﬁ—‘ exp(igt) t X pk<t ") : (62)

If (62) is rot integrable in closed form, it can be evaluated by means of an
FFT (one for each k if the probability density functions or v, are all
different). Then Lve characteristic function of random variable x in (61) is

given by

X
e = T s o) - (63)
k=i

Now the techniques of this report are directly applicable to (63).

An additional example is afforded by
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K 2 K 2 K
xazakvk*' Eskvk +§kak’ (64)
k=1 k=1 kal

where {Gk}, {Bé&, and {yk} are constants, and ka} are independent
random variables with arbitrary probability density functions. The

characteristic function of x -

fo(§) = exp(itx] = Jdv V) exp(l’f[)auf * éﬂkvk)z +kavk]), (65)

where V = (vl, Vos eeey Vg). Now since

. \1/2 b2
<%§) \(;y exp(-iay2 + iby) = exp(%%{) for a 4 0, (66)

we identify a = §/4, b =EZ B vy, eliminate the square in the exponent,
and express (65) as

() = [aro,(0) exs (183007 + 153 w)*

(" Lo o - w300)

K
a\1/2 .
= (l%) jdy exp(‘ l%.Y_j ;ﬂ; {fﬂvk P v} exp(i}‘(akvi A yskvk)}, (67)

where

X

PV) “{T{p,‘(vk)} . (68)

kal

The inner integrals in {67) can either be done analytically or numerically.
Then the remaining single integral on y must pe numerically evaluated to find

characteristic funclion fx(;). As an example, if vp is exponentially
distributed

i
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pk(v) = a exp(-akv) for v > 0, (69)
then the inner integrals in (67) are w-functions; see ref, 13, ch. 7. A

simpler method of handling general quadratic expressions like (64) with
Gaussian V is presented in ref. 15.

32
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SUMMARY

An accurate method for efficient evaluation of the cumulative and
exceedance distribution functions has been derived and applied to several
examples to illustrate its utility. Choice of the sampling increment a
applied to the characteristic function controls the aliasing problem, and
selection of the limit L minimizes the tail error; the effects of both of
these parameters can be observed from sample plots of the distributions and
can be modified if needed. Additionally, shift b must be chosen so as to
yield a positive random variable with probability virtually 1. The number of
distribution values yielded depends on the size of the FFT employed and can be
independently selected to yield the desired spacing in distribution values.

33




o e -—4—"

TR No. 7023
APPENDIX A. SAMPLING FOR A FOURIER TRANSFORM
i
Suppose we are interested in evaluating Fourier transform
| 6(f) =.(dt exp(~i2xft) g(t). (A1)
; If we sample at interval a in t in (A-1), and use integration weighting w(t),
! we have the approximation to G(f),
£ »~
j G(f) = jﬂdt exp(-i2=ft) g(t) SA(t) w(t)
= 6(f)® 1 §,(F) ® ¥(f)
] 3
1 n
- E Dar-hewr, (A-2)
n

where infinite impulse train (sampling fuaction)

! §y(t) = > S(t-na), (A=3)
1 n

and @ denotes convolution,

LR The term
Y i
SRR | 1 n
i | K:EG(f- & (A=d)
T . n
b .1
. {{' . 4

in (A-2) is an infinitely aliased version of desired function G(f); this

R f P aliasing is an unavoidable effect due to sampling at increment a. However, to
. }f ‘% minimize any further aliasing in (A-2), we would like W(f) = §(f), which
T requires w{t) = 1 for all t; strictly, all we need is
‘«.}iéf w(na) =1 for all n. (A-5)
» L8
b |
"‘( . ' A"‘l
4
i
i -
.ol l o
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SRR *
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That is, the best weighting in (A-2) is uniform.

As an example, for Simpson's rule, we have weighting

Wos) = s 5o 5 5 P 5 e = 1D o 1 - L), (A-6)
which can be represented as samples of time function
wit) =1+ % exp(int/a) or 1 -‘% exp(int/a). {A-7)
The corresponding transform is
W(f) = j\dt exp(-i2nft) wit) =
= §(F) * 3 S -5 or §F) -3 S(F -5 . (A-8)

But this window function substituted in (A-2) results in an extra aliasing
lobe in G(f), halfway between the unavoidable major lobes of (A-4) at
multiples of i/a, of magnitude 1/3 as large. This effect very adversely
affects the quality of G(f) insofar as its approximation to the desired G(f)
is concerned. Thus the best sampling plar in (A-2) is the equal weight
structure of (A-5) when one wants to approximate the Fourier transform of
(A-1). For a bounded region, this is modified to the Trapezoidal rule, i.e.,
haif-size weights at the boundaries.

A-2
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APPENDIX B. LISTINGS OF PROGRAMS FOR FIVE EXAMPLES

The following 1istings are programs in BASIC for the Hewlett Packard
98458 Desktop Calculator. The FFT utilized is one with the capability of a
zero subscript and is listed at the end of the appendix. Mathematically, the
FFT programmed is

M-1
In = > exp(~i2enk/M) z, for 0 ¢ m < M1,
k=0

where the arrays {1;}M'1 and {Zm}M'l are handled directly, including the zero-
0 0

subscript terms z, and Zo.

A detailed explanation of the first program below for Chi-Squared random
variables is as follows: 1line 20 specifies the parameter K, where 2K is the
number of squared-Gaussian random variables summed to yield random variable
x., Lines 30-60 require inputs L, a, b, M respectively, on the part of the
user, Line 110 is the input of mean uy of random variable x, as evaluated
analytically from characteristi¢ function fx(§). Lines 180-210 specifically
evaluate the characteristic function fy(p) at general point ¥. A1l of these
lines mentioned thus far require inputs on the part of the user and are so
noted in the listing by the presence of a single ! on each line; the comments
after a dounle ! are for information purposes only and need not be modified.
This convention is also adopted in the remaining listings.

Lines 220-240 accomplish the collapsing operation of (32)-(33). The
cumulative and exceedance distribution functions are finally evaluated and
stored in arrays X(*) and Y{*) in lines 400-410.

Some further elaboration is necessary for the listing of the Smirnov
characteristic function as given by (42). Since a characteristic function is
a continuous function of real ¥, the square root in (42) is not a principal

value square root, but in fact must yield a continuous function inf. [n
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order to achive this, the argument of the square root is traced continuously
i from §=0 (1ine 110). If an abrupt change in phase is detected, a polarity

‘ indicator takes note of this fact (line 250) and corrects the final values of
characteristic function fy(g) (Vines 260-270). No problems are encountered
with complex sin(z) since it is analytic for all z.

18 ! CHI-5LUARE CHARACTERISTIC FUNCTION {-C1-1 2 xi)~4

29 K=4 I 2K=3 degrees of freedon

39 L=264 ! Limit on integral of char. function
4 40 Delt.a=,07S ! Sampling increment on char. function
i S0 Bs=k I Shift b

€0 M=2-8 I Size of FFT

70 PRINTER IS @

288 PRINT "L =";L,"Delta =";Delta,"b =";Bs, "M =";M

S8 REDIM X{BiM=1),¥(B:M-1)

190 DIM X(@:1823>,Y¢0:1823>

118 Mux=2%K ! Mean of random variable x
123 Muy=Mux+Bs

130 X(d>=9

149 Y(82=3,5%Delta®Muy

: 150 N=INT(L/Delta)

1 160  FOR Ns=1 TO N

170 Hi=Delt a*Ns !
1690 C=Xi+Xi

199 CALL Mulcl,-C,t,-C,R, B>

208 CALL Mul{(R,B,R,B,.C,D>

2ie CALL Div(1,0,C,D,Fur,Fyi1)

229 Ms=Ns MOD M !
239 X(Mg)=X (M3 >+Fyr-Ns

249 Y(Ms)=Y(M3)+Fy1 /Ns

: 258 NEXT Ns

; 260 CALL FFfelBz(M,S(ed, Y (=3 't 9@ subscript FFT

Argument xi of char, n,
Catculatvion of
characteristic

function fylxil

for K=4

Collapsing

P
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- 279  PLOTTER 1S "GRAPHICS"
A 280  GRAPHICS

299  SCALE O,M,-14,8

300 LINE TYPE 3

319 GRID M-8,1

1 329 PENUP
X 336 LINE TYPE 1
z49 B=Bs#M#Delta (2%PI> ! Drigin for random variable x

350 MOVE B, @

364 DRAKW B,-14

370 PENUP

380 FOR Ks=@8 TO M-1

] 398 T=Y(Ks)/PI-Ks H

1 409 X(Ks)=,5-T 1t Cumulative probability in XK(#)
} 418 Y(Kgd=Pr=,5+T Il Exceedance probability in Y(#)
} 420 IF Pr>=1E-12 THEN Y=LGT(Pr>

430 IF Pr{s=-1E~12 THEN ¥=-24-LGT(-Pr)
449 IF ABS(Pr)><1E~-12 THEN Y=-1{2

4359 PLOT Ks,Y

4609 NEXT Ks

470 PENUP

480 PRINT Y(B)3Y (1D ;Y (M=203¥(M=1)

439 FOR Ks=9 TO M-1

5093 Pr=X{(Ks)

1 519 IF Pr>=1E-12 THEN Y=LGT(Pr>

1 520 {F Pr{=-1E~12 THEN Y=-24-LGT(~Pri
8§30 IF ABS(Pr)<IE-12 THEN Y=-12

) S49 PLOT Ks,Y

) 350 NEXT Ks

564 PENUP

570 PAUSE

580 DUMP GRAPHICS

596 PRINT LINC(S)

600 PRINTER 1S 16

: 610 END
; 620 !
! 630  SUB Mul(R1,¥1,X2,7v2,R,B) L Z1#22

640 A=}l #X2-Y1#Ye
6350 BaX1#Y2+X2#Y}

. 660  SUBEND
670 !
680  SUB Diuv(X1,Y1,%2,Y2,R,B> L21-22

€90 TaX2#X2+Y2#Y2

709 Ra(X1#X2+Y1#Y2,°T

710 Br(Y1#X2~X1#Y2). T

720 SUBEND

730 !

249 SUB FReiRzd(N, Ki#),Yiwd) VN <= 2718 = 1824, N=2~INTEGER B subscript
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;% ’ 18 | GAUSSIAN CHARACTERISTIC FUNCTION expi(-~.5 xi~2»
gos 28 L=7? ' Limit on integral of char. function
?;'( 38 Delta=.3 I Sampling increment on char, function
;% 48 Bs=,375+%(2%P1-Delta’ ! Shift b, as fraction of alias interval
58 M=2~8 | Size of FFT
! 1 68 PRINTER IS ©
L -y 7a PRINT "L =";L,"Delta =";Delta,"b ="}Bs,"M =";HM
g 8B REDIM X(B:M-1>,¥l@:M=-1>
99 DIM X{9:1823>,Y(0:10823>
ige Mux=9 I Mean of random variable x
110 Muy=Mux+Bs
120 X(B,=0
139 Y(@)=,5#DeltasMuy
149 N=INT(L-Deltay
150 FOR Hs=1 TO N
{ {88  Ki=Delta#*Ns FY Argument xi of char, fn.
/ 178 A=EXP (=, S#Xi#Xi) ! Calculation of
188 B=Bs#Xi I characteristic
199 Fyr=R#C0S(B> !' function
209 Fui=R*SIN(B) P fydxid
219 Ms=Ns MOD M It Collapsing
. 1 p 228 K{Ms)H =X (Ms)r+Fyr-Ns
. B 3 230 Y(Ms)=Y(Ms?»+Fyi-Ns
249 NEXT Ns
25a CALL FRe18z (M, K(*d, (%) 'l @ subscript FFT
? 260 PLOTTER IS "GRAPHICS"
e, 278 GRRPHICS
280 SCRLE ®,M,-14,08
3 290 LINE TYPE 3
300 GRID M-8,1
319 PENUP
1 320 LINE TYPE 1
] 338 B=Bs*M#Delta {2#PI> tt QOrigin for random variable x
349 MOVE B, 9
350 DRAW B,-14
: 360 PENUP
o 378 FOR Ks=@ T0O M-{
) BB T=Y(Ks) PI-Ks/M
f 390 KiK3)=,5-T ' Cumulative probability in X(#)
: 490 Y{K3)=Pr=,5+T 11 Exceedahce probability in Y(#>
410 IF Pr>=1E-12 THEN Y=LGT(Pr:
420 IF Pr{=-1E-12 THEN Y=-24-LGT{-PrJ

430 IF ABS(Pr ><{E-12 THEN ¥Y=-12
442  PLOT Ks,Y

450 NEXT Ks

468 PENUP

478 PRINT Y(BI ¥l iY(M-2);Y(M=-1>
489 FOR Ks3=0 TO M-

499 PraX(Ks)>

500 IF Pro=iE=-12 THEN Y=LGT{Pr)
510 IF Pr{a-1E=-12 THEN Y=-24-LGT(-Pr)
529 IF RBS(Pr ><{1E-12 THEN Y=-12
$38 PLOT Ks,Y

548 NEXT Ks

5§59 PENUP

558 PRUSE

S78 DUMP GRRPHICS

5808 PRINT LINC(S

399 PRINTER IS 16

!
|
i

! 609 END

i 610 !

: 620 SUB FRLIfZ(N, X #),Yuier) ' N = 218 = 1324, N=2~INTEGER @ subscript
B-4
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ig ! SMIRNOY CHARACTERISTIC FUNCTIOM [s/sin(2)1~1,2 where 2=(1+irsqrixi’
20 L=3n08 Limit on integ:ral of char., function

| !
f‘ 39 Delta=1 I Bampling incr-ment on char. function
o 40 Bs=0 I Shift b
50 M=2+8 I 5ize of FFT

60 PRINTER IS @

76 PRINT "L ="jL,"Delta =";Delta,"b =",35,"M =";M
80 REDIM X¢BIM-1),7Y(BIM~1)

9@ DIM X(9:1823)>,Y(8:1823)

108 Mux=1-%6 ! Mean of random variable x
119 R=0 ! Argument of square root
129 P=1 I Polarity indicator

138 Muy=Hux+Bs

140 K(@r=0

159 Y(B)=,5#Delta*tuy
169 N=INT(L-Delta>

: 170 FOR Ns=1 TO N

1 188 Ki=Delt a*Ns 't Argument xi of char. fn,
] 158 A=SAR(Xi)> I Calculation

200 CALL Sinc(R,A,B,C> I of

218 CALL Div(A,A,B,C,D,E> ¢ characteristic

229 CALL Sqr¢(D,E,R,B> function

230 Ro=R fydxin

248 R=ATN(B~R)

250 IF ABS{R-Ro>>1.6 THEN P=-P

260 Fyr=A*P

270 Fyi=B#*P

1 288 Ms=Ns MOD M !
! 298 K(Ms)=X(Ms)+Fyr - Hs

3089 Y{Ms)=Y(Ms)+Fyi~Ns

319 NEXT Ns

3209 CALL Ffel@z (M, K%, F (%2 tt @ subscript FFT
330 PLOTTER IS "GRAPHICS"

340 GRAPHICS

350 SCRLE 9,H,-14,¢

369 LINE TYPE 3

379 GRID Mr8,1

Collapsing

l 380 PENUP
; 39a .INE TYPE 1
: 400 B=Bs#M*Delta (Z+PIl) 't QOrigin for random variable x

410 MOVE B, 0

420 DRAW B, -1«

439 PENUP

449 FOR K$2@ TO M~-1

450 Ta¥Y<{Ks> Pl-Ks-M

460 “(Ks)>=,5-T Pt Cumulative probability in X(#)
470 Y(Ks)aPr=,5+T It Exceedance probability in Y(#)
489 IF Pr>=1E-12 THEN Y=LGT(Pr>

490 IF Pr(=-1E-12 THEN Y=-24-LGT(-Pr>

500 IF ABS(Pr><iE-12 THEN ¥=-12

Sie PLOT Ks,Y

S2e NEXT Ks

oon P
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530  PENUP
548  PRINT YC@);YC1)5Y(M-233YCM-1)

558  FOR Ks=9 TQ M-1

560  Pr=X(Ks)

570 IF Pr>=1E=12 THEN Y=LGT(Pr)

L 536 IF Pr{=-1E~12 THEN Y=-24-LGT(-Pr>
3 599 IF ABS(Pr)<1E-12 THEN Y=-12

: 680  PLOT Ks,Y

610  NEXT Ks

: 620  PENUP

H 639  PAUSE

640  DUMP GRAPHICS

650  PRINT LINCS)

660  PRINTER IS 16

1 670  END
{ 680 !
3 699  SUB Diu(Xl,Y1,X2,Y2,RA,B) L 21022

708 TaK2#X2+Y2#Y2
719 A=(R1#K2+Y1%Y2)-T
729 B=(Y1#X2-X12Y2)>~T

7?39 SUBEND
749 !
738 SUB Sqr(X,Y,R, B> ! PRINCIPAL SQR(Z>

760 IF X<{>8 THEN 8©8
’ve A=B=SQR<.3*ABS(Y2>
8@ IF ¥Y<(8 THEN B=-B
7950 GOTO 910

809 FaSNR(SARCK*¥X+Y*Y))>
819 T=.5*ATN(Y XD

820 A=F*COSCTS

839 B=F#SINCT)

848 IF X>8 THEN 919

P TPV S

859 T=H
860 R=-B
870 B=T
: 380 IF ¥>=8 THEN 910
i 890  R=-R
500 B=-B
912 SUBEND
920 !
-3 930 SUB SincX,Y,A, B tOSINCD
. 940 E=EXPCY)
" 9%09 An, S#SINCXYS(E+L 7EY

968 IF ABSKY><,1 THEN 9990

970 S=, 3#(E-1/E)

980 GOTO 1019

999 Sayay

1000 S=Y#({20+54¢28+51) 129

1819 B=COS(X)+S

1928 SUBEND

1836 !

10948 SUB FFL10z(N,X(e),VYeer) VN ‘= 2410 = 1924, N=2~1KTEGER 0 subsiript

B-6
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a
k]
. 18 | MNON-CENTRAL CHI-3RUARE CHARRCTERISTIC FUNCTION
: 28 | exp(1 d-2 xi 7 32 7 3°nu where s = |-y 2 xi
30 Nus2,7? ! Power law nu
; 40 Dz=3 ! Deflection d
1% L=500 I Limit on integral of char. function
69 Delt a=,83 I Sampling increment on char. function
70 Bs=8 I Shift b
849 M=2~8 I Size of FFT
390 PRINTER 13 ©
198 PRINT "L ="jL,"Delta =";Delta,"b =";Bs,"M ="; M
118 REDIM X<@:iM=-1),¥Y(BIMN=-1)
12e DIM X(9:1823>,¥<(B:1823>
139 D2=Ds#Ds I Calcularte parameter
149 Mux=2%Mu+D2 I Mean of random variable x
150 Muy=Hux+Bs
169 ®(B)=Q
R 170 Y<03=,3%Delta*Muy
b 188  N=INT(L-Deltad
190 FOR Ns={ TO N
200 Ri=Delta#*Ns 't Argument xi of char. fn.
219 T=Xi+Xi ! Calculation of
220 CALL Div¢d,D2#Xi,1,-T,R,B> ! characteristic
239 CALL Log(1,-T,C,D> I function
240 CALL Exp(A-Nu#*C,B-Nu#D+Bs#Xi ,Fyr,Fyi) I fylxi) A
256 Ms=Ns MOD M 1 Collapsing
268 X(Ms)zX(Ms ) +Fyr-Ns
278 Y(Ms)aY(Ms)>+Fyi-/Ns
280 NEXT Ns
290 CALL FFft1B8z(M,X(*),Y{(#)) It 9 subscript FFT
300 PLOTTER IS "GRRPHICS"
: 310 GRAPHICS
328 SCALE 9,M,-14,8
330 LINE TYPE 3
340 GRID Ms8,1
358 PENUP
360 LINE TYPE 1
370 B=Bs+M#Delta 2+P I ' Origin for random variable x
: 380 MOVE B,
i 390 DRAW B, -14
400 PENUP
410 FOR Ks=@ TO M-I
420 TaY(Ks>/Pl-Kg M
430 XK(Kg)m §.T 11 Cumulative probability 1n X(#)
¥ 448 Y\Ks)uPra, 3+7 1t Exceedance probability tn Yoe)
B 450 IF Pro=1E-12 THEN Y=LGT(Pr>
E 469 IF Pr{m-1E-12 THEK *=-24-LGT(~Pr)
P 470 IF ABSCPrICIE~12 THEN r=-12
w 480 PLOT Ks,Y
! 499 MEXT K3
See PENUP

8-7
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519
520
530
540
S5e
Sé60
S7o
580
590
600
619
620
630
649
6350
660
670
680
690
700
710
720
730
740
750
760
70
739
799
809
a1e
820
830
840
850
860
879

B-8

A0 A R TS an o b s

PRINT ¥C(@);YC1) ;Y C(M=-2)3YC(M=-1)

FOR Ks=9 TO M-1

PraX{Ks)

IF Pr>=1E-12 THEN Y=sLGT(Pr>

IF Pr{=<-1E~-12 THEN Y=-24-LGT(-Pr)
IF ABS(Pr)><1E-12 THEN Y=-12

PLOT Ks,Y

NEXT Ks

PENUP

PRUSE

DUMP GRRPHICS

PRINT LINC(S)

PRINTER IS 16

END

]

SUB Divc(X1l,Y1,X2,Y2,A,B) 2122
TaX2#X2+Y2%#Y2

Ax(X1#X2+Y1%Y2) /T
Ba(Y1#X2~-X1#Y2:/T

SUBEND

[}

SUB Exp(X,Y,A,B) I EXPC(2D
T=EXRP(X)

A=T#COSCY)

B=T#SINCY)

SUBEND

y

SUB Log¢(X,Y,R,B> I PRINCIPAL LOG(2)
A=, S*LOGCX#X+Y*Y)

IF X<>0 THEN 839

B=, S*PI#SGNCY)

GOTO 8%6

B=ATNC(Y/7%X)>

IF X<@ THEM B=B+Pl#(1-2%(Y(D))
SUBEND

]

SUB FRe10z<N,Xi#),Y#)) | N <= 210 = 1024, N=2~INTEGER

Q subscript
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18 ! SAUSSIAN PRODUCT CHARACTERISTIC FUNCTION (S6)

20
30
40
Sa
0
70
80
90
109
118
129
130
148
150
160
170
1380
190
2009
219
220
230
249
250
260
270
280
290
300
310

320
- 330
340
359
360
379
389

Nu=?,7

Rho=-~,3

L=S

Delta=, 36
Bs=,5#(2%Pl~ Delta)
M=2~3

PRINTER IS o

Power Nu

Correlation coefficient

Limit on integral of char. function
Sampling increment on char. function
Shift b, as fraction of alias interval

Size of FFT

PRINT "L =";L,"Delta =";Delta,"b =";Bs,"M =";M

REDIM X{(QiM=1),Y<BIM=-1>
DIM X(@:1023)>,Y¢0:1023)

Ti={-Rho*Rho
T2=2#*Rho
Mux=2#Nu*Rho
Muy=Mux+Bs

X(9)=0
Y(B)=,5*Delta*Muy
N=aINT(L/Delta>
FOR Ns=1 TO N
RXi=Delta*Ns

CALL Logil+Tt*#Xi«Xi,~-T2#Xi,A,B> |
CALL Exp{(=-Nu#*A,Bs#Xi-Nu*B,Fur,Fui)!

Ms=Ns MOD M
A(MsI>aX(M3)+Fyr Ns
Y(Ms)=Y(Ms)+Fyi~-Ns
NEXT Ns

CALL FRt1Bz (M, X(#),Y(%))

PLOTTER IS "GRAPHICS"
GRAPHICS

SCALE O,M,-14,0
LINE TYPE 3

GRID Mr8,1

PENUP

LINE TYPE 1
BaBs#M#Delta (2+P])
MOVE B,9

DRAW B,-14

PENUP

Calculate
parameters
Mean of random variable x

Rrgument xi of char. fn.
Calculation of

characteristic function fydxi)
Collapsing

@ subscript FFT

Origin for random variable x

B-9
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399 FOR Ks=0 TQO M-1
4900 TaY(Ks)/Pl-Ks/M
419 X{Ks)= ,5=T "
420 Y(Ks)=Pr=s, 5+T R
430 IF Pr>=iE~=-12 THEM /=LGT(Pr)
440 IF Pr{(a=1E=12 THEN Y==24-LGT(-Pr)
450 IF ABSC(Pr)><1E-12 THEN Y==i2
450 PLOT Ks,V¥
470 NEXT Ks
430 PENUP
490 PRINT YC@)3YCL)3Y<(M=2);Y(M=-1)
S00 FOR Ks=9 TO M-\
$19 PraX(Ks)
S0 IF Pr>=i{E-12 THEN YsLGT(¢(Pr>
330 IF Pr¢=-1E~12 THEN Y=2=24~LGT(~=Pr)
540 IF ABSC(Pr)<1E-12 THEN V¥=-12
350 PLOT Ks,Y
360 NEXT Ks
S70 PENUP
580 PRUSE
S99 DUMP GRAPHICS
600 PRINT LINCS)
610 PRINTER IS 16
620 END
639 !
€40 SUB Exp(X,Y,R,B> '
650 T2EXP(X)
660 R=T*COSCY)
670 BaT#SINCY)
. 6889 SUBEND
690 !
700 SUB Log(X,Y,RA, B> !
710 Am, SHLOGI(X#X+YaY)
720 IF %<>0 THEN 750
730 B=,S#PI#SGNCY)
740 GoTO 770
750 BaATNCY /X))
760 IF X< THEN BsB+Plec]l=2#{Y<O0))
7re SUBEND
7?80 ]
790

e i

Cumulative probability in X(s)>
Exzeedance probability in Y(#)

EXP(2)

PRINCIPAL LOGC(Z)

SUB Fft10z(N, X)),V (#)) t N {= 2~10 = 1024, N=2~INTEGER

9 subscrapt

EY
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19 SUB Ffe 1@z (N, X ) Yy #3D ' N (= 2~10 = 1024, N=2~INTEGER @ subscript
20 DIM C<B:2%6>

30 INTEGER I1,12,13,14,15,16,17,18,19,110,J,K

40 DATR 1,.999981175283,.99992470813839,.999830381736,.999698318696,,9993294175
81,.999322384588, .993977727753,.998793456205, , 993475380573, .998118112500

1] DATR .997723066644,,397290456679,.9962820299291,.996312612183,.995767414468
5995184726672, .994564570734, .993906970002, .933211949235,.992479534%599

69 DATA ,991789753669,, 390302635428, ,990058218262,.989176509965,.988257367731
, 987301418153, .986308097245, .985277542389,.,984210092387,,983185437431

7o DATA .381953869118,,.980735280403,.979569765685,.978317378720,.977028142658
s+ 975702130039, .974339382786,.972939952206,.971503890986,.9700831253193

30 DATA ,9685220894274,.966976471045,.965394441698,,963776065795,.962121404269
s 9684385194186, .958793474896, .956940335732,.9551411683086,,9333068409354

90 DATR .951435028969,.249528180593,.947585591813,.,945607325381,.943593458162
s+ 341544065183,.937 TI223602,.937339011913,.935133509939,.932992738835

108 DRTR .938766951379,.923506080473,.926210242138,.9233879532511,.32151403%9342
s+ 919113851699,.31667908593321,,9142089755704,.911726832805,.9091679830891

119 DATA .90865957045195,.,393939293123,.9013438847046, .838674465694,,89596624975¢6
s+ 3932243501196, .850448723245, ,387639620403, .884797898431,,881921264348

{29 DRTA .879012226429,.3768708341935, .873894978418,.870886991109,.8670846245516
, 383972856122, .860R66938638, .957728610000, .8354557988365,.3513551931085

138 DRTA .8481208344303,.344853565250, .841554977427,.8332247085555,.834862874986
, 331459612303, ,2280459452958, ,324539202785,.821192314991,.817584813152

140 DRAIA .814026329706,.3104571933253, .306847553%44,,803207531481,.799537269%108
.+ 795836904609, .7921869577309, , 783346427627, .784556597156, . 78873722£572

150 DRATA ,776338469572,,7730810453363,.7691083337647 . 765167265622,.761282385¢44
s e 797208845586, . 7I3136TIMINGS, . TI1363943523,,745057785444,.7408951125355

150 DATA .736818553877, . 732654271872, . 728454396448, , 724237832951, . 72000230796
, + 015730825284, .711432195745,.707106731187,,7082754744457, .698376249489

179 DATA .633971460330, . 673540544737, . 685633667773, ,.6806009977953,.67609270357F
s« 6T 1553954847, . 664999922304, , 6823915777530, . 657806693297, .653172842954

1339 DARTR .643514491021,,3933315423%0,.639123444864,,.6234373284164,.629538238915
s+ 524892488142, .62005T211763, 15231590931, .610332806276.,.603511041404

190 DATR .8RQ615479334, . 5394939304492, .,3907397018%9, .53579785745%56,.958081395809¢6
y «3TSS08191418],.,.5707307<9337,.5¢5731510784, . 5606615781387, ,.555570233029

209 DATA ,SS048TarT237, . S45324988422, . 540171472730, . 334997612887, . 5293036246306
s+ 24589632678, .5193583:0185,, 514102744193, .503839142543,.50283833372¢

219 DATA 493227666373, . 492393192230, . 43790160148, (482183772079, .478799230063
Ve dTIIETINS0G, L 46SITHI98T6T, L4605 3RT 19953, L 455083387126, . 443611329689

220 DATA . d44122144570, 433616238539, .,4330938188%3, .427555993430,.422000270300
v - 415429589098, . 410343171958, 4052391 314005, , 3994524198348, . 3939920400961

239 DATA , 3333450466933, , 332683432365, . 377007310218,.3T1317193952,.3656129973890%

L IS9398Q3653%, . 354143925420, . 3458418630249, . 342660717312, .3358838523392
A 3\ DRTA . 331105308TeR, . 328310232162, 319507030816, . 313681740399, . 307649640042
, . JRAZVMATIISID, L 2FG 150838244, L SV02RIETTISY, L 2RAAATIIVLL, LTSS F639338%
S DRTAR . 8T26213%85450, . 064 008 47%, . 26@TI1 17918, . 209365859605, . 243927608748
P S4I9BITIN0I, . J23TOS3605994, , 221083108291, .228083911369,.219191299187
g RN DRATA 213110319916, .20 111378132, 201 1Q4€634842,. 193090322016, .15% 068664350
e JE3O398RTESS, L ITTORAZL04LL,  ITO9G138ETED, L 1649153120490, . 138558143334
279 DATA L 1S2T97 135208, . 146730474455, . 140653239332, . 124389708807, L 128498110784
w1224 10679199, L1161 8E3091 2, . 110222207294, 1041216233872, . %80T 1403298E-
280 DATR 91 3089C8Q3T1E-1, GOTOTII123444E~1, . TR6B2A3T78TI4E-, . TI564563899TE~, .
ET443919%63TE-1, BI3LOTRCINSIESY, LSS OS2A4ZAGTE-], L 49Q€ETHATIIZTLE-!
PR DATA 4 9388569349 -1, (36022394 14E-], ZRETA80F I TOSE-1, . 454122852291, .
184067990 BE-4,. 122718 3828%7E-1, . 613588464 9:15E-2,0
3Q9 READ Cie:
310 Ka]1024 H
3z FOR J=8 YO H. 4
330 C<lraCireld
349 HEXT J
3%0 HimN & -1t
3 NQ=H{+]
kg4 H3milas}

M

.. WP
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5 380  N4=Ni+N3
? 399 Log2n=INT(1,4427%LO0G(N)+,5)
486 FOR Itsi TO Log2n
| 419 12=2~(Log2n-11>
420  13=2#]2
430 14=N-13
449 FOR IS=1 TO 12
450 16s(IS~1)%14+1
460 IF 16<=n2 HEN 500
478  N6x=-C(N4-16-1)
488 N?=-C(l6-N1-1)
499  GOTO S20
3 588  Ne=C(I6-1)
$180  N?=-C(N3-16-1)
528 FOR 1728 TO N-13 STEP I3
530 18=[7+IS
%48  19=]8+]2
550  N8=x(18-1)-X(I3-1>
S60  N9sYC(I8-1)-Y(I9-1)>
S70 K(I8-1)3X(I8-1)+¥(19~1>
$89  YC(I8-1>ay(I8-1)>+7(18~1)
890  XC(I9-1)SNEINS-N7#N9
680  Y(19-1)=NE#+NI+N?*NS
618  NEXT 17
620  NEXT IS
- 630  NEXT 11
- 640  Il=Logen+t
¢ 658 FOR I2=1 TO 10 L 2~10=182+4
2 669 C(l2-1)=t
. 670 IF 12°Log2n THEN 699
- €89  C(12-1)=2~(11-12>
Y 698  NEXT 12
790 Kal
3 718 FOR Il=1 TO ¢y
P 720  FOR I2=I! TQ C:«8: STEP C:9-
A 730 FOR 1312 TOQ Cs7+ STEP ¢+ 3
7?40 FOR I4313 TO Cus» STEP CoTo
7?83  FOR [%=14 TOQ C¢S: STEP Cis
TEO  FCR 14=1% TQ C:.45 STEP (¢S
779  FOR [7=16 TO Cr3» STER Cedo
780 FOR 18%!7? TO C:2» STEP ¢ 3
T9Q  FOR [9«]3 TQ €«1v STEP o2

ago FOR [10=19 TQ C«0r STEP (v}
819 1e11Q

e IF k>1 THENR 839
a3e Amyip =12

249 K(K=-1oaxe J=1
g8%9 i J=-13r=R

360 ARY (K=1>

ard Yik=)lle¥tJ-ys
¥ 8489 TV Y-1 )28

. a9 K=ke]

390 HEXT 1@

19 HEWTY 19

NEXY 18

230 RENY 7

949 HEXT :6

93Q NEAT 1%

%ed HEXT 14

T MEXY 12

¢80 HEXY 12

929 HEXT I

1000 SUBEND
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