

CARLES STATIST

1.000

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

	Unclassified				
	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)				
5 V	REPORT DOCUMENTATION PAGE	BEFORE COMPLETING FORM			
	1. REPORT NUMBER 2. GOVT ACCESSION NO Technical Report 4	0. 3. RECIPIENT'S CATALOG NUMBER			
	4. TITLE (and Sublitle) Macrocycles Containing Tin Syntheses of	5. TYPE OF REPORT & PERIOD COVERED			
	Symmetrical Macrocycles Containing Two or Four	Technical Report			
		A. CONTRACT OF GRANT NUMEER			
	Martin Newcomb, Yutaka Azuma	N00014-79-C-0584			
- 6	Texas A&M University	AREA & WORK UNIT NUMBERS			
2	College Station, TX 77843	HIV 033-714			
	11. CONTROLLING OFFICE NAME AND ADDRESS Office of Naval Research	12. REPORT DATE Oct. 7, 1983			
	Arlington, Virginia 22217	13. NUMBER OF PAGES 27			
<i>M</i>	14. MONITORING AGENCY NAME & ADDRESS(It different from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified			
м		154. DECLASSIFICATION/DOWNGRADING SCHEDULE			
AP	17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report)				
ΡY	To be published in <u>Organometallics</u> OCT 1 8 1983				
8	19. KEY WORDS (Continue on reverse elde il necessary and identify by block number) Polystanna macrocycle Synthesis				
	(-) (-) (-) (-) (-) (-) (-) (-) (-) (-)				
2	20. ABSTRACT (Continue on reverse side il necessary and identify by block number)				
	$(Ph_{2n}^{(H_2)})_2$ (1, n = 4, 5, 6, 8, 10, 12), and four diphenylstanna moleties, $(yclo_2(Ph_2))_2$ (1, n = 4, 5, 6, 8, 10, 12), and four diphenylstanna moleties, $(yclo_2(Ph_2))_2$ (2, same n) are reported which is (Bromomagnesio) al-				
	kanes reacted with Ph_3SnC1 to give α, ω -bis(triphenylstannyl)alkanes which upon				
	treatment with HBr gave a, a -bis(bromodiphenylstar <u>4</u> reacted with the corresponding chain length a, a	nnyl)alkanes (4). Compounds b-bis(bromomagnesio)alkanes			
	DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE 5/N 0102-014-6601	Unclassified			
	83 10 17 061 -				

	S.	<u></u>	TCL.	$(\mathcal{O}_{\mu}) $	•
-	iont.	line" sifiad	- Hipro	10 - 20)	
		SECURITY CLASSIFICATION (OF THIS PAGE (When Dete	Entered)	
	1				
		to give 1 and 2.	Alternatively,	good yields of 1 (n = 4, 5, 6, 8) were
		obtained by conve	rting 4 to dili	thium reagents (7)	which were allowed to
		hy first treating	A with C1(CHD)	MaBr to give dichi	= 4, 5, 0) were obtained orides which were then
		allowed to was the		n n Dunifica	tions of the measureles
		allowed to react	with (_ in a sec atic informadia	ond step. Purifica tas ware affected b	tions of the macrocycles
		phase chromatogra	phy. The macro	cyclic products wer	e characterized by NMR
		spectroscopy, mol	ecular weight d	eterminations and e	lemental analyses,
B					
R					
R					
Ê					
	۲				
E					
Ľ.					
E					
					,
Ĭ					
F					• ,
					ar ar search and search
Į.,					
		1			
E.					
1		l			
ţ.					
ŀ •			المتعادية بالمتحديثين وتشتهد والم		

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

OFFICE OF NAVAL RESEARCH

DTIG

COPY NSPEST

pist

.

-1

Contract N00014-79-C-0584

Contraction of the second states and the second sec

Task No. NR 053-714

TECHNICAL REPORT NO. 4

Macrocycles Containing Tin.

Syntheses of Symmetrical Macrocycles Containing

Two or Four Diphenylstanna Units

by

Martin Newcomb and Yutaka Azuma

Texas A&M University Department of Chemistry College Station, TX 77843

Oct. 7, 1983

Prepared for publication in Organometallics

Reproduction in whole or in part is permitted for any purpose of the United States Government

* This document has been approved for public release and sale; its distribution is unlimited

* This statement should also appear in Item 16 of Document Control Data - DD Form 1473. Copies of form available from cognizant contract administrator. Abstract: The syntheses of macrocycles containing two diphenylstanna moleties, $cyclo-IPh_2Sn(GH_2)_n-J_2$ (1, n = 4, 5, 6, 8, 10, 12), and four diphenylstanna moleties, $cyclo-IPh_2Sn(CH_2)_n-J_4$ (2, same n), are reported. α,ω -bis(Bromomagnesic)alkanes reacted with Ph_3SnC1 to give α,ω -bis(triphenylstannyl)alkanes which upon treatment with HBr gave α,ω bis(bromodiphenylstannyl)alkanes (4). Compounds 4 reacted with the corresponding chain length α,ω -bis(bromomagnesic)alkanes to give 1 and 2. Alternatively, good yields of 1 (n = 4, 5, 6, 8) were obtained by converting 4 to dilithium reagents (7) which were allowed to react with α,ω dibromoalkanes. Good yields of 2 (n = 4, 5, 6) were obtained by first treating 4 with $Cl(CH_2)_n$ HgBr to give dichlorides which were then allowed to react with 7 in a second step. Purifications of the macrocycles and several synthetic intermediates were effected by preparative reverse phase chromatography. The macrocyclic products were characterised by NMR spectroscopy, molecular weight determinations and elemental analyses.

Macrocyclic and macrobicyclic compounds containing the basic atoms oxygen, nitrogen and sulfur have been widely exploited in cation coordination chemistry during the past decade. In various applications including solublization of salts in organic media, chromatographic separations and catalysis, the dominant features of this chemistry are the size of the cavities formed by the basic atoms of the host compounds and the fit of cationic guests within these cavities. Little work has been reported concerning macrocycles containing Lewis acidic atoms which might show selective complexing behavior as anion coordination agents or in binding to neutral donor compounds even though such compounds should also enjoy a rich chemistry. In accord with this expectation, polyammonium macrocycles have recently been shown to exhibit selective behavior in binding to anions and basic donors.² The use of protonated or alkylated aminecontaining macrocycles or macrobicycles as anion coordinating agents, however, may show limitations with the range of solvents which can be employed.

We reasoned that macrocyclic compounds containing tin atoms as Lewis acidic sites could function as anion or basic neutral coordinating species and show good solubility in organic solvents. Complexation of tin-containing compounds which contain electron-withdrawing groups on the tin atoms with basic donors has been widely observed, and organostannate(IV) complexes are known.³ Recently, Kuivila's and Gielen's groups have reported complexes of donors with compounds containing two Lewis acidic tin atoms.^{4,5} Since limited examples of organometallic compounds containing more than one tin atom have been reported, we have established general procedures for the synthesis of a wide range of macrocycles containing tin atoms. In this paper we describe three

related procedures for the syntheses of symmetrical macrocycles containing two diphenylstannyl moieties (1, ring size 10 to 26) or four diphenylstannyl moieties (2, ring size 20 to 52).^{6,7} Our synthetic and purification procedures have permitted the isolation of tin-containing macrocycles in gram batches.

Results and Discussion

Scheme I shows the pathways which we have employed for the synthesis of tin-containing macrocycles 1 and 2. The starting materials for each route are the α, ω -bis(triphenylstannyl)alkanes (3) obtained from the reaction of an α, ω -bis(bromomagnesic)alkane with Ph₃SnC1. For carbon chain lengths ranging from 4 to 12, the isolated yields of compounds 3 were 68 to 80%. Compound 3a had been prepared previously in low yield by a similar route.¹¹ The synthesis of 1,3-bis(metallo)propanes via the diGrignard route requires a circuitous preparation of 1,3-bis(bromomagnesic)propane¹² which we chose not to employ, however, 1,3-bis(triphenylstannyl)propane has been prepared,⁵ and 1,3-bis(trimethylstannyl)propane is available from the reaction of trimethylstannyllithium with 1,3dibromopropane.¹³

(INSERT SCHEME 1)

The conversion of the $\alpha_i \omega$ -bis(triphenylstannyl)alkanes to their corresponding $\alpha_i \omega$ -bis(bromodiphenylstannyl)alkanes (4) proved to be more difficult than we had expected. Bromine in CCl₄ or pyridine or phenyltrimethylammonium perbromide reacted with compound 3a to give mixtures of products which were difficult to purify. NMR spectroscopic studies of these mixtures suggested that a second phenyl group was cleaved from tin almost as readily as the first leading to mono-, di- and tri-bromination

of 3a.^{14,15} However, when compounds 3 were treated with 2.1 equivalents of HBr in CH_2CI_2 at -78 ^oC and the resulting mixtures were allowed to warm to room temperature slowly, we obtained good yields of the desired dibromides 4. Most of these products were oils which were purified by reverse phase chromatography as described below.

2 .

<u>a parte de la contra la parte de la contra de la de la contra de</u>

There are alternative methods for the functionalisation of compounds 3. Zimmer has reported the conversion of 3a to 1,4-bis(iododiphenylstannyl)butane,¹⁶ and Q, ω -bis(chlorodiphenylstannyl)-propane and -butane have been reported.⁵

Our ability to obtain compounds 4 in good yield permitted the synthesis of tin-containing macrocycles by the various routes shown in Scheme 1. In the first procedure, Method A, an α, ω -bis(bromomagnesio)alkane (6) was prepared in tetrahydrofuran (THF). After titration of an aliquot, the solution of the diGrignard reagent was diluted to 0.02-0.03 H, and the resulting solution was added over 2 h to a ca. 0.03 <u>H</u> THF solution of the corresponding chain length bis(bromodiphenylstannyl)alkane. With these reasonably dilute solutions, the macrocyclisations to give 1 and 2 were possible.

Macrocycles 1 and 2 were isolated from the crude product mixtures by preparative reverse phase chromatography. Although analytical HPLC could be effected with methanol or ethanol/water elution, mixtures of THF in acetonitrile were used in the preparative LC in order to permit dissolution of the product mixtures in 0.2-0.5 gram batches. In all cases the bis(diphenyIstanna)cycloalkanes (1) eluted before their tetrakis-(diphenyIstanna) analogues (2) of twice the molecular weight; typically the ac value for separation of 1 and 2 was about 3, and resolution of these products was not difficult. Other low yield products, presumably open-chain species with molecular weights similar to 1 and 2, eluted with

retention times similar to the desired cyclic products. Most of the macrocyclic products were readily recrystallized after chromatographic purification.

Method A is a "shotgun" procedure which gives rise to macrocycles 1 in a two-component cyclisation and macrocycles 2 in a four-component cyclisation. Folymerisation of the growing chains competes with cyclisation, and high weight compounds appear to be the major by-products in the product mixtures. The cyclications giving rise to the smaller rings in and 1b apparently suffer some steric strain and the yields of the these compounds are slightly lower than those of the larger ring compounds ic-1f (Figure 1, Table 1) even though the effective molarity of one chain end for the other end of the chain could be relatively high. At carbon chain lengths of 6 atoms or more the yield of the bis(diphenylstannyl)cycloalkanes 1 are relatively constant. The yields of the tetrakis-(diphenylstanna)cycloalkanes (2), however, dropped off rapidly when the linking chain reached a length of 6 carbon atoms (Figure 1). In these cases the penultimate intermediate before cyclization to 2 was a long acycle ()28 atoms), and the effective molarity for the chain ends apparently had fallen below the actual molarity of the reagents. This behavior is in accord with that seen in other macrocyclization reactions.¹⁷

(INSERT TABLE 1)

(INSERT FIGURE 1)

Macrocycles were also formed (in another "shotgun" reaction) when the $\alpha_{i,\omega}$ -bis(bromodiphenylstannyl)alkanes 4 were first converted to their corresponding dilithium reagents (7) in a reaction with lithium metal, and then dilute THF solutions of reagents 7 were added to dilute THF

solutions of α, ω -dibromoalkanes S (Method B). In this method, the role of the nucleophile and the electrophile in the coupling reaction have been reversed. The concentrations of the reagents, addition times and reaction temperatures were comparable to those used in Method λ and the nucleophilic reagents were again added to the electrophilic species, however, the yields of macrocyclic products were substantially different than those obtained in Method λ (Table 1). Specifically, we found that the bis(diphenylstanna)cycloalkanes <u>la-d</u> were formed in good yields, but only traces ($\langle 2W \rangle$ of the corresponding tetrakis(diphenylstanna) analogues were produced.

The dramatic changes in yields of 1 and 2 produced in Method B relative to those in Method A cannot be attributed to the efficiency of formation of the nucleophilic reagents. In fact, the nucleophilic species were formed in lower yields in Method B; typically the total base was 90% in the preparation of reagents 6 and only 75% in the preparation of reagents 7. The high yields of 1 in Method B are consistent with relatively slow reactions of the bis(stannyllithium) compounds 7 with the α,ω -dibromides since higher yields of 1 would be expected if bulk mixing competes with the coupling reaction. However, our lack of knowledge concerning the structure, aggregation or reactivity of species 7 makes further speculation fruitless.¹⁸

Methods A and B can be seen to be of limited utility in the synthesis of the larger tetrakis(diphenylstanna)cycloalkanes 2. Thus, we developed a procedure in which compounds 2 are produced in a two- rather than a four-component macrocyclisation (Method C). Treatment of the $\alpha_{,}\omega_{-}$ bis(bromodiphenylstannyl)alkanes 4a-c with an excess of an α_{-} (bromomagnesio)- ω_{-} chloroalkane (formed in the reaction of an α_{-} bromo- ω_{-} chloroalkane with only one gram-atom equivalent of magnesium) afforded the open

and in ∞ , ω -diculars compounds <u>Ba-c</u> as colorless oils which were purified by reverse phase chromatography. Subsequently, the bis(diphenylstannyliithium) reagents 7 at high dilution were added to dilute solutions of dichlorides <u>B</u>. After reverse phase chromatography and recrystallization, the isolated yields of tetrakis(diphenylstanna) macrocycles <u>2a-c</u> obtained by this procedure were about 35% (Table 1). The 33% isolated yield of <u>2c</u> obtained by Method C is an order of magnitude higher than the yield of <u>2c</u> ebtained from Method A.

dacrocycles 1 and 2 were characterized by NMR spectroscopy and osmometric molecular weight delerminations. Acceptable elemental analyses for all of the macrocycles were obtained. ¹H NMR spectra of the isolated products clearly indicated the gross structure of the macrocycles; the molecular weight measurements permitted the complete structure assignment. Because of the symmetry of the macrocycles, quite simple ¹³C NMR spectra were obtained.²⁰ The purities of the products were apparent from HPLC as well as from the sharp melting points, where applicable, and elemental analyses.

Elemental analyses were also obtained for the \propto, ω -bis(triphenylstannyl)alkanes (3). Despite the fact that we purified the \propto, ω -bis(bromodiphenylstannyl)alkanes (4) and compounds 8, we considered these species to be reactive intermediates and did not attempt to store them for extended periods nor did we attempt to obtain elemental analyses or molecular weights of these compounds which, with the exception of 4a, were oils. The identities of compounds 4 and § are established by their NMR spectra and the successful synthesis of the fully characterized macrocycles from these intermediates.

The use of preparative reverse phase chromatography for the isolation of macrocycles deserves comment. Even though most of the macro-

cyclic compounds we prepared were crystalline, no products of the macrocyclisation reactions were obtained pure with st chromatography. The preparative phase we used was highly reproducible, retention times in preparative chromatography were easily predicted by inspection of the analytical HPLC chromatogram, and excellent peak shapes were maintained at loading ratios as high as 1 gram of crude reaction mixture on 300 grams of support. Further, the high initial costs of the preparative phase were offset by the fact that after ca. 50 preparative runs we saw no change in the capacity or retention characteristics of our preparative columns.

We have briefly studied some reactions of macrocycles and models in order to determine what reagents would be appropriate for both the synthesis and subsequent functionalization of these compounds. Triphenylbutyltin was found to react rapidly with an excess of <u>n</u>-BuLi in THF even at -78 $^{\circ}$ C. Thus the reaction of an ∞, ω -dilithioalkane with a bis(bromodiphenylstannyl)alkane would not be expected to give macrocycles in good yield, especially if the dibromo compound was added to the dilithioalkane, but macrocycles containing less reactive alkyl groups on the tin may survive such reaction conditions. When macrocycles 1s and 2s were treated with 2.1 and 4.2 equivalents of HBr in CH₂Cl₂, respectively, in a procedure similar to the bromination of acycles 3, 1 H NMR spectra of the crude reaction products indicated good conversion to derivatives containing (bromophenylstanna) moieties with no evidence of ring cleavage. This functionalization of the macrocycles is a critical step required to impart Lewis acid character to the tin atoms in order to permit their application as anion or neutral donor coordinating hosts. The details of these continuing studies will be reported in due course.

The procedures described above afford the bis(diphenylstanna)- (1)

and tetrakis(diphenylstanna)cycloalkanes (2) in fair to good yields. Macrocycles with ring sizes from 10 to 52 atoms have been prepared.²¹ It may be expected that higher yields of the macrocycles could be obtained if an apparatus which delivered dilute solutions of both reactive precursors to a reaction vessel were employed, but by the methods described herein we have isolated up to gram quantities of several of the desired macrocycles. Experimental Section

General. All reactions of organolithium and Grigmard reagents were run in a mitrogen atmosphere; transfers were made by syringe or cannula. Commercial organic halides (Aldrich) were distilled before use. Triphenyltin chloride (Alfa) was used without further purification. Tetrahydrofuran (TNF) was distilled from potassium-benzophenone immediately before use. "Brine" refers to a saturated aqueous sodium chloride solution. Yields of organolithium reagents and Grigmard reagents used in the syntheses were determined by titration of a one mL aliquot of these solutions for active base before addition of these solutions to the appropriate electrophi:e²³ The endpoints were teadily apparent in the titrations of the Grigmard reagents. However, because of the color of the stannyllithium reagents, endpoints in these titrations were difficult to observe, and the total yield of nucleophilic reagents found in Methods B and C below must be considered to be approximate.

¹H NMR spectra of CDCl₃ solutions were recorded on a Varian EM 390 spectrometer. and ¹³C NMR spectra of CDCl₃ solutions were recorded on a JEOL PFT-100 spectrometer; chemical shifts are reported in ppm downfield from internal $Me_{q}Si$. IR spectra were recorded on a Sargent-Welch 3-200 IR spectrophotometer. Moleculai weights were measured on CHCl₃ solutions using a Hewlett-Packard model 302 B vapor pressure osmometer; periodic molecular weight measurements of standard solutions of benzil showed (5% error. In most of the molecular weight determinations, the concentration of only one solution of the substrate was determined. HPLC analyses were performed on 25 cm columns containing Spherisorb ODS-10, and preparative LC separations were accomplished on reverse phase C-18 bonded to silica gel (40 μ) supplied⁶ by J. T. Baker, Co.; UV detection at 254 nm was used in both cases. The preparative LC system was composed of a low pressure solvent pump, a

standard six-way plastic valve for injection, commerical glass columns (Ace), and an ISCO detector. Analyses were performed at Texas A&M University or at Galbraith Laboratories, Inc., Knoxville, Tennessee.

(3). Preparation of a, w-bis(triphenylstannyl)alkanesA To a suspension of 10 equiv of Hg and a small crystal of I, in THF was added a solution of $\alpha',\omega_{\tau'}$ dibromoalkane in THF (0.3-0.4 M) over 1.5-2 h at 25 $^{\circ}$ C with stirring. After 5-8 h. a one mL aliquot was titrated for active base; yields from the dibromaide were 75-90%. The α, ω -bis(bromomagnesio)alkane solution was separated from excess Mg by cannula transfer and added to a solution of 2 equiv of Ph₃SnCI in THF (1.0-1.5 M) over 2 h at 0 9 C. The reaction mixture was allowed to warm to 25 $^{\circ}$ C, and the reaction mixture was stirred for 8-10 h and then heated at reflux for 2 h. The reaction was quenched by the addition of 50-70 mL of satd aq NH_aCl solution at 0 $^{\circ}$ C. The organic layer was separated, and the aqueous layer was extracted with ether (3 x 50 mL). The combined organic solutions were washed with a satd aq KF solution (50 mL) and brine, and dried over anhydrous MgSO₄. The solvent was removed <u>in</u> vacuo, and the residue was purified by recrystallization or column chromatography. The reactions were run on a scale to give a 30-40 g isolated vield of compounds 3.

 $\frac{1.4-\text{bis}(\text{Trinhenvistannvl})\text{butane}}{1.4-\text{bis}(\text{Trinhenvistannvl})\text{butane}} (3a), purified by recrystallization$ $from a mixture of <math>\text{CH}_2\text{Cl}_2$ and hexane (1:2, v:v), was obtained in 78% yield: mp 148.5-149 ^GC (lit.¹¹ mp 149-150.5 ^OC). IR (Nujol): 1070 cm⁻¹. ¹H NMR: 1.30-1.60 (4 H, m), 1.65-1.90 (4 H, m), 7.10-7.53 (30 H, m). ¹³C NMR: 138.9, 137.0, 128.7, 128.4, 31.3, 10.6. MW: 734 (calcd for $C_{40}H_{38}Sn_2$, 755). Anal. Calcd for $C_{40}H_{38}Sn_2$: C, 63.54; H, 5.07. Found: C, 63.59; H, 5.22.

<u>1.5-bis(Tripnenvistannvl)pentane</u> (<u>3b</u>). purified by recrystallization from hazane or a mixture of CH_2CI_2 and hezane (1:3, v:v), was obtained in

80% yield: mp 72-73 °C. IR (Nujol): 1072 cm⁻¹. ¹H NMR: 1.20-1.83 (10 H, m), 7.13-7 50 (30 H, m). MW: 745 (calcd for $C_{41}H_{40}Sn_2$, 769). Anal. Calcd for $C_{41}H_{40}Sn_2$: C, 63.94; H, 5.24. Found: C, (41, 14); H, (-1)

 $\frac{1.6-\text{bis}('l'riphenvlstannvl)hemane}{1.6-\text{bis}('l'riphenvlstannvl)hemane} (3c), purified by recrystallization$ from hemane, was obtained in 68% yield: mp 84-85 °C. IR (Nujol): 1070 cm⁻⁴. $<math display="block">\frac{1}{4} H NMR: 1.2-1.83 (12 H, m), 7.20-7.83 (30H, m). MW: 770 (calcd for$ C₄₂H₄₂Sn₂, 783). Anal. Calcd for C₄₂H₄₂Sn₂: C, 64.33; H, 5 40. Found:C, 64.43; H, 5.52.

 $\frac{1.8-\text{bis}(\text{Triphenylstannyl)octane}{2} (3d), \text{ purified by recrystallization}$ from a mixture of hexane-ether (2:1, v:v), was obtained in 70% yield: mp 101-104 °C IR (Nujol): 1070 cm⁻¹. ¹H NMR: 1.00-1.80 (16 H, m), 7.13-7.67 (30 H, m) MW: 808 (calcd for C₄₄H₄₆Sn₂, 811). Anal. Calcd for C_{aa}H_{a6}Sn₂: C, 65.06; H, 5.71. Found: C, 65.19; H, 5.81.

PARAMAN AND A

 $\frac{1.10-\text{bis}(\text{Triphenvlstannvl})\text{decane}}{1.10-\text{bis}(\text{Triphenvlstannvl})\text{decane}} (3e), \text{ purified by recrystallization} from hexane, was obtained in 76% yield: mp 45-46 °C. IR (Nujol): 1074 cm⁻¹.$ ¹H NMR: 1.00-1.90 (20 H, m), 7.20-7.63 (30 H, m). : 836 (calcd for C₄₆H₅₀Sn₂, 839). Anal. Calcd for C₄₆H₅₀Sn₂: C, 65.75; H, 6.00. Found: C, 65.88; H, 6.08.

<u>1,:2-bis(Triphenvistannyl)dodecane</u> (3f), purified by column chromatography on silica gel with hexane elution, was obtained in 70% yield: mp $4i-43 \, ^{\circ}C$ or ail. 1R (Nujol): 1070 cm⁻¹. ¹H NMR: 1.07-1.88 (24 H, m), 7 23-7.63 (30 H, m). MW: 865 (calcd for C₄₈H₅₄Sn₂, 867). Anal. Calcd for C₄₈H₅₄Sn₂: C, 66.39; H, 6.27. Found: C, 66.57; H, 6.19

<u>Preparation of $\alpha_{L}\omega_{-}$ bis(bromodiphenvistannyl)alkanes (4)</u>. To a solution of 3 in CH_2CI_2 (0.1-0.2 M) was slowly (2 h) added a solution of 2.1 equiv of HBr in CH_2CI_2 (0.2-0.3 N) at -78 °C. The reaction mixture was slowly allowed to warm to 25 °C. After 8-10 h, the solvent was removed <u>in vacuo</u> to give a crude product Compounds 4b-f were isolated by reverse phase column

chromatography (C-18) by elution with dry CH_3CN or a mixture of CH_3CN and THE Compound 4a was purified by recrystallization. Compounds 4 were prepared in ca. 10 g batches.

<u>i.4-bis(Eromodiphenvistannvi)butane</u> (4a), purified by recrystallization from ether, was obtained in 75% yield: mp 88-90 °C. IR (Nujol): 1070 cm⁻¹. HNMR: i.71-1.93 (8 H, m), 7.17-7.67 (20 H, m)

<u>1.5-bis(Bromodiphénylstannyl)pentane</u> (**4b**) was obtained in 55% yield as an oil IH (neat): 1070 cm⁻¹. ¹H NMR: 1.23-2.00 (10 H, m), 7.23-7.63 (20 H. m).

This reaction also gave 1-(bromodiphenylstannyl)-5-(triphenylstannyl)pentane as an oil in 5-10% yield. This product eluted after 4b. 1 H KHR: 1.30-1.93 (10 H, m), 7 23-7.70 (25 H, m),

<u>1.6-bis(Bromodiphenvistannvl)herane</u> (4c) was isolated in 70-82% yield as an oil which crystallised on standing: mp 66-69 $^{\circ}$ C. IR (neat): 1070 cm⁻¹. ¹H NMR: 1.30-1.90 (12 H, m), 7.17-7.63 (20 H, m).

<u>1,8-bis(Bromodinhenvistannvi)octane</u> (4d) was obtained in 50-60% yield as an oil. lR (neat): 1070 cm⁻¹. ¹H NMR: 1.03-1.87 (16 H, m), 7.20-7.73 (20 H, m).

<u>1,10-bis(Hromodiphenylstannyl)decane</u> (4e) was obtained as an oil in 61% yield. IR (neat): 1072 cm⁻¹. ¹H NMR: 1.07-1.87 (20 H, m), 7.27-7 70 (20 H, m).

<u>1,12-bis(Bromodiphenvistannvi)dodecane</u> (4f) was obtained as an oil in 65-80% yield. IR (neat): 1073 cm⁻¹. ¹H NMR 1.13-1.93 (24 H, m), 7.27-7.73 (20 H, m).

<u>Preparation of dichlorides</u> are represented by the following preparation of <u>1,14-dichloro-5,5,10,10-tetranhenvl-5,10-distannatetradecane</u> (Sa) To a suspension of Mg (0.3 g, 12.5 mg-atom) in 10 mL of THF at -10 $^{\circ}$ C was added over 40 min a solution of 1-bromo-4-chlorobutane (1.93 g, 11.2 mmol) in 30 mL of THF. The mixture was stirred for 30 min at 25 $^{\circ}$ C and 40 min at 0 $^{\circ}$ C. A one mL aliquot was titrated for active base (found 78% yield based on monometallation of the dihalide). The Grignard reagent solution was diluted with 30 mL of THF and transferred to a dry flask by cannula. To the Grignard reagent solution at 0 $^{\circ}$ C was added over 1.5 h a solution of 4a (3.0 g, 3.9 mmol) in 50 mL of THF (0.078 M). The reaction mixture was allowed to warm to 25 $^{\circ}$ C After 7 h at 25 $^{\circ}$ C, the reaction mixture was separated, and the aqueous layer was estracted with ether (2 x 50 mL). The combined organic layers were washed with brine (50 mL), dried (MgSO_q), and reduced <u>in vacuo</u> to give an oily product (3 g). The crude product was purified by reverse phase chromatography with methanol elution to give 1.95 g (62%) of 8a as an oil. IR (neat): 1070 cm⁻¹. ¹H NMR: 1.03-1.87 (20 H, m), 3.44 (4 H, t, J = 7 Hs), 7.13-7.53 (20 H, m).

<u>1.17-Dichloro-6.6.11.11-tetraphenvl-6.11-distannaheptadecane (8b)</u> was prepared from 2.3 g (3 mmol) of 4b. The crude oily product was purified by reverse phase chromatography with CH_3CN/THF elution (6:1, v:v) to give 1.38 g (56% yield) of 8b as a colorless oil. IR (neat): 1072 cm⁻¹. ¹H NMR: 1.38-1 73 (26 H, m), 3.43 (4 H, t, J = 7 Hz), 7.17-7.53 (20 H, m).

<u>1.20-Dichloro-7,7,13,13-tetraphenvl-7,13-distannaeicosane (8c)</u> was prepared from 2.2 g of 4c (2.8 mmol). The crude product was purified by reverse phase chromatography with CH_3CN/THF elution (3:1, v:v) to give 1.85 a.5 an oilg of 8c (60% yield) A IR (neat): 1070 cm⁻¹. ¹H NMR: 1.07-1.83 (32 H, m), 3.43 (4H, t, J = 7 Hz), 7.17-7.57 (20 H, m).

<u>Syntheses of polystanna macrocycles</u> were accomplished by three methods. Representative procedures are presented below for each method.

1,1,5,6-Tetraphenvi-1,6-distannacvelodecane (1a) and

1, 1, 6, 6, 11, 11, 16, 16-octaphenvl-1, 6, 11, 16-tetrastannacycloeicosane (2a) by the diGrignard method (Method A). To a suspension of 2 g of Mg (83 mg-atom) and a small crystal of I, in 50 mL of THF at 25 $^{\circ}$ C was added over 1 h a solution of 2.5 g of 1,4-dibromobutane (11.6 mmol) in 50 mL of THF. After stirring for 4 h, a 1 mL aliquot was titrated for active base (found: 85% of theory). The diGrignard reagent solution was separated from excess Mg by cannula transfer and was diluted to 200 mL (0.049 M) with THE, and the resulting solution was added over 2.5 h to a solution of 7.0 g of 4a (9.2 mmol) in 340 mL of THF at 0 $^{\circ}$ C. The reaction mixture was allowed to warm to 25 $^{\circ}$ C and was stirred for 10 h. The mixture was cooled to 0 $^{\circ}$ C, and saturated aqueous NH_CI solution (100 mL) was added. The organic layer was separated, and the aqueous layer was extracted twice with ether (70 mL). The combined ethereal solutions were washed with brine $(2 \times 50 \text{ mL})$, dried with MgSO_g, and filtered. The filtrate was reduced to give an oily product mixture which was purified by reverse phase chromatography with CH₂CN/THF elution to give 1.20 g of 1a and 1.58 g of 2a.

Compound <u>1a</u> was recrystallised from hexane to give 1.03 g (17.2%) of colorless prisms: mp 114-114.5 °C (lit.⁹ mp 96-98 °C). IR (Nujol): 1070 cm⁻¹. ¹H NMR: 1.37-1.50 (8 H, m), 1.57-2.03 (8 H, m), 7.23-7.60 (20 H, m). ¹³C NHR: 140.6, 136.5, 128.4, 29.3, 10.1. Anal. Calcd for $C_{32}H_{36}Sn_2 = C$, 58.41; H, 5.48. Found: C, 58.73; H, 5.42. MW: 654 (calcd for $C_{32}H_{36}Sn_2$: 657).

Compound 2a was recrystallised from a mixture of hexane/ether (3:1, v:v) to give 1.51 g (25.2%) of coloriess prisms: mp 107.5-108 °C. IR (Nujol): 1070 cm⁻¹. ¹H NMR: 1.17-1.47 (16 H, m), 1.53-1.87 (16 H, m), 7.17-7.50 (40 H, m). ¹³C NMR: 140.3, 136.7, 128.7, 128.4, 128.2, 31.6, 10.4. Anal. Calcd for $C_{64}H_{72}Sn_4$: C, S8.41; H, S.48. Found: C, S8.06, H,

5.43. MW: 1341 (calcd for $C_{44}H_{72}Sn_a$: 1315)

<u>1,1,7,7-Tetraphenvl-1,7-distannacvclododecane (1b)</u> and <u>1,1,7,7,13,13,19,19-Octaphenvl-1,7,13,19-tetrastannacvclotetracosane (2b)</u> were prepared by Method A from 0.66 g (2.8 mmol) of 1,5-dibromopentane and 1.6 g (2.06 mmol) of <u>4b</u>. The crude product was separated by reverse phase chromatography with CH_3CN/THF elution (3:1, v:v) to give the desired macrocycles <u>1b</u> and <u>2b</u>.

Compound 1b was recrystallized from hexane to give 0.26 g (18.6 % yield) of 1b: mp 100-101 °C. IR (Nujol): 1070 cm⁻¹. ¹H NMR: 1.13-1.93 (20 H, m), 7.13-7.60 (20 H, m). Anal. Calcd for $C_{34}H_{40}Sn_2$: C, 59.53; H, 5.04. Found: C, 59.27; H, 5.78. MW: 664 (calcd for $C_{34}H_{40}Sn_2$: 686).

Compound 2b was repeatedly chromatographed (reverse phase) with CR_3CN/THF until the sample was pure by HPLC to give 0.3 g (21.4 % yield) of oily 2b which solidified on standing: mp 68-69 °C. IR (Nujol): 1070 cm⁻¹. ¹H NMR: 1.10-1.80 (40 H, m), 7.03-7.40 (40 H, m). Anal. Calcd for $C_{48}H_{80}Sn_4$: C, S9.S3; H, S.84. Found: C, S9.60; H, S.84. MW: 1364 (calcd for $C_{48}H_{80}Sn_4$: 1371).

1.1.3.8-Tetraphenvi-1.8-distannacvclotetradecane (1c) and 1.1.3.8-Tetraphenvi-1.8-distannacvclotetradecane (1c) and 1.1.8.8.15.15.22.22-Octaphenvi-1.8.15.22-tetrastannacvclooctacosane (2c) were prepared by Method A from 1.7 g (7 mmol) of 1.6-dibromohemane and 4.8 g (6 mmol) of 4c. The crude product was separated by reverse phase chromatography with GH_3CN/THF elution (3:1, v:v) to give the desired macrocycles le and 2c.

Compound <u>ic</u> was recrystallized from herane to give 1.13 g (26% yield) of <u>ic</u>: mp i18-119 ⁰C. IR (Nujol): 1073 cm⁻¹. ¹H NMR: 1.20-1.90 (24 H, m), 7.21-7.58 (20 H, m). ¹³C NMR: 140.5, 136.6, 128.8, 128.1, 32.4, 25.4, 9.97. Anal. Calcd for $C_{36}H_{44}Sn_2$: C, 60.52; H, 6.21. Found: C, 60.20; H, 6.16. MW: 742 (calcd for $C_{36}H_{44}Sn_2$: 714).

Compound <u>2c</u> was repeatedly chromatographed (reverse phase) with $CH_{3}CN/THF$ slution until the sample was pure by HPLC to give 0.17 g (4% yield) of <u>2c</u> as an oil. IR (neat): 1070 cm⁻¹. ¹H NMR: 1.10-1.87 (48 H, m), 7.20-7.60 (40 H, m). ¹³C NMR: 140.4, 136.7, 128.3, 128.2, 33.7, 26.6, 10.5. Anal. Calcd for $C_{72}H_{88}Sn_{4}$: C, 60.52; H, 6.21. Found: C, 60.31; H, 6.17. MW: 1395 (calcd for $C_{72}H_{88}Sn_{4}$: 1427).

<u>1,1,10,10-Tetraphenvi-1,10-distannacyclooctadecane</u> (1d) and <u>1,1,10,10,19,19,28,28-octaphenvi-1,10,19,28-tetrastannacyclohexatricontane</u> (2d) were prepared by Method A from 0.73 g (2.7 mmol) of 1,8-dibromooctane and 1.7 g (2.08 mmol) of 4d. The crude products were purfied by reverse phase chromatography with $CH_{n}CN/THF$ elution (3:2, v:v).

Compound 1d was recrystallized from herane (or CH_3CN/THF , 5:1, v:v) to give 0.4 g (25% yield) of 1d: mp 92-93 ^oC. JR (Nujol): 1072 cm⁻¹. ¹H NMR: 1.18-1.88 (32 H, m), 7.24-7.61 (20 H, m). Anal. Calcd for $C_{40}H_{52}Sn_2$: C, 62.35; H, 6.81. Found: C, 62.01; H, 6.72. MW: 743 (calcd for $C_{40}H_{52}Sn_2$: 770).

Compound 2d was repeatedly chromatographed (reverse phase) with CH_3CN/THF elution (3:2, v:v) until the sample was pure by HPLC to give 0.1 g (6.3% yield) of 2d which crystallized on standing: mp 70-71 °C. IR (Nujol): 1070 cm⁻¹. ¹H NMH: 1.10-1.77 (64 H, m), 7.13-7.50 (40 H, m). Anal. Calcd for $C_{80}H_{104}Sn_4$: C, 62.35; H, 6.81. Found: C, 62.06; H, 6.71. MW: 1494 (calcd for $C_{80}H_{104}Sn_4$: 1540).

:.1.12.12-Tetraphenv1-1.12-distannacvclodocosane (1e) and 1.1.12.12.23.23.34.34-octaphenv1-1.12.23.34-tetrastannacyclotetratetracontane (2e) were prepared by Method λ from 1.2 g (4 mmol) of 1.10-dibromodecane and 2.7 g (3.2 mmol) of 4e. The crude product was purified by reverse phase chromatography with CH₃CN/THF elution (1:1, v:v) to give the

desired macrocycles.

Compound 10 was recrystallized from hexame (or ethanol) to give 0.68 g (26b yield) of 10: mp 86-87 °C. IR (Nujol): 1074 cm⁻¹. ¹H NMR: 1.20-1.90 (40 H, m), 7.23-7.60 (20 H, m). Anal. Caled for $C_{44}H_{60}Sn_2$: C, 63.93; H, 7.32. Found: C, 64.05; H, 7.27. NW: 348 (caled for $C_{aa}H_{kn}Sn_2$: 826).

Compound 2e was repeatedly chromatographed (reverse phase) with CH_3CN/THF (1:1, v:v) until the sample was pure by HPLC to give 0.18 g (7% yield) of 2e as an oil. IR (neat): 1070 cm⁻¹. ¹H NMR: 1.10-1.77 (80 H, m), 7.17-7.50 (40 H, m). Anal. Calcd for $C_{88}H_{120}Sn_4$ C, 63.93; H, 7.32. Found: C, 63.72; H, 7.28. MW: 1641 (calcd for $C_{88}H_{120}Sn_4$: 1652).

<u>1,1,14,14-Tetraphenyl-1,14-distannacycloheracosane (1f)</u> and <u>1,1,14,14,27,27,40,40-octaphenyl-1,14,27,40-tetrastannacyclodopentacontane</u> (<u>2f)</u> were prepared by Method A from 1.7 g (5.2 mmol) of 1,12-dibromododecane and 3 g (3.4 mmol) of <u>4f</u>. The crude products were purified by reverse phase chromatography with CH_aCN/THF elution (1:1, v:v).

Compound 1f was recrystallised from hemane (or ethanol) to give 0.72 g (24% yield) of 1f: mp 91.5-92 ⁰C. IR (Nujol): 1075 cm⁻¹. ¹H NMR: 1.15-1.87 (48 H, m), 7.22-7.57 (20 H, m). Anal. Calcd for $C_{48}H_{68}Sn_2$: C, 65.31; H, 7.77. found: C, 65.46; H, 7.73. MW: 913 (calcd for $C_{48}H_{68}Sn_2$: 882).

Compound 2f was repeatedly chromatographed (reverse phase) with CH_3CN/THF elution (1:1, v:v) until the sample was pure by HPLC to give 0.092 g (3% yield) of 2f as an oil. IR (neat): 1072 cm⁻¹. ¹H NMR: 1.07-1.83 (96 H, m), 7.20-7.60 (40 H, m). Anal. Calcd for $C_{96}H_{136}Sn_4$ C, 65.31; H, 7.77. Found: C, 65.38; H, 7,85. MW: 1709 (calcd for $C_{96}H_{136}Sn_4$: 1763).

<u>Preparation of $\alpha_{,}\omega_{-}$ bis(diphenvilithiostannvi)alkanes (7)</u>.²⁵ To a suspension of excess lithium metal (8-10 equivalents) and crushed glass in THE was added a solution of the appropriate 4 in THE (0.1-0.2 M) at room temperature. The mixture was heated under a gentle reflux for 0 5 h, and then stirred at room temperature for an additional 8 h to give a dark green solution of the dilithium reagent 7. A 1 mL aliquot of the solution was titrated for active base,²³ but the end point of the titration was difficult to determine due to the color of the stannyllithium reagent solution.

<u>Preparation of 1a by Method B.</u> A solution of dilithium reagent 7a (1.58 mmol) in THF (50 mL, 0.032 M) was added over 1 h to a solution of 1,4dibromobutane (Sa) (1.7 mmol) in THF (100 mL, 0.017 M) at 0 $^{\circ}$ C. The reaction mixture was allowed to warm to room temperature. After stirring for 14 h, the resulting mixture was quenched, and the products were worked up by the procedure used in Method A. Purification of the crude product by reverse phase chromatography followed by recrystallization from hexane gave 0.46 g (42% yield) of 1a.

sy similar procedures compounds 1b-1d were prepared by Method B. The yields of recrystallized products are given in Table 1.

Preparation of 2a by Method C. A solution of dilithium reagent 7a (1.88 mmol) in THF (50 mL, 0.022M) was added over 2 h to a solution of compound 8a (1.9 mmol) in THF (100 mL, 0.019 M) at 0 $^{\circ}$ C. The reaction mixture was allowed to warm to room temperature and was stirred for 18 h. The resulting mixture was quenched and worked up by the procedure used in Method A. Reverse phase chromatography and recrystallization from hexane/ether (3:1, v:v) gave 1.08 g (43% yield) of macrocycle 2a.

By similar procedures, compounds 2b and 2c were prepared by Method C. The yields of recrystallized products are given in Table 1.

<u>Acknowledgment</u>. This work was supported by the Office of Naval Research.

References and Notes

ALTERNATION AND THE TANK THE

1. Camille and Henry Dreyfus Teacher-Scholar, 1980-1985.

Hosseini, M. W.; Lehn, J. M. J. Am. Chem. Soc., 1982, 104,
 3525-3527; Kimura, E.; Watanabe, A.; Kodama, H. <u>ibid.</u>, 1983, <u>105</u>, 2063 2066, and references in each.

3. Nicholson, J. W. <u>Coord. Chem. Rev.</u>, 1982, 47, 263-282.

Karol, T. J.; Hutchinson, J. P.; Hyde, J. R.; Kuivila, H. G.;
 Zubieta, J. A. <u>Organometallics</u>, 1983, 2, 106-114.

5. Jurkschat, K.; Gielen, H. <u>Bull. Soc. Chim. Belg.</u>, 1982, <u>91</u>, 803-804.

A portion of this work has been communicated; Newcomb, M.;
 Asuma, Y.; Courtney, A. R. <u>Organometallics</u>, 1983, 2, 175-177.

7. Stannacycloalkanes have been reported previously⁸ as have medium size ring distannacycloalkanes. Compound <u>la</u> was formed in low yield from the reaction of 1,4-bis(bromomagnesio)butane with diphenyltin dichloride.⁹ 1,8-Distannacyclotetradeca-poly-enes were produced upon photolysis of a stannacycloheptadiene^{10a} and from the reaction of tin dihydrides with 1,2-diethynylbenzene.^{10b}

8. Pant, B. C. J. Organomet. Chem., 1974, 66, 321-403.

9. Davies, A. G.; Tse, H.-W.; Kennedy, J. D.; McFarlane, W.; Ladd,
 H. F. C.; Povey, D. C. <u>J. Chem. Soc., Perkin Trans.</u> 2, 1981, 369-375.

10. a. Sato, T.; Moritani, I. <u>Tetrahedron Lett.</u>, 1969, 3181-3184.
b. Leusink, A. J.; Budding, H. A.; Noltes, J. G. <u>J. Organomet. Chem.</u>,
1978, <u>24</u>, 375-386.

11. Zimmer, H.; Moslé, H.-G. <u>Chem. Ber.</u>, 1954, <u>87</u>, 1255-1257.

12. Seetz, J. W. F. L.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F. J. Am. Chem. Soc., 1982, 104, 6848-6849.

13. Traylor, T. G.; Koermer, G. S. J. Org. Chem., 1981, 46, 3651-

3656; Denis, R. A. unpublished results.

14. Courtney, A. R. "Thesis", Texas A&M University, 1980.

15. Similar results were obtained by Prof. H. Zimmer's group: Zimmer, H. private communication

16. Zimmer, H.; Hiller, J. J. <u>Naturwissenschaften</u>, 1966, <u>53</u>, 38.

17. Galli, C.; Mandolini, L. <u>J. Chem. Soc., Chem. Commun.</u>, 1982, 251-253.

18. As a further complication, the mechanistic course of the coupling reactions of 7 with alkyl bromides cannot be predicted with confidence. 19

19. Kitching, W.; Olssowy, H. A.; Harvey, K. <u>J. Org. Chem.</u>, 1978, <u>47</u>, 1893-1904.

20. The chemical shifts in the 13 C NMR spectrum of 1a matched those reported previously⁹ to within 0.5 ppm.

21. Related bis- and tetrakis-(dimethylstanna)cycloalkanes have been prepared by methods similar to those reported herein.²² Details of these preparations will be reported in due course.

22. H. Newcomb and R. A. Denis, unpublished results.

23. Bergbreiter, D. E.; Pendergrass, E. <u>J. Org. Chem.</u>, <u>1981, 46</u>, 219-220.

Bulten, E. J.; Budding, H. A. J. Organomet. Chem., 1976, 110,
 167-174. Sommer, L. H.; Ansul, G. R. J. Am. Chem. Soc., 1955, 77, 2482 2485.

25. Tamborski, C.; Ford, F. E.; Soloski, E. J. <u>J. Org. Chem.</u>, 1963, 28, 237-239.

Table	1.	Yields	of	Macrocyclic	Products	1	and	2.
				-				

Compound	Ring Size	Isolated Yield (%)			
		Method A	Method B	Method C	
14	10	17	45		
16	12	19	30		
le	14	30	21		
10	18	30	2 1		
1.	22	26			
11	- 26	26			
22	20	25	<2	43	
2b	24	2 1	42	33	
20	28	4	<2	33	
20	36	6			
2.	44	7			
21	52	3			

.

and <u>tetrakis</u>(diphenylstanna) - $(2, \triangle)$ macrocycles as a function of carbon chain length (n).

472:GAN:716-4 94/GEN

TECHNICAL REPORT DISTRIBUTION LIST, GEN

No. <u>Copies</u>

.

No. Copies

Office of Naval Research		Naval Ocean Systems Center	
Attn: Code 413		Attn: Mr. Joe McCartney	
800 North Quincy Street		San Diego, California 92152	1
Arlington, Virginia 22217	2		
		Naval Weapons Center	
ONR Pasadena Detachment		Attn: Dr. A. B. Amster,	
Attn: Dr. R. J. Marcus		Chemistry Division	
1030 East Green Street		China Lake, California 93555	1
Pasadena, California 91106	1		
		Naval Civil Engineering Laboratory	
Commander, Naval Air Systems Command		Attn: Dr. R. W. Drisko	
Attn: Code 310C (H. Rosenwasser)		Port Hueneme, California 93401	1
Department of the Navy			
Washington, D.C. 20360	1	Dean William Tolles	
•		Naval Postgraduate School	
Defense Technical Information Center		Monterey, California 93940	1
Building 5. Cameron Station			
Alexandria, Virginia 22314	12	Scientific Advisor	
······································		Commandant of the Marine Corps	
Dr. Fred Saalfeld		(Code RD-1)	
Chemistry Division. Code 6100		Washington, D.C. 20380	1
Naval Research Laboratory			-
Washington, D.C. 20375	1	Naval Ship Research and Development	
	-	Center	
U.S. Army Research Office		Attn: Dr. G. Bosmajian, Applied	
Attn: CRD-AA-IP		Chemistry Division	
P. O. Box 12211		Annapolis, Maryland 21401	1
Research Triangle Park, N.C. 27709	1		
		Mr. John Boyle	
Mr. Vincent Schaper		Materials Branch	
DTNSRDC Code 2803		Naval Ship Engineering Center	
Annapolis. Maryland 21402	1	Philadelphia. Pennsylvania 19112	1
			-
Naval Ocean Systems Center		Mr. A. M. Anzalone	
Attn: Dr. S. Yamamoto		Administrative Librarian	
Marine Sciences Division		PLASTEC/ARRADCOM	
San Diego, California 91232	1	Bldg 3401	
	-	Dover. New Jersev 07801	1
			-

472:GAN:716-4 94/053

TECHNICAL REPORT DISTRIBUTION LIST, 053

No. Copies

1

1

1

Dr. T. Marks Department of Chemistry University of California Northwestern University Los Angeles, California 90024 Evanston, Illinois 60201 1 Dr. J. Zuckerman Department of Chemistry University of Oklahoma Burlington, Vermont 05401 1 Norman, Oklahoma 73019 Professor O. T. Beachley Department of Chemistry Naval Research Laboratory State University of New York Buffalo, New York 14214 1 Professor K. M. Nicholas Department of Chemistry

Boston College

Dr. John E. Jensen Hughes Research Laboratory 3011 Malibu Canyon Road Malibu, California 90265

Dr. A. Cowley Department of Chemistry University of Texas Austin, Texas 78712

Dr. M. F. Hawthorne

Dr. D. B. Brown

Dr. D. Venezky

Code 6130

Chemistry Division

Department of Chemistry

Department of Chemistry

Washington, D.C. 20375

University of Vermont

Dr. W. Hatfield Department of Chemistry University of North Carolina Chapel Hill, North Carolina 27514

Dr. M. H. Chisholm Department of Chemistry Indiana University Bloomington, Indiana 47401 Professor R. Neilson Department of Chemistry Texas Christian University Fort Worth, Texas 76129

Chestnut Hill, Massachusetts 02167

Professor M. Newcomb-Texas A&M University Levertment of Chemistry College Station, Texas 77843

Professor Richard Eisenberg Department of Chemistry University of Rochester Rochester, New York 14627

Professor R. D. Archer University of Massachusetts Chemistry Department Amherst, Massachusetts 01003

No. Copies

1

1

1

1

1

1

