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I. INTRODUCTION

Over the past several years, we have gained an increased appreciation of
the importance of many nonclassical charge-design parameters in the ignition
and flamespread portion of the interior ballistic process. Unfortunately, we
have also learned, through a string of gun ammunition malfunctions, that
events taking place during this critical time may have a profound impact on
the overall interior ballistic performance, sometimes to the point of
catastrophic overpressures in the gun. Such areas identified for particular
attention include the details of the igniter functioning, propellant-bed
permeability, distribution of ullage in the chamber, and packaging components,
both inert and energetic. Properly understood and used, each of these areas
can be exploited in the design of safe and reliable charges and many studies
have been completed or are in progress to accomplish this. The investigation
reported herein addressed one particular, critical design area, namely, the
propellant-bed permeability, and the extent to which it might be improved
through the use of stick propellants.

We have previously discussed! the detailed phenomenology of granular
propelling charges, an example of which is shown schematically in Figure 1. On
that occasion, we drew particular attention to the details of primer
impingement on the base of the charge, system dependence of igniter output,
convective heating of the grains leading to flamespread, the drag presented to
the combustion gases due to the packed propellant bed, excitation of axial
pressure waves, movement of the solid phase, and the accompanying potential
for fracture of the propellant. Here we wish to address many of those same
phenomena, with particular reference to stick propelling charges, an example
of which is illustrated schematically in Figure 2. Ideally, we would expect
the early part of the cycle to proceed as follows: The primer output strikes
a basepad igniter and as the basepad burns, its output impinges upon the base
end of the propellant sticks. The igniter gases convectively heat the stick
propellant ends to ignition, and then flamespread proceeds easily down the
length of the charge, with the motion of hot gases essentially unimpeded by
the propellant bed, due to the flow channels offered by the bundled stick
propellant. This lack of flow resistance greatly reduces the drag on the
solid phase, and hence its movement. The open channels also present a
mechanism for equilibration of pressure over the length of the chamber, again
reducing the potential for propellant motion and leading to a much-diminished
potential of axial pressure waves.

This simplified analysis neglects several of the details that may greatly
impact the overall interior ballistic process. For example, it is not known
at what point the flame penetrates the perforation. Indeed, the concept of
flamespread in a stick propelling charge may not be well-defined. Due to the
permeability resulting from the stick geometry, the entire chamber may be
bathed by igniter and early combustion gases so that ignition occurs at all
points along the length of the charge almost simultaneously. In addition, the
propellant sticks may be fractured through a number of mechanisms. The ends

1A.W. Horst and T.C. Minor, "Ignition-Induced Flow Dynamics in Bagged-Charge
Artillery," ARBRL-TR-02257, Ballistic Research Laboratory, USA ARRADCOM,
August 1980 (AD A090681).
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at the charge base may be fractured by the output of a brisant igniter, and
the forward end may be fractured by impact of the charge on the projectile
base, should the charge move. The grains may also fail due to the internal
pressurization of the perforation. In all of these instances, unprogrammed
burning surfaces are created, which could lead to locally high pressurization.
In addition, the stick grain fragments might obstruct the channels between the
sticks, placing the charge in a hydrodynamic configuration similar to a
granular charge, with the attendant potential for exacerbation of pressure
waves.

A previous study at the Ballistic Research Laboratory2 investigated the
effect of the propellant granulation on ignition and flamespread, as evidenced
by the formation of axial pressure waves. Charges employing 7-, 19~ and 37-
perforation M30A1 propellants, designed to yield performance equal to that of
the 155-mm, M203 Propelling Charge, were fired in a full-bore, base-ignited
configuration specifically selected to promote the formation of pressure
waves, That study demonstrated the importance of grain size to bed
permeability, and hence to the evolution of pressure waves, with the larger
37-perforation grains yielding better performance than the 19-perforation
grains, which were in turn better than the T-perforation grains. In addition,
it was shown that stacking or even partially stacking the granular propellants
increased the bed permeability, effecting a slight decrease in pressure waves.
As a logical follow-on to that investigation, this study examined the degree
to which stick propellants, with an even more favorable geometry, would
mitigate the formation of pressure waves when fired under the same
circumstances.

A secondary objective of this study addressed the question of propelling-
charge temperature coefficients. It was found® that 155-mm, M203 Propelling
Charges made with 7-perforation M30A1 Propellants manufactured by Radford Army
Ammunition Plant prior to 1977 exhibited temperature coefficients of pressure
(AP/AT, the ratio of the increase in maximum chamber pressure to the increase
in the temperature of the charge at the time of firing) on the order of 0.8
MPa/°C. However, for reasons that are not yet clear, propellants produced by
Radford in 1979 had temperature coefficients that were as high as 1.8 MPa/°C.
This unexplained increase in the temperature coefficient can have obviously
detrimental consequences on system performance at elevated temperatures for
charges that are assessed for a specific ambient performance. Since this
study had occasion to examine stick propellants produced during both time
periods, it seemed an excellent opportunity to determine whether they followed
the same production-period dependency of the temperature coefficients as did
the granular propellants. '

2A.W. Horst, J.R. Kelso, J.J. Rocchio, and A.A. Koszoru, "The Influence of
Propellant Grain Geometry on Ignition-Induced, Two-Phase Flow Dynamics in
Guns," ARBRL-MR-02989, Ballistic Research Laboratory, USA ARRADCOM, February
1980 (AD A083289).

3A.W. Horst, J.R. Kelso, and K.J. White, "Propelling-Charge Temperature
Coefficients: Sources of Disparity," Proceedings of 17th JANNAF Combustion
Meeting, CPIA Publication 329, Vol. II, pp. 69-86, November 1980.
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II. PRELIMINARY STUDIES

A. Propellant Grain Design

Using an uypdated version of a standard lumped-parameter interior
ballistic model,” slotted and unslotted, M30A1 stick-propellant grains were
designed to yield 155-mm, Zone-8 performance; specifically, the goals were a
peak chamber pressure of 328 MPa and a velocity of 826 m/s. The sticks were
designed to be 737 mm long, with equal perforation diameter and web. Orders
for three propellant lots were placed with Radford /rmy Ammunition Plant: two
slotted-stick lots with webs smaller and larger than the calculated value, and
one unslotted-stick lot with the calculated web. Upon production by Radford,
the three lots of propellants had webs on the order of six percent larger than
those specified. The slotted-stick lots were RAD-PE-480-53 and RAD-PE-480-54,
and had the smaller and larger web, respectively. Lot RAD-PE-480-55 was the
unslotted lot. In addition to these three lots, there were available two
other lots of M30A1 stick propellants 686 mm long, produced for a previous
study5 to replace the T-perforation propellant in the M203 Propelling Charge.
These lots, RAD-PE-472-11 and RAD-PE-472-12, were of special interest since
they were extruded from the same die, with Lot RAD-PE-472-11 slotted in the
process, but not Lot RAD-PE-472-12. Samples of all five stick propellant lots
are shown in Figure 3. Propellant description sheets for all five lots are
included in Appendix A.

B. NOVA Simulations

The NOVA Code6 was used to assess the relative performance in pressure-
wave reduction with a stick-propellant charge in comparison with a granular-
propellant charge. NOVA consists of a two-phase flow treatment of the
interior-ballistic cycle, formulated on the assumption of quasi-one-
dimensional flow, i. e., one-dimensional with area change. Since the charges
to be examined in this study were to be fired in a full-bore, base-ignited
configuration, in order to promote the formation of pressure waves, they were
of an appropriate geometry for simulation by the one-dimensional NOVA Code.
Input data for the simulations, including propellant burning rate and bore
resistance, were independently determined. Figure 4 presents a portion of
some NOVA calculations derived from the study mentioned pr'eviously2 that
demonstrated the efficacy of 19- and 37-perforation geometries in reducing

uP.G. Baer and J.M. Frankle, "The Simulation of Interior Ballistic Performance
of Guns by Digital Computer Program," R 1183, Ballistic Research
Laboratories, December 1962 (AD 299980).

58. Weiner, "Investigation of Stick Propellant for 155-mm Howitzer, XM198,"
Interim Memorandum Report, Picatinny Arsenal, Dover, NJ, July 1975.

6P.S. Gough, "The NOVA Code - A User's Manual," PGA-TR-79-5, Paul Gough
Associates, Portsmouth, NH, September 19709.

TA.W. Horst and T.R. Trafton, "NOVA Code Simulation of a 155-mm Howitzer: An
Update," ARBRL-MR-02967, Ballistic Research Laboratory, USA ARRADCOM, October
1979 (AD A079893).
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pressure waves. These traces simulate the record that would be obtained if
the pressure measured at the front of the chamber were subtracted from that
measured at the breech. The initial reverse-pressure gradient, shown as -APi,
is used as a quantifier of the severity of the pressure waves. To the
previous curves, we have added the NOVA prediction for one of the stick
propellants used in this study. The progressive improvement in the reduction
of pressure-wave levels from the smaller 7T-perforation to the larger 37-
perforation grain is readily apparent. Furthermore, the improvement that' we
would intuitively expect with the very favorable, low-drag stick configuration
is borne out by the calculation.

C. Closed-Bomb Studies

Closed-bomb tests8 were conducted for each of the five stick-propellant
lots examined in this study. The results from two of the lots, one slotted
and one unslotted, are shown in Figure 5. Each trace is a composite of three
firings in the bomb. For comparison, the burning rate for a standard seven-
perforation M30A1 propellant for the 155-mm, M203 Propelling Charge is also
shown. For these burning rate determinations, the sticks were cut into 229-mm
lengths in order to be accommodated by the 700-cm3 bomb, A 2-g FFFG igniter
was employed for each shot. For all of the lots, the unslotted-stick
propellants displayed a higher apparent burning rate than did the slotted-
stick propellants, particularly below approximately 70-100 MPa. These results
had little bearing on the charge assessment, however, since most of the
burning rate data became available only after the completion of the howitzer
firing program.

III. 155-mm HOWITZER FIRINGS

A. Fabrication of Charges

The full-bore, stick charges were fabricated using components from 155-
mm, M203E1 Propelling Charges. The bag, from which the lead and wear-reducing
liners had been removed, was modified by inserting a tapered wedge of cloth
into its circumference to form a sleeve with a base of 170-mm diameter at the
spindle end and a 160-mm diameter opening at the other end. The "kidney," or
central cloth sleeve which holds the centercore-igniter assembly, was also
removed. Stick propellant packs so densely that the mass required for Zone-8
ballistics when simply bundled together would have produced a package that was
considerably subcaliber. In order to obtain a fair test of the effect of this
stick-propellant geometry on flow dynamics for comparison to the earlier
granular-propellant studies,2 it was necessary to load the stick propellant to
approximately the same initial porosity as the granular; i. e., some way was
required to spread the sticks radially so that the charge was full-bore. This
was accomplished by making a linear train of sticks laid side by side, taping
them into a "venetian-blind" configuration, and rolling the propellant into a
bundle with thin strips of cardboard interleaved in the spiral so that the
final full-bore dimensions resulted. This roll of propellant sticks was
placed inside the modified bag and the end cap was affixed and sewn closed.

8JJL Doali, R.E. Bowman, and A.A. Juhasz, Ballistic Research Laboratory, USA

ARRADCOM, unpublished data, August 1979, January 1980.
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Basepads were prepared by altering the standard 8-inch M2 basepads. A
circular pouch, 38 mm in diameter, was sewn in the center. Fourteen grams of
Class-5 Black Powder were inserted into this pouch and the balance of the
basepad was filled with 56 g of Clean Burning Igniter (CBI). The finished
basepads were tied to the larger end of the loaded charges and the whole
assembly tightly laced and adjusted to final full-bore dimensions with a
lacing jacket. Flash~reducer bags were not added to the charges. Figure 6
schematically depicts the charges as fired in this study.

B. Test Procedures

A1l firings were conducted at the Ballistic Research Laboratory in a 155-
mm, M185 Cannon, modified to provide a chamber configuration similar to that
of the M199 Cannon. As shown in Figure 7, multiple~station pressure~time data
and differential pressures were measured using Kistler 607C3 piezoelectric
transducers. These gages were calibrated before, during, and after the
testing. Solenoid coils placed approximately 20 m and 35 m from the muzzle
were used to determine projectile velocities. Ignition delays were recorded
by measuring the interval between the time the firing voltage was applied to
the gun and the time at which the signal recorded by the spindie-pressure gage
began to rise.

A1l charges were conditioned in plastic bags at the desired temperatures
for at least 24 hours prior to firing. With the exception of one round, no
more than three minutes elapsed between the time at which the charge was
removed from the conditioning box and the shot. For all but the last series
(shortened-stick charges), the charges were loaded into the cannon chamber
with zero standoff distance between the spindle face and the base of the
charge to increase the likelihood of strong base ignition and large pressure
waves. Hardware availability necessitated the change to a 25-mm standoff for
the firings of the shorter, lower-local-porosity charges. In initial probe
firings, charge weights were assessed such that the maximum spindle pressures
were nearly equivalent to that of the 155-mm, M203 Propelling Charge at
ambient conditions, or about 330 MPa. These assessed weights were employed
throughout the balance of the program. Inert M101 Projectiles were used for
the duration of the study.

C. Firing Results

We now present data obtained in the 155-mm, full-bore firings of each of
the lots of stick propellants. In each of the tabular compilations that
follow, the results shown are averages of three to five shots, with sample
standard deviations shown in parentheses. Complete round-by-round data are
given in Appendix B for all of the stick-propellant shots as well as for 155~
mm, M203 control rounds. Pressure-time and differential-pressure plots from
each shot are included in Appendix C.
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Figure 7. Locations of Pressure Taps in Modified M185 Cannon

We first direct our attention to the ambient, baseline firings for each
of the stick-propellant lots. In Table 1, we note the very low level of
pressure waves for all of the lots, although Lot RAD-~PE-480-55, an unslotted
propellant, had a pressure-wave level that was higher than the others. For
comparison, we recall that the smallest average initial reverse-~pressure
gradient attained with the same configuration in the previous granular-
propellant study2 was on the order of 35 MPa, and that was achieved with 37-
perforation propellant. Similar firings with standard T7T-perforation
propellant yielded an average level of nearly 90 MPa. It is clear, then, and
in accord with our intuition, that the improved permeability of the stick
propellant bed to passage of igniter and propellant gases significantly
affects the flow dynamics of the early portion of the interior ballistic cycle
and thus greatly reduces the attendant level of pressure waves. With the
exception of the muzzle velocity, discussed below, there is no apparent
dependence of any of the variables measured on the geometry, slotted or
unslotted.

Some further observations are in order regarding these stick-propellant
results. Firstly, the variability in the ignition delays are rather high.
Presumably, this is due to the great amount of interstitial ullage within the
charge, allowing igniter gases to bleed through the charge, resulting in
reduced pressurization at the base of the charge and lengthening the time
before the rear of the charge is ignited.
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TABLE 1. FIRING DATA FOR FULL-LENGTH STICK PROPELLANTS
AT AMBIENT TEMPERATURE

Muzzle
Propellant Charge Temp Velocity Pm = -APi Ignition
Lot Wt (kg)  (°C) (n/s) (MPa) (MPa) Delay (ms)
Slotted 11.11 21 822 329 1.7 90
472-11 (6.2) (5.0) (1.5) (24.1)
Unslotted 10.34 21 T97 336 1.8 57
y72-12 (5.8) (5.7) (12) (28.2)
Slotted 11.93 21 840 326 1.7 111
480-53 (2.1) (2.9) (0.9) (11.2)
Slotted 12.67 21 842 328 1.3 59
Unslotted 10.79 21 810 325 4.5 60

More importantly, however, it is apparent that we do not fully understand
the behavior of the long stick propellant grain during burning. This is seen
by comparison of these results with those of nominal 155-mm, M203 performance
(11.8 kg, 826 m/s, 330 MPa). The results from Lot RAD-PE-472-11, which was
made to be a direct replacement for the T-perforation, granular propellant of
the M203, indicate essentially equivalent ballistics at a lower charge weight,
this in spite of the degressivity of the stick geometry as compared to the 7-
perforation geometry. The net effect of the stick combustion is to mimiec
progressivity through enhanced burning in the long perforation, possibly
through one or both of two mechanisms. An increased burning rate may result
from erosive burning in the perforation as gases move from the perforation to
the exterior of the stick through the end or slot of the stick. In addition,
the combustion within the perforation, and the inability of the gases to
escape as quickly as they are liberated, may lead to an internal pressure that
is in excess of that outside the grain, promoting a greater gas-mass
generation rate. We also note that Lot RAD-PE-472-12, the unslotted-stick
propellant made from the same die as the slotted RAD-PE-472-11, yielded a
significantly lower charge weight and velocity at an equivalent pressure,
indicating perhaps that pressurization in the perforation, with no relief
through the slot, ruptured the grains relatively early in the cycle, creating
unprogrammed burning surface and destroying the subsequent benefits of
enhanced burning.

Finally, in Appendix B we note that the gradient of the peak pressures
between the rear and midchamber locations is significantly smaller than that
between the midchamber and forward locations, especially in comparison with
the granular, M203 control firings. Possibly, this can be interpreted as a
result of the stick charge remaining at the rear of the chamber, a scenario
consistent with the relatively smaller drag exerted on the propellant sticks
by the igniter and combustion gases.
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Table 2 provides the firing results for the full-length stick propellants
packaged in the full-bore configuration at the high-temperature extreme. We
note that even though the results at ambient conditions yielded very low
values for -AP;, the -AP;'s at these elevated temperatures are equivalent or
eveR smaller in all cases. Indeed, no negative excursions of the pressure-
difference traces were found with two of the lots at these temperatures. The
peak chamber pressures increased in comparison to those obtained at ambient
temperature, but not uniformly for all the lots, with the slotted-stick
propellants showing a larger increase than the unslotted-stick propellants,
This phenomenon will be discussed more fully below. Not surprisingly, the
ignition delays at these higher temperatures were considerably shorter than
those at ambient conditions, and the variability in the ignition delay
shortened somewhat. The elevated temperatures resulted in an increased rate
of evolution of igniter and combustion gases sufficient to overcome the
effects of the large interstitial volume alluded to previously.

In Appendix B, we again note the relative magnitudes of the gradients of
the peak pressures between the rear and midchamber locations and between the
midchamber and forward locations. As with the ambient tests, this phenomenon
is probably an indication that the stick charges remained near the rear of the
chamber in the early portion of the interior ballistic cycle.

TABLE 2. FIRING DATA FOR FULL-LENGTH STICK PROPELLANTS
AT ELEVATED TEMPERATURES

Muzzle
Propellant Charge Temp Velocity B =sivEe Ignition
Lot Wt (kg)  (°C) (m/s) (MB3) (MPa Delay (ms)
Slotted 11.11 62 858 406 1.9 35
Unslotted 10.34 62 825 372 2.1 35
y72-12 - (1.9) (1.4) (8.0)
Slotted 11.93 63 882 4oy 0.0 30
480-53 (2.4) (4.3) (0.0) (2.4)
Slotted 12.67 63 899 41y 0.0 37
480-54 (1.0) (3.1) (0.0) (8.5)
Unslotted 10.79 63 832 350 1.2 30
480-55 (3.2) (6.1) (0.9) (5.0)
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Table 3 presents the results from the low~temperature firings. Here
again, the -AP;'s are very low, with the exception of that recorded by Lot
RAD-PE-472-12. In comparison with the ambient results, the pressures were
reduced uniformly for all of the lots. Again, with the exception of the one
lot, an examination of the peak pressures, the initial reverse-pressure
gradients, and the sample standard deviations of the peak pressures indicates
that there was no gross propellant fracture. Note, however, that there are
some modes of propellant fracture that might not increase the surface area
significantly, and thus would not be apparent in these data. One of the most
noticeable results from these cold-temperature firings is the very long
ignition delays and their great variability. The low burning rate of the
M30A1 propellant at this reduced temperature, coupled with the low pressure
due to access of the igniter and early combustion gases to the large
interstitial volume, delayed charge ignition almost to the point of hangfires
for some of the lots.

TABLE 3. FIRING DATA FOR FULL-LENGTH STICK PROPELLANTS
AT REDUCED TEMPERATURES

Muzzle
Propellant Charge Temp Velocity Pmax -AP; Ignition
Lot Wt (kg) (°c) (m/s) (MPa) (MPa) Delay (ms)
Slotted 11.11 ~53 768 265 3.0 171
y72~11 (4.5) (6.2) (0.6) (53.2)
Unslotted 10.34 ~-53 755 279 9.6 203
yr2~12 (3.7) (2.9) (3.5) (124.8)
Slotted 11.93 -5 776 270 0.4 291
480~53 (3.0) (2.5) (0.8) (132.6)
Slotted 12.67 ~54 780 272 0.9 294
480-54 (3.4) (4.0) (0.8) (16.3)
Unslotted 10.79 -5y 759 276 1.5 425
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Table 4 displays the temperature coefficients AP/AT for the five stick-
propellant lots investigated. Recall that the prime motivation at the
beginning of the study was not to investigate geometry-induced differences in
the temperature coefficient, although such a determination was certainly of
interest. Rather, the objective was to determine if there was a production-
period dependency as had been noted with granular M30A1 propellants.3 What
emerged from these tests was not a production-period difference, which would
‘have been manifested by a disparity of the coefficients of the RAD-PE-480 and
RAD-PE-U472 lots, but indeed a dependency of the coefficient on the geometry,
i. e., on the presence of the slot. While the cold-to-ambient coefficients
are essentially the same for all the lots, regardless of geometry, the
ambient-to-hot coefficients for the slotted lots are on the order of twice
those of the unslotted 1lots. It is possible that the slotted-stick
propellants, being pliable when hot, may suffer closure of the slot either
through compression from neighboring grains (or packaging in this case) or
pressurization by interstitial igniter and early combustion gases before they
penetrate the perforation. Later, as the perforation is pressurized, the
slotted propellant may rupture in instances where the unslotted propellant
might not, due to the lower hoop strength of the slotted stick. Such a
rupture of the slotted-stick propellant, and its absence in unslotted-stick
propellant, could lead to increases in the area of the burning surfaces and
hence higher pressures in the former case. We caution, however, that further
investigations into this phenomenon are necessary since these data were
gathered for small sample sizes with only a single propellant composition.

TABLE 4. STICK PROPELLING CHARGE TEMPERATURE COEFFICIENTS

Amb -~ Hot Cold~ Amb

Propellant AP/ AT AP/AT
Lot (MPa/°cC) (MPa/°cC)
Slotted 1.88 0.86
472-11

Unslotted 0.88 0.77
47o-12

Slotted 1.86 0.75
480-53

Slotted 2.05 0.75
480-54

Unslotted 0.60 0.65
480-55
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The preceding tests demonstrated the clear superiority of stick
propellant, as compared to granular propellant, in reducing ignition-induced
pressure waves. As a further investigation of the efficacy of stick
propellants in improving the interior ballistic hydrodynamic environment,
stick charges were tested in a more stringent flow configuration, one in which
the local loading density was increased and the size of the channels between
the sticks reduced. We present, in Table 5, data for shortened-stick, higher-
local-loading-density charges, fired at 21 °C. For these shots, the sticks
from Lots RAD-PE-472-11 and RAD-PE-472-12 were cut to a length of 533 mm.
The charges were fabricated to full-bore dimensions in the same manner as
before, necessitating a more tightly packed spiral, so that the cross-
sectional loading density was increased by approximately 22 percent. Hardware
availability made it necessary to employ a different spindle for these tests
than had been used previously, with the result that the charges could be fired
only with a 25-mm standoff. Since these charges were both considerably
shorter and denser in cross-section than the ones fired before, a cardboard
spacer was placed between the charges and the projectile base in an attempt to
preclude charge movement. We note that the level of pressure waves rose for
the unslotted propellant, and there are some breaks on the pressure-time
records for this lot. However, the level of pressure waves generally remains
low, especially in comparison to the earlier granular r'esults,2 indicative of
the truly permeable nature of a stick-propellant bed. The peak pressures and
muzzle velocities are substantially higher than those obtained with the same
charge weights in the full-length charges. This result must be attributable
in some way to the increased packing density of the propellant, since it is
incredible that the slight reduction in volume produced by the new spindle and
cardboard spacer could be the source of the increase. In addition, we do note
one effect which almost certainly resulted from the more closely packaged
sticks: The ignition delays are substantially reduced in comparison with the
less tightly packed sticks. This reduction is due to the smaller interstitial
volume to which the igniter and early combustion gases have access, leading to
higher early pressures at the base of the charge and thus more prompt
ignition.

TABLE 5. FIRING DATA FOR SHORTENED-STICK PROPELLANTS

Muzzle
Propellant Charge Temp Velocity Pmax -AP; Ignition
Lot Wt (kg) (%e) (m/s) (MPa) (MPa) Delay (ms)
Slotted 11.11 21 849 357 2.0 25
472-11 (0.9) (4.14) (2.1) (3.1)
Unslotted 10.34 21 818 346 7.4 24
472-12 (2.8) (8.7) (4.0) (3.4)
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IV. CONCLUSIONS

We have presented results from an experimental investigation to determine
the extent to which stick propellants, due to their very low drag on igniter
and early combustion gases, mitigate the evolution of pressure waves in charge
assemblies specifically designed to promote the formation of such waves.
Particular findings from this study include:

de

As evidenced by the reduced level of pressure waves, stick
propellants, both slotted and unslotted, do indeed offer a greatly
improved flow environment in comparison to granular propellants, even
large 37~perforation grains. This result holds even when the local
loading density is increased, i. e., when the permeability of the
charge is decreased.

An increased efficiency, perhaps the result of an artificial
progressivity of the slotted-stick propellant, was noted in that a
given velocity could be obtained at the same pressure as with a 7~
perforation grain, but at a significantly lower charge weight than
would be required for granular propellant. Some enhanced burning in
the perforation, due either to erosive effects or increased
combustion linked to higher internal pressure, was advanced as the
likely source of this phenomenon., A similar result was not found
with unslotted-stick propellant. In this case, it was suggested that
the grain, due to internal pressurization, ruptured before the effect
noted with the slotted-stick propellant could be realized.

The temperature coefficient of pressure, AP/AT, exhibited a strong
dependence on the stick geometry. While the ambient-to~-cold
coefficient was the same for both slotted and unslotted geometries,
the ambient-to-hot coefficient was found to be a factor of two
greater for the slotted geometry than for the unslotted
configuration. It was hypothesized that this phenomenon may be
traceable to the relative mechanical strengths of the two geometries,
and rupture of the hot-conditioned slotted-stick propellants under
conditions in which the unslotted-stick propellants remained intact.
We caution, however, that this result was obtained with a single
propellant composition and with small sample sizes.

With the possible exception of one firing series (Lot RAD-PE-472-12,
cold) gross fracture of the propellant sticks is not supported by an
analysis of either the levels of peak pressures and initial reverse-
pressure gradients or variability in peak pressures, even at cold
temperatures. We note, however, that there are some rupture
scenarios, such as lengthwise splitting of the sticks, that may occur
and not produce anomalies in these data.

There was some evidence, clouded by a change of experimental
apparatus during the testing, that the loading configuration may
significantly affect the overall performance of a stick~propellant
charge, both slotted and unslotted, in terms of peak pressure and
muzzle velocity.

24



. 4

f. The long ignition delays measured in this study are probably an
artifact of the particular charge configuration chosen for this
study. Gases generated by the basepad had access to a large
interstitial volume, rather than remaining in the rear of the charge
to promote rapid ignition of the charge. 1In the charges with a
relatively smaller interstitial volume, the ignition delays decreased
significantly.

As anticipated prior to the start of this study, stick propellant offers
the best propellant-design approach to the mitigation of pressure waves.
Since the completion of this study, other investigators have similarly
demonstrated the efficacy of stickifro¥ellants for the reduction of ignition-
induced, flow~dynamic phenomena. -1 While the advantages of stick over
granular propellants have been demonstrated, there still remain several areas
of concern before their routine application to propelling-charge design.
These areas include stick combustion, including enhanced burning in the
perforation, stick fracture, interior ballistic hydrodynamic effects, erosion,
manufacturing, cost, and stick blending to achieve a particular charge
assessment, Investigations are currently underway at the Ballistic Research
Laboratory into the first three of these areas,'<’ 3 and a Product Improvement
Program for the 155-mm, M203 Propelling Charge will address many of the
others.

9T.C. Smith, "Experimental Gun Testing of High Density Multiperforated Stick
Propellant Charge Assemblies," Proceedings of 17th JANNAF Combustion
Meeting, CPIA Publication 329, Vol. II, pp. 87-95, November 1980.

10A.Grabowsky, S, Weiner, and 1.J. Beardell, "Closed Bomb Testing of Stick
Propellant for Gun Firing Simulation," Proceedings of 17th JANNAF Combustion
Meeting, CPIA Publication 329, Vol. II, pp. 119-124, November 1980,

11F.W. Robbins, J.A. Kudzal, J.A, McWilliams, and P.S. Gough, "Experimental
Determination of Stick Charge Flow Resistance," Proceedings of 17th JANNAF
Combustion Meeting, CPIA Publication 329, Vol. II, pp. 97-118, November
1980.

12F.W. Robbins and A.W. Horst, "A Simple Theoretical Analysis and Experimental
Investigation of Burning Processes for Stick Propellant," Proceedings of
18th JANNAF Combustion Meeting, CPIA Publication 347, Vol. II, pp. 25-34,
October 1981.

13F.W.Robbins,"Continued Study of Stick Propellant Combustion Processes,"
Proceedings of 19th JANNAF Combustion Meeting, CPIA Publication 366, Vol. I,
pp. 443-U459, October 1982.
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PROPELLANT DESCRIPTION SHEET
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PROPELLANT DESCRIPTION SHEET
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PROPELLANT DESCRIPTION SHEET
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PROPELLANT DESCRIPTION SHEET
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+ RADFORD ARMY AMMUNITION PLANT, RADFQRD. VA Pectae amesar____ 480 Pounds
voevoet no._ DAAAQQ=TI~C=0329 061 §230-T]  spacti-onen ne COR letter SAARA-TF. dated
11/22/78
ACCESTED BLEND NUMBERS NITROCELLULCSE
C-36277 Nitrogen Comtant Kt Srercn (63.3°C)[  Sradumry (13¢ 3°¢}
”» S Mine Mg
e [T L]

Avereqe 12,55 | 45+ Ve 0+ My

Erglesian Mg

. MANUFACTURE OF PROPELLANT
0_1_2.2__.’.-". Setvent por Psm.u dr}’ We:lgh&....... Comereting et B0 penee e ond el pounee ACETOTE gur 100 Prews Saivere

Berconioge Remx 19 Whee
T LA TER PROCESS~SOLVENT RECOVERY AND DRYING e
pmbient |Ambient | Load at ambient and hold [ 24
pmbient 104 Increase temperature to 104°F 5
104 104 Maintain temperature at 104°F 19
104 131 | Increase temperature to 131°F 5
131 131 | Maintain temperature at 131°F 1 43
131 140 | Increase temperature to 140°F and hold 40 hours 5.+ 40
SRS Cotme SITIE TESTS OF FINISHED PROPELLANT e STk A A T
Constrtusnr t.:.':\': | ‘:n':;u u::-::::.: l Formuia Actvel
Nitrocellulose 28.00 , *1.30 28,58 Jupe 12 SP_120°C__ | No CC 407 60'+
itroglvcerin 22.50 ' _* 1,00 21.13: ;No Fumes 60"
Nitroguanidine 47,00 | * 1.00 47.79 ltorm ot meapurem_Slotried Stick | Cyld
thyl Cenrralire 1.50 : + 0,10 1.46 |No. Perforations| 1 1
Potassiym Sulfate 1.00 ¢ + 0,30 1.04 Type IT
TOTAL 100,00 100.00 jAbsqlute Densitry
Taral Volariles 0.50 - Max 0_q1 alee N/A 1.683
| Grain Weight Avg
: per 29" Stick 55.599
|
{ 1
! i
CLOSED BOMB ~___| PROPELLANT DIMENSIONS (inches) 2tQ. Jev.
Lot mumse | Toms or | uceets | ewe e orans
7o RAD4PE=480~54 | +90 81.24 ] 100,37 Speerticanen o1 Finanes 30 | aerer
RAD-PE-480-54 | =40 72.79 1 98.63|cmimuy 79.0 Nom §.006 | 6.25%ax 0.
i i Oramerer (01 0.318 Nom |0.35310.322 3.125Max 1.51
Sranderg  E=14-73 +90 100.00% | 100.00% Imers 210.(¢} 0.106 Nom |0.106 | 0.098 DATES
rey i 1 ! Web, Ave|0.106 Nom 0.112
Fired in accordancé with| MIL-STD-286, |Slot M 4/11/79
Method {801.1; 0.2 g/cc lbading density. Inner 0.011 fsemees 4/11/70
a | g%ter 0.009 Tew faigst 03 /99
| | d BT (20 Max N/A | 5.71 [owwe G7307TY
l ; , Lo N7A Oescription Sheary
L ' : o 3 Nom T28 18 /7/79

Wood boxes 327199
- 8 boxes at 60 pounds each. :
This lot meets specificarions with the excention of percent nitroglycerin.

Type of Pucning Conrmner

Contracior 9 Ropresenietive 7 / * - - =5 Quaw)y or
C. B. Smith ( L. “j/// A7 JV:Z%:-Q

WBU FONM ICOTE MASCN LOTY
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PROPELLANT DESCRIPTION SHEET

US Army Lat Ma RAD-PE-480-55 ot 19 79 [ Ne. M30A11 Uﬂ310t1£§__5_tick Propel

« RADFORD _ARMY AMMUNITION PLANT, RADFORD, VA recses ameuer__ 280 Pounds

oot we. — DABAQD-TI=C-03I29 005 6=3O-TI sjech-enen e COR letter SARRA-TF, dated |
11/22/78

ACCEPTED BLEND NUMBERS NITROCELLULCSE

C=-36277 Wiiregen Conignt ) Steren (68.3°CH|  Sraminry (136 30¢)

%% 2 ["TN
Vv

e
aersge 1255 o1 b5+ .0 30+

FEid

Exgloesen

MANUFACTURE OF PROPELLANT
e e Pounde Seivent por 'NG&IDW Waight ing [ § of 6 Peunan Aearal ond A.Q—— Peunds Mn’ 100 Paunde Seivess

0.22

Beccentcge Remvy to Waele

.._'f'_‘:;ﬂ;‘-"_"f.__J PROCESS-SOLVENT RECOVERY AND DRYING TME

—Tage Houte
Ambient | Ambient|Load at ambient and hold 24
Ambient! 104 |Increase temperature to 104°F 5
104 104 _IMaiptain temperature ar 104°F 19
104 131 |Increase temperature to 131°F S
131 131 !Maintain temperature at 131°F 43
131 140 !Increase temperature to 140°F and hold 40 hours S +4

TESTS OF FINISHED PROPELLANT

PECPELLANT COWECSITION d STABLITY awQ SMYSICAL TEST

Feecrar P Porco~e Porcent i
Constrtvent Foemaie * stercree Measured : Fermuie Actusmt
Y

Nitrocellulose 28.00 ,* 1.30 28.19 'uew rew OF_120°C [No CC 40"
Nitroglvcerin 22,50 i+ 1.00 22.04 :No Fumes 60"
| Nitroguanidine 47.00 i+ 1.00 47.10  {#rsem ot peageniane Unsldtted Stick Cyld
Ethv]l Centralite 1.50 _* 0.10 1.3 |No. Perforationd 1 1
Potassium Sulfate 1.00 :*+ 0,30 1.04 Type II1
TOTAL 100.00 - 100,00 [Absolute Density,
Total Volatiles 0.50 . Max 0.16 g/cc 1.B83
! Grain Weight Avg 44,721
per 29" SticK

] 1
| :
CLOSED _BOMS PROPELLANT DIMENSIONS (inches) 253 DSV

Heanes | ol n %

i Lot NumBoer Tome *F o‘::lg.-‘-::n forca 9t _Mesa Dimersisrne
Tose RADTPE‘ABO‘SJ +90 91.90 §99.42 Speertication D Fumened
RAD-PE-480~55 | -40 | 85,96 98,31 liegmyy  |29.0 Nom 129039 6. 2 oiiax
| | Duameter 0) 0.288 Nom | 0.320] 0.287 {3.125M3dx 1.‘2
signogrs | E-14-73 +90 |100.00%1100.00% |»et 21e(q) 10.096 Nom | 0.098° | 0.087 osiis
Remarss t ! Wev Ave 10.096 Nom 0.1003
Fired in accordance with MIL-STD-286, raaed 4/11/79
Method(80.1.; 0.2p/cc ldading density, - Sempne 4 /11/79
nom. 700 cc closed! bomb. Tont Py 93779
L e Serre i’ 120 Max 4,84 [Qiieces =
i of_wes Aweruge 4/30/[9
. we | N/A Descriotian Sheers

o6 3 Nom 1 330 T 5/7/79

Agrue)

Wood boxes - 327199

Type of Pocting Contmnar
38 Boxes at 60 pounds each

Romerke

This lot meegs svecifications with the exception of ethyl centralite.

Conrecter’s Regretestative - renewt \Queitty Assurente setatige
/' & - = 4 2 z ;: ("
C. B. Smi-i [/)/Wli{ %

U FLEW 0476 WASCK I
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APPENDIX B

TABULATION OF FIRING DATA
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APPENDIX C

PLOTS OF SPINDLE PRESSURE (SOLID LINE),
FORWARD PRESSURE (DASHED LINE),

AND PRESSURE DIFFERENCE VERSUS TIME
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PRESSURE (MPA)

M30A!1 UNSLOTTED STICK, LOT RAD-PE-472-12; 21C
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PRESSURE (MPR)

M30A1 UNSLOTTED STICK, LOT RAD-PE-U72-12;
NO. 23
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PRESSURE (MPA)
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(MPR)

PRESSURE

M30A1 UNSLOTTED STICK, LOT RAD-PE-U72-12; 2iC
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PRESSURE (MPR)

M30A1 SLOTTED STICK, LOT RAD-PE-471-11; 2iC
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PRESSURE (MPR)

M30A1 SLOTTED STICK, LOT RAD-PE-U72-11; 2i1C
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PRESSURE (MPR)

M30A1 SLOTTED STICK, LOT RAD-PE-472-11; 21C
IDENT. NO. 28
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Please take a few minutes to answer the questions below; tear out
this sheet, fold as indicated, staple or tape closed, and place
in the mail. Your comments will provide us with information for
improving future reports.

1. BRL Report Number

2. Does this report satisfy a need? (Comment on purpose, related
project, or other area of interest for which report will be used.)

3. How, specifically, is the report being used? (Information
source, design data or procedure, management procedure, source of
ideas, etc.)

4. Has the information in this report led to any quantitative
savings as far as man-hours/contract dollars saved, operating costs
avoided, efficiencies achieved, etc.? If so, please elaborate.

5. General Comments (Indicate what you think should be changed to
make this report and future reports of this type more responsive
to your needs, more usable, improve readability, etc.)

6. If you would like to be contacted by the personnel who prepared
this report to raise specific questions or discuss the topic,
please fill in the following information.

Name:

Telephone Number:

Organization Address:




