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Cmpter I

1.1 BProem Statement

Reinforced concrete beams and one-way slabs can fail in a variety of mechanisms.

They can fail In a flexural mode where plastic hinges form at locations where the

ultimate bending capacity Is attained. They can fail in a combined flexure-shear

mode which is characterized by the formation of inclined tension cracks and

flexural cracks within the shear span of the elements. They can fail in a shear-

compression mode where diagonal tension cracking reduces the element to a tied-

arch mechanism and the load is transferred to the supports in direct compression in

a truss-like action. And last, these elements can fail in a direct shear mode. As

defined here, failure connotes the condition at which a structural element can not

sustain any further increase in external load without excessive and irreversible

deformations.

Direct shear failures in reinforced concrete structures generally occur at locations

near supports or joints of the elements which comprise the structure. Most of what

is known about direct shear failures in concrete results from static testing. These

tests suggest that direct shear failures can arise under two general situations.

First, failure can occur near a support where shear forces are high and where a

pre-existing crack surface has formed through the thickness of the member.

Second, direct shear failure can occur near a joint or support where the shear-span

(defined as the ratio of moment to shear force under a concentrated load condition)

Is less than about one-hald the effective depth of the member, such as would exist

for a short corbel.

iI



Recent dynamic tests on shallow-buried reinforced concrete box structures

subjected to Impulsive pressures, however, have shown that direct shear failures in

the roof slab of these structures can occur In situations where there are no existing

crack planes through the thickness of the roof slab and where the loading is

distributed along the span of the member and not concentrated near a support.

At present there is no analytic method to assess and explore these recent dynamic

direct shear failures. This absence of a method for assessing the relevant issues

associated with dynamic direct shear failures provides the genesis for the

development of the elastic model described herein.

1.2 Background

To understand the problem of a slab failing in direct shear from a distributed

dynamic pressure, a brief discussion is provided of the mechanics of the roof of a

shallow buried box loaded by ground shock wave. This shock wave is induced from

a surface blast wave and, as it impinges on the roof, the impedance (density times

dilatational wave speed) mismatch between the soil cover and the concrete roof

results in the wave being partially reflected and transmitted in accordance with

classical wave propagation theory. The transmitted wave becomes the actual

interface pressure which provides the loading to the roof-slab causing subsequent

motion. This interface pressure and subseque.nt structural interaction are discussed

in more detail in Appendix A.

An assessment of the shearing action in a reinforced concrete slab under impulsive

loading (which is manifested in the form of interface pressures) must consider

several issues associated with both the dynamics of response and the mechanical



behavior of the material The response of the member will Include very early time

wave propagation phenomena and later, transient vibrational characteristics. The

material behavior of reinforced concrete will be influenced by rate effects on the

elastic and strength properties in shear.

In the particular case of reinforced concrete beams or slabs subjected to impulsive

loads, wave propagation through the thickness of the member Is associated with

times much smaller than the times corresponding to propagation along its length.

However, shear failures can occur at times soon after a wave has traversed the

thickness of the beam (see Appendix A for a plausible failure scenario). Inasmuch

as beam models do not account for wave phenomena associated with beam

thickness, it is important to keep in mind that early time shear failures may ve-y

well involve the mechanics of both wave action and beam action. In a more exact

three dimensional sense, shearing action is initiated very early when waves diffract

at the intersection of a beam and supporting wall, often called a reentrant corner.

A flexure phenomenon in the three-dimensional sense is not initiated until much

later when the beam attains some momentum of its own. This occurs after waves

have tranaversed the beam thickness many times. On the other hand, beam action,

although neglecting wave a-.tion through the thickness, provides for an immediate

comparison between the magnitudes of shearing forces and bending moments.

1.3 Malor Assumptions

The difference In response action and time of response described in Section 1.2

leads to the first important assumption made in this work. Since the major effort

here is to compare shear and moment at the support, beam action will be assumed

to give a sufficiently accurate picture of direct shear in the presence of a moment
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influence. In this see ft wil be possible to de~ermine whether a direct shear

failure mechanism will occur prior to a hending failure mechanism, but questions

regarding the actual time to shear failure would be answered more appropriatoly

with a detailed three-dimensional analysis which includes wave action.

The second assumption involves the modeling of a one-way roof slab as a beam of

unit width. This is a common procedure so long as the properties along the long

dimension of the slab are relatively homogeneous. However, this assumption does

contain a minor mrror in terms of the slab stiffness which should be pointed out

here. A one-way slab under loading normal to its plane is in a state of plane strain,

whereas a beam under the same loading condition is in a state of plane stress

because there are no tractions on its lateral surfaces. This difference arises from

the Poiswn effect and results in the beam model underestimating the elastic slab

stiffness. This effect is smill and is given by the expression (1 + v) (1 - Zv)/(1 - V),

which is the ratio of beam stiffness to slab stiffness and where V is Poissons ratio.

The third assumption involves the presumption that an elastic theory can

adequately describe the attainment of maximum capacity which has been defined

as the failure level. The use of elastic models in describing response up to failure

is believed to be adequate because of the existence of small strains, the very short

1, times involved, and the brittle nature of shear failures in concrete, all of which

have been seen in recent dynamic tests.

Perhaps one of the biggest voids to fill is in the identification of a failure criterion

for direct shear under dynamic loading. This area is lacking in adequate dynamic

test •zata and thus cannot be addressed sufficiently in this study. To accomplish
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the task of this research, the fourth assumption is that dynamic direct shear failure

modes can be described in terms of the static failure mechanisms previously dealt

with at length in the literature. Unlike static loads, under which fractures are

initiated and propagated according to the stress and strain field existing throughout

the concrete member, impulsive loads create transient islands of high stresses and

strain whose location may change before an initiated crack has time to propagate.

Under static loads the weakest elements in the concrete mass will control locations

and levels of cracking whereas under impulsive loads the weakest link in the

concrete mass may not have time to crack because of local transient conditions. A

qualitative discussion of this process is provided in Appendix B.,!

Fifth, it is assumed that the failure criteria in direct shear is not a function of the

bending moment and that the failure criteria in flexure is not a function of the

shear force. Static test data on normally reinforced concrete beams with adequate

shear reinforcement have shown that the presence of a shear force has little

influence on flexure failure levels and that the presence of a moment has little

influence on direct shear failure levels.

1.4 _Objectives and Scope

This study will investigate the nature of direct shear failures in reinforced

concrete beams under the action of uniformly distributed Impulsive loading. In

pursuing this investigation the first objective is to develop an elastic model which

describes support shear forces during the period over which a direct shear failure is

considered more likely than a flexural failure. The second objective is to define

the conditions under which a direct shear failure can be realized. These conditions

will be specified in terms of beam geometry, material properties, and loading

~I-
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parameters. The third objective Is to determine the influence of rate effects on

both shearing forces and the conditions required to realise a direct shear failure.

The fourth objective is to introduce simple models which can describe beam

behavior after an incipient direct shear failure has occurred. These simple post

failure models should be useful for an assessment of the uncertainties inherent in

the actual failure process.

The scope of this research effort can be summarized by referring to Figure 1.1.

This figure shows that the direct shear failure process can be classified into three

distinct regimes, all of which receive various degrees of attention in this

dissertation. The first regime, involving the characterization of a direct shear

failure level using an elastic approach, embodies the bulk of the work conducted

for this dissertation. The second regime involves the actual concrete fracturing

and shearing process under impulsive load conditions. Very little is known about

this process and so it is assumed that the dynamic failure mechanism in direct

shear is similar to the static failure mechanism about which there is considerable

information. Naturally, this second regime currently involves many uncertainties.

The third regime is associated with the post failure condition of the slab or beam

after the strength level has been reached and increased external load produces a

situation involving large deformations and inelastic material response in both the

reinforcing steel and the concrete. The third regime, involving post failure

conditions, is treated in an introductory fashion in this dissertation by attempting

to account for some of the uncertainties inherent in the initial conditions posed by

the second regime.

6
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The direct shear failure mechanisms developed from static testing and limited

dynamic element tests are summarized in Chapter Z. Failure criteria developed

from static testing in both flexural and direct shear modes are provided in

Chapter 3 along with simple empirical adjustments to these static criteria to

account for strength increases under the influence of loading rate. Recent

dynamic tests which have shown direct shear failures in roof slabs are described in

Chapter 4.

Chapter 5 describes the development of elastic beam models which are defined by

linear partial differential equations. The analytic results are compared to data

gathered on one-way slabs loaded with impulsive blast pressures. Rate effects on

initial elastic properties, strength properties, and the time domain over which

shear dominates bending moments are also studied in Chapter 5. Another issue

investigated in Chapter 5 is the effect of support restraint on the shear

phenomenon and the relative importance of shear force versus bending moment.

Linear models describing post-failure response are defined in Chapter 6 by ordinary

differential equations based on the presumption of a well defined failure plane.

These models are formulated for both deterministic and stochastic situations in an

effort to account for uncertainties in the failure process. Finally, conclusions and

recommendations are made in Chapter 7 regarding the applications of the models

developed herein and the focus of future work in this area.

1.5 Summary

Direct shear failure in reinforced concrete under impulsive loads is relatively

undocumented because of the paucity of data showing failure characteristics. The

7
4,_i



combined effects of baam action and wave action are likely to be important in

developing models to understand the dynamic direct shear phenomenon. This

research makes an initial attempt to understand this phenomenon by considering

elastic beam action to describe incipient shear failure conditions.

The major assumptions made in this endeavor are: 1) Wave protagation through the

beam thickness is neglected in favor of a simpler one dimensional beam model

which assesses both bending moment and shear; 2) one-way slab response under

plane strain conditions can be adequately treated by a beam model; 3) elastic

behavior is presumed to adequately describe response to incinient failure in direct

shear; 4) direct shear failure in the dynamic case is assumed to behave in

accordance with shear transfer mechanisms used to describe static situations; and

5) failure is simply described by either shear or moment reaching its respective

strength capacity first in the beam response history.

The effects of load rate and beam-end restraint are investigated. Failure curves

developed from elastic beam models are compared with experimental data on one-

way slabs which failed in direct shear. Simple models to describe post failure

behavior are introduced. Recommendations are made regarding future research

into dynamic direct shear failures.
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cbapte 2

Direct amee aiuEW M eca~

Li! Introduction

The American Concrete Institute code (ACI '77) indicates that, under static loads,

direct shear failures can arise under conditions near a support where shear forces

are high. The existence of a crack plane through the thickness of a beam can be

important to the behavior of a beam in direct shear. For this case, called initially

cracked concrete, shear failure occurs along the crack plane. The ACI refers to

this direct shear behavior as shear-friction. In shear-friction, shear transfer is

accomplished along the crack plane by a frictional resistance to sliding between

the faces of the crack.

Although not explicitly acknowledged by ACI, direct shear can also occur in some

situations in uncracked or monolithic concrete. For initially uncracked concrete,

shear transfer is accomplished through the combined actions of shear and

compression in small "concrete struts" which are formed by a series of small

diagonal cracks which form along a shear plane after load is applied to the beam.

For the initially uncracked case "slip" is characterized by the rotation and

compression of these small struts.

Although the basic behavior of these two cases is different, both are referred to in

the static sense as direct shear failures. Figure 2.1 displays the two cases of

initially cracked and uncracked concrete beams and their appearance after the

Imposition of a shearing force across the shear plane. A summary of experimental

t.•
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studies on shear transfer mechanisms in general, of which direct shear failure is a

subset, Is presented in Appendix C.

Information on behavioral mechanisms in direct shear under impulsive conditions is

not available. The only available data on dynamic direct shear failures is provided

in two past experimental studies, where dynamic load levels causing direct shear

failure are compared to associated static load levels.

2.2 Behavior Under Static Loads

2.2.1 Initially Cracked Concrete

For direct shear along an initially cracked beam section where the crack

inclination is almost vertical, the force transfer mechanisms are described by the

model in Figure 2.2, which shows a small section along the beam axis containing

the crack. The surfaces cf cracks in concrete are usually rough. The cracks follow

a generally irregular path, which is further disturbed as the cracks pass around the

course aggregate inclusions in the concrete, as shown in Figure 2.2a. Application

of a static shear force V, as shown in the model of Figure 2.2b, causes shear

displacement or slipping and also causes the cracked surfaces to separate slightly,

This separation induces tension in the reinforcement crossing the shear plane. This

induced tension force in the reinforcement is balanced by an equal compression

force in the concrete and acts normal to the crack plane as shown in Figures 2.2a

and 2.2b. The normal compressive force produces a frictional resistance to sliding

between the faces of the crack plane which serves to resist an applied shear force

acting along this plane. The relative movement of the concrete crack faces causes

a shear action to develop in the longitudinal reinforcing bars which cross the crack

t0
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plane. The resistance of the ban to the shearing action shown as dowel forces in

Figure 2.2c, also serves to resist the applied shear force.

Foe normally reinforced (Le., underminforced) concrete beams, the separation of

the crack faces along the shear plane eventualy creates tensile strains sufficient

to cause yielding in the longitudinal reinforcing steel or compressive strains

sufficient to create crushing of the concrete. At ultimate strength the yield force

in the steel is equal to the compressive force normal to the crack plane and the

frictional resistance along the crack is proportional to this normal force.

As mentioned there is also a shear resistance along a defined crack plane due to

the dowel action of reinforcement crossing the crack plane.

Mattock and Hawkins '7Z point out that after extensive slip along the crack plane

the dowel reinforcement can actually kink at the crack plane, as shown in Figure

2.3, and provide extra resistance due to a component of the reinforcement force in

the direction of slippage.

In the ACI adopted shear-friction theory, frictional resistance provided along a

crack is a function only of the maximum normal force across the crack, which in

turn is determined by the yield strength in the steel. Mattock and Hawkins '72

state that this observation is consistent with the shear-friction concepts since the

m.oefficient of friction is also independent of concrete strength.

However, concrete strength can be an important parameter when combined with

certain magnitudes of the reinforcement index, a 3fy. For example, for low

strength concrete actual crushing of the concrete will occur for small values of

11 .A"• , ,••• ..
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04ey nd for higk strength concrete crushing Will occur for large "alutes of Psfy.
This change In behavior caused by crushing of concrete can be seen Ini Figure 2.4

for & 2500 pdi (poundis-per-square Inch) concrete. For high values of induced

compressive stwiss across the crack plane, which corresponds to high values of the

parameter jo 5 y, the ultimate shear strength of initially cracked and Initially

uncracked specimens are the "ame, as seen in Figure 2.5. Mattock and IHawklns 72

explain this by stattag "In. a heavily reinforced shear plan, or one subject to a

substantial externally applied normal compressive stress, It is possible for the

theoretical shear resistance due to friction and dowel effects to become greater

than the shear which would cause failure in an initially uncracked specimen having

the same physical characteristics. In such a case, the crack In the shear plane

"locks up" and and the behavior and ultimate strength then become the same as for

an initially uncracked specimen."

Z.Z.Z Initially Uncracked Concrete.

For initially uncracked concrete specimens which eventually fall in direct shear,

short diagonal tension cracks develop along the shear plane (see Figure 2.6) and a

truss-lke mechanism develops. The ultimate shear strength is then developed as

the inclined "miniature" concrete struts fail under a combination~ of compression

and shear. Tests on corbels by Krlz and Raths '65 revealed that direct shear

failures in reinforced concrete under static loads are realized in specimens for

which the ratio of shear span to effective depth (M/Vd) is less than O.Z. In some of

the reported tests shear failures occurred at higher M/Vd ratios but these were

generally more likely when high percentages of reinforcement were used. The

shear failures described by Kriz and Raths '65 were characterized by the

development of a series of short inclined cracks along the plane of the interf ace



between the column and the corbel, as shown in Figure Z.7. A direct shear failure

then occurred by an overall shearing along the plane weakened by the* inclined

cracks.

Mattock and Hawkins '72 have proposed hypotheses for the behavior of ir.tially

uncracked reinforced concrete specimens based on a statically indetermuiate truss

analogy. As load is applied initially the concrete is uncracked and the dowel steel

is unstressed. A direct shear stress will occur along the shear plane in the concrete

and eventually as the external shear force is increased, short inclined diagonal

tension cracks will form along the length of the shear plane. The short cracks

develop when the principal tensile stress In the concrete becomes equal to the

tensile strength of the concrete.

As the shear load 5s increased, shot t parallel diagonal struts develop between the

inclined cracks as shown in Figure Z.6. Since these struts are continuous with the

concrete on either side of the sheav, plane, both a compression and transverse shear

force will exist in each. strut and the external shear will be resisted by the com-

ponents of these forces which are in the direction of the shear plane. Furthermore,

as these struts tend to compress and rotate, the consequent displacements normal

and parallel to the shear plane will stress the transverse dowel steel until it

eventually reaches it yield strength. This of course is based on the presumption

that the concrete does not fail first in compression. A direct shear failure will

finally occur when the small struts fail unde?- their combined stress state as the

dowel steel attains its yield strength.
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Under a condition whome no external load acts normal to the shear plans, the

failure plans in Initially uncracked reinforced concrete specimens can shift slightly

from the shear plane to a plans parallel to the shear plane, as shown In Figure 2.6.

This occurs when the ends of the small Inclined cracks propagate In a direction

parallel to the shear plane as the small struts rotate slightly. When these parallel

cracks start to coalesce the shear stress in the struts increases locally based on a

reduced shear plane area and failure occurs when the locally higher shear stresses

reach a critical value.

For initially uncracked concrete, Mattock '74 found that no slip or separation

occurred along the shear plane until the small diagonal cracks formed along the

shear plane at shear stresses of 400 to 700 psi. Mattock '74 also found that at

failure some of the small diagonal cracks coelesce to form major cracks parallel to

the shear plane and the small inclined concrete struts spalled in compression. In

this case no slip, in the true sense of the word, occurred. Rather, relative motion

parallel and normal to the shear plane occurred as a result of the rotation and

compression of the small inclined concrete struts as the reinforcement across the

shear plane stretched in tension. Furthermore, the shear resistance after ultimate

decreased more rapidly than in initially uncracked concrete as the "slip" increased.

The curve shown in Figure 2.5 for uncracked concrete can be modeled quite well

using the statically indeterminate truss analogy developed by Mattock and

Hawkins '72.
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Z.3 Behavior Under Dynamic Loads

Z.3.1 Resfosm Definition

Only two studies on direct &hear resstance of reinforced concrete specimens

subjected to impulsive loads could be found. These studies were primarily

concerned with general failure levels. In thes studies the most cited parameter

was the dynamic increase factor (DIF). This is the ratio between the load at which

shear failure occurs due to a dynamically applied load divided by the statically

applied load to failure. The major contrast between these two dynamic studies and

the static studies described in Section U.Z is that the latter were extensive and

they illuminated the parameters of interest in the identification of shear transfer

mechanisms. In the limited dynamic studies these detailed investigations were

lacking and results focused mainly on the change in the DIF as a function of the

change in loading conditions and the strength of the concrete and steel used in the

reinforced concrete elements.

2.3,2 Shear Key Tests

Perhaps the first known controlled experiments on concrete elements subjected to

"dynamic.shear were conducted by Hansen et al.'61. In these experiments a series

of comparable static and dynamic tests on three types of concrete shear keys was

completed. The objective of these tests was to determine the magnitude of

ultimate shear strength of the concrete shear keys under dynamic conditions.

Three types of keys were considered: type 1: Plain concrete, type Z: Plain

concrete under directly imposed compressive stress normal to the shear plane, and

type 3: Concrete reinforced by diagonally embedded dowels. For each of the three

types two specimens were tested statically and four specimens were tested

dynamically.
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For dynamic loadings, rise time to peak load was Z5 to 40 mill sconds and for the

static loads the rise time was on the order of 10 to 15 minutes total load duration.

The load In the case of the static test was continually increased in steps up to

failure while in dynamic tests it was applied in several triangular pulses of constant

duration but Increasing in magnitude until a pulse corresponding to failure was

reached. As the dynamic failure was always sudden, a few small magnitude load

pulses were first applied before causing failure to obtain information about the

streM strLin characteristics and general behavior of the keys.

For these tests, the dynamic strength was greater than the static strength

especially for type Z and type 3 specimens. But the crack patterns and brittleness

of failure appeared to be similar between static and dynamic cases. Type Z

specimens showed a striking increase in strength due to the existence of

compression across the shear plane. Also, for type Z specimens the tendency to

direct shear type failures was more pronounced than in either the type 1 or type 3

categories. Specimens of type 3 also showed an increase in strength over those of

type 1.

In studying the behavior of each specimen and comparing and grouping the results

recorded, Hansen '61 saw an important feature common to all three types: a high

strength of concrete in pure shear, particularly under dynamic loading. The DIF

for the three specimen types averaged 1.15 for type 1, approximately 1.6 for type

Z, and about 1.3 for type 3. It was also observed that the tendency for a diagonal

tension failure, as opposed to direct shear type failure, was greatly reduced when

compression across the shear plane was present. In fact, the presence of this

compression was directly correlated with the enhancement of shear strength in a

16



direct shear sense. Compression across the shear plane on these key elements and

doweling appeared to be very helpful in increasing the shear resistance as wwU as

making fail%*e less brittle.

ft was observed that the quality and strength of the coarse aggregates rather than

the compressive strength of the concrete governed the strength of keys in dniamic

shear. Bond failure of the cementing gel (indicating stronger gravel) gave a higher

strength than when shearing took place on weak gravel. The deflections of the

brittle shear failures both in static and dynamic tests were comparatively small in

magnitude, ranging from .003 to .018 inches.

Z.3.3 Pushoff Element Tests

A second study conducted under dynamic loads was done by Chung '78. This

experimental wor.k investigated the shear resistance of concrete joints to dynamic,

static, and cyclic loadings. The test specimens were concrete pushoff elements.

There were 48 specimens, equally divided into two series. In series A the shear

plane was not reinforced while in series B two 5 millimeter diameter mild steel

stirrups were placed across the shear plane equivalent to 0.43 percent of the area

of the shear plane. Secondary reinforcement was provided in each specimen to

strengthen it against any unexpected bending.

Each of the series of specimens was divided Intr) four groups for testing purposes.

Specimens of the first group were tested under static loads and served as control

specimens. Specimens of the second group were subjected to impact loading.

Specimens in the third ant. fourth groups were first subjected to cyclic loading of

low magnitude and thei were tested to failure by impact loads. For the impact
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loaditg the rise time was on the order of 0.8 milliseconds (msec). Test results

show that series B specimens could absorb some 40% more impulse than series A

specimens. The difference was due to the provision of shear reinforcement in the

former. The steel reinforcement provided a clamping force across the shear plane,

and sustained the load for a longer period before failure, am was seen from the

force-time curves. The results showed that the DIF for series A specimens

av-raged 1.8 while the average DIP for series B specimens was 1.9. These DIF

figures show the strong enhancement in shear strength afforded by high load rates.

2.4 Summary

Under s*atic loads direct shear failure in initially cracked reinforced concrete is

characterized by slippage along the crack plane. Shear resistance is provided by a

combination of friction on the crack faces and dowel action of the transverse

reinforcing steel. This mechanism of shear resistance depends on the

rewaforcemint ratio and the dowel steel strength, but shows little sensitivity to

concrete strength for lightly reinforced elements. in direct shear failure in

initially uncracked concrete under static loads, short inclined cracks form along

the shear plane to produce a series of small diagonal struts. Subsequent slip and

separation along the shear plane is caused by compression and rotation of these

struts. Concrete strength is an important parameter in the behavior of initially

uncracked concrete. The ultimate shear resistances of cracked and uncracked

concrete are comparable under high normal stresses across the shear plane.

The dynamic tests have led to the following two conclusions. First, the dynamic

shear strength of the shear plane is greater than the static shear strength. The

dynamic strength increase may amount to 90% of the static shear strength at a

18



rstt of streuing aound 1750 ksi/sec (KIYps-pr-Oquars Inch/second). Scond, a

sm&ll amount of relnforcement across the shear plane Is essntil for imyrovbm the

ductility of the specimen and for Increasing Its Impulse capacity.
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Chapter 3

Failuwe Critea

3.1 Introduction

The determination of how and when a reinforced concrete element is predicted to

fail under a given set of loading and support conditions is dependent on the failure

criteria. In formulating failure criteria for concrete under the state of stress

which exists in a beam, it is necessary to properly define the term failure.

Concepts such as material yielding, initiation of cracking, load carrying capacity,

and the extent of deformation have been used in the past to define failure. In this

dissertation failure will be defined to occur when a concrete element reaches its

ultimate load carrying capacity. Whether this capacity is reached in terms of a

shearing mechanism or a flexure mechanism is dependent on the state of stress in

the beam and which of the mechanisms is realized first in the beam response

history.

Chen '82 indicates that concrete failures can be classified as being either tensile or

compressive. With respect to the definition of failure given in the previous

paragraph, tensile failure is defined by the formation of major cracks and the loss

of tensile strength normal to the crack faces and compressive failure is described

by the development of many small cracks and the loss of strength. However, most

concrete elements rarely undergo a unlaxial state of stress even though the most

commonly used strength parameters are based on uniaxial test properties.
-i

Chen '8Z summarizes several state-of-the-art failure models for concrete under a

general stress state, but the most common and perhaps simplest failure model used
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is the Mohr-Coulomb criterion combined with a tension cut off value. This

criterion is very similar to the shear friction concepts described earlier in that

they both are functions of the internal angle of friction of concrete, they both are

dependent on the normal force across a potential crack plane and they both base

failure on an ultimate shear capacity along a crack plans. Except for the provision

of concrete cohesion (inherent shear stress under a zero normal stress condition) in

the Mohr-Coulomb criteria the two are equivalent.

An important question in this dissertation, as outlined in Chapter 1, is whether a

flexure failure or a direct shear failure occurs first in a beam under rapid load

conditions. Obviously both flexural and shear stresses exist in the beam and in a

rigorous failure criterion their interaction would be accounted for. However, Park

and Paulay '75 have indicated that experiments with normaaUy reinforced concrete

beams with adequate shear reinforcement show that the shear force has no

recognizable influence on the development of flexural capacity. But a close

relationship does exist among flexure, shear, bond, and anchorage in the shear span

of a beam. For example, when large shear forces are transmitted at a section at

the ultimate moment capacity, the distribution of the flexural strains in the

concrete and steel are affected. In this case the capacity of the flexural

compression zone is reduced because the shear force can only be carried in this

zone after widening of cracks in the tension zone. Looking at the converse

situation, where moments are present at sections under ultimate shear, Mattock '74

has found that the action of a moment less than the flexural ultimate strength of a

cracked section does not reduce the shear which can be transferred across the

crack plane.
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Experiments on beams have shown that: 1) shear forces do not influence the

development of flexural capacity and 2) flexure forces do not influence the shear

capacity. Because of this -it should be possible to formulate separate failure

criteria for flexure and for shear.

3.2 Rate Effects on Material Properties

It is well known that rate effects increase the strength and initial stiffness of

construction materials. For example, Figure 3.1 (from Davies '81) shows a

comparison of the ratio of dynamic strength to static strength versus strain rate

for three common materials - concrete, steel, and aluminum. These curves are, of

course, valid only for a particular grade of steel or aluminum or a particular 28 day

strength for concrete. The respective curves for the three materials vary

according to the initial strength. In general, the higher the initial strength the

lower is the strength enhancement for a given strain rate (see Crum '59 and Cowenl

'65 for reinforcing steel strength enhancement). Even for a given initial strength,

the data shows a random scatter of dynamic strengths for a given load rate.

The available data on rate effects on steel and concrete (see bibliographies in

Bresler '74 and Bazant & Byung '82) indicates that the increase in yield strength of

high-grade steel and the increase in compressive strength of concrete are

comparable in the range of strain rates between 0.1/sec and 10/sec.

Flise 3.1 shows that the increase in dynamic steel strength can be higher than

that for concrete strength for some strain rates. However, the "steel curve" in

Figure 3.1 is for mild steel and the corresponding curve for a high-grade steel is

lower and is actually comparable to the "concrete curve" in Figure 3.1 for strain
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rates in the range of 0.1/sec to 10/sc•. For this reason it Is assumed In this

dissertation that rate influences are the same on the strength properties of both

concrete and steel.

Data such as that presented by Watstein and Boresi '5Z and shown in Figures 3.2

and 3.3 can be used to develop empirical relationships between strength and strain

rate for concrete specimens. However, Bazant and Byung '8Z have done this for an

extensive data base containing information fGom many past studies. The empirical

formulas for strain rate effects on elastic and strength properties have severe

limitations. The data presented by Watstein and Buresi '52 is ior an "average"

strain rate for each test. Since the response of an elastic element to a time-

varying load produces a strain-rate which varies with time, the data can only be

used in the expected value, or mean, sense. The empirical relationships developed

by Bazant and Byung 'R2, also derived from constant strain-rate test results, are

inapplicable when the order of magnitude of strain rate greatly differs from time-

step to time-step in a dynamic analysis. This latter problem is usually of little

consequence when the structure is constantly in motion. Furthermore, Bazant's

procedure is only used to determine strain rate effect on the initial tangent

modulus rather than the incremental change in modulus through the loading history.

The rate effect problem can be simplified considerably by allowing elastic and

strength properties to be functions of the "average" strain rate or average stress

rate (or load rate) for a particular dynamics problem. This is justified further by

thog fact that the large majority of strain rate test results are gathered from

constant or average. rate tests.
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U strain rate effects on elastic properties are modeled, the governing equations of

motion become nonlinear. This is because in the constitutive model there will ba a

product between the dependent variables. That is, there will be a function of

strain rate times a differential operator on strain. Solutions of equations of this

type are solved numerically and certain numerical errors and instabilites can arise

as mentioned by Bazant and Byung '82. Furthermore, the numerical solution

-procedures are implicit and require updated elastic coefficients at each time-step

which violates the original intent of developing a simple model. Despite these

problems, solutions can be obtained but there is an easier procedure with the use of

stress rate.

Stress rate effects on uniaxial concrete elastic and strength properties are also

available from tests conducted by Watstein and Boresi '52. But stress rate also

iavolves nonlinear equations since it is proportional to strain rate. This difficulty

can be overcome by assuming that load rate is an approximation to stress rate. It

is important to keep in mind that load rate is not the same as the stress rate of the

material. The former is associated only with the external rate of increase of

loadin~g whereas the latter involves the internal rate of response. The rate of

response is the phenomenon affecting the material but little data exists on this

rate. Therefore, the load rate is taken here as an approximation of the true

response rate of the material.

Use of lowa rate is inherently more tractable since the change in elastic

coefficients in the equation of motion is explicit, i.e., it depends on the

characteristics of the external load and not internal response. Obviously, in the

real world material changes result from internal rates of straining, but from a
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mathematical point of view load rate effects are available from tests and ar* much

moe• convenient to work with since the equations of motion still remain linear.

3.2.1 StrenMth Properties

Under the assumption that load rate and stress rate are equivalent (generally load

rate is only an upper bound to stress rate for impulsive loading) it is possible to

determine the enhancement in strength properties as a function of load rate. The

lower portion of Figure 3.3 shows normalized concrete strength as a function of

stress rate. Letting the load rate be the same as stress rate, the enhancement of

concrete strength, denoted as 0, due to load rate effects can be found from the

lower portion or Figure 3.3.

A correlation between average load rate and average strain rate can be found by

comparing the data shown in Figures 3.2 and 3.3. The strength enhancement

factor, n, can be wed to estimate the increase in capacity of a beam under

dynamic conditions.

It is interesting to compare the strength enhancement factors shown in Figures 3.2

and 3.3 to the dynamic increase factors (DIP) for concrete strength in a shearing

mode given in Section 2.3. This comparison reveals the possibility that concrete

strength enhancement might be higher in a direct shear mode than in a uniaxial

compressive mode.

3.2.2 Elastic Properties

Again under the assumption that load rate is equivalent to stress rate, the

enhancement of the concrete elastic modulus can be determined from test data.
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The upper portion of Figure 3.3 shows nort.alised concrete elastic modulus as a

function of the stress rate (hereafter referred to as load rate). The concrete

elastic modulus enhancement factor, denoted as Y, is the ordinate of the plot

shown in the upper portion of Figure 3.3.

A correlation between average strain rate and average load rate for the elastic

modulus enhancement factor also can be determined by comparing the curves in

the upper poxtions of Figures 3.2 and 3.3. The elastic modulus enhancement factor,

Y, can be used to approximate initial elastic properties of a beam experiencing

dynamic response.

3.3 Flexure Failure Criteria

Failure in a flexural mode is defined here when a beam reaches its ultimate

moment capacity. Generally for fixed beams this capacity will occur at a support.

The most common expression for ultimate moment capacity, without a capacity

reduction factor, for a singly reinforced beam is given as

Mu a'c w b d2 (l-0.59w) (3-1)

where

rc€ a unlaxial compressive ,-'ength of concrete (28-day cylinder strength)

w - reinforcement index = A's fy/bd rc

b = width of the beam

d a effective depth of the beam

VA' - area of steel on the tension side

fy a yield strength of the steel
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This equation is valid as long as the steel in the cross-section is les than the steel

at a balanced design. For all the beams in this dissertation thid condition is never

violated. Since the beams in this dissertation are actually doubly renforced it may

be moae appropriate to use the ultimate strength formula pertaining to a condition

where compression steel Is present. In this case, however, the ultimate moment

computed using either approach is very nearly the same because the actual

percentage reinforcement Is much less than the percentage associated with a

balanced condition. Physically this means that the centroid of the compression

steel Is close to the neutral axis of the beam so that the increase in ultimate

moment due to the compression steel is small.

Assuming the rate influence on concrete and steel to be the same, Equation (3-1) is

augmented by a factor which is dependent on the load rate influence on concrete

and steel strength. Equation (3-I) becomes,

Mur =Mu (3-.Z)

where M = ultimate moment with rate effects

91 = strength enhancement factor

3.4 Direct Shear Failure Criteria

Over the last 15-20 years considerable experimental testing and analysis has been

accomplished in the area of direct shear failures under static loads. Most of the

test specimens have involved small shear-span to depth ratios (M/Vd) in an attempt

to study near-vertical crack planes, or they have been push-off elements in which a

shear plane is predefined. Before selecting the direct shear failure criterion to be
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used in this dissertation, a review Is provided of a few of the past failure criteria in

direct show.

For conditions of very low (M/Vd) ratios (i.o., less than 0.2), Somerville '74 argued

that, since the dominant structural action will be direct shear, some merit should

be given to a "shear friction plus cohesion" approach. This Is a modification of the

shear friction theory outlined by Mast '68 and later adopted by the ACI, in which

cohesion In concrete is considered and the reinforcement plays a reduced role. In

the shear friction theory the reinforcement acts as a tension member rather than

as a dowel and the friction angle is independent of concrete strength or stress

level. The Somerville approach is shown in Figure 3.4, where C is the apparent

cohesive strength of the concrete and tan• is taken to lie in the range 0.75-1.00 to

match data for very low and very high percentages of steel. This approach has

been considered by the European Committee for Concrete and test data from

Hermansen '72 exists to support the theory for low (M/Vd) ratios.

Mattock '74 points out that the "shear friction" hypothesis leads to conservative

(low) estimates of shear transfer strength because it neglects effects such as dowel

action and the shearing off of asperities on the crack faces. An artificially high

coefficient of friction (1.4 for monolithic concrete) is used to compensate for the

neglect of these other effects. Mattock '74 further states that the shear friction

theory does not adquately reflect the mechanism of shear transfer for initially

uncracked concrete, but this difference has been discussed in this dissertation in

Chapter 2.
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in another study Mattock '74 addressed the Influence of moment across the shear

plane. He found that the action of a moment less than the flexural ultimate

strength of a cracked section does not reduce the shear which can be transferred

across the crack. To arrive at this conclusion Mattock compared the measured

ultimate shear strength to the calculated shear strength based on two methods of

calculation - shear friction theory for a shear failure and the ultimate tuoment

capacity (divided by the eccentricity of loading) for a flexural failure. Mattock

determined that if the calculated strength was the lesser of the two methods, then

in all cases the actual strength exceeded the calculated strength. Furthermore, he

determined that the ultimate shear strength across a crack in -monolithic concrete

can occur simultaneously with the ultimate flexural strength.

Hawkins '81 proposed a direct shear resistance function which relates shear

resistance to shear-slip along a crack plane whether or not an actual crack exists.

In addition to describing shear stiffness and ultimate shear, his resistance function

provides an estimate of the shear ductility up to a collapse in shear. The Hawkins

criterion in the initial elastic stage of response is based on tests conducted at the

University of Washington and the Delft Technical University where specimens were

studied for their initial shear stiffness and their ultimate shear capacity.

Inasmuch as the experimental data to be used in this dissertation (outlined in

Chapter 4) involves structures which presumably did not have a precracked shear

plane, use will be made of the Hawkin's criterion which, because of its origins, is

valid for specimens both with and without a precracked shear plane. Mattock '74

actually points out that, for high values of o fy (the roof slabs in Chapter 4 have

0 ly values up to 1,500 psi), the difference in ultimate capacity for Initially
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cracked and Initially uncracked specimens is negligible. The Hawkins criterion can

be shown to be very similax to the concept of "shear friction plus cohesion"

postulated by Somerville '7.

As shown in Figure 3.5, the envelope of failure produced by a Mohr-Coulomb

criterion is a description of shear friction with cohesion, given by the equation

-C * itfy +an +i

where vmax maximum shear stress

C = cohesion

,= internal angle of friction

From geometry it can be shown that the cohesion can be given in terms of the

concrete uniaxial tensile strength, V't, as

I+sin'
C = - 0 (3-4)2 2 os

The unraxia, tensile strength of concrete is usually expressed in terms of its

uniaxial compressive strength, f'c, since the latter is used extensively in design and

testing, Quite often the split cylinder strength of concrete is used to approximate

the tensile strength. Chen '82 estimates this value as

L5 r Tpi) (3-5)
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Equation (3-3) then becomes

""P + +sin; (3-6)
VmM ? Te sJVS; + Of~y+4Vn (psi)(3)

and Vu U vmax bh

where Vu = ultimate shear capacity

ps total percentage of steel crossing the shear plane s As/bh

h = beam thickness (depth)

b = beam width

The Hawkins '81 criterion is developed from tests and is given by

1 o.5'~(-7)
VU{ +80.35 f.J b (psi) (

The Hawkins criterion agrees very closely with Equations (3-6). The upper limit on

shear stress of the Hawkins criterion (0.35 f'c) is higher than the upper bound for

shear friction given by ACT 318-77 (0.2 Vc or 800 psi) but the lower figure is for

design and is conservative and doesn't reflect the actual strengths. In fact the

Hawkins limit of 0.35 rc appears conservative when compared to the upper limit

established by the U.S. Air Force AFSC '73. The Air Force limit of 0.51 fc

however, was achieved by applying a compressive stress normal to the crack plane

during the slip process.
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Again for rapid loadingsp, and in the absence of data to provide a dynamic failure

criterion, Equation (3-7) is adjusted by a function to account for strength

enhancement due to load rate effects. For a dynamic direct shear failure criteria,

Equation (3-7) becomes

Vur = QVu (3-8)

where Vur = ultimate shear with rate effects

S= strength enhancement function

3.5 Summary

The failure criteria are an integral element in any study which seeks to determine

the resistance levels at which a structural element can no longer sustain increased

loading. Failure criteria are dependent on the mechanism of failure and as such,

can depend on geometry as well as material strength properties. In the absence of

detailed experimental studies on direct shear failures under impulsive loads, the

dynamic criteria is taken as the static criteria multiplied by a factor which is

greater than or equal to one and which accounts for an increase in resistance due

to load rate.

Experimental data on rate effects for both reinforcing steel and concrete show

random variation and variation with initial strength properties. Based on the large

scatter of data and some central tendencies, the enhancement of both concrete and

steel is assumed to be the same for strain rates above 0.1/sec. This assumption is

for exploratory purposes and can be refined further in future efforts. The
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enhancement in steel is seen to have more effect on the moment criteria than the

direct sheao criteria under this assumption.

The interaction of shear and moment Is complex even under static conditions.

Experimental data on reinforced concrete elements shows that ultimate direct

shear capacities are not influenced by the presence of moment up to the ultimate

flem al capacity of the element. The interaction of shear and moment under

impulsive loads is presumed to behave the same as under static conditions.

Comparison of the strength enhancement factor a for dynamic uniaxW

compressive tests on concrete elements, shown in Figures 3.2 and 3.3, and the DIF

for concrete pushoff elements subjected to dynamic shear (described in Section 2.3)

shows that the latter is usually higher. This may indicate that concrete is stronger

in a shearing mode under dynamic loads than is normally revealed under standard

dynamic uniaxial test conditions.
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Chapter 4

Vwza~a Data Base

4I Introduction

The data used for comparison purposes in this dissertation comes from a series of

eleven tests during the period 1981-1982 and one test in 1979 on reinforced concrete

boxes conducted by the U.S& Corps of Engineers, Waterways Experiment Station

(WES). Kiger and Slawson '8Z and Kiger and Getcheli '79 have documented the

available data on these tests. These tests comprise a good sample for comparison

because they were all fabricated and tested in a similar manner. The eleven tests

during the period 1981-198Z were accomplished for the expressed purpose of

studying direct shear failures in reinforced concrete elements. The twelvth test is

provided here as an illustration of a case where a flexural failure dominated the

response. Of interest in these tests was the response of the roof element of the

box-like structure near the walls, i.e., at the roof-wall interface.

The twelve tests all had known design physical characteristics and all responded in

a different fashion. Some roof elements failed in direct shear and collapsed, some

failed in direct shear and did not collapse, and one did not fail in direct shear.

Since the only variations In the tests were the load on and the strength of the roof

element, it is possible to correlate load conditions with strength characteristics in

analyzing the data.

4.Z Test Descriutlon

The test specimens are grouped into three categories, defined as Groups I, 1, and

MI in Table 4.1. The test configuration for the tests is shown in Figure 4.1. As
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shown in the figuw• the reinforced concrete elements were covered with a very

shallow layer of soil and subjected to a high-intensity blast pressure which was

uniform across the span of the test structure.

42.1 Test Configuration

Test specimens within each group had the same overall dimensions, fabrication

scheme, soil cover, design concrete strength, and design steel strength. The major

variations among the groups of tests were the span-to-thickness ratio and the

reinforcement ratio. Figures 4.2 and 4.3 show cross-sectional details for the three

test groups and Table 4.2 displays the physical parameters for each group.

Each test structure was loaded with a high-explosive induced blast pressure and,

although some structures were subjected to the same design loading, the

characteristics of the loading varied among the tests. These characteristics

include the peak pressure along the span, the rise time to peak and the decay

characteristics of the pressure pulse.

4.2., Instrumentation

Figure 4.4 shows a typical instrumentation diagram of the WES tests. Active

interface pressure gages measure the pressure transferred from the soil layer

above the roof to the roof slab itself. This interface pressure phenomenon and

resulting interaction are described in Chapter 1 and Appendix A. This interface

pressure is the actual loading to which the roof element responds. Once this

pressure is specified the effects of the soil layer can be Ignored because the

interaction between soil and structure has been taken into account.
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Active steel strain gages on the longitudinal steel were used -in all tests to measure

the response of the structure. In addition, in Group H1 and M tests high-speed

photography was used to record the response of the underside of the roof. This

photography shows the response of the roof after failure in direct shear, where the

roof s1ib moves away from the supports as a rigid-body. Finally, in Group II and Mf

tests passive scratch gages on the steel reinforcing is available to estimatte the

maximum strains exhibited in the steel in the roof.

A correlation of the active steel strain data and the interface pressure data reveals

the type of failure mode (direct shear, flexure, etc.) and the approximate time of

failure. For direct shear, the failure level is defined as the peak pressure along the

span which existed prior to the initial "slip"' of the roof slab along a shear plane.

4.3 Data Analysis

Figures 4.5 through 4.11 show post-test photographs of those test structures

believed to have failed in direct shear at the roof-to-wall interface and seen to

have subsequently collapsed. In all these ci;ses the failure plane is vertical or near

vertical and the roof is completely severed from the walls. Figures 4.12 through

4.15 show post-test photographs of those structures which did not collapse, but still

are believed to have failed in direct shear. The twelvth specimen, designated FH1

and reported by KIger and Getchell '79, did not fail in direct shear. Figure 4.16

shows a schematic of the post test condition of FH1. The roof slab in this test

responded in flexure and did experience some structural damage as shown. These

presumptions of failure type are determined from the interface pressure readings

which will be described next.
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4.3.1 [,terface Nes

Typically the lnterface pressure measurements are available at three locations

along the roof span. Figure 4.4 show these locations. The readings at the location

over a wall give an Idea of the pressure time distribution over a point that moves

very little, i.e., a nearly rigid boundary. This came can be thought of as a limiting

condition for a rigid slab (see discussion in Appendix A). Another pressure

measurement point is at the centerline of the slab. These readings truly reveal the

itnteactio'i effect caused by a flexible slab, i.e., the slab centerline initially

undergoes the most movement along the slab. Finally, the third reading is on the

slab just interior to a supporting wall. This reading is important because it reveals

the nature of the response of the slab. If this measurement closely resembles the

measurement over a wall it shows that the response is likely to be flexure or

flexure-shear. If on the other band this near-support measurement closely

resembles the readings at the slab centerline it is likely that a slip along a crack-

plane has occurred near the support. This is because the only way the interface

pressure near the support can decay as quickly as the pressure at the centerline

decays (which is much faster than the pressure decay over a wall) is for the slab

near the support to move away from the overlying soil as quickly as the centerline

moves away from the soil. This indicates a "slip" condition (see Section 2.1) and

very clearly reveals a direct shear failure.

The schematic in Figure 4.17a shows a condition where a direct shear failure is not

indicated. Initially all three pressure readings rise to the same approximate peak

value with the same rise time. This is the interface pressure discussed in

Chapter 1 and Appendix A. Beyond the peak pressure the three measurements

begin to differ. At the span center the pressure hegins to drop quickly as the roof

37

I'S . . . .... .......... .• ... ... ... ..... ... . !i



begins to move downward away from the soil. At the mu surement over the wall

the decay characteristics after peak pressure are much slower than at the center,

Indicating that the load over the wall stays at a rolatively higher level, reflecting

the neav-rtild condition over the wall And the readings over the span near the

support show a decay after peak pressure that is slower than at the span center,

Indicating that this point is also undergoing very little nmovement away from the

soil. Then the displacement profile along the span probably looks something like a

fixed-ended beam responding in the first flexural mode. A specific example of a

flexural response is seen in the interface pressure readings of the FiM structure,

shown in Figure 4.18.

On the other hand, Figure 4.17b shows a condition of a probable direct shear failure

with subsequent collapse. Again, all three pressure readings rise to the same

approximate peak in about the same length of time. The pressure readings at the

span center and over the structure wall are about the same as in the previously

discussed case. However, the preusure reading over the span near the support

shows a marked difference from the previous case. Here, after peak pressitre is

attained, the pressure decays very rapidly as does the pressure reading at the span

center. This sudden drop in pressure indicates the roof at this location is moving

away from the soil much more quickly than the whole structure is moving down as

a rigid-body (this rigid-body motion can be cerrelated to the vertical pressitre over

the wall). Interface pressure readings for test structure DSI-1, shown in Figure

4.19, reveal an initial direct shear failure.

Evidence of the subsequent collapse of the roof element shown schematically in

Figure 4.17b is also provided In the interface pressure readings. After the pressure
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has decaed to serop or neao sero, there is a small Interval- of time In which the

load stays at this low level and then thl pnesure suddenly jumps up slightly. This

effect is termed "reloading" and it cor.esponds to the case where the soil

overburdten, having been previously separated from the roof span, moves downward

until it "catches up" with the roof slab and recontacts or reloads this surface.

Because the shear resistance impedes the downward slip, the momentum of the slab

is reduced and the velocity of the slab becomes lower than the velocity of the sou

a&d eventual recontact is established. In cases where the slab actually collapsed,

there was sufficient impulse in the interface pressure after "reload" not only to

overcome the aggregate interlock and dowel action but to break the longitudinal

steel in a membrane-type mechanism of the slab.

Figure 4.17c shows a condition where the initial failure was probably in direct

shear but there was no subsequent collapse. In this case the pressure readings at

all three locations along the roof span are similar to those in the previous case of a

catastrophic direct-shear failure (collapse). However, after recontact was

established there was apparently insufficient impulse left in the load pulse to

overcome the combined mechanisms alluded to in the previous paragraph. This is

evidenced by the reload magnitude to remain at a significant level. These features

can be seen in the interface pressure measurements of test structure DSI-3, shown

in Figure 4.20. For the purposes of this dissertation the two response conditions

shown in Figure 4.17b and Figure 4.17c can both be designated as initial or

incipient direct shear failures.

Table 4.3 summarizes the average peak interface pressure and approximate rise

time experienced in all twleve test specimens. These peak pressures are those
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which e*isted on the roof slab prior to failure In a particular mode. These test

results will be used later In Chapter 5 as a comparison to elastic beam analyses.

4.342 Active Steel Strain

The interface pressure data outlined above provide an indication of the time to

failure and the exteratW load level at failure. The loading data do not reveal,

however, the internal state of stress creating the failure mechanism. For a direct-

shear failure mechanism it is necessary to determine if shearing stresses dominate

over bending stresses in the early time prior to failure. Active strain

measurements In the longitudinal steel can provide the necessary information

regarding whether a shearing action or flexure action is occurring. Unfortunately,

the strain records for very early times associated with a slip phenomenon are

subject to high data recording noise and the response in this region is Indiscernable.

However, strains beyond an initial shear failure do provide information on whether

a flexure or a membrane mode of response is indicated.

For a fixed-end beam undergoing downward motion of the first flexural mode, the

bending moment at the support will create a stress condition where axial strains

near the top fibers of the beam will be in tension and the axial strains near the

bottom fibers will be in compression. At the center of the beato (again assuming

the beam to be moving downward in the first mode, I.e., the first quarter cycle of

response) the stress-strain condition will be reversed. That is, there will be

compressive strains near the top of the beam and tensile strains near the bottom.

For a beam responding in a membrare mode, after a direct shear failure creates a

shear zone at the support, the axial straina at both the top and bottom fibers in the
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beam will be in tension. This arises from the fact that in a membrane mode beam

fibers are in simple tension. Figure .19 shows active longitudinal steel strain

measurements in the roof element of test structure DSI-I. On the strain diagrams

positive strain values denote tension and negative values awe compression. The

strains In Figure 4.19 show predominant tension for both bottom and top steel at

the right support beyond Z.5 milliseconds. All the measurements exhibit an

oscilatory chaacter, especially at early times (h.e., leso than I rsec), because the

higher modes of vibration may have contributed to the response and because of

signal noise. This specific test structure failed initially In direct shear and

subsequently collapsed.

Figure 4.18 shows active strain measurements for test structure FHL. Here, the

strains at the center are primarily compression on the top and tension on the

bottom indicating a predominant flexural response. This test structure did not fall

in direct shear, but apparently developed flexural hinges.

After a slab fails in direct shear, as discussed earlier, there is a time interval

where the load is reduced to near zero. At this stage the slab still has momentum

and the steel reinforcing enters a membrane mode where both top and bottom bars

are being stretched In tension. This resistance to steel stretching and the

frictional resistance provided along the shear zone slows the slab down and allows

the soil to "reload" the slab. Now with more load on the slab and a plastic shear

hinge formed at the shear zone the steel strains increase at a much faster rate.

The steel strains increase until either the Impulse on the slab disappears or the

reinforcing bars break and the slab collapses. An example of this later-time
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(beyond 1 usec) phenomenon, where the slab does not collapse, can be aen in the

tension strain reading at the support of test structure DS1-3 in FIgure 4.20.

,43.3 Post Failure Me ements

Measurements of the roof slab response after an initial direct shear failure can be

found in permanent steel strains from passive scratch gages and in high-speed

- photography of the underside of the roof slab. The permanent steel strain data

gives an indication of the magnitude of the large inelastic strains reached before

collapse and the distribution of these strains along the span. Figures 4.Zla and

4.22a show sample data of this type for test specimens DSZ-1 and DS2-5,

respectively. The high speed photographic data provides an indication of the times

associated with very large deformations beyond failure and a visual description of

the post failure modes of response, Figures 4.21b and 4.22b show the slab

displacement profiles versus time for test specimens DS2-1 and DSZ-5,

respectively.

Generally, the data shows that after direct shear failure the slab behaves according

to a mix of three different response modes. First there is a shear deformation

mode at the slab ends which provides for a near-rigid body response over the slab.

Second, the slab behaves in a membrane mode in which the steel in the shear zones

near the supports is being pulled in tension. And third, the slab behaves in a

flexural mode becaus, of residual bending strength, with the response similar to

that of a simply supported beam.
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AU three of these modes occur together to various degrees in the post failuru

regimes of slab response. The data in Figures 4.Z1 and 4.AZ clearly reveal these

different modes and their occurrence in the response history.

Data from twelve high explosive pressure tests on reinforced concrete one-way

roof slabe are presented. Slab surface loading versus time Is provided by interface

pesure reading, and slab respons Is documented by active and passive steel

strain measurements and high-speed photography. Ivdications of early time (les

than 1 miec) direct shear failure are provided by interface pressure measurements.

Response after incipient shear failure can be seen in strain measurements and high-

speed photographic documentation. Test evidence indicates that eleven slabs

failed initially in direct shear and one slab failed in flexure.
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Cuapter 5

ElAWtC Beam Ti

5••1 ntraduction

In this dissertation, the primary objective of the analysis of direct shear failures in

beams and one-way slabs under distributed impulsive loads is to determine how the

load and resistance parameters influence the failure modes discussed in Chapter 3.

Because the experimental data does not discern the very early time relationship

between shear and flexure, a model capable of assessing both these actions is

needed. In order to make the analysis mathematically tractable an elastic one-

dimensional theory is desired. In this study the well known Timoshenko beam is

used as the analytic model. The major assumptions involved in the use of this

model have been summarized in Section 1.3.

The most important assumption involves the use of an elastic theory to describe

beam response prior to failure. Generally, concrete is presumed to be elastic until

cracking takes place, after which it is assumed to be beyond the elastic stage.

However, this dissertation assumes that elastic beam theory can adequately

represent beam behavior to the point of an incipient shear failure. This assumption

can be justified by the following reasoning. First, experimental results show direct

shear failures tend to be brittle, indicating elastic response prior to extensive

cracking. Second, response times to failure are so short (less than 1 insec) that

excessive deformations associated with inelastic behavior are never realized.

Furthermore, the elastic studies described in this dissertation can be used as a

point of departure for future efforts which may study inelastic failure mechanisms.
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Two extensions to the current Timoshenko theory are addressed in this study.

First, the Influence of a variable beam-end rotational stiffness (beam-end

restraint) on direct sheoa failure Is investigated. And second, the elastic theory is

expanded to include viscoelastic material properties in order to investigate strain

rate effects on direct shear failure.

Failure curves showing the effects of load parameters on the direct shear failure

domain for specific beam geometries are developed using the elastic Timoshenko

theory. These curves identify the range of load parameters within which an

incipient direct shear failure Is indicated by analysis. The expression "incipient

direct shear failure" refers to the maximum support shear force that a beam

member can sustain in a direct shear failure mode. The failure curves will show

the effects of load rate on the direct shear failure domain.

Load parameters obtained from experiments are compared to analytic results with

the use of failure curves developed for the rates of loading seen in the tests. This

comparison reveals the adequacy of the elastic beam models and serves to highlight

areas requiring further work.

Finall7, a simple shear beam is introduced as a substitute for the Timoshenko beam
for purposes of predicting shearing forces. The two different theories (shear beam

and Timoshenko beam) are compared to determine the special conditions of the

loading, beam-end restraints, and strain rates under which they provide comparable

support shear forces.
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The classical one-dimensIonal Bernouli-Euler theory for flexural vibrations of

elastic beams becomes an inadequate model when higher modes need to be

considered. Lamb '17 first recognized that this theory was not suitable for

transverse impulsive-type loadings because the propagation velocity of the

disturbance approaches infinity as Its wave-length approaches zero. Both rotary

inertia and shearing deformations become increasingly important in the higher

modes. Rayleigh, in 1877, extended the theory to account for the effect of rotary

inertia and Timoshenko '21 augmented the equations to include the effect of

transverse-shear deformation. (The contributions of rotary inertia and transverse-

shear deformations usually attributed to Lord Rayleigh and Stephen Timoshenko,

respectively, were originally outlined by M. Breese, 1859.) Both of these

corrections depend on the cross-sectional properties of the beam. Timoshenko also

showed that a finite propagation velocity along the beam was predicted regardless

of the size of the wave length.

In analyzing the conditions when shear exceeds bending moment in a beam model,

the analysis to follow on the Timoshenko beam is divided into three major sections.

The first section discusses an elastic Timoshenko beam under the action of a

rapidly applied triangular load using the normal mode method. Throughout this

dissertation the interface pressure versus time profiles are approximated as shown

in Figure 5.1. The second section discusses the analysis of a Timoshenko beam,

augmented to account for strain rate effects, using Laplace transform techniques.

In this case the elastic properties of the beam are augmented by viscoelastic

properties in an attempt to model rate effects. The third section develops the
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concept of a failure curve which describes the domain of load parameters within

which a direct shear failure is indicated by analysis.

5.1•1 Normal Mode Method

Solution of the Timothenko equations for a variety of loading and initial conditions

has been accomplished by several investigators. Colton '73 summarizes many of

these solution methods. Analysis of the Timoshenko beam under forced motions

was accomplished by Herrmann '55 who developed a general solution for time

dependent boundary conditions using the property of orthogonality of the principal

(normal) modes of free vibration. Huang '61 also provided the normal modes and

natural frequencies of free vibration for six different beam-end conditions. Bleich

and Shaw '60 discussed the early stage dominance of shear stresses in a Timoshenko

beam excited by an initial velocity distribution. This dissertation extends the

analysis of a Timoshenko beam under forced motions for an elastic support

boundary condition (Figure 5.1).

The governing equations for the elastic Timoshenko beam are limited in terms of

the response details which they can predict. This limitation arises because not all

generalized deformations are permitted in the beam theory. These limitations can

be highlighted by comparing beam theory to the exact three-dimensional theory of

elasticity. This comparison can then be used as a guide in interpreting results

based on the approximate beam theory.

In the exact three-dimensional elastic theory displacements at all points through

the beam thickness and all along the beam length are considered. This results in an

infinite number of wave propagation modes and an infinite number of
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deformational and stress states. In contrast to this is the approximation made in

beam theory where the displacement distribution through the thickness is assumed

constant and only a finite number of wave types are predicted. For example, the

Bernoulli-Euler theory predicts one wave type, that being flexural waves. The

Timoshenko theory predicts two wave types - a flexure-shear type and a

thickness-shear type. For each given type of wave an infinite number of modes

exist for a continuum.

An indicator of the applicability of the approximate beam theories is obtained by

comparing their wave dispersion relationships against similar quantities from the

exact theory. Fung '65 and Crandall '68 discuss and analyze the dispersion

relationships of beam theories and compare them to the exact theory. The so

called dispersion equation can be derived by substituting a sinusoidal wave solution

(a sinusoid is an exact solution only for an infinite beam but studies show it to

produce adequate results for short beams) into the governing homogeneous

differential equations of motion. The dispersion equation relates wave frequencies

and velocities to physical parameters of the beam. Relationships like those shown

in Figure 5.2 can also be derived between wave velocities and wave lengths. A

discussion of Figure 5.2 (obtained from Fung '65) is instructive.

Figure 5.2 compares elastic waves for a uniform beam of circular cross-section for

three different theories. These results are very similar to those of beams with

other simple cross sections. As seen the elementary theory of Sernoulli-Euler is

valid only for very large wavelengths. In the curves for the Timoshenko theory the

lower curve corresponds to the flexure-shear waves and the upper curve

corresponds to the thickness-shear waves. As seen, the Timoshenko theory agrees
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very well with the exact theory for the flexure-shear waves, but the agreement for.

the thickness-shear waves becomes worse as the wavelength X gets smaller than

the thickness of the beam. This conclusion was also reached by Colton '73. As the

wavelength approaches zero (i.e., very high frequencies) the velocity of the

flexure-shear waves approaches the shear wave speed and the velocity of

thickness-shear waves approaches the speed of longitudinal waves in a uniform bar.

At the other extreme, as the wavelength approaches infinity, the flexure-shear

wave velocity approaches zero and the thickness-shear wave velocity approaches

infinity. These limiting conditions have physical interpretations which are shown in

Figure 5.3.

Since the wavelength, wavespeed, and wave frequency all are related it is possible

to find the frequency above which the Timoshenko theory no longer agrees closely

with the exact theory. Figure 5.4 shows a plot of the frequency versus wavelength

relationship for the two types of wave propagation. As mentioned earlier for

wavelengths greater than approximately the thickness of the beam discrepancies

develop between the Timoshenko and exact theories. Using the frequency

relationship w = 2.Yc/X and the wave velocity of the exact theory at a wavelength

equal to the beam thickness, as shown in Figure 5.2, the frequency corresponding to

that wavelength is roughly w = Zirco/X where co is the longitudinal wave speed.

Again referring to Figure 5.4, the frequency corresponding to an infinite

wavelength and the thickness-shear waves is called the first thickness-shear

frequency.

The following Timoshenko beam model includes forced motions arising from a

transverse load along the span and from applied moments arising from surface
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shear tractions as reported in Herrmann '55. However, after deriving the solution

the applied moments are neglected, i.e., set equal to zero, since only transverse

loads are of interest in this dissertation.

The deformation of a Timoshenko beam is specified by two dependent variables: y,

the transverse deflection and 0, the angle of rotation of the cross section due to

bending. However, due to the presence of a shearing force, the total rotation of

the cross section, denoted as y', also includes a shear angle y... The total slope,

shown in Figure 5.5a, is given by

Figure 5.5b shows a free body diagram of an infinitesimal element of the beam

under dynamic equilibrium with the D'Alembert inertial forces.

Forced motions of a Timoshenko beam can be described completely by the force-

deformation relations

Ma -EI~(5)

V s kAG(y'4'

by the equations of motion (see Figure 5.5)
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by the boundary conditions

•(o0t) o
S(OA M.(Olt (5-4)

R

S(Lot) - 0)
O(L,*M(LI

and by tho initial conditions

(X 01 0 (5-5)

In the equations above and throughout the remainder of this dissertation

differentiation of the dependent variables (y and ý) with respect to x, the distance

along the beam, is denoted by (') and differentiation of the dependent variables

with respect to time t, is denoted by (C) The symbols are defined in the List of

Symbols.

MIndlin and Deresiewiez '54 pointed out that the shear force is a function of the

shear coefficient, k', where k' relates the average shear stress on a beam section to

the product of the shear modulus and the shear strain at the neutral axis. This

coefficient depends on the distribution of shear stress on a section and, hence, on
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the shape of the cross section as Tlmoshenko '21 observed. Mindlin and

Dere]iewic: correctly observed that the distribution of shear stress on a section

also depends on the mode shape of vibration and that, whereas the maximum shear

stress occurs at the neutral axis for the low modes of motion, the shear stress is a

minimum at the neutral axis for very high modes of vibration. Thus, k' is also

strongly influenced by the frequency of vibration and, hence, should be varied as a

function of frequency rather than be taken as a constant as is normally done in a

conventional analysis.

Mindlln '51 has shown that the shear coefficient calculated from the first

thickness-shear frequency provides good results for both low and high frequ.encies.

This coefficient can be calculated by equating the first thickness-shear frequencies

obtained from the Timoshenko beam equations and the exact three-dimensional

equations of an elastic body. This was accomplished by Mindlin and results in the

following relationship for a rectangular cross-section:

where c = (G/0)% and h is the thickness of the beam. Equation (5-6) results in a

value k' = 0.822 which compares A.losely to the shear coefficient used for the static

case which is 0.833.
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1.1 Fleturn-Shea" Modes

The normal modes and natural frequencies ae determined from the homogeneous

differential equations of motion and the boundary conditions, Le. q and Ms are set

to sero in Equations (5-3). The solution Is in the form

Y(x) e
()60X4 X (5-7)

7U equations of motion and boundary conditions are satisfied for an infinite set of

discrete frequencies wn, each of which corresponds to a mode shape given by

functions Yn(x) and On(x). Substituting Equations (5-7) into the homogeneous

versions of Equations (5-3) yields

+ (y (5-8)

where 2 = Z(1+v). here the constant 8 relates the Young's and Shear modulus for

elastic behavior as a function of Poisson's ratio, v, for the material.

The solution to Equations (5-8) can be found as

Y = Ccos x 4- CZsinkx + C3 CosIN + C4 SinIN(5-9)

~:C:inhqx + C,'cosk¶ C3,sitirx +C Ccos rx

where

S1 ____• I '(Tr,11 )"+ 4k'wr, }t/2.jL

+ 22 +. I~
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The parameters ir1 In Equations (5-10) are given by

-- (-41

;, I-. I'

Only four of the eight constants In Equations (5-9) awe independent. The

relationship among the eight constants can be found from either of Equations (5-8)

as foflows:

Cl= KIC:

C4" KtCý

where

k J (5-13)
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Application of the boundary conditions, Equations (5-4), and the relations. of

integration comtants, Equations (5-12, 5-13), to Equations (5-9) yields a set of four

homogeneous linear algebraic equations in four constants Ci' to C 4'. For solutions

other than the trivial case to exist, the determinant of the coefficients of each of

the four constants must equal sero. This results in the following characteristic

equation, from which the natural frequencies wn can be determined:

2 -cosiL cosTL) + Ze(r+ ¶.K)coshiL smn L

-+( r)sinkLc L +(L

~+et rL Z) (+ ey) W( e -r.)]JSinkI L sin rL =0

where G = EI/R.

Note that when the beam-end restraint approaches infinity, R-*., the frequency

Equation (5-14) should decay to the case for a fixed-end beam. That it does can be

verified in Huang '61.

The normal modes, Yn and On, for each natural frequency can be obtained, to

within an arbitrary constant, from the same four homogeneous equations that

determined the frequency equation. These modes are given as
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pry,

4ý (X).-C :l + si%di¶x + .KL In (+So,1

1cosYL - W, CoskL 914 L¶ +

K, KSinki L K- Sin TLJ

and the constant C I is arbitrary.

To solve Equations (5-3) for forced motions using the normal mode method, the

applied actions (forces or moments) are expanded into a series involving the normal

modes. To do this the property of orthogonality of the principal modes of free

vibration must be established. This has been done by Herrmann '55 and is given by

on 4 'V4'+),4x X 0 , w VI 5-6

The solution to the forced motion case is given in the form

(5-17)
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where the normal modes form a complete set. Furthermore, the applied time-

dependent actions can be expanded in the form

2Y. W(xG.d*M
fl (5-18)

Multiplying the first of Equations (5-18) by Yn, multiplying the second of Equations

(5-18) by rZ On, adding the equations term by term, integrating over the length of

the beam, and using the property of orthogonality of normal modes (Equation 5-16)

results in the determination of Gn(t):

5L Y1 + r

Therefore, Equations (5-3) can be rewritten in terms of a series expansion in the

normal modes. Substituting Equations (5-8), (5-17) and (5-18) into Equations (5-3)

and equating the nth term in the infinite series, produces the following equations:

W% Y.T. -6 6;"Y. =Y,'-T,,
(5-ZO)
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Two identical equations for Tn result from Equations (5-20):

Tiii . e.g-oT, = (521

t.tii i iilthe sohltion of which isl given by

T,,= A, coswf + 8,sinwt + i1, - (5-22)

Application of the initial conditions, given in Equations (5-5), determines the values

of the constants of integration to be An = 0 and Bn = 0. Finally, the complete

solution to the Timoshenko beam for forced vibrations with homogeneous initial

conditions islilt
' •~v, ' 2. •x ts.o ,tnmmnm% (5-23)

"""" 2 v(X ts C-1 'S iV%

It is now a simple matter to go back to Equation (5-19) and let Ms 0 for the case

to be studied in this dissertation.

5.2.1.2 Thickness-Shear Modes

The natural frequency spectrum of a beam changes at the first thickness-shear

mode. This frequency, denoted as w' and shown in Figure 5.4, is the lowest

frequency at which an infinite beam can vibrate with no transverse deflection, the

dispacement being entirely parallel to the axis of the beam, I.e. an inplane shear

mode as seen in Figure S.3. The change in the frequency spectrum at w' occurs
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when the frequencies of the first thickness-shear mode become strongly coupled

with the fleue-shear mode of motion.

Mindlin '51 points out that the thickness-shear modes do not physically exist in

finite length supported beams, The resonances in the bounded beam, referred to as

thickness-shear and its overtones, are actually local regions in the spectrum of

flexural resonances over which the frequency does not change as quickly as other

regions in the spectrum with change in beam dimensions. Furthermore, since

shearing deformation is always present in flexural motion, these flexural

resonances can be developed by forcing shearing deformations in the beam at the

resonant flexural frequencies.

This change in the frequency spectrum occurs when the expression inside the outer

brackets of the first of Equations (5-10) becomes negative, or when

Or11j) 4k-},.

The condition expressed by Equation (5-24) occurs at the first thickness-shear

frequency.

For frequencies higher than the first thickness-shear frequency the solution of

Equations (5-3) changes and Equations (5-9) become

IvC + 4j C Siv'KIX,+ C cosr + 4C 4 S" ;r

'tc S 'jc: y. + CI.Cosix + Csi SV~r1 CýCosrK*
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where

¶x {rTT +

J (5-26)

Equations (5-11) and (5-12) remain unchanged. The first of Equations (5-13)

becomes

r r 
(5-Z7)

and the frequency Equation (5-14) changes to

z~~~~i~~~ co¶Losl 26(r. ¶'~&C s¶LinVYL.

+2e(¶ '- K'L (5-28)

The normal modes, Yn and 0n, also change at frequencies higher than the first

thickness-shear mode. Equations (5-15) become

Y 1- e, CosX +/•Si•I X + Sin rX - cos rT-

Scos. x - si.•'x + , sirx -e • • osrx
K' K1

whewe

cos rL -cos jL - 8(r-¶I' K)sinrYL

v- -
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and again the constant C1 is arbitrary. The process now remains unchanged for

Equations (5-16) through (5-23).

5.2.1.3 Converfence

Inasmuch as Equations (5-23) are normal mode representations of the beam

response, a very important issue in numerical calculations is the issue of

convergence. An exact analysis would include an infinite number of normal modes

as denoted by the summation sign in Equations (5-23). Practically, however, the

analysis has to be truncated at some mode to be numerically feasible. This

truncation usually occurs when the differences in y or $ at two consecutive modes

is acceptably small or when their values approach some convergent value with the

inclusion of ever-higher modal contributions.

Since Equations (5-23) also involve the loading function q(t), any issues involving

convergence must consider the frequency content of the loading. Obviously, load

pulses with short rise times will excite higher frequency modes than pulses with

long rise times. To show the influence of load pulse shape on frequency, the

Fourier transform is used to determine the frequency content of the loading. The

Fourier amplitude spectrum shows the relative energy in the frequencies inherent

in the load pulse. Figures 5.6 and 5.7 are normalized spectra in which all

amplitudes are normalized with respect to the Fourier amplitude at zero

frequency. The Fourier amplitude IX(w) is determined by the following

relationship (see Newland '75)

I(LO) -W A -1 (5-30)
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where A( W I coswt

8(W) = I5 Ito 31,iLot A

Figure 5.6 shows the amplitude spectrum for a triangular load pulse with a duration

of 0.6 msec, and different rise times. For the frequency range shown the curves

are identical for peak pressures above 1,000 psi. Figure 5.7 shows the same

information for a load duration 2 msec. The range of load durations from 0.6 msec

to 2 msec encompasses all the interface pressure data presented in Chapter 4.

Figures 5.6 and 5.7 show that frequencies above 100000 rad/sec generally have less

than a 5% contribution to the frequency content of the load.

Computer studies of the convergence issue show that frequencies beyond that

associated with the 215" mode (generally less than 90000 rad/sec for all cases

studied here) have negligible influence on the shear force at the support. For the

remainder of the normal mode section, therefore, the Z2st mode is presumed to

represent convergence. Convergence for the bending moment at the support

generally is attained at a much lower mode.

5.2.1.4 Shear and Moment Analysis

To compare the bending moment M and the transverse shear force V in the beam at

the support, where direct shear failures likely take place, Equations (5-2) and (5-Z3)

are combined and evaluated at x 0, resulting in the following equations for M and

V'
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M (olt0 -E12 (~J) 3l (v a (ttd'
0 0 (5-31)

V(ot) #<kAG Y, '(-) (t in (t-t) "at

Values of M and V can be computed using the results of the previously discussed

normal mode solution. In order to identify the likelihood of a direct shear failure,

a comparison is made between normalized shear and moment as a function of time.

The moment and shear are normalized to their respective strength capacities, Mu

and Vu as defined by the failure criteria given by Equations (3-Z) and (3-8). It is

then possible to determine whether the beam is expected to fail in direct shear

before it fails in flexure (i.e., the normalized shear exceeds a value of I before the

normalized moment exceeds 1).

For purposes of shear and moment comparisons in all of Section 5.Z, a beam similar

to the roof element of the Group MIT test structures is used as a model. The

nominal mechanical and geometric properties of this example beam are given in

Table 5.1.

The following paragraphs discuss results obtained from Equations (5-31) on the

relationship between the normalized shear and the normalized moment at the

support for different parameters of the loading applied to the Timoshenko beam

model and for different beam-end restraints.

Figures 5.8 and 5.9 show plots of normalized support shear (V/Vu) and normalized

support bending moment (M/Mu) versus time for two different peak pressures for
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the example elastic beam, The plots are for a fixed beam-end condition and for a

given rise time and load duration as shown.

The curves in Figures 5.8 amd 5.9 are theoretical because as soon as either ratio

V/Vu or M/Mu exceeds a value of 1 the beam is presumed to have reached its

ultimate capacity and is no longer elastic. Several interesting aspects of

theocetical beam behavior can be seen in these plots. In these figures the time at

which V/Vu = 1 is denoted as t' and the time at which M/Mu = 1 is denoted at t".

At early times the normalized shear curves increase at a higher rate than the

normalized moment curves. However, at later times the normalized moment

curves increase faster than the normalized shear curves. Therefore, the

occurrence of failure in either direct shear or bending depends on whether the

failure threshold (V/Vu and M/Mu equals one) intersects these curves at an early or

a later time, respectively. For example, Figure 5.8 shows a condition where an

early time direct shear failure is indicated (t < t") and Figure 5.9 shows a condition

where a bending failure is indicated (t' > t"). Figure 5.9 shows that for some peak

pressure (generally less than about 2000 psi for the rise time and duration shown

here) the ultimate shear capacity will not be attained before the ultimate moment

capacity is reached, or t" < V'.

The influence of peak pressure, rise time, and pulse duration on the times t' and t"

can be seen In Figures 5.10 and 5.11, respectively. Figure 5.10 shows the

relationship of t' versus peak pressure for different rise times for a fixed beam-end

condition. The figure shows that, for a given peak pressure, t' increases as rise

time increases. Moreover, for a constant rise time, t' decreases as the peak

pressure increases. Also, as the peak pressure drops below about lZOO psi the time
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t' gets exceedingly large, indicating thea a shear failure will not occur because of

the lack of sufficient loading to cause the ccndition V - Vu. Figure 5.11 showi

similar information for the parameter t". Both Figures 5.10 and 5.il are for a load

duration of 1 millisecond (1 msec). However, the plots show little variation for

load pulse durations greater than about 0.5 msec. These relationships are

developed into direct shear failure curves in Section 5.2.3.

The degree of the restraint at the beam-ends, shown schematically in Figure 5, 1, is

another important parameter regarding the possibility of achieving a d~re-: sht.,:,

failure. Figure 5.12 shows a plot of normalized support shear ann moment ve,- s

time for the example beam for a beam-end restraint stiffness of R = 4EI/L. , is

restraint corresponds to the rotational resistance offered by a wall with the same

properties and length as the beam as shown in the schematic in Figure 5.1Z. The

curves in Figurs 5.12 show the influence of end restraint on the time parameters

t' and t". Both these parameters increase when compared to the values associated

with a fixed beam-end condition (see Figure 5.8). Figure 5.12 also shows that in

early time, shear forces become more dominant over bending moments at the

support as the beam-end restraint decreases.

5.2.2 Rate Effects on Response

Under the rapid rates of loading and strain that occur in impulsive tests, the

material strengths and elastic properties of reinforcing steel and concrete are

greater than they are under static load tests. Bazant and Byung '82 provide an

excellent bibliography on basic data regarding the dynamic properties of concrete

and steel (like the unlaxial compressive strength, the tensile yield strength, and the
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modulus of elasticity) as a function of strain rate. Information on load rate effects

on elastic and strength properties is given by Watstein and Boresi 'S2.

/I

Two approaches are outlined here for modeling rate effects on beam response. The

first approach models strain rate effects, by using viscoelastic constitutive

celationships in the Timoshenko beam equations of motion. The viscoelastic

relation used is that of a Voight (also called Kelvin) solid, and Is schematically

shown along with the stress-strain chaeacteristics in Figure 5.13. This approach,

although intuitively plausible, has limitations because the viscous parameter (shown

in the figure as ri) is not constant over a large range of strain rates. The second

approach, based on load rate, simply employs the results of Section 5.Z.1 and alters

the beam material properties to account for rate influence.

No piz ,ous study or analysis has f'n found on the forced or free vibration of a

Timoshenko beam with linear viscoelak&,4C (c ,nititutive properties. In developing

the viscoelastic T-moshenko beam it is assumed thut tha pVpo'.iona'- rstrameter

"for the strain rate terms is a constant during the time domain of interest. Sincs

the analytic time span of interest is a very short time (less than 0. Wrsec) this

assumption should be acceptable. Certainly, strain rate is a function of the

response history and when the strain rate changes, so too should the viscous

proportionality constant. However, the general trends showing ÷*i' -,,te

influence on shear and moment should be apparent even with the assumption of a

constant rate parameter. Moreover, it is also assumed that the rate effects in

shear and moment are linearly related by the same constant, 8, as is the

relationship between Young's modulus and the shear modulus. In particular, If c' is
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the viscous coefficient for a compressive attain rate, then n " r'/B is the viscous

coefficient for a shear-strain rate. This should be valid for the linear elastic case.

For the Timoshenko beam the viscoelastic counterparts of Equations (5-2) are,

where~ , , and y are generalized strain rate terms. Equations (5-32) contain an

elastic part and a viscous part for both shear and moment. Since strain rate is

always a positive quantity these equations show that the viscoelastic stiffness is

always greater than or equal to (for zero strain rate) the elastic case. This

condition is seen in rate application tests for both concrete and steel. Hence, the

viscous term accounts for an increase in stiffness due to rate effects.

The viscoelastic form of Equations (5-3) is now (for the case Ms O),

kO&+ k'AI 1 q..~ + Ars(4 ' 4") C

k 'AG ("-(')4 4 ) -rA -qý

In order to make Equations (5-33) mathematically tractable, the rotary inertia

term has been neglected. This makes the first of Equations (5-33) approximate.

But considering the fact that the effects due to shear deformations are three to
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tour times as large as the effects due to rotary inertia (see Tiwoshenko, et al '74)

it is felt the approximation Is valid in order for a solution to be obtained. In fact

Mindlin '51 found that the transverse shear deformation accounted almost entirely

for the discrepancy between the simple (Bernoulli-Euler) theory and the exact

three-dimensional theory.

The solution of Equations (5-33), along with the boundary conditions (for this case

assumed to be those for a fixed-end beam) and initial conditions (5-5), is quite

difficult. A convergent series solution for small time (i.e., a nondimensionalized

time parameter such as Gt/n being less than 1) is not possible because of the poor

coupling between the two Equations (5-33). For example, second derivatives in

space or time on ý appear only in the first of Equations (5-33) and second

derivatives on y appear only in the second of Equations (5-33).

A self-siuailar solution (for a semi-infinite beam) is not possible for inhomogeneous

equations, unless the loading term is an implicit function of space and time and can

be expressed in terms of the similarity variable. A separation of variables

technique is also not possible since the equations are clearly not separable because

of the strain rate terms.

The method of characteristics is a possible technique if one can show that the

equations are hyperbolic (the elastic Equations 5-3 are hyperbolic as shown by

Colton '73). This is difficult to do for these equations, but -yen if the equations

are hyperbolic the solution procedure become lengthy. In order to reduce the

simultaneous third order equations to a system of first ordee equations and then to

transform the independent variables to the characteristic coordinates would
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require the analytic evaluation of a determinant of rank six. The characteristics

also would not be straight lines, resulting in the evaluation of simultaneous

ordinary differential equations with variable coefficients.

The theory finally adopted as a solution technique is the Laplace transform method

in both space and time coordinates; that is, a double Laplace transformation with a

subsequent double inversion. Anderson '71 successfully employed this technique in

his analysis of an elastic Timoshenko beam under forced motions. He pointed out

that the advantage of the transform method is that a series solution can be

obtained by using the theory of residues. Here, the inversions in space and time

are obtained by summing the residues about the poles of the resulting

characteristic equations in the Laplacian domain (see Wylie '75). This residue

principle replaces the usual integration associated with the orthogonality condition

when solving the equations in normal modes.

5.2.2.1.1 Laplace Transform Solution

Since orthogonality is not valid (i.e., a harmonic solution is not possible) for the

Timoshenko beam with viscoelastic properties, a Laplace transform method is used

in conjunction with an asymptotic approximation in time to achieve a solution valid

only for very small times. In order to simplify the solution, a fixed-end beam under

the influence of a step-loading is studied.

Ihe Laplace Transform method, as applied here, transforms the dependent

variables, y and , using
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so

(FOS) " oi x9(X,,•,A,
0

with similar linear operators applying to I, i.e.';(x,s) and*(ps). A single bar

above a variable indicates a transform In time and a double bar designates a double

transform in both time and space.

In order to satisfy the conditions of transformation in time and space all initial

conditions must be specified at a single time (usually t a 0) and all boundary

conditions must be specified at a single location (usually x - 0). This condition is

satisfied for the time domain using Equations (5-5). However, for the space domain

two additional boundary conditions at x = 0 are required (the first and second of

Equations (5-4) where R = are the other two). These four transformed boundary

conditions are found by taking the time Laplace transform of both Equations (5-3Z)

and the first two of Equations (5-4). This results in

q(0,•) o

9' o,, - -M o,,• . •ko,'

where C r k`A(G -t -s) and V(0,s), 140,s) are the tlm,. Laplace transforms of the

support shear and support bending moment, respectively.
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Transforming Equations (5-33) first in time and then in space results in the

following simultaneous linear algebraic equations in the Laplace functioneay and T

+= (O.s)

k (5-36)

(,As p + : -A + 0,S)

Solution of Equations (5-36) gives

_ _ _ _ _ _ _D 

(p)

where

()- oA st Ps4.+ l* A s

The roots of D(p) are given as

The inversion of Equations (5-37) is accomplished in two sequential steps: the first

inversion in p and the second in s. Inverting first with respect to p is accomplished

using the inversion theorem or the residue theorem
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where "g" is chosen so that all the singular points of '(p,s) lie to the left of "g" on

the real line in the complex p plane. A similar operation is also accomplished for

Anderson '71 has shown that the residue theorem results in

L G (xS) (5-40)

and

G,, x,S) (rn~ p) -__ _

where Lp-I is a symbol denoting the inversion operator in the variable p and (n-i) is

the power of p in Equations (5-37). Hence, Equations (5-40) are used to invert all

terms on the right-hand sides of Equations (5-37) except those terms associated

with the distributed load q(x,t). For terms involving 1(p,s) the convolution theorem

is used in the inversion process. Applying this theorem to the pertinent terms in

Equations (5-37) results in

(5-41)

and similarly
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For this analysis a simple step function In time and space is an adequate load

function to show the relationship between shear and moment. The load function

and its double Laplace transform is given by

j lxt) P0  4(t[ 3  ) - 14 (X-L01

(piP. J P (5-43)
Si

where H(u) = 1, u > 0 is the unit step function
-0, UO0

Po = peak load (see Figure 5.14)

Finally, using the results from Equations (5-40) through (5-43) produces

A(',s) A K(xs) + A4x,s) -4 A4.(x,s)A

where

A4 X,) k' G2. 09/rs~

S(x s )(X S )
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The two unknown constants V and M are determined by using Equation (5-"4) and

the boundary conditions shown as the third and fourth of Equations (5-4) where R

for a fixed-end beam, and by evaluating these at x = L. Solving simultaneously for

V and M results in

S- A4 -A* 3

where

Ai Ai (L;S) L-- ,-54

Since only the ratio of V(O,t)/M(O,t) U3 of interest here, this ratio is obtained once V

and M are inverted in the variable s. However, the expressions (5-45) are very

complicated, involving products of hyperbolic functions. Since the interest is in

achieving a solution for only a small time beyond t = 0 it is possible to use an

asymptotic approximation on s, thereby simplifying Equations (5-45) prior to

inversion. If the Laplace variable s is allowed to grow very large (corresponding to

a small time) the roots given in Equation (5-38) and the expressions in (5-45) are

simplified to,

k (5-46)

and
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(0s)sink ' (5-47)

A (01 S•) P. 4,4

sk'('cosh p~L- I)

The inversion of Equations (5-47) is now accomplished using the theory of residues.

In both Equations (5-47) all singularities occur at the pole s = 0. However, because

both Equations (5-47) involve hyperbolic functions the order of the poles are

unknown. This is overcome by replacing the hyperbolic functions by their

Maclaurin expansions, which results in
Sv(o,s, I 0 =s÷ ,• .

where

SL z °

and so forth for higher order terms of the series.

The denominators in Equations (5-48) identify the poles as being of second order.

Using the residue theorem the inversions are found as

S•40 cist St

(5-49)1 40+.t + At,- .40), /b.}
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M (08t) PO 1 [ J (5-50)

P. r' LýeISfo

The ratio V/M, at the support (x = 0), including rate effects (denoted by a subscript

z), is obtained as=:--- 

L

M (Olt) r 40

In an effort to determine whether shearing forces are enhanced more than bending

moments by the presence of rate effects, Equation (5-5 1) must be compared to the

same ratio determined for a fixed end Timoshenko beam without rate effects.

Proceeding is the same manner as before, Equations (5-33) are simplified when rate

effects are ignored. These equations become

in ,=f|i I •: ~ pL

Using the same boundary conditions, Equations (5-4) with R rand the same

initial conditions (5-5), Equations (5-34) through (5-45) remain exactly the same

except for the foreo.Ting change
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This change (5-63) then results in a change of the roots (5-46) after an asymptotic

approximation on s (a -- 4m) as follows

P, (5-54)

0

Again proceeding as before, Equation (5-47) remains unchanged and, after

Maclaurin expansions are performed on the hyperbolic functions, Equations (5-48)

become

V(oS)X t & 4. + 4,3 1 4+4,$4.. , 4
S1 1. +, 6'b, 1.+. bs 4+...

SJ(o,s . , 6 + ,St  LS4

where

4,~. VL , YW, z

and so forth for the higher order terms.

The poles at s - 0 in Equations (5-55) are now identified as being of order three.

Now, using the residue theorem for the inversion, Equations (5-49) and (5-50)

become
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M (0, . 2 •4 AL t I,+rA e (

altl

Substituting for the appropriate constants in Equations (5-56) and (5-57), the V/M

ratio at the support, neglecting rate effects, becoraes

_ _ . . .L. +

M (O,t J

5.Z.2.l.Z Elastic and Strength Effects

The purpose for obtaining the solution of the viscoelastic Timoshenko beam is to

"show that, initially, rate effects have a more pronounced impact on shear than

bending moment, thereby enhancing the dominance of shear over bending moment

under rapidly applied load conditions. This dominance of shear over moment is

shown if the following ratio is greater than one:

(5-59)
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where RER is the "rate effect ratio" and the numerator and denominator of

Equation (5-59) us given by Equations (5-51) and (5-58), respnctively.

Obviously, before the value of (VIM) 2 can be computed an estimate for the shear

viscosity coefficient, n, must be available. Impact data from Watstein and Boresi

'53 relating the elastic properties of concrete to strain rate and load rate and

shown in Figures 3.2 and 3.3, is used to estimate the shear viscosity coefficient

(which has units of psi-sec). The concrete dynamic modulus of elasticity, shown in

Figvues 3.2 and 3.3, corresponds to a secant modulus through a strain of 0.001.

Since these data are for samples in uniaxial compression the slope of the curve

represents the viscosity coefficient for compression, C'. The shear viscosity is

simply computed from the relation, a' = nB. For example a value of n = 100

corresponds to a strain rate of about 5/sec and an elastic modulus enhancement

factor, T, of approximately 1.25. Since the analysis described in this chapter relies

on a discrete value of n1, selected values of this coefficient are valid only over a

short range of strain rates and load rates. This limitation presents no barrier at

this point since the RER computed by Equation (5-59) is only valid for a small

interval of time.

Figure 5.14 shows a plot of the RER versus time. The time scale has been

truncated at about 0.2 msec. This is about the time at which the denominator in

the ratio (V/M) becomes nonanalytic. This time is equivalent to the time it takes a

shear wave to travel a distance of about 40% of the beam length and is taken to be

the maximum time over which Equation (5-59) is valid.
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The curves shown In Flgu-e 5.14 correspond t(% the different v#%Aums of the shear

viscosity. Genealy, the smalle the shear viscosity coefficient the shorter Is the

time during which the RER Is greater than- one. This is Intuitive because the

asymptotic appaozimatton used to derive the RER is based on the Laplace variable

"s" approaching infinity. In the time domain this corresponds to a solution near

t = 0. Since the Laplacian parameter s appears as a product ns the lower the value 'i

the higher the value s required to let ns get large. Hence. & small shear viscosity

"corresponds to a much shorter time where the RER exceeds one.

The plot in Figure 5.14 clearly shows the main conclusion of this section of the

dissertation. Rate effects have a more pronounced effect on shear than on

moment during an early time in the loading history comparable to the times of

interest in this dissertation.

Figures 5.15 and 5.16 show another feature of the effect of strain rate. These are

a plot of the time parameter t' (see Section 5.2.1.4) versus peak pressure from a

step loading. In each plot one curve is for an elastic beam without rate effects and

the other is for a viscoelastic beam with n = Z00 (strain rate = 1.5/sec). The curves

showing rate effects differ according to whether the ultimate shear capacity Vu

was increased to account for rate effects i.e., V = Vu in Figure 5.15 versus

V = 1.5 Vu in Figure 5.16. The value for the strength enhancement factor, shown as

1.5 in Figure 5.16, corresponds to a strain rate of 1.5/sec as seen from the curve

for a 6500 psi concrete in Figure 3.2. As shown, the viscoelustic curve is alway3

lower than the elastic curve indicating that the support shear force will reach its

failure level sooner when considering elastic rate effects than when rate eff Nis

are not considered. In addition, the parameter t' increases when the influence of
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rate effects on the strength capacity is included through the use of a strength

enhancement factor. It is important to remark that the information provided in

Figures 5.14 through 5.16 is only qualitative owing to the approzimations involved

in the Laplace solution procedure.

5.2.2.Z Load Rate

It is simpler to include load rate effects rather than strain rate effects in the

elastic analysis, because Equations (5-2) and (5-3) remain unaltered when load rates

are considered. There are two factors associated with load rate effects, and these

have been addressed in Chapter 3. The first is the modulus enhancement factor

and the second is the strength enhancement factor. Both these factors for load

rate are only approximations to the true enhancements due to rate influences. The

use of load rate as an indicator of the true rate of response (stress rate) is not

precise. Nevertheless, its use can be justified when one considers that most

available test data on dynamic material properties is based on average load rate.

Furthermore the load rate is probably an upper bound to the true rate of response

during the first quarter-cycle of vibration (generally the response period for

impulsive loads).

By assuming load rate to be equivalent to stress rate, enhancement factors for both

elastic and strength properties can be obtained from the curves shown in

Figure 3.3. When these enhancement factors are used to increase the elastic

modulus of the beam and to increase the strength capacities, in accordance with

Equations (3-2) and (3-8), curves similar to those shown in Figures 5.8 and 5.9 can

be developed. Figures 5.17 and 5.18 show the separate influence of the strength

enhancement factor nl = 1.6 and the elastic modulus enhancement factor ' 1.2,
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respectively, on the normalized support shear for a load rate of approximately 1 x

107 p31/sec (the associated strain rate is approximately 4/sec). In Figure 5.17 the

effect of the strength enhancement factor Is to reduce V/Vu by the quantity li/$.

In Figure 5.18 the effect of the elastic modulus enhancement factor is to altir the

frequency content of the beam making it slightly stiffer and, hence, quicker to

respond. Although not shown here, the load rate effects on the normalized bending

moment M/Mu are the same as those just described for V/Vu.

A conclusion reached in this section on load rate is the same as that drawn in

Section 5.2.2.1 on strain rate. The parameter t' increases as the strength

enhancement factor increases and it decreases as the elastic modulus enhancement

factor increases.

On the basis of this limited study on load rate effects, it is concluded that the

major influences on t' And t" come from strength enhancement. The effect of

modulus enhancement on time to failure is very small. The results from the

analysis including strain rate (Section 5.2.2.1) show a larger decrease in time to

failure due to viscoelastic enhancement, and also show that the support shear force

is influenced more than the support bending moment.

Thus, the effect of viscous or elastic modulus enhancement is to amplify the

dominance of shear force over bending moment. In the subsequent development of

failure curves, these effects are neglected which results in conservative estimates

on the domain of direct shear failure. However, enhancement of both shear and

bending strength due to rate effects is considered in the construction of failure

curves since this effect is to restrict the domain of direct shear failure.
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5.2.3 Failure CMuve

Referring to Figure 5.19a, a direct shear failure is indicated if the parameter t' is

less than the parameter t". On the other hand, direct shear failure is not indicated

when t' is larger than t", as shown in Figure 5.19b. Therefore the transition from a

predicted direct shear failure to no shear failure occurs when t' a t".

If Figures 5.10 and 5.11 are superposed, the intersection of the t' and t" curves for

each constant rise time will result in a series of points which describe a failure

"curve" separating the direct shear failure domain from the domain of bending

failures and no failure. Figure 5.20 shows the concept of this construction of

failure curves.

These failures curves can be plotted in a different domain from that shown in

Figure 5.20. In particular, the domain relating peak pressure Po to rise time tr is

of interest because these are the essential parameters of the impulsive loading.

Figure 5.21 is an actual plot of the failure curvet for the example beam described in

Table 5.1. This curve pertains to a fixed beam-end condition, and strength

enhancement due to rate effects is neglected. The curve in this figure separates

the peak pressure versus rise time domain into two regions. Combinations of peak

pressure and rise time which lie in the region above the curve define a loading for

which analysis indicates a direct shear failure. Points that lie in the region below

the failure curve describe load parameter combinations which will cause either a

bending failure or no failure in the beam.

Figures 52Z and 5.23 reveal two interesting results regarding the influence of

beam-end restraint and strength enhancement, respectively, on direct shear
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failure. Figure 5.ZZ shows that, for a given strength enhancement factor, the

influence of beam-end restraint is small for very short load rise times. For larger

rise times the influence becomes more pronounced, and for a given rise time direct

shear failures are predicted for lower peak pressures as the degree of beam-end

restraint is reduced from the fixed-end case. In Figure 5.23, for a given end

restraint condition, the influence of strength enhancement is to restrict the domain

for direct shear failure by moving the failure curves up. The failure curves shown

in Figures 5.21 through 5.Z3 correspond to one particular beam geometry. Similar

curves for different beams are shown and compared to experimental data in

Section 5.4 in order to assess the accuracy of this elastic approach in predicting

direct shear failures.

An examination of the failure curves developed to this point, and shown in Figures

5.20 through 5.23, has revealed that the curves are obviously sensitive to certain

load parameters and to certain structural parameters. Regarcding load parameters

the two most obvious and pertinent are the peak pressure and rise time. Load

duration has been shown to be a parameter which does not significantly affect the

direct shear failure curves. In terms of structural parameters the degree of beam-

end restraint and the particular values chosen for the strength capacity in shear Vu

and moment M u have been seen to have a tremendous impact on the failure curves.

Other structual parameters such as the L/d ratio, the reinforcement ratio, an'- the

beam frequency content should also significantly influence the failure curves.

Examples of the influence of two of these structural parameters are shown in

Figures 5.24 and 5.25. Figure 5.24 shows the influence of reinforcement ratio 0s

for a given L/d ratio and a given strength enhancement factor Q. As seen the

direct shear failure domain is restricted, in general, as s increases. This is

84

7



because the Increased amount of steel in a beam influences the moment capacity

more than the direct shear capacity, thereby making It less likely that a direct

shear failure will precede a flexural failure. Figure 5.25 shows the Influence of L/d

ratio for a given 0s and n. As the L/d ratio increases, the direct shear failure

domain decreases because of the increase in the M/V ratio.

Since this dissertation represents an initial attempt at describing the conditions

necessary for a direct shear failure in reinforced concrete beams, an extensive

parametric study is not conducted here. This study does specify, however, the

pertinent parameters influencing the development of failure curves based on an

elastic beam model.

5.3 Shear Beam

The equations of motion and resulting solution for the Timoshenko beam theory,

described in Section 5.Z, involve a complicated process for the determination of

the support shear force. A model which is more simple mathematically than the

Timoshenko beam and which can also describe shear forces is represented by the

classical shear beam. Obviously, solutions derived for a shear beam cannot be used

to distinguish between a direct shear failure and a flexural failure because of the

lack of a bending moment influence in the shear beam theory. But the simpler

shear beam theory can be exploited to develop comparisons with the Timoshenko

beam theory in terms of the support shear forces. Therefore, the objectives of this

section are to: 1) determine the "domain of equivalence", represented by load

parameters, between the Timoshenko beam and shear beam theories; Z) estimate

the time to direct shear failure (t') within the domain of equivalence; and 3) verify

the strain rate solution for support shear force for a viscoelastic Timoshenko beam.
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The first two objectives will be met by solving the shear beam equations using the

normal mode method and the third objective is met by using Laplace transform

metbads.

5.3.1 Norml Mgde Method

The forced motion of an elastic shear beam is described by the force deformation

relation

V:ak I'AGjf (5-60)

by the equation of motion

by the boundary conditions

and by the initial conditions

(jX~) 0) j(XI0) 0a (5-63)

The normal mode method again is employed to solve Equations (5-60) to (5-63).

Equation (5-61) Is a linear second order partial differential equation with constant

coefficients. Therefore, only two boundary conditions and two initial conditions, as

shown In Equations (5-6Z) and (5-63), are required for a complete unique solution.

86



This equation repreaents the classic wave equation with an input source term

(q/pA), which can be solved by a variety of techniques. Without repeating the rigor

of Section 5.2.1, the solution in terms of the normal modes Y,(x) and natural

frequencies wn is given by

(•) y 2, ( ,t ,s w I . .t ) 4 • (5-64)

where w• is determined from the frequency equation

£&,:* .(5-65)

and the nth mode shape is given by

Y., six) ±LK (5-66)L

where CI Is an arbitrary constant. The function Gn (T) is determined from the

property of orthogonality of the normal modes and is given by

AL ~ (5-67)
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For the case where q(x,t) is a uniformly distributed load along the span length (i.e.,

constant with x), the shear force at the support (x - 0) is represented by the

expresuion

VWolf) = M4(ýtl osrj~)sau tt4 (5-68)Ai~ I f / coshir ksn,

where q(r) is the temporal forcing function. Inspection of Equation (5-68) shows

that the shear force is only a function of the odd-numbered modes. This Is as it

"should be for a symmetric loading which excites only antisymmetric shear forces.

Plots of V/Vu versus time, obtained from Equation (5-68), are shown in Figure 5.Z6

for three different rise times for the example beam of Section 5.2. The results for

the shear beam are compared to the shear results of the Timoshenko beam,

obtained, from the second of Equations (5-31), for the support shear force where

rate effects are not considered. The support shear force from a shear beam

reasonably approximates that from the Timoshenko beam for early times. The

early time support shear force of the shear beam builds up quicker than the shear

force of the Timoshenko beam because the frequency content of the first few

"modes is higher in the shear beam than the Timoshenko beam. At the shear level

of interest (V/Vu < 1), the agreement in shear forces is quite good for a limited

range of rise times for the peak pressure and beam-end restraint shown for this

case. The combinations of load parameters for which this agreement is specified in

terms of a percentage difference In V/Vu for a given time are used to determine

the domain of equivalence between the Timoshenko beam and shear beam theories

for the support shear force. Figure 5.Z6 also shows the comparison of approximate

time to failure (V/Vu = 1) between the two theories.
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Once an allowable percentage difference between the twc theories Is chosen, an

approximate equivalence in the peak pressure versus rise time domain (domain of

equivalence) can be established. The construction of an approximate domain of

equivalence can be described by reviewing Figure 5.26. The dots on the shear beam

curves in this figure show where V/VU for the two theories differ by 10 percent for

a peak pressure of 5000 psi. Each of the pairs of curves are for a specified rise

time, as shown. Of interest is the peak pressure P0 which will create an

intersection between the threshold failure level (V = Vu) and the dots on the shear

beam curves for each rise time. Since the curves are a linear function of peak

pressure, the failure threshold level in Figure 5.26 will rise with a decrease in Po

and, conversely, will drop with an increase in Po. This procedure will produce rise

time and peak pressure combinations corresponding to a predicted direct shear

failure for both theories to within a 10 percent difference.

Figure 5.27 shows this domain for the example beam in Table 5.1 with fixed beam-

end and for the particular case of a 10 percent difference in V/Vu between the two

theories where rate effects are not included. Peak pressure and rise time

combinations of the external load that fall above the equivalence curve in Figure

5.27 indicate that the shear beam solution approximates the Timoshenko beam

solution to within a maximum error of 10 percent. Curves similar to those in

Figures 5.26 and 5.27 can be constructed for cases where load rate effects are

considered.

5.3.Z Stntin Rate EffeCts

In order to verify the strain rate solution for the support shear force for a

viscoelastic Timoshenko beam, a similar solution for the support shear force
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esultingl from an analysis of a viscoelastic shear beam is developed. The governing

equation of motion for a viscoelastic shear beam is given as

and the constitutive relationship for shear is given by the second of Equations

(5-32). Equation (5-69) is solved using the same Laplace transform methods as

described in Section 5.2.2.1,1.

Applying a Laplace transform to the time variable in Equation (5-69) and the initial

conditions (5-63) results in the following linear ordinary differential equation in x

S(5-70)

where r• k'A(G+ Yis) and all symbols are as previously defined in Section 5.2.2.1.1.

The solution to Equation (5-70) is straightforward and Is given by
C2e. + X, S )

As -L (5-71)

whereI!I
lihe constants C 1 and C2 are determined from the boundary conditions (5-62). The

Laplace transform of the shear force at the left support (x 0 0) is provided as the

third relation In Equations (5-35) and is given here for the shear beam
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Equatioa (5-7Z) is determined for a step-load condition (see Equation 5-43) by

evaluating the first derivative of Equation (5-71) at x - 0, and is given by

(0o S) -stwom pL_ (5-73)

Or(os6~ L + I)

For early time (i.e., as s gets large) the expression fotrV in (5-73) and the analogous

expression in Equations (5-47) for a Timoshenko beam are equivalent since p = p,

and coshpl. > > 1.

These results show that the support shear for a viscoelastic shear beam

approximates the support shear for a viscoelastic Timoshenko beam for a short

time period. Again, this time is the time it takes a shear wave to traverse a

distance of about 0.41. along the beam length.

5.4 Comparisons to Data

The results of Section 5.2.3 on the construction of fallura curves for direct shear

failures show that a family of curves associated with different strength

enhancement factors (which are functions of load rate) can be produced for a

particular beam geometry. 1"he experimental data outlined in Chapter 4 describes

twelve tests which are rategorized by beam geometry into three groups. While it

is possible to construct a failure curve for each of the twelve tests it would not be

very instructive. Instead, a failure curve is produced for each of the three groups

of structures as this should be sufficient to show the information of interest in this
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dissertation. This can be done because the strength enhancement factors vary

among the tests by only a few percentage points and the beams within each group

were all designed the same. The major variations among the tests are in the actual

strength of the concrete and steel and the in peak pressure which was applied

during the test. The latter will be studied here while the former will not.

Table 5.2 shows the beam geometry, reinforcement ratio, and average concrete and

steel strength for each of the three test groups outlined in Chapter 4. Also shown

in the table are the average load rate and strength enhancement factor a for each

test group. The load rate for each test is determined by dividing the average peak

pressure by the approximate rise time of the interface pressure measurements.

The strength enhancement factor is then obtained by using the average test group

load rate (assumed equal to the stress-rate) on the strength enhancement curves in

Figure 3.3 for a 6500 psi concrete. A failure curve for each of these test groups

could be constructed for various beam-end restraints. However, since no

information is available to estimate the degree of support restraint, the most

conservative assumption of a fixed beam-end condition is used here.

Figures 5.28, 5.29, and 5.30 show the direct shear failure curves for test Groups I,

14 and III, respectively. Plotted with these curves are the various peak pressure

and rise time paezs corresponding to each of the specific tests within each test

group. The individual measured average peak pressures and rise times are listed in

Table 4.3. Points that fall above these curves indicate direct shear failure as

determined by elastic analysis. The observed failure modes, according to test data

records, are listed in Table 5.3. Also shown in Table 5.3 for each test is an

indication of whether analysis predicted a direct shear failure.
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The results shown in Figures5.28 through 5.30 and Table 5.3 show that the methods

developed in this dissertation provide an adequate assessment of the likelihood of

direct shear failure. Five of the six tests in Groups U and Ml are correctly

predicted to fail In direct shear when compared to test data. In Group I tests the

failure mode of four tests is correctly predicted while that of the other two tests is

not correctly predicted. However, all three cases where the analytic predictions

are wrong are very close to the failure curve, as seen in Figures 5.28 and 5.29.

Using a model with a beam-end restraint less than the assumed fixed-end condition

or a slightly lower strength enhancement factor would bring all these cases within

the direct shear failure region and the predictions would match the data.

5.5 Summary

An elastic model based on the well known Timoshenko beam theory is used to

develop a methodology which permits an identification of conditions necessary for

the occurrence of direct shear failure prior to bending failure for different

combinations of load parameters and beam-end restraint and for various beam

geometries. The normal mode method is used to describe the response of an elastic

beam subjected to an idealized triangular load pulse which is uniformly distributed

along the span of the beam. The response in the transient region Is shown to be

very sensitive to higher frequencies which involve both flexure-shear and

thickness-shear considerations. The Timoshenko theory is shown to be very

accurate in comparison to the exact three-dimensional vibration theory for the

frequency domain of interest in this study. For all cases studied, the normalized

shear force is greater than the normalized bending moment at the support for a

fixed-end condition, but only for the very early transient stages (less than 0.1

msec). The same is true for beam-end restraints less than fixed, except that the
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time during, which the normalzed shear exceeds the normalized bending moment is

longer'.

The elstic Timoahonko equationa are extended to account for viscoelastic material

properties in order to model strain rate effects. Results from a Laplace solution

show that strain rate amplifiea shear more than bending moment in the early

transient response regime. The simplified modeling of load rate indicates that both

material strengths and elastic moduli are enhanced, and that the domain within

which a direct shear failure will precede a flexural failure Is reduced. Analysis

shows that failure predictions are much more sensitive to load rate effects on

strength than on elastic moduli.

A simple shear beam is shown to be an adequate substitute for a Timoshenko beam

in determining the support shear force for a restricted range of load parameters.

Furthermore, a Laplace solution to viscoelastic shear beam equations, which result

from the influence of strain rate, verifies the Laplace solution for the support

shear force of a viscoelastic Timoshenko beam, over a time domain where the

solution procedure is applicable.

Failure curves developed from the elastic Timoshenko beam theory and load rate

enhanced failure criteria are shown to be an adequate means for predicting the

occurrence of early time transient direct shear failures in reinforced concrete

beams. Failure curves developed for three groups of beams show good agreement

with test data. Strength enhancement due to load rate is shown to be a very

important parameter in determining the threshold between direct shear failures

and flexural failures.
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Cmaptse 6

6,1 IntroductIon

A brief description of the modeling of the post failure regime (see discussion in

Chapter 1 and Figure 1.1) of beam response is provided here. This description

includes only the basic development of deterministic and stochastic models that

may be useful for an evaluation of the beam response after a direct shear failure

has taken place at the support.

In reality, the actual response of a beam after it has failed in direct shear involves

a mix of rigid-body motion and vibrational motion. This has been verified bv

experimental data of the type described in Chapter 4. In fact, roof slab deflection

profiles, shown in Figures 4.2lb and 4.22b for two separate tests, clearly show that

the post failure (beyond 1 msec) response of beams (as models of one-way slabs) is

depicted by a combination of rigid-body, flexural, and membrane modes. However,

this data also shows that the predominant early time post failure response (1 msec

to about 3 msec) is described primarily by rigid-body motion, resulting from a

vertical translation of the roof slab at the direct shear zone near the supports.

Therefore, for purposes of simplification the complex post failure behavior of

beams and one-way slabs for early times is assumed to be adequately defined by

rigid-body motion. These models are valid only for the early time before flexural

and membrane influences become important.

Under the assumption of rigid-body vertical translation, the deterministic post

failure models are described by ordinary homogeneous differential equations in
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time, where motion Is developed by an initial velocity and the engineering model

involves only one defpee of freedom - the vertical translation. Furthermore, the

deterministic models developed here serve only as an introduction to a physical

problem, which is best elaborated and solved with stochastic (probabilistic)

processes because of inherent uncertainties.

642 Simplistic Deterministic Models

As discussed in Chapter 4, the interface pressure loading near the support decays

very rapidly after peak pressure is attained when a direct sheao failure is realized.

This drop in pressure results when the beam moves down away from the soil

overburden along a "slip" surface provided by a shear zone at the time of direct

shear failure. Just after this slip takes place the beam behaves as a rigid body

undergoing a vertical translation as shown in Figure 6.1. In this figure the shear

zone, which in reality has some non-zero width (see Figure 2.lb), has been reduced

to an infinitesimal width for modeling purposes. The beam will not have an

interface pressure on its surface just after failure, as described previously in

Chapter 4, but it will have an initial velocity, f(O).

As shown in Ftjure 6.1, equilibrium of forces along the crack planes produces the

following equation of motion

e. V, (6-1)

where m =LA

Ve(y,t) = total shear resistance along the crack planes
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"The resistance term Ve(t) is a function of the slip along the crack plane and its

derivatives. A simple Interpretation of V,(t) is to assume that the beam resists

downward movement by a rate dependent force which is linearly proportional to

the slip and Its first time derivative. This relation can be expressed as

}! ,,• ,.je) 16-2)

where

c'(y,t) = shear viscosity (pounds-seconds per inch)

k(y,t) = shear stiffness (pounds per inch)

Equation (6-1) can be rewritten in the more classical form

MW~j + ('j t)() + k(~*ye 0(-3)

The model described by Equation (6-3) and shown in Figure 6.1 will have general

initial conditions

(6-4)

where x° and vo are the initial slip and beam velocity, respectively, at the instant

of a direct shear failure.

Equation (6-3) describes a simple model of the phenomenon taking place along the

shear plane shown In Figure 6.1, assuming rigid-body motion. An implicit

assumption of the model is that Identical behavior is taking place at both supports.

Equation (6-3) can be a nonlinear equation, or a linear equation with either
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constant or variable coefficients. depending on the. form of c'(y,t) " k(y,t). The

shear stiffness k, as a function of the slip y, can be found from the shear resistance

verus slip relationships developed by Hawkins '81. In fact, Hawkln's relationships

have been used in a recent finite element investigation by Murtha and Holland '82.

Equation (6-3) can be simplified under certain limiting conditiors. For cases where

the rate effects are small, c'(y,t)y(t) can be neglected. For conditions where the

initial resistance to slip is small and the relative velocity is high, the term

k(y,t)y(t) may be negligible compared to the term c'(y,t)y(t). This can be the case

for a precracked shear plane as shown in Figure 6.2. This phenomenon occurs when

the initial slip is r',lated to the crack width and is associated with little resistance.

Figure 6.2b shows a single crack in concrete whose surface asperities are idealized

by a sawtooth pattern. The initial crack width is wo and the crack faces are

inclined at an angle 0' as shown. Application of shear force after a crack has

formed will at first cause a slip of magnitude So = w0cote' until contact is made

between opposing faces of the crack. During this stage only the reinforcing bars

crossing the crack provide restraint by dowel action and the crack stiffness is equal

to the dowel stiffness. After aggregate interlock is mobilized when the crack

faces contact, the crack stiffness is the sum of the interface shear stiffness and

the dowel stiffness, as shown in Figure 6.Za (Buyukozturk '79).

For the case where rate effects dominate shear resistance, the equation of motion

0(6-5)
, ii0
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In this case the term c'(yt)y(t) can be thought of as an equivalent resistance due

to dynamic friction between two surfaces undergoing a relative velocity (t).

Unfortunately, little or no data exists to empirically establish the value of c'(y,t)

for cracked concrete. A testing program on pushoff specimens under static and

dynamic loads is needed for this purpose.

The solution to Equations (6-1) to (6-5) is straightforward and is not presented here.

ft Is necessary to reiterate that these beam models are described by rigid-body

motion and that the solution y(t) is only valid until the bean.- experiences flexural

and membrane influences. Then the models are described by partial differential

equations and may become inhomogeneous with a reloading term and they must

also include the displacement y(t) and velocity y(t) as initial conditions at the point

of reloading.

6.3 Stochastic Models

Continuous time, continuous state Markov processes (also termed diffusion models)

are fashioned from the deterministic models developed in Section 6.2 of this

chapter. These Markov processes are formulated through the stochastic analogs of

equations such as (6-3) and (6-5). These equations are known as stochastic

differential equations.

In the deterministic world Equation (6-3) represents an Ideal balance between

Inertial forces and resistive forces. However, in the real world, hereafter called

the stochastic world, an error term results from our inability to define an adequate
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model of reality. For example, the actual force balance may Involve tenms with

nonlinear coefficients at terms with higher order derivatives of y(t). Hence, the

erect expresses the difference between reality and the model represented by

Equation (6-3).

This error term expresses the uncertainty in the equilibrium arising from an

inexact choice of coefficients or from neglecting other features of the real model.

In the time domain this error is expected to fluctuate randomly back and forth

about the true equilibrium value of zero. And although the expected value of this

error is zero under conditions where the true inertial forces and resistive forces

are known "a priori", its general bounds are diffuse. Such an error term has been

successfully modeled by white noise in electrical and mechanical systems where

the "noise" is actually a random fluctuation of the system about its equilibrium

state.

Because white noise is the derivative of the Wiener process, it provides for

independent increments between perturbations of the forcing function. The Wiener

process is the only continuous path, stationary independent increment process. The

Poisson process has these characteristics for discrete time but its derivative is

zero. If the independence requirement is dropped, other random forcing functions

can be used to describe the error term.

! 0

If Equation (6-1) is rewritten to consider a random error source W(t) and random

initial conditions on the actual response y(t), the following stochastic differential

equation results,
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where X(t) is a transverse displacement stochastic process and W(t) is a white noise

random process that Is the derivative of the Wiener process (which is a diffusion

pRoces) with mean 0 and variance oz.

The assumption of a white noise error term W(t) actually can be envisioned from a

more heuristic and intuitive approach. In the stochastic world the difference

between the inertial forces and the shear resistive forces is expected to fluctuate

randomly about the current equilibrium position as the process evolves in time,

much in the same way as particles suspended in a fluid randomly fluctuate under

the influence of a disturbing force. This fluctuation is known as Brownian motion

(Brownian motion was first observed by R. Brown in 18Z8, was later studied by A.

Einstein in 1905 and was formulated mathematically by Norbert Wiener in 1930). If

the initial position of the error term is zero, and if the magnitude and sign of the

error from time step to time step is random and not influenced by any physical

perturbation, and If the error at successive times is not influenced by the

magnitude or sign of any previous error terms, then the equilibrium process is

modeled by a Wiener process, W(t).

The Wiener process has the following properties (see Hoel, Port and Stone '72)

(i) W(o) 0 0

(Ui) W(t) - W(u) is normally distributed with mean 0 and variance aZ(t-u)

for u < t

(Mii) W(tZ) - W(t 1 ), W(t 3 ) - W(t 2 ) . . . . W(tn) - W(tn.1) are independent

Sincrements for t1 < t2 <... <ta
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The first property simply results from the choice of coordinate systems and is

arbitrary. The second property follows from the central limit theorem. In

addition, the Wiener process is a continuous path process which Is nowhere

differentiable (i.e., *(t) does not exist). This means that white noise W(t), although

physically an abstraction arising from the chaotic path structure of the Wiener

process, is only mathematically useful when it is integrated in time as it is in the

solution of stochastic differential equations. Hence, white noise arises from the

Wiener process which has several nice features for modeling purposes. It is a

Markov process, it is a Gaussian process, it has stationary independent increments

(but is not stationary itself), and has a continuous state or path function.

Before finishing this specific area of stochastic differential equations it is

beneficial to look at a process that is a simple transformation of the Wiener and

that arises from the stochastic equivalent of Equation (6-5). This process, called

the Ornstein-Uhlenbeck process (see Uhlenbeck and Ornstein '30), is an

exponentially damped Wiener process with a scaled time domain. The Ornstein-

Uhlenbeck process, denoted U(t), is actually a nicer model in that it has all the

properties of the Wiener plus it has a limiting stationary distribution with a

constant variance a . For special initial conditions this process can be stationary

at all times. Both the Wiener and Ornstein-Uhlenbeck processes are shown In

Figure 6.3. Two example problems are discussed to show the possible applications

of these two stochastic processes on the models posed in Section 6.2 of this

chapter.

102



6.3.1 Shear Slip Model: Wiener cess

6.3.1.1 Moments

If Equation (6-2) is simplified by neglecting rate effects and by assuming a constant

shear stiffness the resulting stochastic differential equation has the form of

Equation (6-6) and is given by

PY + k X(t)~ Wk* W t o (6-7)

The general solution X(t) of the second order Equation (6-7) on the time interval

(to,-) involves the use of stochastic integration and is given by the relation

t (6-8)+ I

where X(t.) and X(to) are general random initial conditions at time to, *i(t-to) are

differentiable solutions to the homogeneous version of Equation of (6-7), and the

integral in Equation (6-8) represents the particular solution to Equation (6-7) which

involves the impulse response function h(t-u).

The impulse response function is specified as

(6-9)

Another feature in the particular integral of Equation (6-8) is the substitution

103



-' - -.--.--.. IrI.....

J iSince the derivative of the Wiener proces, white noise, is not a stochastic process

in the probabilistic sense, dW(u) Is a functional that assign values to the integral in

Equation (6-8).

The specific solution to Equation (6-7) for the case to = 0 is found to be

em,...X()r X(o)coto + ()s wt -'. (6 ( .)w ) <-11)
o t

X(Vl! : Sot +jU sio% + Simkb) -U)W ) (6

where wa = k/rn. Equation (6-11) represents a stochastic process whose uncertainty

comes from the randomne~is of both the white noise term and the initial conditions.

The equation is still valid for the special :ase of deterministic intial conditions.

The problem is further developed by looking at the probabilistiC structure of X(t).

The mean or expected value, denoted as E {. 1, is given by

E~X()1w osotf<(o1 + ___(6-IZ)

Since the mean of the Wiener process is zero the expected value of the stochastic

integral in Equation (6-11) vanishes. The mean square 3f the solution process,

denoted Ef .1},lIs

Eiylw VCosawt EfX (0) + it I
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where aZ is the variance of the Wiener process. The left-hand side of Equation

(6-7) Is not stable since the solution (6-11) does not vanish a t-4m. Because this

system does not have a convergent solution as t- )- the covariance function is not

defined for the stationiay case. However, the process X(t) is a Gaussian process

becaute of the Gaussian structure of the Wiener process

For the special case where the initial conditions are deterministic and are specified

as X(O) - 0 and X(O) - vo, the mean and variance of X(t) are

X .0 vy inwot
W

(6-14)

Vink I 4w W-. sinAt

The initial velocity vo is estimated from a deterministic analysis or from

experimental data. An example of the latter is given in Figure 6.4 for three

different tests. The asterisk on the curves in Figure 6.4 corresponds to the point of

incipient direct shear failure.

Before leaving the formulation of this particular problem, it is also possible to

model a situation where the slab is reloaded while still in a rigid-body mode. In

this case Equation (6-7) is altered to account for another term on the right hand

side

r)(•L + kX(t) - +Wo (
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where q(t) represents an interface pressure on the beam at the reload condition.

Closed form solutions to the stochastic differential Equation (6-15) are available if

q(t) is either deterministic or is a second order stationary process.

6.3.1.3 First Passaie Probability

The strong Markov property of the Wiener process allows for the determination of

first passage (also termed first crossing, first hitting, and absorption) statistics of

the stochastic process X(t). It is often useful to determine the probabilistic

structure of the time at which the process X(t) first exceeds a given barrier or

threshold. In the particular example of a post failure model it is interesting to

estimate the time at which the vertical translation along the shear plane, X(t),

first reaches a yield displacement. This displacement has been determined in tests

(see Hawkins '81).

In accordance with the strong Markov property the only condition needed to

determine this probability is that the process has not exceeded the threshold at any

time prior to the time of interest. In statistical notation the definition of the first

passage probability to a barrier of magnitude "a" is given by

t. PrIMax X M) >tj X (): (6-16)

The expression (6-16) is equivalent to saying: the probability of the first passage

time Ta being less than time t, is equal to the probaility that the maximum value

of the process X(t) exceeds the barrier "a" at some time in the interval (0,t), given
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that the process starts at zemo at t s 0. Using the reflection principle adopted in

Karlin and Taylor '75 for second order processes, this probability is expressed as

Pi T 254f"(U)daU (6-17)

A

where f. (u) is the probability density function of the process X(t), which is

determined from the probability structure given by the second order moments in

(6-1Z) and (6-13). Since X(t) is Gaussian, Equation (6-17) is further simplified to

rT, <. 2{1 r(& ~ (t))J(-8

where E

(rx WOV4 rtX W)
r = standardized normal distribution

Finally, the probability density function of Ta is obtained by differentiating the

right hand side of Equation (6-18) with respect to time. The resulting density

function is a second order process but is not, in general, Gaussian.

6.3.2 Shear Si Rat e ode : Onstein-Uhlenbeck Process

6.3.2.1 Moments

As mentioned earlier, Equation (6-5) has a stochastic analog represented by the

Ornstein-Uhlinbeck pocess, U(t), under the condition that the coefficient c'(7,t) is

a constant. The resulting stochastic differential equation describing the
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uncertainty In the force balance along a shear plane between beam inertla and the

viscous resisbnce is given as

with initial conditions wher.

X(O) = xo
0

X(O) a Vo

Tho solution to this equation is well documented (see Hoel, Port and Sone '7Z and

Karlin and Taylor '75) in the literature and is shown to be

0

with at = c/m

The mean and variance of X(t) are computed to be

-actZic

Z (4e e +Ze--u3)

The process X(t) is Gaussian and Is actually the integral of the Ornstein-Uhlenbeck

process. The constant az is sometimes referred to as the damping factor. As the
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p"oes e-volve in time, Q tens to constantly damp or,'pull the position of the

process back to its initial value.

Because of the special nature of Equation (6-19), a complete closed form

probabilistic description of the velocity process X(t) is ava&Uble. Equation (6-19) is

written as

Lt~t +.d~t~u ~ t)(6-22)

S

where U(t) X(t).

The solution to this equation is described in the literature as the Ornstein-

Uhler.beck process (Hoel, Port and Stone '75 refer to it as Langevins' velocity

process). This process is a diffusion process which, in the limit, is stationary

Gaussian with the following moments

(6-Z3)

V4 r WIt

If vo has a zero mean and a variance equ.1 to OZ/2c4, then U(t) is normally

distribu.ted with mean zero and variance a. The X(t) and U(t) processes are

related by the tollowing relationship

X6t+w09A) (6-24)

109



63,.Z2 Fint Pa"=efProbability

Absorption probabilities for U(t) are not available in closed form, because in the

computation of thea probabilities natural logarithms must be evaluated at zero.

To overcome these problems Dinka '75 proposed an asymptotic approximation to

the first passage probabilities of a special standardized U(t) process which was

later corrected by Jennen '81. This asymptotic approximation is actually developed

from the "tied-down Wiener" process (this process is also called a Brownian Bridge).

The approximation becomes less accurate near the probabilites of zero and one for

the case where the absorption barrier approaches infinity.

For a stand.ardized Ornstein-Uhlenbeck process U(t), with mean zero and variance

one, the first passage probability as a-- is approximated by

f~ ~~4 1UtI.Jsfe 41}

where

In the expression above, the times t1 and tZ are the upper and lower bounds,

respectively, for determining the absorption probabilites of the associated tied-

down Wiener process. All times are nondimensionalized to a characteristic time of

the problem such that the time domain of interest is 0 < t < 1.

6.4 Summary

Simple linear deterministic and stochastic models are introduced to simulate the

rigid-body behavior of a beam just after a direct shear failure has occurred. This
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motion, is created when- vertical translation occurs at a shear zone near the

supports. The models account for the stiffness effects duo to dowel action and

aggregate interlock and the viscous effects associated with the rate of response.

Stochastic differential equations are developed from analogous deterministic

models in an effort to account for random uncertainties inherent in a linear model

and randomness In initial conditions at the time of a direct shear failure. Solutions

foe first passage probabilities are provided for two cases of simple stochastic

models based on Markovian diffusion processes.
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Chapter 7

7.1 Summary

Most previous studies dealing with direct shear failures in reinforced concrete have

been associated with static loads, where failure mechanisms were postulated in

terms of static equilibrium. In these. studies parameters such as dowel action,

reinforcement ratio, and shear span were found to have an important influence on

direct shear behavior. In two dynamic test programs reported on direct shear

failure in reinforced concrete specimens, the relevant findings were that the

dynamic strength in direct shear generally is 30 to 90 percent greater than the

static strength and that the presence of dowel steel improves the ductility at the

crack plane. These findings modestly improved our knowledge of the strength of

reinforced concrete in direct shear due to dynamic loads.

Recent tests conducted on reinforced concrete slabs under high explosive

distributed impulsive pressures have provided additional information on the

strength of members in a presumed direct shear mode, but relatively little

understanding about the actual dynamic mechanism in direct shear and about the

influence of moment on failure. For this reason the analytic effort described in

this dissertation was undertaken for the purpose of understanding the transient

influences occurring at the support of an impulsively loaded beam and for the

purpose of developing a procedure to predict the conditions necessary for a

dynamic direct shear failure.
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To, understand the conditions necessary for a direct shear failure, an elastic

Timoshenko beam model is used to ascertain whether the support shear or the

supportbending moment attains its respective failure threshold first. These

threshold levels are specified in terms of the maximum capacity of the reinforced

concrete section in either a direct shear or a flexure failure mode. The

Timoshenko theory is extended to account for the effects of rotational beam-end

restraint and strain rate on the conditions necessary for direct shear failure.

Failure curves, developed from an elastic Timoshenko beam and augmented to

account for strength enhancement due to load rate, are compared to experimental

evidence to determine the adequacy of the model in predicting direct shear failure.

Simple diffusion processes (continuous time and continuous state Markov processes)

are proposed as adequate models for the early-time rigid-body motion of a beam

after an initial elastic direct shear failure occurs. These stochastic models are

linear and can treat random uncertainties in the loading and initial conditions.

Shear-slip data from static tests, and slip displacement versus time and beam

velocity data from dynamic tests are available to assess the adequacy of these post

failure models.

7.2 Conclusions

Analytic results based on the five major assumptions outlined in Chapter 1 have

revealed several conclusions regarding dynamic direct shear failure issues. These

conclusions are based on an elastic analysis of a uniform beam subjected to

idealized distributed loadings where failure is defined by the shear force or bending

moment at the support exceeding prescribed threshold levels.
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The first, and perhaps most fundamental, conclusion is that an elastic Timoshenko,

beam model gives a clear picture of the transient influences of shear and bending

moment and is an accurate substitute for the exact three dimensional elastic

theory for the frequencies of Interest in this work.

Second, based on the elastic model used in this study, direct shear failures precede

flexural failures In the early transient response regimt for certain combinations of

load parameters and beam-end restraint conditons.

Third, strain rate effects enhance support shear forces more than support bending

moments for impulsive loads applied normal to the axis of the beam. This

conclusion reinforces both the issues of early stage dominance of shear over

bending moment and early time occurrence of direct shear failure.

Fourth, strength enhancement due to load rate effects increases failure levels and

hence restricts the domain of load parameters over which direct shear failures are

predicted. Lead rate effects on elastic properties have the opposite influence on

the domain of load parameters but this influence is small in comparison to rate

effects on strength.

Fifth, the influence of beam-end restraint is to alter the magnitude of the support

bending moment much more than it alters the support shear force. Thus, a

decrease in the beam-end restraint increases the domain of predicted direct shear

failures.

114

- -'" " ' ~ rwM-A&Th first, an hp otfnaetl ocuso sta meatcT-se



Sixth, a simple shear beam is found to reasonably approximate a Timoshenko beam

in terms of the support shear force for a restricted set of conditions on load

parameters.

Seventh, direct shear failure curves developed from elastic Timoshenko beam

theory are found to be in good agreement with experimental data when strength

enhancement due to load rate is taken into account. The comparison between

analysis and experiment is made in the peak pressure versus rise time domain of

idealized triangular loadings on fixed-end beams with the same properties as one-

way slabs actually tested.

7.3 Recommendations for Future Work

No research area is fully exhausted in terms of additional enlightenment. Such is

the case for this research. The work of this dissertation has revealed several areas

where additional research can be focused in the future. A list of some of these

additional considerations is provided here in the event that future research in the

area of direct shear failures Is attempted by other investigators. It is hoped that

the results presented In this dissertation can be helpful in providing a base on which

to expand or alter further investigations.

Recommendations for improving the work outlined here will involve assessing the

impact of the five major assumptions on the conclusions of this dissertation. For

example, concerning the first major assumption (see Section 1.2), a three

dimensional finite element study of the support region would help reveal the

influence of waves propagating through the thickness of the beam. A finite
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element study -should -also incorporate inelastic features such as cracking and loss

of bond and yielding in the longitudinal steel.

Perhaps the most crucial need for increased effort is in the area of failure criteria.

This work considered only two failure modes - direct shear and flexure. There

are actually two other possibilities for failure between the cases of direct shear

and flexure. These transition modes, termed deep beam response and diagonal

tension, need to be studied more fully to determine the expected failure mode.

This in especially true for failure predictions which fall very close to the failure

curves developed here.

It is recommended that more dynamic shear tests on plain concrete and reinforced

concrete elements be performed in an effort to ascertain whether shear transfer

mechanisms under impulsive loads relate to those seen in static tests. Active

instrumentation should be used to allow for the interpretation of crack~ng on

element response. These tests could be conducted on push off specimens so that as

many parameters as possible can be controlled and replicated. It is also

recommended that static experiments of shear and moment interaction be

extended to dynamic loads.

Another area requiring effort is the influence of in-plane loads on direct shear

failures. Many static studies, including those by Mattock '74, have shown that

in-plane compression substantially Increases direct shear resistance. This effect

was neglected in this study because experiments show that in-plane loads occur at

times later (greater than 1 msec) than the time to presumed failure.
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The presence of confintag steel stirrups in reinforced concrete beams has a very

beneficial influence on strength and ductility in a diagonal tension failure mode.

Stirrups do not have much effect on direct shear failures, except that they do

provide confinement which improves concrete shear strength, and they do increase

the effects of dowel action at cracks near a stirrup. Studies on stirrup influences

on shear resistance under dynamic conditions would be helpful.

This work has presented an analysis procedure for beams and one-way slabs. The

theory can be extended to two-way slabs by using the two-dimensional equivalent

of the Timoshenko beam, the Miridlin plate theory. Analyses of this nature can

verify the anamolous behavior of slabs near corners where box walls intersect.

Results acquired in this dissertation show that beam-end restraints have

pronounced influences on the time to direct shear failure. However, no studies

could be found for the case of impulsive loading where the true degree of restraint

could be estimated. Because of this, a conservative assumption based on a fixed

beam-end condition was used in this study. The results presented here can be

enhanced considerably with an analytic or experimental study of beam-end

restraint effects on direct shear failure.

Rate effects on response and failure criteria requires significant study and

advancement. Rate effects have been found to be very Important on time to

failure and on failure criteria. The models used here to characterize rate effects

are simple, and much more work is needed to &assss the influence of these effects

on direct shear failures. An initial step in this direction would be to evaluate the
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effect of different strength enhancement factors on the direct shear and moment

failure criteria.

Stochastic modeling efforts need to be pursued more vigorously. This is especially

apparent when the larne uncertainties in concrete properties, failure modes, and

load transfer mechanisms are to be adequately accounted for in an engineering

model. A simple preliminary assessment of uncertainty in the support shear force

could be achieved by analyzing a shear beam with random properties. The shear

beam has been shown in this study to be a good model under limited conditions, and

it has the added advantage of being associated with a simple mathematical

com~position.

The field of direct shear failure in reinforced concrete under dynamic loads largely

has been neglected analytically because these failures can be avoided judiciously

through conservative designs. However, rising construction costs portend an

emphasis on understanding the behavior of reinforced concrete elements near joints

and supports where failures typically occur. Direct shear is important at these

locations and hence requires much more study.
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Table 4.1

Toot Groups and Test Designation

Group IGroup 11 Groupif

FH1 DS2-1 DSZ-4

DS1-1 DS2-2 DSZ-5

DS1-2 DS2-3 DSZ-6

DSI -3

DSI-4
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Table 4Z

nhsical Parameters For Each Test Group

GrOMB Group n Group M

L/d =10 L/d = 7 L/d = 7

SL/t =8.6 L/t = 6.1 L/t = 6.1

3710 < f'c(psi) < 5840 6955 < f'c(psi) < 7328 6955 < f'c(psi) < 7328

62750 < fy(psi) < 74700 fyAo79,500 psi fyw67,340 psi

s= 0.01 (each face) ps 0.0075 (each face) s= 0.012 (each face)
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Table 4.3

Summary of Test Results

Avewage Peak Rise Time
Test Presue (msec)

Group I

FHI 1500 ; 0.05

DSI-1 4000 0.05

DSI-Z 4700 0.07

DS1-3 3300 0.05

DS1-4 3500 0.05

DSI-5 5000 0.10

Group II

DS2-1 6000 0.05

DSZ-Z 6000 0.10

DSZ-3 3200 0.05

Group m

DSZ-4 6000 0.05

DS2-5 5500 0.10

DS2-6 4000 0.05
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Table 5.4

Example Reinforced Concrete Beam Properties

Length (L = 44.75 inches

Width (b) = Unit

Thickness (h) = 7.2S inches

Effective Depth(d&) = 6.44 inches

Steel Percentage (P.) = 0.012 (each face)

Concrete Compressive Strength Wc') = 7000 psi

Steel Yield Strength (f.) = 70000 psi.

Beam Density (P) a 0.0002247±.!!S...
Wn4

Shear Modulus (G) a 2 x 106 psi

Poisson's ratio (vM 0.20
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Table 5.2

Test Grou •eam Prametep

Parameter Grou Gro U Grou M

Length (in) 48 44.75 44.75

Thickness (in) 5.6 7.U5 7.25

Effective Depth (in) 4.8 6.44 6.44

Reinforcement Ratio 0.01 0.0075 0.012
(each face)

Concrete Strength (psi) 5000 7000 7000

Steel Strength (psi) 70000 70000 70000

Shear Modulus (psi) 1.7xlO6  2x10 6  2xl0 6

Beam Density 2.Z47x10-4 2.247x0-4 Z.247x10"4

(#-secZ/in 4 )

Poissons Ratio 0.2 0.z 0.2

End Restraint Fixed Fixed Fixed

Strength Enhancement 1.50 1.55 1.60
Factor

Average Load Rate 0.6x10 7  0.9x10 7  I.1xI07

(psi/sec)
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Table 5.3

Comgalrion, of Analysis Prediction and Experimental Data

Does Analysis Predict Does Data Show a
Lest Direct Shear Failure? Direct Shear Failure

Group I
FHI No No

DSI-1 Yes Yes

DSI-Z Yes Yes

DS1-3 No Yes

D1--4 Yes Yes

DS1-5 No Yes

Group I

DSZ-1 Yes Yes

DSZ-2 Yes Yes

DSZ-3 No Yes

Group MI

DS2-4 Yes Yes

DSZ-5 Yes Yes

DS2-6 Yes Yes
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DIRECT SHEAR FAILURE REGIMES

1) Elastic Response Leading to
Incipient Failure

2) Actual Failure Process

3) Post Fallure Conditions

(1) (2) (3)

Figure 1.1 Classification of Direct Shear Failures into Three Reqimcs
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I'

No Load Loaded

a) Inftltlly Creaked

No Load LoaedO

b) Initially Unormokod

Figure 2.1 Initially Cracked and Initially Uncracked Concrete Beams
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Figure 2.3 Dowel Reinforcement Patterns Across a Crpck Plane !Bresler'74)
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÷ f• , 50 ksi

. Figure 2.4 Effect of Concrete Strength on Shear Transfer St~rength of Initially
Cracked Specimens (Mattock & Hawklns '7ae
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Figure 2.5 Shear Transfer Strength vs. Reinforcement Parameter for
Specimens With and Without an Initial Crack Along tho; he.,r
Plane (Mattock & Hawkins'72)
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Figure 2.6 Shear Transfer in Initially Uncracked Concrete
(Mattock & Hawkins'72)
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Figure 2.7 Typical Shear Failure for a Corbel (Somerville'74)
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EFFECT OF STRAIN RATE ON STRENGTH OF
2-4 -o CONRETE. STEEL & ALUMINIUM

2-2
Concrete

mi 2.0

ILK

:: 1i•B /

I-. /

! /
W~ Steel-b

S/ /

1 *°
1.2

.- 4001 Aluminium

1.0 1 --- ", -

16 5 10" 10.3 10"20l 1 10 100
STRAIN RATE

Figure 3.1 Effect of Strain Rate on Strength of Concrete, Steel, and Aluminum
(Davies '81)
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14 EFFECT OF STRESS RATE ON COMPRESSIVýESTRENGTH AND MODULUS OF ELASTIC;,TY

_ __ _ __ _ _

1.8- uDYNAMIC STRENGTH OF CCNCRETE

,Am m • mmo

I 0 10EA ' 9 RTO3 - 2 06 0 0 0 0

0m i!!Gf GmCi

AVERAGE RATE OF STRESSING. PSI PER SECOND (LOG SCALE)

Figure 3.3 Strength Enhancement and Modulus Enhancement Factors for Concrete
vs. Load Rate (Stress Rate) (Watst~i~n & Boresi'52)
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STEEL UN
TU N NE~~~~ SAND PIT

TEST CONFIGURATION

Fi gure 4.1 Test Configuration for the WES Tests (Kiger'82)
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NO. 4 TRA VERSE REBA R

A iA

,lAl

B RERAR STIRRUPS
EACH LOCATION

TRA VERSE

-+ REBAR

/i•P" 
!-:2.5" •

TEST BOX STIRRUP DETAIL

* PRINCIPLE STEEL

SHEAR STIRRUPS
NO. 3. 2 A T EACH LO-----N--

-I
LONGITUDINAL (TEMPi ). - - - * . ..

i,: STEEL, NO. 3,4" O.C. :.. i I

SECTION A - A SECTION B - B

END VIEW SIDE VIEW

* Figure 4.2 Test Element Construction Details, Test Group I (Kiger'82)
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TRA VERSE
MEREAR

ONE NO. 2 REIAR
STIRRUP EACH
LOCATION

TRA VERSE
RESAR

TEST BOX STIRRUP DETAIL

PRINCIPLE MTEL

=SHEAR STIRRUPS

-ILON GIUDINAL

(TEMP) STEEL

SECTION A-A SECTIN.
END VIEW SIDE VIEW

Figure 4.3 Test Element Construction Details, Test Groups ii
(Kiger'82)
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NOTATION

IF - Interface Pressure
EO Steel Strain on outside face
El -Steel Strain on inside face

E0-1 EO-2 EO-3 EO-4
1-1 El.-2 El-3 El-4

*6 29.6

IF-4 IF-2
EQ-$, El-5

NOTE: REDUNDANT
LOCATIONS
5 AND S

ACTIVE STRAIN GAGES INTERFACE PRESSURE
SECTION A-A SECTION A-A

2-'1.4

-7 -SCORED REBARS
12 EACH LOCA TION)

SI IIIJ - . ," , ..

agh FOallR VIISIQ JUAjL PASSIVE =STRAIN GAGES

flI~hI~I~ SETIONA-A

Figure 4.4 Example Test Instrumentation Layout, Test Groups I1 & III
(Kiger'82)
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Figure 4.5 Post Test View of Test Element DSl-l (Kiger'82)

Figure 4.6 Post Test View of Test Element DSl-2 (Kiger'82)
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Figure 4.7 Post Test View of Test Element DSI-4 (Ki qevr'82)

Figure 4.8 Post Test View of Test Element DSl-5 (Kiger'82)
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Fiur 4. Pos Te tVe fTs lmn S -,(ie #

Figure 4.10 Post Test View of Test Element 0S2-2 (Kiger'82)
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Figure 4.11 Post Test View of Tezt Element DS2-4 (Kiger'82)

Figure 4.12 Post Test View of Test Elemeht DSl-3 (Kiger'82)
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Figure 4.13 Post Test View of Test Element DS2-3 (Kiger'82)

Figure 4.14 Post Test View of Test Element DS2-5 (Kiger'•2)
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Figure 4.15 Post Test View of Test Element DS2-6 (Kiger'82)

Foam Host I qvr

Figure 4.16 Post Test Schematic of Test Element PH1 (Kiger'79)
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Ia) Flexural Response

ii b) Direct Shear; Collapse

vs v

c) Direct Shear; No Collapse

higure 4.17 Failure Mode Determination Using Interface Pressure Measurements
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Figure 4.18 Active Measurements for Fil1: Flexural Failure (Kiger'79)
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Figure 4.19 Active Measurements for DSI-1: Direct Shear Failure (Kiger'82)
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Figure 4.20 Active Measurements for DSI-3: Direct Shear Failure (Kiger'82)
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F Fgure 4.21 Post Failure Measurements for DS2-1: Direct Shear Failure
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Figure 4.22 Post Failure Measurements for DS2-5: Direct Shear Failure

(Ki ger'82)
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TIMOSHENKO BEAM WITH ELASTIC END SPRINGS

Spring Stitff n1e It

I~-- L

UNIFORMLY' DISTRIBUTED PRESSURE

Load per unit Length=A q(t)

P& teas rise time

t : duration

@ tv t. timhs a peak pressure

Figure 5.1 Timoshenko Beam Model and Idealized Interface Pressure Loading
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2.4 Theory sBEoreoulll-malor
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FiGure 5.2 Elastic Wave Velocity Curves for a Solid Circular Cylinder
of Uldius a (Fung '65)
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Figure 5.3 Timoshenko Beam WIave Configurations (Crandall '68)

(Thlolinee *-*hear)

010 F /r

Figure 5.4 Dispersion Relations for a Timoshenko Beam (Crandall '68)
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Figure 5.5 Timoshenko Beam Element
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Figure 5.6 Fourier Amplitude Spectrum for Idealized Pressure Pulse
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2 msec duration
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Figure 5.9 Normalized Support Shear and Moment vs. Time for Example
Beam: Fixed-Ends,Pou2000 psi
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APPENDEX A

Interface PresureLadu

General

The interaction loading at a soil-structure interface can be illustrated by

considering a disturbance in the medium (free-field velocity) which is propagated

towards the structure, a portion of which is shown in Figure A. 1. If the structure

moves with the surrounding medium, i.e., if it acquires the same velocity as the

free-field (at the location it occupies) would have, the structure experiences th-

same motion as the free-field and there is no interaction effect (Figure A.la).

On the other extreme is the case when the structure remains stationary despite

movement of the medium around it. At a rigid boundary an incident velocity pulse

is reflected as a velocity pulse of equal magnitude propagating in the opposite

direction (so that the resultant velocity at the rigid boundary is zero), and the

stress at the interface is twice that of the incident wave. The amplification factor

for interface pressure in this case is Z. Even for this extreme case, an

amplification factor of 2 can be erroneous if applied over the complete duration of

the free-field pulse. This is because there are several mechanisms by which the

amplification due to reflected stresses can be relieved. As shown in Figure A.lb,

relief may come from a free surface such as the ground surface (B) or an edge or

corner of the structure (A) beyond which the free-field stress is not reflected.

The actual interaction process experienced by a structure is somewhere between

the two extremes just described. The structure usually acquires some velocity of
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Its own which in different from the free-field velocity. Motion of the structure

provides another mechansim to relieve the stress amplitude due to reflection of the

initial compression wave off the free surface at the underside of the concrete slab

(B) as In Figure A.lc. The extent of the relief depends on the motion of the

structumsicomponent; at the side walls where motion is small there will be little

relief, and at midspan of the slab the relief due to motion of the slab may be

significant. Relief due to the free surface at the original ground surface (B) and

due to the corner (A) usually are considered negligible.

Interface Stress

When a transient wave strikes an interface between two materials having different

acoustic impedances (mass density times dilatational wave velocity), part of the

energy of the incident wave will be reflected and part will be transmitted as seen

In Figure A.2. When the direction of the wave is normal to the plane between the

two materials, called normal incidence, the values of reflected stress, Cr, and

transmitted stress, at, in terms of the incident stress, ai, are given by

4. Z[AC& AýI'de
-I (A-1)G : iP, tc, I (A-a)

where ci and ol are the dilatational wave velocity and mass density, respectively,

of the medium iu which the wave is originally traveling and c2 and P2 are the
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corresponding parameters for the material on the other side of the Interface. If

the interface Is unbonded, i.e., cannot carry a tensile force, compressive waves will

be transmitted across the interface but tension waves will not. The arrival of a

tension wave will, in the absence of another compressive wave of equal or larger

magnitude propagating in the opposite direction, Immediately part the unbonded

Interface preventing further interaction between the two material&

The transmitted wave will always have the same sign as the incident wave. Also,

the reflected wave will have the same sign as the incident wave if oZc2 is greater

than oc1 and will be of opposite sign if pZcZ is less than p1 c1 .

The two extreme cases mentioned earlier are of special interest as seen in Figure

A.3. At a free edge p2 = 0, the reflected wave will be equal in magnitude but

opposite in sign to the incident wave (this arises because the stress on the surface

has to vanish). At a rigid edge P•c2 = infinite, the stress is doubled and tne

reflected wave has the same sign as the incident wave (this arises from the

condition of zero velocity at a rigid interface boundary).

Interface Pressure Decay Characteristics

After an incoming wave experiences a reflection and transmission at an interface

boundary between soil and concrete the pressure versus time character beyond the

peak value becomes more complicated, Involving pressure relief due to three

different processes. The first process involves multiple wave reflections and

transmissions at the soil-concrete interface and the concrete free edge. The

second process Involves interface pressure decay when the original incoming wave

form also decays with time. And the third process involves pressure relief when
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motion of the slab away from the soil reduces the interface pressure between the

soil and concrete slab. This later process is often termed a soil-structure

interaction.

The pressure decay process associated with wave reflections and transmissions can

best be illustrated by using one-dimensional elastic wave theory and the aid of a

characteristics diagram as developed by Wong '78 and shown in Figure A.4. The

figure presents a plot of distance versus time for a two layer finite element model

of soil and concrete. In this figure the lines with arrows show the direction of

wave propagation and the velocity of propagation is determined by the slope of

these lines - the steeper the slope the higher the velocity. The figure is for a step

pulse (no decay with time) with a peak pressure of 1000 psi and it shows

schematically the influence of several wave reflections and transmissions at the

interface and free edge. For example, from point A to point C there are two

round-trips of the wave through the concrete layer and the interface pressure at

point C is determined simply by the algebraic sum of the magnitude of previous

waves, i.e., 1000 + 800 - 300 - 250 a 1250 psi. The time associated with this decay

from 1800 -psi to 1250 psi depends on the wave transit times and hence the

thickness of the concrete slab. Therefore a quick decay is associated with a thin

slab.

The decay characteristics associated with an Initially decayed ground shock

pressure pulse (incident wave) are shown schematically in Figure A.5. The curves

In this figure are the results of a finite element study conducted by Wong '78,

which have been rescaled to a time domain on the order of milliseconds. As can be
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seen the interface pressure decays more rapidly as the duration of the original

pulse decreases.

The interface pressure decay characteristics associated with slab motion are shown

in Figure A.6. As shown the interface pressure Is relieved much quicker under

conditions where the two layers are allowed to separate. This occurs at an ideal

free edge when the concrete slab moves away from the overlying soil until it

actually separates and reduces the contact pressure to zero.

Slab Velocity

Associated with propagating stress waves is a particle velocity pulse given by the

one-dimension relationship

a = Pcv (A-3)

where a is the stress, v the corresponding particle velocity, and pc the acoustic

impedance of the medium. The relationship holds for elastic materials. The

interface stress (over some area) can be thought of as the action which causes the

slab to move as a rigid body with velocity v.

Peak velocity of a slab is attained at the time the interface stress reduces to zero.

For an interface which cannot sustain tension, such as exists between concrete and

soil, the velocity will remain at Its peak value and will not decay. Physically, this

means that the slab temporarily moves away from the soil when it achieves a
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h velocity than the soil. At the etreme case of a rigid boundary, the

concrete dab cannot move and there Is no relief due to motion.

possible 2=nag& Failure Mechanism

Having discussed the Issues of stress reflection and transmissions am the issue of

particle velocity associated with one-dimensional wave propagation theory, it Is

feasible to emision the initial formation of a-direct shear failure at a slab support

due to the passage of a wave front through the thickness of the member. This

heuristic discussion certainly does not completely describe the entire dynamic

failure process but it does provide one reason why dynamic direct shear may be

initiated in a different fashion than has been seen in slab response under static

loads.

This possible scenario for dynamic failure in direct shear is characterized by the

rapid propagation of a near-vertical crack through the depth of the roof member.

This crack is produced by high shearing stresses near the roof supports. The

occurrence of these high shear stresses at the roof support can be explained by

simple one-dimensional elastic wave propagation theory. Stress concentrations

develop when part of a shock wave front is reflected while another part of the

same wave front is transmitted at the support for the buried reinforced-concrete

box under the influence of a planar, vertically propagating, one-dimensional wave

front. This phenomenon can be seen by referring to Figure A.7.

As shown in Figure A.7, area I is an open space having an impedance of near zero

(for calculations it is identicafR zero) and area U has a higher impedance than

area L On reaching the planie d,3fined by the line AD, that part of a compressional
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wave front lying between points B and C will undergo total rNflction The rest of

the f(ont will continue downward unimpeded. As a consequence of the

conservation of momentum across boundaries (a free surface Is a boundary) the

element BC begins to move with twice the velocity of the elements AB and CD.

Here, BC is a reflecting surface and AS/CD are transmitting surfaces. The result

of this diffeeential motion is the buildup of Intense stresses In the neighborhood of

the points B and C. Consequently small fractures and small regions of crushed

concrete are Initiated at the corners in the wake of a shock wave. In a two-

dimensional sene, shear waves and longitudinal waves will interact and produce a

complex series of wave patterns near points B and C.
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APPENDEX B

General

Concrete is a complex material. It is formed by a combination of components

involving a mix of coari. aggregates, sand, unhydrated cement particles, cement

gel, capillary pores, and entrapped air voids. Despite the large amount of results

of experiments and Investigations into the nature and character of concrete, there

persists a tremendous divergence in reported mechanical properties (see Gentle et

al '80). The large variability in these mechanical properties depends on the

uncertain nature of the concrete constituents, mixing, placement, compaction, and

curing process. And perhaps no greater uncertainty exists than that which is

associated with attempts to determine the conditions under which concrete will

fail when subjected to high rates of loading. An understanding of the phenomenon

of concrete fracture is helpful in reducing this uncertainty.

Static Fractures

Under static loads crack propagation can be detected by the reduction in slope of

the uniaxial stress-strain curve, by an increase in the Poisson ratio, or by a

reduction in the sonic velocity through a concrete specimen. In the static case,

cracks typically develop normal to the plane of maximum tensile stress, as shown

for the cases of uniaxial tension, uniaxial compression, and biaxial compression in

Figure B. 1.

As seen in Figure B.1 a columnar fracture pattern develops under uniaxial

compression and a laminar fracture pattern develops under biaxial compression
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(Nichols '76). it is relevant that in unlaxial compression cracking occurs in the

direction of the applied stress because in all other directions there is no normal

component of compressive stres. Cracking occurs at the aggregate-paste

interface, In the cement paste, or In the aggregate particles depending on the

relative stiffness and strength of the two materials.

Dynamic Fracture

Rinehart '79 gives an excellent discussion of the conditions leading to fracture.

This discussion is summarized here for the purpose of highlighting differences

between static and dynamic situations. There are distinct differences between

fracture phenomena occurring under impulsive loads and those associated with

static loads. Under static loads the stresses and the strains are distributed

throughout the concrete element, permitting every particle to participate in the

initial formation of fractures. Once a fracture has been formed, local stress

concentrations control subsequent propagation of the fractures. Under impulsive

loads highly localized areas of high stresses and strains may exist independently of

stress-strain conditions in another region. This transient stress condition may

change so rapidly that fractures that form may not have time to propagate before

the stress situation changes.

The formation of fractures can occur under various transient situations such as:

1) stress inhomogeneities that result from the interference of waves, frequently

caused by the generation of additional waves from reflections at free surfaces;

2) relative lateral motion, associated with cylindrical and spherical waves; and,

3) large volumetric expansion upon release of load following compression.
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Aside from impulsively generated fractures, other dynamic fractures are similar to

statically generated fractures, For example, fields of dynamic shear stress which

develop propresively as an impulsive load moves throughout a material causes

shear failures similar to those caused by static loading (Rinehart '79).

In dynamic fracturing that Is associated with shearing stresses, the trajectory of

the macrofracture may be oriented differently with respect to the shear stress

field than the individual microfractures that compose the macrofracture. Thus a

shear stress field may cause microfractures to form which cannot propagate but

which can, through their confluence, develop into a macrofracture.

These macrofractures can form as the final stage of extensive slip in a shearing

action, a process initiated by shearing stresses, or they can form by cleavage of the

material under a tensile stress. Rinehart '79 states, "the individual microfractures

will always bear a preferred orientation with respect to the stress field, the one

most favorable to their formation. The relative orientations of the microfractures

and the macrofractures differ depending upon the nature of the generating

stresses. When the path of the macrofracture lies along a trajectory of maximum

shear, the microfractures will be oriented parallel to it if they are shear generated

and will be inclined obliquely if they are tensile generated. When the path of the

macrofracture is perpendicular to a principal tensile stress and the microfractures

are of the cleavage type (a common spalling situation) the macrofracture and the

microfractures making it up are oriented parallel to one another."
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APPENDIX C

Sb2m. raaifr in Reai•foced Cos te

General

Shearing forces in any reinforced concrete member including ordinary ad deep

beams, slabs, shear walls, and shear diaphragms can be carried by several force

mechanisms. In addition to the direct transfer of shear force by uncracked

concrete in the compression zone, contributions may include tensile force stirrups,

dowel action in bars crossing shear cracks, friction and aggregate interlock of

naturally rough surfaces appearing on the cracked surfaces, and the direct thrust

between load points and reactions as permitted by internal force redistributions

after shear cracking. The relative importance of these different mechanisms

depends upon the geometry of the reinforced concrete member, the spatial

distribution of loads and reactions, th, magnitude and qualitative nature of the

loads, the existence of concrete cracks, and other factors such as the arrangement

and inclination of reinforcing steel. Many of the summaries and figures in the

following sections are taken from a recent report prepared by the American

Society of Civil Engineers (ASCE '1982).

Generic Behavior

The distribution oi shear stress in concrete beams can be predicted by analysis by

assuming the member to be homogeneous, isotropic, and elastic. Before cracking

the reinforcement carries only low stress. Dowel effects are small. After

cracking (see Figure C. la) a significant redistribution of internal forces occurs.

For static loads the total shear resistance in a typical region L comprised of the

sum of the uncracked portion of the concrete section, the interface shear transfer
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across the crack by agpgeate Interlock (friction), the dowel contribution of the

longitudinal steel, and the force transferr by direct tension In the stirrups;

Identified for the case of inclined cracking, respectively, as Ves, Vay, Vd, and Vs.

These resistive force components are shown in Figure C.lb.

Vertical equilibrium of the free body in Figure C.lb requires that the external

shear force will be equal to the sum of all of these internal forces. In predicting

strength In shear the stirrup force Is usually taken equal to V. a Av fy where Av is

the total area of steel crossing the crack and fy the yield strength of the steel.

The contribution of the four components is shown qualitstively in Figure C.ic as a

function of applied external shear Vext, Components Vs, Vay, and Vd have little or

no influence until flexural cracking, after which dowel action and interface shear

transfer contribute.

After inclined cracking, the part of the shear carried by the stirrups V., increases

nearly linearly while the sum of the other three components stays nearly constant.

When the stirrups yield their contribution stays constant; however, because of

widening of the cracks and splitting in the concrete along the longitudinal steel,

Vay and Vd fall off rapidly. This overloads the remaining cracked concrete and

very soon results in failure.

Dowel Action

R•einforcing bars across a crack which has been subjected to shearing displacements

represent the shear force which may be transferred by dowel action. This

mechanism is shown for a typical beam in Figure C.Z. The shear force Vd applied

* to the main reinforcement tends to cause downward bending of the bar. This is

: -1-99-



ruisted by the .concrete which provides an upward reaction force V1. If the

concrete cover distance S1 Is large, such as for mass concrete, local crushing of the

concrete may occur nea the crack face. For beams in which S1 is only a few

Inches, splitting of the concrete along the bar is probable due to the vertical

tensile stress produced in the concrete at the plane of the reinforcement. This

tendency to split along the bar is augmented by the wedging action by the bar

deformations as the bar tends to slip longitudinally through the concrete from

flexural loading of the member. Following splitting the effectiveness of dowel

action is a function of the distance S from the shear crack to the first stirrup

supporting the dowel.

Experimental studies on dowel action have been conducted by Fenwick and Pauley

'68, Dulacska '72, Pauley et al '74, Krefeld and Thurston '66, Taylor '74, Sharma '69,

Houde and Mir-a '74, and Kemp and W'lhelm '77. Many of these experiments were

similar to the one performed by Dulacksa '72 and shown in Figure C.3. The effect

of dowel action is isolated from interface shear transfer by means of eliminating

the latter by smoothing and lubricating the contact faces of the shear plane.

The parameters of interest in the dowel studies on beams include the angle of

inclination of the reinforcement, the dowel diameter, dowel strength, concrete

tensile and compressive strengths, reinforcement percentage of shear plane area,

beam net width, bottom concrete cover, bar spacing, and the presence of

transverse stirrups. These dowel studies can be separated into two groups - one

where small diameter bars with large concrete covers were investigated, and the

other where lare diameter bars with relatively small concrete covers were

studied. Basic conclusions of these studies are summarized here.
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For the goup of tests with small bar diameters and larg concrete cover it has

bees shown, genenely, that failure of the specimen occurred due to either yielding

of the reinforcement or concrete crushing beneath the bar. Fenwick and Paulay '68

concluded that dowel capacity was strongly influenced by the position of the bar in

the specimen and by dowel embedment length and that under optimum conditions

dowel action could resist ES-30% of the shear resisted by the interface shear

transfer mechanism. Paulay at al. '74 found that the resistance provided by dowel

action was proportional to the reinforcement area.

The tests on large diameter bars with small concrete cover revealed that failure

was initiated by the formation of splitting cracks around the bar periphery and

subsequent spalling of concrete cover. Krefeld and Thurston '66 and Taylor '74

found that dowel strength increased with concrete tensile strength, increased

concrete cover, and increased beam net width. Sharma '69 concluded that dowel

capacity increased when the bond quality between bars was improved and that

stirrups increased dowel capacity only if they were close to a crack. Houde and

Mirza '74 found that dowel capacity was enhanced by increased concrete strength

and beam net width, but it wasn't influenced as much by bar size or embedment

length. Kemp and Wilhelm '77, in a study of bond behavior, found that the presence

of dowel forces and tensile forces in the concrete did not significantly affect the

cracked pattern observed when only axial forces were applied. Finally, Taylor '74

found that the dowel stiffness was linear for very low loads and that after cracking

the dowel load drops to half its ultimate value. This dowel load-displacement

curve is shown in Figure C.4.
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SInterface Shear Trianf

Coasdeing experimental investigations of Inturface sheo transfer Fenwick &

Paulay '68, Houd. & Mina '74, Paulay & Loeber '74 conducted direct shear tests to

evaluate the effect of parameters such as initial crack width, a&Wregato size, and

the restraining effect permitted by the longitudinal reinforcement crossing the

crack.

Fenwick & Pauiay '68 performed direct shear tests which permitted transfer of

pure shear stresaes across a precracked shear plane, while the crack width was held

constant. The tests were designed to study the effect of initial crack width and

concrete strength on the interface shear transfer mechanism. It was found that

the shear stiffness increased with decreasing Initial crack width and increasing

concrete strength. Empirical equations for the interface shear stress transferred

across a crack resulted from a regression analysis of the experimental data and it

depended on initial crack width, concrete compressive strength, and tha shear

displacement.

Houde & MIrza '74 performed direct shear tests on precracked concrete block

specimens. After the concrete blocks were cracked along the shear plane and the

initial crack width was set to a predetermined value the speciriens were sheared

monotonically to failure. This test program evaluated the effect of the initial

crack width, the concrete strength, and the aggregate size. Results indicated that

the variation of shaar stiffness of cracked concrete with concrete compressive

strength was similar to that found by Fenwick & Paulay. In the range of maximum

aggregate size tested (3/8 - 3/4 inches), the influence of the maximum aggregate

size was found to be negligible compared to the effect of the crack width and

concrete strength. Houde & Mirza developed a shear stress -- displacement
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relationship expressing the shear stress in terms of initial crack width and shear

displacement.

Paulay and Loeber '74 also studied !nterface shear transfer using the direct shear

specimens shown in Figure C.5. The concrete specimens were highly reinforced

with ties and flexural steel in order to avoid any premature flexural or diagonal

cracks near the shear plane. The crack width was held constant while the specimen

loaded monotonically to failure. Typical results are shown in Figure C.6. The

shear stiffness of the specimen decreased with increasing crack width. Figure C.7

shows the mean shear stress - shear displacement relationship with constant shear

stress to crack width ratio. Results show that aggregate shape and size had very

little influence on the shear displacement relationships.

Birkeland & Birkeland '66 have presented a shear-friction hypothesis to describe

the maximum shear force that can be transferred across the crack. The model

they used is similar to the one shown in Figure C.t. The shear load applied to the

specimen produces tangential and normal displacements at the shear plane.

Normal displacements will develop axial tensile stresses in the reinforcement

crossing the crack which will induce vertical compressive stresses in the concrete.

The resistance to sliding will then be provided by the frictional force generated by

the vertical compressive stresses in the concrete. Shear-friction theory provides

the lower bound to the experimental data available on push off type specimens. It

must be noted that this procedure is valid only for conditions in which the failure is

obtained by yielding of the reinforcement across the crack; this allows for the

mobilization of shear friction. In the shear-friction theory dowel action is
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neglected and the frictional resistance along the crack Is presumed to account for

the strength of the element,

Mast '68 also compared the shear friction theory to experimental results of

composite beams. Similar to the results presented by Birkeland & Birkeland, the

shear-friction equation with horizontal tension can be expressed in terms of the

total cross sectional area of reinforcement, the yield strength of the reinforcing

steel, and the tensile horizontal load at ultimate strength. Of course the shearing

force can be equated to the normal force through the coefficient of friction

between the two crack surfaces. In shear-friction this coefficient of friction is

fictitiously high to compensate for the neglect of dowel action.

Combined Mechanisms

In all practical situations where shear forces have to be transferred across the

crack, both the interface shear transfer and the dowel action mechanism should

occur simultaneously. In the preceding sections the individual mechanisms were

isolated to assess their most important parameters. in the following sections a

summary of the existing literature on the combined action of static interface shear

transfer and dowel action is presented.

Mattock '74, '76 conducted several investigations into the ultimate shear strength

of initially cracked and uncracked concrete. All specimens were loaded by pure

shear on a shear plane until failure occurred by yielding of the reinforcement. The

investigation studied the effect on the ultimate shear strength of the different

percentages and arrangements of reinforcement, concrete and reinforcement

strength, presence of direct stresses acting parallel and transverse to the shear
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planes. presence ot moments and tensile forces normal to the, shear plane, aggregate

type, presence of construction joints on the shear plane, and the effect of cyclic

shear stresess Typical test results are shown In Figure C.9. The ultimate shear

stress increases almost linearly with the Index ofy from a finite value for 0fy equal

to zero to a limit dependent on the concrete strength for high p fy values. With a

monolithic shear plane, strengths are consistently greater than the precracked

shear plane. As shown in Figure C.9 for pfy lying between A or A' and B, failure is

relatively gentle and is due to a breakdown of the concrete after the reinforcement

crossing the shear plane yields. For ofy values lying between B and C failure

occurred abruptly before the reinforcement yielded. In this region the failure loads

are similar for uncracked and precracked specimens.

Reinhardt and Walraven '80 tested pushoff type specimens similar to those of

Mattock. They found that with more reinforcement with smaller bar diameters the

stiffness of the embedded steel was found to increase due to increased steel area in

bond. Concrete strength and roughness of the crack plane affect interlock

resistance and crack opening during sliding. The angle of bar inclination was found

to be partly a stiffness and partly a geometry effect.

For specimens in which the applied shear force was transferred by combined action

of the interface shear transfer and dowel action Jimenez et al '79 observed that

the shear slips were small. This Implies a higher shear stiffness compared to dowel

action or interface shear action acting alone. This is due to the role that the

reinforcing bars play in restraining the crack width, resulting in a higher

contribution of the interface shear transfer. It- was also observed that

reinforcement size was an important parameter in the shear transfer mechanism.
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"L"•gep dowel bars attract higher dowel forces causing splitting of concrete along

the bar and hence collapse of the shear transfer mechansim.
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Figure C.l

Shear Transfer in Diagonally Cracked Beam: a) Cracked Beam, b) Free-body
Diagram Along the Crack, c) Distribution of Internal Shear Forces (ASCE'82)
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Potential splitting
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Figure C.2 Dowel Action of Main Reinforcement (ASCE'82)

'II

Figure C.3 Dulacska's Test Specimen (ASCE'82)
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Figure C.4 Dowel Load-Displacement Curve from Taylor (ASCE'82)
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* Figure C-5 Specimen Used in Paulay and Loeber's Investigation (ASCE'82)
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Figure C.6 Regression Analysis With Constant Shear Stress to Crack Width
Ratio (ASCE,82)
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Figure C.7 Mean Shear Stress-Shear Displacement Relations for Constant Crack
Width Tests (ASCE'82)
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Figure C.8 Shear Friction Analogy (Somerville'74)
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Figure C.9 Variation of Shear Strength with Reinforcement Parametero fy
(ASCE '82)
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