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Chapter 1

1.1 Problem Statement
Reinforced concrete beams and one-way slabs can fail in a variaty of mechaniams.

They can fail in a flexural mode where plastic hinges form at locations where the
ultitnate bending capacity is attained. They can fail in a combined flaxure-shear
mode which is characterized by the formation of inclined tension cracks and
flexural cracks within the shear span of the elements. They can fail in a shear-
compression mode where diagonal tension cracking reduces the element to a tied-
arch mechanism and the load is transferred to the supports in direct compression in
a truss-like action. And last, these elements can fail in a direct shear mode. As
defined here, failure connotes the condition at which a structural element can not
sustain any further increase in external load without excessive and irreversible

deformations.

Direct shear failures in reinforced concrete structures generally occur at locations
near supports or joints of the elements which comprise the structure. Most of what
is known about direct shear failures in concrete results from static testing. These
tests suggest that direct shear failures can arise under two general situations.
First, failure can occur near a support where shear forces are high and where a
pre-existing crack surface has formed through the thickness of the member.
Second, direct shear failure can occur near a joint or support where the shear-span
(defined as the ratio of moment to shear force under a concentrated load condition)
is less than about one-half the effective depth of the member, such as would exist

for a short corbel.




Recent dynamic tests on challow-buried reinforced concrete box structures
subjected to impulsive pressures, howaver, have shown that divect shear failures in
the roof slab of these structures can occur in situations where there are no existing
crack planes through the thickness of the roof slab and where the loading is
distributed along the span of the member and not concentrated near a support.

At present there is no analytic method to assess and explore these recent dynamic
direct shear fajlures. This absence of a method for assessing the relevant issues
associated with dynamic direct shear failures provides the genesis for the

development of the elastic model described herein.

1.2 Background
To understand the problem of a slab failing in direct shear from a distributed

dynamic pressure, a brief discussion is provided of the mechanics of the roof of a
shallow buried box loaded by ground shock wave. This shock wave is induced from
a surface blast wave and, as it impinges on the rocf, the impedance (density times
dilatational wave speed) mismatch between the soil cover and the concrete roof
results in the wave being partially reflected and transmitted in accordance with
classical wave propagation theory. The transmitted wave becomes the actual
interface pressure which provides the loading to the roof-slab causing subsequent
motion. This interface pressure and subsequant structural interaction are discussed

in more detail in Appendix A.

An assessment of the shearing action in a reinforced concrete slab under impulsive
loading (which is manifested in the form of interface pressures) must consider .

several issues associated with both the dynamics of response and the mechanical .
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behavior of the material. The response of the member will include very early timne
wave propagation phenomena and later, transient vibrational characteristics. The
material behavior of reinforced coucrete will be influenced by rate effects on the

elastic and strength properties in shear.

In the particular case of reinforced cuncrete beams or slabs subjected to impulsive
loads, wave propagation through the thickneas of the member is associated with
times much smaller than the times corresponding to propagation along its length.
However, shear failures can occur at times soon after a wave has traversed the
thickness of the beam (see Appendix A for a plausible failure scenario). Inasmuch
as beam models do not account for wave phenomena associated with beam
thickness, it is important to keep in mind that early time shear failures may very
well involve the mechanics of both wave action and beam action. In a more exact
three dimensional sense, shearing action is initiated very early when waves diffract
at the intersection of a beam and supporting wall, often called a reentrant corner.
A flexure phenomenon in the three-dimensional sense is not initiated until much
later when the beam attains some momentum of its own. This cccurs after waves
have transversed the beam thickness many times. On the other hand, beam action,
although neglecting wave a<tion through the thickness, provides for an immediate

comparison between the magnitudes of shearing forces and bending moments.

1.3 Major Assumptions

The difference in response action and time of response described in Section 1.2
leads to the first important assumption made in this work. Since the major effort
here is to compare shear and moment at the support, beam action will be assumed

to give a sufficiently accurate picture of direct shear in the presence of a moment
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influence. In this sense !t will be possible tc de.ermine whather a direct shear
failure mechanism will occur prior to a hending failure mechaniam, but questions
regarding the actual time to shear failure would be answered more appropriately
with £ detailed three-dimensional analysis which includes wave action.

The second assumption involves the modeling of a one~way roof slab as a beam of
unit width. This is a common procedure so long as the properties along the long
dimension of the slab are relatively homogenecus. However, this assumption does
contain a minor Arror in terms of the slab stiffness which should be pointed out
here. A one-way slab under loading normal to its plane is in a state of plane strain,
whereas a beam under the same loading condition is in a state of plane stress
because there are no tractions on its lateral surfaces. This difference arises from
the Poisscn effect and results in the beam model underestimating the elastic slab
stiffness. This effect is small and is given by the expression (1 + v) (1 - 2v)/(1 - v),

which is the ratio of beam stiffness to slab stiffness and where v is Poissons ratio.

The third assumption inveolves the presumption that an elastic theory can
adequately describe the attainment of maximum capacity which has been defined
as the failure level. The use of elastic models in describing response up to failure
is believed to be adequate because of the existence of small strains, the very short

times involved. and the brittie nature of shear failures in concrete, all of which

have boen seen in recent dynamic tests.

Perhaps one of the biggest voids to fill is in the identification of a failure criterion
for direct shear under dynamic loading. This area is lacking in adequat» dynamic

test sata and thus cannot be addressed sufficiently in this study. To accomplish
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the task of this research, the fourth assumption is that dynamic direct shear failure
modes can be described in terms of the static failure mechanisms previously dealt
with at length in the literature. Unlike static loads, under which fractures are
initiated and propagated according to the stress and strain field existing throughout
the concrete member, impulsive loads create transient islands of high stresses and
strain whose location may change before an initiated crack has time to propagate.
Under static loads the weakest elements in the concrete mass will control locations
and levels of cracking whereas under impulsive loads the weakest link in the
concrete mass may not have time to crack because of local transient conditions. A

qualitative discussion of this process is provided in Appendix B.

Fifth, it is assumed that the failure criteria in direct shear is not a function of the
bending moment and that the failure criteria in flexure is not a function of the
shear force. Static test data on normally reinforced concrete beams with adequate
shear reinforcement have shown that the presence of a shear force has little
influence on flexure failure levels and that the presence of a moment has little

influence on direct shear failure levels.

1.4 Objectives and Scope

This study will investigate the nature of direct shear failures in reinforced
concrete beams under the action of uniformly distributed impulsive loading. In
pursuing this investigation the first objective is to develop an elastic model which
describes support shear forces during the period over which a direct shear failure is
considered more likely than a flexural failure., The second objective is to define
the conditions under which a direct shear failure can be realized. These conditions
will be specified in terms of beam geometry, material properties, and loading
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parameters. The third objective is to determine the influence of rate effects on
both shearing forces and the conditions required to realize a direct shear failure.
The fourth objective is to intrc'»ducc simple models which can describe beam
behavior after an incipient direct shear failure has occurred. Thess simple post
failure models should be useful for an assessment of the uncertainties inherent in

the actual failure process.

The scope of this research effort can be summarized by referring to Figure 1.1.
This figure shows that the direct shear failure process can be classified into three
distinct regimes, all of which receive various degrees of attention in this
dissertation. The first regime, involving the characterization of a direct shear
failure level using an elastic approach, embodies the bulk of the work conducted
for this dissertation. The second regime involves the actual concrete fracturing
and shearing process under impulsive load conditions. Very little is known about
this process and so it is assumed that the dynamic failure mechanism in direct
shear is similar to the static failure mechanism about which there is considerable
information. Naturally, this second regime currently involves many uncertainties.
The third regime is associated with the post failure condition of the slab or beam
after the strength level has been reached and increased external load produces a
situation involving large deformations and inelastic material vesponse in both the
reinforcing steel and the concrete. The third regime, involving post failure
conditions, is treated in an introductory fashion in this dissertation by attempting
to account for some of the uncertainties inherent in the initial conditions posed by

the second regime.




The direct shear failure mechanisms developed from static testing and limited
dynamic element tests are summarized in Chapter 2. Failure criteria developed
from static testing in both flexural and direct shear modes are provided in
Chapter 3 along with simple empirical adjustments to these static criteria to
account for strength increases under the influence of loading rate. Recent

dynamic tests which have shown direct shear failures in roof slabs are described in
. Chapter 4.

Chapter 5 describes the development of elastic beam models which are defined by
linear partial differential equations. The analytic results are compared to data
gathered on one-way slabs loaded with impulsive blast pressures. Rate effects on
initial elastic properties, strength properties, and the time domain over which
shear dominates bending moments are also studied in Chapter 5. Another issue
investigated in Chapter 5 is the effect of support restraint on the shear

phenomenon and the relative importance of shear force versus bending moment.

Linear models describing post-failure response are defined in Chapter 6 by ordinary
differential equations based on the presumption of a well defined failure plane.
These models are formulated for both deterministic and stochastic situations in an
effort to account for uncertainties in the fallure process. Finally, conclusions and
recommendations are made in Chapter 7 regarding the applications of the models

developed herein ;nd the focus of future work in this area.

1.5 Summary
Direct shear failure in reinforced concrete under impulsive loads is relatively

undocumented bacause of the paucity of data showing failure characteristics. The
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combined effects of beam action and wave action are likely to be important in
developing models to understand the dynamic direct shear phenomenon. This
vesearch makes an initial attempt to understand this phenomenon by considering

elastic beam action to describe incipient shear failure conditions.

The major assumptions made in this endezvor are: 1) Wave propagation through the
beam thickness is neglected in favor of a simpler one dimensional beam model
which assesses both bending moment and shear; 2) one-way slab response under
plane strain conditions can be adequately treated by a beam model; 3) elastic
behavior is presumed to adequately describe response to incinient failure in direct
shear; 4) direct shear failure in the dynamic case is assumed to behave in
accordance with shear transfer mechanisms used to describe static situations; and
5) failure is simply described by either shear or moment reaching its respective

strength capacity first in the beam response history.

The effects of load rate and beam-end restraint are investigated. Failure curves
developed from elastic beam models are compared with experimental data on one-
way slabs which failed in direct shear. Simple models to describe post failure
behavior are introduced. Recommendations are made regarding future research

into dynamic direct shear failures,
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Chapter 2
Direct Shear Failyre Mechanisms

2.1 Introduction
The American Concrete Institute code (ACI '77) indicates that, under static loads,

direct shear failures can arise under conditions near a support where shear forces
are high. The existence of a crack plane through the thickness of a beam can be
important to the bebavior of a beam in direct shear. For this case, called initizlly
cracked concrete, shear failure occurs along the crack plane. The ACI refers to
this direct shear behavior as shear-friction. In shear-friction, shear transfer is
accomplished along the crack plane by a frictional resistance to sliding between

the faces of the crack.

Although not explicitly acknowledged by ACI, direct shear can also occur in some
situations in uncracked or monclithic concrete. For initially uncracked concrete,
shear transfer is accomplished through the combined actions of shear and
compression in small "concrete struts”" which are formed by a series of small
diagonal cracks which form along a shear plane after load is applied to the beam.
For the initially uncracked case "slip" is characterized by the rotation and

compression of these small struts,

Although the basic behavior of these two cases is different, both are referred to in
the static sense as direct shear failures. Figure 2.1 displays the two cases of
initially cracked and uncracked concrete beams and their appearance after the

imposition of a shearing force across the shear plane. A summary of experimental
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studies on shear transfer mechanisms in genaral, of which direct shear failure iz a
subset, is presented in Appendix C.
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Information on behavioral mechanisms in direct shear under impulsive conditions is

L

not available. The only available data on dynamic direct shear failures is provided

Ly o s

in two past experimental studies, where dynamic load levels causing direct shear

failure are compared to associated static load levels.

2.2 Behavior Under Static Loads

2.2.1 Initially Cracked Concrete

For direct shear along an initially cracked beam section where the crack
inclination is almost vertical, the force transfer mechanisms are described by the
model in Figure 2.2, which shows a small section along the beam axis containing
the crack. The surfaces cf cracks in concrete are usually rough. The cracks follow
a generally irregular path, which is further disturbed as the cracks pass around the
course aggregate inclusions in the concrete, as shown in Figure 2.2a. Application
of a static shear force V, as shown in the model of Figure 2.2b, causes shear
displacement or slipping and also causes the cracked surfaces to separate slightly.
This separation induces tension in the reinforcement crossing the shear plane. This
induced tension fﬁérce in the reinforcement is balanced by an equal compression

force in the concrete and acts normal to the crack plane as shown in Figures 2.2a

and 2.2b. The normal compressive force produces a frictional resistance to sliding
between the faces of the crack plane which serves to resist an applied shear force
acting along this plane. The relative movement of the concrete crack faces causes

a shear action to develop in the longitudinal reinforcing bars which cross the crack

10




plane. The resistance of the bars to the shearing action shown as dowal forces in
Figure 2.2c, also serves to resist the applied shear force.

For normally reinforced (i.e., underreinforced) concrete beams, the separation of
the crack faces along the shear plane eventually creates tensile strains sufficient
to cause ylelding in the longitudinal reinforcing steel or compressive straina
sufficient to create crushing of the concrete. At ultimate strength the yieid force
in the steel is equal to the compressive force normal to the crack plane and the
frictional resistance along the crack is proportional to thiz normal force.

As mentioned there is also a shear resistance along a defined crack plane due to
the dowel action of reinforcement crossing the crack plane.
Mattock and Hawkins '72 point out that after extensive siip along the crack plane
the dowel reinforcement can actually kink at the crack plane, as shown in Figure
2.3, and provide extra resistance due to a component of the reinforcement force in

the direction of slippage.

In the ACI adopted shear-friction theory, frictional resistance provided along a

crack is a function only of the maximum normal force across the crack, which in
turn is determined by the yield strength in the steel. Mattock and Hawkins '72
state that this observation is consistent with the shear-friction concepts since the

noefficient of friction is also independent of concrete strength.

However, concrete strength can be an important parameter when combined with
certain magnitudes of the reinforcement index, p !fy. For example, for low

strength concrete actual crushing of the concrete will occur for small values of
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p‘!y, and for high strength concrete crushing will occur for large values of p 32

This change in behavior caused by crushing of concrete can be ssen in Figure 2.4
for a 2500 pel (pounds-per-square inch) concrete. For high values of induced
compressive struss across the crack plane, which corresponds to high values of the
parameter 0 _fy, the ultimate shear strength of initially cracked and initially
uncracked specimens are the same, as seen in Figure 2.5. Mattock and Hawkins '72
explain this by statingt "In a heavily reinforced shear plane, or one subject to a
substantial externaily applied normal compressive stress, it is possible for the
theoretical shear resistance dua to friction and dowel effects to become greater
than the shear which would cause failure in an initially uncracked specimen having
the same physical characteristics. In such a case, the crack in the shear plane
"locks up” and and the behavior and ultimate strength then become the same as for

an initially uncracked specimen.”

2.2.2 Initially Uncracked Concrete

For initially uncracked concrete specimens which eventually fail in direct shear,
short diagonal tension cracks develop along the shear plane (see Figure 2.6) and a
truss-like mechanism develops. The ultimate shear strength is then developed as
the inclined "miniature” concrete struts fail under 2 combination of compression
and shear. Tosts on corbels by Kriz and Raths '65 revealed that direct shear
failures in reinforced concrete under static loads are realized in spacimens for
which the ratio nf shear span to effective depth (M/Vd) is less than 0.2. In some of
the veported tests shear failures occurred at higher M/Vd ratios but these were
generally more likely when high percentagee of reinforcement weare used. The
shear failures described by Kriz and Raths '65 were characterized by the
development of a series of short inclined cracks along the plane of the intevface




between the column and the corbsl, as shown in Figure 2.7. A direct shear failure
then occurred by an overall shearing along the plane weakened by theie inclined
cracks.

Mattock and Hawkins '72 have proposed hypotheses for the behavior of iritially
uncracked reinforced concrete specimens based on a statically indeterminate truss
analogy. As load is applied initially the concrete is uncracked and the dowel steel
is unstressed. A direct shear stress will occur along the shear plane in the concrete
and eventually as the external shear force is increased, short inclined diagonal
tension cracks will form along the length of the shear plane. The short cracks
develop when the principal tensile stress in the concrete becomes equal to the

tensile strength of the concrete.

As the shear load is increased, short parailel diagonal struts develop between the
inclinied cracks as shown in Figure 2.6. Since these struts are continuous with the
concrete on either side of the sheav plane, both a compression and transverse shear
force will exist in each strut and the external shear will be resisted by the com-
ponents of these forces which are in the direction of the shear plane. Furthermore,
as these struts tend to compress and rotate, the consequent displacements normal
and paralisl to the shear plane will stress the transverse dowel steel until it
eventually reaches it vyield strength. This of course is based on the presumption
that the concrete does not fail first in compression. A direct shear failure will

fiually occur when the small struts fail under their combined stress state as the

dowel steel attains its yield strength.
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Under a condition where no external load acts normal to the shear plane, the
failure plane in initially uncracked reinforced concrete specimens can shift slightly
from the shear plane to a plane parallel to the shear plane, as shown in Figure 2.6.
This occurs when the ends of the small inclined cracks propagate in a direction
parallel to the shear plane as the small struts rotate slightly. When these paraliel
cracks start to coalesce the shear stress in the struts increases locally based on a
reduced shear plane area and failure occurs when the locally higher shear stresses
reach a critical value.

For initially uncracked concrete, Mattock '74 found that no slip or separation
occurred along the shear plane until the small diagonal cracks formed along the
shear plane at shear stresses of 400 to 700 psi. Mattock 74 also found that at
failure some of the small diagonal cracks coelesce to form major cracks parallel to
the shear plane and the small inclined concrete struts spalled in compression, In
this case no slip, in the true sense of the word, occurred. Rather, relative motion
parallel and normal to the shear plane occurred as a result of the rotation and
compression of the small inclined concrete struts as the reinforcement across the
shear plane stretched in tension. Furthermore, the shear resistance after ultimate
decreased more rapidly than in initially uncracked concrete as the "slip” increased.
The curve shown in Figure 2.5 for uncracked concrete can be modeled quite well
using the statically indeterminate truss analogy develcped by Mattock and

Hawkins '72.
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2.3 Behavior Under Dynamic Loads
2.3.1 Response Definition

Only two studies on direct shear resistance of reinforced concrete specimens
subjected to impulsive loads could be found. Thess studies were primarily
concernead with general failure levels. In these studies the most cited parameter
was the dynamic increase factor (DIF), This is the ratio between the load at which
shear failure occurs due to a dynamically applied load divided by the statically
applied load to failure. The major contrast between these two dynamic studies and
the static studies described in Section 2.2 is that the latter were extensive and
they illuminated the parameters of interest in the identification of shear transier
mechanisms. I[n the limited dynamic studies these detailed investigations were
lacking and results focused mainly on the change in the DIF as a function of the
change in loading conditions and the strength of the concrete and steel used in the

reinforced concrete elements.

2.3.2 Shear Key Tests

Perhaps the first known controlled experiments on concrete elements subjected to
dynamic shear were conducted by Hansen et al.’61. In these experiments a series
of comparable static and dynamic tests on three types of concrete shear keys was
completed. The objective of these tests was to determine the magnitude of
ultimate shear strength of the concrete shear keys under dynamic conditions.
Three types of keys were considered: type 1: Plain concrete, type 2: Plain
concrete under directly imposed compressive stress normal to the shear plane, and
type 3: Concrete reinforced by diagonally embedded dowels. For each of the three
types two specimens were tested statically and four specimens were tested

dynamically.
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For dynamic loadings, rise time to peak load was 25 to 40 milliseconds and for the
static loads the rise time was on the order of 10 to 15 minutes total load duration.
The load in the case of the static test was continually increased in steps up to
failure while in dynamic tests it was applied in several triangular pulses of constant
duration but increasing in magnitude until a pulse corresponding to failure was
reached. As the dynamic failure was always sudden, a few small magnitude load
pulses were first applied before causing failure to oblain information about the
stress strzin characteristics and general behavior of the keys.

For these tests, the dynamic strength was greater than the static strength
especially for type 2 and type 3 specimens. But the crack patterns and brittleness
of failure appeared to be similar between static and dynamic cases. Type 2
specimens showed a striking increase in strength due to the existence of
compression across the shear plane. Also, for type 2 specimens the tendency to
direct shear type failures was more pronounced than in either the type 1 or type 3

categories. Specimens of type 3 also showed an increase in strength over those of

type 1.

In studying the behavior of each specimen and comparing and grouping the results
recorded, Hansen '61 saw an important feature common to all three types: a high
strength of concrete in pure shear, particularly under dynamic loading, The DIF
for the three specimen types averaged 1.15 for type l, approximately 1.6 for type
2, and about 1.3 for type 3. It was also observed that the tendency for a diagonal
tension failure, as opposed to direct shear type failure, was greatly reduced when
compression across the shear plane was present. In fact, the presence of this

compression was directly correlated with the enhancement of shear strength in a -
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direct shear sense. Compression across the shear plane on these key elements and
dowaeling appeared to be very helpful in increasing the shear resistance as wull as
makiug failure less brittle.

It was observed that the quality and strength of the coarse aggregates rather than
the compressive strength of the concrete governed the strength of keys in dynamic

| T

- shear. Bond failure of the cementing gel (indicating stronger gravel) gave a higher
strength than when shearing took place on weak gravel. The deflections of the
brittle shear failures both in static and dynamic tests were comparatively small in

magnitude, ranging from .003 to .018 inches.

2.3.3 Fushoff Element Tests

A second study conducted under dynamic joads was done by Chung '78. This
experimental work investigated the shear resistance of concrete joints to dynamic,
static, and cyclic loadings. The test specimens were concrete pushoff elements,
There were 48 specimens, equally divided into two series, In series A the shear
' plane was not reinforced while in series B two 5 millimeter diameter mild steel
stirrups were placed across the shear plane equivalent to 0.43 percent of the area
of the shear plane. Secondary reinforcement was provided in each specimen to

strengthen it against any unexpected bending.

[ Each of the series of specimens was divided int~ four groups for testing purposes.

Specimens of the first group were tested under static loads and served as control

specimens. Specimens of the second group were subjected to impact loading.
Specimens in the third anc fourth groups were first subjected to cyclic loading of

low magnitude and then were tested to failure by impact loads. For the impact
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loadirgs the rise time was on the order of 0.8 milliseconds (msec). Test results

show that series B specimens could absorb some 40% more impulse than series A
specimens. The difference was due to the provision of shear reinforcement in the

former. The steel reinforcement provided a clamping force across the shear plane, .
and sustained the load for a longer period before failure, as was seen from the
force~time curves. The results showed that the DIF for series A specimens
avaraged 1.8 while the average DIF for series B specimens was 1.9. These DIF

figures show the strong enhancement in shear strength afforded by high load rates.

2,4 Summary
.. Under static loads direct shear failure in initially cracked reinforced concrete is

characterized by slippage along the crack plane. Shear resistance is provided by a
combination of friction on the crack faces and dowel action of the transverse
reinforcing steel. This mechanism of shear resistance depends on the
reinforcement ratio and the dowel steel strength, but shows little sensitivity to
concrete strength for lightly reinforced elements. [n direct shear failure in
initially uncracked concrete under static loads, short inclined cracks form along
the shear plane to produce a series of small diagonal struts. Subsequent slip and
separation along the shear plane is caused by compression and rotation of these
struts. Concrete strength is an important parameter in the behavior of initially
uncracked concrete. The ultimate shear resistances of cracked and uncracked

concrate are comparable under high normal stresses across the shear plane.

The dynamic tests have led to the following two conclusions. First, the dynamic
shear strength of the shear plane is greater than the static shear strength. The

dynamic strength increase may amount to 90% of the static shear strength at a
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rate of stressing around 1750 ksi/sec (Kips-per-square inch/second). Sacond, a

plane is essential for improving the

small amount of reinforcament across the shear
ductility of the specimen and for increasing its impulse capacity.




Chapter 3

3.1 Introduction
The determination of how and when a reinforced concrete element is predicted to

fail under a given set of loading and support conditions is dependent on the failure
criteria, In formulating failure criteria for concrete under the state of stress
which exists in a beam, it is necessary to properly define the term failure.
Concepts such as material yielding, initiation of cracking, load carrying capacity,
and the extent of deformation have been used in the past to define failure. In this
dissertation failure will be defined to occur when a concrete element reaches its
ultimate load carrying capacity. Whether this capacity is reached in terms of a
shearing mechanism or a flexure mechanism is dependent on the state of stress in

the beam and which of the mechanisms is realized first in the beam response

history.

Chen '82 indicates that concrete failures can be classified as being either tensile or
compressive. With respect to the definition of failure given in the previous
paragraph, tensile failure is defined by the formation of major cracks and the loss
of tensile strength normal to the crack faces and compressive failure is described
by the development of many small cracks and the loss of strength. However, most
concrete elements rarely undergo a uniaxial state of stress even though the most

commonly used strength parameters are based on uniaxial test properties.

Chen '82 summarizes several state-of-the-art failure models for concrete under a

general stress state, but the most common and perhaps simplest failure model used
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is the Mohr-Coulomb criterion combined  with a tension cut off value. This
criterion is very similar to the shear friction concepts described earlier in that
they both are functions of the internal angle of friction of concrete, they both are
dependent on the normal force across a potential crack plane and they both base
failure on an ultimate shear capacity along a crack plane. Except for the provision
of concrete cohesion (inherent shear stress under a zero normal stress condition) in

the Mohr-Coulomb criteria the two are equivalent.

An important question in this dissertation, as outlined in Chapter 1, is whether a
flexure failure or a direct shear failure occurs first in a beam under rapid load

conditions. Obviously both flexural and shear stresses exist in the beam and in a

rigorous failure criterion their interaction would be accounted for. However, Park
and Paulay '75 have indicated that experiments with normally reinforced concrete
beams with adequate shear reinforcement show that the shear force has no
recognizable influence on the development of flexural capacity. But a close
relationship does exist among flexure, shear, bond, and anchorage in the shear span
of a3 beam. For example, when large shear forces are transmitted at a section at
the ultimate moment capacity, the distribution of the flexural strains in the
concrete and steel are affected. In this case the capacity of the flexural
compression zone is reduced because the shear force can only be carried in this
zone after widening of cracks in the tension zone. Looking at the converse
situation, where moments are present at sections under ultimate shear, Mattock '74
has found that the action of a moment less than the flexural ultimate strength of a

cracked section does not reduce the shear which can be transferred across the

crack plane.
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Experiments on beams have shown that: 1) shear forces do not influence the
development of flexural capacity and 2) flexure forces do not influence the shear
capacity. Because of this it should be possible to formulate separate failure
criteria for flexure and for shear.

3.2 Rate Effects on Material Properties

It is well known that rate effects increase the strength and initial stiffness of
construction materials. For enample, Figure 3.1 (from Davies '81) shows a
4 : comparison of the ratio of dynamic strength to static strength versus strain rate
for three common materials ~ concrete, steel, and aluminum. These curves are, of
course, valid only for a particular grade of steel or aluminum or a particular 28 day
strength for concrete. The respective curves for the three materials vary

according to the initial strength. In general, the higher the initial strength the

" e R A i S RN

lower is the strength enhancement for a given strain rate (see Crum '59 and Cowell
'65 for reinforcing steel strength enhancement). Even for a given initial strength,

the datu shows a random scatter of dynamic strengths for a given load rate.

The available data on rate effects on steel and concrete (see bibliographies in
Bresler '74 and Bazant & Byung '82) indicates that the increase in yield strength of
high-grade steel and the increase in compressive strength of concrete are

comparable in the range of strain rates between 0.1/sec and 10/sec.

Figure 3.1 shows that the increase in dynamic steel strength can be higher than
that for concrete strength for some strain rates. However, the "steel curve" in
Figure 2.1 is for mild steel and the corresponding curve for a high-grade steel is

lower and is actually comparable to the "concrete curve” in Figure 3.1 for strain
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rates in the range of 0.l1/sec to 10/sec. For this reason it is assumed in this
dissertation that rate influences are the same on the strength properties of both

concrete and steel.

Data such as that presented by Watstein and Boresi '52 and shown in Figures 3.2
and 3.3 can be used to develop empirica! relationships between strength and strain
rate for concrete specimens, However, Bazant and Byung '82 have done this for an
extensive data base containing information fiom many past studies. The empirical
formulas for strain rate effects on elastic and strength properties have severe
limitations. The data presented by Watstein and Bouresi '52 is ior an "average"
strain rate for each test. Since the response of an elastic element to a time-
varying load produces a strain-rate which varies with time, the data can only be
used in the expected value, or mean, sense. The empirical relationships developed
by Bazant and Byung 'R2, also derived from constant strain-rate test results, are
inapplicable when the order of magnitude of strain rate greatly differs from time-
step to time-step in a dynamic analysis, This latter problem is usually of little
consequence when the structure is constantly in motion. Furthermore, Bazant's
procedure is only used to determine strain rate effect on the initial tangent

modulus rather than the incremental change in modulus through the loading history.

The rate effect problem can be simplified considerably by allowing elastic and
strength properties to be functions of the "average" strain rate or average stress
rate (or load rate) for a particular dynamics problem. This is justified further by
the fact that the large majority of strain rate test results are gathered from

constant or average rate tests.




If strain rate effects on elastic properties are modeled, the governing equations of
motion become nonlinear. This is because in the constitutive model there will ba a
product Letwecen the dependent variables. That is, there will be a function of
strain rate times a differential operator on strain. Solutions of equations of this
type are solved numerically and certain numerical errors and instabilites can arise
as mentioned by Bazant and Byung '82. Furthermore, the numerical solution
- procedures arc implicit and require updated elastic coefficients at each time-step
which violates the original intent of developing a simple model. Despite these
preblems, solutions can be obtained but there is an easier procedure with the use of

stress rate.

Stress rate effects on uniaxial concrete elastic and strength properties are also
available from tests conducted by Watstein and Boresi '52. But stress rate also
involves nonlinear equations since it is proportional to strain rate. This difficulty
can be overcome by assuming that load rate is an approximation to stress rate. It
is important to keep in mind that load rate is not the same as the stress rate of the
material. The former is associated only with the external rate of increase of
loading whereas the latter involves the internal rate of response. The rate of
response is the phenomenon affecting the material but little data exists on this
rate. Therefore, the load rate is taken here as an approximation of the true

regponse rate of the material.

Use of loa’ rate is inherently more tractable since the change in elastic
coefficients in the equation of motion is explicit, i.e., it depends on the
characteristics of the external load and not internal response. Obviously, in the

real world material changes result from internal rates of straining, but from a .
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mathematical point of view load rate effacts are available from teats and are much

more convenient to work with since the equations of motion still remain linear.

3:.2,1 Strength Properties

Under the assumption that load rate and stress ate are equivalent (generally load

’ rate is only an upper bound to stress rate for impulsive loading) it is possible to
determine the enhancement in strength properties as a function of load rate. The
1 lower portion of Figure 3.3 shows normalized concrets strength as a function of i

streas rate. Letting the load rate be the same as stress rate, the enhancement of

P S

concrete strength, denoted as Q, due to load rate effects can be found from the

lower portion of Figure 3.3.

A correlation between average load rate and average strain rate can be found by
comparing the data shown in Figures 3.2 and 3.3. The strengih enhancement .
factor, 1, can be used to estimate the increase in capacity of a beam under

dynamic conditions.

It is interesting to compare the strength enhancement factors shown in Figures 3.2
and 3.3 to the dynamic increase factors (DIF) for concrete strength in a shearing
mode given in Section 2.3, This comparison reveals the possibility that concrete

strength enhancement might be higher in a direct shear mode than in a uniaxial

compressive mode.

3.2,2 tic Properties

13
B e

Again under the assumption that load rate is equivalent to stress rate, the

enhancement of the concrete elastic modulus can be determined from test data.
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The upper portion of Figure 3.3 shows normalized concrete elastic modulus as a
function of the stress rate (hereafter referred to as load rate). The concrete
elastic modulus enhancement factor, denoted as ¥, is the ordinate of the plot
shown in the upper portion of Figure 3.3.

A correlation between average strain rate and average load rate for the elastic
modulus enhancement factor also can be determined by comparing the curves in
the upper portions of Figures 3.2 and 3.3, The elastic modulus enhancement factor,
¥, can be used to approximate initial elastic properties of a beam experiencing

dynamic response.

3.3_Flexure Failure Criteria

Failure in a fiexural mode is defined here when a beam reaches its ultimate
moment capacity. Generally for fixed beams this capacity will occur at a support.
The most common expression for ultimate moment capacity, without a capacity

reduction factor, for a singly reinforced beam is given as
My = f'c w b d%(1-0.59w) (3-1)

where
f'c =uniaxial compressive =‘rength of concrete (28-day cylinder strength)
w = reinforcement index = A'g fy/bd f'c
= width of the beam
d = effective depth of the beam
A'y =area of steel on the tension side

“ fy = yleld strength of the steel
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This equation is valid as long as the steel in the cross-section is less than the steel
at a balanced design. For all the beams in this dissartation thiv condition is never
violated. Since the beams in this dissertation are actually doubly reinforced it may
be more appropriate to use the ultimate strength formula pertaining to a condition
where compression steel is present. In this case, however, the ultimate moment
computed using either approach is very nearly the same because the actual
percentage reinforcement is much less than the percentage associated with a
balanced condition. Physically this means that the centroid of the compression

steel is closs to the neutral axis of the beam so that the increase in ultimate

moment due to the compression steel is small,

Assuming the rate influence on concrete and steel to be the same, Equation (3-1) is
augmented by a factor which is dependent on the load rate influence on concrete
and steel strength. Equation (3-1) becomes,

Myr = QM (3-2)

where Mm' = yltimate moment with rate effects

Q = strength enhancement factor

3.4 Direct Shear Failure Criteria

Over the last 15-20 years considerable experimental testing and analysis has been
accomplished in the area of direct shear failures under static loads. Most of the

test specimens have involved small shear-span to depth ratios (M/Vd) in an attempt

to study near-vertical crack planes, or they have been push-off elements in which a
shear plane is predefined. Befcre selecting the direct shear failure criterion to be

27




used in thiz dissertation, a review is provided of a few of the past failure criteria in
direct shear.

For conditions of very low (M/Vd) ratios (i.o., less than 0.2), Somerville '74 argued
that, since the dominant structural action will be direct shear, some merit should
be given to a "shear friction plus cohesion” approach. This is a modificaticon of the
shear friction theory outlined by Mast '68 and later adopted by the ACI, in which
cohesion in concrete is considered and the reinforcement plays a reduced role. In
the shear friction theory the reinforcement acts as a tension membver rather than
as a dowel and the friction angle is independent of concrete strength or stress
level. The Somerville approach is shown .in Figure 3.4, where C is the apparent
cohesive strength of the concrete and tan’&; is taken to lie in the range 0.75-1.00 to
match data for very low and very high percentages of steel. This approach has
been considered by the European Committee for Concrete and test data from

Hermansen '72 exists to support the theory for low (M/Vd) ratios.

Mattock '74 points out that the "shear friction" hvpothesis leads to conservative
(low) estimates of shear transfer strength because it neglects effects such as dowel
action and the shearing off of asperities on the crack faces. An artificially high

coefficient of friction (1.4 for monolithic concrete) is used to compensate for the

neglect of these other effects. Mattock '74 further states that the shear friction
theory does not adquately reflect the mechanism of shear transfer for initially

uncracked concrete, but this difference has been discussed in this dissertation in

Chapter 2,
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In another study Mattock '74 addrossed the influence of moment across the shear
plane. He found that the action of a moment less than the {lexural ultimate
strength of a cracked section does not reduce the shear which can be transferred
across the crack. To arrive at this conclusion Mattock compared the measured
ultimate shear strength to the calculated shear strength based on two methods of
calculation — shear friction theory for a shear failure and the ultimate moment
capacity (divided by the eccentricity of loading) for a flexural failure, Mattock
determined that if the calculated strength was the lesser of the twd methods, then
in all cases the actual strength exceeded the caiculated strength. Furthermore, he
determined that the ultimate shear strength across a crack in monolithic concrete

can occur simultaneously with the ultimate flexural strength.

Hawkins '81 proposed a direct shear resistance function which relates shear
resistance to shear-slip along a crack plane whether or not an actual crack exists,
In addition to describing shear stiffness and ultimate shear, his resistance function
provides an estimate of the shear ductility up to a collapse in shear. The Hawkins
criterion in the initial elastic stage of response is based on tests conducted at the
University of Washington and the Delft Technical University where specimens were

studied for their initial shear stiffness and their ultimate shear capacity.

Inssmuch as the experimental data to be used in this dissertation (outlined in
Chapter 4) involves structures which presumably did not have a precracked shear
plane, use will be made of the Hawkin's criterion which, because of its origins, is
valid for specimens both with and without a precracked shear plane. Mattock '74
actually points out that, for high values of osfy (the roof slabs in Chapter 4 have
P 'Iy values up to 1,500 psi), the difference in ultimate capacity for initially
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cracked and initially uncracked specimens is negligible. The Hawkin's criterion can
be shown to be very similar to the concept of "shear friction plus cohesion”
postulated by Somerville '7¢.

As shown in Figure 3.5, the envelope of failure producad by a Mohr-Coulomb
criterion is a description of shear {riction with cohesion, given by the equation

Vmax = C + fs":’ tan ; (3-3)

where vpmayx = maximum shear stress
C = cohesion

'5 = internal angle of friction

From geometry it can be shown that the cohesion can be given in terms of the
concreate uniaxial tensile strength, {';, as

_ & 1esmnd
C 2 -E;-ST- (3-4)

The uniaxial tensile strength of concrete is usually expressed in terms of its
uniaxial compressive strength, {'., since the latter is used extensively in design and
testing, Quite often the split cylinder strength of concrete is used to approximate

the tensile strangth. Chen '82 estimates this value as

'F; = 7.5@- (psi) (3-5)
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Equation (3-3) then becomes

Vinax * 3.75]7:: -‘—gs-‘%i + /O"F, +an & (psi) (3-6)

‘MVQ”Vmuhh

where V, = ultimate shear capacity
pg = total percentage of steel crossing the shear plane = Ay/bh
h = beam thickness (depth)

b = beam width

The Hawkins '81 criterion is developed from tests and is given by

V, = {8]{" + O.b/os-ij bh ¢ 035£bh (psi) (31

The Hawkins criterion agrees very closely with Equations (3-6)., The upper limit on
shear stress of the Hawkins criterion (0.35 ') is higher than the upper bound for
shear friction given by ACI 318-77 (0.2 f'c or 800 psi) but the lower figure is for
design and is conservative and doesn't reflect the actual strengths, In fact the
Hawkins limit of 0.35 {'. appears conservative when compared to the upper limit
established by the U.S. Air Force AFSC '73. The Air Force limit of 0.51 f'.

however, was achieved by applying a compressive stress normal to the crack plane

during the slip process.
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Again for rapid loadings, and in the absence of data to provide a dynamic failure
criterion, Equation (3-7) is adjusted by a function to account for strength
enbancement due to load rate effects. For a dynamic direct shear failure criteria,

Equation (3-7) becomes
Vye = QVy (3-8)

where V.. = ultimate shear with rate effects

1 = strength enhancement function

3.5 _Summary
The failure criteria are an integral element in any study which seeks to determine

the resistance levels at which a structural element can no longer sustain increased
loading. Failure criteria are dependent on the mechanism of failure and as such,
can depend on geometry as well as material strength properties. In the absence of
detailed experimental studies on direct shear failures under impulsive loads, the
dynamic criteria is taken as the static criteria multiplied by a factor which is

greater than or equal to one and which accounts for an increase in resistance due

to load rate.

Experimental data on rate effects for both reinforcing steel and concrete show
random variation and variation with initial strength properties. Based on the large
scatter of data and some central tendencies, the enhancement of both concrete and
steel is assumed to be the same for strain rates above 0.1/sec. This assumption is

for exploratory purposes and can be refined further in future efforts. The
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snhancement in steel is seen to have more effect on the moment criteria than the
direct shear criteria under this assumption.

The interaction of shear and moment is complex even under static conditions.
Experimental data on reinforced concrete elements shows that ultimate direct
shear capacities are not influencad by the presence of moment up to the ultimate
flexural capacity of the elament. The interaction of shear and moment under
impulaive loads is presumed to behave the same as under static conditions.

Comparison of the strength enhancement factor 1 for dynamic uniaxial

compressive tests on concrete elements, shown in Figures 3.2 and 3.3, and the DIF
for concrete pushoff elements subjected to dynamic shear (described in Section 2.3)
shows that the latter is usually higher. This may indicate that concrete is stronger
in a shearing mode under dynamic loads than is normally revealed under standard

dynamic uniaxial test conditions.
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Chapter 4

4.1 Introduction
The data used for comparison purposes in this dissertation comes from a series of

eleven tests during the period 1981-1982 and one test in 1979 on reinforced concrete
boxes conducted by the U.S. Corps of Engineers, Waterways Experiment Station
(WES). Kiger and Slawson '82 and Kiger and Getchell '79 have documented the
available data on these tests. These tests comprise a good sample for comparison
because they were all fabricated and tested in a similar manner. The eleven tests
during the period 1981-1982 were accomplished for the expressed purpose of
studying direct shear failures in reinforced concrete elements. The twelvth test is
provided here as an illustration of a case where a flexural failure dominated the
response. Of interest in these tests was the response of the roof element of the

box-like structure near the walls, i.e., at the roof-wall interface.

The twelve tests all had known design physical characteristics and all responded in
a different fashion. Some roof elements failed in direct shear and collapsed, some
failed in direct shear and did not collapse, and one did not fail in direct shear.
Since the only variations in the tests were the load on and the strength of the roof
element, it is possible to correlate load conditions with strength characteristics in

analyzing the data.

4.2 Test Description
The test specimens are grouped into three categories, defined as Groups I, II, and

II in Table 4.1. The test configuration for the tests is shown in Figure 4.1. As
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shown in the figure the reinforced concrete elements were covered with a very
shallow layer of soil and subjected to a high-intensity blast pressure which was

uniform across the span of the test structure.

4.2.1 Test Configuration
Test specimens within each group had the same overall dimensions, fabrication

-scheme, soil cover, design concrete strength, and design steel strength. The major

variations among the groups of tests were the span-to-thickness ratio and the
reinforcement ratio. Figures 4.2 and 4.3 show cross-sectional details for the three

test groups and Table 4.2 displays the physical parameters for each group.

Each test structure was loaded with a high-explosive induced blast pressure and,
although some structures were subjected to the same design loading, the
characteristics of the loading varied among the tests. These characteristics
include the peak pressure along the span, the rise time to peak and the decay
characteristics of the pressure pulse.

4.2.2 Instrumentation

Figure 4.4 shows a typical instrumentation diagram of the WES tests. Active
interface pressure gages measure the pressure transferred from the soil layer
above the roof to the roof slab itself. This interface pressure phenomenon and
resulting interaction are described in Chapter 1 and Appendix A. This interface
pressure is the actual loading to which the roof element responds. Once this
pressure is specified thé effects of the soil layer can be ignored because the

interaction between s0il and structure has been taken into account.
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Active steel strain gages on the longitudinal steel were used -in all tests to measure
the response of the structure. In addition, in Group II and III tests high-speed
photography was used to record the response of the underside of the roof. This
photography shows the response of the roof after failure in direct shear, where the
roof slib moves away from the supports as a rigid-body. Finally, in Group II and III
tests passive scratch gages on the steel reinforcing is available to estimate the

maximum strains exhibited in the steel in the roof.

A correlation of the active steel strain data and the interface pressure data reveals
the type of failure mode (direct shear, flexure, etc.) and the approximate time of
failure. For direct shear, the failure level is defined as the peak pressure along the

span which existed prior to the initial "slip” of the roof slab along a shear plane.

4.3 Data Analysis
Figures 4.5 through 4.11 show post-test photographs of those test structures

believed to have failed in direct shear at the roof-to-wall interface and seen to
have subsequently collapsed. In all these cuses the failure plane is vertical or near
vertical and the roof is completely severed from the walls., Figures 4.12 through
4.15 show post-test photographs of those structures which did not coliapse, but still
are believed to have failed in direct shear. The twelvth specimen, designated FH1
and reported by Kiger and Getchell '79, did not fail in direct shear. Figure 4.16
shows a schematic of the post test condition of FH1. The roof slab in this test
responded in flexure and did experience some structural damage as shown. These
presumptions of fallure type are determined from the interface pressure readings

which will bs described next,
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4.3.1 Interface Pressure

Typically the interface pressure measurements are available at three locations
along the roof spun. Figure 4.4 show these locations. The readings at the location
over a wall give an idea of the pressure time distribution over a point that moves
very little, i.e., a2 nearly rigid boundary. This case can te thought of as a limiting
condition for a rigid slab (see discussion in Apperdix A). Another pressure
measurement point is at the centerline of the slab. These readings truly reveal the
interacticn effect caused by a flexible slab, i.e., the slab centerline initiaily
undergoes the most movement along the slab. Finally, the third reading is on the
slab just interior to a supporting wall. This reading is important because it reveals
the nature of the response of the slab., If this measurement closely resembles the
measurement over a wall it shows that the response is likely to be flexure or
flexure~shear, If on the other hand this near-support measurement closely
resembles the readings at the slab centerline it is likely that a slip along a crack-~
plane has occurred near the support. This is because the only way the interface
pressure near the support can decay as quickly as the pressure at the centerline
decays (which is much faster than the pressure decay over a wall) is for the slab
near the support to move away from the overlying soil as quickly as the centerline
moves away from the soil. This indicates a "slip" condition (see Section 2.1) and

very clearly reveals a direct shear failure.

The schematic in Figure 4.17a shows a condition where a direct shear failure is not
indicated. Initially all three pressure readings rise to the same approximate peak
value with the same rise time. This is the interface pressure discussed in
Chapter 1 and Appendix A. DBeyond the peak pressure the three measurements
begin to differ. At the span center the pressure hegins to drop quickly as the roof
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begins to move downward away from the soil. At the mezasurement over the wall
the decay characteristics after pesak pressure are much slower than at the center,
indicating that the load cver the wall stays at a relatively higher level, reflecting
the near-rigid condition over the wall. And the readings over the span near the
support show a decay after peak pressure that is slower than at the span center,
indicating that this point is also undergoing very little miovement away from the
soil. Then the displacement profile along the span probably looks something like a
fixed-ended beam responding in the first flexural mode. A specific example of a
flexural response is seen in the interface pressure readings of the FHI1 structure,

shown in Figure 4.18.

On the other hand, Figure 4.17b shows a condition of a probable direct shear failure
with subsequent collapse. Again, all three pressure readings rise to the same
approximate peak in about the same length of time. The pressure readings at the
span center and over the structure wall are about the same as in the previously
discussed case. However, the pressure reading over the span near the support
shows a marked difference from the previous case. Here, after peak pressire is
attained, the pressure decays very rapidly as does the pressure reading at the span
center. This sudden drop in pressure indicates the roof at this location is moving
away from the soil much more quickly than the whole structure is moving down as
a rigid-body (this rigid-body motion can be ccrrelated to the vertical pressure over
the wall), Interface pressure readings for test structure DSl-1, shown in Figure

4.19, reveal an initial direct shear failure.

Evidence of the subsequent collapse of the roof element shown schematically in
Figure 4.17b is also provided in the interface pressure readings. After the pressure
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bas decayed to szero, or near zero, there is a small interval-of time in which the
load stays at thia low level and then th« pressure suddenly jumps up slightly. This
effect is termed "reloading” and it corvesponds to the case where the soil
overburden, having been previously ssparated from the roof span, moves downward
until it "catches up" with the roof slab and recontacts or reloads this surface.
Because the shear resistance impedes the downward slip, the momentum of the slab
is reduced and the velocity of the slab becomes lower than the velocity of the soil
and eventual recontact is established. In cases where the slab actually collapsed,
thers was sufficient impulse in the interface pressure after "reload” not only to

overcome the aggregate interlock and dowel action but to break the longitudinal

steel in a membrane-type mechanism of the slab.

Figure 4.17c shows a condition where the initial failure was probably in direct
: v . shear but there was no subsequent collapse. In this case the pressure readings at
all three locations along the roof span are similar to those in the previous case of a
‘ x catastrophic direct-shear failure (collapse). However, after recontact was
established there was apparently insufficient impulse left in the load pulae- to
cvercome the combined mechanisms alluded to in the previous paragraph. This is
evidenced by the reload magnitude to remain at a significant level. These features
can be seen in the interface pressure measurements of test structure DS1-3, shown
f in Figure 4.20. For the purposes of this dissertation the two response conditions
shown in Figure 4.17b and Figure 4.17¢ can both be designated as initial or
incipient direct shear failures.

Table 4.3 summarizes the average peak interface pressure and approximate rise

T AT
Sy

g . time experienced in all twleve test specimens. These peak pressures are those
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which existed on the roof slab pricr to failure in a particular mode. These test
results will be used later in Chapter 5 as a comparison to elastic beam analyses.

4, A t P

The interface pressure data outlined above provide an indication of the time to
failure and the external load level at failure. The loading data do not reveal,
however, the internal state of stress creating the failure mechunism. For a direct-
shear failure mechanism it is necessary to determine if shearing stresses dominate
over bending stresses in the early time prior to fallure. Active strain
measurements in the longitudinal steel can provide the necessary information
regarding whether a shearing action or flexure action is occurring, Unfortunately,
the strain records for very early times associated with a slip phenomenon are
subject to high data recording noise and the response in this region is indiscernable,
However, strains beyond an initial shear failure do provide information on whether

a flexure or a membrane mode of response is indicated.

For a fixed-end beam undergoing downward motion of the first flexural mode, the
bending moment at the support will create a stress condition where axial strains
near the top fibers of the beam will be in tension and the axial strains near the
bottom fibers will be in compression. At the center of the bearm (again assuming
the beam to be moving downwazd in the first mode, i.e., the first quarter cycle of
response) the stress-strain condition will be reversed. That is, there will be

compressive strains near the top of the beam and tensile strains near the bottow.

For a beam responding in a membrai.e mode, after a direct shear failure creates a

shear zone at the support, the axial strains at both the top and bottom fibers in the
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beam will be in tension. This arises from the {act that in a membrane mode beam
fibers are in simple tension. Figure ¢.19 shows active longitudinal steel strain
measuremants in the roof elemsnt of test structure DS1-1. On the strain diagrams
positive strain values denote tension and negative values are compression. The
strains in Figure 4.19 show predominant tension for both bottom and top steel at
the right support beyond 2.5 williseconds. All the measurements exhibit an
+ oscillatory ctaracter, especially at early times (Le., loss than 1 msec); because the
higher modes of vibration may have contributed to the responss and because of
signal noise. This specific test structure failed initially in direct shear and

subsequently collapsed.

Figure 4.18 shows active strain measurements for test structure FH1. Here, the
strains at the center are primarily compression on the top and tension on the
bottom indicating a predominant flexural response. This test structure did not fail
in direct shear, but apparently developed flexural hinges,

After a slab fails in direct shear, as discussed earlier, there is a time interval
whezre the load is reduced to near zero. At this stage the slab still has momentum
and the steel reinforcing enters a membrane mode where both top and bottom bars
are being stretched in tension. This resistance to steel stretching and the
frictional resistance provided along the shear zone slows the slab down and allows
the scil to "reload” the slab. Now with more load on the slab and a plastic shear
hinge formed at the shear zone the steel strains increase at a much faster rate.
The steel strains increase until either the impulse on the slab disappears or the
reinforcing bars break and the slab collapses. An example of this later-time
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(beyond 1 msec) phenomenon, where the slab does not collapse, can be seen in the
tension strain readings at the support of test structure DS1-3 in Figure 4.20.

F M t
Measurements of the roof slab response after an initial direct shear failure can be
found in permanent steel strains from passive scratch gages and in high-speed
photography of the underside of the roof slab. The permanent steel strain data
gives an indication of the magnitude of the large inelastic strains reached before
collapse and the distribution of these strains along the span. Figures 4.21a and
4.22a show sample data of this type for test specimens DS2-1 and DS2-5,
respectively. The high speed photographic data provides an indication of the times
associated with very large deformations beyond failure and a visual description of
the post failure modes of response., Figures 4.21b and 4.22b show the slab
displacement profiles versus time for test specimens DS2-1 and DS2-5,

respectively.

Generally, the data shows that after direct shear failure the slab behaves according
to a mix of three different response modes. First there is a shear deformation
mode at the slab ends which provides for a near-rigid body response over the slab.
Second, the slab behaves in a membrane mode in which the steel in the shear zones
near the supports is being pulled in tension. And third, the slab behaves in a
flexural mode because of residual bending strength, with the response similar to
that of a simply supported beam.
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All three of these modes occur together to various degrees in the post failure
regimes of slab responss. The data in Figures 4.2]1 and 4.22 clearly reveal these
different modes and their occurrence in the respouse history.

4.4 _Summary

Data {rom twelve high explosive pressure testz on reinforced concrete one-way
‘roof slabs are presanted. Slab surface loading versus timw is provided by interface
pressure readings, and slab response is documented by active and passive steel
strain measurements and high-speed photography. Indications of early time (less
than 1 msec) direct shear failure are provided by interface pressure measurements.

Response after incipient shear failure can be seen in strain measurements and high-
speed photographic documentation. Test evidence indicates that eleven slabs
failed initially in direct shear and one slab failed in flexure.
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Chapter 5
Elagtic Beam Theory

5.1 Introduction

In this dissertation, the primary objective of the analysis of direct shear failures in
beams and one-way slabs under distributed impulsive loads is to determine how the
load and resistance parameters influence the failure modes discussed in Chapter 3.
Because the experimental data does not discern the very early time relationship
batween shear and flexure, a model capable of assessing both these actions is
needed. In order to make the analysis mathematically tractable an elastic one-
dimensional theory is desired. In this study the well known Timoshenko beam is
used as the analytic model. The major assumptions involved in the use of this

model have been summarized in Section 1.3.

The most important assumption involves the use of an elastic theory to describe
beam response prior to failure. Generally, concrete is presumed to be elastic until
cracking takes place, after which it is assumed to be beyond the elastic stage.
However, this dissertation assumes that elastic beam thecry can adequately
represent beam behavior to the point of an incipient shear failure. This assumption
can be justified by the following reasoning. First, experimental results show direct
shear failures tend to be brittle, indicating elastic response prior to extensive
cracking., Second, response times to failure are so short (less than 1 msec) that
excessive deformations associated with inelastic behavior are never realized.
Furthermore, the elastic studies described in this dissertation can be used as a

point of departure for future efforts which may study inelastic failure mechanisms,
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Two extensions to the current Timoshenko theory are addressed in this study.
First, the influence of a variable beam-end rotational stiffness (beam-end
restraint) on direct shear failure is investigated. And second, the elastic theory is
expanded to include viscoelastic material properties in order to investigate strain

rate effects on direct shear failure.

Failure curves showing the effects of load parameters on the direct shear failure
domain for specific beam geometries are developed using the elastic Timoshenko
theory. These curves identify the range of load parameters within which an
incipient direct shear failure is indicated by analysis. The expression "incipient
direct shear failure" refers to the maximum support shear force that a beam
member can sustain in a direct shear failure mode. The failure curves will show

the effects of load rate on the direct shear failure domain.

Load parameters obtained from experiments are compared to analytic results with

the use of failure curves developed for the rates of loading seen in the tests. This

T T BT i oy

comparison reveals the adequacy of the elastic beam models and serves to highlight

5 areas requiring further work.

Finally, a simple shear beam is introduced as a substitute for the Timoshenko beam
. for purposes of predicting shearing forces. The two different theories (shear beam
% and Timoshenko beam) are compared to determine the special conditions of the
loading, beam-end restraints, and strain rates under which they provide comparable

support shear forces.
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The classical one~dimensional Bernoulli-Euler theory for flexural vibrations of
elastic beams becomes an inadequate model when higher modes need to be
considered. Lamb 'l7 first recognized that this theory was not suitable for
transverse impulsive-type loadings because the propagation velocity of the
disturbance approaches infinity as its wave-length approaches zero. Both rotary
inertia and shearing deformations become increasingly important in the higher
modes. Rayleigh, in 1877, extended the theory to account for the effect of rotary
inertia and Timoshenko '21 augmented the equations to include the effect of
transverse-shear deformation. (The contributions of rotary inertia and transverse-
shear deformations usually attributed to Lord Rayleigh and Stephen Timoshenko,
respectively, were originally outlined by M. Breese, 1859.) Both of these
corrections depend on the cross-sectional properties of the beam. Timoshenko also
showed that a finite propagation velocity along the beam was predicted regardless

of the size of the wave length.

In analyzing the conditions when shear exceeds bending moment in a beam model,
the analysis to follow on the Timoshenko beam is divided into three major sections.
The first section discusses an elastic Timoshenko beam under the action of a
rapidly applied triangular load using the normal mode method. Throughout this
dissertation the interface pressure versus time profiles are approximated as shown
in Figure 5.1. The second section discusses the analysis of a Timoshenko beam,
augmented to account for strain rate effects, using Laplace transform techniques.
In this case the elastic properties of the beam are augmented by viscoelastic

properties in an attempt to model rate effects. The third section develops the
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concept of a failure curve which describes the domain of load parameters within
which a direct shear failure is indicated by analysis.

5.2.1 Normal Mode Method

Solution of the Timoshenko equations for a variety of loading and initial conditions
has been accomplished by several investigators. Colton '73 summarizes many of
these solution methods. Analysis of the Timoshenko beam under forced motions
was accomplished by Herrmann '55 who developed a general solution for time
dependent boundary conditions using the property of orthogonality of the principal
(normal) modes of free vibration. Huang '61 also provided the normal modes and
natural frequencies of free vibration for six different beam-end conditions. Bleich
and Shaw '60 discussed the early stage dominance of shear stresses in a Timoshenko
beam excited by an initial velocity distribution. This dissertation extends the
analysis of a Timoshenko beam under forced motions for an elastic support
boundary condition (Figure 5.1).

The governing equations for the elastic Timoshenko beam are limited in terms of
the response details which they can predict. This limitation arises because not all
generalized deformations are permitted in the beam theory. These limitations can
be highlighted by comparing beam theory to the exact three-dimensional theory of
elasticity. This comparison can then be used as a guide in interpreting results
based on the approximate beam theory.

In the exact three-dimensional elastic theory displacements at all points through
the beam thickness and all along the beam length are considered. This results in an
infinite number of wave propagation modes and an infinite number of
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deformational and stress states. In contrast to this is the approximation made in
beam theory where the displacement distribution through the thickness is assumed
constant and only a finite number of wave types are predicted. For example, the
Bernoulli-Euler theory predicts one wave type, that being flexural waves. The
Timoshenko theory predicts two wave types — a flexure-shear type and a
thickness-shear type. For each given type of wave an infinite number of modes

exist for a continuum.

An indicator of the applicability of the approximate beam theories is obtained by
comparing their wave dispersion relationships against similar quantities from the
exact theory. Fung '65 and Crandall '68 discuss and analyze the dispersion
relationships of beam theories and compare them to the exact theory. The so
called dispersion equation can be derived by substituting a sinusoidal wave solution
(a sinusoid is an exact solution only for an infinite beam but studies show it to
produce adequate results for short beams) into the governing homogeneous
differential equations of motion, The dispersion equation relates wave frequencies
and velocities to physical parameters of the beam. Relationships like those shown
in Figure 5.2 can also be derived between wave velocities and wave lengths., A

discussion of Figure 5.2 (obtained from Fung '65) is instructive,

Figure 5.2 compares elastic waves for a uniform beam of circular cross-section for
three different theories. These results are very similar to those of beams with
other simple cross sections. As seen the elementary theory of Bernoulli-Euler is
valid only for very large wavelengths. In the curves for the Timoshenko theory the
lower curve corresponds to the flexure-shear waves and the upper curve

corresponds to the thickness-shear waves. As seen, the Timoshenko theory agrees
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very well with the exact theory for the flexure-shear waves, but the agreement for .
the thickness-shear waves becomes worse as the wavelength A gets smaller than
the thickness of the beam. This conclusion was also reached by Colton '73. As the
wavelength approaches zero (i.e., very high frequencies) the velocity of the
flexure-shear waves approaches the shear wave speed and the velocity of
thickness-shear waves approaches the speed of longitudinal waves in a uniform bar.
At the other extreme, as the wavelength approaches infinity, the flexure-shear
wave velocity approaches zero and the thickness-shear wave velocity approaches
infinity., These limiting conditions have physical interpretations which are shown in

Figure 5.3.

Since the wavelength, wavespeed, and wave frequency all are related it is possible
to find the frequency above which the Timoshenko theory no longer agrees closely
with the exact theory. Figure 5.4 shows a plot of the frequency versus wavelength
relationship for the two types of wave propagation. As mentioned earlier for
wavelengths greater than approximately the thickness of the beam discrepancies
develop between the Timoshenko and exact theories. Using the frequency
relationship w = 27c/A and the wave velocity of the exact theory at a wavelength
equal to the beam thickness, as shown in Figure 5.2, the frequency corresponding to
that wavelength is roughly w = 2mcy/A where c, is the longitudinal wave speed.
Again referring to Figure 5.4, the frequency corresponding to an infinite

wavelength and the thickness-shear waves is called the first thickness-shear

frequency.

The following Timoshenko beam model includes forced motions arising from a

transverse load along the span and from applied moments arising from surface
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shear tractions as reported in Herrmann '55. However, after deriving the solution
the applied moments are neglected, i.e., set equal to zero, since only transverse

loads are of interest in this dissertation,

The deformation of a Timoshenko beam is specified by two dependent variables: vy,
the transverse deflection and ¢, the angle of rotation of the cross section due to
bending. However, due to the presence of a shearing force, the total rotation of
the cross section, denoted as y', also includes a shear angle Yxy- The total slope,

shown in Figure 5.5a, is given by
!
y= &+ Yy (5-1)

Figure 5.5b shows a free body diagram of an infinitesimal element of the beam

under dynamic equilibvium with the D'Alembert inertial forces.

Forced motions of a Timoshenko beam can be described completely by the force-

deformation relations

M= -EI¢ (5-2)
V= KAG (y'-¢)

by the equations of motion (see Figure 5.5)
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rl (5-3)

Vi (y "4’) + '3%& =y
by the boundary conditions

y(o,t) = 0

47(0,1:) 'M"{z(&ﬂ (5-4)
y(L,t)

4""5*) * -M—.(é.':l_t.l.

"

it

o

and by the initial conditions

'j(xgo) = ‘3(":0\ =0 (5-5)
¢ (x,0) = cf>(x,o) =0

In the equations above and throughout the remainder of this dissertation
differentiation of the dependant variables (y and ¢) with respect to x, the distance
along the beam, is denoted by (') and differentiation of the dependent variables
with respect to time t, is denoted by (). The symbols are defined in the List of
Symbols.

Mindlin and Deresiewiez '54 pointed out that the shear force is a function of the
shear coefficient, k', where k' relates the average shear stress on a beam section to
the product of the shear modulus and the shear strain at the neutral axis. This

coefficient depends on the distribution of shear stress on a section and, hence, on
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the shape of the cross section as Timoshenko '21 observed. Mindlin and
Deresiewicz correctly observed that the distribution of shear stress on a secticn
also depends on the mode shape of vibration and that, whereas the maximum shear
stress occurs at the neutral axis for the low modes of motion, the shear stress is a
minimum at the neutral axis for very high modes of vibration. Thus, k' is also
strongly influenced by the frequency of vibration and, hence, should be varied as a
function of frequency rather than be taken as a constant as is normally done in a

conventional analysis.

Mindlin 'S1 has shown that the shear coefficient calculated from the fiest
thickness-shear frequency provides good results for both low and high frequencies.
This coefficient can be calculated by equating the first thickness-shear frequencies
obtained from the Timoshenko beam equations and the exact three-dimensional
equations of an elastic body. This was accomplished by Mindlin and results in the

following relationship for a rectangular cross-section:

w'z _f_f‘:",_-:%'_g (5-6)

where ¢ = (G/p)# and h is the thickness of the beam. Equation (5-6) results in a

value k' = 0,822 which compares .losely to the shear coefficient used for the static

case which is 0.833.
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The normal modes and natural frequencies are determined from the homogeneous
differential equations of motion and the boundary conditions, i.e. q and M, are sat
to zero in Equations (5-3). The solution is in the form

y(xt) = Y(x) éiwt
$(xt) = bt (5-7)

The equations of motion and boundary conditions are satisfied for aa infinite set of
discrete frequencies w,, each of which correspends to a mode shape given by
functions Y,(x) and ®,4(x). Substituting Equations (5-7) into the homogenecous

versions of Equations (5-3) yields
ca (Y- &') - -l Y,

" . k‘ ' = - 2 éﬂ
paEy ¢ Ka(Ta-%) = Spen

where B = 2(1+v), Here the constant 8 relates the Young's and Shear modulus for

(5-8)

elastic behavior as a function of Poisson's ratio, v, for the material.

The solution to Equations (5-8) can be found as

Y= C.coshex + Gy Sinhgx + Gy cos¥x + C, Sin¥x

(5-9)
$ = Cisinhgx + C,coshsx + Cy'sin¥x + C, cos ¥
where '
- {m . L { ()" + ‘:‘.‘slm}"‘} "
? 2 z r'A (5-10)
y= [ MM «L{mm) + gk'vr,J'/z h
= 2 rA r'-,s
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The parameters ¥, in Equations (5-10) are given by

™, ““.ﬂrw,,_:
T kG
2 l+ K (5-11)
ﬁ'
Trs H I-— k_

Ounly four of the eight constants in Equations (5-9) are independent. The
relationship among the eight constants can be found from either of Equations (5-8)

as follows:

C.= KC,

C,* K,C,

Cs == Kl C;

C4= ch; (5-12)
where

Ka L{i-rm-o 1}

' ?L( Tél§ (5-13)

Ky L{1-rtT,+) F‘}

. r{ ra




Application of the boundary conditions, Equations (5-4), and the relations. of
integration constants, Equations (5-12, 5-13), to Equations (5-9) ylelds a set of four
homogeneous linear algebraic equations in four constants Cy' to C4'. For solutions
other than the trivial case to exist, the determinant of the coefficients of each of
the four constants must eque! zero. This results in the following characteristic
equation, from which the natural frequencies w, can be determined:

2(t- coshgL cosyL) + 26(\'+7_E_;)coshgl. sin¥l
- Ze(g + \"_ls_; )sinhgt cosYL «+ (5-14)

i

{29"{{ + %(l.png") + .:.:i (Gzrtl)} s'mhilsiﬂn. =0

where 6 = EI/R.
Note that when the beam-end restraint approaches infinity, R—-p®, the frequency
Equation (5-14) should decay to the case for a fixed-2nd beam. That it does can be

verified in Huang '61,

The normal modes, Y, and 9,, for each natural frequency can be obtained, to

within an arbitrary constant, from the same four homogeneous equations that

determined the frequency equation. These modes are given as
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Y.\(x) = C,K, {Coshfx +/«sinh1x + ’l'sin ¥ - cos B’x}

(5-15)
$ (x) = C.{/«cashgx + sinkﬁx + .E_-_ sin¥x + Scos ¥x
2

where
= | Kcos¥lL -~ K.Cosl\qL— ek, (f + YK, )s'm rl
M — A
K.smkiL - Ky Sin¥L

¢'= .E:.:(Gf'/u) + OY
b 9(7-:»3’}_(_!) - M

Ky,

and the constant Cj is arbitrary.

To solve Equations (5-3) for forced motions using the normal mode method, the
applied actions (forces or moments) are expanded into a series inveolving the normal
modes. To do this the property of orthogonality of the principal modes of free

vibration must be established. This has been done by Herrmann '55 and is given by

jl. (YnYm + rt ?n é..,)dx =0 ) mf" (5-16)

The solution to the forced motion case is given in the form

y(x,t) = Z Y (x) T () (5-'17>

$ x4 > B Ta(t)
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where the normal modes form a complete set. Furthermore, the applied time-

dependent actions can be expanded in the form

._QK Z Yo (x) G, (¢)

P n | (5-18)

M
;a....f§ Z éu (x) G.‘ "‘5)

Multiplying the first of Equations (5-18) by Y, multiplying the second of Equations
(5-18) by r¢ &, adding the equations term by term, integrating over the length of
the beam, and using the property of orthogonality of normal modes (Equation 5~16)

results in the determination of Gp(t):

- T
G, (¢) = j, (/ﬁiY" * -'-'/;-’I!‘-S- ‘I’n)dx
SL(Y.\z + f"@:)dx o

Therefore, Equations (5-3) can be rewritten in terms of a series expansion in the
normal modes. Substituting Equations (5-8), (5-17) and (5-18) into Equations (5-3)
and equating the nth term in the infinite series, produces the following equations:

-w.’{ Yv.Tn + G-\Yv\ = Yu:r.;\
“'w: &..T;\ + Gn éﬂ s én:':n

(5-20)
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Two identical equations for T, result from Equations (5-20)

-.f:\ "’“’:Tn = Qn

(5-21)
the solution of which is given by
t
To= Ancoswt + B, sinwyt + TL_" G, (T)sinw, (t-T)dt -2
o

Application of the initial conditions, given in Equations (5-5), determines the values
of the constants of integration to be A, = 0 and B, = 0. Finally, the complete
solution to the Timoshenko beam for forced vibrations with homogeneous initial

conditions is

Y& = ) Yolx) | Gutwsin, (¢-)de

(5~23)

$lx,t) = Z éa%}_ S:G..(t)siv\w, (t-T)dT

It is now a simple matter to go back to Equation (5-19) and let Mg = 0 for the case

to be studied in this dissertation.

5.2.1.2 Thickness-Shear Modes

The natural frequency spectrum of a beam changes at the first thickness-shear
mode. This frequency, denoted as w' and shown in Figure 5.4, is the lowest
frequency at which an infinite beam can vibrate with no transverse deflection, the
dispacement being entirely parallel to the axis of the beam, i.e. an inplane shear
mode as seen in Figure 5.3. The change in the frequency spectrum at w' occurs
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when the frequencies of the first thickness-shear mode become strongly coupled
with the flexure~-shear mode of metion.

Mindlin 'S1 points out that the thickness-shear modes do not physically exist in
finite length supported beams. The resonances in the bounded beam, referred to as
thickness~shear and its overtones, are actually local regions in the spectrum of
flexural resonances over which the frequency does not change as quickly as other
regions in the spectrum with change in beam dimensions. Furthermore, since
shearing deformation is always present in f[lexural motion, these flexural
resonances can be developed by forcing shearing deformations in the beam at the

resonant flexural frequencies.

This change in the frequency spectrum occurs when the expression inside the outer

brackets of the first of Equations (5-10) becomes negative, or when
(mm)s 4w 1 5 mw
r'-/s
The condition expressed by Equation (5-24) occurs at the first thickness-shear

frequency.

For frequencies highét than the first thickness-shear frequency the solution of

Equations (5-3) changes and Equations (5-9) become

Y= C, cos{x +J’C,_sin§'x + Caycos¥x + C4sin¥x
' . (5-25)
@‘jC. Singx + C,_'cosg'x + Cysint + €, cos ¥x
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Equations (5-11) and (5-12) remain unchanged. The first of Equations (5-13)

becones

K'= £ [1- FT o+ ot
f' { ! -EAf } | ' (5-27)
and the frequency Equation (5-14) changes to
Z(I- cosg'l. casrL) + 29(‘(- {"_‘5) cos§L sin¥l
Kl

\

+29(§ YK, )sinﬁ'Lcos)’L -
K,_ (5-28)
{29 Xg + ll:.z (l eg") + I‘E,, (l- 9‘)")} sinﬁ'Ls'mrL =0

The normal modes, Y, and ¢,, also change at frequencies higher than the first

thickness-shear mode. Equations (5-15) become

Y. ()= ¢, 1 Cosgx + u'sing + PSin¥x - cos Tx}
{5-29)
& (x)» C f/u CoSEX - SINEX + K, sin¥ + ScosYx}
Kz

o {Cosl’L - COSf‘L - 9("" ﬁ'-'é.‘,’-.)sin YL }

sin?'L - Kr sin¥L
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and again the constant C; is arbitrary. The process now remains unchanged for
Equations (5-16) through (5-23).

5.2.1.3 Convergence
Inasmuch as Equations (5-23) are normal mode representations of the beam

response, a very important issue in numerical calculations is the issue of
convergence. An exact analysis would include an infinite number of normal modes
as denoted by the summation sign in Equations (5-23). Practically, however, the
analysis has to be truncated at some mode to be numerically feasible. This
truncation usually occurs when the differences in y or ¢ at two consecutive modes
is acceptably small or when their values approach some convergent value with the

inclusion of ever-higher modal contributions.

Since Equations (5-23) also involve the loading function q(t), any issues involving
convergence must consider the frequency content of the loading. Obviously, load
pulses with short rise times will excite higher frequency modes than pulses with
long rise times. To show the influence of load pulse shape on frequency, the
Fourier transform is used to determine the frequency content of the loading. The
Fourier amplitude spectrum shows the relative energy in the frequencies inherent
in the load pulse. Figures 5.6 and 5.7 are normalized spectra in which all
amplitudes are normalized with respect to the Fourier amplitude at zero
frequency, The Fourier amplitude | X(w)| is determined by the following
relationship (see Newland '75)

|X(w)| = iA'(w) . 5‘(@}"*- -30)
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where  A(w) = L S q(8) cos wt dt
2T

o0
Blw) = (¢) sin wt dt
) o i Q ) sin

Figure 5.6 shows the amplitude spectrum for a triangular load pulse with a duration
of 0.6 msec, and different rise times. For the frequency range shown the curves
are identical for peak pressures above 1,000 psi. Figure 5.7 shows the same
information for a load duration 2 msec. The range of load durations from 0.6 msec
to 2 msec encompasses all the interface pressure data presented in Chapter 4.
Figures 5.6 and 5.7 show that frequencies above 100000 rad/sec generally have less

than a 5% contribution to the frequency content of the load.

Computer studies of the convergence issue show that frequencies beyond that
associated with the 215! mode (generally less than 90000 rad/sec for all cases
studied here) have negligible influence on the shear force at the support. For the
remainder of the normal mode section, therefore, the 215t mode is presumed to
represent convergence. Convergence for the bending moment at the support

generally is attained at a much lower mode.

5.2.1.4 Shear and Moment Analysis
To compare the bending moment M and the transverse shear force V in the beam at

the support, where direct shear failures likely take place, Equations (5-2) and (5-23)
ave combined and evaluated at x = 0, resulting in the following equations for M and

V:
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, ¢
M(ot) = -EIZ £, JG..(t)sinw..(t-t)dt

° (5~31)

, t
V(o,t) = kAG EY" ‘°3‘;n4’n‘°) 5 G (t) Sinw, (£-T) dT

Values of M and V can be computed using the results of the previously discussed
normal mode solution. In order to identify the likelihood of a direct shear failure,
a comparison is made between normalized shear and moment as a function of time.
The moment and shear are normalized to their respective strength capacities, M,

and V,; as defined by the failure criteria given by Equations (3~-2) and (3-8). It is
then possible to determine whether the beam is expected to fail in direct shear
before it fails in flexure (i.e., the normalized shear exceeds a value of 1 before the

normalized moment exceeds 1),

For purposes of shear and moment comparisons in all of Section 5.2, a beam similar
to the roof element of the Group III test structures is used as a model, The
nominal mechanical and geometric properties of this example beam are given in

Table 5.1.

The following paragraphs discuss results obtained from Equations (5-31) on the
relationship between the normalized shear and the normalized moment at the
support for different parameters of the loading applied to the Timoshenko beam

model and for different beam-end restraints.

Figures 5.8 and 5.9 show plots of normalized support shear (V/Vy,) and normalized

support bending moment (M/M,;) versus time for two different peak pressures for
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the example elastic beam. The plots are for a fixed beam-end condition and for a
given rise time and load duration as shown.

The curves in Figures 5.8 amd 5.9 are theoretical because as soon as either ratio
V/Vy or M/M,, exceeds a value of 1 the beam is presumed to have reached its
ultimate capacity and is no longer elastic. Several interesting aspects of
theocretical beam behavior can be seen in these plots. In these figures the time at
which V/V,; = 1 is denoted as t' and the time at which M/M,; = 1 is denoted at t".
At early times the normalized shear curves increase at a higher rate than the
normalized moment curves. However, at later times the normalized moment
curves increase faster than the normalized shear curves. Therefore, the
occurrence of failure in either direct shear or bending depends on whether the
failure threshold (V/V, and M/My equals one) intersects these curves at an early or
a later time, respectively. For example, Figure 5.8 shows a condition where an
early time direct shear failure is indicated (t' < t") and Figure 5.9 shows a condition
where a bending failure is indicated (t' > t"), Figure 5.9 shows that for some peak
pressure (generally less than about 2000 psi for the rise time and duration shown

here) the ultimate shear capacity will not be attained before the ultimate moment

capacity is reached, or t" < t'.

The influence of peak pressure, rise time, and pulse duration on the times t' and t"
can be sean in Figures 5,10 and 5.11, respectively. Figure 5.10 shows the
relationship of t' versus peak pressure for different rise times for a fixed beam-end
condition. The figure shows that, for a given peak pressure, t' increases is rise
time increases. Moreover, for a constant rise time, t' decreases as the peak

pressure increases. Also, as the peak pressure drops below about 1200 psi the time
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t' gets exceedingly large, indicating thai a shear failure will not occur because of
the lack of sufficient loading to cause the cendition V = V,,, Figure 5.11 shows
similar information for the parameter t". Both Figures 5.10 and 5.11 are for a load
duration of 1 millisacond (1 msec). However, the plots show little variation for
load pulse durations greater than about 0.5 msec. These relationships are

developed into direct shear failure curves in Section 5.2.3.

The degree of the restraint at the beam-ends, shown schematically in Figure 5.1, is
another :mportant parameter regarding the possibility of achieving a dire! she..
failure. Figure 5.12 shows a plot of normalized support shear ana moment ver,uy
time for the example beam for a beam-end restraint stiffness of R = 4EI/L. . us
restra.nt corresponds to the rotational resistance offered by a wall with the same
properties and length as the beam as shown in the schematic in Figure 5.1¢. The
curves in Figurs 5.12 show the influence of end restraint on the time parameters
t'and t". Both these parameters increase when compared to the values associated
with a fixed beam-end condition (see Figure 5.8). Figure 5.12 also shows that in
early time, shear forces become more dominant over bending moments at the

support as the beam-end restraint decreases.

5.2.2 Rate Effects on Response
Under the rapid rates of loading and strain that occur in impulsive tests, the

material strengths and elastic properties of reinforcing steel and concrete are
greater than they are under static load tests. Bazant and Byung '82 provide an
excellent bibliographv on basic data regarding the dynamic properties of concrete
and steel (like the uniaxial compressive s*rength, the tensile yield strength, and the
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modulus of elasticity) as a function of strain rate. Information on load rate effects

on elastic and strength properties is given by Watstein and Bovesi 'S2.

Two approaches are outlined here [or modeling rate effects on beam response. The
first approach models atrain rate effects by using viscoelastic constitutive
celationships in the Timoshenko beam equations of motion. The viscoelastic
relation used is that of a Voight (also called Kelvin) solid, and is schematically
shown along with the stress-strain characteristics in Figure 5.13. This approach,
although intuitively plausible, has limitations because the viscous parameter (shown
in the figure as n) is not constant over a large range of strain rates, The second
approach, based on load rate, simply employs the results of Section 5.2.1 and alters

the beam wmaterial properties to account for rate influence.

T Straie Flote
No pr=.ious study or analysis has icep found on the forced or free vibration of a
Timoshenko Leam with linear viscoelas'ic cunstitutive properties. In developing
the viscoelastic Timoshenko beam it is assumed that the proporiiona’t, parameter
for the strain rate terms is a constant during the time domain of interest. Sincz
the analytic time span of interest is a very short time (less than 0.2 msec) this
assumption should be acceptable. Certainly, strain rate is a function of the
response history and when the strain rate changes, so too should the viscous
Jroportionality constant. However, the general trends showing “*»2in rate
influence on shear and moment should be apparent even with the assumption of a
constant rate parameter. Moreover, it is also assumed that the rate effects in

shear and moment are linearly related by the same conatant, B, as is the

relationship between Young's modulus and the shear modulus. In particular, if a'is
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the viscous coefficient for a compressive strain rate, then n = a“/8 is the viscous
coefficient for a shear-strain vate. This should be valid for the linear elastic case.

For the Timoshenko beam the viscoelastic counterparts of Equations (5-2) are,

M

-1554:'”'43'} - -Arafad +q43'§
Ve eafaly-4) « q(§-4)]

where t; ’ d.>' » and y' are generalized strain rate terms. Equations (5-32) contain an

(5-32)

"

elastic part and a viscous part for both shear and moment. Since strain rate is
always a positive quantity these equations show that the viscoelastic stiffness is
always greater than or equal to (for zero strain rate) the elastic case. This
condition is seen in rate application tests for both concrete and steel. Hence, the

viscous term accounts for an increase in stiffness due to rate effects.
The viscoelastic form of Equations (5-3) is now (for the case Mg = 0),

UG ly-4)+ Kh(f-F) + wp (s@7en ") 0 o
kAG (y'-¢') + k'A'r((g"- 4>') - /oAg = g

In order to make Equations (5-33) mathematically tractable, the rotary inertia

term has been neglected. This makes the first of Equations (5-33) approximate.

But considering the fact that the effects due to shear deformations are three to
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four times as large as the effects due to rotary inertia (see Timoshenko, et al '74)
it is felt the approximation is valid in order for a solution to be obtained. In fact
Mindlin '51 found that the transverse shear deformation accounted aimost entirely
for the discrepancy between the simple (Bernoulli-Euler) theory and the exzct

three-dimensional theory.

The solution of Equations (5-33), along with the houndary conditions (for this case
assumed to be those for a fixed-end beam) and initial conditions (5-5), is quite
difficult. A convergent series solution for small time (i.e., a nondimensionalized
time parameter such as Gt/n being less than 1) is not possible because of the poor
coupling between the two Equations (5-33). For example, second derivatives in
space or time on ¢ appear only in the first of Equations (5-33) and second

derivatives on y appear only in the second of Equations (5-33).

A self-siiailar solution (for a semi-infinite beam) is not possible for inhomogeneous
equations, unless the loading term is an implicit function of space and time and can
be expressed in terms of the similarity variable, A separation of variables
technique is aiso not possible since the equations are clearly not separable because

of the strain rate terms.

The method of characteristics is a possible technique if one can show that the
equations are hyperbolic (the elastic Equations 5-3 are hyperbolic as shown by
Colton "73). This is difficult to do for these equations, but »ven if the equations
are hyperbolic the solution procedure become lengthy. In order to reduce the
simultaneous third order equations to a system of first ordec equations and then to

transform the independent variables to the characteristic coordinates would
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require the anslytic evaluation of a determinant of rank six. The characteristics
also would not be straight lines, resulting in the evaluation of simultaneous
ordinary differential equations with variable coefficients.

The theory finally adopted as a solution technique is the Laplace transform method
in both space and time coordinates; that is, a double Laplace transformation with a
subsequent double inversion. Anderson '71 successfully employed this technique in
his analysis of an elastic Timoshenko beam under forced motions. He pointed out
that the advantage of the transformn method is that a series solution can be
obtained by using the theory of residues, Here, the inversions in space and time
are obtained by summing the residues about the poles of the resulting
characteristic equations in the Laplacian domain (see Wylie '75)., This residue
principle replaces the usual integration associated with the orthogonality condition

when solving the equations in normal modes.

5.2.2.1.1 Laplace Transform Solution

Since orthogonality is not valid (i.e., a harmonic solution is not possible) for the
Timoshenko beam with viscoelastic properties, a Laplace transform method is used
in conjunction with an asymptotic approximation in time to achieve a solution valid
only for very small times. In order to simplify the solution, a fixed-end beam under

the infiuence of a step-loading is studied.

The Laplace Transform method, as applied here, transforms the dependent
variables, v and ¢, using
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Ylxs) = Sc' “y(&*)df

(5-34)

'9’(?,5) e Se H(xs’)dx

with similar linear operators applying to ¢, i-e-.'s(x,s) and?(p,s). A single bar
above a variable indicates a transform in time and a double bar designates a double

transform in both time and space.

In order to satisfy the conditions of transformation in time and space all initial
conditions must be specified at a single time (usually t = 0) and all boundary
conditions must be specified at a single location (usually x = 0). This condition is
satisfied for the time domain using Equations (5-5). However, for the space domain
two additional boundary conditions at x = 0 are required (the first and second of
Equations (5-4) where R = @ are the other two). These four transformed boundary
conditions are found by taking the time Laplace transform of both Equations (5-32)
and the first two of Equations (5-4). This results in

g(o,s) z 0
¢ (9,9)
§'(0,3)

0 (5-35)

—Véo,s) + #(0,9)

3 (0s) = M(os)k
PR et

where £ = K'A(G + ns) and V(0,s), WO,S) are the tim«: Laplace transforms of the

support shear and support bending moment, respectively,
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Transforming Equations (5-33) first in time and then in space results in the
following simultaneous linear algebraic equations in the Laplace functions:;andf

P (g ”z"')’f - -
e )3 < 1 - e

Solution of Equations (5-36) gives

g - (et - (- $)ET)/°0

The roots of D(p) are given as
) .I‘l 71-
ﬁ (s) - Ast + As"{ | - 4k & } { (5-38)
P (s) ﬁ—?— Fzz " t J

The inversion of Equations (5-37) is accomplished in two sequential steps: the first
inversion in p and the second in s. Inverting first with respect to p is accomplished

using the inversion theorem or the residue theorem
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Y s | =
§ (x,5) e js_; G (p9)dp
= Z residues of epx._.j_. ( hs) at tR and th.

where "g" is chosen so that all the singular points of 'J(p,s) lie to the left of "g" on
the real line in the complex p plane. A similar operation is also accomplished for

(5-39)

-T(x,s).

Anderson '71 has shown that the residue theorem results in

L'l’ "%‘(F) = Ga(x,s) (5-40)
and

n~|

@, (x,s) = l d sinhpx - sinhpx
(r*-p2) &™'| P R

where I-'p-1 is a symbol denoting the inversion operator in the variable p and (n-1) is

the power of p in Equations (5-37). Hence, Equations (5-40) are used to invert all
terms on the right-hand sides of Equations (5-37) except those terms associated
with the distributed load q(x,t). For terms involving §(p,s) the convolution theorem
is used in the inversion process. Applying this theorem to the pertinent terms in

Equations (5~37) results in

J-‘l(xui)iil:gﬁ(us) g‘s}du (5-41)

and similarly
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B, (xs) = _Lf’ {%]%&? (5-42)
Jq(x-u s){ l/f;# G, (u s)}

For this analysis a simple step function in time and space is an adequate load
function to show the relationship between shear and moment. The load function

and its double Laplace transform is given by

qxt) = B U (e){u(x)- H(x-u}

=( 's) = p. "LP

1?) 3“{""3 } (5-43)

where H(u) = 1, u > 0 is the unit step function
- 0 ‘
Py = peak load (see Figure 5.14)

Finally, using the results from Equations (5-40) through (5-43) produces

g(x.s) = A.(x,s) + Ay(x,s)V + A (x,5) M
$(xs) = B, (x,3) + By(x3)V + B, (x,5) M

(5-44)

where

Ay(x,s) = KG(xs)/rsg - Gy(xs)/%

Ay (x,3) = K'G,(x9)/rpg

By (x,3) = A, (x,s)

By (x3) = K'Gy(x,3)/rpy - k}oAs'G,(x,s)/ofss;
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The two unknown comtants—\;and .-N-l.ue determined by using Equation (5-44) and
the boundary conditions shown as the third and fourth of Equations (5-4) where R = »
for a fixed-end beam, and by evaluating these at x = L. Solving simultaneously for

Vand El‘results in

V(O,S) = BoAs- Ao By
A‘; 64 - A‘, 6; (5-45)

M(os) = AoBy - B.Ay
Ay By —A, By

where

Ai = A (Ls) =034
B; = B; (L,5) ¢=034

Since only the ratio of V(0,t)/M(0,t) i3 of interest here, this ratio is obtained once V.
and M are inverted in the variable s. However, the expressions (5-45) are very
complicated, involving products of hyperbolic functions. Since the interest is in
achieving a solution for only a small time beyond t = 0 it is possible to use an
asymptotic approximation on s, thereby simplifying Equations (5-45) prior to
inversion. If the Laplace variable s is allowed to grow very large (corresponding to
a small time) the roots given in Equation (5-38) and the expressions in (5-45) are

simplified to

' (5) = ,
B ) i
R(sy= o©

(5-46)

and
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Vies) = _F sinhpl
sp, (coshpl-1)

Mlo,s) = Rra
sk'(cosh pl- l)

The inversion of Equations (5-47) is now accomplished using the theory of residues.

(5-47)

In both Equations (5-47) all singularities occur at the pole s = 0. However, because
both Equations (5-47) involve hyperbolic functions the order of the poles are
unknown. This is overcome by replacing the hyperbolic functions by their
Maclaurin expansions, which results in ‘

o - B (seaseasten |
st (b, +hs+bysi+

m(OIS) i} —k&%{b,i-b,s +‘bzs‘+ }

where

q,= L b, = /JLVzk'q
a, = /)L’/Gk'rl L‘ ,/,"Lyz4lé"’l"

and so forth for higher order terms of the series.

(5-48)

The denominators in Equations (5-48) identify the poles as being of second order.

Using the residue theorem the inversions are found as

V(D {) = 'l.m _é_ {stg eﬂ: [ :A°+a‘s+... ]
| $=0 ds ( s* Lb +bs+. .
5-4
= B{d-‘t +a‘—q.b.jb,}
be
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ot B3+ io

s->0 ds | k'st
= RBry { t -b/b,
Bon | 150

The ratio V/M, at the support (x = 0}, including rate effects (denoted by a subscript

z), is obtained as

Ll

V((o -3 . _%1____ t ¢+ f-r—| k"l (5-51)
Mo r L
Mg TP - 2icy

In an effort to determine whether shearing forces are enhanced more than bending
moments by the presence of rate effects, Equation (5-51) must be compared to the
same ratio determined for a fixed-end Timoshenko beam without rate effects.
Proceeding is the same manner as before, Equations (5-33) are simplified when rate
effects are ignored. These equations become

! 2 "
y‘¢f-§ﬁ.¢ =0 (5-52)

F¥ gl e

Using the same boundary conditions, Equations (5-4) with R = ®», and the same

initial conditions (5-5), Equations (5-34) through (5-45) remain exactly the same

except for the following change
$ = K'AG (5-53)
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This change (5~33) then results in a change of the rootsa (5-46) after an asymptotic

approximation on s (s ~¥=) as follows

JORP ss
ORK:

Again proceeding as before, Equation (5-47) remains unchanged and, after
Maclaurin expansions are performed on the hyperbolic functions, Equations (5-48)

become

Vios)= B {a. +a,8" +a.ste ...
! 3 1 4
$* [ b, + bs*+ b, s+

M(0,s) = 3‘3‘:%_ { ! } (5-55)

ks® (b, +bstebste.

4= L b» plY2K6
a = pl/eka b= FLY 14K
and so forth for the higher order terms.

The poles at s = 0 in Equations (5-55) are now identified as being of order three.

Now, using the residue theorem for the inversion, Equations (5-49) and (5-50)

become
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Vio,t) = L d* {ﬂé_ Qo+ Q.8 4+ - }
o) ?-s':oi?' s® [b.rb,s%-uJ (5-56)
: P {a.t"f-Za.-Za.b./b.}
7 b,

im d:_{ s Pgrre_gﬁ [ ! ] (5-57)

b, + bst+..

Substituting for the appropriate constants in Equations (5-56) and (5-57), the V/M
ratio at the support, neglecting rate effects, becotaes
1
1 _pl
) KL )t *%ie
Vi) | _
M(o,t) £t - fm‘

(5-58)

5.2.2.1.2 Flastic and Strength Effects

The purpose for obtaining the solution of the viscoelastic Timoshenko beam is to
show that, initially, rate effects have a more pronounced impact on shear than
bending moment, thereby enhancing the dominance of shear over bending moment
under rapidly applied load conditions. This dominance of shear over moment is

shown if the followiny ratio is greater than one:

(-Ny\-)l > 1 (5-59)
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where RER is the "rate effect ratio" and the numerator and denominator of
Equation (5-59) ure given by Equations (5-31) and (5-58), respactively.

Obviously, before the value of (V/M), can be computed an estimate for the shear
viscosity coefficient, n, must be available., Impact data from Watstein and Boresi
'53 relating the elastic properties of concrete to strain rate and load rate and
shown in Figures 3.2 and 3.3, is used to estimate the shear viscosity coefficient
(which has units of psi~sec). The concrete dynamic modulus of elasticity, shown in
Figures 3.2 and 3.3, corresponds to a secant modulus through a strain of 0.001.

Since these data are for samples in uniaxial compression the slope of the curve
represents the viscosity coefficient for compression, a'. The shear viscosity is
simply computed from the relation, @' = n8. For example a value of n = 100

corresponds to a strain rate of about 5/sec and an elastic modulus enhancement
factor, ¥, of approximately 1.25. Since the analysis described in this chapter relies
on a discrete value of n, selected values of this coefficient are valid only over a
short range of strain rates and load rates. This limitation presents no barrier at
this point since the RER computed by Equation (5-59) is only valid for a small

interval of time.

Figure 5.14 shows a plot of the RER versus time. The time scale has been
truncated at about 0.2 msec. This is about the time at which the denominator in
the ratio (V/M) becomes nonanalytic. This time is equivalent to the time it takes a
shear wave to travel a distance of about 40% of the beam length and is taken to be

the maximum time over which Equation (5-59) is valid.

79




1
1
|

The curves shown in Figure 5.14 correspond to three different vaiues of the shear
viscosity. Generally, the smaller the shear viscosity coeffictent the shorter is the
time during which the RER is grester than-one. This is intuitive because the
asymptotic approrimation used to derive the RER is based on the Laplace variable
"s" approaching infinity, In the time domain this corresponds to a solution near
t = 0. Since the Laplacian parameter s appears as a product ns the lawer the value n
the higher the value s required to let ns get large. Hence, 2 small shear viscosity

corresponds to a much shorter time where the RER excseds one.

The plot in Figure 5.14 clearly shows the main conclusion of this section of the
dissertation. Rate effects have a more pronounced effect on shear than on
moment during an early time in the loading history comparable to the times of

interest in this dissertation.

Figures 5.15 and 5.16 show another feature of the effect of strain rate, These are
a plot of the time parameter t' (see Section 5.2.1.4) versus peak prassure from a
step loading. In each plot one curve is for an elastic beam without rate effects and
the other is for a viscoelastic beam with n = 200 (strain rate = 1,5/sac). The curves
showing rate effects differ according to whether the ultimate shear capacity V,
was increased to account for rate effects i.e., V = V,, in Figure 5.15 versus

V = 1.5 V, in Figure 5.16. The value for the strength enhancement factor, shown as
1.5 in Figure 5.16, corresponds to a strain rate of 1.5/sec as seen from the curve
for a 6500 psi concrete in Figure 3.2. As shown, the viscoelastic curve is always
lower than the elastic curve indicating that the support shear force will reach its
failure level sooner when considering elastic rate effects than when rate effacis

are not considered. In addition, the parameter t' increases when the influesce of
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vate effects on the strength capacity is included through the use of a strength
enhancement factor. It is important to remark that the information provided in
Figures 5.14 through 5.16 is only qualitative owing to the approximations involved
in the Laplace solution procedure.

5.2.2.2 Load Rate
It is simpler to include load rate effects rather than strain rate effects in the

elastic analysis, because Equations (5~2) and (5-3) remain unaltered when load rates
are considered. There are two factors associated with load rate effects, and these
have been addressed in Chapter 3, The first is the modulus enhancement factor
and the second is the strength enhancement factor. Both these factors for load
rate are oaly approximations to the true enhancements due to rate influences. The
use of load rate as an indicator of the true rate of response (stress rate) is not
precise, Nevertheless, its use can be justified when one considers that most
available test data on dynamic material properties is based on average load rate.
Furthermore the load rate is probably an upper bound to the true rate of response

during the first quarter-cycle of vibration (generally the response period for
impulsive loads).

By assuming load rate to be equivalent to stress rate, enhancement factors for both
elastic and strength properties can be obtained from the curves shown in
Figure 3.3. When these enhancement factors are used to increase the elastic
modulns of the beam and to increase the strength capacities, in accordance with
Equations (3~2) and (3-8), curves similar to those shown in Figures 5.8 and 5.9 can
be developed. Figures 5.17 and 5.18 show the separate influence of the strength

enhancement factor § = 1.6 and the elastic modulus enhancement factor ¥ = 1.2,
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respectively, on the normalized support shear for a load rate of approximately 1 x
107 pai/sec (the associated strain rate is approximately 4/sec). In Figure 5.17 the
effect of the strength enhancement factor ia to reduce V/V, by the quantity 1/9.

In Figure 5.18 the effect of the elastic modulus enhancement factor is to alter the
frequancy content of the beam making it slightly stiffer and, hence, quicker to
respond. Although not shown here, the load rate effects on the normalized bending

moment M/M,, are the same as those just described for V/V,,.

A conclusion reached in this section on load rate is the same as that drawn in
Section 5.2.2.1 on strain rate. The parameter t' increases as the strength
enhancement factor increases and it decreases as the elastic modulus enhancement

factor increases.

On the basis of this limited study on load rate effects, it is concluded that the
major influences on t' and t" come from strength enhancement. The effect of
modulus enhancement on time to failure is very small. The results from the
analysis including strain rate (Section 5.2.2.1) show a larger decrease in time to
failure due to viscoelastic enhancement, and also show that the support shear force

is influenced more than the support bending moment.

Thus, the effect of viscous or elastic modulus enhancement is to amplify the
dominance of shear force over bending moment. In the subsequent development of
failure curves, these effects are neglected which results in conservative estimates
on the domain of direct shear failure. However, enhancement of both shear and
bending strength due to rate effects is considered in the construction of failure

curves since this effect is to restrict the domain of direct shear failure.
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5.2.3 Failure Curves
Referring to Figure 5.19a, a direct shear failure is indicated if the parameter t' is

less than the parameter t". On the other hand, direct shear failure is not indicated
when t' is larger than t", as shown in Figure 5.19b. Therefore the transition from a

predicted direct shear failure to no shear failure occurs when t' = t",

If Figures 5.10 and 5.11 are superposed, the intersection of the t' and t" curves for
each constant rise time will resuit in a series of points which describe a failure
"curve" separating the direct shear failure domain from the domain of bending
failures and no failure. Figure 5.20 shows the concept of this construction of

failure curves.

These failures curves can be plotted in a different domain from that shown in
Figure 5.20. In particular, the domain relating peak pressure P, to rise time t, is
of interest because these are the essential parameters of the impulsive loading.
Figure 5.21 is an actual plot of the failure curve for the example beam described in
Table 5.1. This curve pertains to a fixed beam~end condition, and strength
enhancement due to rate effects is negleéted. The curve in this figure separates
the peak pressure versus rise time domain into two regions. Combinations of peak
pressure and rise time which lie in the region above the curve define a loading for
which analysis indicates a direct shear failure. Points that lie in the region below
the failure curve describe load parameter combinations which will cause either a

bending failure or no failure in the beam.

Figures 5.22 and 5.23 reveal two interesting results regarding the influence of
beam-end restraint and strength enhancement, respectively, on direct shear
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failure. Figure 5.22 shows that, for a given strength enhancement factor, the
influence of beam-end restraint is small for very short load rise times. For larger
rise times the influence becomes more pronounced, and for a given rise time direct
shear failures are predicted for lower peak pressures as the degree of beam-end
restraint is reduced from the fixed-end case. In Figure 5.23, for a given end
restraint condition, the influence of strength enhancement is to restrict the domain
for direct shear failure by moving the failure curves up. The failure curves shown
in Figures 5.21 through 5.23 correspond to one particular beam geometry. Similar
curves for different beams are shown and compared to experimental data in
Section 5.4 in order to assess the accuracy of this elastic approach in predicting

direct shear failures.

An examination of the failure curves developed to this point, and shown in Figures
5.20 through 5.23, has revealed that the curves are obviously sensitive to certain
load parameters and to certain structural parameters. Regarcing load parameters
the two most obvious and pertinent are the peak pressure and rise time. Load
duration has been shown to be a parameter which does not significantly affect the
direct shear failure curves. In terms of structural parameters the degree of beam-~
end restraint and the particular values chosen for the strength capacity in shear Vu
and moment Mu have been seen to have a tremendous impact on the failure curves,
Other structual parameters such as the L/d ratio, the reinforcement ratio, ani the
beam frequency content should also significantly influence the failure curves.
Examples of the influence of two of these structural parameters are shown in
Figures 5.24 and 5.25. Figure 5.24 shows the influence of reinforcement ratio Pq

for a given L/d ratio and a given strength enhancement factor Q. As seen the

direct shear failure domain is restricted, in generai, as Pq increases. This s
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because tha increased amount of steel in a beam influences the moment capacity
more than the direct shear capecity, thereby making it less likely that a direct
shear failure will precede a flexural failure. Figure 5.25 shows the infiuence of L/d
ratio for a given p s and 1. As the L/d ratio increases, the direct shear failure

domain decreases because of the increase in the M/V ratio.

Since this dissertation represents an initial attempt at describing the conditions
neceasary for a direct shear failure in reinforced concrete beams, an extensive
parametric study is not conducted here. This study does specify, however, the
pertinent parameters influencing the development of failure curves based on an

elastic beam model.

5.3 Shear Beam

The equations of motion and resulting solution for the Timoshenko beam theory,
described in Section 5.2, involve a complicated process for the determination of
the support shear force. A model which is more simple mathematically than the
Timoshenko beam and which can also describe shear forces is represented by the
classical shear beam. Obviously, solutions derived for a shear beam cannot be used
to distinguish between a direct shear failure and a flexural failure because of the
lack of a bending moment influence in the shear beam theory. But the simpler
shear beam theory can be exploited to develop comparisons with the Timoshenko
beam theory in terms of the support shear forces. Therefore, the objectives of this
section are to: 1) determine the "domain of equivalence", represented by load
parameters, between the Timoshenko beam and shear beam theories; 2) estimate
the time to divect shear failure (t') within the domain of equivalence; and 3) verify

the strain rate solution for support shear force for a viscoelastic Timoshenko beam,
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" " The first two objectives will be met by solving the shear beam equations using the
: normal mode method and the third objective is met by using Laplace transform
methods.

5.3.1 Normal Mode Method

The forced motion of an elastic shear beam is described by the force deformation

relation

V= KAG 5‘ (5-60)
by the equation of motion
K AG s_.]“ +q = /OA:‘ (5-61)
by the boundary conditions
Y (o,t) = Y (Lt) =0 (5-62)
and by the initial conditions
3()‘,0) - g(x,o) =0 (5-63)
The noz:mal mode method again is employed to solve Equations (5-60) to (5-63).
Equation (5-61) is a linear second order partial differential equation with constant

coefficients. Therefore, only two boundary conditions and two initial conditions, as
shown in Equations (5-62) and (5-63), are required for a complete unique soliution.
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This equation represants the classic wave equation with an input source term
(a/pA), which can be solved by a variety of techniques. Without repeating the rigor
of Section 5.2.1, the solution in terms of the normal modes Y,(x) and natural

frequencies wy, is given by

(5-64)

t
Y(xt) = Z X’;‘,’% LGn (T) sinw, (£-T)dT

where w, is determined from the frequency equation

' Y2,
Wo = “Er ( k;‘) (5-65)

h

and the nt mode shape is given by

Y.(x) = C sin ﬂ{l& | (5-66)

where C) is an arbitrary constant. The function G (1) is determined from the

property of orvthogonality of the normal modes and is given by

L
4le). Y,
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For the case where q(x,t) is a uniformly distributed load along the span length (i.e.,
constant with x), the shear force at the support (x = 0) is represented by the

expreszion -
+

PRY,
V(o,t) = Z ,;-zfr (!;-,9') t( |- cosnr) | 4(t) sinw, (¢-T)dt G50
o ()

where q(7) is the temporal forcing function. Inspection of Equation (5-68) shows
that the shear force is only a function of the odd-numbered modes. This is as it

should be for a symmetric loading which excites only antisymmetric shear forces.

Plots of V/V,; versus time, obtained from Equation (5-68), are shown in Figure 5.26
for three different rise times for the example beam of Section 5.2. The results for
the shear beam are compared to the shear results of the Timoshenko beam,
obtained from the second of Equations (5-31), for the support shear force where
rate effects are not considered. The support shear force from a shear bheam
reasonably approximates that from the Timoshenko beam for early times. The
early time support shear force of the shear beam builds up quicker than the shear
force of the Timoshenko beam because the frequency content of the first few
modes is higher in the shear beam than the Timoshenko beam. At the shear level
of interest (V/V,; < 1), the agreement in shear forces is quite good for a limited
range of rise times for the peak pressure and beam-end restraint shown for this
case. The combinations of load parameters for which this agreement is specified in
terms of a percentage difference in V/V,; for a given time are used to determine
the domain of equivalence between the Timoshenko beam and shear beam theories
for the support shear force. Figure 5.26 also shows the comparison of approximate

time to failure (V/V,, = 1) between the two theories.
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Once an allowable percentage difference between the twc theories is chosen, an
approximate equivalence in the peak pressure versus rise time domain (domain of
equivalence) can be established. The construction of an approximate domain of
equivalence can be described by reviewing Figure 5.26. The dots on the shear beam
curves in this figure show where V/V, for the two theories differ by 10 percent for
a peak pressure of 5000 psi. Each of the pairs of curves are for a specified rise
time, as shown. Of interest is the peak pressure P, which will create an
intersection between the threshold failure level (V = V,)) and the dots on the shear
beam curves for each rise time. Since the curves are a linear function of peak
pressure, the failure threshold ievel in Figure 5.26 will rise with a decrease in P,

and, conversely, will drop with an increase in P,. This procedure will produce rise
time and peak pressure combinations corresponding to a predicted direct shear

failure for both theories to within a 10 percent difference.

Figure 5.27 shows this domain for the example beam in Table 5.1 with fixed beam-
end and for the particular case of a 10 percent difference in V/V,; between the two
theories where rate effects are not included. Peak pressure and rise time
combinations of the external load that fall above the equivalence curve in Figure
5.27 indicate that the shear beam solution approximates the Timoshenko beam
solution to within a maximum error of 10 percent. Curves similar to those in
Figures 5.26 and 5.27 can be constructed for cases where load rate effects are

considered.

3.2 St te Eff

In order to verify the strain rate solution for the support shear force for a

viscoelastic Timoshenko beam, a similar solution for the support shear force
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resulting from an analysis of a viscoelastic shear beam is developed. The governing
equation of motion for a viscoelastic shear beam is given as

k'AGy" v k'A’lg” ‘/’Ag = -i (5-69)

and the constitutive relationship for shear is given by the second of Equations
(5-32). Equation (5-69) is solved using the same Laplace transform methods as

described in Section 5.2.2.1.1.

Applying a Laplace transform to the time variable in Equation (5-69) and the initial
conditions (5-63) results in the following linear ordinary differential equation in x

-l -

El"“-/-‘l%i y = 'ﬁ- (5-70)

where { = K'A(G + ns) and all symbols are as previously defined in Section 5.2.2.1.1,

The solution to Equation (5-70) is straightforward and is given by

g (xs) = ( e C,e + 9 (x,s2
/oAs (5-71)
where
P= A
The conatants Cy and C, are determined from the boundary conditions (5-62). The
Laplace transform of the shear force at the left support (x = 0) is provided as the

third relation in Equations (5-35) and is given here for the shear beam
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V(o,s)= -? 9’ ’(6,5) 4 (5-72)

Equation (5-72) is determined for a step-load condition (see Equation 5-43) by
evaluating the first derivative of Equation (5-71) at x = 0, and is given by

Vie,s) = _B swmhptl (5-73)
Sp (coshpL-t-l)

For sarly time (i.e., as s gets large) the expression for V in (5-73) and the analogous
expression in Equations (5-47) for a Timoshenko beam are equivalent since p = Py

and coshpl, >> 1.

These results show that the support shear for a viscoelastic shear beam
approximates the support shear for a viscoelastic Timoshenko beam for a short
time period. Again, this time is the time it takes a shear wave to traverse a

distance of about 0.4L along the beam length.

5.4 Comparisons to Data

The results of Section 5.2.3 on the construction of failure curves for direct shear
failures show that a family of curves associated with different strength
enhancement factors (which are functions of load rate) can be produced for a
particular beam geometry. The experimental data outlined in Chapter 4 describes
twelve tests which are categorized by beam geometry into three groups. While it
is possible to construct a failure curve for each of the twelve tests it would not be
very instructive. Instead, a failure curve is produced for each of the three groups
of structures as this should be sufficient tc show the information of interest in this
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dissertation. This can be done because the strength enbancement factors vary
among the tests by only a few percentage points and the beams within each group
were all designed the same. The major variations among the tests are in the actual
strength of the concrete and stocel and the in peak pressure which was applied
during the test. The latter will be studied here while the former will not.

Table 5.2 shows the beam geometry, reinforcement ratio, and average concrete and
steel strength for each of the three test groups outlined in Chapter 4. Also shown
in the table are the average load rate and strength enhancement factor { for each
test group. The load rate for each test is determined by dividing the average peak
pressure by the approximate rise time of the interface pressure measurements.
The strength enhancement factor is then obtained by using the average test group
load rate (assumed equal to the stress-rate) on the strength enhancement curves in
Figure 3.3 for a 6500 psi concrete. A failure curve for each of these test groups
could be constructed for various beam-end restraints. However, since no
information is available to estimate the degree of support restraint, the most

conservative assumption of a fixed beam-end condition is used here.

Figures 5.28, 5.29, and 5.30 show the direct shear failure curves for test Groups I,
II, and 0I, respectively. Plotted with these curves are the various peak pressure
and rise time pairs corresponding to each of the specific tests within each test
group. The individual measured average peak pressures and rise times are listed in
Table 4.3. Points that fall above these curves indicate direct shear fatlure as
determined by elastic analysis. The observed failure modes, according to test data
records, are listed in Table 5.3. Also shown in Table 5.3 for esach test is an
indication of whether analysis predicted a direct shear failure.
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The results shown in Figures 5.28 through 5.30 and Table 5.3 show that the methods
developed in this dissertation provide an adequate assessment of the likelihood of
direct shear failure. Five of the six tests in Groups I and III are correctly
pradicted to fail in direct shear when compared to test data. In Group I tests the
failure mode of four tests is correctly predicted while that of the other two teats is
h not correctly predicted. However, all three cases where the analytic predictions

are wrong are very close to the failure curve, as seen in Figures 5.28 and 5.29.
Using a model with a beam-end restraint less than the assumed fixed-end condition
or a slightly lower strength enhancement factor would bring 2ll these cases within
the direct shear failure region and the predictions would match the data.

5.5 Summary
An elastic model based on the well known Timoshenko beam theory is used to

develop a methodology which permits an identification of conditions necessary for
the occurrence of direct shear failure prior tc bending failure for different
combinations of load parameters and beam-end restraint and for various beam
geometries. The normal mode method is used to describe the response of an elastic
beam subjected to an idealized triangular load pulse which is uniformly distributed
along the span cf the beam. The response in the transient regicn is shown to be
very sensitive to higher frequencies which involve both flexure-shear and
thickness-shear considerations. The Timoshenko theory is shown to be very
accurate in comparison to the exact three-dimensional vibration theory for the

frequency domain of interest in this study. For all cases studied, the normalized
shear force is greater than the normalized bending moment at the support for a
fixed-end condition, but only for the very early transisnt stages (less than 0.1

msec). The same is true for beam-end restraints less than fixed, except that the

93

T o s AR e e o s | S % - [N Ry

Kool et i e ol RS il A ViR i b il




time during which the normalized shear excesds the normalized bending moment is
longer.

The elastic Timoshanko equations are extended to account for viscoelastic material
properties in order to mcdel strain rate effacts. Result: from a Laplace solution
show that strain rate amplifies shear more than bending moment in the early
transient response regime. The simplified modeling of load rate indicates that both
material strengths and elastic moduli are enhanced, and that the domain within
which a direct shear failure will precede a flexural failure is reduced. Analysis
shows that failure predictions are much more sensitive to load rate effects on

strength than on elastic moduli,

A simple shear beam is shown to be an adequate substitute for a Timoshenko beam
in determining the support shear force for a restricted range of load parameters.
Furthermore, a Laplace solution to viscoelastic shear beam equations, which result
from the influence of strain rate, verifies the Laplace solution for the support

shear force of a viscoelastic Timoshenko beam, over a time domain where the

solution procedure is applicable,

Failure curves developed from the elastic Timoshenko beam theory and load rate
enhanced failure criteria are shown to be an adequate means for predicting the
occurrence of early time transient direct shear failures in reinforced concrete
beams. Failure curves developed for three groups of beams show good agreement
with test data. Strength enhancement due to load rate is shown to be a very
important parameter in determining the threshold between direct shear failures
and flexural failures.
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Chapter 6
Post Failure Modals

1 t
A brief description of the modeling of the post failure regime (see discussion in
Chapter 1 and Figure 1.1) of beam response is provided here. This description
includes only the basic development of deterministic and stochastic wodels that

may be useful for an evaluation of the heam response after a direct shear failure

has taken place at the support.

In reality, the actual response of a beam after it has failed in direct shear involves
a mix of rigid-body motion and vibrational motion. This has been verified by
experimental data of the type described in Chapter 4. In fact, roof slab deflection
profiles, shown in Figures 4.21b and 4.22b for two separate tests, clearly show that
the post failure (beyond 1 msec) response of beams (as models of one-way slabs) is
depicted by a combination of rigid-body, flexural, and membrane modes. However,
this data also shows that the predominant early time post failure response ( 1 msec
to about 3 msec) is described primarily by rigid-body motion, resulting from a
vertical translation of the roof slab at the direct shear zone near the supports.
Therefore, for purposes of simplification the complex post failure behavior of
beams and one-way slabs for early times is assumed to be adequately defined by
rigid-body motion. These models are valid only for the early time before flexural

and membrane influences become important,

Under the assumption of rigid-body vertical translation, the deterministic post
failure models are described by ordinary homogeneous differential equations in
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- time, where motion is developed by an initial velocity and the engineering model
involves only one dejree of freedom -~ the vertical translation. Furthermore, the
deterministic models developed here serve only as an introduction te a physical
problem, which is best elaborated and solved with stochastic (probabilistic)

processes because of inherent uncertainties.

6.2 Simplistic Deterministic Models
As discussed in Chapter 4, the interface pressure loading near the support decays

very rapidly after peak pressure is attained when a direct shear failure is realized.
This drop in pressure results when the beam moves down away from the soil
overburden along a "slip” surface provided by a shear zone at the time of direct
shear failure. Just after this slip takes place the beam behaves as a rigid body
undergoing a vertical translation as shown in Figure 6.1. In this figure the shear
zone, which in reality has some non-zero width (see Figure 2.1b), has been reduced
to an infinitesimal width for modefing purposes. The beam will not have an
interface pressure on its surface just after failure, as described previously in

Chapter 4, but it will have an initial velocity, y(0).

As shown in Figure 6.1, equilibrium of forces along the crack planes produces the
following equation of motion

my (+) + Ve(‘j.f) = 0 (6-1)

where m=pLA

Ve(yst) = total shear resistance along the crack planes
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The resistance term Vg (t) is a function of the alip along the crack plane and its
] derivatives. A simple interpretation of Vg(t) is to assume that the beam resists
¢ downward movement by a rate dependent force which is linearly proportional to
: the slip and its first time derivative. This relation can be expressed as

Ve (y,t) = ¢y, 8)yt) + k(yt) y(t) (6-2)

‘ * where

c'(y,t) = shear viscosity (pounds-seconds per inch)
k(y,t) = shear stiffness (pounds per inch)

Equation (6-1) can be rewritten in the more classical form

my (t) + C'(y,t) §ee) + k(y4)y(t) =0 (6-3)

3 . The model described by Equation (6~3) and shown in Figure 6.1 will have general

initial conditions
& ylo) = x,
(6-4)

.
3 yle) = v,
{ where Xy and v o Mre the initial slip and beam velocity, respectively, at the instant

of a direct shear failure.

Equation (6-3) descrites a simple model of the phenomenon taking place along the

shear plane shown in Figure 6.1, assuming rigid-body motion. An implicit
assumption of the model is that identical behavior is taking place at both supports.

. Equation (6-3) can be a nonlinear equation, or a linear equation with either
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constant or variable coefficients depending on the form of c'(y,t) and k(y,t). The
shear stiffness k, as a function of the slip y, can be found from the shear resistance
versus slip relationships developed by Hawkins '81. In fact, Hawkin's relationships
have been used in a recent finite element investigation by Murtha and Holland '82.

Equation (6-3) can be simplified under certain limiting conditions. For cases where
the rate effects are small, c'(y,t)y(t) can be neglected. For conditions where the
initial resistance to slip is small and the relative velocity is high, the term
k(y,t)y(t) may be negligible compared to the term c'(y,t)y(t). This can be the case
for a precracked shear plane as shown in Figure 6.2. This phenomenon occurs when
the initial slip is related to the crack width and is associated with little resistance.
Figure 6.2b shows a single crack in concrete whose surface asperities are idealized
by a sawtooth pattern. The initial crack width is wy and the crack faces are
inclined at an angle 8' as shown. Application of shear force after a crack has
formed will at first cause a slip of magnitude §, = wycote' until contact is made
between opposing faces of the crack. During this stage only the reinforcing bars
crossing the crack provide restraint by dowel action and the crack stiffness is equal
to the dowel stiffness. After aggregate interlock is mobilized when the crack
faces contact, the crack stiffness is the sum of the interface shear stiffness and

the dowel stiffness, as shown in Figure 6.2a (Buyukozturk '79).

For the case where rate effects dominate shear resistance, the equation of motion

is

my(t) « c(yt)ylt) = 0

(6~5)
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In this case the term c'(y,t)y(t) can be thought of as an equivalent resistance due
to dynamic friction between two surfaces undergoing a relative velocity y(t).
Unfortunately, little or no data exists to empirically establish the value of c¢'(y,t)
for cracked concrete. A testing program on pushoff specimens under static and
dynamic loads is needed for this purpose.

The solution to Equations (6-1) to (6-5) is straightforward and is not preasnted here,
It is necessary to reiterate that these beam models are described by rigid-body
motion and that the solution y(t) is oaly valid until the bean: experiences flexural
and membrane influences. Then the models are described by partial differential
equations and may become inhomogeneous with a reloading term and they must
also include the displacement y(t) and velocity ;'(t) as initial conditions at the point
of reloading.

8.3 Stochastic Models

Continuous time, continuous state Markov processes (also termed diffusion models)
are fashioned from the deterministic models developed in Section 6.2 of this
chapter. These Markov processes are formulated through the stochastic analogs of
equations such as (6~3) and (6-5). These equations are known as stochastic

differential equations.
In the deterministic world Equaticn (6-3) represents an ideal balance between

inertial forces and resistive forces. However, in the real world, hereafter called

the stochastic world, an error term results from our inability to define an adequate
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model of reulity. For example, the actual force balance may involve terms with
nonlinsar coefficients or terms with higher order derivatives of y(t). Hence, the
arror expresses the difference between reality and the model represented by
Equation (6-3).

This error term expresses the uncertainty in the equilibrium arising from an
inexact choice of coefficients or from neglecting other features of the real model.
In the time domain this error is expected to fluctuate randomly back and forth
about the true equilibrium value of zero. And although the expected value of this
error is zero under conditions where the true inertial forces and resistive forces
are known "a priori", its general bounds are diffuse. Such an error term has been
successfully modeled by white noise in electrical and mechanical systems where
the "noise" is actually a random fluctuation of the system about its equilibrium

state,

Because white noise is the derivative of the Wiener process, it provides for
independent increments between perturbations of the forcing function. The Wiener
process is the only continuous path, stationary independent increment process. The
Poisson process has these characteristics for discrete time but its derivative is
zero. If the independence requirement is dropped, other random forcing functions

can be used to describe the error term.

®
If Equation (6-1) is rewritten to consider a random error source W(t) and random
initial conditions on the actual response y(t), the following stochastic differential

equation results,
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mX (£) + Ve (X(t),’l:) =W (¢), t»0 (6-6)

[ ]
where X(t) is a transverse displacement stochastic process and W(t) is a white noise
random process that is the derivative of the Wiener process (which is a diffusion

process) with mean 0 and variance dz.

The assumption of a white noise error term V.l(t) actually can be envisioned from a
more heuristic and intuitive approach. In the stochastic world the difference
between the inertial forces and the shear resistive forces is expected to fluctuate
randomly about the current equilibrium position as the process evolves in time,
much in the same way as particles suspended in a fluid randomly fluctuate under
the influence of a disturbing force. This fluctuation is known as Brownian motion
(Brownian motion was first observed by R. Brown in 1828, was later studied by A.
Einstein in 1905 and was formulated mathematically by Norbert Wiener in 1930). If
the initial position of the error term is zero, and if the magnitude and sign of the
error from time step to time step is random and not influenced by any physical
perturbation, and if the error at successive times is not influenced by the
magnitude or sign of any previous error terms, then the equilibrium process is

modeled by a Wiener process, W(t),

The Wiener process has the following properties (see Hoel, Port and Stone '72)
1) wW@O)=0
(1)  W(t) - W(u) is normally distributed with mean 0 and variance g2(t-u)
foru<t
(181) W(tz) - W(tl), W(t3) - W(tz) e W(tn) - W(twl) are independent

increments for '1 < tz <,oee ¢ tn
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The first property simply results from the choice of coordinate systems and is
arbitrary. The second property follows from the central limit theorem. In
addition, the Wiener process is a continuous path process which is nowhere
differentiable (i.e., W(t) does not exist). This means that white noise "J(t), although
physically an abstraction arising from the chaotic path structure of the Wiener
process, is only mathematically useful when it is integrated in time as it is in the
solution of stochastic differential equations. Hence, white noise arises from the
Wiener process which has several nice features for modeling purposes. It is a
Markov process, it is a Gaussian process, it has stationary independent increments

(but is not stationary itself), and has a continuous state or path function.

Before finishing this specific area of stochastic differential equations it is
beneficial to look at a process that is a simple transformation of the Wiener and
that arises from the stochastic equivalent of Equation (6~5), This process, called
the Ornstein-Uhlenbeck process (see Uhlenbeck and Ornstein '30), is an
exponentially damped Wiener process with a scaled time domain. The Ornstein-
Uhlenbeck process, denoted U(t), is actually a nicer model in that it has all the
properties of the Wiener plus it has a limiting stationary distribution with a
constant variance oz. For special initial conditions this process can be stationary
at all times. Both the Wiener and Ornstein-Uhlenbeck processes are shown in
Figure 6.3. Two example problems are discussed to show the possible applications

of these two stochastic processes on the models posed in Section 6.2 of this

chapter.
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6.3.1 Shear Slip Model: Wiener Process

6.3:1.1 Moments
If Equation (6~2) is simplified by negiecting rate effects and by assuming a constant

shear stiffness the resulting stochastic differential equation has the form of

Equation (6-6) and is given by
m¥X (t) + kX(t)= W () , t3o0 (6-7)

The general solution X(t) of the second order Equation (6~7) on the time interval
(toy®) involves the use of stochastic integration and is given by the relation

X(8) = X(t) 4, (¢-t) « X(L) B (¢-1.)

. t
- . *‘\(bu)AW(u.), t>4,

(6-8)

- °

where X(t,) and X(ty) are general random initial conditions at time tg, ¢i(t-ty) are
¢ differentiable solutions to the homogeneous version of Equation of (6~7), and the
integral in Equation (6-8) represents the particular solution to Equation (6-7) which

, __-; ' involves the impulse response function h(t-u).

r The impulse response function is specified as

*z (f"“) ) tru
h(t-u) = m (6-9)
0 ) t<u
Another feature in the particular integral of Equation (6-8) is the substitution
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AW(u) = W(u)du 10
Since the derivative of the Wiener process, white noise, is not a stochastic process
in the probabilistic sense, dW(u) is a functional that assigns values to the integral in
Equation (6-8).

The specific solution to Equation (6-7) for the case ty = 0 is found to be

t
X (t) = X(o)coswt + i(_(g)sinwt + _L sin»(t-u)aw(u), (6-11)
W mw
° t3o

where wl = k/m. Equation (6-11) represents a stochastic process whose uncertainty
comes from the randomness of both the white noise term and the initial conditions.

The equation is still valid for the special case of deterministic initial conditions.

The problem is further developed by looking at the probabilistic structure of X(t).

The mean or expected value, denoted as E{ - }, is given by

E{X(t)} = cosut EfX@)] + st E {x(o)]

in (6-12)
Since the mean of the Wiener process is zero the expected value of the stochastic
integral in Equation (6-11) vanishes. The mean square >f the solution process,
denoted E { x° }, is

EiX’(t)} = cos wt E[Xz(o)} + sin;rt E {)'('(o)}

+ "_?'_E{% - §'gntwt} (6-13)
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where 0% is the variance of the Wiener process. The left-hand side of Equation
(6~7) is not stable since the solution (6-11) does not vanish as t—>», Because this
system does not have a convergent solution as t —~)» the covariance function is not
defined for the stationary case. However, the process X(t) is a Gaussian process
becauge of the Gaussian structure of the Wiener process.

For tha special case where the initial conditions are deterministic and are specified
as X(0) = 0 and i(o) * Vg, the mean and variance of X(t) are

e{xtt)} = v, sinwt
w
(6-14)

VAr{X(ﬂ} = fT: { %‘_ - §|'2Z_’wt} - vnzs;:\:wt

The initial velocity v, is estimated from a deterministic analysis or from
experimental data. An example of the latter is given in Figure 6.4 for three
different tests. The asterisk on the curves in Figure 6.4 corresponds to the point of

incipient direct shear failure.

Before leaving the formulation of this particular problem, it is also possible to
model a situation where the slab is reloaded while still in a rigid~-body mode. In

this case Equation (6-7) is altered to account for another term on the right hand

side

m¥(6) + kX(t) = () + W), t3o (619)
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where q(t) represents an interface pressure on the beam at the reload condition.
Closed form solutions to the stochastic differential Equation (6-15) are available if
q(t) is eithar deterministic or is a second order stationary process.

6.3.1.2 First Passage Probability
The strong Markov property of the Wiener process allows for the determination of

first passage (also termed firat crossing, first hitting, and absorption) statistics of
the stochastic process X(t). It is often useful to determine the probabilistic
structure of the time at which the process X(t) first exceeds a given barrier or
threshold. In the particular example of a post failure model it is interesting to
estimate the time at which the vertical translation along the shear plane, X(t),

first reaches a yield displacement. This displacement has been determined in tests

(see Hawkins '81).

In accordance with the strong Markov property the only condition needed to
determine this probability is that the process has not exceeded the threshold at any

time prior to the time of interest. In statistical notation the definition of the first

passage probability to a barrier of magnitude "a" is given by

R‘{T«<t} = P {max X(u)> a Ix(o), 0} (6-16)

osug t

The expression (6-10) is equivaient to saying: the probability of the first passage
time T, being less than time t, is equal to the probaility that the maximum value
of the process X(t) exceeds the barrier "a" at some time in the interval (0,t), given
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that the process starts at zaro at t = 0. Using the reflection principle adopted in
Karlin and Taylor '75 for second order processes, this probability is expressed as

PiTact] = ZS £, (u) du 17

where fy (u) is the probability density function of the process X(t), which is
determinied from the probability structure given by the second order moments in
(6~12) and (6~13). Since X(t) is Gaussian, Equation (6~17) is further simplified to

ue]- e}

where my {4) = E{ X (4)
G 4) = Vm-{ xm}

[' = standardized norsmal distribution

Finally, the probability density function of T, is obtained by differentiating the
right hand side of Equation (6-18) with respect to time. The resulting density

function is a second orvder process but is not, in general, Gaussian.

6.3.2 Shear Slip Rate Model: Ornstein-Ullenbeck Process

6.3.2.1 Moments
As mentioned earlier, Equation (6-5) has a stochastic analog represented by the

Ornstein-Uhlenbeck process, U(t), under the condition that the coefficient c'(y,t) is
a constant. The resulting stochastic differential equation describing the
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uncertainty in the force balance along a shear plane between beam inertia and the
viscous resistance is given as

T T, R~

mYX (8) + &'X(¢) = v(/(t) , t2o0 (6-19)

with initial conditions whers
x(O) = Xo
L]
x(O) = Yo

Tg The solution to this equation is well documented (see Hoel, Port and Sone '72 and

Karlin and Taylor '75) in the literature and is shown to be

t
~ot
X(t) = x,-_\_/_,,(e"-l).._l__S{ - ) }JW(u) ty0 (620
1 me A

with a = ¢'/m

The mean and variance of X(t) are computed to be

E{xm} . X, \.{,_(e’“t 1)

(6-21)

Vr {X(0] = gy (€% €% 20t -3)

Zc"

The process X(t) is Gaussian and is actuzlly the integral of the Ornstein-Uhlenheck

process. The constant a is sometimes referred to as the damping factor. As the
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L process evolves in time, a te to constantly damp or- t tion of ¢
: é Ives in ti nds ly da pull the pesition of the
'T ! process back to its initial velue.
P
B
. Because of the special nature of Equation (6~19), a complete closed form
] probabilistic description of the velocity process X(t) is available. Equation (6-19) is
written as
. . )
U(t) + x Ult) = W(t) , tr»o0 (6~22)
é .
where U(t) = X(t).
The solution to this equation is described in the literature as the Ornstein-
f
Uhlerbeck process (Hoel, Port and Stone '75 refer to it as lLangevins' velocity
process). This procass is a diffusion process which, in the limit, is stationary
i Gaussian with the following moments
2 ~at
= E U ‘t = V
k { ) o€ (6-23)
= 1 -
var;umj = & {,.. eM}
‘ 2c'm

If v, has 4 zero mean and a variance equal to 02/2c'm, then U(t) is normally
distributed with mean zero and variance g%, The X(t) and U(t) processes are
related by the tollowing relationship

t
X(t) = X, '!'J U(u)du_ (6-24)

109

§
i

A 7 s v . S - o e o

-

i 20 5 n s ot b MRS i R i




b
bt
H
h

4
'
.
g

4

+2 Filest P t
Absorption probabilities for U(t) are not available in closed form, because in the
computaticn of these probabilities natural logarithms must be evaluated at zero.
To overcome these problems Dirske '75 proposed an asymptotic approximation to
the first passage probabilities of a special standardized U(t) process which was
later corrected by Jennen '81. This asymptovtic approximation is actually developed
from the "tied-down Wiener” process (this process is also called a Brownian Bridge).
The approximation becomas less accurate near the probabilites of zero and one for

the case where the absorption barrier approaches infinity.

For a standardized Ornstein-Uhlenbeck process U(t), with mean zero and variance

one, the first passage probability as a~%» is approximated by

T

-4
R’{MAX lu(t),)/ al ~ 3:_ e Z ea-~- € _.,__Z_ .(6-25)
oft<ge T a q ‘

where
e = 1 log, 'ﬁ,_(l--t.)} . o<t <t <
2 t0(\‘t1) ’

In the expression above, the times t; and t; are the upper and lower bounds,

respectively, for determining the absorption probabilites of the associated tied-
down Wiener grocess. All times are nondimensionalized to a characteristic time of

the problem such that the time domain of interestis 0 <t < 1.

6.4 Summary
Simple linear deterministic and stochastic models are introduced to simulate the

rigid-body behuvior of a beam just after a direct shear failure has occurred. This
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motion is created when: vorﬁca.l ‘translation occurs at a shear zone near the
supports. The models account for the stiffness effects due to dowel action and
aggregate interlock and the viscous effects associated with the rate of response.
Stochastic differential equations are developed from analogous deterministic
models in an effort to account for random uncertainties inherent in a linear model
and randomness in initial conditions at the time of a direct shear failure. Solutions
for first passage probabilities are provided for two cases of simple stochastic
models based on Markovian diffusion processes.
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Chapter 7

.1 _Summary
Most previous studies dealing with direct shear failures in reinforced concrete have

been associated with static loads, where failure mechanisms were postulated in
terms of static equilibrium. In these studies parameters such as dowel action,
reinforcement ratio, and shear span were found to have an important influence on
direct shear behavior. In two dynamic test programs reported on direct shear
failure in reinforced concrete specimens, the relevant findings were that the
dynamic strength in direct shear generally is 30 to 90 percent greater than the
static strength and that the presence of dowel steel improves the ductility at the
crack plane. These findings modestly improved our knowledge of the strength of

reinforced concrete in direct shear due to dynamic loads.

Recent tests conducted on reinforced concrete slabs under high explosive
distributed impulsive pressures have provided additional information on the
strength of members in a presumed direct shear mode, but relatively little
understanding about the actual dynamic mechanism in direct shear and about the
influence of moment on failure. For this reason the analytic effort described in
this dissertation was undertaken for the purpose of understanding the transient
influences occurring at the support of an impulsively loaded beam and for the
purpose of developing a procedure to predict the conditions necessary for a

dynamic direct shear failure.
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To- understand the conditions necessary for a direct shear failure, an elastic
Timoshenko beam model is used to ascertain whether the support shear or the
support tending moment attains its respective failure threshold first. These
threshold levals are specified in terms of the maximum capacity of the reinforced
concrete section in either a direct shear or a flexure failure mode. The
Timoshenko theory is extended to account for the effects of rotational beam-end
restraint and strain rate on the conditions necessary for direct shear failure.
Failure curves, developed from an elastic Timoshenko beam and augmented to
account for strength enhancement due to load rate, are compared to experimental

evidence to determine the adequacy of the model in predicting direct shear failure,

Simple diffusion processes (continuous time and continuous state Markov processes)
are proposed as adequate models for the early-time rigid-body motion of a beam
after an initial elastic direct shear failure occurs. These stochastic models are
linear and can treat random uncertainties in the loading and initial conditions.
Shear-slip data from static tests, and slip displacement versus time and beam
velocity data from dynamic tests are available to assess the adequacy of these post

failure models.

7.2 Conclusions

Analytic resuits based on the five major assumptions outlined in Chapter 1 have
revealed several conclusions regarding dynamic direct shear failure issues. These
conclusions are based on an elastic analysis of a uniform beam subjected to
idealized distributed loadings where failure is defined by the shear force or bending

moment at the support exceeding prescribed threshold levels.
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The first, and perhaps most fundamental, conclusion is that an elastic Timoshenko
beam model gives a clear picture of the transient influences of shear and bending
moment and is an accurate substitute for the exact thrme dimensional elastic

theory for the frequencies of interest in this work.

Second, based on the elastic model used in this study, direct shear failures precede
flexural failures in the early transient response regime for certain combinations of

load parameters and beam-end restraint conditons.

Third, strain rate effects enhance support shear forces more than support bending
moments for impulsive loads applied normal to the axis of the beam. This
conclusion reinforces both the issues of early stage dominance of shear over

bending moment and early time occurrence of direct shear failure.

Fourth, strength enhancement due to load rate effects increases failure levels and
hence restricts the domain of load parameters over which direct shear failures are
predicted. Load rate effects on elastic properties have the opposite influence on

the domain of load parameters but this influence is small in comparison to rate

effacts on strength.

Fifth, the influence of beam-end restraint is to alter the magnitude of the support
bending moment much more than it alters the support shear force. Thus, a

decrease in the beam-end restraint increases the domain of predicted direct shear

failures.
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Sixth, a simple shear beam is found to reasonably approximate a Timoshenko beam
in terms of the support shear force for a restricted set of conditions on load

parameters.

Seventh, direct shear failure curves developed from elastic Timoshenko beam
theory are found to be in good agreement with experimental data when strength
enhancement due to load rate is taken into account. The comparison between
analysis and experiment is made in the peak pressure versus rise time domain of
idealized triangular loadings on fixed-end beame with the same properties as one-
way slabs actually tested.

7.3 _Recommendations for Future Work

No research area is fully exhausted in terms of additional enlightenment. Such is
the case for this research. The work of this dissertation has revealed several areas
where additional research can be focused in the future. A list of some of these
additional considerations is provided here in the event that future research in the
area of direct shear failures is attempted by other investigators. It is hoped that
the results presented in this dissertation can be helpful in providing a base on which

to expand or alter further investigations.

Recommendations for improving the work outlined here will involve assessing the
impact of the five major assumptions on the conclusions of this dissertation. For
example, concerning the first major assumption (see Section 1.2), a three
dimensional finite element study of the support region would help reveal the
influence of waves propagating through the thickness of the beam. A finite
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element study-should also incorporate inelastic features such as cracking and loss
of bond and yielding in the longitudinal steel.

Perhaps the most crucial need for increased effort is in the area of failure criteria.
This work considered only two failure modes — direct shear and flexure. There
are actually two other possibilities for failure between the cases of direct shear
and flexure. These transition modes, termed deep beam response and diagonal
tension, need to be studied more fully to determine the expected failure mode.
This is especially true for failure predictions which fall very close to the failure

curves developed here.

It is recommended that more dynamic shear tests on plain concrete and reinforced
concrete elements be performed in an effort to ascertain whether shear transfer
mechanisms under impulsive loads relate to those seen in static tests. Active
instrumentation should be used to allow for the interpretation of cracking on
element response. These tests could be conducted on push off specimens so that as
many parameters as possible can be controlled and replicated, It is also
recommended that static experiments of shear and moment interaction be

extended to dynamic loads.

Another area requiring effort is the influence of in-plane loads on direct shear
failures, Many static studies, including those by Mattock ‘74, have shown that
in-plane compression substantially increases direct shear resistance. This effect
was neglected in this study because experiments show that in-plane loads occur at

times later (greater than 1| msec) than the time to presumed failure,
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The presence of confining steel stirrups in reinforced concrete beams has a very
beneficial influence on strength and ductility in a diagonal tension failure mode.
Stirrups do not have much effect on direct shear failures, except that they do
provide confinement which improves concrete shear strength, and they do increase
the effects of dowel action at cracks near a stirrup. Studies on stirrup influences

on shear resistance under dynamic conditions would be helpful.

This work has presented an analysis procedure for beams and one-way slabs. The
theory can be extended to two-way slabs by using the two-dimensional equivalent
of the Timoshenko beam, the Mindlin plate theory. Analyses of this nature can

verify the anamolous behavior of slabs near corners where box walls intersect.

Results acquired in this dissertation show that beam-end restraints have
pronounced influences on the time to direct shear failure. However, no studies
could be tfound for the case of impulsive loading where the true degree of restraint
could be estimated. Because of this, a conservative assumption based on a fixed
beam-end condition was used in this study. The results presented here can be
enhanced considerably with an analytic or experimental study of beam-end

restraint effects on direct shear failure,

Rate effects on response and failure criteria requires significant study and
advancement. Rate effects have been found to be very important on time to
failure and on failure criteria. The models used here to characterize rate effects
are simple, and much more work is needed to assess the influence of these effects

on direct shear failures. An initial step in this direction would be to evaluate the
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: effect of different strength enhancement factors on the direct shear and moment
3 failure criteria.

Stochastic modeling efforts need to be pursued more vigorously. This is especially
apparent when the large uncertainties in concrete properties, failure modes, and
load transfer mechanisms are to be adequately accounted for in an engineering
model. A simple preliminary assessment of uncertainty in the support shear force
could be achieved by analyzing a shear beam with random properties. The shear
beam has been shown in this study to be a good model under limited conditions, and
it has the added advantage of being associated with a simple mathematical

composition.

The field of direct shear failure in reinforced concrete under dynamic loads largely
has been neglected analytically because these failures can be avoided judiciously
through conservative designs. However, rising construction costs portend an
emphasis on understanding the behavior of reinforced concrete elements near joints
and supports where failures typically occur. Direct shear is important at these

locations and hence requires much more study.
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Test Groups and Test Designations
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Table 4.2

Physical Parameters For Each Test Group

Group

L/d = 10

L/t = 8.6

3710 < f'.(psi) < 5840
62750 < fy(psi) < 74700

Pg = 0.01 (each face)

Group I Group I

L/id=1 Lid=17

L/t = 6.1 L/t = 6.1

6955 < f'o(psi) < 7328 6955 < £'c(psi) < 7328
fy~79,500 psi fya67,340 psi

pg = 0.0075 (each face) pg = 0.012 (each face)
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Table 4.3
mma f Test R t

Average Peak Rise Time

Pressure (psi) msec

. 1500 = 0.05
4000 0.05
4700 0.07
3300 0.05
3500 0.05
5000 0.10
6000 0.05
6000 0.10
3200 0.05
6000 0.05
5500 0.10
4000 0.05
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Table 5.1
Example Reinforced Concrete Beam Properties
Length (L) = 44.75 inches
Width (b) = Unit
Thickness (h) = 7.25 inches
Effective Depth (d') = 6.44 inches
Steel Percentage (pg) = 0.012 (each face)
Concrete Compressive Strength (f'.) = 7000 psi
Steel Yield Strength (fy) = 70000 psi
-gacl
j Beam Density (o) = 0.0002247 ¥ ’°:
§ in
3 Shear Modulus (G) = 2 x 106 psi
Poisson's ratio (v) = 0.20
1 i
4
é - B
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Table 5.2
Test Group Beam Parameters

Parameter Group I Group II Group II
Length (in) 48 44.75 44.75
Thickness (in) 5.6 7.25 7.25
Effective Depth (in) 4.8 6.44 6.44
Reinforcement Ratio 0.01 0.0075 0.012
(each face)

Concrete Strength (psi) 5000 7000 7000
Steel Strength (psi) 70000 70000 70000
Shear Modulus (psi) 1.7x106 2x106 2x106
Beam Density 2.247x10™4 2.247x10~4 2.247x1074
(#-secd/ind)

Poissons Ratio 0.2 0.2 0.2

End Restraint Fixed Fixed Fixed

l Strength Enhancement  1.50 1.55 160

P Factor
Average Load Rate 0.6x107 0.9x107 1.1x107

(psi/sec)




Table 5.3
m n of is Prediction and rimental Data
Does Analysis Predict Does Data Show a
‘ Test Direct Shear Failure? Direct Shear Failure
i Group [
FH1 No No
DSsi-1 Yes Yes
| Ds1-2 Yes Yes
* psl-3 No Yes
! Di51-4 Yes Yes
| DS1-5 No Yes
i Group I
Ds2-1 Yes Yes
Ds2-2 Yes Yes
DSs2-3 No Yes
Group I
ps2-4 Yes Yes
Ds2-5 Yes Yes
Ds2-6 Yes Yes
129

i
}
3
'
f
i

i S . T P e

- R e N TR . . s &
TR - 5 4 o - s SRR e Kt M Dimhottead fs  Mt 0 A8




Figures

e e

.
;
'
4
H
H
i
?
H
é
b #
L e—

N7 VeRY

L




TR D T X T e T T T e

DIRECT SHEAR FAILURE REGIMES
‘ 1) ‘E'Iaatlc R'osponse Leading to
incipient Fallure
2) Actual Failure Process
3) Post Fallure Conditions
:

(1) (2) (3)

Figure 1.1 Classification of Direct Shear Fallures into Three Reaimes
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No Load Loaded

&) Initially Cracked

N

D\

No Load Loaded

5) initially Uncracked

’ - Fiqure 2.1 Initially Cracked and Initially Uncracked Concreta Beams
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Figure 2.4 Effect of Concrete Strength on Shear Transfar Strength of Initially
Cracked Specimens (Mattock & Hawkins '72) ,
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Figure 2.6 Shear Transfer in Initially Uncracked Concrete
(Mattock & Hawkins'72)
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(Davies'81)
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Figure 3.3 Strength Enhancement and Modulus Enhancement Factors for Concrete
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Figure 4.1 Test Confiquration for the WES Tests (Kiger'82)
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Figure 4.2 Test Element Construction Details, Test Group I (Kiger'82)
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NOTATION

. IF = Interface Pressure
EO = Steel Strain on outside face
El = Steel Strain on inside face

EO-1 EO-2 EO-3 EO-4
E-1 EI-2 El-3 €14

. 29-"’ »
1 8.7 ) 2%

'.'J.G"

4.0

36"}, ]
9- 7 'F

Y M'E0-8, £1-5
{e0-8, E1-6

NOTE: REDUNDANT [
LOCATIONS
B AND &

: ACTIVE STRAIN GAGES INTERFACE PRESSURE

SECTION A~A SECTION A-A

"I~ SCORED REBARS
'} @ EACH LOCATION)

PASSIVE STRAIN GAGES

SECTION A~A

Figure 4.4 Example Test Instrumentation Layout, Test Groups II & III
(Kiger'82)
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Figure 4.6 Post Test View of Test Element DS1-2 (Kiger'82)
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Post Test View of Test Element DS1-5 (Kiger'82)
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Figure 4.9 Post Test View of Test Element DS2.! (Kiger'82)

Figure 4.10 Post Test View of Test Element DS2-2 (Kiger'82)

146




e ————

e

et ol S N 2

1
&
&
H
M
i
3
;
A
B
d
-

e g 84 B 7R

Figure 4.11 Post Test View of Test Element DS2-4 (Kiger'82)

Figure 4.12 post Test View of Test Elemeht DS1-3 (Kiger'82)
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Figure 4,13 Post Test View of Test Element DS2-3 (Kiger'82)

Figure 4.14 Post Test View of Test Element DS2-5 (Kiger's2)
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Figure 4.16 Post Test Schematic of Test Element FH1 (Kiger'79)
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Figure 4.17 Failure Mode Determinatfon Using Interface Pressure Measurements
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Figure 4.19 Active Measurements for DS1-1: Direct Shear Failure (Kiger'82)
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TIMOSHENKC BEAM WITH ELASTIC END SPRINGS

Spring Stiffness s R

L/I.I.A.P
(19)

UNIFORMLY DiSTRIBUTED PRESSURE

Load per unit Length = q(t)

2

EEEEEEREEREE

q(t) ;K&k

P t. =rise time
[ [

!‘ = duration

i
i
| —
ot ta time P, = POSk pressure

Figure 5.1 Timoshenko Beam Model and ldealized Interface Pressure Loading
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Figure 5.2 [Elastic Wave Velocity Curves for a Solid Circular Cylinder
of Radius a (Pung '65)
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Figure 5.3 Timoshenko Beam Wave Configurations (Crandall '68)

W 4
g ”‘
(Thickness~8hear)
(Flexure~Shoar)
' ]
W= I;g r
Figure 5.4 Dispersion Relations for a Timoshenko Beam (Crandall '68) .
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L) Dynamic Equilibrium

Figure 5.5 Timoshenks Beam Element
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2 msec duration

160

TR MM | il e ORI A T W 5 47 3

R e r S A el e o e g -



ST U 1T

i 3 .838]

S Po=5000 psi
! tr“o
! 2 .§38 tdﬂ msec

VIV, or M/¥,

= TT B .203%9 8 .+883 § .80
3 TIME <MSECD
tl tll
Figure 5.8 Normalized Support Shear and Moment vs. Time for Example
Beam: Fixed-Ends,Po®5000 psi
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Figure 5.9 Normalized Support Shear and Moment vs. Time for Example
Beam: Fixed-Ends,Py=2000 psit
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Figure 5.11 Flexure Failure Time, t", vs. Peak Pressure for Example
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Figure 5.12 Normalized Support Shear and Moment vs. Time for Example
Beam: R=4EI/L, P,=5000 psf

163

T e



V‘ t‘A

65 bay

77

'ts = Gtxy + 7"‘3)4

a) Voight Solid in Shear

}’l"v

GYy

Yy

b) Stress-Strain Relation in Shear

Figure 5.13 Linear Viscozlastic Model
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Step Loading

Po

—
0 time

Fixed-Ends
Step Load

e .aunj-

1.888

RATE EFFECT PATIO-RER

a .8+58 G 5858 8 .12R9 R .1688
TIME <MSECY

Figure 5.14 Rate Effect Ratio (RER) vs. Time for Example Beam
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Figure 5.16 Strain Rate Effects on Shear Failure Time, t', for
Example Beam (fL=1.5)
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Strength Enhancement

169



o i i

8 .88

6 .83

R=4EI/L\

PEAK PRESSURE <IKSID>
w
8

o .Bens g.1508 8 .20u8 o 368y e .+888
RISE TIME <MSEC>
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Figure 5.23 Influence of Strength Enhancement Factor on Failure
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APPENDIX A
Interface Pressure Loading

Ceneral

The interaction loading at a soil-structure interface can be illustrated by
considering a disturbance in the medium (free-field velocity) which is propagated
towards the structure, a portica of which is shown in Figure A.1. If the structure
moves with the surrounding medium, i.e., if it acquires the same velocity as the
free-field (at the location it occupies) would have, the structure experiences the

same motion as the free-field and there is no interaction effect (Figure A.la).

On the other extreme is the case when the structure remains stationary despite
movement of the medium around it. At a rigid boundary an incident velocity pulse
is reflected as a velocity pulse of equal magnitude propagating in the opposite
direction (so that the resultant velocity at the rigid boundary is zero), and the
stress at the interface is twice that of the incident wave, The amplification factor
for interface pressure in this case is 2. Even for this extreme case, an
amplification factor of 2 can be erroneous if applied over the complete duration of
the free-field pulse. This is because there are several mechanisms by which the
amplification due to reflected stresses can be relieved. As shown in Figure A.lb,
relief may come from a free surface such as the ground surface (B) or an edge or

corner of the structure (A) beyond which the free-field stress is not reflected.

The actual interaction process experienced by a structure is somewhere between

the two extremes just described. The structure usually acquires some velocity of
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its own which is different from the free-field velocity. Motion of the structure
provides another mechansim to reiieve the stress amplitude due to reflection of the
initial compression wave off the free surface at the underside of the concrete slab
(B) as in Figure A.lc. The extent of the relief depends on the motion of the
structural component; at the side walls where motion is small there will be little
relief, and at midspan of the slab the relief due to motion of the slab may be
significant. Relief due to the free surface at the original ground surface (B) and
due to the corner (A) usually are considered negligible.

Interface Stress

When a transient wave strikes an interface between two materials having different
acoustic impedances (mass density times dilatational wave velocity), part of the
energy of the incident wave will be reflected and part will be transmitted as seen
in Figure A.2. When the direction of the wave is normal to the plane between the
two materials, called normal incidence, the values of reflected stress, J,, and

transmitted stress, o, in terms of the incident stress, i, ave given by

O '{-f—-——-—-ﬁ—‘c" L5 }d.‘ (a-1)
,Ozc, ‘P/qC.

0% = { 24,6 }q (A-2)
e TAC

where c| and 0 are the dilatational wave velocity and mass density, respectively,
of the medium iu which the wave is originally traveling and c3 and p are the
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corresponding parameters for the material on the other side of the interface. If
the interface is unbonded, i.e., cannot carry a tensile force, compressive waves will
be transmitted across the interface but tension waves will not. The arrival of a
tension wave will, in the absence of another compressive wave of equal or larger
magnitude propagating in the opposite direction, immediately part the unbonded

interface preventing further interaction between the two materials.

The transmitted wave will always have the same sign as the incident wave. Also,
the reflected wave will have the same sign as the incident wave if pycy is greater

than p1c] and will be of opposite sign if pcy is less than pycy.

The two extreme cases mentioned earlier are of special interest as seen in Figure
A.3. At a free edge 02 = 0, the reflected wave will be aqual in magnitude but
opposite in sign to the incident wave (this arises because the stress on the surface
has to vanish). At a rigid edge pycy = infinite, the stress is doubled and tne
reflected wave has the same sign as the incident wave (this arises from the

condition of zero velocity at a rigid interface boundary).

Interface Pressure Decay Characteristics

After an incoming wave experiences a reflection and transmission at an interface
boundary between soil and concrate the pressure versus time character beyond the
peak value becomes more complicated, involving pressure relief due to three
different processes. The first process involves multiple wave reflections and
transmissions at the soil-concrete interface and the concrete free edge. The
second process involves interface pressure decay when the original incoming wave
form also decays with time. And the third process involves pressure relief when
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motion of the slab away from the soil reduces the interface pressure between the
soil and concrete slab. This later process is often termed a soil-structure

interaction.

The pressure decay process associated with wave reflections and transmissions can
best be illustrated by using one-dimensional elastic wave theory and the aid of a
characteristics diagram as developed by Wong ‘78 and shown in Figure A.4. The
figure presents a plot of distance versus time for a two layer finite element model
of soil and concrete. In this figure the lines with arrows show the direction of
wave propagation and the velocity of propagation is determined by the slope of
these lines — the steeper the slope the higher the velocity. The figure is for a step
pulse (no decay with time) with a peak pressure of 1000 psi and it shows
schematically the influence of several wave reflections and transmissions at the
interface and free edge. For exampie, from point A to point C there are two
round-trips of the wave through the concrete layer and the interface pressure at

point C is determined simply by the algebraic sum of the magnitude of previous

waves, {.e., 1000 + 800 - 300 - 250 = 1250 psi. The time associated with this decay

from 1800 .psi to 1250 psi depends on the wave transit times and hence the

thickness of the concrete slab. Therefore a quick decay is associated with a thin

slab.

The decay characteristics associated with an initially decayed ground shock
pressure pulse (incident wave) are shown schematically in Figure A.5. The curves
in this figure are the results of a finite element study conducted by Wong '78,
which have been rescaled to a time domain on the order of milliseconds. As can be
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seen the interface pressure decays more rapidly as the duration of the original
pulse decreases.

The interface pressure decay characteristics associated with slab motion are shown
in Figure A.6. As shown the interface pressure is relieved much quicker under
conditions where the two layers are allowed to separate. This occurs at an ideal
free edge when the concrete slab moves away from the overlying soil uatil it

actually separates and reduces the contact pressure to zero.

Slab Velocity
Associated with propagating stress waves is a particle velocity pulse given by the

one-dimension relationship

0 =pcv (A=-3)

where ¢ is the stress, v the corresponding particle velocity, and pc the acoustic
impedance of the medium. The relationship holds for elastic materials, The
interface stress (over some area) can be thought of as the action which causes the

slab to move as a rigid body with velocity v.

Peak velocity of a slab is attained at the time the interface stress reduces to zero.
For an interface which cannot sustain tension, such as exists between concrete and
soil, the velocity will remain at its peak value and will not decay. Physically, this

means that the slab temporarily moves away from the soil when it achieves a
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" higher velocity than the soil. At the extreme case of a rigid boundary, the
concrete slab cannot move and there is no relief due to motion.

Eossible Dynamic Failure Mechanism

Having discussed the issues of stress reflection and transmissions and the issue of
particle velocity associated with one~dimensional wave propagation theory, it is
feasible to envision the initial formation of a direct shear failure at a slab support
due to the passage of a wave front through the thickness of the member. This
heuristic discussion certainly does not completely describe the entire dymamic
failure process but it does provide one reason why dynamic direct shear may be
initiated in a different fashion than has been seen in slab response under static
loads,

This possible scenario for dynamic failure in direct shear is characterized by the
rapid propagation of a near-vertical crack through the depth of the roof member.
This crack is produced by high shearing stresses near the roof supports. The
occurrence of these high shear stresses at the roof support can be explained by
simple one-dimensional elastic wave propagation theory. Stress concentrations
develop when part of a shock wave front is reflected while another part of the
same wave front is transmitted at the support for the buried reinforced-concrete
box under the influence of a planar, vertically propagating, one-dimensional wave
front. This phenomenon can be seen by referring to Figure A.7.

As shown in Figure A.7, area | is an open space having an impedance of near zero
(for calculations it is identica)ly zero) and area II has a higher impedance than
area [. On reaching the plase d»fined by the line AD, that part of a compressional
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wave front lying between points B and C will undergo total reflection. The rest of
the front will continue downward unimpeded. As a consequence of the
conservation of momentum across boundaries (a free surface is a boundary) the
element BC begins to move with twice the velocity of the elements AB and CD.
Here, BC is a reflecting surface and AB/CD are transmitting surfaces. The result
of this differential motion is the buildup of intense stresses in the neighborhood of
the points B and C. Consequently small fractures and small regions of crushed
concrete are initiated at the corners in the wake of a shock wave. In a two-
dimensional sense, shear waves and longitudinal waves will interact and produce a

complex sevies of wave patterns near points B and C,
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APPENDIX B
Concrete Fracturing

General
Concrete is a complex material. It is formed by a combination of components
involving a mix of coarse aggregates, sand, unhydrated cement particles, cement
gel, capillary pores, and entrapped air voids. Despite the large amount of results
of experiments and investigations into the nature and character of concrete, there
persists a tremendous divergence in reported mechanical properties (see Gerstle et
al '80). The large variability in these mechanical properties depends on the
uncertain nature of the concrete constituents, mixing, placement, compaction, and
curing process. And perhaps no greater uncertainty exists than that which is
associated with attempts to determine the conditions under which concrete will
fail when subje‘cted to high rates of loading. An understanding of the phenomenon

of concrete fracture is helpful in reducing this uncertainty.

Static Fractures

Under static loads crack propagation can be detected by the reduction in slope of
the uniaxial stress-strain curve, by an increase in the Poisson ratio, or by a
reduction in the sonic velocity through a concrete specimen. In the static case,
cracks typically develop normal to the plane of maximum tensile stress, as shown
for the cases of uniaxial tension, uniaxial compression, and biaxial compression in

Figuve B.1.

As seen in Figure B.l a columnar fracture pattern develops under uniaxial

compression and a laminar fracture pattern develops under biaxial compression
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(Nichols '76). It is relevant that in uniaxial compression cracking occurs in the
direction of the applied stress because in all other directions there is no normal
component of compressiva stress. Cracking occurs at the aggregate-paste
interface, in the cement paste, or in the aggregate particles depending on the
relative stiffness and strength of the two materials.

Dynamic Fractuve
Rinehart '79 gives an excellent discussion of the conditions leading to fracture.

This discussion is summarized here for the purpose of highlighting differences
between static and dynamic situations. There are distinct differences between
fracture phenomena occurring under impulsive loads and those associated with
static loads. Under static loads the stresses and the strains are distributed
throughout the concrete element, permitting every particle to participate in the
initial formation of fractures. Once a fracture has been formed, local stress
concentrations control subsequent propagation of the fractures. Under impulsive
loads highly localized areas of high stresses and strains may exist independently of
stress-strain conditions in another region. This transient stress condition may
change so rapidly that fractures that form may not have time to propagate before

the stress situation changes.

The formation of fractures can occur under various transient situations such as:
1) stress inhomogeneities that result from the interference of waves, frequently
caused by the generation of additional waves from reflections at free surfaces;
2) relative lateral motion, associated with cylindvical and spherical waves; and,
3) large volumetric expansion upon release of load following compression.
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Aside from impulsively generated fractures, other dynamic fractures are similar to
statically generated fractures. For example, fields of dynamic shear stress which
develop progressively as an impulsive load moves throughout a material causes
shear failures similar to those caused by static loading (Rinehart '79).

In dynamic fracturing that is associated with shearing stresses, the trajectory of
the macrofracture may be oriented differently with respect to the shear stress
field than the individual microfractures that compose the macrofracture. Thus a
shear stress field may cause microfractures to form which cannot propagate but

which can, through their confluence, develop into a macrofracture.

These macrofractures can form as the final stage of extensive slip in a shearing
action, a process initiated by shearing stresses, or they can form by cleavage of the
material under a tensile stress. Rinehart '79 states, "the individual microfractures
will always bear a preferred orientation with respect to the stress field, the one
most favorable to their formation. The relative orientations of the microfractures
and the macrofractures differ depending upon the nature of the generating
stresses. When the path of the macrofracture lies along a trajectory of maximum

shear, the microfractures will be oriented parallel to it if they are shear generated
and will be inclined obliquely if they are tensile generated. When the path of the
macrofracture is perpendicular to a principal tensile stress and the microfractures
are of the cleavage type (a common spalling situation) the macrofracture and the

microfractures making it up are oriented parallel to one another.”
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APPENDIX C
Shear Transfer in Reinforced Concrete

General
Shearing forces in any reinforced concrete member including ordinary and deep
beams, slabs, shear walls, and shear diaphragms can be carried by several force
mechanisms. In addition to the direct transfer of shear force by uncracked
concrete in the compression zone, contributions may include tensile force stirrups,
dowel action in bars crossing shear cracks, friction and aggregate interlock of
naturally rough surfaces appearing on the cracked surfaces, and the direct thrust
between load points and reactions as permitted by internal force redistributions
after shear cracking. The relative importance of these different mechanisms
depends upon the geometry of the reinforced concrete member, the spatial
distribution of loads and reactions, the magnitude and qualitative nature of the
loads, the existence of concrete cracks, anﬁ other factors such as the arrangement
and inclination of reinforcing steel. Many of the summaries and figures in the
following sections are taken from a recent report prepared by the American

Society of Civil Engineers (ASCE '1982).

Generic Behavior

The distribution oi shear stress in concrete beams can be predicted by analysis by
assuming the member to be homogeneous, isotropic, and elastic. Before cracking
the reinforcement carries only low stress. Dowel effects are small. After
cracking (see Figure C.la) a significant redistribution of internal forces occurs.
For static loads the total shear resistance in a typical region ic comprised of the

sum of the uncracked portion of the concrete section, the interface shear transfer
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across the crack by aggregate interlock (friction), the dowel contribution of the
longitudinal steel, and the force transferred by dirsct tenmsion in the stirrups;
identified for the case of inclined cracking, vespectively, as Vg, Vayr V4, and Vg,
These resistive force components are shown in Figure C.1b.

Vertical equilibrium of the free body in Figure C.l1b requires that the external
shear force will be equal to the sum of all of these internal forces. In predicting
strength in shear the stirrup force is usually taken equal to Vy = A, f, where Ay is
the total area of steel crossing the crack and f, the yield strength of the steel.
The contribution of the four components is shown qualitatively in Figure C.lc as a
function of applied external shear Voxt. Components Vg, Vyy, and V4 have little or
no influence until flexural cracking, after which dowel action and interface shear

transfer contribute.

After inclined cracking, the part of the shear carried by the stirrups V,, increases
nearly linearly while the sum of the other three components stays nearly coastant.
When the stirrups yield their contribution stays constant; however, because of
widening of the cracks and splitting in the concrete along the longitudinal steel,
Vay and Vq fall off rapidly. This overloads the remaining cracked concrete and

very soon results in failure.

Dowel Action
Reinforcing bars across a crack which has been subjected to shearing displacements

represent the shear force which may be transferred by dowel action. This
mechanism is shown for a typical beam in Figure C.2. The shear force V4 applied
to the main reinforcement tends to cause downward beanding of the bar. This is
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" resisted by the concrete which provides an upward reaction force V). If the
concrete cover distance Sj is large, such as for mass concrete, local crushing of the
concrete may occur near the crack face. For beams in which S; is only a few
inches, splitting of the concrete along the bar is probable due to the vortical
tensile stress produced in the concrete at the plane of the reinforcement. This
tendency to split along the bar is augmented by the wedging ;ction by the bar
defcrmations as the bar tends to slip longitudinally through the concrete from
flexural loading of the member. Following splitting the effectiveness of dowel
action is a function of the distance S; from the shear crack to the first stirrup

supporting the dowel.

Experimental studies on dowel action have been conducted by Fenwick and Pauley
‘48, Dulacska '72, Pauley et al '74, Krefeld and Thurston '66, Taylor '74, Sharma 69,
Houde and Mirza '74, and Kemp and Wilhelm '77. Many of these experiments were
similar to the one performed by Dulacksa ‘72 and shown in Figure C.3. The effect
of dowel action is isolated from interface shear transfer by means of eliminating

the latter by smoothing and lubricating the contact faces of the shear plane.

The parameters of interest in the dowel studies on beams include the angle of
inclination of the reinforcement, the dowel diameter, dowel strength, concrete
tensile and compressive strengths, reinforcement percentage of shear plane area,
beam net width, bottom concrete cover, bar spacing, and the presence of
transverse stirrups. These dowel studies can be separated into two groups — one
where small diameter bars with large concrete covers were investigated, and the
other where large diameter bars with relatively small concrete covers were

studied. Pasic conclusions of these studies are summarized here.
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For the group of tests with small bar diameters and large concrete cover it has
been shown, generally, that fallure of the specimen occurred due to either yielding
of the reinforcement or concrete crushing bensath the bar. Fenwick and Paulay '68
concluded that dowel capacity was strongly influenced by the position of the bar in
the specimen and by dowel embedment length and that under optimum conditions
dowel action could resist 25-30% of the shear resisted by the interface shear
transfer mechanism. Paulay et al. '74 found that the resistance provided by dowel

action was proportional to the reinforcement area.

The tests on large diameter bars with small concrete cover revealed that failure
was initiated by the formation of splitting cracks around the bar periphery and
subtequent spalling of concrete cover. Krefeld and Thurston '66 and Taylor '74
found that dowel strength increased with concrste tensile strength, increased
concrete cover, and increased beam net width. Sharma '69 concluded that dowel
capacity increased when the bond quality between bars was improved and that
stirrups increased dowel capacity only if they were close to a crack. Houde and
Mirza 'T4 found that dowel capacity was enhanced by increased concrete strength
and beam net width, but it wasn't influenced as much by bar size or embedment
length. Kemp and Wilhelm '77, in a study of bond behavior, found that the presence
of dowel forces and tensile forces in the concrete did not significantly affect the
cracked pattern observed when cnly axial forces were applied. Finally, Taylor '74
found that the dowel stiffness was linear for very low loads and that after cracking
the dowel load drops to half its ultimate value. This dowel load-displacement

curve is shown in Figure C.4.
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Interface Shesr Transfer
Considering experimental investigations of interface shear transfer Fenwick &

Paulay '68, Houde & Mirza '74, Paulay & Losber '74 conducted direct shear tests to
evaluate the effect of parameters such as initial crack width, aggregate size, and
the restraining effect permitted by the longitudinal reinforcement crossing the

crack.

Fenwick & Paulay '68 performed direct shear tests which permitted transfer of
pure shear stresaes across a precracked sheav plane, while the crack width was held
constant. The tests were designed to study the effect of initial crack width and
concrete strength on the interface shear transfer mechanism. It was found that
the shear stiffness increased with decreasing initial crack width and increasing
concrete strength. Empirical equations for the interface shear stress transferred
across a crack resuited from a regression analysis of the experimental data and it
depended on initial crack width, concrete compressive strength, and tha shear
displacement.

Houde & Mirza '74 performed direct shear tests on precracked concrete block
specimens, After the concrete blocks were cracked along the shear plane and the
initial crack width was set to a predetermined value the speciriens were sheared
monotonically to failure. This test program evaluated the effect of the initial
crack width, the concrete strength, and the aggregate size. Results indicated that
the variation of shear stiffness of cracked concrete with concrete compressive
strength was similar to that found by Fenwick & Paulay. In the range of maximum
aggregate size teated (3/8 - 3/4 inches), the influence of the maximum aggregate
size was found to be negligible compared to the effect of the crack width and

concrete strength. Houde & Mirza developed a shear stress -- displacement
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relationship expressing the shear stress in terms of initial crack width and shear
displacement.

Paulay and Loeber '74 also studied !nterface shear transfer using the direct shexr
specimens shown in Figure C.5. The concrete specimens were highly reinforced
with ties and flexurai steel in order to avcid any premature flexural or diagonal
cracks near the shear plane. The crack width was held constant while the specimen
loaded monotonically to failure. Typical results are shown in Figure C.6. The
shear stiffness of the specimen decreased with increasing crack width., Figure C.7
shows the mean shear stress -~ shear displacement relationship with constant shear
stress to crack width raﬁo. Results show that aggregate shape and size had very

little influence on the shear displacement relationships.

Birkeland & Birkeland ‘66 have presented a shear-friction hypothesis to describe
the maximum shear force that can be transferred across the crack. The model
they used is similar to the one shown in Figure C.2. The shear load applied to the
specimen produces tangential and normal displacements at the shear plane.
Normal displacements will develop axial tensile stresses in tha reinforcement
crossing the crack which will induce vertical compressive stresses in the concrete.
The resistance to sliding will then be provided by the frictional force generated by
the vertical compressive stresses in the concrete. Shear-friction theory provides
the lower bound to the experimental data available on push off type specimens, It
must be noted that this procedure is valid only for conditions in which the failure is
obtained by yislding of the reinforcement across the crack; this allows for the

mobilization of shear friction. In the shear-friction theory dowel action is
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' neglected and the frictional resistance along the crack is presumed to account for

the strength of the element.

Mast '68 also compared the shear friction theory to experimental results of
composite beams. Similar to the results presented by Birkeland & Birkesland, the
shear-friction equation with horizontal tension can be expressed in terms of the
total cross sectional area of reinforcement, the yield strength of the reinforcing
steel, and the tensile horizontal load at ultimate strength. Of course the shearing
force can be equated to the normal force through the coefficient of friction
between the two crack surfaces. In shear-friction this coefficient of friction is

fictitiously high to compensate for the neglect of dowel action.

Combined Mechanisms

In all practical situations where shear forces have to be transferred across the
crack, both the interface shear transfer and the dowel action mechanism should
occur simultaneously. In the preceding sections the individual mechanisms were
isolated to assess their most important parameters. In the following sections a

summary of the existing literature on the combined action of static interface shear

teansfer and dowel action is presented.

Mattock '74, '76 conducted several investigations into the ultimate shear strength
of initially cracked and uncracked concrete. All specimens were loaded by pure
shear on a shear plane until failure occurred by yielding of the reinforcement. The
investigation studied the effect on the ultimate shear strength of the different
percentages and arrangements of reinforcement, concrete and reinforcement

strength, presence of direct stresses acting parallel and transverse to the shear
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* plane; pressence of moments and tensile forces normal to the shear plane, aggregate

type, presence of construction joints on the shear plane, and the effect of cyclic
shear stresses. Typical test results are shown in Figure C.9. The ultimate shear
stress increases almost linearly with the index pfy from a finite value for pfy equal
to zero to a limit dependent on the concrete strength for high pfy values. With a
monolithic shear plane, strengths are consistently greater than the precracked
shear plane. As shown in Figure C.9 for pfy lying between A or A' and B, failure is
relatively gentle and is due to a breakdown of the concrete after the reinforcement
crossing the shear plane yields. For pfy values lying between B and C failure
occurred abruptly before the reinforcement yielded. In this region the failure loads

are similar for uncracked and precracked specimens,

Reinhardt and Walraven '80 tested pushoff type specimens similar to those of
Mattock. They found that with more reinforcement with smaller bar diameters the
stiffness of the embedded steel was found to increase due to increased steel area in
bond. Concrete strength and roughness of the crack plane affect interlock
resistance and crack opening during sliding, The angle of bar inclination was found

to be partly a stiffness and partly a geometry effect.

For specimens in which the applied shear force was transferred by combined action
of the interface shear transfer and dowel action Jimenez et al '79 observed that
the shear slips were small. This implies a higher shear stiffness compared to dowel
action or interface shear action acting alone. This is due to the role that the
reinforcing bars play in restraining the crack width, resulting in a higher
contribution of the interface shear transfer. It- was also observed that

reinforcement size was an important parameter in the shear transfer mechanism.
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- Large dowel bars attract:-higher dowel forces causing splitting of concrete along
the bar and hence collapse of the shear transfer mechansim,
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Figure C.1

shear Transfer in Dfagonally Cracked Beam: a) Cracked Beam, b) Free-body
Diagram Along the Crack, c¢) Distribution of Internal Shear Forces (ASCE'82)
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Figure C.2 Dowel Action of Main Reinforcement (ASCE*82)

Figure C.3 Dulacska's Test Specimen (ASCE'82)
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Figure C.4 Dowel Load-Displacement Curve from Taylor (ASCE'82)
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: Figure C.5 Specimen Used in Paulay and Loeber's Investigation (ASCE'82)
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Figure C.6 Regression Analysis With Constant Shear Stress to Crack Width
Ratio (ASCE'82)

e |
1200
000 €= 0.008 IN. € = 0010 IN.
\y CRACK WIDTH
C=0 N,
N
00
E [,
§ ®0| PN
) T30%
+L20%
208
e %
1
¢ C ]
’ 4“0 ¢t 20 o X0 M0 W0 20107 M)
SNEAR DISPLACEMENT
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~ Width Tests (ASCE'82)
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Figure C.8 Shear Friction Analogy (Somerville'74)
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