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'The main objective of this research is to extend the multiple

ranking procedure of Dudewicz and Dalal to the case of K normal

covariance-stationary processes with unknown and nonidentical

covariance structures. To implement this procedure, -we develo1Aa

computer program that can be called on the fly by an ongoing

discrete-event simulation in order to select the best steady-state

performance among K alternative policies. For each alternative

policy, the proposed support package analyzes the simulation-generated

output. series to determine if the accumulated sample size is

sufficient to meet the predetermined probability requirement (that is,

the probability of yielding the correct selection). If the run length

is not sufficient, the program determines the number of additional

observations to be taken. Upon reaching an acceptable run length, the

program reports the estimated mean response of the policy currently

under consideration. The run for each alternative policy is executed

independently and does not require any information from the runs for
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other policies.

The analysis procedure developed in this research includes

subprograms to perform the following operations:

1. The application of a cusum test to detect initialization bias

and to truncate the transient portion of the output series.

2. The application of a normality test to ensure that the

original data is organized into sufficiently large batches so

that the resulting batch means are approximately normal.

3. The application of a spectral method to account for the

covariance structure of the batched series by estimating the

spectrum at zero frequency.

The ultimate purpose of these subprograms is to yield a

simulation-generated time series for which the extended Dudewicz-Dalal

procedure is valid.

The final objective of this research is to carry out an

extensive experimental validation of the analysis procedure. The

systems used for this validation exhibit much diversity in their

stochastic behavior and thus provide an indication of the robustness

of the multiple ranking procedure.
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other policies.

The analysis procedure developed in this research includes

subprograms to perform the following operations:

I. The application of a cusum test to detect initialization bias

and to truncate the transient portion of the output series.

2. The application of a normality test to ensure that the

original data is organized into sufficiently large batches so

that the resulting batch means are approximately normal.

3. The application of a spectral method to account for the

covariance structure of the atched series by estimating the

spectrum at zero frequency.

The ultimate purpose of these subprograms is to yield a

simulation-generated time series for which the extended Dudewicz-Dalal

procedure is valid.

The final objective of this research is to carry out an

extensive experimental validation of the analysis procedure. The

systems used for this validation exhibit much diversity in their

stochastic behavior and thus provide an indication of the robustness

of the multiple ranking procedure.
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identical, he formulated the alternative hypothesis that one of the

populations has "slipped" to the right (resulting in a larger mean for

that population) relative to the remaining populations. Hosteller's

test consists of (a) sorting the overall set of K*n sample

observations in ascending order; (b) determining the population with

the largest sample value; and (c) counting the number m of

observations from that population exceeding a11 values' sampled from

the other K-i populations. If m >, in, the experimenter rejects the

null hypothesis and accepts the hypothesis that the population with

the largest sample value has slipped to the right. If m < an, the

null hypothesis is accepted. Mosteller tabulated the size of this

test (that is, the probability of Type I error) for different values

of K, n, and mO .

While Kosteller's test has the advantage of being quick and

easy to apply, it is not very powerful. Moreover, it requires the

same sample size n for every population. The most important aspect of

this test, however, is that it is subject to a new type of error.

Besides the classical Type I and II errors, there exists the

possibility that the null hypothesis is correctly rejected for the

wrong reason: the selected population does not have the largest mean.

These pitfalls were clearly brought out in Mosteller's original paper.

The main contribution of this paper is that it focused attention on a

neglected statistical problem of great practical importance. This

paper has stimulated extensive research efforts to develop effective

testing procedures adapted to a variety of experimental situations.



CHAPTER I

INTRODUCTION

1.1 Genesis of Ranking and Selection Problems

In 1948 Frederick Mosteller published his pioneering work on a

statistical question that he called "the problem of the greatest one."

Given K populations, Mosteller wanted to select the population with

the largest location parameter (for example, the mean or median) by

analyzing random samples drawn from each population. The word

population was used by Mosteller for a process, 7T(O), which generates

independent random variables X,, X2, ..., Xn' each Xi having the same

density function f(x,O). A set of Xi's that have been generated by

71(O) is called a random sample from the corresponding population.

The practical importance of such a test is obvious. If

several varieties of grain are being tested to determine which variety

has the greatest mean yield per acre, the classical approach of the

analysis of variance (ANOVA) is not adequate. As a result of applying

the F-test of ANOVA, the only possible significant conclusion is that

the treatment means are unequal -- and this is frequently known at the

outset. The experimenter's real question - "Which is the best

variety of grain?" - remains unanswered.

Mosteller's approach (1948) was to analyze random samples of

fixed size n taken from the K populations using a parameter-free

significance test that differs fundamentally from the classical ANOVA

approach. Against the null hypothesis that all populations are

1
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1.2 Complications Arising in Simulation

Although Mosteller's procedure was discussed above in the

context of an agricultural experiment, it is clear that the procedure

can be applied in all branches of experimental science. For many

problems which are either too complex to solve analytically or

impractical (structurally or economically) to test physically,

computer simulation may be the only feasible mode of experimentation.

This consideration naturally leads to the use of large-scale system

simulations to evaluate and compare alternative policies for system

operation. By appropriate analysis of the simulation-generated data

sets, the "best" operating policy can be identified. Unfortunately,

the following characteristics usually occur in the output series for

each alternative:

1. Initialization bias

2. Unknown process variance

3. Unknown autocorrelation structure

4. Marked nonnormality.

These characteristics pose major tactical problems in the execution of

a simulation experiment, and they severely complicate any attempt at a

follow-up ranking-and-selection analysis.

Initialization bias (Problem 1) occurs when steady-state

performance measures are required for a real-world system. Unlike the

real-world system, the corresponding simulation model receives

intermittent uses over finite periods of simulated time. The
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experimenter runs the simulation as needed, records appropriate data,

and then shuts the model down. Among the most difficult questions in

discrete event simulation are the problems of determining how to start

the model and how to obtain measurements that are not biased by the

method of starting (Conway, 1963).

Classical methods of statistical analysis are based on

independent observations from a single normal population with a known

variance. Unfortunately, it has been well documented (Fishman, 1973,

1978; Kleijnen, 1975; Law and Kelton, 1982) that the output responses

generated by computer simulations of realistic systems are neither

independent (Problem 3) nor normal (Problem 4). Moreover, the

variance of the response is usually unknown and unequal across

alternative system configurations (Problem 2). While these four

problems are not limited to simulated experimentation, they

substantially detract from the attractiveness of discrete-event

simulation as a method for comparing alternative policies.

Two unique advantages of computer simulation have motivated

efforts to overcome these four tactical problems. The first advantage

is one that experimentalists always seek to achieve - perfect

homogeneity of the experimental medium. In a simulation experiment,

the experimental medium is a sequence of events which describe the

activities of the outside world. Since this sequence is a function of

the pseudo-random numbers that are sampled to drive the model's

exogenous stochastic input processes, the experimenter can reproduce

an identical sequence of discrete events whenever such duplication is
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desired. The second advantage of simulated experimentation is the

ability to perform statistical analysis and control of the simulation

as it is being run. After the operation of a discrete-event

simulation has been temporarily suspended to perform some type of

calculation on the results already obtained, it can be resumed with no

loss of information by returning control to the executive time-advance

procedure.

1.3 Problem Statement

Given a discrete-event simulation model of a real-world

system, the problem is to select the best operating policy from K

given alternatives. This requires the development of a multiple

ranking procedure that will monitor the relevant output processes

generated by each alternative and that will finally yield a correct

selection from the set of alternatives with a user-specified level of

reliability. The ranking procedure must include effective techniques

for handling initialization bias, nonnormality, autocorrelation, and

variance estimation in the processes to be analyzed.

1.4 Objectives and Scope of the Research

The main objective of this research is to extend the multiple

ranking procedure of Dudewicz and Dalal (1975) to the case of K normal

covarlance-stationary processes with unknown and nonidentical

covariance structures. To implement this procedure, we develop a

computer program that can be called "on the fly" by an ongoing
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discrete-event simulation in order to select the best steady-state

performance among K alternative policies. For each alternative

policy, this support package analyzes the simulation-generated output

series to determine if the accumulated sample size is sufficient to

meet the predetermined probability requirement (that is, the

probability of yielding the correct selection). If the run length is

not sufficient, the program determines the number of additional

observations to be taken. Upon reaching an acceptable run length, the

program reports the estimated mean response of the policy currently

under consideration. The run for each alternative policy is executed

independently and does not require any information from the runs for

other policies.

The analysis procedure developed in this research includes

subprograms to perform the following operations:

1. The application of the cusum test of Schruben (1982) to detect

initialization bias and to truncate the transient portion of

the output series

2. The application of the normality test of Shapiro and Wilk

(1965) to ensure that the original data is organized into

sufficiently large batches so that the resulting batch means

are approximately normal

3. The application of the spectral method of Heidelberger and

Welch (1981a) to account for the covariance structure of the

batched series by estimating the spectrum at zero frequency

for that series.
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The ultimate purpose of these subprograms is to yield a

simulation-generated time series for which the extended Dudewicz-Dalal

procedure is valid.

The final objective of this research is to carry out an

extensive experimental validation of the analysis procedure. The

following systems are used in the validation study:

1. Several sets of autoregressive-moving average processes

2. A set of open, feed-forward queueing networks

3. A set of (s,S) inventory systems.

These experimental vehicles exhibit much diversity in their stochastic

behavior and thus provide an indication of the robustness of the

multiple ranking procedure.

1.5 Organization of the Dissertation

Chapter II provides a survey of the literature on the

following topics: (a) ranking-and-selection procedures, (b) tests for

initialization bias, (c) tests for normality, and (d) spectral

analysis of simulation output. Chapter III presents the development

of the extended Dudewicz-Dalal procedure together with all of its

required support routines. Chapter IV contains a tabulation and

analysis of the results of the experimental validation study. A

precis of the main findings of this research is given in Chapter V

along with recommendations for future work.



CHAPTER II

LITERATURE REVIEW

2.1 Multiple Ranking Procedures

After Mosteller's work, the next significant step in

attempting to solve "the problem of the greatest one" was completed by

Bahadur (1950). In his work Bahadur reiterated the fact that the

usual statistical theory for testing hypotheses of the form

Ho: 111 =  112 ... m 11K

is inadequate where a definite course of action is required to select

the best population. He proceeded to consider explicitly the purpose

of selection and the loss involved in making any particular erroneous

selection. Using the same definition of population and the same goal

as Mosteller, Bahadur proved that selecting the population with the

largest sample mean 1i is the optimal procedure under the following

conditions:

1. Impartial selection is required.

2. The experimenter seeks to maximize the probability of

correctly selecting the population with the optimal expected

value.

3. The basic observations are independent normal random

variables.

4. The sample sizes are equal.

For other unknown parameters which are to be compared, Bahadur cites

necessary and sufficient conditions that must be met to ensure the

8
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following property: If X, and X2 are independent estimates of the

corresponding unknown parameters C1 and C2, and in a given instance X,

> X2, then it is more reasonable to suppose that C1 > C2 than to

suppose that C1 < C2. It was this basic work in the ranking of

unknown parameters based on random samples that lead J.P.C. Kleijnen

(1975) to state, "Historically, multiple ranking procedures can be

traced back to the work of Bahadur in 1950."

After the pioneering work of Mosteller and Bahadur, procedures

to solve "the problem of the greatest one" branched into three

separate approaches. These three methods of ranking alternatives are

classified as follows:

1. Indifference Zone Approach

2. Subset-selection Approach

3. Sequential techniques.

All three methods come under the general heading of ranking - and -

selection procedures or multiple ranking procedures (MRP). It is this

latter nomenclature that will be used throughout this dissertation.

2.1.1 Indifference Zone Approach

Although the groundwork was laid by Mosteller and Bahadur, it

was R. E. Bechhofer's effort in the MRP area which represented a major

event in statistical thought (Dudewicz, 1976). Bechhofer (1954)

developed a procedure for determining the number of observations

required for selecting the single "best" population (that is, the

population with the largest mean value) from K competing populations
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based on a predetermined probability of correct selection. While

Bahadur justified using the sample means to compare the true means of

normal populations, Bechhofer specified how large a sample size would

be required to ensure a desired probability, P*, that the correct

population is chosen by the test procedure. Bechhofer's procedure

also allowed the experimenter to select an "indifference zone" which

effectively prevented the experimenter from taking large samples to

detect only small differences in sample means. Bechhofer's problem

statement can be summarized as follows:

There exist K populations ni(il, 2, ..., K), where

11[1 '- P [2] < ... < P [K-1 I < P [K]

represent the ranked means. The objective is to select the population

with the largest mean II[K]"

Bechhofer's procedure specifies the size n of the random

sample to be taken from each population so that by choosing the

population with the largest sample mean, the probability of a correct

selection (CS) is greater than or equal to a predetermined constant

P Since large samples are required to select the best population if

the population means differ only slightly (and the loss involved in a

wrong selection is then small), the requirement for a floor on Pr(CS)

is necessary only if the best population mean is at least a specified

number of units, A* (A > 0), better than the next best mean.

Symbolically, this requirement has the form

Pr(CS) > P* if I[K ] - P[K-.] " (2.1.1)

where a* indicates the size of the "indifference zone". In his

.. ... . . .. . .. .. .. ,. _ . . . . .. . . ,* . a " ' . .. . !. , --. -



11

original work, Bechhofer concentrated on a single-sample method for

selecting the best population; and he assumed that all observations

are independent and are taken from normally distributed populations

with a known common variance. Bechhofer also extended his procedure

to the selection of the population with the smallest mean and to the

selection of the populations with the m "best" (largest or smallest)

means (m < K).

In determining the proper sample size, Bechhofer introduced

the concept of the "least favorable configuration" (LFC). Bechhofer

stated that the probability requirement (2.1.1) must be valid when the

K unknown population means are arranged in a configuration that makes

it the most difficult to distinguish the best of the population means.

He showed that this LFC occurs when:

If the means do not fall in this configuration, then the actual

probability of correct selection exceeds the floor P

In a simplified derivation of the formula for the common

sample size n given P* and A*, Barr and Rizvi (1966) show that

solving equation (2.1.2) for h and then substituting the result into

equation (2.1.3) determines the required sample size:

where P* _K-I (x + h) d O(x) (2.1.2)

I/K < F* < 1, Ois the standard normal

distribution function, and

n - (o h/A*) 2 (2.1.3)
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and where C - known common standard deviation of all K populations.

Bechhofer (1954) tabulated values of h in his original paper.

Obviously h and n increase as K and P* increase. In a paper published

15 years later, Dudewicz (1969) relieved the experimenter of having to

solve (2.1.2) or having to use tables to find the appropriate h value.

An accurate computing formula for h was shown to be

h(P*,K) - 2 [- n(l-P*)] 1 / 2  (2.1.4)

While this breakthrough by Bechhofer allowed the experimenter

to predetermine P* and A*, it had a major drawback in requiring a

known common variance for all populations. Bechhofer, Dunnett and

Sobel (1954) subsequently developed a two-sample procedure for ranking

K normal populations with unknown variances

G12 a. ,2 a i - 1, 2, ... , K I,

where a 2 is unknown but the ai's are known. This procedure also

requires calculation of a critical value h in a manner similar to

Bechhofer's first paper. The two-sample procedure is:

1. Take an initial sample of aiN o observations from the ith

population Ti (i - 1, 2, ..., K).

2. Calculate the mean square error,

k N
So  V 1  ai 1  -

i-1 Jul

This is an unbiased estimate of a2 with

k
V - No 0 i - K

degrees of freedom.

A
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3. Take a second sample of (N - No)ai observations from each of

the 7i1 (1 - 1, 2, ..., K) populations, where

N - max {No, [2 S2 (hn/ 6*)2] } (2.1.5)

In equation (2.1.5), [*] denotes the greatest integer

function, and h - h(No, K, P ) is obtained from Table 3 of

Dunnett and Sobel (1954). If N equals No, a second sample is

unnecessary.

4. Calculate for each 71 the overall sample mean

I (aN-1 aiN

M E Xij (i - 1, 2, ... , K)

Denote the ranked values of Xi by

ill] < X[2 1 
< ... <

5. Rank the 14i according to the ranking of the observed Xi -

that is, select the population which gave rise to X[K] as the

"best" population.

C. W. Dunnett (1960) considered the situation of ranking K

normal populations with unknown means, equal variances and

covariances, and some a priori information about the distribution of

the unknown population means. Specifically, the unknown population

means are themselves normally distributed. A typical problem to which

this model could apply is the selection of the best of K varieties of

grain which have been chosen at random from the same parent population

of grain varieties. Another extension developed by Dunnett applies to

the case where there is prior knowledge about the values of the

population means. This a priori information is used to justify a

. 1A
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smaller sample size than is dictated by Bechhofer's procedure because

it is known that the LFC does not occur. Here again Dunnett

recognized the possibility of various definitions of "best," depending

upon the requirements of the particular application. He assumed, as

did his predecessors, that there is a single characteristic by which

the various experimental populations are to be judged, and that the

best population is the one which possesses on the average the highest

value of this characteristic. Dunnett's procedure has not been widely

used because certain multivariate normal integrals required by the

procedure have not been tabulated. This procedure is also encumbered

by the questionable accuracy of the a priori information on which it

is based.

Somerville (1970) also approached the idea of ranking

alternatives through the use of a probability requirement and an

indifference zone, but he tied both P* and A to economic costs. His

procedure determined the "optimum" sample size for choosing the

population having the best (largest or smallest) mean when a specified

economic loss is suffered if an incorrect decision is made. In this

situation, the expected loss due to an incorrect decision must be

balanced against the expected cost of experimentation. Somerville

arrived at the same LFC as Bechhofer; but he used the minimax

principle, with A* and P* being determined by economic costs instead

of being specified by the experimenter. His basic assumptions

(normality, known variances, independent observations) coincided with

those of Bechhofer.
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Chambers and Jarrett (1964) also followed the path of

Bechhofer in deciding how large a sample should be taken from each of

K populations in order to give at least a specified probability of

selecting the best population when the indifference zone has width A

However, their double sampling procedure is designed to select the

best of K nonnormal populations when the population variances { G2

depend on the corresponding unknown means f Wi }; and the form of this

relationship

a a (P i )

is known and common to each population. Binomial and Poisson

populations provide examples of this situation. The Chambers and

Jarrett procedure is shown to be valid only for large samples. For

example, they used an initial sample size of 750 for selecting the

best of 3 binomial populations with P* = 0.95 and A 0.02.

Chambers and Jarrett's derivation of the proper sample size

closely follows the analysis given by Barr and Rizvi (1966) for the

Bechhofer procedure. (See equation (2.1.2).) The recommended

procedure is: (assuming "best" as smallest mean)

1. An initial sample of size No is taken from each population,

ri (i - 1, 2, ... , K).

2. The smallest sample mean is used to estimate the smallest

population mean P[11"

3. The total sample size N needed from each population is

estimated by inserting the estimated U11] into equation

(2.1.6):
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OD 
u )] du, (2.1.6)

u0 Y

where and } respectively denote the standard normal

density and distribution functions, and where

* o( +yi: A*) * '_n ___*a { 1] +, rn6

cC u11 1 ) c( , [j])

4. An extra sample of size N - N0 should be taken from each

population (none if N < NO).

5. The population yielding the smallest final sample mean is then

selected as the "best" population.

One advantage of this two-stage procedure is that it allows A*

to be specified as a percentage of the smallest population mean rather

than as an absolute quantity. Again following the form of Bechhofer's

original work, Chambers and Jarrett discussed the idea of a LFC and

they produced tables that specify values of 6*.

Up to this point, all MRPs required some prior knowledge of

the value of the population variance. Either the actual value of the

variance, known variance ratios, or a known functional relationship

with the unknown mean had to be available to the experimenter before

any decisions could be made. The next logical step in the evoiut ion

of MRPs was taken by Dudewicz and Dalal (1975) - namely, the

development of a procedure which solves the general ranking problem

with O2(i - 1, 2, ... , K) unknown and unequal. They considered the

same problem addressed by Bechhofer -- including the concepts of a

-=..... . . - . ... , - ,. r -. ':
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probability requirement P an indifference zone A*, and a LFC, bu

without the assumption of known and equal variances. For this

situation, Dudewicz and Dalal developed the following two-stage

procedure, PE' to determine the required sample size ni for the ith

population:
1. Take an initial sample {Xi,l, ..., Xi,n of size no(>2)

from TT (i - 1, 2, ... , K) and define

no
Ri(no) " Z X , j/no  (2.1.7)

j.1

no
Si- E (Xtj - Xi(no))2 /(no - 1) (2.1.8)

j=1

ni - max { no + 1, [(Sih/& *)2] 1 (2.1.9)

where (z] denotes the smallest integer > z and h = hno (K, P*)

is the unique solution of

f {[Fn (z+h)] K-i } (z)dz - P* (2.1.10)
CO 0 0

where Fno() and f() are respectively the distribution and

density function of a Student's -t random variable with no - 1

degrees of freedom.

2. Take ni - no additional observations

Xi,no +1 ,  .., Xi,ni from ni(i 1 1, 2, ..., K)

and define

ni

i = Z  ajj Xij (2.1.11)
ini

where the auj's (i - 1, 2, ... K; j 1 1, ... , ni) are chosen

"=-: L
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so that

alj =1 (2.1.12)

Jul

ail = ... - amn °  (2.1.13)

E aj 2 - ( */h)2 (2.1.14)

i-i

(Note: For K < 3 this weighting scheme is not required. The

mean of ni observations is used for comparison.)

3. Rank the populations based on the X i values where

K[1 ] < X[2] 
<  0'" < 3[K] and select the population

which yields X[K ] (largest sample mean).

The justification for this procedure, as presented in the

paper, shows that the method is independent of the a2 (i - 1, 2,

... , K) values and that Pr(CS ' PE, LFC) = P*. Extensive P* tables are

provided in the paper for varying values of K, no, and h.

In a previous paper, Dudewicz (1971) showed that if the o2

are not known, no single-stage sampling procedure can satisfy the

probability requirement (2.1.1). While Dudewicz admitted that there

might be some resistance to a multi-stage procedure, he emphasized two

important points: (a) double sampling plans achieve almost the same

efficiency increase over a single sampling as that achieved by a fully

sequential plan; and (b) in most cases, the first stage of a double

sampling plan is actually equivalent to running a pilot study for

preliminary variance estimation prior to carrying out a fully

sequential procedure (see also Dudewicz, Ramberg, and Chen, 1975).

AL_ ,,-.
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Dudewicz, Ramberg, and Chen (1975) also presented a Procedure

that is equivalent to the previously shown PE but is more amenable

to machine computation. Procedure 9 is:

1. Complete step I of PE

2. Take ni - no additional observations Xi,no+1' . Xi,ni from

and calculate the new sample mean

Xi(ni - no ) - (ni - no) E Xii, (2.1.15)
J-no+1

the weights

Wi - (no/ni)[1+([ni(hSi/ A *)
2 _ l](ni - no)/no) 1 /2] (2.1.16)

W - 1 - W i  f(2.1.17)

and the final weighted mean

- WiXi(no ) +WiRi(ni-n o ) for 1-1, ..., K. (2.1.18)

3. Complete step 3 of PE"

Dudewicz, Ramberg, and Chen (1975) presented the numerical

analysis that they used to compute extensive tables of the critical

value h as a function of no, K, and P*. The solution procedure for

equation (2.1.10) involves a nonsequential search over a grid of h

values. For each value of h, a 128-point Gauss-Legendre quadature

formula is used to approximate the required integral over 9

laboriously determined subintervals. In Chapter III, we develop a

solution procedure which is completely automated and is therefore

suitable for use in discrete-event simulation.

As was the case for the original Bechhofer paper in 1954, both

procedures PE and ' can be generalized to select the population with

_ __ -.. .. ... . .... . ... . . ... .. . . ,.. L . ...... _ . .. E.
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the m best means (I < m < K). It is important to note that the

extended selection procedure will not indicate that the m selected

populations are ranked or ordered in any way among themselves; the

probability requirement only refers to the event in which the

unordered set of m selected populations is the same as the unordered

set of the m best populations. This particular selection goal might

be useful if it is decided to identify several good options, since the

best population might prove unacceptable for other reasons. The

procedure given by Bechhofer (1954) could be used to select the m best

populations and to specify the proper ordering of all m populations.

For the simulator, both these procedures, PE and P , were

most welcome. To be able to finally shake the bounds imposed by

having to assume some known property of the population variance

greatly increased the practical value of MRPs. This is borne out by

the following statement in Law and Kelton (1982): "Assuming known or

equal variances is very unrealistic in simulation."

The last major hurdle in using MRP to analyze discrete-event

simulation is the presence of serial correlation in the output series.

Dudewicz and Zaino (1977) chose to model the observations from such a

process ffi (i - 1, 2, ..., K) bv an autoregressive scheme of order 1:

Xin ' P Xi,n_1 + Zin (2.1.19)

where I PI < 1, and { Zin: n > l } is a sequence of uncorrelated

random variables with mean ( - 1) U i and variance 0 2. For

equation (2.1.19), we have:

E(Xin) - (2.1.20)

L. _ _ _ _ _ _ _ _ _ _
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Var(Xin) 0 2  C 2/(1 - p2 ) (2.1.21)

2n x
SX 2,n+s)  2 l (2.1.22)

Rs=Cov(X Xi,n = - a2/(_p2]•0s

Using this AR(1) model, Dudewicz and Zaino showed that the proper

sample size, N3, to use to compensate for the known covariance

structure (2.1.22) is found by taking N3 to be the smallest integer

satisfying

1 [ (I + p) 2 p(l - pN3 ) I
- -- I2 - (2.1.23)
N3  (- p) N3(1 P )2 N

where N is the sample size required by Bechhofer's (1954) procedure in

the case that p = 0. The only deviation from Bechhofer's basic

assumptions are:

1. A* is specified as a percentage of ax, equation (2.1.20);

2. The population sample observations, Xij( j - 1, 2, ..., n),

are not independent; and

3. All Pi (i - 1, ..., K) are equal.

A good approximation to N3 is given by

S+p
N2 = N - (2.1.24)

i - P

for values of p > -0.5. The authors also present several graphs that

show how the required sample size grows as the value of I P I

increases. This fact is intuitively obvious since as I p I increases,

a fixed number of samples will yield "less" information about the

population mean.

Dudewicz and Zaino extended their procedure to the ...tuation
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in which the Pi values are unknown and unequal. Finally they

considered the situation in which both 02 and P are unknown andi

unequal. For this latter condition, the Dudewicz and Zaino heuristic

procedure is:

1. Take an initial sample size of No W 30 from each simulation

model (population). Calculate the number of observations

which would be needed if Pi = 0:

Mi - max(No, [(Sih/ A*)
2 ]) , (2.1.25)

where (Sih/L *) is calculated from step I of the Dudewicz and

Dalal (1975) procedure. If Mi > No take Mi - No additional

observations.

2. Using all Mi observations, calculate the sample mean X. and

the sample lag-one correlation coefficient

Hi
E (X in - Ri)(Xi,n-l - Rd)

n=2

Mi - 2 (2.1.26)

E (Xin - Xi )

n- i

Form the 100(1 - a )% confidence interval for pi from

MA - I 1 ^2(D I2 Mi(Mi-3) i(2.1.27)
Pi- P M ( - Pi ) tMt_ 3 (1 - ct /2) , 21.7

where a .05 and tr(q) is the 100q percent point of

Student's - t distribution with r degrees of freedom. If the

interval (2.1.27) contains p i - 0, Judge Mi to be an

adequate sample size for population i and go to step 4.

3. If the interval from step 2 does not contain p i - 0,
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calculate

N121 Mi  (2.1.28)

1 - i

and take N21 - Mi additional observations from population i.

4. Using all the observations taken from population i, compute

the overall sample mean Xi and select that population which

produces the largest Ri(i 1 1, 2, ..., K).

Two points should be emphasized about this scheme. The first

is that all the Dudewicz and Zaino procedures are valid only if an

AR(1) process accurately models the output data. Secondly, only

lag-one correlation is taken into account. It is still assumed that

the observations across alternatives are independent, i.e. Xi' J is

independent of X1+£9 (Z - 1, 2, ... , K-i).

2.1.2 Subset Selection Approach

Another method of comparing alternatives was pioneered by

Gupta (1956). In the subset selection approach, the goal is to select

a non-empty subset of the populations so as to include the best

population. In this approach, the size of the selected subset is not

fixed in advance, but is determined by the observations themselves.

For the problem of K normal populations with unknown means and a

common known variance, the procedure developed by Gupta (1956) selects

the population that yields 21 if and only if

1i > (max Ii) - d a/nl /2  (2.1.29)

14 J4 K

I
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where 0- common known population variance
n - commonsample size
d - d(K, P ) > 0 is the solution to

P* -JOfK-l(t+d)d. *(t) di, (2.1.30)

where 0 is the cumulative distribution function of a standard normal

variable. Work has also been done by Gupta to handle common unknown

variances and unequal variances. The subset selection approach

differs from the indifference zone technique in that the latter

requires specification of two constants P and * to select a fixed

number, m, of "best" populations, while the former only requires P to

pick a random-sized set containing the best population.

Kleijnen, Naylor and Seeks (1972) have suggested that the

subset selection procedure can be used to reduce the number of

possible alternatives when K is large; then the indifference-zone

technique can be applied to the remaining alternatives to find the

"best" population. This approach is only appropriate if the

experimenter is seeking a single "best" population (m-I). This

approach will not work for m > 2 because there is no way to ensure

that every population whose mean falls within A units of the "best"

population mean will be included in the subset selected by Gupta's

procedure. Missing some nearly optimal populations can be quite

damaging if those populations possess a secondary attribute which

makes them more desirable than the "best" population.

2.1.3 Sequential Approach

Both of the previously discussed MRP approaches - subset

L. ..........:_ .-, ,... _ ,, .. .
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selection and indifference zone - are either single-stage or

two-stage procedures. Starr (1966) showed that it is more efficient

for the experimenter to take observations one at a time and terminate

the experiment based on a known stopping rule as soon as the desired

goal is reached. Sequential MRPs have this trait.

Bechhofer (1958) developed the following sequential procedure

for finding the "best one of several normal populations with a common

known variance":

1. At the m-th stage of experimentation (m - 1, 2, ...), take an

observation from each of the K populations. Starting with

m = 2, compute the stopping statistic Zm(dm). For complete

details on the form of the stopping statistic, see Bechhofer

(1958).

2. If Zm(dm) ( - P*)/P*, stop experimentation and select the

population with the largest sample mean.

5. If ZM(dm) > (1 - P*)/P*, take another observation from each of

the populations, replace m by m+I, and go to step 2.

Due to the tedious computations required at each stage to check the

stopping rule, Bechhofer and Blumenthal (1962) devised a new computing

formula for Zm(dm).

Paulson (1964) developed an alternative to Bechhofer's

sequential procedure which is substantially easier to use. Paulson's

procedure includes the ability to eliminate certain populations from

further sampling once they were identified as "inferior". This

elimination is referred to as "taking advantage of a more favorable
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configuration (MFC)." As previously mentioned, the probability

requirement is satisfied even if the population means are in an LFC.

It is clear that as the means depart from the LFC to yield a MFC, a

smaller sample size will suffice.

The Paulson procedure assuming a common known variance is:

1. Select X = A */4 and calculate

a = [ 2/( A* -X )] * In((K - 1)/(1-P*)) (2.1.31)

2. Take one observation from each population

(X 1 1 , X 2 1, ..., XKI). Eliminate any population 7i for

which Xil < max { X1 1 , X2 1 , ... , XK1I - a X + . If

all but one population is eliminated, select it as the best

and stop. Otherwise go to step 3.

3. Take another observation from each population not eliminated

in step 2. Proceeding by induction, at the

rth stage we eliminate any population I i for which

r r
Z Xis < max {E Xvs: all remaining v } - aX + r .

s1l s-i (2. 1.32)

The limit on r equals W X , where WX is the greatest integer

in a X / X. As soon as K - 1 populations are eliminated, the

remaining population is selected as best. If after W X stages

there is more than one population remaining, go to step 4.

4. The experiment is terminated at stage (W + 1) by selecting

population i for which
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WX +1

X-is

is the greatest. Paulson showed that the probability requirement

(2.1.1) is satisfied by this procedure and by a similar method for the

case of common unknown a 2 Kleijnen (1974) reported on Monte Carlo

experiments showing that Paulson's procedure performs better than any

other comparable single stage multi-stage, or sequential procedure.

Although the sequential procedures are more efficient for a

given P* and A*, their application by simulators has been limited.

This is partially due to the fact that no sequential procedure

addresses the problem of unknown variances or correlated observations;

however, the main problem is that it is very cumbersome to simulate

several systems in parallel.

2.2 Initialization Bias

As previously mentioned the objective of many computer

simulation experiments is to select the best alternative operating

policy for a real-world system based on simulation-generated

estimators of steady-state performance under each policy. For

example, a proposed set of inventory reorder points and order

quantities may be used as decision variables for a model of an

inventory system with a particular demand distribution. The relative

effectiveness of these proposed policies can then be measured by

comparing the simulated average monthly costs. In such a case, the

initial (starting) conditions (amount on hand, amount on order) can
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seriously affect both the bias and the variance of the

simulation-generated cost estimators.

Discrete-event simulation of such a stochastic system requires

that starting conditions for each run be completely specified.

Ideally, these initial conditions should be randomly selected from the

equilibrium state probability distribution for the system. However,

an experimenter who has enough information to do this has no need to

execute the simulation. The more common situation is that the

experimenter has some basic understanding of the system that he has

garnered from past testing or analysis. Therefore, he must pick the

most realistic initial conditions possible based on his a priori

knowledge of steady-state system operating characteristics. If no

reliable information is available, "empty and idle" is always a

possible starting state. In the inventory example, this corresponds

to an empty warehouse with no stock on order. Any computer simulation

that begins with such a sequence of unusual events -- that is, events

having a low probability of occurring under normal operating

conditions - will generate output that is contaminated by

initialization bias (Schruben 1982). This initialization bias can be

a major source of error in estimating a steady-state system

performance measure.

Since the specified purpose of our simulation experiments is

to obtain the correct sample sizes so that the K alternatives can be

ranked based on the sample means, a method is needed to eliminate any

bias in these estimators caused by improper starting conditions. One
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method to overcome this initialization bias problem is to allow a

sufficiently long computer run so that the initial condition effects

are negligible. Even though these effects typically decay

geometrically, convergence to steady-state conditions can still be

quite slow (Conway, 1963). Therefore, such a method can be costly in

that the required sample sizes can be prohibitively large.

The usual method of controlling simulation initialization bias

is to allow the model to run for a "warm-up" period before output data

are collected. This allows those observations which are the most

"contaminated" by the choice of starting conditions to be discarded.

As a consequence, the bias of the estimated steady-state mean response

is reduced. This procedure is referred to as output truncation, and

the time index of the last observation to be discarded is called the

truncation point.

There are, however, several difficulties with truncating data

from the beginning of each run. If too few observations are

truncated, the remaining bias adversely affects the results.

Discarding an excessive amount of data is not only asteful but also

increases the variance of cumulative statistics like the sample mean.

A comprehensive review of previously proposed "truncation

rules" is presented by Wilson and Pritaker (1978a). Many of these

procedures are heuristic rules of thumb which specify the truncation

point beyond which data are not significantly distorted by the initial

conditions. In a follow-up paper, Wilson and Pritaker (1978b)

developed a generalized procedure for evaluating startup policies with
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associated truncation rules, and they used this procedure to test many

of the methods reported in their first paper. They specifically

pointed out that "The truncation rules of thumb examined in this

research are very sensitive to parameter misspecification, and their

use can result in excessive truncation".

Before considering the proper way to select a truncation

point, we must first determine if initialization bias is present in

the output series generated by a simulation. Schruben (1979)

developed a two-sided statistical test for the presence of

initialization bias based on cumulative sum (cusum) statistics. He

chose the cusum statistic because of its demonstrated sensitivity in

industrial quality control applications. To illustrate cusum

techniques, consider the output series XI, .. *, Xn. The jth cusum

(S.) is:

S (X ) j w 1, 2, ..., n (2.2.1)
j 0x

i-I

where 4 0 is the process mean, and the Xt are independent normal

variates with E(Xi) - P 0, Var (Xi) - so that

E(Sj) = 0

Var(S) a 2

There are three problems that arise in the application of cusum tests

to determine initialization bias: (1) the output series is usually

correlated; (2) the process mean, V o, is not known; and (3) the

observations, X., are not normally distributed. The question of how

to address correlated data is addressed first.

I

.. ..~ ,, . . . =-. .,., , . ,..
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If the output data series is correlated but p 0 Is known, it

has been shown that the normalized cusum

SP S /( Oj/ 2), j = 1, 2, ... , n (2.2.2)

converges in distribution to standard Brownian motion as

n -> 00 (Schruben 1979). In this case, the correlation is accounted

for by using as the measure of the variance, 02, the value

002 = _ oY (2.2.3)

-w £

where y denotes the autocovariance at lag k:

Yp - E [(X )(Xi+ -1 o)  (2.2.4)

To adapt this result to a discrete-event simulation in which

1o and 02 are unknown, Schruben suggested estimating 02 from the

portion of the data that is "safe" from the effects of any initial

bias. He therefore recommended that only the last half of the data be

used to estimate 02. The entire output series is grouped into b

equal-size adjacent and nonoverlapping batches of observations, and

the series of batch means (Xk : k - 1, ... , b) is indexed in reverse

order so that R, and Rb respectively represent the last and first

such observations generated by the simulation. There are s - b/2

"safe" observations (Xk : k - 1, ... , s) that can be treated as lID

normal variates. For the batch mean process, the parameter 0 2 is

estimated by
2  (ak (k

= - Xs )2 (2.2.5)
kal
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where

a

S  -i k (2.2.6)
k-1

is the grand mean of the "safe" data.

Since P o is unknown, Schruben developed an alternative to the

test statistic (2.2.2).

Let

b
Xb b - 1  Z k (2.2.7)

ks1

kZi (Rk - 1b), k 1, ... , b, (2.2.8)
k-l

/(1/2 '

S max I 1): £ /(b, ... , b]. (2.2.9)

Using the values computed from equations (2.2.5) through (2.2.9),

Schruben proved that in the absence of initialization bias, the event

S* < g(a) - [- 0.5* n(a /2)1 1 / 2  (2.2.10)

has asymptotic probability I - a as b -> * Thus for a

prespecified level, a . of Type I error, equation (2.2.10) can be used

to construct a two-sided statistical test for initialization bias with

rejection of the hypothesis of insignificant initialization bias when:

S* > g(a).

The most recent work in the area of detecting initialization

bias (Schruben 1982) describes a one-sided test related to (2.2.9).

It should be noted that in the absence of initialization bias, the

process [ /(b 2 a ): 9 = I, ... , b] behaves asymptoticallv as a
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standard Brownian bridge -- i.e., Brownian motion on the unit interval

conditioned to start at and return to zero Let m denote the value of

the index k at which S £ attains its minimum, and let t - m/b.

Schruben showed that if no initial bias is present, then the statistic

(S 2 /b)/[3S2 ^(1-) (2.2.11)

will have approximatelv an F distribution with 3 and b/2 degrees of

freedom. The hypothesis of no initialization bias is rejected if the

computed significance probability for the F-ratio (2.2.11) is less

than a prespecified level of Type I error.

Schruben states that this new test is more powerful than his

previous procedure since it is a one-sided test. He assumes that the

user is looking for negative initial bias, the typical case for

simulations started "empty and idle". If positive bias is suspected,

the required adjustment is to multiply the data by -1 and proceed as

before.

In this same article, Schruben presented a modification to the

procedure just described which does not require estimation of the

scale parameter 02. The complete procedure is:

1. Compute (2.2.11) using the first half of the simulation output

data and set 32 _ 1; call the result

2. Compute (2.2.11) using the last half of the simulation output

data and set S2 1 1; call the result

3. Let F3 ,3 (1 - a ) denote the I - a quantile of the

F-distribution with 3 and 3 degrees of freedom. Reject the

hypothesis of no negative initialization bias if
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Sf/g > F3 , 3 (1- o. (2.2.12)

Once we have found an adequate test to determine if a sequence

of simulation-generated data has initial bias, there is still the

problem of how much data to delete if bias is found. Such a situation

is addressed by Heidelberger and Welch (1982). Using Schruben's test

(2.2.10) for initialization bias, they proposed a sequential

truncation procedure. If the hypothesis of no initial bias is

rejected, the first 10% of the data is deleted and the test is rerun.

They found that no severe penalties were incurred when there was no

initial transient (bias); and in almost all cases where there was

bias, the truncated sample mean provided a better estimator of the

steady-state mean than the untruncated sample mean.

2.3 Normality

As previously referenced, Dudewicz and Zaino have developed

the only multiple ranking procedure that handles correlated data;

however, this procedure still requires that the data are normally

distributed. Dudewicz and Zaino lightly pass over this requirement as

if it were one that occurs routinelv in discrete-event simulations.

In actuality, the assumption of normality is frequently violated.

The first step that must be addressed when trying to induce

normality is an adequate statistical test for normality. Many such

tests exist. Fishman (1978) cites numerous studies showing the

Shapiro-Wilk (SW) test to be the most powerful test for normality

currently available. In particular, Shapiro, Wilk and Chen (1968)

A
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found that the SW test has the following notable properties:

1. It is the most sensitive test when the data have a continuous,

skewed, long-tailed distribution.

2. It is the most sensitive test when the data have a continuous,

skewed, short-tailed distribution.

3. It is one of the four most sensitive tests when the data have

a continuous, symmetrical, long-tailed distribution.

4. It is one of the two most sensitive tests when the data have a

continuous, symmetrical short-tailed distribution.

5. It shares second place with another test when the true

distribution is discrete.

Here sensitivity is measured by the power of the test, which is the

probability of rejecting the null hypothesis of normality when in fact

the sample data are nonnormal.

The SW test (Shapiro and Wilk, 1965) is based on an estimate

of the squared slope of the regression line obtained when a random

sample is plotted on normal probability paper. Under conditions of

IID normality, this quantity is an estimate of the population variance

multiplied by a constant. Nonnormality usually causes this quantity

to be small relative to the corresponding sample variance. To

determine the SW test statistic, W, for a sample size n, the following

steps are required:

1. Compute m' = (mI, m2 , "', n), the vector of expected values

of standard normal order statistics for a sample of size n.

2. Compute V - (vij), the corresponding n x n covariance matrix
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for standard normal order statistics.

3. Compute ' (Y19 Y2  ". Yn), the vector of ordered

observations from the population to be tested. Let W and 0

respectively denote the (unknown) mean and variance of this

population.

4. Let X1 4 X2 < "'" 4 Xn denote the corresponding ordered random

sample from a standard normal distribution.

5. If the Yi are normally distributed, then we have the

regression equation Yi - u + a Xi; and the weighted

least-squares estimate of a is

ml V- Y
- - -(2.3.1)

IV' m

With the definitions

R2 . ' V-1 m , (2.3.2)

C2 . ml V- 1 V- 1 m , (2.3.3)

the quantity

b - R2  /C (2.3.4)

is, up to the normalizing constant C, the best linear unbiased

estimate of the slope of a linear regression of the ordered

observations, Yi, on the expected values, mi, of the standard

normal order statistics.

6. The usual unbiased estimate of (n-i) 02 is
n

s E (Yi-) 2  (2.3.5)
i-'

7. The W test statistic is
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W = b2  (2.3.6)

where (a) the distribution of W depends only on n, (b) the

closer W is to unity (its maximal value), the more normal the

data appear.

Since the m' vector is known for a given n, Shapiro and Wilk

were able to simplify the calculation of b by tabulating values of a

coefficient, an-i+1, which is used in their recommended test

procedure.

1. Order the observations:

1I < Y 2 < "" n

2. Compute

n

S 2  -, E (y i -Y ) 2
fil

3. If n is even, set j - n/2; otherwise set j - (n-l)/2.

Compute

j

b = E an-i+1 (¥n-i+i - Yd

where values of ani+1 are given in Shapiro and Wilk (1965).

4. Compute W - b2 /S2

5. The 1, 2, 5, 10, 50, 90, 95, 98, and 99 per cent points of the

distribution of W are given in Shapiro and Wilk (1965). Small

values of W are significant, i.e. indicate non-normality.

An impor .t improvement to this procedure was presented by
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Shapiro and Francia (1972) when they formulated a similar test

statistic, W', for sarple sizeb *ip to 400. Weisberg and Bingham

(1975) published a computing formula for a test statistic, W', which

they showed to be asymptotically equivalent to the two previous test

statistics. This formula enables the calculation of the Shapiro and

Wilk test statistic for any sample size.

2.4 Spectral Analysis of Simulation Data

Many authors have noted that in general, the data generated by

computer simulation experiments are highly autocorrelated (Naylor et

al. 1966; Law and Kelton 1982; Heidelberger and Welch 1981a). Yet

classical statistical theory for estimating the variance of cumulative

statistics like the sample mean is based on the assumption that the

observations are independent and identically distributed. In many

simulation experiments, the autocorrelation present in output series

of interest causes classical statistical techniques to yield

substantial underestimates of the variance of relevant cumulative

statistics (Naylor, Wertz, and Wonnacott 1969). Use of such

underestimates when calculating confidence intervals around the sample

mean, for example, will cause unrealistically narrow intervals. One

way to adequately account for autocorrelation is by batching the

observations so that the resulting batch means are approximately

normal and uncorrelated (and hence independent); see Law and Kelton

(1982). Another method is to replicate the simulation experiment and

compute the variance across replications; see Fishman (1978). The
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regenerative method of analysis (Law and Kelton 1982) organizes the

observations from a single run into cycles that are exactly lID; a

steady-state performance estimator is then based on the ratio of

relevant cycle measurements that have been averaged over all

regenerative cycles observed during the run.

All of these methods for simulation analysis have serious

drawbacks. Fishman and Kiviat (1967) have noted that in

implementations of the method of batch means, procedures for

determining the batch size "seem to have neither enough prior nor

posterior justification in most cases to make a choice that is much

more than arbitrary." Initialization bias is the main problem

connected with the method of independent replications. In the case of

regenerative analysis, regeneration frequency is the issue: in most

real-world models, the time intervals between successive regeneration

epochs are much too large to allow an adequate number of regenerative

cycles to be completed within a feasible run length. An alternative

estimation procedure which avoids all of these difficulties can be

based on spectral analysis (Brillinger 1975).

The spectral method used in this research to estimate the

variance of the sample mean was developed by Heidelberger and Welch

(1981a). By working with the periodogram of a simulation-generated

time series, they converted the problem of dealing with the original

autocorrelated series into the more tractable problem of fitting an

appropriate curve to the uncorrelated observations that constitute the

periodogram. Heidelberger and Welch assumed that the series (X1, ... ,
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XN) is a sample from a covariance stationary process with mean .4 and

lag-k autocovariance Yk(k - 0, ±1, ±2, ... ) such that

OD

E lk I < . (2.4.1)
k =s - o

This ensures the existence of the spectral density

COp(f) -Y Yk cos (27Tfk). (2.4.2)

k o

As an estimator of i , the sample mean XN has variance

N-i

Var(RN) = N-1  (I- k IIN) Yk; (2.4.3)
k = -(N-I)

and in view of (2.4.1) and (2.4.2), we have

l1m N*Var(XN) - -k p(O). (2.4.4)

The spectral method of simulation analysis uses the large-sample

approximation

Var(RN) - p(0)/N, (2.4.5)

so that it is only necessary to estimate the spectral density at zero

frequency.

Heidelberger and Welch noted that the usual methods of

spectral estimation (Jenkins and Watts 1968, Bloomfield 1976) are not

appropriate for estimating the spectrum at zero frequency. Such

methods use a spectral window H(f) so that the estimator P(f') at a

particular frequency f* has for its expected value a weighted average

of the spectrum p(f) in a neighborhood of f
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J1/2
E p^(f*1/2 H(f - f*) p(f) df (2.4.6)

-1/2

Now the spectrum has a local optimum at f , 0; and in many queueing

simulations the spectrum is sharply peaked at zero frequency.

Equation (2.4.6) shows that in such a situation, a classical estimator

p(0) has a large negative bias. To reduce the bias of (0), we must

use a narrow window. Unfortunately the variance of any estimate of

p(0) increases as the width of the window decreases. Thus classical

methods of spectral estimation yield either a highly variable

estimator of p(O) which is approximately unbiased, or a stable

estimator which is strongly biased. Duket and Pritsker (1978)

investigated these problems experimentally for the queue length

process in a single-server queue with exponential interarrival and

service times.

Heidelberger and Welch developed the following procedure to

overcome the problems of classical spectral estimation:

1. Calculate the periodogram

I(n/N) - N-  1  Xj*exp[-2 7i(J-1)(n-l)/N] 12 (2.4.7)
i-l

for n - 1, ... , 2K, where i - (-1)1/2 and K - N/4.

2. Calculate the logarithm of the "smoothed" periodogram:

f (4n-l)/(2N), (2.4.8)

and
J(fn) - log[ ( I[(2n-l)/N] + 112n/N] )/2 ] (2.4.9)

for n 1, ... , K.

j
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3. Using ordinary least-squares, fit a polynomial of degree d

d
g(f) E a fk (2.4.10)k=O

to the function J(fn ) + 0.270 for n-1, ..., K.

4. Using the least-squares estimate a0 and the design matrix

f, ::: fd
x "'", , (2.4.11)

K K 

associated with the regression (2.4.10), compute the quantity

C1 (K,d) = exp (-0.3225[(X'X)-] 11 ) (2.4.12)

in order to obtain the approximatelv unbiased estimator

p(0) = C1 (K,d)*exp(a0 ) (2.4.13)

for the spectrum at zero frequency.

The regression (step 3) provides the stability of averaging over a

number of periodogram values, and the flexibility of the family of

fitted functions avoids the bias associated with the spectral window.

The advantage of operating in the frequency domain versus the time

domain is shown by the fact that

Cov[J(fm), J(fn)] n 0, m 0 n. (2.4.14)

Batching the periodogram into batches of size 2 and taking the

logarithm of the batch mans (see equation (2.4.9)) is intended to

stabilize the variance of the periodogram so that ordinary

least-squares can be used to fit the polynomial in step 3. In a

subsequent article, Heidelberger and Welch (1981b) found that using a

polynomial, of degree d - 2 in (2.4.10) provides the best trade-off

between the bias and the variance of p(O).

*



CHAPTER III

DEVELOPMENT OF THE MULTIPLE RANKING PROCEDURE

3.1 Introduction

To develop a multiple ranking procedure that can handle

simulation-generated time series characterized bv initialization bias,

unknown autocovariance structures, and nonnormality, appropriate

algorithms were developed for each aspect of the problem. In

particular, separate support routines were designed to perform the

following operations on such data sets:

1. Induce normality by adequate batching

2. Eliminate initialization bias with a cusum test

3. Compute the final sample size with an estimate of the spectrum

at zero frequency replacing the sample variance in the

Dudewicz-Dalal formula.

The organization of this chapter reflects this three-way

division of the overall problem. The section devoted to each

subproblem includes the appropriate theoretical development, a program

description, and a summary of the procedures used in the verification

and validation of the algorithm. A final section describes the

integration of these routines into the complete MRP adapted to

discrete-event simulation.

43
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3.2 Normality Test Procedure

3.2.1 Development

A stand-alone computer program written by De Branges (1974)

was used as the foundation for building a support routine to perform

the Shapiro-Wilk normality test at a user-specified level of

significance. The program, WILK, determines the batch size, NSIZE,

required to induce an acceptable degree of convergence to normality in

the data produced by a discrete-event simulation. The original

program by De Branges required extensive modification to eliminate

extraneous calculations and to allow the inclusion of repeated testing

on increasingly larger batch sizes.

WILK uses an array containing data from up to 16 replications

of the simulation to be examined, where each independent replication

generates up to 100 data points. The replication count, r, and the

sample size, no, within each replication are selected by the simulator

prior to execution. The series

(Xij : -- 1, ... , r and j - 1, ... , no)

is first tested for normality at the a - 0.1 level of significance by

computing batch means across batches of size NSIZE:

NSIZE
1i(NSIZE) - (NSIZE)-  Z Xij, i m 1, ... , r, (3.1.1)

j=1

starting with NSIZE - 1. The composite hypothesis tested is:

Ho(NSIZE): { i(NSlZE) I < i ,< r I-IID N( u , a 2) (3.1.2)

for some 1 and C

If Ho(NSIZE) is rejected, the value of NSIZE is increased by one and
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(3.1.2) is tested again; otherwise the value of NSIZE is returned for

use by other parts of the analysis program. If the test for normality

is rejected when NSIZE equals NMAX (NMAX - 3 by default), WILK reports

back to the user that convergence to normality is not achieved. The

user has the option to either increase the number of replications or

the run length. Figure 3.1 provides a flowchart of WILK. A listing

of the program, WILK, is presented in Appendix A.

3.2.2 Verification and Validation

The program to perform the Shapiro-Wilk test for normality was

used to test three data sets that had been previously tested by the

original De Branges program. In each case, with NSIZE set equal to 1,

identical results were obtained.

Several highly correlated data sets were also generated and

passed to WILK in order to test the operation of the batching

procedure. A variety of stationary autoregressive-moving average

processes were generated by the support routine ARIAPQ (Hoffman 1982)

for use in this phase of the program verification. Table 3.1

summarizes the results produced by WILK. The same test sequences,

both original data and batched data, were also tested by the original

De Branges program and identical results were obtained

3.3 Initialization Bias Test Procedure

3.3.1 Development

The initialization bias (IB) detection routine Is designed to
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INIT IAL CRITVAL

NSIZE :-1_____________

NMAX~ -3 Determines Critical Value

NRP =16 of SW Test Statistic,

ARMA (BJ')-CRIT, Based on NREP

BATCH

FORI:=1, _ _E ARMA

FSU - SM + RMA(J)Generates ARMA

AVG: SUM SIZEProcess Based on

X(I): AVGPreset Parameters

NORM

(TEST (XW?

CRITVAL (NREP, CRIT)D Sorts Data

W < CRIT In Ascending Order

Y\ N

NSIZE: -NSIZE +1

SZ>NMAX

N STOP Computes Shapiro-Wilk

STOP ->BATCH Test Statistic

Figure 3.1 Program WILK Flowchart

* - :1..A
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Table 3.1 Results of testing subprogram WILK

with ARMA (p,q) processes.

AR MA MEAN WHITE NOISE FINAL

PARAMETERS PARAMETERS VARIANCE 02 NSIZE

- 0.35, 0.25 100 400 1

0.35, 0.25 100 400 1

0.65, 0.25 100 400 2

0.65, 0.25 100 25 1

0.75, 0.75 50 400 1

- 0.8 50 100 1

0.85 50 100 1

0.35 50 100 1

0.6 10 25 1

0.4, 0.4 10 25 2

0.25, - 0.75 100 100 2

* - 0.6, 0.4 25 49 1

0.4 0.4 25 49 2

- 0.2 0.8 100 100 1

low
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test the output sequence from a discrete-event simulation after the

sequence has been hatched to achieve normality using program WILK. It

is the responsibility of the user to specify the level of Type I error

appropriate for his needs.

As discussed in the literature review, the most appealing

method is Schruben's one-sided test (2.2.12) for negative LB that does

not require an estimate of the process variance parameter (2.2.3).

Its sensitivity and its independence of the underlying covariance

structure make this test substantially more effective than any other

available technique. Once this procedure had been coded, an

experiment was performed with six data sets having each of the

following characteristics:

1. Negative bias

2. Positive bias

3. A damped oscillation between negative and positive bias

4. Negative bias not reaching stationarity

5. Positive bias not reaching stationarity

6. No initial bias.

Figure 3.2 shows the graphs of each data set. The program includes a

routine to identify positive bias and to account for it by reversing

the sign of all observations.

The program performed well for data sets 1, 2, 4, 5, and 6 in

that each occurrence of initial bias was detected and an intuitively

reasonable truncation point was specified. However, the program

failed when data set 3 was tested. The problem was found to be that

.. . - 2
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Data Set 1 N~ 189 Data Set 2 N=78

Data Set 3 N 142 Data Set 4 N 54

Data Set 5 N-51 Data Set 6 Ne 82

Figure 3.2 Data Bets used to validate the initialization bias test.
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the ratio gf/g £ of maximum squared cusums respectively computed from

the first half and last halves of the data fails to detect significant

bias when the two optima occur on opposite sides of the mean. Because

the test procedure involves squaring the maximum cusum values, the

signs of these deviations from the mean are lost. It is unclear how

to modify the test statistic gf/gX to handle this type of transient

behavior.

As an alternative to the test statistic 9f , we coded

Schruben's other one-sided statistic j defined by equation (2.2.11).

The parameter a2 for the batch mean process defined by (2.2.3) is

estimated by computing the sample variance, V2, of the "safe" batch

means using equation (2.2.5). The lag-one correlation between the

"safe" batch means

s-I
1 Vs2 *(s-l) 1  Z ( - Xs+l - (3.3.1)

is then used to yield the final parameter estimate

2 V2 *1(1 + l)/(1 - 1)] (3.3.2)

for the cusum test.

The motivation for (3.3.2) closely parallels the analysis

given by Dudewicz and Zaino (1977): in effect we are modeling the

"safe" batch means as an autoregressive process of order one so that a

simple formula for 02 can be applied. Only the first-order

autoregressive effect is considered because it is equally important to

detect actual initialization bias (i.e., to avoid Type II error) as it

is important to avoid falsely detecting nonexistent bias (i.e., to
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avoid Type I error). Therefore, we judged that it is better to

underestimate o2 by using only lag I effects in (3.3.2) than to

possibly overestimate a2 using higher-order effects. Completely

ignoring these effects was considered to be too gross an

underestimation. This same reasoning forms the basis for ignoring any

negative autocorrelation.

The modified initialization bias test procedure based on

(2.2.11) and (3.3.2) was applied to the stx data sets depicted in

Figure 3.2. In each case, the modified test correctly identified the

presence of bias.

In correcting for the effects of initialization bias, the next

step is to determine a suitable truncation point. This is

accomplished by successively deleting blocks equal to 10% of the

original data set until the remaining series finally yields a

nonsignificant value for the test statistic. As in the experiments

reported by Heidelberger and Welch (1982), the truncation procedure is

stopped if 50% of the original data set has been truncated and the

bias effects have still not been eliminated. Use of this limit is

reinforced by the fact that the 50% point is used as the point where

the "safe" data starts.

During the testing of data set 3 (Figure 3.2), disturbing

results were obtained. Specifically, the test forced the leading 10%

of the data to be truncated; but then a test on the remaining data

points failed to produce a significant result. Figure 3.3 reveals

marked transient behavior in the remaining time series. This casts
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some doubt on the adequacy of any one-sided test for initialization

bias in the presence of nonmonotonic transients.

10% Time --- > 100%

Figure 3.3 Truncation point determined by one-sided cusum test.

The intermediate results generated during the test were

checked by hand, and a serious inadequacy was found. Namely, the

procedure only checks for deviations from the mean in one direction.

This fact clearly shows that Schruben's procedure only applies to

monotonically decreasing transients. To accommodate the possibility

of nonmonotonic transients, it was necessary to develop a two-sided

procedure. Such a procedure will be less powerful than the

corresponding one-sided test when the transient mean function lies

entirely on one side of the steady-state mean, but a two-sided test is

necessary to handle the transients that frequently occur in queueing

simulations.
-i

I Replacing the minimum cusum value in (2.2.11) with the maximum

* **
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absolute cusum,

- max f I 'S I j b (3.3.3)

***K = m {j I I "* } (3.3.4)

yields a variant of Schruben's two-sided test procedure that avoids

the problems encountered in the previous techniques. This was

corroborated when the two-sided test was coded and applied to the 6

data sets shown in Figure 3.2. Using the automatic truncation routine

previously described, we obtained favorable results. The troublesome

properties exhibited by data set 3 were identified, and a reasonable

truncation point was reported. Once a robust procedure for initial

bias detection was found that would accept a complete range of

possible inputs, it was decided to see if any of the desirable

features of the previously rejected approaches could be incorporated

into the final product.

Since the purpose of the test procedure is to identify and

eliminate initial bias, we considered standardizing the two-sided test

statistic so that it has the same asymptotic distribution as the

absolute maximum of a Brownian bridge process:

** - S**/( cit**(1-t**)]1/2) (3.3.5)

where

t -K /b. (3.3.6)

Unfortunately the joint distribution of t and B** is not known for a

Brownian bridge process. To take advantage of the distribution theory

underlying Schruben's one-sided test statistic (2.2.11), the following

two-sided procedure was based on 2 one-sided tests and a Bonferroni
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inequality:

1. Find S and S-, the maximum and minimum values of the cusum

k

Sk = b - 2  E (Xj - Xi), k - 1, ... , b, (3.3.7)
i-I

together with the corresponding indices K+ , K7 where the

maximum and minimum respectively occur.

2. If S+ or S- equals zero (indicating cusums of only one sign),

set

S - max { S-, S+ }, (3.3.8)

and proceed to the previously given one-sided test (2.2.11).

Otherwise go to step 3.

23. Compute 2 by equations (3.3.1) and (3.3.2).

4. Set v, the number of degrees of freedom, equal to (b-1),

where b is the number of batches.

5. Set t+ - K+/b and t- - K-/b.

6. Compute

g+- (S+)2 /[3 82 t+(l-t+)] (3.3.9)

- ( /)2 a 2 t(1-t) (3.3.10)

7. Use the IMSL routine MDFDRE to determine the significance

probabilities.

a+ - Pr { F3,V > g+ } (3.3.11)

c- - Pr { F3 1V > g- (3.3.12)

8. Reject a hypothesis of no bias at the a level of significance

if:

min( a, a + ) < ct/2. (3.3.13)
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In this two-sided test, the maximum prespecified level of Type

I error, a , is maintained by performing 2 complimentary one-sided

tests each at significance level a/2. This modification will

ultimately result in a somewhat larger sample size than would be

required by a test with size exactly equal to a (Bowker and Lieberman

1972). The validity of rejecting the null hypothesis of no bias

Ho: E[X i] = , i - 1, ... , b (3.3.14)

when min ( a-, a) < a/2 is based on the following conditional

Bonferroni inequality:

Pr { AcceptH o Ho I Pr {min(a-, a +) ,, a/2 HIo

-Pr { a >, a/2 and a+ >, a/2 I Ho

1 Pr{ a >,a /2 H o
-Pr {a+ > / ]B

= 1 - a (3.3.15)

As mentioned earlier, the data sequence (Ri: i 1 1, ..., b)

tested by the IB detection routine was formed by taking the mean value

of NSIZE original data points i.e.

i*NSIZE
i i - (NSIZE) 1  Z Xk, i , ... , b - no/NSIZE (3.3.16)

k=(i-1)*NSIZE +1

This batching was found to have no effect on identification of

initialization bias.

Initially the truncation point was chosen arbitrarily at the

0.1 * b data point (b - number of batches). Since the IB test

procedure specifically identifies an epoch beyond which the null

hypothesis is accepted, the truncation of the data at that particular
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point is more reasonable than deleting 10% of the data. If a

two-sided test is necessary, then K+ is used for a truncation point

when a < 0/2, and K- is used when (I < c/2. When both a and a -

are less than (1/2, the larger of K+ and K- determines the truncation

point.

While working on subsequent stages of the dissertation, we

discovered a superior method for estimating the variance parameter 0

of a correlated data sequence. (See section 3.4.3). Note that 0 2 is

just the spectrum at zero frequency p(O) for the batch mean process

(3.3.16). Thus the spectral analysis routine, WELCH, is used in place

of equations (3.3.1) and (3.3.2) in the final version of the

initialization bias detection routine, IBZERO. A listing of IBZERO is

included in Appendix B. A flowchart of IBZERO is shown in Figure 3.4.

3.3.2 Verification and Validation

The data used during the development of the initialization

bias detection program, IBTEST, were also used to test the final

version of the program, IBZERO. As noted previously, IBZERO estimates

the process variance parameter, 02, by estimating the spectral

density at zero frequency. Table 3.2 compares the results of IBTEST

and IBZERO. In the cases where 50Z of the data was truncated and the

remaining series still showed the effects of initial bias (data sets 4

and 5), the user was given the warning message that a larger sample

size would be required to eliminate initial bias effects.

Additional data sets were generated using the
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INITIALIZE NSIZE NSTART

READ DATA COBS) ALPHA, DATA

NUM.BAT: - OBS/NSIZE

LENTH :=NUMBAT

QSU

*FOR I: -1, NUMBAT

S FOR J - NSTART, NFIN

1/ BATSUM: - BATSUM + DATACJ

NSTART - NSTART + NSIZE

// NFIN - NFIN + NSIZE

ii BATCH(I: - BATUM/NSIZE

CW -ALCH ACZE

FOR K - 1, NUMBAT

COMPUTE CUSUM (K)

STANDARDIZE CUSUM TO UNIT INTERVAL

1/ SAVE VALUE AND LOCATION OF

// LARGEST AND SMALLEST CUSUM

Figure 3.4 Flowchart of initialization bias test procedure IBZERO

. . . . . . . . .... . ..
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TEST

SMALLEST CUSUM > 0 .OR.

Y LARGEST CUSUM < 0 N

DF: NUBAT/2--> TWO

->TRUNK PRINT NUMBAT

STOP

TWO

HALPHA: - ALPHA/2

DF: -NUM'BAT/2

y _____________<___0___N_

CMDFDRE (LOCATION, 3, DF, P-)) MDFDRE (LOCATION, 3, DF, P-i)

Y 1 P- <(HALPIA / NI - P <HALPHA

YES YE

Figure 3.4 (continued)
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TUNK

NUMBAT: -NUMBAT -K

NUMBAT < .5 * LENGTH 7I II
REPORT RESULTS: TOO NSTART :- NSTART + K

MUCH TRUNCATION ---- > QSUM

STOP__________________

NO

1-P- .AND.1 P+ > HALPHA

PRINT NUMBAT -- >YES

STOP

C WELCH 
MDDRE

Subroutine to estimate [IMSL subroutine computes
variance by spectral significance probability

method. for Equation 3.3.11.

Figure 3.4 (continued)



Table 3.2 Performance comparison 
for the data-truncaton 

6

procedures IBTEST and IBZERO.

DATA SET PROCEDURE TRUNCATION ESTIMATE OF ESTIMATE

POINT 11 OF 0

1 IBTEST 26 11.05 0.32

1 IBZERO 26 11.05 0.31

2 IBTEST 19 35.39 2.12

2 IBZERO 19 35.39 1.94

3 IBTEST 49 10.18 0.036

3 IBZERO 40 10.12 0.019

4 IBTEST DID NOT REACY 20.4

4 IBZERO STATIONARITY 4.7

5 IBTEST DID NOT REACH 918

5 IBZERO STATIONARITY 820
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autoregressive-moving average process generator ARMAPQ. Each series

was generated with a zero mean; then various types of IB were

superimposed by adding a transient mean function. Each sequence was

finally tested by IBZERO. To show graphically the transient behavior

of the input series as well as the cusum values used during the test,

a plot routine was written and incorporated into IBZERO.

Figures 3.5 thru 3.8 show the results of testing such a

sequence. The test series is the same one used to test program WILK.

Figure 3.5 shows the results of the interactive terminal session in

which IBZERO was used to determine a truncation point for the series.

Figure 3.6 is a plot of the batch means. For this test the batch

size, NSIZE, was set equal to three. Therefore the requested test of

120 original data points resulted in a test of 40 batch means. Figure

3.7 shows the plot of the cusum produced by the 40 batch means. This

figure displays the early peak that is characteristic of negative

initial bias.

Based on the peak of the cusum occuring at batch number 6, the

leading 18 observations of the original series were deleted (note that

6*NSIZE - 18 when NSIZE - 3). A subsequent test on the remaining

data, Figure 3.8, showed that there was no pronounced early peak; and

the hypothesis of no initial bias was accepted. It should be noted

that the graphs in Figures 3.7 and 3.8 have different scales. Before

the IB was eliminated, the cusum varied from 2.0 to -2.2 (see Figure

3.7). After deletion of the transient observations, the cusum fell in

the range 0.6, -0.2 (see Figure 3.8). Since a fluctuating initial

4'*
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ENTER THE NUMBER OF DATA POINTS

< 120 >

ALPHA =

< 0. 1 >

DO YOU WANT TO RERUN WITH A DIFFERENT LEVEL OF SIGNIFICANCE?

ENTER 0 FOR NO

ENTER 1 FOR YES

< 0 >

TEST COMPLETE

Figure 3.5 Interactive session for testing

transient ARI) series tested by procedure IBZERO.
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1 -21.6876
2 69.8019
3 30.3973
4 59.0562
5 118.5746 * +
6 103.5529 * +
7 122.3551 * +
8 218.5407 * +
9 208.7704 +
10 252.9780
11 207.0732 +
12 174.8814 +
13 142.3320 *+
14 70.0591 * +
15 96.7882 * +
16 65.8371 * +
17 96.5470 * +
18 121.8739 * +
19 38.6234
20 104.3137 * +
21 84.8116 * +
22 120.8026 * +
23 124.9931 * +
24 81.0437 * +
25 125.1356 * +
26 88.4325 * +
27 113.6136 * +
28 96.5576 * +
29 67.0169 * +
30 78.9921 * +
31 91.6951 * +
32 84.9417 * +
33 100.0535 * +
34 101.3953 * +
35 108.7542 * +
36 99.2538 * +
37 139.5799 *
38 49.0438 * +
39 82.2024 * +
40 98.0810 * +

PLOT OF BATCH MEANS

Figure 3.6 Transient AR(1) series tested by IBZERO.

L WIN& 4W
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1 .8912 * +

2 1.1410 * +

3 1.6671 ' 
+

4 1.9922 * +

5 1.9000 * +

6 1.9132 * +

7 1.7945 * +

8 1.0014 * +
9 .2768 * +
10 -.7577 *
11 -1.4704 *
12 -1.9574 * -

13 -2.2162 *
14 -1.9682 *
15 -1.9076 * -

16 -1.6300 * -

17 -1.5678 *
18 -1.6831 *
19 -1.2147 *
20 -1.2069 *
21 -1.0624 *
22 -1.1702 *
23 -1.3074 *
24 -1.1364 *
25 -1.2746 *
26 -1.1554 * -
27 -1.2128 *
28 -1.1506 *
29 -.8813 *
30 -.6960 *
31 -.5997 *
32 -.4561 *
33 -.4184 *
34 -.3902 *
35 -.4135 *
36 -. 3702 * .
37 -.6097 *
38 -.2143 *
39 -.0515 *
40 0 * 0

INDICATION OF + AND - BIAS DURING PASS 1

Figure 3.7 CUSUM for transient AR(M) series tested by IBZERO.
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1 .1899 * +
2 .1653 *+
3 .3891 +
4 .3664 * +
5 .1404 * +
6 .5826 * +
7 .4976 * +
8 .5691 * +
9 .3517 * +
10 .1007 *
11 .2025 +
12 -.0497 *
13 -.0072
14 -. 1669 * -
15 -.1897 * -
16 .0247 * +
17 .1429 * +
18 .1591 * +
19 .2296 * +
20 .1787 *+
21 .1171 g
22 -.0035 *
23 -.0479 *
24 -.4160 *
25 -.0574 *
26 .0350 * +
27 0 * 0

INDICATION OF + AND - BIAS DURING PASS 3

HYPOTHESIS OF NO INIIALIZATION BIAS IS NOT REJECTED AT SPECIFIED

LEVEL OF SIGNIFICANCE .1000 WITH A TRUNCATION POINT OF 13

MEAN OF RAW DATA = 105.4267

MEAN OF THE TRUNCATED DATA = 98.7201

Figure 3.8 CUSUM for AR(I) series truncated by 1BZERO.
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bias was found in this particular example, the more powerful one-sided

IB test could not have been used.

3.4 Multiple Ranking Procedure for Correlated Processes

3.4.1 Extension of Dudewicz-Dalal Procedure

As shown in Section 2.1.2, previous attempts to develop

multiple ranking procedures for correlated processes have been

restricted in scope to simple autoregressive processes of order one.

Unfortunately, a large number of simulation-generated processes which

can be modeled by time series do not fit this convenient AR(1) form.

To characterize such a process (Zt: t = 1, 2, ... ) adequately may

require the introduction of:

I. Higher-order autoregressive terms in, say, an AR(p) model

Zt - 1Z + 0 1(Zt-1 - 1 Z) + -' + p(Zt-p - U ) at (3.4.1)

2. Higher-order moving average terms in, say, an MA(q) model

Zt = 1Z + at - e1at_ 1 - ... - eqatq (3.4.2)

3. Both autoregressive and moving average terms in, say, an

ARMA(p,q) model

Zt = P Z + 01(Zt-i - P Z) + "'" + p(Zt-p -

+at - 0 at1 ... - e qatq. (3.4.3)

If the MRP of Dudewicz and Zaino (1977) for AR(1) processes can be

generalized to include ARMA(p,q) processes, then a large class of

discrete-event simulations can then be tested to find the "best"

alternative. However, it is known that many of the covariance
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stationary processes generated by simulation models in steady-state

operation do not have a finite-order representation in any of the

forms (3.4.1), (3.4.2), or (3.4.3) (Fishman, 1973, p. 185). In this

section we extend the Dudewicz-Dalal multiple ranking procedure to

ARMA(p,q) processes and then to general covariance stationary

processes.

In the case of a stationary AR(1) process with white noise

variance 0a (representation (3.4.1) with p - 1), the key to the
a

Dudewicz-Zaino procedure is the observation that the sample mean

n
Zn = n -  E Zt  (3.4.4)

t=1

has variance

Var(n - 2/(1 - 0 2)1(1 + 01 )/(1 - 01 + 0(n-2). (3.4.5)

In terms of a2 . 0 2/(1 - 02), we have
Z aIi 1~)

Y Z - lim n*Var(Zn ) - Z + - (3.4.6)
n --->

In effect Dudewicz and Zaino used the large-sample approximation

Var(2n) Z yz/n ( 2/n)'(l + )/( - ) (3.4.7)

to derive their sample size formula for ranking K alternative AR(1)

processes with indifference zone width A and probability of correct

selection P

N2 - h2(P*, K) •YZ/( *)2 (3.4.8)

- [h2(P* , K) " 2/( A*)2] (1 + €1)/(1 - 01). (3.4.9)

The term (1 + 01)/(1 - 41) in (3.4.9) is called the run length

"inflation factor." Since the data are correlated, each observation

i-
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yields less new information about the process mean than if the data

were independent. Therefore, the run length must be increased to

account for the "loss" of information caused by the correlation. As

expected, if the correlation between observations increases, then the

required run length will also increase.

Now a stationary ARMA(p,q) process can be represented in the

form

C0

zt = Z l at < ), (3.4.10)
j-O

where the function

00

T Z Y. (3.4.11)

of the complex variable is analytic in the open disk [ < 1 + 6

for some 6 > 0. Since the white noise process (at) is uncorrelated,

it is straightforward to show that
0o

Y - Cov(Zt, Zt+k ) - 02 Z j T (3.4.12)ka i J+k (..2

j-0

for k > 0. It follows that

+ CO

" k- k a  (1) (3.4.13)

If we define the polynomials

D ( I) - 1 0 - O P , (3.4.14)

e ) =1 - o 1 - - eq q , (3.4.15)

then ' () has no roots in the disk Ij < 1 + 6, and we have (Box

and Jenkins, 1976, p. 53)

AtI
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T( )- e( )/¢( ) for I < 1 + 6 (3.4.16)

Combining (3.4.13) and (3.4.16), we finally obtain a result analogous

to (3.4.6)

S (1- 02- - q )2/(1 - 1 , (3.4.17)Z a q ' '

Thus the analogue of the sample-size formula (3.4.8) for a stationary

ARMA(p,q) process is

2(1 -e 1 -- e q)2.
N 2 2

a (1 - h - K'"- p )2 (3.4.18)

There are two major drawbacks to the use of a multiple ranking

procedure based on (3.4.18). As previously mentioned, the first and

most basic problem is that some simulation output processes do not

have a finite-order ARMA representation. The second problem is that

(3.4.18) requires the implementation of subroutines to perform

automatic ARMA model identification and parameter estimation. In an

extensive experimental investigation of the use of automatic ARMA

modeling algorithms in queueing simulation, Schriber and Andrews

(1982) reported poor coverage for the associated confidence interval

estimators. Although (3.4.18) sheds new light on the central issues

involved in ranking correlated processes, a more flexible and robust

approach is required for application to discrete-event simulation.

Spectral analysis provides an alternative means of extending

the basic work of Dudewicz and Zaino. If the covariance stationary

process (Zt) has the spectral density function

P(f) - o k cos(2 nfk), - 1/2 , f < 1/2, (3.4.19)
-cc O
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then we see that

YZ - p(0); (3.4.20)

and the generalized analogue of the sample-size formula (3.4.8) is

N2 = h
2(P*, K) " p(O)/( A*)2 . (3.4.21)

Thus to choose among K covariance stationary processes (Zjt : t > 0),

1 < j .< K, with indifference zone width A and probability of correct

selection P*, the following multiple ranking procedure is proposed:

Procedure Ps

1. Accumulate an initial series (Zjt : t = 1, ... , no) of length

no >, 30.

2. Compute the Heidelberger-Welch (1981) estimator Pj(O) of the

spectrum at zero frequency using the series (Z it : t - 1, ...,

no).

3. Compute

nj a max {no, (h2(no,P * K) . Pj(0)/( A*)2 ] 1, (3.4.22)

where [y] denotes the smallest integer > y and h - h(no,P K)

is the unique solution of the equation

+ 00

(F(z+h; no-1)1K-1 f(z;no-1)dz - P (3.4.23)

in which f(*; v) and F('; v ) respectively denote the PDF and

CDF of a Student's - t variate with v degrees of freedom.

4. If n - no, go to step 5. Otherwise, generate the next n-no

observations (Zit : t - no + 1, ..., n) from the process.

5. Compute the usual sample mean from the entire series

. . S - -
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n

Zj nj I t l Ztj (3.4.24)

and finally select the process yielding the maximal value

Z[KI"

3.4.2 Calculation of Dudewicz-Dalal Critical Values

Development. It is awkward to require the user of procedure

PS to input the critical value h(no, P*, K) corresponding to the

preselected levels of no, P*, and K. Moreover, it is infeasible to

enter the large table of critical values produced by Dudewicz,

Ramberg, and Chen (1975) directly into the support procedure.

Therefore, it was necessary to include within the MRP program a

subroutine (RNKSEL) to solve equation (3.4.23) numerically.

In terms of the function

+o0o

g(h) - f (F(z+h;no-1))K-1 f(z;no-l)dz, (3.4.25)

subroutine RNKSEL is designed to find the root of the equation g(h) -

P To do this, RNKSEL first must determine limits of integration, a

and b, such that the function

g*(h) "f (F(z+h;no-1))1 -1 f(z;no-l)dz, (3.4.26)

satisfies

Ig(h) -g*(h)[ < 10-6 for all h. (3.4.27)
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Using the IMSL routine MDSTI with a value of 10-6 as the total area

allowed in both tails of the Student's - t distribution with no - 1

degrees of freedom, RNKSEL obtains a cutoff value b with upper tail

area equal to 0.5 x 10- 6. The lower limit a is set equal to -b. This

ensures that equation (3.4.27) is satisfied. The IMSL routine ZSCNT

is then used to find the root of

g*(h) - P* - 0 (3.4.28)

Routine ZSCNT is based on the secant method for solving simultaneous

equations (Wolfe, 1959). To do the required integration shown in

equation (3.4.26), a cautious adaptive Romberg extrapolation technique

of numerical integration is used (De Boor, 1971). For this purpose,

the IMSL routine DCADRE is invoked with absolute and relative

estimation errors both set to 10-8 A listing of RNKSEL is included

as a subroutine in Appendix C, and a flowchart is depicted in Figure

3. 10.

Verification and Validation. This portion of the overall MRP

analysis procedure encompasses the routines to calculate the necessary

discrete-event simulation run length and the final steady-state

performance statistic. This performance statistic can then be

compared to a similar measure of performance for the other alternative

systems in order to select the "best" alternative.

The program DND that was designed to perform these

calculations has the following inputs:

1. P , , no, and K specified by the user
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2. A simulation generated time series that has been:

a. Batched to induce approximate normality using program

WILK

b. Truncated to eliminate any initialization bias using

program IBZERO

c. Analyzed by the Heidelberger-Welch procedure to

estimate the spectrum of the batched process at zero

frequency (using program WELCH; see section 3.4.3).

The foundation on which this program rests is the code written to

implement the Dudewicz and Dalal (1975) procedure PE as described in

section 2.1.2. Therefore, the starting point was to code this

procedure and check it against the numerical examples provided by

Dudewicz, Ramberg, and Chen (1975). This was completed, and in each

case DND produced results that are identical to those reported in the

literature.

The next logical test was to generate random samples from a

set of normal populations with known parameters in order to verify the

performance of the ranking procedure. The sample data sets were

generated by the IMSL routine GGNML from populations arranged in a

variety of least favorable configurations. Table 3.3 displays the

results of 3 separate experiments within each of which the LFC was

fixed and the exact Dudewicz-Dalal procedure PE was replicated 100

times. Note that Table 3.3 reveals no significant departures from the

nominal probability of correct selection P* specified for each

experiment.
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Table 3.3 Performance of exact Dudewicz-Dalal procedure

program DND for independent normal samples.

TEST ALTERNATIVE TIMES
NUMBER NUMBER j j P A no h SELECTED"BEST"

1 1 55 4.5 0.9 5 7 3.312 2

1 2 60 4.0 e2

1 3 55 5.5 0

1 4 55 2.8 3

1 5 55 6.8 0

1 6 55 10.3 0.9 5 7 3.312 3

2 1 53 4.5 0.8 7 7 2.566 1

2 2 60 4.0 83

2 3 53 5.5 5

2 4 53 2.8 5

2 5 53 6.8 1

2 6 53 10.3 0.8 7 7 2.566 6

3 1 53 4.5 0.95 7 30 3.463 0

3 2 53 9.5 0

3 3 53 3.4 2

3 4 53 10.3 1

3 5 53 6.8 0

3 6 53 2.8 0

3 7 53 5.5 1

3 8 60 4.0 0.95 7 30 3.463 96
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Up to this point, the critical value h(no, P* K) was treated

as a required input variable for the program DND. To eliminate this

input requirement, the subroutine RNKSEL (described in section 3.4.2)

was coded and integrated with DND. The resulting program, AUTOH, was

exercised through a wide range of possible values of the input

parameters no, P*, and K; the resulting critical values were then

verified item-by-item against the tables computed by Dudewicz,

Ramberg, and Chen (1975).

Further testing of AUTOH against DND involved the use of

common random numbers to re-create the experiments described in Table

3.3. Using the same random number seeds for corresponding runs of DND

and AUTOH ensured that exactly the same sets of data were generated

for the comparison. AUTOH successfully reproduced the results shown

in Table 3.3. The detailed output produced by AUTOH for the second

experiment is shown in Figure 3.9. A listing of AUTOH is shown in

Appendix C. The AUTOH flowchart is Figure 3.10.

Up to this point, all of the testing had been limited to

independent normal samples. The next logical step was the

implementation of procedure P. to handle correlated data. The main

prerequisite for this step of the research was the development of a

support routine to estimate the spectrum at zero frequency.

3.4.3 Spectral Analysis Procedure

Development. To determine the spectral density at zero

frequency, tie first step is to calculate the fast Fourier transform
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ALTERNATIVE 1 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 4.50

ALTERNATIVE 2 HAS 83 BEST RESULTS
THE TRUE MEAN IS 60.00 WITH A STANDARD DEVIATION OF 4.00

ALTERNATIVE 3 HAS 5 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 5.50

ALTERNATIVE 4 HAS 5 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 2.80

ALTERNATIVE 5 HAS 1 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 6.80

ALTERNATIVE 6 HAS 6 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 10.30

FOR THIS TEST: PCS =.800 DSEED = .98413370D+07 DELTA = 7.00
NAUGHT = 7 DNDH =2.566 NHAX = 24

Figure 3.9 Detailed output of program AUTOH for one experiment.

.............
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INITIAL

DDSUB

=RNKSEL (NAUGHT, KPII CS, DNDIIIII

DATGENI

ii FOR I - 1, NDATA

DATA(I) - U(KOUNT + R *SD(KOUNT)

COMPUTE MEAN OF DATA

NEXTRA: - MAXO(NDATA+1, IDDOBS)

Generate (NEXTRA-NDATA) DATA

Figure 3.10 Detailed output of subroutine AUTOH for one experiment.
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WGT

Y\ KPOP < 3 IN

COMPARE: =AVERAGE COMPARE: =WEIGHTED

OF NEXTRA DATA AVERAGE OF NEXTRA DATA

BEST : =COMPARE

NUMBER =KOUNT

KOUNT: - KOUNT + I

Y\ KOUNT < KPOP N_

-> KOUNT: = 1

KPASS::KPASS + 1

Y\ KPASS <50 N

i PRINT RESULTS

STOP

IMSL Subroutine to generate

Normal (0,1) sample

C RNKSELGFN

Initialize Variables DCADRE (SUNKND)

Figure 3.10 (continued)
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HO SUMRND

E__MS1i7 I Computer Equation 3.4.25
(ZSCNT (GFUNC;)

ST1 ZSCNT

IMSL Routine finds limits of TIASL Routine solves nonlinear

integration Equation 3.4.25 equation specified in function

using total area in tails of

students t-distribution

DCAD C

IMSL Routine performs IMSL Routine computes the

numerical integration of probability that variables

function in SUMMND will be exceeded. Students

t-distribution

Figure 3.10 (continued)
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of the observed series (Zt: t = 1, ... , n)

n
du  t Zt * exp [- 12 Tr(t-1)(u-l)/n], u = 1, ... , n, (3.4.29)

tml

where i - (-1)1/2. The periodogram defined by equation (2.4.7) is

then given by

I(s/n) ds+ I2 /n, s = 0, 1, ... , n-1. (3.4.30)

The spectral analysis procedure WELCH actually invokes the IMSL

routine FFTRC to compute the complex conjugate (au: u 1, ... , n) of

the fast Fourier transform. Since the absolute value of a complex

number is invariant under conjugation, this complication does not

affect the computation (3.4.30) of the periodogram.

To stabilize the variance so that a polynomial can be fitted

by the method of ordinary least squares, the periodogram is averaged

over adjacent values and a logarithmic transformation is applied; then

the constant 0.270 is added to eliminate the bias induced by the

logarithmic transformation:

Yu M 0.27 + ln( [I((2u-1)/n) + I(2u/n)]/2 ),

u = 1, ... , n/4 • (3.4.31)

Corresponding to the uth observation Yu of the dependent

variable, there can be up to d - 5 independent variables of the form

Xuk - [(4u-l)/(2n) k , k = I, ... , d * (3.4.32)

Program WELCH uses a forward stepwise algorithm, IMSL routine RLSEP,

to find the best regression model of the form

d
Yu = £ akXuk + C' u 1 1, ... , n/4. (3.4.33)

k-O

.1A
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Parameters are set in RLSEP so that the significance level for

entering and leaving variables is 0.05, and a partial F-test is

performed for each term in the model. From the final regression model

(3.4.33) selected by RLSEP, the estimated intercept 20 must be taken

together with the final design matrix X " Xk to estimate the

spectral density at zero frequency:

p^(0) - exp( a0 - 0.3225[(X'X) -1I) (3.4.34)

Unfortunately RLSEP does not produce the upper left most element of

Q'X) - 1 as an ancillary output. To obtain this element, the final

independent variables chosen by RLSEP are used as inputs to another

IMSL regression analysis routine, RLMUL, after the required

conditioning has been performed by routine BECOVM. RLMUL performs the

computations required for a standard multiple linear regression

analysis and supplies as outputs the values for the residual mean

square, MSE, and the estimated standard error of the intercept,

SE(ao). The required element is given by

OwLx)-  a ]2/MSE • (3.4.35)

The overall flowchart of program WELCH is shown in Figure 3.11. The

program listing is presented in Appendix D.

Verification and Validation. During the development of

program WELCH, several intermediate tests were performed.

Specifically, the integration of the IMSL regression routines RLSEP

and I4LMUL was tested on the well-known Bald data (Draper and Smith,
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Initialize variables U, SD

II DO J: - 1,25

////DO K: - 1, NDATA

// DATA(K): - R(J) * SD + U

NHDATA: - NDATA/2'I
NQDATA: - NQDATA/2

FFTRC(DATA, TRANS)

COMPUTE PERIODOGRAM//
PERIOD (L)//

SMOTH: - ((PERIOD(L) + PERIOD (L+1))/2)

FJ(L): - ALOG(SMOTH) + .270
: I/ CRLSE P (FJ)

II CSEFVJ-

SRLMUL (FJ)'

1/ DETERMINE UPPER LEFT ELEMENT (UPLEFT)

IN REGRESSION MATRIX

II CONE: - EXP(- 0.3225 * UPLEFT)

1/ COMPUTE SPECTRAL DENSITY AT ZERO FREQUENCY

// COMPUTE CLASSICAL VARIANCE ESTIMATE

PRINT RESULTS

Figure 3.11 Flowchart of WELCH for estimation

of the spectrum at zero frequency.
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C FFTRC ELSEP

IMSL subroutine to co!culate IMSL subrutine to select

fast Fourier transform of regression model using

input DATA forward stepwise algorithm

i C DLC U

IMSL subroutine to compute IMSL subroutine to perform

means variances, and multiple linear regression

covariance for input matrix, of input matrix output

Required before using RLMUL includes residual sum of

squares and standard error

of parameter estimates.

Figure 3.11 (continued)
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1967, p. 164). The final model obtained by WELCH coincides with the

results found by Draper and Smith (1967, Appendix B).

The first overall test of the spectral-estimation logic used

independent identically distributed normal variates. In each of 5

different experiments, a normal population was specified and the IMSL

routine GGNML was used to generate 25 random samples of size 100 from

that population. For each sample, both the sample variance and the

estimated spectrum at zero frequency were calculated. These estimates

were then averaged over each experiment. The results are shown in

Table 3.4.

Table 3.4 Performance of spectral-estimation routine

WELCH for independent normal samples.

POPULATION PARAMETERS SAMPLE ESTIMATES

a2  2

50 25 25.1 25.6

22 25 25.5 26.6

50 900 917.1 956.3

10 36 36.4 37.9

5 36 38.0 40.0

Following this comparison, program WELCH was tested on

correlated data. All test series were generated by the previously
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discussed program ARMAPQ using autoregressive and moving-average

parameters that were selected to ensure stationarity and invertibility

(Box and Jenkins, 1970, Charts B, C, and D). The theoritical value of

the spectrum at zero frequency was calculated using equation (3.4.17).

Table 3.5 shows the parameters used to generate each ARMA process, the

theoretical value p(O), the estimate ^(O) produced by WELCH, and the

sample size n.

3.4.4 Integrated Testing of Multiple Ranking Procedure

Up to this point we have demonstrated separately the

successful implementation of the exact Dudewicz-Dalal procedure PE

(program DND), the automatic determination of the critical value h(no

P , K) (program AUTOH), and the estimation of the spectrum at zero

frequency p(O) (program WELCH). To develop a program to perform the

extended multiple ranking procedure PS requires

1. The integration of AUTOH and WELCH

2. The elimination of the weighting scheme (2.1.16) within AUTOH.

The final integrated package was called NOWAIT.

As with the previously discussed programs, the first overall

test of NOWAIT used independent normally distributed data sets

representing K alternatives with the means arranged in a least

favorable configuration. The parameters of the selected normal

populations are shown in Table 3.6. The NOWAIT procedure was

replicated 100 times using this configuration of normal populations.

The overall results for this experiment are shown in Figure 3.12. The
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Table 3.5 Performance of spectral-estimation

routine WELCH for ARKA series.

PROCESS PARAMETERS THEORETICAL ESTIMATE SAMPLE
VALUE ^(O) SIZE

~1 2,2 p(O)

1 - - 0.25 - 100 225 126.6 132 200
2 - - -0.4 - 100 225 441 540.8 200
3 - - -0.1 - 100 225 272.2 263.8 200
4 - - 0.9 - 100 225 2.25 3.6 200
5 - - 0.9 - 100 225 2.25 3.4 500
6 -0.2 - - - 10 9 6.25 5.9 200
7 0.6 - - - 10 9 56.2 50.1 200
8 0.1 - - - 10 9 11.1 9.2 200
9 -0.8 - - - 10 9 2.8 2.9 200

10 -0.5 - 0.15 - 100 400 128.4 125.7 200
11 0.6 - 0.2 - 100 144 576 704.8 200
12 0.75 - -0.5 - 100 400 14400 17003 200
13 -0.6 - 0.5 - 100 144 14.1 10.7 200
14 0.6 - 0.2 - 100 400 1600 1710 200
15 - - 0.25 -0.75 160 900 2025 3573 200
16 - - 0.25 -0.75 160 900 2025 2651 500
17 - - -0.5 0.15 160 900 1640.2 1714.2 500
18 - - 0.75 -0.5 160 900 506.2 866.7 500
19 0.65 0.1 - - 100 400 6400 7933 200
20 0.65 0.1 - - 100 400 6400 5730.5 500
21 -0.35 0.25 - - 100 400 330.6 243.4 500
22 -0.25 -0.5 - - 100 400 130.6 122.3 500
23 - - - - 10 9 9 8.6 200
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Table 3.6 Configuration of independent normal samples

for testing the integrated package NOWAIT.

ALTERNATIVE POPULATION PARAMETERS

P a

1 53 8.5

2 60 8.0

3 53 10.1

4 53 5.6

5 53 12.8

6 53 20.3

7 53 3.4

8 53 9.5

9 53 8.6
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ALTERNATIVE 1 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 8.50

ALTERNATIVE 2 HAS 96 BEST RESULTS
THE TRUE MEAN IS 60.00 WITH A STANDARD DEVIATION OF 8.00

ALTERNATIVE 3 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 10.10

ALTERNATIVE 4 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 5.60

ALTERNATIVE 5 HAS 1 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 12.80

ALTERNATIVE 6 HAS 3 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 20.30

FOR THIS TEST: PCS =.950 DSEED = .17500000D+03 DELTA 7.00
NAUGHT * 30 DNDH =3.297 NMAX = 93

Figure 3.12 Output for independent normal test

of the integrated package NOWAIT,

L_ o .. . ..... .. =. , - =- - . ... .. . . . . . .. . . . " - " . . . . . . . .. rOW N -, -
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variable NMAX shown in Figure 3.12 is the largest sample size needed

on any replication of the procedure. The critical value h(no M 30, P*

- 0.95, K - 6) is shown to be approximately 3.297 for this particular

test.

An additional test using independent normal samples was

performed with 1 of 9 population means lying within the indifference

zone. The results shown in Figure 3.13 reveal that while the program

did not pick the "best" alternative on 90% of the replications, it did

pick a population lying within the indifference zone on 99% of the

replications.

The final check of program NOWAIT used covariance stationary

series generated by the subroutine ARMAPQ as previously discussed.

The mean values of these ARMA processes were established to produce a

series of alternatives arranged in a least favorable configuration.

The test series included AR(1), AR(2), MA(1), MA(2), and ARMA(1,1)

models. The result of this testing is shown in Table 3.7. Included

in the table are the parameters used for the ranking procedure and the

maximum sample size required. The percentage of correct selections is

based on fifty independent replications of a particular configuration

of ARMA processes. Table 3.8 shows the autoregressive and moving

average parameters used to generate each of the test series. These

results provide good evidence of the utility of the multiple ranking

procedure P. for covariance stationary processes.

--------------------------
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ALTERNATIVE 1 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 8.50

ALTERNATIVE 2 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 8.00

ALTERNATIVE 3 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 10.10

ALTERNATIVE 4 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 5.60

ALTERNATIVE 5 HAS 1 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 12.80

ALTERNATIVE 6 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 20.30

ALTERNATIVE 7 HAS 0 BEST RESULTS
THE TRUE MEAN IS 53.00 WITH A STANDARD DEVIATION OF 3.40

ALTERNATIVE 8 HAS 16 BEST RESULTS
THE TRUE MEAN IS 58.00 WITH A STANDARD DEVIATION OF 9.50

ALTERNATIVE 9 HAS 83 BEST RESULTS
THE TRUE MEAN IS 60.00 WITH A STANDARD DEVIATION OF 8.60

FOR THIS TEST: PCS =.900 DSEED = .56732100D+06 DELTA = 7.00
NAUGHT = 30 DNDH =3.051 NMAX = 159

Figure 3.13 Output for independent normal test of NOWAIT

with one mean in the indifference zone.
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Table 3.7 Performance of the integrated package

NOWAIT for ARMA series.

Initial Indifference Alternatives Maximum Probability % Of

Sample Zone ( Required Of Correct Correct

Size Width Number Sample Selection Selections

No  K Best Nmax Pr(CS)

30 20 3 3 106 0.95 0.98

30 10 3 3 422 0.95 0.94

50 20 3 3 242 0.95 1.00

50 10 3 3 542 0.95 0.94

30 20 5 2 193 0.85 1.00

30 20 5 4 108 0.85 0.98

30 15 5 4 192 0.85 0.92

30 10 5 4 430 0.85 0.82

100 10 5 4 277 0.85 0.96

100 10 5 4 494 0.95 0.98

20 20 7 5 180 0.95 0.92

20 20 7 6 180 0.95 0.94

30 10 7 4 519 0.85 0.78

30 20 7 6 100 0.95 1.00

30 20 7 5 423 0.95 0.98

50 10 7 4 667 0.95 0.90

50 10 7 4 647 0.85 0.88

100 10 7 4 653 0.95 0.98

...
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Table 3.8 Configuration of ARMA processes for testing

the integrated package NOWAIT.

AL.TERN4ATIVE MODEL Oi 02 1 62pC;

1 AR(1) 0.6 400 2500

2 AR(2) -0.35 0.25 625 516

3 MA(i) -0.4 400 784

4 MA(2) 0.75 -0.5 1225 689

5 ARMA(1,1) -0.5 0.15 1600 514

6 ARMA(1,1) 0.6 0.2 169 676

7 ARMA(1,1) 0.75 -0.5 49 1764



CHAPTER IV

EXPERIMENTAL RESULTS

Although the autoregressive-moving average processes described

in Chapter III provide an appropriate means for verification and

validation of procedure NOWAIT, such processes cannot adequately

represent the full variety of transient and stationary time-series

behavior characteristic of discrete-event simulations. This chapter

presents the results of two meta-experiments that were specifically

designed to evaluate the robustness of the multiple ranking procedure

when it is applied to diverse simulation models. In the first

meta-experiment, the procedure was applied to the customer sojourn

time process in several tandem queueing systems with both high and low

traffic intensities. The second meta-experiment focused on the series

of yearly costs incurred during the operation of several (s,S)

inventory systems.

4.1 Comparison of Tandem Queueing Systems

The first meta-experiment involves the comparison of three

alternative configurations for a proposed repair facility. The layout

for each alternative is shown in Figure 4.1. The calling units to be

repaired arrive according to a Poisson process with rate * In

system Ai (i - 1, 2, 3), there are i M/M/I workstations in tandem; and

-1
service times at each workstation are lID exponential with mean ) i

- (i 1)Al The traffic intensity P - v (i1 1 ) - I/l <1 ensures

93
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Exponential service, rate ji, p =

Si  1 server

FIFO

Poisson arrivals, rate > X -- > L Ii -- >

Alternative A,: M/M/1 queue.

I 21 u2 = 21,

Si = s2 1

FIFO FIFO

Alternative A2: Two M/M/1 queues in tandem.

11 = 35 2 - 3P 3 - 3

Si M 1 s 2 = Is 3 M 1

FIFO FIFO FIFO

Alternative A3: Three HIM/1 queues in tandem.

Figure 4.1 Layout of tandem queueing systems

compared in the first aeta-experiment.
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that system Ai is stable and thus has a limiting (steady-state)

distribution for the time-in-system process (that is, for the sojourn

times observed by successive customers). It is desired to select the

configuration whose mean sojourn time Wi is smallest. The alternative

systems are to be tested at the traffic intensities p - 0.5 and p =

0.8.

Event-oriented models of these systems were implemented in the

SLAM simulation language (Pritsker and Pedgen, 1979). Complete

program listings are given in Appendix E. Although it is

substantially easier to build a process interaction model of each

alternative, it should be noted that the comparable event-oriented

model requires significantly less execution time. Because of the

scale of the experimentation performed in this research, execution

efficiency was a critical factor in the choice of modeling technique.

Since there is no restriction on queue capacity at the repair

stations, each station can be analyzed separately as a single-stage

(nonseries) queueing model (Gross and Harris, 1974, p. 198).

Additionally, with the first station being a M/M/I queue, the steady

state departure process has the same distribution as the interarrival

time process. Therefore, all repair stations can be treated as M/M/1

queues; and the average time in system for the multistage queue is the

appropriate multiple of the mean sojourn time in one M/M/i queue:

wi - i'(0 1- X )-I= - /( 1 - X /1). (4.1.1)

If we take I 1so that X -I/ p, then the mean sojourn times (Wi:

i - 1, 2, 3) for the various alternatives are given in Table 4.1.
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Table 4.1 Mean Sojourn times Wi for tandem queueing systems.

System Traffic Intensity

Ai 0.5 0.8

Al 2.00 5.00

A2  1.33 1.67

A3  1.20 1.36

This analysis shows that configuration A3, three fast servers,

has the smallest average time in system and is therefore judged

"best". The results in Table 4.1 were also used to determine the

indifference zone for the multiple ranking procedure. The value of

A was set so that the difference between the smallest mean sojourn

time and the next smallest is greater than A

W[2 ] -W[ 1 ] > . (4.1.2)

Thus when p 0.5, we took 0.1; and when p - 0.8, we took A

" 0.3. For completeness, the first meta-experiment also included two

levels for the probability of correct selection: P- 0.90 and P

0.95.

Figure 4.2 is a flowchart of the protocol that was followed in

the first meta-experiment. The steps of this protocol are enumerated

below:

1. The alternative to be simulated is initialized in the "empty

and idle" state. As each customer departs the last station,
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SLAM

SLAM executive routine that

controls time advance mechanism

Q ID
INC EVENT

Initialize variables for this ICODE:

simulation including parameters Y

of alternative H H
SEVENTl __________

Fortran code to model

system under test

Compute value of variable

of interest XX(1)

Figure 4.2 Flowchart of protocol for the first meta-experiment.
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NQUE

DATA(I,J) - XX(1

I I: -16, 10 N~

(SWSUB(DATA, NSIZE)

Need more data, haven't reached

steady state. Go to simulation

CIBSUB(DNORMAL, NSIZE, IFAULT, BATCH, NUMBT

(NEXTRA - NUMBAT) NMA

Calculate final performance measure

// DO 1: -1, NEXTRA

Set indicator to stop simulation

MSTOP: - -1

RETURN KVENTOI

Figure 4.2 (continued)



99

S WSUB IBSUB

Calculates required batch Detects initialization bias

size to achieve normality and truncates detected

in DATA(16,100) using transient using CUSUM test.

Shapiro-Wilk test. Variance estimated by a

spectral method.

MRPSUB

Calculates required simulation run length to meet

user set parameters using Dudewicz-Dalal procedure

extend to any covariance stationary process.

Variance estimated by a spectral method.

Figure 4.2 (continued)
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his system residence time (waiting time plus service time) is

recorded. The run is terminated after 100 sojourn times have

been recorded.

2. The random number streams are independently reseeded and

another run is executed. The simulation stops upon completion

of 16 independent replications of 100 customers each.

3. Subroutine NQUE is called. To determine an adequate batch

size (NSIZE), subroutine SWSUB is called by NQUE.

4. The data recorded during the last replication is grouped into

b - 100/NSiZE batches and is then tested for the presence of

initialization bias by subroutine IBSUB. Appropriate data

truncation is performed and the remaining set of n0 batch

means is ready for further processing.

5. Subroutine MRPSUB is invoked. MRPSUB first calls subroutine

RNKSEL to compute the Dudewicz-Dalal critical value h(no, P,

K). MRPSUB then calls subroutine WELCH to obtain the

estimated spectrum at zero frequency p(O). Finally, the

required simulation run length n is computed from equation

3.4.22 .

6. The 16th replicate, which was suspended to perform steps 3

through 5 above, is now resumed. This run is terminated when

(n - no)*NSIZE additional customers have been simulated.

7. The final estimator of Wi is the unweighted sample mean

n
E (n-  ! wij (4.1.3)

i-i
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of all the observations generated on the last replication of

alternative Ai (excluding the truncated observations).

8. Steps 1 through 7 are repeated 50 times, and each final

performance statistic is stored. Each of the 50 experiments

is started with a randomly selected random number seed. This

ensures that the 50 experiments performed on each alternative

are independent.

9. For each alternative under consideration, steps 1 through 8

are repeated.

10. The final results for each alternative are compared

experimentwise - that is, for each experiment, the

alternatives Al, A2, and A3 are compared and the "best"

alternative is selected. The final selections are tallied

over all 50 experiments.

Table 4.2 summarizes the results of the first meta-experiment.

Table 4.2 Final results of the first meta-experiment.

Test Random Number * P # Times Selected % Correct

Number Stream Used Al A2  A3  Selections

1 4 0.5 0.1 0.95 0 1 49 98%

2 6 0.5 0.1 0,95 0 1 49 98%

3 3 0.8 0.3 0.90 0 1 49 98%

4 6 0.8 0.3 0.90 0 5 45 90%
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The test results demonstrate that the integrated MRP does

determine adequate simulation run-lengths. The resultant steady-state

performance estimators of the form (4.1.3) appear to satisfy the

nominal probability requirement; in every case the actual percentage

of correct selections does not differ significantly from the nominal

*
percentage P

4.2 Comparison of (s,S) Inventory Systems

To examine the performance of the multiple ranking procedure

under conditions radically different from those observed in queueing

systems, we applied the procedure to K - 6 (s,S) inventory systems

with probability requirement P* 0.85. For this situation, "best"

refers to the system with the lowest expected annual operating cost.

The following costs are associated with each inventory system:

Ordering cost OC - $0.50/order (4.2.1)

Holding cost HC - $0.10/unit-week (4.2.2)

Shortage (backorder) cost SC - $1.00/unit. (4.2.3)

The (s,S) ordering policy operates as follows: if the number

of units on hand at the end of the week is less than the reorder point

s, an order is placed to bring the inventory position up to the stock

control level S. (The inventory position is equal to the amount on

hand plus the amount on order minus the amount backordered.) The

order is filled immediately; thus when the store opens on Monday, the

order placed on the preceding Friday has already arrived. Rackorders
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are permitted. The weekly demand is uniformly distributed on the

range from 0 to 6 units. The fixed order charge OC is incurred no

matter how many units are actually ordered. The shortage cost SC is

charged f or each unit backordered in the week that the backorder is

placed. Each unit that must be carried over to the next week incurs

the cost HC on Friday. Table 4.3 summarizes the six alternative (s,S)

policies to be compared.

Table 4.3 Alternative (s,S) inventory systems

compared in the second meta-experiment.

Alternative Ai Policy (siS i )

A1  (2,6)

A2  (3,5)

A3 (3,6)

A4  (4,6)

A5  (5,6)

A6  (6,6)

A generalized, event-oriented simulation model for (s,S)

inventory systems was coded in the SLAM simulation language. The

portion of the program listing which differs from that of the queueing

model is shown in Appendix F. The same protocol was used for the

meta-experiment involving the inventory systems as was used for the

tandem queueing systems.

The assumption which makes this problem analytically tractable
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is that the starting-stock process (the inventory on hand at the

beginning of the week after the previous order has been received)

exhibits the Markovian property. This is equivalent to stating that

the conditional probability of any future starting stock given a

demand history and the present starting stock, is independent of the

past demands and depends upon only the present starting stock. Thus

the starting-stock process (Xt: t - 0, 1, ... ) is a finite-state

Markov chain. If the weekly demand has probability density Sq, q - 0,

1, ... , then the chain (Xt) has the following transition probability

matrix:

s s+1 S-1 S

s g0  0 . .. 0 z gq
q>O

s+1 gl o0 0 E gq
q>l

F- (4.2.4)

S-1 S-s-I gs-s-2 * * " 90 Z gqq>S-s-I

S gs- gs-8 gl g0 + gq

q>S-s

In particular, the (4,6) policy (alternative A4 ) has the following

one-step transition matrix:

4 5 6

4 .1429 0 .8571

P(A 4 )  5 /.1429 .1429 .7142 (4.2.5)

6 L.1429 .1429 .7142

- -/
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The vector of steady-state probabilities

IT ITs ,  7TS+1, ... , TS] (4.2.6)

is found by solving the following system of equations:

.] (4.2.7)TII~
" 1 - 1

For example, in the (4,6) inventory system (alternative A4), the

steady-state distribution of the starting stock is: *4 - 0.1429, w5

- 0.1224, IT6 - 0.7347.

The expected value of the weekly cost process (Ct: t - 1, 2,

can be computed by a straightforward application of the law of

total probability:

S

E(Ct) r I "[Ct = ii
ins

S

+0C" j s l j

S ni
" HC * 7rT* f (-q)gI]

j-s Lq=O

S
+ SC . E "ir - (q-j)g] (4.2.8)

ins qmj

Table 4.4 summarizes the expected yearly operating costs for each of

the alternative inventory policies.
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Table 4.4 Expected yearly operating costs for

(s,S) inventory systems.

Inventory Policy Expected Yearly Costs

(2,6) $ 42.17

(3,5) 40.66

(3,6) 36.95

(4,6) 34.35

(5,6) 35.13

(6,6) 37.89

As in the case of the repair facility simulation, each

alternative inventory policy was subjected to 50 independent

multiple-ranking experiments. Each experiment consisted of 16

independent replications of 100 years of simulated operation; the

final replication was then continued to yield the sample size required

by the multiple ranking procedure. The overall results of the second

meta-experiment are summarized in Table 4.5.

Table 4.5 Final results of the second meta-experiment.

Random Number Humber of Times Selected

Stream Used no  P* (2,6) (3,5) (3,6) (4,6) (5,6) (6,6)

7 100 0.75 0.85 0 0 0 50 0 0

7 30 0.75 0.85 0 0 0 48 2 0
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The cost process (Ct) in an (s,S) inventory system exhibits a

correlation structure which is fundamentally different from that of

the sojourn time process in an M/M/i queue. This is shown graphicallv

in Figures 4.3 and 4.4. Thus whereas the sample variance of n

successive M/M/1 sojourn times seriously underestimates the variance

parameter

(w - n lir Var( n) -

n --- > oo-

the sample variance of n successive weekly inventory costs

overestimates the quantity

7C - n" lim Var(Cn) PC ( 0 )

n ---> o

The implication is that reduced sample sizes can be achieved with a

multiple ranking procedure for inventory cost processes based on a

reliable estimator '"C(0) of the corresponding spectrum at zero

frequency. To show this, the same set of inventory simulation

experiments was rerun with the initial sample size n0 reduced from 100

to 30. The results are included in Table 4.5.

In all simulations of the (s,S) inventory system, the model

was initialized with S units in the inventory. Initialization bias

was detected in only one of the 100 experiments that were performed.

This is another manifestation of the diversity stochastic behavior

achieved by the use of both queueing and inventory models.



108

04

08 9

01

0 5

04

03

01

0 1 2 3 4 5 6 7 8 0I

Figure 4.3 Correlation function of the sojourn

time process for an M/M/1 queue.
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Figure 4.4 Correlation function of the weekly cost

process for an (s,S) inventory system.



CHAPTER V

SUMMARY AND RECOMMENDATIONS

5.1 Main Findings of the Research

If the practitioner uses the procedures and programs developed

in this research to control the run-length of a discrete-event

simulation, he will be able to select the "best" of K competing

alternative configurations efficiently and reliably. The user is able

to set the probability of correct selection and the indifference zone

width to meet his needs. The only assumption required is that the

output of the model should approach a covariance stationary process as

the run length increases.

The Shapiro-Wilk test has proved to be an effective means for

determining a batch size sufficient to induce an acceptable degree of

convergence to normality in simulation-generated output series. The

cusum process defined on the resulting sequence of batch means can

then be used both to detect the presence of initialization bias and to

eliminate the bias economically. The initialization bias test

procedure developed in this research has demonstrated its power

against a wide range of alternatives, yet the procedure is not

dependent on the particular form of the bias function. There is no

empirical evidence that the cusum procedure causes either false

indications of initial bias or excessive data truncation.

The main objective of this research was to develop a

generalized multiple ranking procedure for covariance stationary

109
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processes. The Dudewicz-Zaino procedure for AR(I) processes was shown

to be a special case of the procedure developed in this research.

Equally important to the potential user is the fact that this

generalized procedure is based on a well-established estimator of the

spectral density at zero frequency. This spectral method provides a

simple and robust means of capturing the relevant information about

the covariance structure of simulation-generated output processes.

The successful application of the integrated multiple ranking

procedure to systems whose outputs exhibit widely differing types of

stochastic behavior demonstrates the utility of the procedure in the

analysis of discrete-event simulation models.

5.2 Recommendations for Future Research

The results of this research indicate the need for further

work in a number of areas. The requirement that the output process be

approximately Gaussian warrants additional investigation. Using a

maximum batch size of 3 in the Shapiro-Wilk test does not seem to

cause any serious problems in subsequent stages of the multiple

ranking procedure. This casts some doubt on the necessity for

normally distributed observations. Clearly, we require a more precise

understanding of the role of batching in guaranteeing the reliability

of the multiple ranking procedure.

While the initialization bias test procedure proved to be

effective for a broad range of transient processes, one deficiency is

still evident. The difficulty of identifying a gradually changing



transient mean function, as exhibited by many queueing systems, still

remains unresolved. The use of the point of maximum cusum deviation

as a truncation point also needs additional analytical and empirical

investigation. Combining information obtained from the cusum

statistic with well-known heuristic truncation rules could prove to be

useful in practice.

When K is large, the screening of alternatives by a

generalized subset selection algorithm would be an effective means of

reducing the required simulation run-lengths for all alternatives.

This would be especially effective if for example the final subset of

maximum size M were required to contain the L best of K covariance

stationary processes. Ensuring that the L best alternatives are

selected with probability P * would reduce the field of candidates but

still give the user flexibility in making the final selection.

As a refinement of the procedure developed in this research,

guidelines for setting the initial sample size n0  should be

formulated. During the experimental evaluation of the multiple

ranking routines, it was observed that small initial sample sizes were

consistently associated with over estimates of p(O) and hence with

unnecessarily large run-lengths. Additionally, results obtained

during this research have indicated the need to consider the ratio

max {[pi(O)] I / 2 : i _ I, ... , K} / t

when selecting the initial sample size. A well designed set of

experiments could pinpoint relevant "rules of thumb" to assist the

user in applying the HIP.
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Finally, with the increasing application of simulation

modelling in the nonacademic arena, additional effort to make the

support routines developed in this research more "user friendly" would

greatly expand the number of potential users.
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C INTRODUCTION

C THIS PROGRAM CALCULATES A TEST STATISTIC FOR TESTING A COMPLETE
C Q SAMPLE FOR NORMALITY. THE TEST STATISTIC IS OBTAINED BY DIVIDING
C * THE SQUARE OF AN APPROPRIATE LINEAR COMBINATION OF THE SAMPLE ORDER
C * STATISTICS BY THE USUAL SYMMETRIC ESTIMATE OF VARIANCE. THIS RATIO
C * IS BOTH SCALE AND ORIGIN INVARIANT AND HENCE THE STATISTIC IS
C APPROPRIATE FOR A TEST OF THE COMPOSITE HYPOTHESIS OF NORMALITY

C ** THIS TEST WAS DEVELOPED BY S. S. SHAPIRO AND M. B. WILK
C ** A DESCRIPTION OF THE DEVELOPMENT APPEARS IN BIOMETRIKA (1965)
C ** VOL 52 PAGES 591-611.

C ** INCLUDED IN THIS PROGRAM IS A ROUTINE TO GENERATE AN ARMA(P,Q)
C ** PROCESS FOR USE AS A TEST SAMPLE. PARAMETERS OF THE GENERATED
C ** TEST SEQUENCE MAY BE VARIED BY THE USER.

PROGRAM WILK (TTY,OUTPUT,TAPE5=TTY,TAPE6=TTY,TAPE7,TAPE8,TAPE9)
C
C SHAPIRO-WILK TEST FOR NORMALITY
C

COMMON/BOX/OBS(32,50)
COMMON /ABC/ NJ,K,SSQ, INDCOL(50),X(200),W
DOUBLE PRECISION DSEED
DATA INDCOL/O,O,O,1,3,5,8,11,15,19,24,29,35,41,48,55,63,71,80,89,9

19,109,120,131,143,155,168,181,195,209,224,239,255,271,288,305,323,
23l1,360,379,399,419,440,461,483,505,528,551,575,599/

C
C INITIALIZE VARIALBLES
C

IPR = 0
IROPT = 1
NSIZE = 1
DSEED = 12345.DO
NREP = 16
N = NREP
KROW = 1
NMAX = 3
WRITE(9,150)

C * BLOCK TO CALL SUBROUTINE WHICH GENERATES AN ARMA(P,Q)
C t PROCESS TO TEST

DO 1000 I = 1,NREP
CALL ARMAPQ (DSEED,KROW)
KROW = KROW + 1
DSEED = DSEED*3.DO

1000 CONTINUE



115

C e DO LOOP TO BATCH OBSERVATIONS--STARTING WITH BATCH
C * SIZE = 1. LOOP WILL BE CALLED IF TEST FAILS FOR
C ** BATCH UNDER TEST WITH BATCH SIZE INCREASED BY 1

1111 DO 10 I = 1,NREP
SUM = 0.0
DO 20 J = 1,NSIZE

SUM = SUM + OBS(I,J)
WRITE(9,*)I.J,OBS(I,J)

20 CONTINUE
AVG SUM/NSIZE
X(I) = AVG

10 CONTINUE
C
C
C PRINr HEADER - NO. OF OBSERVATIONS
C

WRITE (9,160) N
C
C
C ** SORT DATA POINTS IN ASCENDING ORDER
C

CALL QSORT (X,N)
C
C CALCULATIONS
C

IF (N.LE.50) J=INDCOL(N)
K=N/2
SUM=O.
SSQ=O.
DO 60 I=I,N

SUM=SUM+XlI)
60 SSQ=SSQ+X(I)*X(I)

SSQ=SSQ-SUM*SUM/N
C
C ** PRINT ORDERED DATA IF NEEDED
C

IF (IPR.NE.O) GO TO 70
WRITE (9,180)
WRITE (9,120) (X(I),I=I,N)
WRITE (9,190)

C
C GET W STATISTIC *
C

70 IF (N.LE.50) CALL TEST
C
C
C ** PERFORM SOME SPACING
C

WRITE (9,210)
IF (IPR.NE.O) WRITE (9,220)
IF (IPR.EQ.O.AND.N.LE.30) WRITE (9,230)
IF (IPR.EQ.O.AND.N.GT.30) WRITE (9,240)
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C
C ** PRINT CRITICAL VALUES IF NEEDED
C

CALL CRITVAL(N,CRIT)

C * IF NORMALITY HYPOTHESIS IF REJECTED INCREASE
C * BATCH SIZE (NSIZE) BY 1 AND RETEST
C
C

IF(W .LT. CRIT)THEN
WRITE(9, 190)
WRITE(9,*)'NORMALITY REJECTED WITH NSIZE =',NSIZE
WRITE(9,220)
IF (NSIZE .GE. NMAX)THEN

WRITE(9,*)'NSIZE TO LARGE TO USE THIS DATA SAMPLE'
STOP

END IF
NSIZE = NSIZE + 1
GO TO 1111

END IF
STOP

C
120 FORMAT(5(5X,E114.4))
150 FORMAT (IH1, 4OH SHAPIRO AND WILK W TEST FOR NORMALITY,/)
160 FORMAT (26X,13, 13H OBSERVATIONS,/)
180 FORMAT (27X, 12HORDERED DATA,/)
190 FORMAT (I
200 FORMAT (////)
210 FORMAT (1H
220 FORMAT (///I
230 FORMAT (///)
240 FORMAT (//)

C
END

SUBROUTINE TEST
C
C ** THIS SUBROUTINE CALCULATES THE SHAPIRO-WILK W STATISTIC **
C

COMMON /ABC/ N,J,K,SSQ, INDCOL(50),X(200),W
COMMON /COEF/ A(625)

C
B=O
DO 10 I=1,K

10 B=B+A(J+I)*(X(N-I+1)-X(I))
W=B*B/SSQ
WRITE (9,20) W
RETURN

C

20 FORMAT (19X, 17HSHAPIRO-WLK W = ,F6.4)
C

END
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SUBROUTINE CRITYAL (N,CRIT)
C
C **PRINT THE CRITICAL VALUES FOR THE W TEST
C

COMMON /CRIT/ T(50,1)
C

WRITE (9,50)
WRITE (9,60) N,T(N,l)
WRITE (9,90)
CRIT = T(N,l)
RETURN

C
50 FORMAT (19X, 28I4CRIT(CAL VALUE OF THE W-TEST)
60 FORMAT (/12X, 41HN 0.10 /13

lF8. 3//)
90 FORMAT (//16X, 44HNOTE THAT SMALL VALUES OF W ARE SIGNIFICANT,,/16

1X, 48H1.E., LEAD TO REJECTION OF THE NORMAL HYPOTHESIS)
C

BLOCK DATA W
COMMON /COEF/ A(200),C(2OO),D(2OO), F(25)
COMMON /CRIT/ T(50,1)
DATA A/.7071,.6872,.1677,.6646,.2413,.6431,.2806,.0875,.6233,.3031

1,.1401,.6052,.3164,.1743,.0561,.5888,.3244,.1976p.0947,.5739,.3291
2,.2141,.1224p.0399,.5601,.3315,.2260,.1429,.0695,.5475,.3325,.2347
3,. 1586, .0922, .0303. .5359, .3325, .2412, .1707,. 1099, .0539, .5251,.3318
4,.2460,.1802,.1240,.0727,.0240,.5150,.3306,.2495,.18780.1353,.0880
5, .0433, .5056, .3290, .2521, .1939, .1447, .1005, .0593, .0196, .4968, .3273
6,.2540,.1988,.1524,.1109o.0725,.0359,.4886,.3253,.2553,.2027,.1587
7p.1197,.0837,.0496,.0163,.4808,.3232,.2561,.2059,.1641,.1271,.0932
8, .0612, .0303, .4734, .3211, .2565, .2085,. 1686,. 1334, .1013, .0711, .0422
9,o.0140, .4643, .3185, .2578, .2119,. 1736, .1399,. 1092, .0804, .0530, .0263
,.4590:.3156,.2571,.2131,.1764,.1443,.1150,.0878,.0618,.0368,.0122
,.4542,.3126,.2563,.2139,.1787,.1480p.1201o.0941,.0696,.0459,.0228
~,.4493,.3098,.2554,.2145,.1807,.1512,.1245,.0997,.0764,.0539,.0321
*,.0107,.4450,.3069,.2543,.2148,.1822,.1539,.1283,.1046,.0823,.0610
*, .0403, .0200, .4407, .3043, .2533. .2151, .1836,. 1563, .1316,. 1089, .0876
*,.0672,.0476,.0284,.0094,.4366,.3018,.2522,.2152,.1848,.1584,.1346

,. 1128, .0923,p.0728,p.0540, .0358, .0178, .4328, .2992, .2510, .2151,.1857
,.1601,.1372,.1162,.0965,.0778,.0598,.0424,.0253,.0084,.4291,.2968
, .2499, .2150/
DATA C/.1864p.1616,.1395,.1192,.1002,.0822,.065,.0483p.032p.0159,.
14254, .2944, .2487. .2148, .1870,. 1630, .1415,. 1219, .1036, .0862, .0697..
20537, .0381,.0227, .0076, .4220, .2921,.2475, .2145, .1874,. 1641,.1433,.
31243, .1066, .0899, .0739, .0585, .0435, .0289, .0144, .4188, .2898, .2463,.
42141, .1878, .1651, .1449,. 1265, .1093, .0931, .0777, .0629, .0485, .0344,.
50206,.0068,.4156,.2876,.2451,.2137,.1880,.1660,.1463,.1284,.1118,.
60961, .0812, .0669, .0530, .0395, .0262, .0131, .4127, .2854, .2439, .2132,.
71882, .1667,. 1475, .1301,. 1140, .0988, .0844, .0706, .0572, .0441, .0314,.
80187, .0062. .4096, .2834, .2427, .2127, .1883, .1673,. 1487, .1317,. 1160,.
91013, .0873, .0739, .0610, .0484, .0361, .0239, .0119, .4068, .2813, .2415,.
~2121,.1883,.1678,.1496,.1331,.1179,.1036,.090O,.0770,.0645,.0523,.



0404,.0287,.0172,.0057,.4040,.2794,.2403,.2116,.1883,.1683,.1505,.18
*1344,.1196,.1056,.0924,.0798,.0677,.0559,.0444,.0331,.0220,.O11O,.
*4015,.2774,.2391,.2110,.1881,.1686,.1513,.1356,.1211,.1075,.0947,.
*0824, .0706, .0592, .0481, .0372, .0264, .0158, .0053, .3989, .2755, .2380,.
*2104, .1880,. 1689,. 1520,. 1366, .1225,. 1092, .0967, .0848, .0733, .0622,.
*0515, .0409, .0305, .0203, .0101, .3964, .2737, .2368, .2098,. 1878, .1691,.
*1526..1376..1237,.l108,.0986,.0870,.0759,.0651,.0546t.0444,.0343,.
*0244,.0146, .0049/
DATA D/.394,.2719,.2357,.2091,.1876,.1693,.1531,.1384,.1249,.1123,
1.1004,.0891,.0782,.0677,.0575,.0476,.0379,.0283,.0188,.0094,.3917,
2.2701,.2345,.2085,.1874,.1694,.1535,.1392,.1259,.1136,.1020,.0909,
3.0804, .0701, .0602, .0506, .0411, .0318, .0227, .0136, .0045, .3894, .2684,
4.2334, .2078, .1871,. 1695, .1539,. 1398, .1269,. 1149, .1035, .0927, .0824,
5.0724, .0628, .0534, .0442, .0352, .0263, .0175, .0087, .3872, .2667, .2323,
6.2072, .1868,. 1695, .1542,. 1405, .1278,. 1160,. 1049, .0943, .0842, .0745,
7.0651, .0560, .0471, .0383. .0296, .0211, .0126, .0042, .3850, .2651, .2313,
8.2U65,.1865,.1695,.1545,.1410,.1286,.1170,.1062,.0959,.0860,.0765,
9.0673,.0584,.0497,.0412,.0328,.0245,.0163,.0081,.3830,.2635,.2302,
*.2058..1862,.1695,.1548,.1415,.1293,.1180,.1073,.0972,.0876,.0783,
*.0694..0607,.0522,.0439,.0357,.0277,.0197o.0118,.0039,.3808,.2620,
*.2291,.2052,.1859,.1695,.1550,.1420,.1300,.1189,.1085,.0986,.0892,
*.0801, .0713, .0628, .0546, .0465, .0385, .0307, .0229, .0153, .0076, .3789,
*.2604,.2281,.2045,.1855,.1693,.1551,.1423,.1306,.1197,.1095,.0998,
*.0906,.0817,.0731,.0648,.0568,.0489,.0411,.0335,.0259,.0185,.0111,
*.0037,.3770,.2589,.2271,.2038,.1851,.1692,.1553,.1427,.1312,.1205,
*. 1105,. 1010, .0919, .0832, .0748, .0667, .0588, .0511, .0436, .0361, .0288,
*.0215, .0143, .0071/
DATA F/.3751,.2574,.226,.2032,.1847p.1691,.1554,.143,.1317,.1212,.
11113,.1020,.0932,.0846,.0764,.0685,.0608,.0532,.0459,.0386,.03 14,.
20244, .0174, .0104, .0035/

DATA T/0.,0.,.789..792,.806,.826,.838,.851,.859,.869,.8
*76, .883, .889, .895, .901, .906, .910, .914, .917, .920, .923, .926, .928, .93
*0,.931,.933,.935,.936,.937,.939,.940,.941,.942,.943,.944,.945,.946
*,.947,.948,.949,.950,.951,.951,.952,.953,.953,.954,.954,.955,.955/

C
END
SUBROUTINE QSORT (X,N)

C
C QUICKSORT ALGORITHM.
C

DIMENSION X(1), STACK(13,2)
INTEGER STACK, FIRST
REAL MEDIAN,MED
DATA MAXSTK/13/,K/12/,M/10/
I TOP=0
FIRST=1
NN= N

10 CONTINUE
IF (NN.GT.M) GO TO 20
CALL SHLSRT (X(FIRST),NN)
IF (ITOP.LE.0) GO TO 130
FIRST=STACK( ITOP, 1)
NN=STACK( ITOP,2)
ITOP=ITOP-1
GO TO 10
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20 CONTINUE
LAST=F IRST4NN-1

N2=0
MEDIAN=MED(X( FIRST),NNj
I 1=FIRST
I 2=LAST+l

30 CONTINUE
1=12-1

40 CONTINUE
IF (I.LE.ii) GO TO 80
IF (X(I).LT.NEDIAN) GO TO 50
1=1-1
N2=N2+1
GO TO 40

50 12=1
X( Ii)=X( 12)
t41=N1+1

60 CONTINUE
IF (I.GE. 12) GO TO 90
IF CX(I).GT.MEDIAN) GO TO 70
1=1+1
N1=Nl+l
GO TO 60

70 11=1
)(12)=Xj II)
N2=N2+1
GO TO 30

80 X(I1)=MEDIAN
GO TO 100

90 X(12)=MEDIAN
100 CONTINUE

tTOP= ITOP+l
IF (ITOP.GT.MAXSTK) GO TO 120
IF CNI.GT.N2) GO TO 110
STACK( ITOP, 1)=LAST-N2+1
STACK( ITOP,2)=N2
NN=N1
GO TO 10

110 STACK(ITOP,1)=FIRST
STACK( ITOP,2)=Nl
F IRST=LAST-N2+1
NN=N2
GO TO 10

120 CALL REMARK (24LSTAGk OVERFLOW IN QSORT
STOP

130 RETURN
C

END

C SUBROUTINE SHLSRT (X,N)

C SHELL SORT.

DIMENSION X(l)
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M= N
10 CONTINUE

M=M/2
IF (M.EQ.O) GO TO 50
K=N-M
J=1

20 CONTINUE
I=J

30 CONTINUE
L=M+ i
IF (X(I).LE.X(L)) GO TO 40
XK=X( I)
X(I )=X(L)
X( L)=XK

I = I -M
IF (I.GE.1) GO TO 30

40 CONTINUE

IF (J-K) 20,20,10
50 CONTINUE

RETURN
C

END
FUNCTION MED (XN)

C
C FUNCTION TO GET A MEDIAN ESTIMATE OF AN ARRAY.
C

REAL MED
DIMENSION X(1)
MID=N/2
XF=X( 1)
XM=X( MID)
XL=X( N)
IF (XF.GT.XM) GO TO 10
IF (XM.LT.XL) GO TO 30
IF (XF.LT.XL) GO TO 40
GO TO 20

10 IF (XM.GT.XL) GO TO 30
IF (XF.GT.XL) GO TO 40

20 K~l
GO TO 50

30 K=MID
GO TO 50

40 K=N
50 MED=X(K)

X( K)=X( 1)
RETURN

C
END

C *~SUBROUTINE TO GENERATE ARMA(P,Q) PROCESS FOR TEST
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SUBROUT INE ARMAPQ( SEED, KROW)
COMMON/BOX/TEST( 32, 50)
COMMON/TSERIES/DELTA(3),SIGMA(3),NSAMP(3), IP(3),JQ(3)p
1THETA(3,48),X(3,60),U(3,60), IOLD(3),JOLD(3),PHI(31i8),
2ONE( 1) *DSEED
DOUBLE PRECISION DSEED,SEED

C** INITIALIZE
DSEED = SEED
DELTA(1) = 110.0
SIGMACT) = 20.0
IP(l) =2

JQ(1) =0
PHI(l,1) = 0.35
PHI(1,2) = 0.25
PHI(1,3) = 0.0
THETA(l,l) = 0.0
THETA(1,2) = 0.0
THETA(1,3) = 0.0
NR = 1
START = ARMA(0,1)
DO 100 1=1,1000
CALL GGNML(DSEED,NR,ONE)

CLEAR = ARMA( 1 * )
100 CONTINUE

DO 200 1=1,50
CALL GGNML( DSEED, NR, ONEI

TEST(KROW,I) = ARMA(l,l)
200 CONTINUE

RETURN
END
FUNCTION ARMA( IND, KS)

C **GENERATE ARMA (P,Q) MODELS
C **GENERATOR USES ARRAYS,X(SERIES) & U(WHITE NOISE SERIES),
C TO ACCOUNT FOR DEPENDENT PAST VALUES. IOLD AND JOLD POINT TO
C THE OLDEST ELEMENT IN EACH ARRAY. NEWEST ELEMENT IS ONE
C ELEMENT OVER.

COMMON/TSERIES/DELTA(3),SIGMAC3),NSAMP(3), IP(3),JQ(3),
1THETA(3,48),X(3,60),U(3,60),IOLD(3),JOLD(3),PHI(3,48)
2,ONE(l1),DSEED
DOUBLE PRECISION DSEED

C **FIRST TIME THROUGH (IND=O), INITILIZE VARIABLES. OTHERWISE,
C GO TO 100 AND GENERATE SERIES.

IF(IND.EQ.1) GO TO 100
NIP= IP( KS)
NJQ=JQ( KS)
XMU = DELTA( KS)
SUM = 1.0

C *~CALCULATE MAXIMUM LAG, LMAX
LMAX = MAXO(NIP,NJQ)

C **CALCULATE MEAN (XMU) OF SERIES
IF (NIP .EQ. 0) GO TO 20
DO 10 1=1,NIP

10 SUM = SUM - PHI(KS,I)
20 )CMU = DELTA(KS)/SUM

C*** INITIALIZE OLDEST ELEMENT POINTERS, IOLD & JOLD, FOR SERIES (X)
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C & WHITE NOISE SERIES (U) TO LAST ELEMENT IN EACH ARRAY
IOLD(KS) = NIP
JOLDf KS) =NJQ
DO 30 LAG=1,LMAX

C **INITIALIZE WHITE NOISE SERIES TO MEAN (0.)
U(KS.LAG) = 0.0

C INITIALIZE SERIES (X,ARMA) TO MEAN (XMU)
30 X(KS.LAG) = XMU
35 ARMA = XMU

RETURN
C -** WHITE NOISE (UO) IS NORMAL(O.,SIGMA)

100 CALL GGNML(DSEED,NRONE)
UO = SIGMA(KS)*ONE(KS)
ARMA = DELTA(KS) + UO

C ~''IF ARMA NOT DEPENDENT ON PAST SERIES VALUES (X), DON'T
C ADD THEM ON
C '''ARMA DEPENDS ON WHITE NOISE PLUS DELIA TO BRING SERIES
C UP TO MEAN

IF (IP(KS) .EQ. 0) GO TO 150
C **GET PAST SERIES ELEMENTS (X) IN ORDER, FROM LAST TO
C OLDEST

DO 120 1I=1,IP(KS)
I = MOD(IOLD(KS)+II.IP(KS))
IF (I.EQ.0) I=IP(KS)

C **ADD TO ARMA PAST SERIES VALUESCX) TIMES PHI ARRAY
120 ARMA = ARMA + PHI(KS.II)*X(KS,I)

C *** IF ARMA NOT DEPENDENT ON PAST WHITE NOISE VALUES(U),
C DON'T ADD THEM ON

150 IF (JQ(KS) .EQ. 0) GO TO 500
C GET PAST WHITE NOISE VARIABLES (U) FROM LAST PERIOD
C TO OLDEST

DO 170 JJ=1,JQ( KS)
J = MOD(JOLD(KS)+JJ,JQ(KS))
IF (J.EQ.O) J=JQ( KS)

C SUBTRACT PAST WHITE NOISE VARIABLES(U) TIMES THETA ARRAY
170 ARMA = ARMA - THETA(KS,JJ)*U(KS,J)

C *** IF ARMA IS DEPENDENT ON PAST SERIES VALUES (X), SAVE
C ARMA WHERE OLDEST X ELEMENT IS.

500 IF (IP(KS) .EQ. 0) GO TO 550
X(KS,IOLDCKS)) = ARMA

C **UPDATE IOLD WHERE IOLD IS BETWEEN 1 AND P
IOLD(KS) = IOLD(KS) - 1
IF (IOLD(KS) .EQ. 0) IOLD(KS) = IPIKS)

C **IF ARMA NOT DEPENDENT ON PAST WHITE NOISE, DON'T UPDATE
C U ARRAY

550 IF (JQ(KS) .EQ. 0) RETURN
C *4SAVE CURRENT WHITE NOISE (UO) WHERE OLDEST WHITE NOISE
C HAD BEEN

U(KS,JOLD(KS)) = UO
C **UPDATE JOLD

JOLD(KS) = JOLD(KS) -1
IF (JOLOC KS) .EQ. 0) JOLOC KS) JQ(KS)
RETURN
END
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C ** PROGRAM IBZERO IS USED TO DETECT THE PRESENCE TO INITIALIZATION
C * BIAS AND AUTOMATICALLY TRUNCATE THE DATA UNDER TEST.
C ** THE DATA TO BE TESTED SHOULD BE NAMED TAPE8. IT WILL BE READ
C AFTER THE USER ANSWERS QUESTIONS PROMPTED ON THE CRT.

C * THE DATA TO BE TESTED MAY BE BATCHED PRIOR TO ANY TEST BEING
C * CONDUCTED BY CHANGING THE DATA ELEMENT -NSIZE- NSIZE IS PRESENTLY
C ' SET AT 1 (NO BATCHING).

C * THIS PROGRAM IS A MODIFICATION OF A TESTED DESIGNED BY L. SCRUBEN
C ** AS REPORTED IN VOL 30 MAY 1982 OPERATIONS RESEARCH.

C ** THE REQUIRED ESTIMATE OF THE DATA VARIANCE IS MEASURED BY
C * USING THE SPECTRAL METHOD

C ** INCLUDED IN THE PROGRAM ARE TO PLOT SUBROUTINES
C ** THESE ARE USED TO PLOT THE BATCH MEANS AND THE CUSUMS

PROGRAM IBZERO(TTY, OUTPUT,TAPE5=TTY, TAPE6=TTY, TAPE7,TAPES,TAPE9)
DIMENSION DATA(2000)
COMMON//PLT(2000),NUMBAT,BATCH(2000)
DATA NSIZE/1/

C
C
C
C ***-REQUEST USER INPUT FROM TERMINAL
C ****NUMBER OF DATA POINTS IN FILE(TAPE8)
C

AGAIN = 0.0
WRITE(6,*)'ENTER NUMBER OF DATA POINTS'
READ(5,*)OBS
LENTH = IFIX(OBS)

C
C ****REQUEST USER INPUT FROM TERMINAL
C ****THE PRESPECIFIED LEVEL OF SIGNIFICANCE
C

60 WRITE(6,*)'ALPHA =
READ(5,*)ALPHA

C
C *****CHECK THAT USER INPUT PROPER DATA TYPE
C

IF((ALPHA .LE. 0.) .OR.(ALPHA .GE. 1.0))THEN
WRITE(6,52)

52 FORMAT(/,'YOUR VALUE FOR ALPHA IS INCORRECT.',
+ ' PLEASE REENTER.')

GO TO 60
END IF

C
C ****INITIALIZE VARIABLES
C

OBS = LENTH
JUNK = 0



125

IBEGIN = 1
MPOINT =0

END = NSIZE
I TRUNC 0
KOUNT =0

C
C

C *****DO~ LOOP TO LOAD DATA INTO ARRAY FOR PROCESSING
C

IF(AGAIN .NE. O.O)THEN
GO TO 75

END IF
READ(8,*,ERR=901) (DATA(I),1=1,LENTH)

C
C

75 NUMBAT =OBS/NSIZE
NSTART = IBEGIN
POINTS = FLOAT(NUMBAT)
KOUNT =KOUNT + 1
NFIN = END
DO 150 K=1,NUMBAT
BATSUM =0.0
DO 100 I=NSTART,NFIN
BATSUM = BATSUM + DATA( I)

100 CONTINUE

C *****COMPUTE MEAN OF EACH BATCH

BATCH(K) = BATSUM/NSIZE
NSTART = NSTART +' NSIZE
NFIN = NFIN + NSIZE

150 CONTINUE
C
C***~jSBOTETOPOBACMEN

C
IF(KOUNT .EQ. 1)THEN

WRITE(9,*)'FOLLOWING IS A PLOT OF BATCH MEANS'
CALL PBATCH

END IF
C
C *****COMPUTE SUM OF SAFE BATCH MEANS
C

TOT = 0.0
NHALF =NUMBAT/2
MID = NHALF +' 1
NSAFE =NUMBAT - NHALF

C
C
C### CALL SUBROUTINE WELCH TO CALCULATE VARIANCE #######f######
C
C

CALL WELCH1 MID,ZERO)
WRITE(9, *) ZERO =',ZERO
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C
C
C

DO 200 I=MID,NUMBAT
TOT = TOT + BATCH( I)

200 CONTINUE
C
C
C

GAMMA = ZERO
C
C *****INITIALIZE VARIABLES USED DURING
C *****EACH PASS THROUGH THE DATA
C

AMAX = 0.0
CUSUM = 0.0
PMEAN = 0.0
AMIN = 0.0
PSUM = 0.0
M = 0
NEGTIV = 0
POSTIV = 0
TOTAL = 0.0

C
C *****COMPUTE MEAN OF ALL DATA
C

DO 325 1 1,NUMBAT
TOTAL =TOTAL + BATCH( I)

325 CONTINUE
AMEAN = TOTAL/NUMBAT
IF(KOUNT .EQ. I)TMEAN=AMEAN
WRITE(9, 326)IOUNT,AMEAN,TMEAN

326 FORMAT(/,5X,'PASS NUMBER',15,' MEAN=',FlO.4,' TMEAN=',FlO.14)

C

C *****TEST FOR INITIALIZATION BIAS
C *****FIND MOST POSITIVE AND NEGATIVE
C *****VALUES OF NORMALIZED CUSUM
C

SIGMA =SQRT(GAMMA)
SQROOT =SQRT( POINTS)
DO 500 1=1,NUMBAT
M = M+1
PSUM =PSUM+BATCH( I)
PMEAN =PSUM/M
CUSUM =AMEAN-PMEAN

C*****BLOCK TO CHECK FOR NEGATIVE VALUES OF CUSUM
C *****AND SAVE MOST NEGATIVE VALUE
C

IF(CUSUM .LT. O.O)THEN
NEGTIV = 1
SNEG = (M*CUSUM)/SQROOT
PLT(I) = SNEG/SIGMA
I F(SNEG.LT.AMIN)THEN
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AM I N=SNEG
NEGLOC = M

END I F
GO TO 500

END IF
C
C

STAR = (M-CUSUM)/SQROOT
PLT(I) = STAR/SIGMA

IF(STAR .GT. AMAX)THEN
POSTIV = 1
AMAX = STAR
MPOINT = M

END IF
500 CONTINUE

C
C ~***PLOT S VALUES******
C

WRITE(9,*)'FOLLOWING IS A PLOT OF STAR DURING PASS',KOUNT
CALL PSTAR

C *****BLOCK TO CHECK IF ONLY POSITIVE
C *****INITIAL BIAS INDICATED
C

IF((NEGTIV .GT. 0) .AND.
+(POSTIV .LT. 1.O))THEN
WRITE(9,*)'INDICATIONS OF POSITIVE BIAS ONLY DURING PASS',KOUNT

AMAX = AMIN
MPOINT =NEGLOC
GO TO 501

END IF
C
C *****BLOCK TO CHECK IF OSCILLATION OF
C *****NEGATIVE AND POSITIVE BIAS INDICATED.
C
C *****STANDARDIZE TO UNIT INTERVAL.
C
C *****CHECK USING SAME SCHRUBEN TEST
C *****EXCEPT USING ALPHA/2.

I F( (NEGTIV .GT. 0) .AND. (POSTIV.GT.O) )THEN
WRIrE(9,*)'INOICATION OF + AND - BIAS DURING PASS',KOUNT
TN =FLOAT(NEGLOC)/POINTS
TP = FLOAT(MPOINT)/POINTS
XP=(AMAX**2 )/( 3*GAMMA*TP*( 1-TP))
XN=(AMIN**2)/(3*GAMMA*TN*C 1-TN))
DFN =31.
DFD=PO INTS/2
x =xp
CALL MDFDRE(X,DFN,DFD,P, IER)
PROPOS = 1. - P
X =XN
CALL MDFDRE(X,DFN,DFD,P, IER)
PRONEG = 1.0 - P
HALPHA = ALPHA/2.
IF((PROPOS .AND.PRONEG)
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" .LT. HALPHA)THEN
NPOI NT=MAXO(t4P01NT, NEGLOC)
GO TO 913

END IF
IF((PROPOS .AND. PRONEG)

" .GE. HALPHA)THEN
GO TO 974

END IF
IF(PROPOS .LT. HALPHA)THEN

GO TO 913
ELSE

MPOINT = NEGLOC
GO TO 913

END IF
END IF

C
C *****BLOCK TO CALCULATE VIA SCHRUBEN
C *****BROWNIAN BRIDGE TEST INDICATION
C *****OF INITIAL BIAS OF ONLY ONE SIGN
C

WRITEC9,*)'INDICATIONS OF ONLY - BIAS DURING PASS ',KOUNT
501 T = FLOAT(MPOINT)/POINTS

X = (AMAX**2)/C3.*GAMMA*T*C1.-T))
DFN = 3.
DFD = POINTS/2
CALL MDFDRE(X,DFN,DFD,P, IER)
IF(IER .EQ. 129)THEN

WRITE(9,*)'IER ERROR'
STOP

END IF
PROBAB = 1.0 - P
IF(PROBAB .LT. ALPHA)THEN

C *****BLOCK TO OVERRIDE,IF NECESSARY,
C *****TRUCATION POINT TO ALLOW AT LEAST TWO
C ****PASSES TO ELIMINATE INITIAL BIAS
C *****POINT = .25*DATA
C
C

913 CONTINUE
MAXPNT = IFIXC.25*NUMBAT)
IF(MPOINT .GT. MAXPNT)THEN

MPOINT = MAXPNT
END IF

C
C
C *****ITRUNC EQUALS THE TRUNCATION POINT OF BATCHES

ITRUNG = ITRUNC + MPOINT

C
C *****BLOCK TO SEE IF THE TEST PROCEDURE HAS
C *****TRUNCATED AN EXCESSIVE AMOUNT OF DATA
C *-*(5% AND STILL NOT ELIMINATED INITIAL BIAS
C

JUNK ITRUNC*NSIZE
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WRITE(9,9214)KOUNT,JUNK
924 FORMAT(//,'PASS NUMBER',13,

+1 THROUGH THE DATA SHOWS A TRUNCATION POINT OF ',I14)
C

IF(JUNK .GT. (0.5-LENTH))THEN
WRITE$ 9,925)JUN(

925 FORMAT(/, AN EXCESSIVE AMOUNT OF DATA(AT LEAST',13,,
+' DATA POINTS) MUST BE TRUNCATED',!,' TO ELIMINATE '

+'INITIALIZATION BIAS. IT IS SUGGESTED THAT A,,+' LARGER SAMPLE BE OBTAINED AND THE TEST RERUN')
GO TO 929
END IF

C
C *****CALCULATE NUMBER OF DATA POINTS
C *****LEFT AND RETEST USING ONLY THESE POINTS
C

OBS = OBS - CMPOINT*NSIZE)
IBEGIN = IBEGIN + (MPOINT*NSIZE)
IEND = IBEGIN + (NSIZE - 1)
GO TO 75

ELSE
C
C

C *****SHOW FINAL TRUNCATION POINT
C *****AND COMPUTED MEAN
c

974 WRITE(9,975)ALPHA,JUNK
975 FORMAT(///, THE HYPOTHESIS OF NO INIIALIZATION',

+ 'BIAS IS NOT REJECTED AT THE PRESPECIFIED',/
+ 'LEVEL OF SIGNIFICANCE ',F5.4,' WITH A TRUNCATO'
+ 'POINT OF ',14)
END IF
WRITE(9,*)'MEAN OF RAW DATA = ',TMEAN
WRITE(9,981 )AMEAN

981 FORMAT(/,'THE ARITHMETIC MEAN OF THE',
+' TRUNCATED DATA = ',F1O.4)
AGAIN = 0.0

C
C *****ASK IF RERUN WANTED WITH DIFFERENT ALPHA LEVEL
C

929 WRITE(6,930)
930 FORMAT(//,'DO YOU WANT TO RERUN THE DATA WITH A '

+'DIFFERENT LEVEL OF SIGNIFICANCE? ',
+'ENTER 0 FOR NO',/,'ENTER 1 FOR YES')
READ(6,-)AGAIN
IF(AGAIN .GT. O.O)THEN

GO TO 60
END IF
STOP

C
C *****ERORR MESSAGE
C

901 WRITE(6,*)'THERE IS A DATA ERROR IN YOUR FILE. PLEASE RECHECK'
STOP
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END
C
C
C
C
C SUBROUTINE PLOT
C
C

SUBROUTINE PSTAR
COMMON//PLT(2000 ) ,NUMBAT, BATCH( 2000)
WR IT E( 9,201)

201 FORMAT(//////)
YBIG=PLT( 1)
YMIN=PLT(l)
DO 100 I=2,NUMBAT
IF(YNIN.LT.PLT(I))GO TO 50
YMIN=PLT( I)

50 CONTINUE
IF(YBIG.GT.PLT(I) )GO TO 100
YBIC=PLT( I)

100 CONTINUE
WRITE(9,350)( 1H*,J=1,55)
DO 200 1=1,NUMBAT
I F(YBIG.EQ.YMIN)THEN
L=IFIX(49.999*PLT( I) )+2
ELSE
L=IFIX(49.999*(PLT(I) -YMIN)/(YBIG-YMIN))+2
END IF

350 FORMAT(22X,60A1)
IF(PLT( I).GT.0.O)THEN
WRITE(9,3O0)I,PLTCI),(11 ,J=1,L-1),lH+,(lH ,J=1,53-L)
GO TO 200
END IF
IF(PLT( I).LT.O.O)THEN
WRITE(9,300)I,PLT(I),(lH ,J=1,L-1),lH-,(lH ,J=1,53-L)
GO TO 200
END IF
WRITE(9,300)1,PLT(I),(1H ,J=1,L-1),lHO,(lH ,J=1,53-L)

200 CONTINUE
300 FORNAT(lH .15,11- ,FB.4,2X,lH-,60Al)

WRITE(9,350)( 1H*,J=1,54)
RETURN
END

C
C
C SUBROUTINE TO PLOT BATCH AND PLT
C
C

SUBROUTINE PBATCHCOMN/L(00,1MAAC(00
WRITE(9,201)

201 FORMAT(//////)
YBIG=BATCH( 1)
YMIN=BATCH( 1)
DO 100 1=2,NUMBAT



131

IF(YMIN.LT.BATCH(I))GO TO 50
YMIN=BATCH( I)

50 CONTINUE
IF(YBIG.GT.BATCH(I) )GO TO 100
YBIG=BATCH( I)

100 CONTINUE
WR ITEC 9, 350 )( H-, J=1, 55)
DO 200 I=1,NUMBAT
I F(YBIG. EQ.YMIN)THEN
L=IFIX(49.999*BATCHC I) )+2
ELSE
L=IFIX(i.9.999*(BATCHCI) -YMIN)/(YBIG-YMIN))+2
END IF

350 FORMAT(22X,6DAl)
IF(BATCH( I).GT.0.0)THEN
WRITE(9,300)I,BATCH( I),(lH ,J=1,L-1),lH+,(lH ,J=1,53-L)
GO TO 200
END IF
IF(BATCH( I).LT.0.O)THEN
WRITE(9,300)I,BATCH( I),(lH ,J=1,L-1),IH-,(lH ,J=1,53-L)
GO TO 200
END IF
WRITE(9,300)I,BATCH(I),(lH ,J=1,L-1),lHO,(lH ,J=1,53-L)

200 CONTINUE
300 FORMAT(lH ,15,11- ,F8.4,2X,lH*,60Al)

WRITE(9,350)( 1H*,J=1,54)
RETURN
END

C##### SUBROUTINE TO CALCULATE THE SPECTRAL DENSITY ################
C##### AT ZERO FREQUENCY (VARIANCE) #########
C
C

SUBROUTINE WELCH (MID,ZERO)
DIMENSION PERIOD(600),XM(6),TEMP(6),BC6,7)

$,ANOVA(16),VARB(21),FJ(300),IWK(3200),WK(3200),V(300,6),VCV(21)
S.NBR(6),ALFAC2),IJOB(2),IND(11).,XYB(6,5),AC300,6),CHECK(2000)
COMMON//PLT(2000) ,NUMBAT,BATCH( 2000)

C COMPLEX TRANS( 600)
C

NUDTCNMA I
NUMDA = 0UBT- I
DO 10 = 0 IUM
00NUM = INU 1
HKINUM = BATCH+ 1

1CNIEKIU)=BTH
10CNDTINUE MDT
NQDATA = NHMDAT/2
CQAL NFR(HECNMDTRNS IKK
CALL= NHTA 4 1,UMARASIWK
DOI 15 NHDATAM+

KO=1 L- 1~l
KEIDK(ASTASL = L2)N-MOA

15 ONINUE =CASTAS()*2)NMA

DO 30 KL=1,NQDATA
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KK =2*KL
JJ = KK-1

SMOTH=((PERIOD(JJ)+PERIOD(KK) )/2.O)
FJCKL)=ALOG(SMOTH) + .270

30 CONTINUE
DO 50 I=1,NQDATA

A(I,1) I
A(1,2) 1*1
A(1,3) 1**3
A(1,4I) 1**
A(1,5) 1**5
A11,6) FJ(I)

50 CONTINUE
M4 5
lB =6

IND(l) = 0
IND(2) = 0
IND(3) = 0
IND(L4) =0
IND(5) = 0
IJOBM1 = 0
IJOB(2) = 1
ALFA~i) = .05
ALFA(2) = .05
NRDIM = 300
CALL RLSEP(A,NQOATA,M,NRDIM,ALFA, IJOB, IND,ANOVA,XYB,1B, VARB, IER)
j =0
DO 2000 1=1,5

IF (XYB(I,2) .NE. O)THEN
J = J + 1
DO 2100 LL =1,NQDATA
V(LL,J) =LL**I

2100 CONTINUE
END IF

2000 CONTINUE
IF(J .EQ. O)THEN

ZERO = EXP(XYB(6,2))
RETURN

ELSE
J = J + 1
DO 2200 1 1,NQDATA

VII,J) =FJ(I)
2200 CONTINUE

NVAR = J
NBR(1) = NVAR
NBR(2) = NQDATA
NBR(3) = NQDATA
NBR(4) = 1
NBR(5) = 1
NBR(6) = 1
CALL BECOVM(V,NRDIM,NBR,TEMP,XM,VCV,IER)
WVAR =NVAR - 1
ALPHA =0.05
CALL RLMULCVCV,XM,NQDATA, IVAR,ALPHA,ANOVA,B, ID, ARD,IER)
UPLEFT =(B(NVAR.4)**2)/ANOVA(B)
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ADJUST = (.6t&5*UPLEFT)/2.O
CONE = EXP( -ADJUST)
ZERO = CONE*(EXP(B(NVAR,1)))
END IF
RETURN
END
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C ** INTRODUCTION

C * PROGRAM TO PERFORM MULTIPLE REPLICATIONS OF
C * DUDEWICZ-DALAL MRP USING INDEPENDENT NORMALLY
C * GENERATED SAMPLES. TEST SAMPLES GENERATED ARE
C ** IN A LEAST FAVORABLE CONFIGURATION.
C NUMBER OF ALTERNATIVE(KPOP WITH MAX 9) CONSIDERED,
C * INDIFFERENCE ZONE(DSTAR), INITIAL SAMPLE SIZE(NAUGHT),
C * AND THE PROBABILITY OF CORRECT SELECTION(PCS)
C ** ARE SET IN INITIALIZE BLOCK.
C ** DUDEWICZ-DALAL CRITICAL H VALUE CALCULATED BY
C SUBROUTINE RNKSEL

PROGRAM AUTOH(TTY,OUTPUTTAPE5=TTY,TAPE6=TTY,1APE7,TAPEB,TAPE9)
DIMENSION DATA(1000).R(1000),U(20),SIGMA(20),ITOTAL(20)
DOUBLE PRECISION DSEED,ODSEED

C############## INITIALIZE VARIABLES #####################f####
NAUGHT = 7
NMAX = 0
NDATA =100
DELTA = 7
PCS = .90
KPOP = 6

C ** THE MEAN AND STANDARD DEVIATION OF THE TEST
C ** ALTERNATIVES ARE SET BELOW

U(?) = 53
U(2) = 60
U(3) = 53
U(4) = 53
U(5) = 53.
U(6) = 53.
U(7) = 53.
U(8) = 53
U(9) = 53.
SIGMA(l) = 4.5
SIGMA(2) = 4.0
SIGMA(3) = 5.5
SIGMA(4) = 2.8
SIGMA(S) = 6.8
SIGMA(6) = 10.3
SIGMA(7) = 3.4
SIGMA(8) = 9.5
SIGMA(9) = 8.6
DSEED = 9841337.DO
ODSEED = DSEED
KPASS = 1

C#####################################################C##### CALL SUBROUTINE TO CALCULATE ################
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Ct### DUDEWICZ AND DALAL H VALUE (DNDH) ###########
C
C

CALL RNKSEL(NAUGHTKPOP, PCS,DNDH)
WRITE(9,*)'DNDH =',DNDH

C
C###################################################
C##### INITIALIZE VARIABLES USED ###################
C##### DURING EACH REPICATION ##################
C
C

1 BEST = 0.0
KOUNT = 1

2 TSUM = 0.0
DIFSQ = 0.0
EXSUM = 0.0

C###############################################################
C###### GENERATE DATA --NORMAT VARIATE WITH MEAN = U ########
C###### AND SD = SIGMA ######################################
C
C

CALL GGNML(OSEED, NOATA, R)
DO 5 J=1,NDATA

DATA(J) = (R(J)*SIGMA(KOUNT)) + U(KOUNT)
5 CONTINUE

C
C
C###############################################################
C
C
C#####################################################
C##### CALCULATE SAMPLE MEAN AND ##################
C##### VARIANCE BASED ON INITIAL ##################
C##### SAMPLE SIZE (NAUGHT) ##################
C

DO 10 I=1,NAUGHT
TSUM = TSUM + DATA(I)

10 CONTINUE
AVG = TSUM/NAUGHT
DO 15 I=1,NAUGHT

DIFSQ = DIFSQ + ((DATA(I)-AVG)**2)
15 CONTINUE

VAR = DIFSQ/(NAUGHT-1)
CC#####################################################
C##### DETERMINE IF LARGER SAMPLE SIZE (NEXTRA) ###
C##### IS NEEDED BASED ON OUDEWICZ, RAMBERG, AND ###
C##### CHEN PROCEDURE. NEXTRA .GT. NAUGHT ###
C
C

IDDOBS=((VAR*(DNDH**2))/(DELTA**2))+.999999
IPLUS = NAUGHT + 1
IF (KPOP .GT. 2)THEN
NEXTRA= MAXO(IPLUS,IDDOBS)
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C IF REQUIRED SAMPLE SIZE(NEXTRA) IS GREATER
C ~'THAN DATA AVAILABLE-RETURN AND GENERATE MORE

IF(NEXTRA .GT. NDATA)THEN
WRITE(9,*)'MORE DATA NEEDED'
WRITE(9.*)'NEXTRA =',NEXTRA
N DAT A= NEXT RA
GO TO 2

END IF
C

C##### USING THE SAME PROCEDURE DETERMINE ####t
C##### WEIGHTING FACTORS (WEIGHT) WHICH ####
C##### IS USED TO CALCULATE THE SPECIAL ####
C##### SAMPLE MEAN USED FOR BETWEEN ##
C##### POPULATION CONPARISONS (COMPARE) #### i
C
C

DO 20 I=IPLUS,NEXTRA
EXSUM = EXSUM + DATAC I)

20 CONTINUE
EXAVG =EXSUM/(NEXTRA-IPLUS+l)

TOP = C(NEXTRA-NAUGHT)*(DELTA**2))
BOTTOM = (DNDH**2)*VAR
COR = FLOAT(NEXTRA)/FLOAT(NAUGHT)
REC =1.0/COR
TIM = TOP/BOTTOM
BRAC = 1.0-TIM
SUB = COR*BRAC
SQ = 1.0 - SUB

ALMOST = 1.0 + SQRT(SQ)
WEIGHT = REC*ALMOST
COMPARE = (WEIGHT*AVG)+((1.0-WEIGHT)*EXAVG)
GO TO 22
ELSE

C

C#if## THIS SECTION IS USED IF COMPARING #####
C##### ONLY 2 ALTERNATIVES. NO WEIGHTING #####f
C#### FACTORS NEEDED###
C
C

NEXTRA = MAXO(NAUGHT,IDDOBS)
IF(NEXTRA .GT. NDATA)THEN

WRITEC9 :)'MORE DATA NEEDED'
WRITE(9,*)'NEXTRA =',NEXTRA

NDATA= NDATA+ 100
GO TO 2

END IF
IF(NEXTRA .EQ. NAUGHT)THEN

COMPARE = AVG
GO TO 22

END IF
DO 21 I=IPLUS,NEXTRA
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TSUM = TSUM + DATA( I)
21 CONTINUE

COMPARE =TSUM/NEXTRA
C
C##### END K =2 SECTION ############N#####
C#######~####################h#############

END IF
C
C

C#### WHICH POPULATION HAS THE #########
C#### LARGEST 'COMPARE' VALUE AND ##########
C##### PRINT SUMMARY RESULTS ##########
C

22 IF(COMPARE .GT. BEST)THEN
BEST = COMPARE
NUMBER = KOUNT

END I F
IF(KOUNT .LT. KPOP)THEN

DSEED = DSEED*3.DO
KOUNT = KOUNT + 1

IF(NEXTRA .GT. NMAX)THEN
NMAX = NEXTRA

END IF
GO TO 2

END IF
ITOTAL(NUMBER)=ITOTAL(NUMBER) + 1
IF(KPASS .LT. 100)THEN

KPASS =KPASS + 1
GO TO 1

END IF
DO 30 K = 1,KPOP
WRITE(9,100)K ITOTALIK),UIK),SIGMA(K)

100 FORMAT(//,6X,fALTERNATIVE 1I4,' HAS',1i4,' BEST RESULTS',
S/,6X,'THE TRUE MEAN IS',F8.2,' WITH A STANDARD DEVIATION OF',F8.2)

30 CONTINUE
WR ITEC 9, 110 )PCS, ODSE ED, DE LTA,NtAUGHT DNDH, NMAX

110 FORMATj///,6X.'FOR THIS TEST: PCS =1 ,F4 i' I DSEED '
$D16.8, DELTA =',F5.2,/,6X,' NAUGHT*= ,Ii,' DNDH =,F5.3,
$- NMAX =',15)

STOP
END

C **SUBROUTINE TO AUTOMATICALLY GENERATE THE CRITICAL H VALUE
C **USED TO DETERMINE THE REQUIRED SIMULATION RUN LENGTH

SUBROUTINE RNKSEL( NO, K, PSTAR, H)
COMMON/RSTOL/TOLF, HTOLF, NSIGO,AERR, RERR, ITMAX
COMMON/RSCON/PI ,TOLZ,BIGM
TOLF = .E-6
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AERR = l.E-8
NSIGD = 5
RERR = l.E-8
I TMAX = 500
PI = 3.1415926535
TOLZ = 1.E-20
BIGM= 1.E20
H = HO(NO,K,PSTAR,IFAULT)
RETURN
END
FUNCTION~ HO(NNO,KK,PPSTAR, IFAULT)
EXTERNAL GFUNC
COMMON/RSTOL/TOLF,HTOLF, NSIGD,AERR,RERR, ITMAX
COMMON/RSCON/PI ,TOLZ,BIGM
COMMON/RSTDST/NO,DF,K,KM1,CNORMpXPNT,A,B, PSTAR,HTEMP
DIMENSION WK(30),PAR(l),H(l)
DATA NDIM/l/
NO =NNO
K =KK
PSTAR = PPSTAR
HO = -BIGM
IFAULT 0
OF =NO -1

KMi K -1
XPNT (DF + 1.0)12.0
CNORM =GAMMA(XPNT)/( GAMMA(O.5-DF)-SQRT( PI*DF)
HTOLF TOLF/2.O
CALL MDSTI(HTOLF,DF,B, IER)
IF (IER .NE. 0) THEN

IFAULT = IER + 1000
RETURN

END IF
A = -8
H(l) =0.0
CALL ZSCNT(GFUNC,NSIGD,NDIM, ITMAX, PAR,H, FNORM,WK, IER)
HO = H4(l)
IF (IER .NE. 0) THEN
IFAULT = 2000 + IER
END IF
RETURN
END
SUBROUTINE GFUNC(H,G,NDIM,PAR)
DIMENSION H(NDIM),G(NDIM), PARC 1)
COMMON/RSTOL/TOLF, HTOLF, NSIGD, AERR, RERR,ITMAX
COMMON/RSCON/Pi.*TOLZ.BIGM
COMMON/RSTDST/NO, OF, K,KM1 ,CNORM. XPNT, AB, PSTAR, HTEMP
EXTERNAL SUMMND
HTEMP = H4(l)
GTEMP = DCADRE(SUMMND,A,B,AERR,RERR,ERROR, IER)
IF (IER.GE.100) THEN
IFAULT = 3000 + IER
WRITE (9 100) IFAULT

100 FORMAT (I ***ERROR IN DCADRE =',14,' ~'
STOP
END IF
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GC1) G TEMP - PSTAR
RETURN
END
FUNCT ION SUMMND( T)
COMION/RSTOL/TOLF,HTOLF,NSIGD,AERR,RERR, ITMAX
COMMON/RSCON/P I, TOLZ, B IGM
COMMON/RSTDST/NO, OF, K,KM1 ,CNORM, XPNT, A, B,PSTAR, HTEMP
Fl CN0RM*( (1.0 +~ T*T/DF)**(-XPNT)
X =T + HTEMP
CALL MDTD( ABS(X), OF, TAILS, IER)
IF (IER .GT. 0) THEN

IFAULT = 4000 + IER
WRITE (9,100) IFAULT

100 FORMAT (' ***ERROR IN MDTD =',14,1 *I

END IF
F2 = 0.5 + SIGN(O.5,X)*(1.0 TAILS)
SUMMND =Fl*( F2**KM1
RE TURN
END
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C INTRODUCTION14

C * THE SPECTRAL METHOD DEVELOPED BY HEIDELBERGER AND WELCH
C IS USED TO ESTIMATE THE VARIANCE OF THE SAMPLE MEAN
C **PROCEDURE USES THE ESTIMATE OF THE SPECTRUM
C AT ZERO FREQUENCY

PROGRAM WELCH(TTY,OUTPUT,TAPE5=TTYTAPE6=TTY,TAPE7,TAPE8,TAPE9)
DIMENSION DATAC 1000),RC500),PERIODC500),XM(6),TEMP(6),B(6,7)

$,ANOVA(16).VARBC21),FJC500),IWK(300),WKC300),V(1000,6),VCV(21)
S,NBR(6) ALFA(2),IJOBC2),INDC11),XYB(6,5),A(1000,6)
DOUBLE PRECISION DSEED,P(500)
COMPLEX TRANS( 500)
DSEED =2003.D0
TOALV =0.0
TOTALZ =0.0

KOUNT 0

C **DO 25 REPLICATIONS OF TEST USING 100 DATA POINTS

NREP =25
100 NDATA 100

KOUNT KOUNT + 1
U =50.0
SD =30.
NHDATA = NDATA/2
NQDATA = NHDATA/2
WRITE(9,*)'DSEED ='DSEED
WRITE(9,*) NQDATA =

1 ,NQDATA

C USE IMSL ROUTINE TO GENERATE NORMAL 10,I) VARJATES

CALL GGNML( OSEED, NDATA, R)

C **GENERATE TEST SAMPLE WITH MEAN OF U AND STANDARD
C **DEVIATION OF SD

DO 5 J=1,NDATA
DATA(J) =(R(J)*SD + U)

5 CONTINUE
TSUM = 0.0
VSUM = 0.0

C CALCULATE THE VARIANCE OF THE TEST SAMPLE USING THE
C **CLASSICAL METHOD

DO 10 I=1,NDATA
TSUM = TSUM + DATA( I)

10 CONTINUE
AVG = TSUM/NDATA
DO 20 1=1,NDATA

VSUM = VSUM + (CDATA(I)-AVG)**2)
20 CONTINUE
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CLASSy VSUM/(NDATA-1)

C **USE IMSL ROUTINE FFTRC TO COMPUTE THE COMPLEX
C CONJUGATE OF THE FAST FOURIER TRANSFORM

CALL FFTRC(DATA,NDATA,TRANS, IWK,WK)
MINM = NHDATA + 1
DO 15 L=2,MMM
K =L - 1

C **COMPUTE PERIODOGRAM FROM FAST FOURIER TRANSFORM OF
C DATA (TRANS)

PER IOD(K)=(CABS(TRANS(L))**2)/NDATA
15 CONTINUE

DO 30 KL=1,NQDATA
KI( 2*KL
JJ =KK-1

C *~STABILIZE THE VARIANCE OF PERIODOGRAM BY AVERAGING
C~ OVER ADJACENT VALUES AND TAKING NATURAL LOG

SMOTH=((PERIOD(JJ)+PERIOD(KK))/2.0)
FJ(KL)=ALOG(SMOTH) + .270

30 CONTINUE
DO 50 1=1,NQDATA

A(1,1) =I
A(1,2) 1*1'
A(1,3) 1 **3
A(1,4) 1 **4
A(1,5) 1 **5
AC 1,6) =FJ(I)

50 CONTINUE
M= 5
lB =6
IND(l) =0
IND(2) =0
IND(3) =0
IND(4) =0
IND(5) =0
IJOBM1 = 0
IJOB(2) = 1
ALFA~l) = .05
ALFA(2) = .05
NRDIM = 1000

C **IMSI ROUTINE TO DO FORWARD STEPWISE REGRESSION OF
C **DATA. USED TO SEE WHICH VARIABLES ARE IN MODEL

CALL RLSEPIA,NQDATA,M NRDIMALFA, IJOB, IND,ANOVAXVB, IB,VARB, IER)
WRITE(9,*) RISEP IER ='IER

-AL
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WRITE(9,*)'RSQR FOR RLSEP FIT',ANOVA(11)
WRITE(9,*)'RLSEP RESULTS'
DO 55 1=1,6

WRITE(9,*)I,XYB( 1,2)
55 CONTINUE

J =O
DO 2000 1=1,5

IF (XYB(I,2) .NE. 0)THEN
J = J+ 1
DO 2100 LL =1,NQDATA

V(LL,J) =LL**I
2100 CONTINUE

END IF
2000 CONTINUE

IF(J .EQ. O)THEN
ZERO = EXP(XYB(6,2))

WRITE(9,*)'PERIODOGRAM IS A CONSTANT'
WRITE(9,*) ,U =',U,'SD =',SD

WRITE(9,*)'SPECTRUM AT ZERO FREQ =',ZERO
GO TO 200

END IF
J = J+ 1
DO 2200 1 1,NQDATA

V(I,J) =FJ(I)
2200 CONTINUE

NVAR = J
NBR(l) = NYAR
NBR(2) = NQDATA
NBR(3) = NQDATA
NBR(4) = 1
NBR(5) = 1
NBR(6) = 1

C *( MSL ROUTINE TO PERFORM REQUIRED PRECONDITION)NG
C **OF DATA PRIOR TO USING RLMUL

CALL BECOVM(V,NRDIM,NBR TEMP,XM,VCV, IER)
WRITE(9,*)'BECOVM IER = ,IER
IVAR =NVAR - 1
ALPHA =0.05

C **IMSL ROUTINE FOR STANDARD MULTIPLE LINEAR REGRESSION
C **SUPPLIES AS OUTPUTS THE VALUES OF RESIDUAL MEAN
C **SQUARE AND THE ESTIMATED STANDARD ERROR OF
C* THE INTERCEPT. REQUIRED TO CALCULATE THE UPPER

C *"LEFT ELEMENT OF (X'X)-1 MATRIX

CALL RLMUL(VCV.XM,NQDATA, IVAR,ALPHA,ANOVA,B, IB,VARB,IER)
DO 60 1 = 1 NVAR

WRITE(9,*)'RLMUL COEFF',I,' = '.8(1,1)
60 CONTINUE

WRITE(9,*)'BOSE = ',B(NVAR,LI),'ANOVA8 =',ANOVA(S)
UPLEF = ((NVAR,4)**2)/ANOVA(S)

WRITE(9,*)'ANOVAl1 =',ANOVA(11)
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WRITE(9 *)'U ='U'SD =',SD
WRITE(9:*) UPLEHT = ',UPLEFT
ADJUST = (.645UPLEFT)/2.0
COME = EXP(-ADJUST)
ZERO = CONE-(EXPCBCNVAR.1f)
WRITE(9 *)UPLEFT,CONE.ZERO

200 WRITE(9,*)SCLASSV DURING KOUNT' ,CLASSV,I(OUNT

C **AVERAGE THE MEASURED VARIANCE BY CLASSICAL AND SPECTRAL

C ~*METHOD OVER THE 25 RUNS AND PRINT RESULTS

TOTALV = TOTALV + CLASSV
TOTALZ = TOTALZ + ZERO
IF (KOUNT .LT. NREP)GO TO 100
AVGSD =TOTALV/NREP
AVGZ =TOTALZ/NREP
WRITE(9,*)'AVGSD=',AVGSD,'AVGZ-',AVGZ
STOP
END
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C ** THIS PROGRAM IS A SLAM SIMULATION USED TO MODEL A SERIAL
C ** QUEUE REPAIR FACILITY. THE NUMBER OF REPAIR STATIONS
C ** IS SET BY THE VARIABLE NSTA. THE ARRIVAL RATE AND
C** SERVICE RATE ARE SET BY ARIVAL AND SERVIC RESPECTIVELY

C ** THE STEADY STATE PERFORMANCE MEASURE FOR COMPARING
C ** THE ALTERNATIVE CONFIGURATIONS IS CALCULATED BY THE
C ** INTEGRATED MULTIPLE RANKING PROCEDURE DEVELOPED BY
C ** J WILSON AND T DICKINSON AT THE UNIVERSITY OF TEXAS

C ** THE CODE WRITTEN STARTING AT SUBROUTINE NQUE MY BE LIFTED
C ** AND USED AS A MULTIPLE RANKING PROCEDURE FOR ANY DISCRETE
C ** EVENT SIMULATION WRITTEN USING SLAM

C ** IT IS POSSIBLE WITH MINOR MODIFICATION TO USE THIS PROCEDURE
C ** ON A SIMULAION UTILIZING ANOTHER LANGUAGE

PROGRAM MAIN(INPUT,OUTPUT, TAPE5=INPUT, TAPE6=OUTPUT, TAPE7,TAPE8)
COMMON QSET(5000)
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW, II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW, XX(100)
2,ARIVAL,SERVIC,NSTRM,KOUNT,NNSIZE,ALPHA,NSTA,KKK,LENROW,NREP, IEXP

NNSET = 5000
NCRDR = 5
NPRNT = 6
NTAPE = 7
NSTRM = 3
KOUNT = 0
ARIVAL = 2.0
SERVIC = 1.0
LENROW = 100
NREP = 16
NSIZE = 1
ALPHA = .1
NSTA = 1
CALL SLAM
STOP
END

C * SLAM SUBROUTINE TO SET INITAL CONDITIONS FOR THE SIMULATION

SUBROUTINE INTLC
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW, II,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXTTNOW,XX(100)
2,ARIVAL,SERVIC,NSTRMKOUNT,N,NSIZE,ALPHA,NSTAKKK,LENROWNREP, IEXP
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C
C**** SET UP INITIAL CONDITIONS FOR MODEL
C
C**** TELLER STATUS
C

DO 5 I=1,NSTA
XX(I) = 0.0

5 CONTINUE
C
C
C
C** INITIALIZE KKK FOR EACH RUN

KKK( = 0
N= 1
IF(MOD(NNRUN,16) .NE. O)THEN

IMUL = NNRUN/16
IEXP = IMUL + 1
KOUNT = NNRUN - (IMUL*16)

ELSE
KOUNT = 16
IEXP = NNRUN/16

END IF
IF (KOUNT(.EQ.1)THEN

WRITE(6) EXPERIMENT NUMBER ='.IEXP
END IF

C
C**** SET UP ATTRIBUTES OF FIRST ARRIVING XACT
C

TNA = EXPON(ARIVAL,NSTRM)
C
C ARRIVAL TIME

ATRIB(l) = TNOW + TNA
C
C SERVICE TIME

ATRIB(2) = EXPON(SERVICNSTRM)
C
C SERIAL NUMBER

ATRIB(3) = N
C
C*** SHOW NEXT SERVICE FACILITY TO VISIT
C
C

ATRIB(4) = 1
C
C
C
C**** POST ENTRY ON EVENT CALENDAR WITH EVENT CODE =1, DELAY =TNA
C

CALL SCHDL( 1,TNA,ATRIB)
RETURN
END
SUBROUTINE EVENT( ICODE)

C
C**** INVOKE APPROPRIATE EVENT PROCESSING ROUTINE
C



149

GO TO (1O,20,30),ICODE
C
C ARRIVAL EVENT

10 CALL ARYL
RETURN

C
C END OF SERVICE EVENT

20 CALL ENDSV
RETURN

C
C
C DATA EVENT

30 CALL NQUE
RETURN
END

C

C SLAM SUBROUTINE TO SCHEDULE ARRIVALS TO NEXT WORK STATION
C **INCLUDES SCHEDULING NEW ARRIVALS TO THE SYSTEM

C
SUBROUTINE ARVL
COMMON/SCOMl/ ATRIBC100),DDC100),DDL(100),DTNOW, I ,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXTTNOW,XX(100)
2,ARIVAL,SERVICNSTRM,KOUNT,N,NSIZE,ALPHA,NSTA,KKK,LENROW,NREP, IEXP
DIMENSION BUFFR(7)

C
C**** GENERATE THE NEXT ARRIVAL BEFORE PROCESSING THE CURRENT XACT

IF (ATRIB(I4) .GT. 1) GO TO 5
TNA = EXPON(ARIVAL,NSTRM)
BUFFR(l) = TNOW + TNA
BUFFR(2) = EXPON(SERVIC,NSTRM)
N= N+ 1
BUFFR(3) =N
BUFFR(4) = 1
CALL SCHDL( 1,TNA,BUFFR)

C
C**** DETERMINE DISPOSITION OF CURRENT ARRIVAL
C

5 MMM = ATRISCI.)
C
C CHECK SERVER STATUS

IF (XX(MMM).EQ.1.0) GO TO 10
C
C IF IDLE, GO INTO SERVICE

XX(MNN) 1.0
SVCTIM =ATRIB(2)

C
C POST ENTRY ON EVENT CALENDAR WITH EVENT CODE =2. DELAY =SVCTIM

CALL SCHDL(2,SVCTIM,ATRIB)
RETURN
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'4

C
C IF TELLER IS BUSY, GO INTO QUEUE

10 CALL FILEM(MMM,ATRIB)
RETURN
END

C ** SUBROUTINE TO PROCESS CUSTOMERS AS THEY FINISH SERVICE AT
C ** WORK STATION. IF STATION IS LAST, CALL SUBROUTINE(NQUE) TO
C * COLLECT NECESSARY DATA

SUBROUTINE ENDSV
COMMON/SCOMI/ ATRIBDIOD),DD(100),DDL(100),DTNOW, II,MFA,MSTOP,NCLNR

1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
2,ARIVAL,SERVIC,NSTRM,KOUNT,N,NSIZE,ALPHA,NSTA.KKK,LENROW,NREP, IEXP
DIMENSION BUFFR(7)

C
C**** PROCESS DEPARTING CUSTOMER
C

JJ = ATRIB(4)
IF (ATRIB(4) .GE. NSTA) GO TO 20
ATRIB(4) = ATRIB(L) + 1
ATRIB(2) = EXPON(SERVIC,NSTRM)
CALL SCHDL(1,O.,ATRIB)
GO TO 30

20 ATRIB(5) = TNOW - ATRIB(1)
CALL SCHDL(3,0.,ATRIB)

C
Ce ** DETERMINE DISPOSITION OF SERVER
C
C CHECK THE QUEUE

30 IF (NNQ(JJ) .EQ. 0) GO TO 10
C
C IF NONEMPTY, REMOVE FIRST XACT FROM FILE JJ & PUT INTO SERVICE

CALL RMOVE(1,JJ,BUFFR)
SVCTIM = BUFFR(2)

C
C POST ENTRY ON EVENT CALENDAR WITH EVENT CODE = 2, DELAY SVCTIM

CALL SCHDL(2,SVCTIM,BUFFR)
RETURN

C
C IF QUEUE IS EMPTY, CHANGE TELLER STATUS
10 XX(JJ) = 0.0

RETURN
END

C
C
C

C *4 SUBROUTINE TO COLLECT DATA AND CALL APPROPRIATE SUBROUTINE

__-
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C* WHEN INITIAL SIMULATION RUNS ARE COMPLETE--CALLS SUBROUTINES
C * TO INDUCE NORMALITY(WILK). DETECT AND TRUNCATE INITIAL BIAS
C **(IBSUB), AND CALCULATE REQUIRED SIMULATION RUN LENGTH(MRPSUB)
C **BASED ON THIS RUN LENGTH THE ROUTINE CALCULATES
C **STATISTIC (COMPARE) USED TO RANK ALTERNATIVES

C
C
C

SUBROUTINE NQUE
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW,I I,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOWXX(100)
2,ARIVAL,SERVIC,NSTRM,KOUNT,NNSIZE,ALPHA,NSTA,KKK,LENROW,NREP, IEXP
DIMENSION BUFFR(7),ADD(30000),DATA(16,100),BATCH(10000)

$, DNORNAL( 5000), ARRAYC( 100)

KKK =KKK + 1
IF (IFAULT .EQ. 50) GO TO 1990

IF(KKK .GT. LENROW)GO TO 1
IBDATA = LENROW
DATA(KOUNT,KKK) = -ATRIB(5)
I F( KOUNT. EQ. NREP.AND. KKK. EQ. LENROW)THEN

LLL = 0
CALL SWSUB(DATA,NREP,NSIZE, IFAULT)

IF (NSIZE .GT. 3 .AND. [FAULT .NE. 10)THEN
WRITE(6,*)' PASSED SW TEST BUT NSIZE TOO BIG'
NSIZE = 3

END IF
IF (IFAULT .EQ. 1O)THEN

WRiTrE(6,*)' PROBLEMS NSIZE TOO BIG'
WRITE(6,*)'CONTINUE WITH NSIZE = 3'
NSIZE =3

END IF
DO 1970 1=1,LENROW

DNORMAL( I) = DATA( KOUNT, I)
1970 CONTINUE

CALL IBSUB(DNORMAL,NSIZE,LENROW,ALPHA, ITRUNC, IFAULT
S. BATCH, NUMBAT)

1980 JUNK = ITRUNC*NSIZE
IF (IFAULT *.EQ 50) THEN

WRITE(6,*)'TOO MUCH TRUNCATION'
RETURN

1990 LLL =LLL + 1
IBEX =LENROW + LLL
DNORMAL(IBEX) = -ATRIB(5)
IBDATA = (2.5*JUNK)
IF (IBEX .LT. IBDATA)RETURN
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CALL I BSUB (DNORMAL, NSIZE, IBDATA,ALPHA, ITRUNC
S ,IFAULT, BATCH, NUMBAT)

GO TO 1980
END IF

WRITE(6,2000)ALPHA, IBDATA,JUNK,NSIZE,NUMBAT
2000 FORMAT(//,7X,'BASED ON TYPE I ERROR OF',F6.3,

S ' THE ORIGINAL',16,' DATA POINTS MUST ',/,7X,
$ 'HAVE' 1 4 ' DATA POINTS TRUNCATED TO ELIMINATE IB'

$ ,/,7X, USING A BATCH SIZE OF',IL,' THERE ARE'/
$ : 6' USEABLE BATCHED DATA POINTS FOR FURTHER TESTING')

CALL MRPSUB (NUMBAT,BATCH,NEXTRA. IFAULT)

IF ( IFAULT .EQ. 100) THEN
WRITE(6,*)'

END IF
IF (NEXTRA .EQ. NUMBAT) THEN

TSUM = 0.0
DO 2010 1=1,NUMBAT

TSUM = TSUM + BATCH( I)
2010 CONTINUE

COMPARE = TSUM/NUMBAT
WRITE(6,*)' FINAL COMPARE VALUE =',COMPARE
WRITE(6, 1234)

1234 FORMAT(////)
GO TO 30

END IF
IF(KKK .EQ. IBDATA)RETURN

7 ADD(KKK) = -ATRIB(5)
JJJ = (NEXTRA - NUMBAT)-NSIZE + IBDATA
IF (JJJ .GT. NSAMPLE)NSAMPLE =JJJ

IF(KKK .LT. JJJ)RETURN
C
C

IBEGIN IBDATA + 1
IFIN = IBDATA + NSIZE
NOIF = NEXTRA - NUMBAT
I II = NUMBAT

C
DO 10 I=1,NDIF

TOTAL =0.0
DO 15 J=IBEGIN,IFIN

TOTAL z TOTAL + ADD(J)
15 CONTINUE

C
III + I
BATCH(III) =TOTAL/NSIZE
IBEGIN = IBEGIN + NSIZE
IFIN =IFIN + NSIZE
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10 ONTNUEFINALT = 0.0
DO 20 1 = 1,NEXTRA

FINALT = FINALT + BATCH(I)
20 CONTINUE

COMPARE = FINALT/NEXTRA
ARRAYC( IEXP) = COMPARE
WRITE(6,*)'USING A TOTAL OF',NEXTRA,' BATCHED POINTS'
WRITE(6, *)'A FINAL COMPARE VALUE =',COMPARE
WRITE(6,*)'FINAL NUMBER OF DATA POINTS=',JJJ

WRITE(6, 1234)
IF(IEXP .EQ. 50 .AND. KOUNT .EQ. 16)THEN

DO 25 I=1,IEXP
WRITE(6,*) IARRAYC( I)

25 CONTINUE
WRITE(6,*)' BIGGEST SAMPLE SIZE =',NSANPLE

END IF
MSTOP = -1
RETURN

END IF
30 IF(KKK .EQ. LENROW)MSTOP = -1

RETURN
END

C

C **SUBROUTINE TO DETERMINE REQUIRED BATCH SIZE TO INDUCE
C **NORMALITY IN DATA

C
SUBROUTINE SWSUB(DATA,NREP,NSIZE, IFAULT)

C
C
C SHIAPIRO-WILK( TEST FOR NORMALITY
C

COMMON /ABC/ J,K,SSQ, INDCOL(50),X(200),W
DATA INDCOL/O,0,0,1,3,5,8,11, 15,19,24,29,35.41,48,55,63,71,80.89,9

19,109,120,131,143,155,168,181,195,209,224,239,255,271,288,305,323,
2341, 360, 379, 399, 419, 440,461, 483, 505, 528, 551, 575, 599/
DIMENSION DATA( 16, 100)

C
C INITIALIZE VARIALBLES
C

[FAULT = 0
I PR = 0
NSIZE = 1
N = NREP

C
C
1111 DO 10 I = 1,NREP

SUM = 0.0
DO 20 J = 1,NSIZE

SUM = SUM + DATA(I,J)
20 CONTINUE

AVG =SUM/NSIZE
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XI) =AVG
10 CONTINUE

C
C
C

C SORT DATA POINTS IN ASCENDING ORDER

C
CCALCLATO(NS

C

IF (t.LE.50) J=INDCOL(N)
K=N/2
SUM=0.
SSQ=0.
DO 60 1=1,N

SUM=SUM+X( I)
60 SSQ=SSQ+X( I )X( I)

SSQ= SSQ- SUM*SUM/ N
C
C PRINT ORDERED DATA IF NEEDED
C

IF (IPR.NE.O) GO TO 70
C
C GET W STATISTIC
C

70 CALL TEST(NREP)
C
C
C PRINT CRITICAL VALUES IF NEEDED
C

CALL CRITVAL(N,CRIT)
IF(W .LT. CRITITHEN

IF (NSIZE .EQ. 10)THEN
WRITE(6,*)'BATCH SIZE OF 10 FAILS SHAPIRO-WILK TEST
WRITE(6,*)'TO DETERMINE ADEQUATE VARIANCE MEASURE'
WRITE(6,*)'A LARGER INITIAL SAMPLE IS NEEDED'
IFAULT = 10
RETURN

END IF
NSIZE = NSIZE + 1
GO TO 1111

END IF
WRITE(6,*)IPASSED THE SW TEST WITH NSIZE =',NSIZE
WRITE(6,*)'CALCULATED W=',W,' CRITICAL VALUE =',CRIT

C
190 FORM4AT (I

C
C

RETURN
END
SUBROUTINE TEST(NREP)

C
C THIS SUBROUTINE CALCULATES THE SHAPIRO-WILK W STATISTIC
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C
COMMON /ABC/ J,K,SSQ, INDCOL(5O),X(200),W
COMMON /COEF/ A(625)

C
B=O
N = NREP
DO 10 1=1,K

10 B=B+A(J+I)*(X(N-I+1)-X(I))
W= B*B/ SSQ
RET URN

C
C

END
SUBROUTINE CRITVAL (N,CRIT)

C
C PRINT THE CRITICAL VALUES FOR THE W TEST
C

COMMON /CRIT/ T(50,1)
C

CRIT = T(N,1)
RETURN

C
C

END
BLOCK DATA W
COMMON /COEFI A(200),C(200),D(200), F(25)
COMMON /CRIT/ T(50,1)
DATA A/.7071,.6872,.1677,.6646,.2413,.6431,.2806,.0875,.6233,.3031

1,.1401,.6052,.3164,.1743,.0561,.5888,.3244,.1976,.0947,.5739,.3291
2,.2141,.1224,.0399,.5601,.3315,.2260,.1429,.0695,.5475,.3325,.2347
3,.1586,.0922,.0303,.5359,.3325,.2412,.1707,.1099,.0539,.5251,.3318
4,.2460,.1802,.1240,.0727,.0240,.5150,.3306,.2495,.1878,.1353,.0880
5,.0433,.5056,.3290,.2521,.1939,.1447,.1005,.0593,.0196,.4968,.3273
6, .2540, .1988,. 1524, .1109, .0725, .0359, .4886, .3253, .2553, .2027, .1587
7,.1197,.0837,.0496,.0163,.4808,.3232,.2561,.2059,.1641,.1271,.0932
8,.0612,.0303,.4734,.3211,.2565,.2085,.1686,.1334,.1013,.0711,.0422
9p.0140,.4643,.3185,.2578,.2119,.1736,.1399,.1092,.0804,.0530,.0263
*, .4590, .3156, .2571, .2131,. 1764,. 1443, .1150, .0876, .0618, .0368, .0122
*,.4542,.3126,.2563,.2139,.1787,.1480,.l201,.0941,.0696,.0459,.0228
*,.4493,.3098,.2554,.2145,.1807,.1512,.1245,.0997,.0764,.0539,.0321
*, .0107, .4450. .3069, .2543, .2148, .1822. .1539,. 1283, .1046, .0823, .0610
~,.0403, .0200, .4407, .3043, .2533, .2151, .1836,. 1563, .1316,. 1089, .0876
*,.0672,.0476,.0284,.0094p.4366,.3018,.2522,.2152,.1848,.1584,.1346
*..1128,.0923,.0728,.0540,.0358,.0178,.4328,.2992,.2510,.2151,.1857
*, .1601, .1372, .1162, .0965, .0778, .0598, .0424, .0253, .0084, .4291, .2968
*,.2499, .2150/
DATA C/.1864,.1616,.1395,.1192,.1002,.0822,.065,.0483,.032,.0159,.

14254, .2944, .2487, .2148, .1870,. 1630,. 1415, .1219,. 1036, .0862, .0697,.
20537,.038l,.0227,.0076p.4220,.2921,.2475,.2145,.1874,.1641,.1433,.
31243, .1066, .0899, .0739, .0585, .0435, .0289, .0144, .4188, .2898, .2463,.
42141,.1878o.1651,.1449,.1265,.1093,.0931..0777,.0629,.0485,.0344,.
50206, .0068, .4156, .2876, .2451,.2137,. 1880, .1660,. 1463,. 1284, .1118,.
60961, .0812, .0669, .0530, .0395, .0262, .0131, .4127, .2854, .2439, .2132,.
71882, .1667,. 1475,.1301,. 1140, .0988, .0844, .0706, .0572, .0441, .0314,.
80187,.0062,.4096,.2834,.2427,.2127,.1883,.1673,.1487,.1317,.1160,.
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91013, .0873, .0739, .0610, .0484, .0361, .0239, .0119, .4068, .2813, .2415,.
*2121,.1883,.1678,.1496,.1331o.1179,.1036,.0900,.0770,.0645,.0523,.
*0404,.0287,.0172,.0057,.4040,.2794,.2403,.2116p.1883,.1683,.1505,.
*1344,.1196,.1056,.0924,.0798,.0677o.0559,.0444,.0331,.0220,.010,
*4015,.2774,.2391,.2110,.1881,.1686,.1513,.1356,.1211,.1075,.0947,.
*0824, .0706, .0592, .0481, .0372, .0264, .0158, .0053, .3989, .2755, .2380,.
*2104, .1880,. 1689, .1520,. 1366, .1225, .1092, .0967, .0848, .0733, .0622.
*0515,.0409,.0305,.0203,.0101,.3964,.2737,.2368,.2098,.1878,.1691,.
*1526,. 1376, .1237,. 1108, .0986, .0870, .0759, .0651, .0546, .0444, .0343,.
*0244, .0146, .0049/
DATA D/.394,.2719,.2357,.2091,.1876,.1693,.1531,.1384,.1249,.1123,

1.1004,.0891,.0782,.0677,.0575,.0476,.0379,.0283,.0188,.0094,.3917,
2.2701,.2345,.2085,.1874,.1694,.1535,.1392,.1259,.1136,.1020,.0909,
3.0804, .0701, .0602, .0506, .0411, .0318, .0227, .0136, .0045, .3894, .2684,
4.2334,.2078,.1871,.1695,.1539,.1398,.1269,.1149,.1035,.0927,.0824,
5.0724,.0628,.0534,.0442..0352,.0263,.0175,.0087,.3872,.2667,.2323,
6.2072, .1868,. 1695, .1542,. 1405, .1278,. 1160,. 1049, .0943, .0842, .0745,
7.0651, .0560, .0471, .0383, .0296, .0211, .0126, .0042, .3850, .2651, .2313,
8.2065..1865,.1695,.1545,.1410,.1286,.1170,.1062,.0959,.0860,.0765,
9.0673, .0584, .0497, .0412, .0328, .0245, .0163, .0081, .3830, .2635, .2302,
*.2058, .1862,. 1695, .1548,. 1415, .1293,. 1180, .1073, .0972, .0876, .0783,
*.0694, .0607, .0522, .0439, .0357, .0277, .0197, .0118, .0039, .3808, .2620,
*.2291, .2052, .1859, .1695, .1550, .1t9, .1300,. 1189, .1085, .0986, .0892,
*.0801,.0713,.0628,:0546t.0465,.0385,.0307,.0229,.0153,.0076,.3789,
*.2604,.2281,.2045,.1855,.1693,.1551,.1423,.1306,.1197,.1095,.0998,
*.0906,.0817,.0731, 0648,.0568,.0489,.0411,.0335,.0259,.0185,.0111,
*.0037,.3770,.2589,.2271,.2038,.1851,.1692,.1553,.1427,.1312,.1205,
*.1105,.1010,.0919,.0832,.0748,.0667,.0588,.0511,.0436,.0361,.0288,
*.0215, .0143, .0071/
DATA F/.3751,.2574,.226,.2032,.1847,.1691,.1554,.143,.1317,.1212,.
11113,.1020,.0932,.0846,.0764,.0685,.0608,.0532,.0459,.0386,.03 14,.
20244, .0174, .0104, .0035/

DATA T/0.,0.,.789,.792,.806,.826,.838,.851, .859,.869,.8
*76, .883, .889, .895, .901, .906, .910, .914, .917, .920, .923, .926, .928, .93
*0, .931, .933, .935, .936, .937, .939, .940, .941, .942, .943, .944, .945, .946
*, .947, .948, .949, .950, .951, .951, .952, .953, .953, .954, .954, .955, .955/

C
END
SUBROUTINE QSORT (X,N)

C
C QUICKSORT ALGORITHM.
C

DIMENSION Xci), STACK(13,2)
INTEGER STACK,FIRST
REAL MEDIAN,MED
DATA MAXSTK/13/,M/10/
ITOP=0
F IRST=1
NN=N

10 CONTINUE
IF (NN.GT.M) GO TO 20
CALL SHLSRT (X(FIRST),NN)
IF (ITOP.LE.O) GO TO 130
FIRST=STACK(IrOP, 1)
NN=STACK( ITOP,2)
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ITOP=ITOP-1
GO TO 10

20 CONTINUE
LAST=FIRST+NN-1
Nl=O
N2=0
MEOIAN=MED(XC FIRST),NN)
I WFIRST
I 2=LAST+l

30 CONTINUE
1= 12-1

40 CONTINUE
IF (I.LE.I1) GO TO 80
IF (X(I).LT.MEDIAN) GO TO 50
I11
N2=N2+1
GO TO 40

50 12=1
X( I1)=X( 12)
NW=Nl+l

60 COTINU
60=COTINU
IF CI.GE. 12) GO TO 90
IF (X(I).GT.MEDIAN) GO TO 70
=1+1

NI=N1+1
GO TO 60

70 11=1
X( 12)=X(il)
N2=N2+ 1
GO TO 30

80 X(I1)=MEDIAN
GO TO 100

90 X(12)=MEDIAN
100 CONTINUE

I TOP= ITOP+1
IF (ITOP.GT.MAXSTK) GO TO 120
IF (NI.GT.N2) GO TO 110
STACK( ITOP, 1)=LAST-N2+1
STACK( ITOP,2)=N2
NN=Nl
GO TO 10

110 STACK(ITOP,1)=FIRST
STACK( ITOP,2)=Nl
F IRST=LAST-N2+1
NN=N2
GO TO 10

120 CALL REMARK (24LSTACK OVERFLOW IN QSORT
STOP

130 RETURN
C

END
SUBROUTINE SHLSRT (X,N)

C
C SHELL SORT.
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C
DIMENSION X(l)
M--N

10 CONTINUE
M=M/2
IF (M.EQ.O) GO TO 50
K=N-M
J= 1

20 CONTINUE
I =J

30 CONTINUE
L=M+I
IF (X(I).LE.X(L)) GO TO 40
XK=X( I)
XCI )X(LI)
XC L)=XK
1=1 -M
IF (I.GE.1) GO TO 30

40 CONTINUE
J=J+1
IF (J-K) 20,20,10

50 CONTINUE
RETURN

C
END
FUNCTION MED (X,N)

C FUNCTION TO GET A MEDIAN ESTIMATE OF AN ARRAY.

REAL MED
DIMENSION X(l)
MID=N/2
XF=XC 1)
XM=X( MID)
XL=X(N)
IF (XF.GT.XM) GO TO 10
IF (XM.LT.XL) GO TO 30
IF (XF.LT.XL) GO TO 40
GO TO 20

10 IF (XM.GT.XL) GO TO 30
IF (XF.GT.XL) GO TO 40

20 K=l
GO TO 50

30 K=MID
GO TO 50

40 K=N
50 MED=X(I()

X(K)=X( 1)
RETURN

C
END

C
C
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,***.,*#* ***********.**** END OF SUBROUTINE WILK ******** **

C
C
C
C
C ****THIS IS THE SUBROUTINE THAT CALCULATES TRUNCATION POINT
C ****NEEDED TO ELIMINATE ANY DETECTED INITIAL BIAS
C

SUBROUTINE IBSUB (ONORNAL, NSIZE, LENROW, ALPHA, ITRUNC, IFAULT
$.BATCH,NUMBAT)
DIMENSION BATCH(10000),DNORMAL(5000)

C ******PERFORM SCHRUBEN INITIALIZATION BIAS TEST
C
C
C *****INITIALIZE VARIABLES
C

LENTH = LENROW
OBS LENTH
JUNK = 0
IBEGIN = 1
MPOINT = 0
lEND = NSIZE
ITRUNC = 0
KOUNT = 0

C
C
C
C

75 NUMBAT = OBS/NSIZE
NSTART = IBEGIN
POINTS = FLOAT(NUMBAT)
KOUNT = KOUNT + 1
NFIN = lEND
DO 150 K=1,NUMBAT
BATSUM = 0.0
00 100 I=NSTART,NFIN
BATSUM = BATSUM + DNORMAL(I)

100 CONTINUE
C
C *****COMPUTE MEAN OF EACH BATCH
C

BATCH(K) = BATSUM/NSIZE
NSTART = NSTART + NSIZE
NFIN = NFIN + NSIZE

150 CONTINUE
C
C
C ***COMPUTE SUN OF SAFE BATCH MEANS
C

TOT = 0.0
NHALF = NUMBAT/2
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MID =NHALF + 1
00 200 I=MID,NUMBAT

TOT = TOT + BATCH( I
200 CONTINUE

C
C

C ****CALL TO SUBROUTINE TO CALCULATE VARIANCE BY WELCH PROCEDURE
C

CALL WELCH( BATCH, 14ID, NUMBAT, ZERO)
C

GAMMA = ZERO
C
C
C
C *****INITIALIZE VARIABLES USED DURING
C *****EACH PASS THROUGH THE DATA
C

AMAX = 0.0
CUSUM = 0.0
PMEAN =0.0
AMIN = 0.0
PSUM = 0.0
M4= 0
NEGTIV = 0
POSTIV = 0
TOTAL = 0.0

C
C *****COMPUTE MEAN OF ALL DATA
C

DO 325 1 1,NUMBAT
TOTAL =TOTAL + BATCH( I)

325 CONTINUE
AMEAN = TOTAL/NUMBAT

C
C
C *****TEST FOR INITIALIZATION BIAS
C *****FIND MOST POSITIVE AND NEGATIVE
C *****VALUES OF NORMALIZED CUSUM
C

SQROOT = SQRT( POINTS)
DO 500 1=1,NUMBAT

M4 = 14+1
PSUM =PSUM+BATCH( I)
PMEAN =PSUM/M
CUSUM =AMEAN-PMEAN

C
C ****BLOCK TO CHECK FOR NEGATIVE VALUES OF CUSUM
C *****AND SAVE MOST NEGATIVE VALUE
C

IF(CUSUM .LT. O.O)THEN
NEGTIV = 1
SNEG = (M*CUSUM)/SQROOT
I F(SNEG.LT.AMIN)THEN

AMIN=SNEG
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NEGLOC = M
END IF
GO TO 500

END IF
C
C

STAR = (M*CUSUM)/SQROOT
IF(STAR .GT. AMAX)THEN

POSTIV = I
AMAX = STAR
MPOINT = M

END IF
500 CONTINUE

C
C *****BLOCK TO CHECK IF ONLY POSITIVE
C *****INITIAL BIAS INDICATED
C

IF((NEGTIV .GT. 0) .AND.
+(POSTIV .LT. 1.0))THEN

AMAX = AMIN
MPOINT =NEGLOC
GO TO 501

END IF
C
C *****BLOCK TO CHECK IF OSCILLATION OF
C *****NEGATIVE AND POSITIVE BIAS INDICATED.
C
C *****STANDARDIZE TO UNIT INTERVAL.
C
C ****CHECK USING SAME SCHRUBEN TEST
C *****EXCEPT USING ALPHA/2.
C

IF((NEGTIV ,GT. 0).AND.(POSTIV.GT.O))THEN
TN = FLOAT(NEGLOC)/POINTS
TP = FLOAT(MPOINT)/POINTS
XP=(AMAX**2)/(3*GAMMA*TP*(1-TP))
XN=(AMIN**2)/(3*GAMMA*TN*(1-TN))
DFN =3.
DFD=PO I NTS/2
X =XP
CALL MDFDRE(X,DFN,DFD,P, IER)
PROPOS = 1. - P
X =XN
CALL MDFDRE(X,DFN,DFD,P, IER)
PRONEG = 1.0 - P
HALPHA = ALPHA/2.
IF((PROPOS .AND. PRONEG)

" .LT. HALPHA)THEN
MPOINT=MAXO(MPOINT,NEGLOC)
GO TO 913

END IF
IF((PROPOS .AND. PRONEG)

" .GE. HALPHA)THEN
GO TO 974

END IF
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NEGLOC M
END I F
GO TO 500

END IF
C
C

STAR = (M-CUSUM)/SQROOT
JF(STAR .GT. AMAX)THEN

POSTIV = 1
AMAX = STAR
MPOINT = M

END IF
500 CONTINUE

C
C *****BLOCK TO CHECK IF ONLY POSiTIVE
C *****INITIAL BIAS INDICATED
C

IF((NEGTIV .GT. 0) .AND.
+(POSTIV .LT. 1.0))THEN

AMAX = AMIN
MPOINT =NEGLOC
GO TO 501

END IF
C
C *****BLOCK TO CHECK IF OSCILLATION OF
C *****NEGATIVE AND POSITIVE BIAS INDICATED.
c
C *****STANDARDIZE TO UNIT INTERVAL.
C
C *****CHECK USING SAME SCHRUBEN TEST
C *****EXCEPT USING ALPHA/2.
C

IF((NEGTIV .GT. O).AND. (POSTIV.GT.O) )THEN
TN = FLOAT(NEGLOC)/POINTS
TP = FLOAT(MPOINT)/POINTS
XP=CAMAX*ft2)/(3*GAMMA*TP*( 1-TP))
XN=(AMIN**2)/(3*GAMMA*TN*( 1-TN))
DFN =3.
DFD--PO I NTS/2

CALPO I NT=MXOC MPO NT,NELO)

IF((PROPOS .AND. PRONEG)
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IF(PROPOS .LT. HALPHA)THEN
GO TO 913

ELSE
MPOINT = NEGLOC
GO TO 913

END IF
END IF

C
C ***BLC TO CALCULATE VIA SCHRUBEN
C *****BROWNIAN BRIDGE TEST INDICATION
C ***O INITIAL BIAS OF ONLY ONE SIGN
C

501 T =FLOAT(MPOINT)/POINTS
X=(AMAX**2)/(3.*GAMMA*T*C1.-T))

DFN = 3.
DFD = POINTS/2
CALL MDFDRE(XDFN,DFD,P,IER)
IF(IER .EQ. 129)THEN

WRITE(6,*)'IER ERROR'
STOP

END IF
PROBAB = 1.0 - P
IF(PROBAB .LT. ALPHA)THEN

C *****BLOCK TO OVERRIDE,IF NECESSARY,
C *****TRUCATION POINT TO ALLOW AT LEAST TWO
C ****PASSES TO ELIMINATE INITIAL BIAS
C *****POINT = .25*DATA
C
C
913 CONTINUE

MAXPNT = IFIX(.25*NUMBAT)

*1 ~END IFION

C
C
C *****ITRUNC EQUALS THE TRUNCATION POINT
C

ITRUNC = ITRUNC + MPOINT
C
C ,****BLOCK TO SEE IF THE TEST PROCEDURE HAS
C *****TRUNCATED AN EXCESSIVE AMOUNT OF DATA
C *****(50%) AND STILL NOT ELIMINATED INITIAL BIAS
C

JUNK =ITRUNC*NSIZE
C

IF(JUNK .GT. (O.5*LENTH))THEN
IFAULT = 50
RETURN
END IF

C
C *****CALCULATE NUMBER OF DATA POINTS
C *****LEFT AND RETEST USING ONLY THESE POINTS
C
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OBS = OBS - (MPOINT*NSIZE)
IBEGIN = IBEGIN + (MPOINT*NSIZE)
lEND = IBEGIN + (NSIZE - 1)
GO TO 75

ELSE
C
C
C
C -****SHOW FINAL TRUNCATION POINT
C *-***AND COMPUTED MEAN
C

974 CONTINUE
END IF
IFAULT = 0
RETURN
END

C

********************** END OF IB DETECTION SUBROUTINE *

C
C

C ** SUBROUTINE TO CALCULATE REQUIRED RUN LENGTH OF SIMULATION
C * TO COMPARE ALTERNATIVES--A MULTIPLE RANKING PROCEDURE---
C ** CALCULATIONS BASED ON EXTENTION OF DUDEWICZ-DALAL MRP
C ** TO ADDRESS ANY STATIONARY ARMA(PQ) PROCESS. EXTENTION
C ** OF EXISTING PROCEDURE DONE BY J. R. WILSON AND R. T. DICKINSON
C* UNIVERSITY OF TEXAS 1983

C
C

SUBROUTINE MRPSUB(NUMBATBATCH,NEXTRAIFAULT)
DIMENSION BATCH(10000)

C* THIS IS WHERE THE VALUES OF THE PARAMETERS USED BY THE
C M MULTIPLE RANKING PROCEDURE ARE SET
C ** KPOP--EQUALS THE NUMBER OF ALTERNATIVES UNDER CONSIDERATION
C ** DSTAR--IS THE WIDTH OF THE INDIFFERENCE ZONE
C *e PCS--IS THE DESIRED PROBABILITY OF CORRECT SELECTION

C ** NMAX IS USED TO RECORD THE LARGEST SAMPLE SIZE REQUIRED
C ** DURING THIS EXPERIMENT
C############# INITIALIZE VARIABLES I#########I#####I###

NMAX = 0
DSTAR = 0.1
PCS = .900
KPOP = 3
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C###### ########################################
Ch## CALL SUBROUTINE TO CALCULATE ##h############
C#### DUDEWICZ AND DALAL H VALUE (DNDH) ###########
C
C

CALL RNKSEL(NUMBAT,KPOP, PCS,DNDH)
C
C#####################################################
C
C
C###################################h################

MID = 1
CALL WELCH(BATCH,MID,NUMBAT,ZERO)
VAR = ZERO

CC####################################################
C##### DETERMINE IF LARGER SAMPLE SIZE (NEXTRA) #N#
C##### IS NEEDED BASED ON DUDEWICZ, RAMBERG, AND ###
C##### CHEN PROCEDURE. NEXTRA .GT. NUMBAT ##
C
C

IDDOBS=((VAR*(DNDH**2))/(DSTAR**2))+.999999
NEXTRA = MAXO(NUMBAT,IDDOBS)

IF(NEXTRA .GT. NUMBAT)THEN
IFAULT = 100
RETURN

END IF
C
C
C

NMAX = NEXTRA
WRITE(6,110)PCS,DSTAR,NUMBAT,DNDH,NMAX

110 FORMAT(///,6X,'FOR THIS TEST: PCS =',F4.3,
$1 DSTAR =',F5.2,/,6X,' NUMBAT =',14,' DNDH =',F5.3,
St NMAX =',15)

C
RETURN
END

C

C* SUBROUTINE TO CALCULATE THE CRITICAL DUDEWICZ-
C * DALAL H VALUE NECESSARY TO DETERMINE REQUIRED
C * SIMULATION RUN LENGTH

C
SUBROUTINE RNKSEL(NO,K, PSTAR, H)
COMMON/RSTOL/TOLF,HTOLF,NSIGD,AERR, RERRITMAX
COMMON/RSCON/PI,TOLZBIGM
TOLF = 1.E-6
AERR = .E-8
NSIGD = 5
RERR = 1.E-8
ITMAX = 500
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P1 3.1415926535
TOLZ = I.E-20
SIGM= I.E20
H = HO(NO,K,PSTAR,IFAULT)
RETURN
END
FUNCTION HO(NNO,KK,PPSTAR, IFAULT)
EXTERNAL GFUNC
COMMON/RSTOL/TOLFHTOLF,NSIGD,AERR,RERR, ITMAX
COMMON/RSCON/P I,*TOLZ, B GM
COMMON/RSTOST/NO, DF, K, KMI,CNORM,XPNT, A,B, PSTAR, HTEMP
DIMENSION WK(30),PAR(1),H(1)
DATA NDIM/1/
NO =NNO
K =KK
PSTAR = PPSTAR
HO = -BIGM
IFAULT =0

OF =NO -1

KM K I
XPNT =(OF + 1.0)/2.0
CNORM =GAMMA(XPNT)/( GAMMA(O.5*DF)*SQRT( PI*DF)
HTOLF =TOLF/2.0
CALL MDSTI(HTOLF.DF,B,IER)
IF (IER .NE. 0) THEN

IFAULT = IER + 1000
RETURN

END IF
A = -B
H(l) = 0.0
CALL ZSCNT(GFUNC,NSIGD,ND IN,ITMAX,PAR,H,FNORM,WK, IER)
HO = H(l)
IF (IER .NE. 0) THEN
IFAULT = 2000 + IER
END IF
RETURN
END
SUBROUTINE GFUNC( H,G, ND IM,PAR)
DIMENSION H(NDIM),G(NDIM),PAR(1)
CONMON/ RSTOL/TOLF, HTOLF, NS IGD, AERR, RERR, ITMAX
COMMON/RSCON/P I, TOLZ, B GM
COMMON/RSTOST/NO,DF, K, KM1 ,CNORM,XPNT,A,B, PSTAR, HTENP
EXTERNAL SUMMND
HTEMP = H~l)
GTEMP = DCADREC SUMNND, A, B,AERR, RERR, ERROR, IER)
IF (IER.GE.1OO) THEN
IFAULT = 3000 + IER
WRITE (6 100) IFAULT

100 FORMAT (***ERROR IN DCAORE =',14,'**)
STOP
END IF
G(1) = GTEMP - PSTAR
RETURN
END
FUNCTION SUMMND( T)
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COMMON/RSTOL/TOLF, HTOLF, NS CD, AERR, RERR, ITMAX
COMMON/RSCON/PI ,TOLZ, BIGM
COMMON/RSTDST/NO,DF.,KMI,CNORM,XPNT,A,B,PSTAR,HTEMP
Fl =CNORM*( (1.0 + T*T/DF)**(-XPNT)
X =T + HTEMP
CALL MDTD( ABS(X), OF, TAILS, IER)
IF (IER .GT. 0) THEN

IFAULT = 4~000 + IER
WRITE (6,100) [FAULT

100 FORMAT (' ***ERROR IN MDTD =',14,'**)

END IF
F2 =0.5 + SIGNCO.5,X)*(1.O TAILS)
SUMMND = Fl*( F2**KM1
RETURN
END

C END MRPSUB

C
C
C ****SUBROUTINE WELCH USED TO DETERMINE VARIANCE BY USE OF SPECTRAL

C ****DENSITY AT ZERO FREQUENCY PER ARTICLE BY HEIDELBURGER
C **AND WELCH. THIS SUBROUTINE CALLED BY BOTH IBSUB
C **AND MRPSUB.
C
C
C

SUBROUTINE WELCH (BATCH,MID,NUMBAT,ZERO)
DIMENSION PERIOD(6OO),XM(6), TEMP(6),B(6, 7?

$,ANOVA(16),VARB(21),FJ(300),IWK(3200),WK(3200),V(
3 00,6 ),VCV(

2 1)

S,NBR(6),ALFA(2),IJOB(2),IND(11),XYB(6,5),A(300,6),CHECK(
2 0 0 0 )

DIMENSION BATCH( 10000)
COMPLEX TRANS( 600)

C
C

NUMDAT = NUMBAT - MID + I
INUM = 0
DO 10 1 = MID,NUMBAT

INUM = INUM + 1
CHECK(INUM) = BATCH(I)

10 CONTINUE
NHDATA = NUMDAT/2
NQDATA = NHDATA/2
CALL FFTRC(CHECK,NUMDAT,TRANS, IWK,WK)
MMM = NHDATA + 1
DO 15 L=2,MMM
K=L - 1

PER IOD(K)=(CABS( TRANS( L) )**2)/NUMDAT
15 CONTINUE

DO 30 KL=1,NQDATA
KK =2*KL
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JJ =KK-)
SMOTH=((PER(OD(JJ I+PER(OO(KKI )/2.O)
FJ(KL)=ALOG(SMOTH) + .270

30 CONTINUE
DO 50 I=1,NQDATA

A(1,1) = I
A(1,2) =1*1
A(1,3) I**3

A(1,4I) 1 **4
A(1,5) 1 **5

A(1,6) = FJ(I)
50 CONTINUE

M= 5
lB =6
IND(1) = 0
IND(2) = 0
IND(3) = 0
IND(i4) = 0
IND(5) = 0
IJOB(l) = 0
IJOB(2) = 1
ALFA~i) = .05
ALFA(2) = .05
NRDIM = 300
CALL RLSEP(A,NQDATA,14,NRDIM,ALFA, iJOB, IND,ANOVA,XYB, IB,VARB, IER)
J =0
DO 2000 1=1,5

IF (XYB(I,2) .NE. 0)THEN
J =J + I
DO 2100 LL =1,NQDATA

V(LL.J) =LL**I
2100 CONTINUE

END IF
2000 CONTINUE

IF(J .EQ. 0)THEN
ZERO = EXP(XYB(6,2))
RETURN
ELSE

J = J + 1
DO 2200 I1 1,NQDATA

V(I,J) FJ(I)
2200 CONTINUE

NVAR = J
NBR(1) = NVAR
NBR(2) = NQDATA
NBR(3) = NQDATA
NBRM4 = 1
NBR(5) = 1
NBR(6) = 1
CALL BECOVM(V,NRDIM,NBR,TEMP,XM,VCV, IER)
WAR =NVAR - 1
ALPHA =0.05
CALL RLMUL(VCV,XM,NQDATA, IVAR,ALPHA,ANOVA,B,IS, VARS. IER)
UPLEFT = (B(NVAR,4)*-2)/ANOVAI8)
ADJUST = (.6I45*UPLEFT)/2.0
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CONE = EXP(-ADJUST)
ZERO = CONE*(EXP(B(NVAR,1f))
END IF
RETURN

END
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C * THIS PROGRAM IS SLAM SIMULATION USED TO MODEL AN (S,S)
C INVENTORY SYSTEM FOR 100 YEARS. THE WEEKLY INVENTORY

C * HOLDING COSTS, SHORTAGE COSTS, AND ORDERING COSTS ARE

C * SET BY THE USER (DEFAULT VALUES ARE INCLUDED).
C* THE MODELWILL INITIALIZE THE SYSTEM IN YEAR 1 AT AN

C * INVENTORY LEVEL OF BIG S

C * THE STEADY STAE PERFOMANCE MEASURE FOR COMPARING THE

C ** ALTERNATIVE REORDER POINT (LITTLES) AND THE ORDER UP

C * TO LEVEL (IBIGS) AGAINST OTHERS IS CALCULATED BY THE

C ** INTEGRATED MULTIPLE RANKING PROCEDURE DEVELOPED BY

C * J WILSON AND T DICKINSON AT THE UNIVERSITY OF TEXAS

C THE CODE WRITTEN STARTING AT SUBROUTINE NQUE MAY BE LIFTED

C AND USED AS A MULTIPLE RANKING PROCEDURE FOR ANY DISCRETE

C EVENT SIMULATION WRITEEN USING SLAM

C * IT IS POSSIBLE WITH MINOR MODIFCATION TO USE THIS PROCEDURE

C ON A SIMULATION UTILIZING ANOTHER LANGUAGE

PROGRAM MAIN(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE7
oTAPE8)

COMMON QSET(5000)
COMMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW, II,MFA,MSTOP,NCLNR

1,NCRDR, NPRNT.NNRUNNNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
2,NSTRMKOUNT,NSIZE,ALPHA,LITTLES, IBIGS,KKK,LENROW,NREP, IEXP

NNSET = 5000
NCRDR = 5
NPRNT = 6
NTAPE = 7
NSTRM = 7
KOUNT = 0
LITTLES = 2
IBIGS = 6
LENROW = 100
NREP = 16
NSIZE = 1
ALPHA = .1
CALL SLAM
STOP
END

C * SLAM SUBROUTINE TO SET INITAL CONDITIONS FOR THE SIMULATION

SUBROUTINE INTLC
COMIMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW, II,MFA,MSTOP.NCLNR

INCROR.NPRNT,NNRUN,NNSET,NTAPE,SS(100),SSL(100),TNEXT,TNOW,XX(100)
2,NSTRM,KOUNT,NSIZE,ALPHA,LITTLES, IBIGS,KKK,LENROW,NREP, IEXP
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COMMON/STOCK/IDMD(52),BUFFR(7), INVHAND,TOTALC,HC,OC,SC
C
C**** SET UP INITIAL CONDITIONS FOR MODEL
C

C
DO 5 I1152

IDMD(I) =0
5 CONTINUE

TOTALC = 0

C **SET VALUES FOR ORDERING,HOLDING AND SHORTAGE
HC = 0.1
OC = 0.5
SC = 1.0

C **INITIIALIZE INVENTORY ON HAND TO IBIGS

JNYHAND = IBIGS

C
C
C
C**** INITIALIZE KKK FOR EACH RUN

KKK = 0

IF(MOD(NNRUN,16) .NE. O)THEN
IMUL = NNRUN/16
IEXP = IMUL + I
KOUNT = NNRUN - (IMUL*16)

ELSE
KOUNT = 16
IEXP =NNRUN/16

END IF
IF (KOUNT .EQ.1)THEN

WRITE(6,-il' EXPERIMENT NUMBER =',IEXP
END IF

C
C
C
C
C**** POST ENTRY ON EVENT CALENDAR WITH EVENT CODE =1, DELAY =00.0
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C
CALL SCHDL(1,O.D,ATRIB)
RETURN
END

C * SUBROUTINE TO SCHEDULE PERIODIC INVENTORY REVIEWS
C ** AND COLLECTION OF YEARLY COSTS BY THE ANALYSIS ROUTINE

SUBROUTINE EVENT(ICODE)
C
C**** INVOKE APPROPRIATE EVENT PROCESSING ROUTINE
C

GO TO (1O,20),ICODE
C

C ARRIVAL EVENT
10 CALL INVENT

RETURN
C
C DATA EVENT

20 CALL NQUE
RETURN
END

C

C e* SLAM SUBROUTINE TO CALCULATE YEAR INVENTORY COST

C
SUBROUTINE INVENT
COMON/SCOM1/ ATRIB(100),DD(100),DDL(100),DTNOW, IIMFA,NSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPESS(100),SSL(100).TNEXT,TNOW,XX(100)
2,NSTRM,KOUNT,NSIZE,ALPHA,LITTLES, IBIGS,KKK,LENROW,NREP, IEXP
COMMON/STOCK/IDMD(52),BUFFR(7),INVHAND,TOTALC,HC,OCSC
DIMENSION OCOST(52),BCOST(52),CWEEK(52),CCOST(52)

CALL SCHDL(1,O.1,ATRIB)

DO 10 1=1 52
OCOST(I) = 0.0
CCOST(I) = 0.0
BCOST(I) = 0.0
CWEEK(I) = 0.0
IDMD(I) = 0

10 CONTINUE

XX(1) = 0.0
TOTALC = 0.0

.L.
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C **FIGURE WEEKLY COSTS

DO 20 11=1,52

C **DETERMINE DEMAND

40 IDMD(II) = UNFRM(O.,7.,NSTRM)

IF(IDMD(II) .EQ. 7)GO TO 40
C **UPDATA INVENTORY LEFT

INVHAND = INVHAND - IDMD(II)

C **IF CANNOT MEET DEMAND CHARGE SHORTAGE COST

IF(INVHAND .LT. O)THEN
BCOST(II) = (-INVHAND)*SC

ELSE
C **IF NOT SHORTAGE COST CHARGE HOLDING COST

CCOST(II) = INVHAND*HC

END IF

C **DETERMINE THE ORDER NEEDED BASED ON THIS WEEKS TRANSACTIONS

IF(INVHAND .LT. LITTLES)THEN
OCOST(II) = OC
INVHAND = IBIGS

END IF

C TOTAL WEEKLY COSTS

CWEEK( II) = OCOST(11I)+BCOST(11I)+CCOST( II)
TOTALC = TOTALC + CWEEK( II)

20 CONTINUE

C THE SLAM VARIABLE XX(1) IS USED TO PASS THE YEARLY COST
C INFORMATION TO THE ANALYSIS ROUTINE
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XX(1) = TOTALC
MMM = MMM + 1
CALL SCHDL(2,O.O,ATRIB)
RETURN
END

C
C
C

C SUBROUTINE TO COLLECT DATA AND CALL APPROPRIATE SUBROUTINE
C **WHEN INITIAL SIMULATION RUNS ARE CONPLLTE--CALLS SUBROUTINES
C* TO INDUCE NORMALITY(WILK), DETECT AND TRUNCATE INITIAL BIAS

C *~(ISSUB), AND CALCULATE REQUIRED SIMULATION RUN LENGTH(MRPSUB)
C **BASED ON THIS RUN LENGTH THE ROUTINE CALCULATES
C STATISTIC (COMPARE) USED TO RANK ALTERNATIVES

C
C
C

SUBROUTINE NQUE
COMMON/SCON1/ ATRIB(100),DD(100),DDL(100),DTNOW,1I ,MFA,MSTOP,NCLNR
1,NCRDR,NPRNT,NNRUN,NNSET,NTAPE,SS(10O),SSL(10O),TNEXT,TNOW,>.X(1OO)
2,NSTRM,KOUNT,NSIZE,ALPHA,LITTLES, IBIGS,I(KK,LENROW,NREP, IEXP
DIMENSION BUFFR(7),ADD( 15000),DATA( 16, 100),BATCH(5000)

S. DNORMAL( 5000),*ARRAYC( 100)

KKK =KKK + I
IF CIFAULT .EQ. 50) GO TO 1990

IF(KKK .GT. LENROW)GO TO 7
IBDATA = LENROW
DATA(KOUNT,KKK) = XX(1)
I F(KIOUNT. EQ.NREP.AND. KKK. EQ. LENROW)THEN

LLL = 0
CALL SWSUB(DATA,NREP,NSIZE, IFAULT)

IF (NSIZE .GT. 3 .AND. IFAULT .NE. 10)THEN
WRITE(6,*)' PASSED SW TEST BUT NSIZE TOO BIG'
NSIZE = 3

END IF
IF (IFAULT .EQ. 10)THEN

WRITE(6 4)' PROBLEMS NSIZE TO, BIG'
WRITE(6,*)'CONTINUE WITH NSIZL 3'
NSIZE = 3

END IF
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