
MONTEREY CA B J MACLENNAN SEP 83 NPS52-83-8i2

UNCLASI FIED FG1/

smmhmmhhmhhhhu
mosommmmo END

4-

* 11111.0 ILE2

- 11118*III,, I1 '

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

pi

NPS52-83-012

CT)NAVAL POSTGRADUATE SCHOOL
Monterey, California

OT17 1983

RELATIONAL PROGRAMMING

Bruce J. MacLennan

QI.. September 1983

I Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

NAVAL POSTGRADUATE SCHOOLMonterey, California

Rear Admiral J. J. Ekelund D. A. Schrady
Superintendent Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School with funds provided
by the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

8CE J. M
Associate Professor of

Computer Science

Reviewed by:

44tL(1L)?% /i&A
DAVID K. HSIAO, Chairman 'VIELIAM M. TOLLES
Department of Computer Science Dean of Research

I.t

L ...

-UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (WeDoes, ore td) ______________

REPORT DOCUMENTATION PAGE _____________________

1. REPORT MNGMER rGOVT ACCESSION NO. & RECIPIENT*S CATALOG NUMBER11

4. TITLE (mud auueo 5. TYPE Of REPORT A PE1111OD COVERED

Relational Progranmiing Technical Report
6. PERFORMING ORG. REPORT MNGER

7 . AUTHOP(q) S. CONTRAT ORt SAWNUM116WOJ

Bruce J. MacLennan

I& PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMNIT PROJECT. TANK
ARA 4 WORK UNIT NUM9ERS

Naval Postgraduate School 61152N: RROOO-01-100
Monterey, CA 93943 II0001483WR30104

It- CONTROLLING OFFICE NAMIE AND ADDRESS 12. REPORT OATEK

Chief of Naval Research September 1983
Arlington, VA 22217 1?. MNMefirFPACES

14. MONITORING AGENCY NAME G AOORIESS(I dlIfteoust mwew Ceoelonlu4 018) IL. SECURITY CLASS. (*I We. repel)

Uncl assi f ied

W4 DISTRIUTION STATEMENT (Of amo Rope")
5LUHCI"1 CAONDIINAI6

Approved for public release; distribution unlimited

17. DISTRIfUTION STATEMENT (ofth Gaort a~g.ted to Stock 2. It E091oe.t *4= ARbl.,Q

IS. SUPPLEMENTARY NOTES

19. KEKYWORDS (Centhuo- t,,.od I..em u duipb le h

Relational programmning, functional programuiing, relations, relational
algebra, relational calculus, applicative language, logic programuing,
coenbinator, very-high-level language.

21k ABSTRACT (Cinctgau. en o si OF or.. WAe eek 1b)

>)' Thls report describes \elational Proramuing, a style of programuing in
which entire relations are Manipulated as data, and in which programs are
represented as relations. The use of relational operators on both data and
programs is illustrated, and implementation issues are discussed.

DD 'JA1N17 1473 EDITION OF INOV 6 SUOBLET9 UNCLASSIFIED
S/PI 0102. LF- 014- 6601 SECURITY CLASSIFICATION OP THIS PAGE jWhM Dste RMM

7. o . .

* RELATIONAL PROGRAMMING

Bnxue J. Mac Lenna~n

Computer Science Department

Naval Postgraduate School

Monterey, CA 93940

41

CONTENTS

1. Introduction 1

2. Cluses, and Relations 2

2.1 basic concepts. 2

2.2 relational descriptions. 2

2.3 converse. 3

2.4 arrow diagrams 3

2.5 tables. 4

3. Domains 4

4. Functions. 5

4.1 basic concepts. 5

4.2 higher level functions 7

- - - S 0 ; A.0J- - .-,- , --* .' -- A. .".-_- :....... .i...:

5. Boolean Operations . 9

5.1 logical connectives 9

5.2 empty class 10

5.3 Cartesian product 11

5.4 subset relation 11

8. Limiting and Restriction 11

7. Relative Product and Composition 13

8. Structures 15

8.1 initial and terminal members 15

8.2 higher level operations 17

9. Sequences 19

9.1 ordinal couples 19

9.2 catenation and consing 20

9.3 alternative definitions of sequences 22

10. Binary Operations 23

10. 1 basic concepts 23

10.2 operations on binary operations 24

11. Combinators 26

' - li -

u~~~~~~~~~~~~~~~~~~~~.-.. •°•-.o i . °.. =.... ,.. ."....... o.

11 paralleling of relations 26

11.2 conditional union 26

11.3 combinatory logic 27

11.4 Curried functions 29

12. Records 30

12.1 basic operations. 30

12.2 functional records. 31

12.3 relational databases 33

13. Ancestral Relations. 35

13. 1 definition 35

13.2 applications 37

*13.3 iteration. 37

14. Arrays. 38

14.1 definition. and basic operations........

14.2 relation to sequences. 40

14.3 other array operations 42

15. Isomorphic and Homomorphic Images 43

15.1 images 43

15.2 images of functional structures 4-4

15.3 isomorphism and the structure function 46

16. Data Structures . 47

16.1 definition 47

16.2 operations on data structures. 48

17. Reducing Structures 52

17.1 basic concepts 52

17.2 reduction of arrays. 53

17.3 reduction of sequences 54

18. Examples 55

18. 1 payroll 55

18.2 check issuing. 57

18.3 pseudo-natural notation. 57

19. Implementation. 58

19.1 introduction 58

19.2 computability. 59

19.3 extensional representation 5

19.4 intensional representations. 60

i v -

U.. ~~... .*....... . . .

. *.. "- . .. - "-' ." -" "'? . .- •". .

-19.5 elimlnati4g polymorpism .r.p.............. . 60

19.6 extensional operators 62

19.7 lntensional operators 64

20. Conclusion 64

01. References . 67

a.-o

Avil Iit Cd

'a,

.,,

--

Acc' son For

a,.,I.k

fupy.... ..

_Distri , :t icn /.
,. " Avail. bility Cde3

,'.:Avail aind/or
'-'Diet Slr'e l

ioA''

RELATIONAL PROGRAMMING

L. Introduction

In this report' we discuss relatiorunal programming, i.e. a style of programming in

which entire relations are manipulated rather than individual data. This is analogous

to functional programming [Backus78], wherein entire functions are the values mani-

*pulated by the operators. We will see that relational programming subsumes functional

programming because every function is also a relation. It is appropriate at this point

to discuss why we have chosen to investigate relational programming2 .

As we have noted, relational programming subsumes functional programming;

hence, anything that can be done with functional programming can be done with rela-

tional programming. Furthermore, relational programming has many of the advan-

tages of functional programming: for instance, the ability to derive and manipulate

programs by algebraic manipulation. A well developed algebra of relations dates back

to Boole's original work and has been extensively studied since then. Although rela-

tions are more general than functions, their laws are often simpler. For instance,

('.g)- = g-1'-1 is true for all relations, but true only for functions that are one-to-

one. Also, relational programming more directly supports non-linear data structures,

such as trees and graphs, than does functional programming. In relational program-

ming the basic data values are themselves relations, whereas in functional program-

ming there is a separate class of objects (lists) used for data structures. One final rca-

son for investigating relational programming is that it provides a possible paradigm f:-;

utilizing associative and active memories. As a teaser for what is to come, i%,e proscr

the following example of a relational program. We will take a text T, represented as ar-

array of words (i.e., T(i) is the i-th word), and generate a frequency table F so t.11.

F(w) is the number of occurences of word w in T. Now we will see (§4) that all T (w) is

the set of all indices of the word w. If we let size(C) be the cardinality of a set C, then

1. The work reported herein was supported by the Office of Naval Research under contract number N0001A-
82-WR-20162, and by the Foundation Research Program of the Naval Postgraduate School r,.th fund]s
provided by the Chief of Naval Research.

2. The reader can find a shorter introduction to relational programming in [lHacLennan83]. That report ;s a
revision and extension of [MacLennan81a] and [MacLennan8lb].

--

-,--.5. " .- '.0f '" '' .:./-%-" % .-. '..-.... ',...... / . -' - ,. .- , . - . ' -' . • ..

RELATIONAL PROGRAMMING

the number of indices (occurences) of w is just size[all T (w)]. Therefore we can write

F = size.(all T) (17).

2. Cimes md BeaiUms

2.1 b1ic concepts

Our relational calculus will deal with three sorts of things: individuals, classes and

relations. These can best be illustrated by example. If 'z' is the name of an individual

and 'C' is the name of a class (set), then 'zEC' means that the individual denoted by

'z' is a member of the class denoted by 'C' (i.e., that z has property C). Thus

'Arstotla F-m ' would indicate that Aristotle is a man, and '2Eeven' would mean that 2

is an even number. Some authors (e.g., Russell and Whitehead) use 'zcP' for 'xE:P'.

The symbol 'E' and its alternate 'V' are abbreviations for '1art', which is the Greek word

for 'is'.

If 'z' and 'y' are names of individuals and 'R' is the name of a relation, then 'z R V'

means that z bears the relation R to V. For example,

Aristotle student Plato

means that Aristotle is a student of Plato. Also, '2 < 3' means that 2 bears the less-

than relation to 3. A relation is just a set of pairs. Therefore, if we use z :V to denote

the basic pir-making operation, then zRy if and only if z :y E R. The notation that we

have introduced above will be extended to classes of classes, classes of relations, rela-

tions among classes, relations among relations, etc.

2.2 rdUemna dmscptimis

There are several ways to describe classes and relations. One of the easiest is to list

its elements, for example:
"4

S = 1,35.7

R = 1:a, 2:b, 3:c, 4:d

-2-

RELATIONAL PROGRAMMING

This is called an extensional description of the class. Obvir sly, this is only possible if

-the class or relation is finite and only practical if it's small. Therefore we also have

V.* intensional descriptions of classes and relations.

If S(z) is a sentence involving 'x', then a class description is an expression of the
a,

form 'jz IS(z)j'. This denotes the class of all individuals, a, for which S(a) is true, i.e.,

a C X Is(X)3 -0 S(a)

Similarly, if S(z,y) is a sentence involving 'z' and 'y', then 'jzry I S(z,y);' is a relation

description which describes the relation that holds between a and b whenever S(a,b)

is true, i.e.,

a j:VIS(zU~b :, S(a,b)

To illustrate this notation we will define the converse of a relation.

. 3 as n enr

The relation R - 1 is called the converse of R, i.e. zR-1y * yjRz. Using our notation

for descriptions we can define R -1 = x:y I VRz. As an example of a relation among

relations, we define 'inv' as the relation that holds between converses:

s invr * rs 1 . Hence, inv = js:r Ir=s-1 . Some examples of converses are

parent-I = child and !- =

EXERCISES: Prove the following properties of the converse:

(r-1)1 =r

rinvs * sinvr

Inv-1 = inv

2.4 arrow diagram

Relations can be portrayed by arrow diagrams (Haase diagramns). In such a

diagram there is a node for each individual related by the relation and an arrow from x

to V whenever zRij. For instance,

IV.

-3

-awn_

'; ',";,-:, '-- X .--.:.-'---. . .-.. :.-- ,:,--,..-.. . . --..-- , . .. -: .. . -... -. .

.I.

RELATIONAL PROGRAMMING

ad;-" R =8 -L

represents the relation R such that bRa, cRb, dRb, eRd, eRe, bRe and -xRy for all

other cases:

R = b:a, c:b, d:b, e:d, e:e, b:e

. The effect of the converse operator is to reverse all of the arrows. Hence, R -1 is

diagrammed:

aC
rR-1 =14

2.5 tablm

Relations can often be viewed as tables. For instance, the relation R of the previous

section can be shown as the table in Figure 1.

R
b a
c b

*d b
e d
e e
b e

Figure 1. Relation Viewed as a Table

Of course, it makes no difference in what order we write the rows of the table.

*" The converse of a relation is obtained by simply exchanging the columns of the table

(see Figure 2). Of course, classes are represented by one column tables. For instance

the class C of primes less than ten is shown in Figure 3.

,.. 3. Domains

We often need to talk of the individuals that can occur on the right or left of a rela-

-4-

'Si

i - -A .J -.

RELATIONAL PROGRAMMING

R-1

ab

b c
b d
d e
e e

Figure a Converse of a Relation

tion. We say that z is a eft-member of R whenever there is a y such that zRy.

zx rn R 'b Eii(ZRY)

For instance, if 'x parent y' means that x is a parent of y, then 'Socrates Lm parent'

means that Socrates is a parent. Right-member and member are defined analogously:

yjRm R -* 3z(zRy)

zMmR * zLmRVzRmR

EXERCISES: Prove that these satisfy the identities:

zLmR ' zRmR-1

iRmR , yLmR-1

'o 4. FbncU s

4L1 i ad eneepts

-' Functions and relations are closely related. Consider the successor relation, 'succ':

z succ y - x+1 = y. Thus, z succ y says that x's successor is V. The corresponding

arrow diagram is:

1 2 3 4 5 ...

and the corresponding table is shown in Figure 4. since 1 succ 2, 2 succ 3, etc. Notice

that, in this case, for each left member z there is a unique right member y such that

z succ y. This y can be written using Whitehead and Russell's [Whitehead70] definite

description:

-5-

-2.
I " ' " " - " ' , . ' . '" " ' ' ' ' L '' ' ' ' ' " " ' " . - -" " • -",

RELATIONAL PROGRAMMING

%C

F gure &. Set Viewed as a Table

I (Z succ Y)

This can be read: the y such that r's successor is i. A more convenient way to write

this is succ(z). In general, R(x) means 'the unique y/ such that x R y', i.e.

R(z) = &y(zRy). When no confusion will result we write Rx instead of R(z). This nota-

tion is left-associative, that is, Fkry = (FP)y. When we need to make the application

operation explicit we write R@x (R at z or R applied to z) for Rx.

The functional notation is meaningful only if there is a unique y such that xRy/, i.e.

zRij A xRz : y=z. That is, there is only one arrow leading from x. When this condi-

tion is satisfied for all z we call R right univalent, symbolized by 'run':

R crun *b Q'C1J[xRiNJA ZRx 2y= z]

The right univalent relations are more commonly called functions. In a left univalent

relation there is exactly one arrow leading to each node. Consider the 'absolute

-. reciprocal' relation: xRly <: y = I 1/x 1. This is diagrammed in Figure 5. Since

Rcrun it is meaningful to write R(z), so we observe R(-3) = 1/3. We can find Rz by

following the arrow pointing from z or by looking down the left column for x and taking

the corresponding element from the right column.

The concepts of left univalence and bi-univalence are defined analogously:

R Elun 4 Wxziz[yRz AzRx Dy=Z]

Rebun to, RElun A RErun

Bi-univalent relations are also called bijections and one-one mappings.

.---

, - -- S I - i .

RELATIONAL PROGRAMMING

~~1 2

.44.5

Figure 4. Function Viewed as a Table

4.2 higher kI.e. functions

Of course, the converse of a function is not necessarily a function. The 'sin' relation,

defined so that z sin y means that y is the sine of z, is right univalent but not left

univalent. Hence, we can write either y=sinz or z sin y, but can express the arcsine

! only by y sin - ' z. The notation sin - ' y is meaningless. Since f (z) is meaningful only

1 when f Erun we will be careful to write jf (z) only when we have previously shown (or it

is obvious) that f Erun and z Lm f.

The fact that F(z) may be meaningless makes it convenient to use several other

relations derived from F. One of these is the image. If F is any relation and C is a

class then img F C is the set of all y such that zFij for some z in C, i.e.,

imgF = I a = yl r(Z17 A zC)

The tabular interpretation of imgFC is shown in Figure 6. We see that, if F is any func-

* tion, then imgFS is the image of the class S under that function. Notice that the

-' operation imgFS is defined for all relations F and classes S, regardless of whether

FErun or the members of S are left members of F. For these reasons, it is generally

* safer to write imgFC than ft.

The image operation is also useful for working with relations. For example,

img.inv(<)S is the set of all numbers that are less than some element of S. The rever-

sal of the sense of the ordering occurs because img(>)S is the set of all y such that for

some zES, x>y. Thus img.inv(<)S is the set of all z such that for some yES. x<y.

Related ideas are the image and converse image of an individual. If R is a relation,

then c = unimgRz means that c is the class of individuals related to z. This class is

-7-

RELATIONAL PROGRAMMING

-1 1

1 1/2
-2 1/2
3 1/3
-3 1/3

Figure 5. Right-Univalent Relation Viewed as Table

called the unit image of z, and is defined unimg R z = y I zRy . Alternately we can

define unimgRz = imgR z I.

The converse idea is that of the iverse unit image of y:

unimg.inv R y = frIzRyI

Like the image, unimgR and unimg.invR are defined for all R and all arguments.

We can also apply the unit image operations to general relations. Therefore

unims.inv(<)z is the set of all numbers less than z. This is sufficiently common that

we define all=unimg.inv. Then all<z is the set of all numbers less than x.

Next consider the function all(=):

all(=)z = yIyz

Hence, all=z is just the unit class containing z, which we will abbreviate this un z.

Conversely, if C is a single element class, then un-1 C selects the unique member of

that class: un-1C = Lz(zEC). It is thus a uniqueness filter. We will write this as 0 C

where 0 = un- . The expression OC can be read 'the C.'

EXERCISES: Show the following:

unimg R- 1 = unimg.invR

unimg.invR - 1 = unimrgR

unimg R V = img R(un V)

It is often convenient to have names for domain extracting functions, e.g., dom R is

the class of left members of R. These are simply defined using images:

!.

RELATIONAL PROGRAMMING

oir

.C

FIgure 6. Image Operation Applied to Tables

dom = all Lm

dom.inv = all Rm

mem = all Mm

Of course the left members (domain) and right members (domain-inverse) of a relation

can be obtained by taking its left and right columns, respectively, and deleting dupli-

cates (Figure 7).

R

* / _

dom R dom.inv R

FIgure7. Domain Extracting Operators

5 DM Opwamum

a. Iqle cauneuM

We will next investigate ways of combining relations and classes. The simplest
,

methods are just abstractions of the logical connectives used between propositions:

Therefore, we define the intersection, union, negation and difference of classes and

relations:

zC(S n T) e zES AzET

zc(S u T) es z S V xET

4 zE(-S) -.(z 5)

-9-

i ,.......,.- .-%,,.... ,..-;..... ,. .<. -.,..... .;,.,... . ..::

,,, € ~~~~~~~~~~~~~~~~~~~~~.,,.,..... -, : . -... ***.-. i..-;,.....- r.i

RELATIONAL PROGRAMMING

zE(S\T) o zESA -(zET)

zE(SDT) S DxET

As an example of the use of these operations, consider our previous definition of Mm:

ziMmR *- zLmRVzRmR

Using the union operation this can be written Mm = Lm u Rm. Similarly, bun = lun n

run. The logical connectives satisfy the usual properties of a Boolean algebra (e.g.,

DeMorgan's theorem).

As an example of the use of these operations, we will define the closed iWterual func-
-.4-

tion, [m..n], which is the set of integers m, m+ 1..... n. It is just:

[m...] = all;wim n allevi

where ! and are the relations on integers. In general we will allow [n. .n] for any

types on which a strict order is defined.

EXERCISES: Define the analogous notations (in..n), [ro..n), and (m..n].

5.2 empty clm

It is useful to have a name for the empty class: 0 = S\S. for any set S. Hence,

Z E is always false. This is most often used for stating properties of relations and

classes. For instance, S n T = 0 means that classes S and T have no members in

common.

" The universal class is also useful: 0 = -0. For instance, S u T = 0 means that

every individual is either a member of S or of T. Notice that the class of the right

members of a relation is just the image of the universe under that relation, i.e.,

dom.inv R = imgRO

dom R = imgR- 1O

mem R = img(R u R-1)0

EXERCISES: Prove these properties of the domain functions.
'

~-10-

_-, -..

RELATIONAL PROGRAMMING

5.3 Cartman product

It is often useful to have the maximum relation that can hold between two classes,

i.e., the Cartesian product of those classes. This is defined:

SxT = x:y izES AETJ

EXERCISES: Show the Cartesian product satisfies the following properties:

(sxt)-1 = txs

dom(sxt) = s

dom.inv(sxt) = t

mem(sxt) = s u t

sx(t nu) =(sxt)n)(sxu)

sx(t U U) = (sxt) U (sxu)sx(t U) =(sxt) \ (S x -)
Ssx(t \U) = (sxt) \ (s x-u)

ooj ~sx(t u) = (s x ,t) u sxu)

: sx = Oxs = =

sxt = (sxO) n (OXt)

5.4 subset rdatioa

Finally, we define the subclass operation:

ScT * Vz(xS :E:T)

EXERCISES: Show the following are true:

sat (sxu)c(txu)

set AuCv D (sxu)c(txv)

6 Limiting and Ihatriction

It is often useful to limit the left or right domain of a relation. Consider the relation

-11-

'I
", '",.* " " '" "''.* " ,e' '"' '"" ". " ' " " " " " " " . ..

I i ~ b ~ l.*,,. '. -. . . , - ' '''' .
' ;.: " -- / - : " . ""

RELATIONAL PROGRAMMING

n s - z, which means that z is an arcsine of y. We cannot write z = sin-ly because

Ssin - ' is not right univalent (i.e. it is not a function). If we restrict y, the argument of

sin, to the range -7r/4 to ir/4, then there is a unique z such that y sin- I z. Let S be

the class of reals in the range -i/ 4 to ir/ 4:

S = (-ir/4..ir/ 4] = all>(-ir/4) n all-(7/4)

* then we will write S-asin for the sine function with its arguments restricted to S. This

*. function is bi-univalent, so it is invertible. If we call the inverse of this restricted sine

Arcsin:

Arcsin = (S-.sin)- '

then it is perfectly meaningful to write Arcsin z (if z Rm sin). The left-restriction

operation is defined:

- z(S-'R)y Z rESA^ 'y

In other words,

y =(S -R)x . y=RzAzES

* The right-restriction is defined analogously:

xz(R -S) Ry A/ y ES

These notations can be combined to restrict both domains:

z(S-*R-T)y g. xESJAxRyAy/ET

The combination s-,Ru-s is so common that a special notation is provided for it:

Rts = s-'R -s. For instance, <T'P, where zEP * z>0, is the less-than relation res-

tricted to positive numbers. Notice that z succ y if and only if y is the successor of z.

Therefore we can define the sequence of integers (m,m+1 . n.. n) by restricting the

succ relation:

[m..n] = all;-,,i -. succ ,- alLrn

See Figure 8 for a tabular representation of the domain restricting operations.

-12-

" ". % . ., , *. '. *- %, Y ! , , '. " ' . .°% ". ", ". -, - - - " - - . "." "'• "'

RELATIONAL PROGRAMMING

CR

fJZ2 41 W 2 K112

Figure 8. Domain Restricting Operations

EXERCISES: Show that the restriction operations can be defined in terms of inter-

section and Cartesian product:

s-ar-t =rn (Sxt)

ris = r n (sxs)

-. s-4 = r nsxo)

r.-s = r n (Oxs)

EXERCISES: Show that other properties satisfied by these operations are:

*'. sxt = s-40x04-t

dom(s +r) = s n dom(r)

dom.inv(rT-s) = s n dom.inv(r)

dom(r.-s) = img(r-I)s

dom.inv(s-or) = img r s

(s-r)-1 = (r 1)4-s

" (s_,r,_t)-1 = t-4(r-1)4-s

= (r-)ts

r,-s nr-t = r -(s n t)

r4-s Jt.r-t = r*--(s Ut)

*(rxO)-s = rxs

7. Relative Product and Composition

If zsony is the relation ' is a son of y' and xbrothery is the relation 'x is a brother

of I/', then the relative product, 'son brother', is the relation 'a son of a brother of'.

-13-
-%

S", . .,. -* =. - , • . - , *.,. "..

RELATIONAL PROGRAMMING

'More formally,

RIS = Jz:z I Ey(z Ry AySz)j

' We will also write S.R and SoR for R IS. The reason for this is that if F and G are func-

tions it is easy to see that F. G is the composition of these functions:

z=F.Gz ezF.Gz

,., zGIFz

,e:* 3y (X Qj A Fz)
t.,

*s- z =F(Gic)

* Hence, F.Gz = Flar).

It is convenient to have a notation for relative products of a relation with itself. For

instance, the 'grandparent' relation can be written 'parent lparent', which we abbrevi-

ate parent'. In general,

R ° = (=)t(mem R)

SR 1 = R

= (R)R = RI(R")

EXERCISES: Show these obvious properties of the relative product:

(r.s).t = r. (s.t)

r.(s ut) = r.s ur,t

(r us).t = r.t u s.t

r.(s nt) c r.s nr.t

* (r ns).t c rJ.t ns.t

"(r.s) <o 3(dom.invr n doms)

where 3 r means 3z [z Er]

-14-

"' " " -" ''' " -'" -'" '" .-" "-'" -"-"t . " " " -. ..--". ..".- " ". . i.. - .

7..-.7 -. _ .7 -7. . ,

4, RELATIONAL PROGRAMMING

(r-')-= r

(r.s)-= (s-).(r-')

7 M rr = rm+n (m^n:!O)

(r')" = ,""' (m.n 0, o,-Ebun)

rTm.r r +n (rEbun)

r.r - 1 = r-l.r = r e (rEbun)

dom(r.s) c dom r

dom.inv(r.s) c dom.inv s

lm = Rmlinv

Rm = Ln inv

r. (€xo) = (Oxo).r = Ox0

r. Id = Id.r = r where Id = () (the identity function)

a. Structures

We have previously seen the use of arrow diagrams to represent a relation. For

instance, the diagram in Figure 9 represents the relation R shown in Figure 10.

h

a
d

FIgure 9. Arrow Diagram for a Relation

8.1 initial and terminal members

Now, notice that the domain (left) and codomain (right) members of R are:

domR = a,b,c,d,e,f,gj

dom.invR = gfedih

We define the initial members of R to be those members which are not pointed at by

an arrow. Therefore, the initial members of R are the left members that are not right

-15-

l . . •... " - -.- . " -.. "-..."..............."']'-

RELATIONAL PROGRAMMING

a
b f
c e
dd
d e
e 1
f f
f i

f
_gh

Ftgure 10. Tabular Representation of a Structure

members, that is. the domain members that are not codomain members.

init R = dom(R) \ dom.inv(R) = |a, b, cl

The t&7niial members of a relation are defined analogously:

term R = dom.inv(R) \ dom(R) = jh, ij

When a relation is used to represent a data structure, the above functions become

important.

For instance, a sequence is represented by a relation with the structure:

S = aL S aS Uw-I Cn

In this case init S is the unit class containing the head (first element) of the relation

(i.e., a1) and term S is the unit class containing the last element of the sequence (i.e.,

a). Similarly, (-.init S)-S is the sequence with its first element deleted:

CL3 a an-, an

Hence, the following common sequence manipulation functions can be defined:

a S = 0.init S first

wS = 0.term S last

OS = (-.init S)-s final

-18-

• •)• o '. * . . _... - . . -."- " "- " ' " " " " " . . . "" ''" " '' " " ' " '" "" .-.. .."".".. . .•.. . . ."."."."'

RELATIONAL PROGRAMMING

A S = S-(-.term S) initial

EXERCISES: Prove the following properties of these relations:

a = ..inv

w = a.mrnv

A.inv = inv.f)

fl.inv = inv.A

More operations on sequences are discussed in the next section.

As another example of the use of 'init' and 'term', consider the relation, represent-

ing a tree, shown in Figure 11.

.--

T=J

Figure 11. Relation Representing a Tree

Then, aT is 'a', the root of the tree, and term T is [d, h i, f, j, k?, the leaves of the tree.

The result is analogous for forests. q

r" n

F= VW

Figure 12. Relation Representing a Forest

Given the relation in Figure 12, the set of roots is init F and the set of leaves is term F:

init F = JaigJ

term F = Jc,e,f,g,h,j,k,I,m,n,t,u,v,wJ

* 8.2 higher leve operatioun

The set of nodes whose parent is n is just imgFn. For instance, the set of nodes

directly descended from a root is

-17-

..

RELATIONAL PROGRAMMING

(img F).init F = b,hj,o,p,rj

The set of nodes that point to leaves is

(img F-1).term F = lb,d,a,i,op,s,rl

These operations can be used for obtaining the maximum and minimum of sets.

Suppose < is the less-than relation on integers and S is some set of integers, say

S3.5,9[. Then

,.'. 3 5 9

Now note that init(<tS) = 3j and term(<tS) = 9. Hence, if S is any set of

numbers, then the minimum and maximum of this set are:

min S = a(<tS)

max S =w<

Notice that we can select the maximum and minimum based on any relation that is a

series (i.e., transitive, irreflexive and connected). If R is any series then a(RtS) is the
'f..

minimum (relative to R) and w(RtS) is the maximum.

EXERCISES: Show that the following are properties of these operations:

init r = term(r - 1)

term r = init(r -T1)

init c dom

term C dom.inv

,.:..init rts) = term r-ts

init(r u s) c init r u init s
a.. ,;.init r n init s r- init(r)f s)

term(r us) C termr uterms

termr n terms c term(r ns)

init(sxt) = s\t

:, -18-

ft': , . . . -'. t."-'. . " f.- ., .-.... ft . .f, f . .,. .. f

RELATIONAL PROGRAMMING

term(sxt) = init(sxt) - l = init(txs) = t\s

9L Sequene.s

9. 1 ordinal couples

In this section we will continue the discussion of sequences begun in the last section.

" We saw that it was easy to define the following operations on sequences:

aS = 9.initS

w S = O.termS

AS = S-(,-.term S)

n S = (-.init S)-.S

This provides us with functions for taking sequences apart. We will define the ordiinal

couple or pair, which puts them together. If x and y are two objects, then '(x,y)' is

the relation that relates z and y but no other objects.

X y

That is, u(z,y)v if and only if u=x and V=v. This is formally defined by:

x,y = Ju:v I u=x Av=y = un(x) x un(y) = un(z:y)

Notice that x:y = 0(z,y). Observe also that a(z,y) = x and co(x,y) = y. Finally,

xRy *:,(z-Ty)CR.

Explicit relations can be described by a combination of the pair and union opera-

tions. For example, we have the identity:

X 1:Y1, X2:Y....X,:Y, (ZI-VI) U (X2,YL) L) U XY.

We will define a convenient notation for sequences of two or more elements:

X 1, x 2 ..) = Ix1:x x2 :x Xn -:x

Therefore the sequence (ab,c,d,e) is just

- -19-

I........... " .: "r '_ -°. ,.
4 . . S '** **~~,- . .A 'A . "

RELATIONAL PROGRAMMING

a b c d e

: 9.2 cLamtimn and canxan

If s and t are sequences then we can define an operation 's-t, which is the catena-

tion of s and t. To form this catenation we must hook the last element of s to the first

element of t:
;, ---- - - . o - .- -. x --

S 1 Sm - t fn = Si Sm t1 t.

Therefore z[s-t] if and only if z s V, or x t Y, or =zc s and y=a t. Hence,

S-t = sU(ws,at)ut

The catenation operation is only defined for sequences, which are required to have at

least two elements (since an irreflexive relation with less than two elements is the

empty relation). This issue is discussed in the following section.

How then do we add a single element to the left or right of a sequence? The 'cons

left' and 'cons right' operations are easy to define:

X CI S1 S, X S l s

z cls = (z, as) us

scr y = su(s,y)

If S is a sequence and zMmS, then Sz is the successor of z in S and S-z is the

predecessor of z in S (if these exist).

Sz = successor of z in S

S-Iz = predecessor of z in S

These are convenient ways of moving around within a sequence. Also, note that if s is a

subsequence of t then s t. Some additional identities are:

-20-

' . _,- ,.. , %, .. . ,, . , , _

RELATIONAL PROGRAMMING

img a (SxT) = S

* irng w(SxT) = T

EXERCISES: Show that if s is a sequence, then;

a(x CIS) = Z

0l(Z CIS) = s

cw(s cryt) =y

A(s cry) = s

(cs)cl(fls) = s, if sizes >2

(As)cr(cws) = s, if sizes >2

Also, if s is a sequence, show that s U (cw s, a s) is a ring formed by joining the last ele-

ment of s to the first element.

If s is a sequence, then s-1 is the reverse of s. Hence, revs =s-'. Show the follow-

ing:

as =~_

__As (0-1_

Ds (A= 1_

(m cis)-' s- cr x

(s crzx)-1 x zcs- 1

* zz . . . Z,) 1 (zn, T2 -TOx

-21-

RELATIONAL PROGRAMMING

"rzl:yl, z 2:Y2 ZR:Y.i -l = Y:,2:-2. Y.:Z

0.3 altemnalve dlmW ia d sequence

%i We will state the formal definition of a sequence: a relation is a sequence if it is a

, connected irreflexive bijection. That is,

sequence connex n irreft n bun

s Eirrefi e soC s - 1

sEconnex * doms = inits u doms - 1 A doms - 1 = terms u doms

Although the preceding definition of sequences is very convenient, it has a number of

limitations. For example, the operations discussed above are only defined for

sequences with two or more elements, since an irrefexive relation cannot relate less

' than two elements. In particular, (2) = 0. Otie solution to this problem is to use a stan-

dard "end marker" for all sequences, say 'EOF'. For example, the sequence 1, 3, 5

would be represented by the relation (1,3,5,EOF). A one element sequence containing 3

4, would be represented by (3,EOF) and an empty sequence by (EOF) = () = 0. This

*" definition has some curious properties of its own. For example, the relation

(3,3,EOF) = J3:3, 3:EOFJ has no initial members and in fact is not a sequence (since it's

not irreflexive). Of course this objection also applies to our original definition of

sequences.

A different solution is to extend the definition of sequences so as to allow length one

sequences by making the relation reflexive.

s u (mem s)

Sj S 2 S3 Sn

The one element sequence is then: 0
SO= (so. so)

-22-

r I I , " I . . ' . ' ' _ " . . . ,

RELATIONAL PROGRAMMING

This still does not solve the problem with repeating elements in sequences, however.

An alternative definition of sequences is based directly on the pair-making opera-

lion. Define <> to be some distinguished value 'nil'. Then define

<z 1 ,X 2 1 > = z 1 :<Xz ..., zn>

We can see that

<=1, X2, z,> =ZlZ2:...:Z.:nil

(We have assumed ':' is right-associative in the above equation.) This is essentially the

way lists are represented in LISP. A more comprehensive solution to these problems is

discussed in Chapter 16, Data Structures.

10. Bnary Opeations

10.1 biase concepts

In this section we will discuss our approach to binary operations - that is, to func-

tions with two arguments and one result. We have already seen how unary functions

are connected to relations. For instance, we can write the fact that y is the sine of x

by either z sinly or y = sin x. Since we only deal with binary relations, we will have to

have a new convention for handling binary functions. This convention is: we will corn-

'A' bine the two arguments of an operation into a pair. For instance, we can define a rela-

tion 'sum' such that (xy) sum z if and only if z is the sum of x and y. More formally:

sum = ja:z I 3zy[a=(xy)Az=x+yj]

We can use our function application convention as usual, e.g.,

z = sum(z,i) e (zY) sum z

Now, it would be inconvenient to have to invent names, such as 'sum', for each opera-

tion, such as '+'. Hence, we will adopt a systematic convention for making such names:

placing the conventional infix symbol for the operation in parentheses or other brack-

ets. For instance,

-23-

II li IIi" ''11.... . ' ""- 'r ' - ,;'" = " " '"" ... "....."......"..."."..........-.........,.. "• -"

RElATIONAL PROGRAMMING

" (,v)+] =[+](z,) *D z = +Yj

In fact, if iT is any infix operation symbol, we will explicitly define its meaning by

"=r [ir](z,y)

This notation will permit us to manipulate in a more regular fashion the usual arith-

metic operations (+, -, x, /) as well as the relational operations (e.g. n, u, -,, , x).

We omit the brackets when the meaning is clear without them. Fcr instance, if S is a

class of classes, then

img n (SxS)

is the class of all pairwise intersections of members of S.

10.2 qoutiom on binry apraUon

It is often convenient to be able to generate simple relations from a binary opera-

tion. Following Russell and Whitehead [Whitehead70], let 7r represent any binary opera-

tion. We define:

i! (iri) = Iz:z Izi- = zl

(zir) = y:z I zy =X I

Hence, z(-)l *D I = z-1, therefore (-1) is the predecessor function. Similarly,

z(1+)y *: = 1+z, therefore (1+) and (+1) are both the successor function. These

* can be used as functions: (-1)z = z-i and (+ 1)z = z+1.

This convention makes it very easy to form more complex functions. For instance, if

" we want f (z) = sin(/z) thenwe can define f = sin.(1/). To see that this works:

f (z) = [sin.(l/)]z

= sin[(i/)z]

= sin[1/z

Again, we omit the brackets when the meaning is clear from context or can be made

clear by spacing. Furthermore, we adopt the convention that if two binary operators

. -24-

.* '*** .* * ...

|*.v > -..

. ~ -. . --, - . . - - . ° o . . - . - .

RELATIONAL PROGRAMMING

occur together, then the first is taken in its unary sense and the second in its binary

sense. For example. sxut means [sx]ut, not sx[ut]. When a binary operator is used

in its unary sense, it will be taken to be very binding; that is, f.xu means f[zu], not

Y .Z)u.

Now observe the action of the (x,) and (,y) functions:

(,Y)= (XY)

Therefore, for any binary operation 7T (except ',') we can define

IT- = [I-].(,)

Let's see why this works:

(z -)Y = [(I-).(=,)]y

= (i-)[(,),]

= z -)YJ

The form (7ry)z is analogous. In general, if f is a binary function, then f. (x,) and

f. (.y) are the "partially instantiated" unary functions. This is the effect of Curry and

Feys 'B' combinator [Curry58].

Since S- is the reverse of a sequence, 7r.inv is the reverse form of a. operation.

For instance, -. inv is the reverse subtract operation:

-. inv(zy) = -(inv(x,))

= -(Y,.)

= I-

Thus -. inv can be read 'subtract from' and /.inv can be read 'divide into'. This is

Curry and Feys 'C' combinator (see the next section).

-25-

)- -....

-* . , . . . ," , . .". . - ', , . . . ' , . -. . - ,. .• - .

,.-,o . '

RELATIONAL PROGRAMMING

11. Ciblnwtom

11.1 imafelig d relations

In this section we will discuss several powerful operations for manipulating relations.

These are called combimators because of their similarity to the combinators of Curry

and Feys [Curry5B].

The first combinator we will discuss is the paraleling of relations, RiIS, which is

defined:

(u,v)RI1S(x,V) **. uRx A vSij

So, if f and g are functions, [f Jig](z,y) = [f (z), g (y)]. Hence, f Jig is the element-

wise combination of f and g. For example, if we want f (z,y) = sin z + cos y, we can

write f = +.(sinhlcos) since

f (zy) = [+.(sinllcos)](z,y)

= +[(sinJlcos)(z,y)]

= +[sin z, cosy]

= sin z + cos y

11.2 conditimnal union

The restriction operations allow us to define the very useful conditionaL union or

overlay operation (MacLennan75], R;S = R u -. domR -' S. In other words, the value

of (R;S)z is Rz if zcdomR, and Sz otherwise. This has many uses. For example, if f

is a partial function, then f ;Id is the extension of f to the identity function. That is,

(f ;Id)z is rz if that is defined and z otherwise.

The conditional union is useful for defining conditional-like structures. For example

p -f1 ;g is a function that applies f if p of its argument is true, and applies g otherwise:

fX if pz
-E ;]xz if -pz

(This assumes p -domf. Why?) Therefore we have the equivalent of Backus' conditional

-26-

I

o,..--. ..-.. -.. ,...

RELATIONAL PROGRAMMING

combining form p -f ;g.

The overlay operation is also useful for updating functions representing tables. For

example (imz);T is a table just like T except that Ti is nowx, regardless of whether Ti

was defined or not. Similarly, S;T is a table in which all the entries of S have been

added to T, possibly replacing corresponding elements already there.

11.3 amnbinatory laic

One of the simplest combinators described by Curry and Feys is the elementary can-

ceUator, K defined so that Kx is a function such that (Kx)y z for all y. That is, Kgen-

erates constant functions. Since KT is a relation that relates z to everything, we can

define it: K = (Ox).un, where un = -1 is the unit class generator. To see that this

works, note that

Xr =Ox. unz = Ox(unx)

and therefore that

is(KrWv ** u[ox(unx)]v

*s uE:OAvEcun(x) *s v=z

Therefore, for arbitrary u, (Kx)u = x.

Another combinator is the elementzry dupliator, W. defined so that

(Wf)z = f (z,z). If we define A x = (x,x) then it is easy to see that Wf is just f. A. For

instance, x.A is the squaring function:

x.txn = x(An) =x(n,n) = nxn =n2

It should be clear that Backus' [f .9] combining form is just our (f 1g).A, since

(fI1g).AX = flig (x,z) = (X- gz)

Since this combination is so common we will adopt a special notation for it:

fg = (fil).A. Hence, (f-g)x = (fz,gx)

-27-

'° i ;" 'i .,,- ,- ' -''a-', .,<*.*,_. . . :(.. '. -'. . ., .;

RELATIONAL PROGRAMMING

EXERCISES: Show that some of the properties satisfied by these combinators are,

(RIIS).(TIIU) = (R.T)II(S.U)

(RIIS)" =(m)il(S")

(R7S). T = (R. T)-(S. T)

(RIIS).(7-,U) = (R.T)?(S.U)

A.R = RTR

(RIIS).inv - (SIIR) = inv.(RIIS)

inv.(R,7S) = S.7R

a..(RS) = (dom S) -R

,.(RJS) = (dom R)-'S

RIIS = (Ra)7(S.)

cl = (am)-l

cr =

EXERCISES: Show that f = +.(x.AT2x) is the functionf (t) = t 2+2t.

The formalizing conbinator, t, is defined so that [$f (a ,b)]z = f [a(z),b (z)I. It is

. easy to see that ()f (a,b) = f. (aTb). For instance,

I = {)+[x.A, 2x]

is just the function f (t) = t2 +2t. This can be written directly using the notation of our

relational calculus:

f = +.(x.A.2x)

The combination 421[f ,g] occurs very frequently. Therefore, we define W = 4i0r to be the

- formalization of the operator 7T. Notice that [fWg]z = (fz)r(gz). In particular, the

function ft = t 2 +2t can be written

f = x.A-f2x

In general, t. (f Tg) = f g.

-28-

i
* "': " ":''2 .- .'.".. ."."-" "."."." ',.' . , . . S.- . *..... ,S- * . , . ..

* * --° - . -

.c. RELATIONAL PROGRAMMING

Another combinator is the meta-application operator, 5, which corresponds to Curry

and Feys' S combinator: (fig)x = (fx)@ (gx). For instance, imgiinit is the operation

that gives the set of descendents of roots of a forest F, since

(imgiinit)F = (irng F)@(init F) = (img F).init F.

Another combinator defined by Curry and Feys is the I, combinator:

= l[g(),g(y)]

This is simply defined by I(f,g) = f.(gjjg). Therefore, if f = l[+, x.A] then

f (zy) = z 2 +y2. This can also be written f = x.A.a T x.A.w.

11.4 Curried humeUto

A function f is called a Orried derivative of g if f xy = g (zy). We define operators

'curry' and 'uncurry' such that f curry g and g = uncurry f. First consider

uncurry:

(uncurryf)(.y) = g(z,y)
-o Y'., .= fX?

'4

= (fx)@?y

* I = @.[fI Ild](z.y)

By canceling (z,y) from both sides we see that uncurryf = @.[f IlId]. If we wish, we

can factor f out of this expression in this manner:

uncurryf = @[fild]

= [@.][f 1l1d]

= [@.].[iIId~f

Hence, uncurry = [@.].[IIldI.

Next consider Currying. One solution is to simply define curry = uncurry-; we can

learn more however by dofning curry directly. Suppose we are given a Curried pair-

-29-

RELATIONAL PROGRAMMING

making function 'r': irxy = (zy). Then,

fZY = (curryg)z = g(zY) = g(irzy) = g([irx]y) =g []

Therefore, canceling y from each side we get:

curry g X = g.(r) = [g.]() = [g.].

Hence, curry g = [g.].7r.

As a final example we derive Curry and Feys' C combinator: C!'zY = fyjz. Observe:

Cfz = fyx (f/)@z = [o@](fj) = [@].ff

Therefore, by canceling y we get:

Cfz = [04f]. = [.f!][i@f] =[.1

Hence, Cf = [.f].@.

EXERCISES: Show the following properties satisfied by these combinators:

(K.).f = domf-Kz

f.(KT) = K]fz)

C = curry.[.inv].uncurry

12. Becards

12.1 bImic eratioUms

By a 'ecord we mean a finite function whose domain is other than a contiguous sub-

set of the integers. For example, the following relation might represent a personnel

record:

R = name: "Don Smith", age: 40,

hire-date: imo:"Aug", dy:31, yr:1980j, salary: 40000

The selectors

name, age, hire-date, mo, dy, yr, salary

-30-

YRELATIONAL PROGRAMMING

might be the strings "name", "age", etc. or the integers 1, 2, etc.. We are not con-

cerned with their exact nature so long as they are distinct. A field is selected by app~ly-

ing the record to the field's selector: R(age) = R@age = 40. Thus 'R@age' is analogous

to Pascal or Ada's 'R.age'. Next we will consider how records can be manipulated using

the relational operators.

Notice that if D is a record of default values (say, for a personnel record) and R is a

record providing values for only some of the fields of a personnel record, then R;D is a

complete personnel record with defaults from D provided for the unspecified fields of

R. If R and S are records with disjoint selectors (or with overlapping selectors whose

values agree) then RuS is a join or combination of these two records. Finally, if S is a

set of selectors, then S-eR is a subrecord of R containing only the fields whose selec-

tors are in S. For example,

%'7 Jage, salary-R = age: 40, salary: 40000 J

12.2 funcUonal records

A common situation is to apply the same function f to every field of a record R. For

example, we might want to negate the coordinates of a two-dimensional point

P = JX:10,Y:301. This is easily accomplished by [0-].P. Therefore P's Y coordinate is:
'-.

[0-].P @ Y = [o-](PY) = [0-1(30) 0-30 = -30

In general, we can see that the r field of f.R is f (Rrp): f.R@r = f (Rio).

Now suppose that we have a record F whose fields are functions f i, f2 . fn

F = rlp:fl, I 2:f2..... :f

We want to compute a record R that has the same shape as F, but with fields whose

values are f z, for a given z:

R = hll:flz, 9212X,. Vnfnx

Therefore, for any selector rp,

-31-

° i " W~l a~m h mil lm ld ini Id " '
"'*

" " " -
"

> " -, -,-""" -
"

'"
"

'" " ""

RELATIONAL PROGRAMMING

Rr, Fgox (Fr) [@x](F==)= [@X].F v

Hence, R = [@x].F. We define 6 to be the application of a functional record to an argu-

ment, F~x = @x.F. Notice that F6 is the function derived from the functional record

F. Further applications are discussed in §14, on arrays.

We have seen how f.R applies a function to a record argument to yield a record

* result and F&x applies a functional record to an argument to yield a record result.

. Next we will investigate the application of a functional record to a record argument to

yield a record result. In the simplest case F and R are the same shape and we want to

. apply corresponding elements of F to corresponding elements of R to yield

corresponding elements of the result. Thus, if we let S be the result record, then for

any field V:

So= (Fp)O@(R rp) = (F00R) rp

using the meta-application operator i. Hence, S = FiR. Therefore, we can apply

corresponding elements of F to corresponding elements of R by FIR.

" For an example of this operation, suppose that we have the personnel record R

defined in §12.1 and that we want to compute a new record S in which the age field of R

has been incremented and in which the salary field has been increased by 10%. We can

accomplish this by S = FIR, where

F = name: Id, age: 1+, salary: 1.1x, hire-date: IdJ

A common situation is to update one field and leave the rest unchanged. The R record

with its age field incremented is just [age, 1 +; K Id]iR.

We next consider a generalization of meta-application: the outer product of a func-

tional record and its argument record. Suppose we have a record F of functions and a

record R of arguments; the records F and R are not assumed to have the same shape

(i.e., the same domain members). We define S = outerFR, the outer product of F and

R to be a record with the same shape as F, each of whose fields has thu same shape as

-32-

* *I****",,

RELATIONAL PROGRAMMING

R. That is, if rp is a field selector of F and 4P is a field selector of R, then Srp is a record

in which S" is the result of applying Frp to Rip. That is, Srp = (Frp).R, since (Fq).R

applies Frp to each field of R and forms a record of the results. Therefore,

Srp = (.R)(Fp) = .R.Frp. This yields the definition of the outer product:

.R.F = outerFR. Further applications of this operator will be discussed in §14, on

arrays.

EXERCISES: Define an outer product that yields the transpose of this result. That

is, Srp* = (F4)(Rrp)-

12.3 rlatiaaoal dltab

Next we consider databases composed of record-sets and define functions that are

analogous to the relational operations of Codd [Codd70]. Let D be a record set whose

elements have the selectors iname, age, hire-date, salaryi; D might represent part of

an employee database. Observe that if f is any operation applicable to a record then

irngf is a corresponding function applicable to the entire record set.

For example, to form a projection composed of just the 'age' and 'salary' fields of D

we write img[age,salary-]D. To compute D' in which every employee in D has been

given a 10% raise, we can write

D'= img [(salary: 1.1xJ; KId)@]D

In other words, we are applying a function to each record in D; this function multiplies

the 'salary' field by 1.1 and leaves the other fields intact.

Often we want to choose some selector (p of the records in D to be a key and gpn-

erate a function F from D such that Fk is the record in D whose rp field is k. We write

this F = indexeD. Observe:

r =Fk <:o rrp= k A rED

-e r@r=kArED

*! [@r]r =kAr D

-33-

RELATIONAL PROGRAMMING

. r = [@p]-k Ar ED

. Hence, F = [@ O]-s-D, so we define indexepD =-D.

Another common operation is selection. For example, suppose we want P to be the

set of all records in D whose 'age' field is greater than or equal to 65. The first step is

to index the set on the age field: A = index age D. Notice that zAr if and only if record

r from D has an age field equal to z. We can think of A as a multiple-valued function

that takes ages into the records having those ages. Thus, if we apply imgA to a set of

ages then we will get a set of all the records that have ages in the given set. Clearly,

then

P = imgA(allD65) = img[index age D](allD65)

This leads to a general definition of the selection function:

selectreD = img[indexqD]

Hence, selectV = img.(indexq), so select = (img.).index. With this definition of select

we can write

select age D (all-65)

to select all those records whose age is greater or equal to 65.

Finally, we consider the join of two record sets D and E, joinrp(D,E). This is com-

posed of of records formed by combining all those records from D and E whose 9 fields

are equal. To accomplish this, first index D and E on their rp fields: F = index9D,

G = indexrpE. Let k be any value of the field rp; observe that (FIIG)k is a pair (d,e)

where dED, e EX and d and e both have their rp fields equal to k. Therefore, we want

due to be in the join. The set of all such pairs (d,e) is just the range (dom.inv) of the

relation FiIG. Therefore, to get the join J we must apply the union operation to every

record pair in the range of FIIG:

J = imgu(dom.iinv[FIGI)

-34-

'U

RELATIONAL PROGRAMMING

This is the definition of the join operation. We can factor D and E out of the definition

thus:

join p(D,E) = [imgu].dom.inv FIIG

".. = [imgu]. dom.inv[indexoD IlindexoE]

= [in gu].dom.inv.ll.(index D,indexoE)

- [imgu].dom.inv.I.[indexV II indexV](D,E)

Therefore,

joing = [imgU].dorn.inv.)J.[indexV II indexrp]

EXERCISES: Factor V out of the definition of join.

13. Aucestral Dilationu

13.1 denfimkon

Carnap [Carnap58] defines the relation of a property p being hereditary with

respect to a relation r:

p Herr t* xyixcp A r y :> y l

t img[r-I]p c p

This leads to the definition of the ancestral of R of the first kind as that relation which

preserves all the hereditary properties of R. This is also called the reflexive transitive

closure of R:

"R y .* zMmrAVp[pHerRAXEp D Yp]

For example, if zPy means that z is a parent of y, then xP'y means that x is an ances-

*tor (or the same as) y. The ancestral of the second kind or transitive closure is also

useful:

R + = R'IR = R.R"

Thus, P+ means 'ancestor' in the colloquial sense. The easiest way to visualize the

meanings of the ancestrals is by their expansion as infinite unions:

-35-

", ,,',-_',-. . .,,'.,... ..

RELATIONAL PROGRAMMING

R" = RO u R' u R2 u R3 u ...

R+ = R'uR2 uR3uR 4 u ...

EXERCISES: Here are some useful properties of the ancestrals. Prove them.

R* = R'\(=) = RnRa

xRy :* 3n[n>OAxRRV]

%,< R O c R "

R" c R*, for n -O

R" c R. for n>0

RUR* = R +

• R + C R °

R + = RJR*
' R ° = RO v R+

(R*)- -
• (R+)-' (R-,)*

(r•s)" r° s

Ancestral relations are always transitive. Notice that ! and < for integers can be

defined:

(+)

That is, zy means that y can be reached from z by zero or more applications of the

successor function (1+). The ancestral "fills out" all of the paths in a structure. For

instance, if

R = a1 2 LS a 4

b.

then

-36-

L'

,, , • °,' " .o-. - . -. ",. . ' *--.. . '. .. . -. . . - • . . -,. . - . - . -

, , , i "- h " i n " ' , ' " ' '-' " " ' " "." ,'. ." ' " ' -" . .". " '" "-" -". -' F..

RELATIONAL PROGRAMMING

°=

132 applicationn

Suppose that S is a sequence and we wish to find the first member of S which

satisfies some property P. First form the closure S', so that for any two members of

S* we can tell which is first. Next, eliminate from S+ any members that do not satisfy

P: S tP. Then, a(S~tP) is the first member of S satisfying P.

Next we will consider a simple character manipulation example: stripping leading

blanks from a string. Note that z (y cl)" z means that z is a result of consing 0 or

more i's on the front of z. Hence, z [(y c)*]1 z means that z is the result of strip-

ping one or more y's from the front of z. To get the desired result it is only necessary

to restrict the left domain of this function to be sequences that don't begin with a Y.

Suppose Y is the property of beginning with a y:

z EY es y=az " zay * z Eallay

Therefore, the function to strip leading y's from a sequence is:

[(y cl)']- -.(alla)y

1M3 iterti

Before we leave the topic of ancestral relations, it will be useful to investigate their

use as a means of iteration. Suppose that F is a function (i.e., right univalent). Then,

since

F* = F 1 uF 2 uFu ...

we will have zF~y if and only if for some n>0, y = F"z. In general there may be many

such n, so F+ may not be a function. If F is to be a function, it is necessary to pick a

tev"rinaftlo condWon (a class) that is only true for one of F 1z, Fez, Fz, . Therefore

-37-

V -° -

-:.

RELATIONAL PROGRAMMING

consider the relation F+4--.domF. Let D = .domF to see the effect of this function:

"-D = (F ~u •.••)-i) = (F-D u F2 ,-D u F,-D u

Then (F+s-D)z is F'z where ni is the unique n>O such that Fnz is defined but Fn+x is

not. This n is unique because Fn+x undefined implies that for all rn>n F mx is

undefined. This leads to the definition of iter F:

iter F = F++--.dom F

Notice that iter[P-.F] will iterate the application of F so long as its argument satisfies

P (and is in the domain of F). Since it always applies F at least once it is not like a

while loop; the equivalent of the while loop

while -P do F

:-* is iter[P-F];Id, since any input not in P r domF will be passed through. Hence we

define while[P,F] = iter[P-.F];Id. Analogously, F while[P,F] is equivalent to

repeat F until - P

14. Arrays

14.1 defmiia and besic qeations

* An array is just a function from a contiguous subset of the integers to some set of

values. If A is an array and i C dom A then A(i) is the i-th element of A. Similarly, if

I C dom A is a set of index values then imgA! is the corresponding set of array values

and I-A is the subarray of A selected by those indices.

It is easy to define multi-dimensional arrays: they are just arrays whose elements

are selected by sequences of integers, e.g. M(ij). If M is a two-dimensional array,

*'- then M. (i,) is the i-th row of M and M. (,j) is the j-th column of M. Also, if I is a set of

row indices and J is a set of column indices then IxJ -, M is the submatrix of M

selected by these sets. It is easy to see that M. inv is the transpose of M, since

M. inv(i,j) = M[inv(i,j)] = M(j,i)

-38-

1I

p7

RElATIONAL P1ROGRMMING

More generally, if P is a permutation function (i.e. a bijection from an index set into

itself) then AP is the result of permuting A by P.

APL-like array and matrix operations are easy to express with the relational opera-

tors. For example, if A is an array, then f.A is the array resulting from applying f to

every element of A. This follows from the definition of composition, (f.A)i = f (Ai).

Hence, sin.A applies sin to every element of A. Conversely, if F is an array of func-

* ... tions, then F{z is an array of results obtained by applying each element of F to X.

That is, (F~z)i = (F)x. Also, if F is an array of functions and A is an array of argu-

ments, then FIA is an array of results obtained by corresponding elements of F to

corresponding elements of A. This follows from (FiA)i = A @ Ai.

Note that if A and B are two arrays with the same domain, then AFB is the

element-wise sum of these two arrays. To see this, suppose that C = AfB and consider

an arbitrary element of C:

C i = (A TB)i = A + Bi

In general, if n is an infix binary operation, then ii is the element-wise extension of that

operation to arrays. If f is any binary function, then f. (ATB) is the element-wise

application of it to arrays A and B.

The same approach works for matrices and arrays of higher dimensionality. Sup-

pose that M and N are two-dimensional matrices with the same domains. Then,

f.M (Qj) = f [M(i,)] and

(MTN)(Qj) = M(i,) + N(Qj)

As for one-dimensional arrays, a matrix of functions can be applied to a single argu-

ment by MSz, and a matrix of functions can be applied to a matrix of arguments by

MON.

If A and B are arrays, then C = . (AIIB) is an outer product by f of A and B, since

C(i,j) = f (At,Bj). For example,

-39-

RELATIONAL PROGRAMMING

* x.([1..12] II [1..12])

is a 12 by 12 multiplication table. We can also form an outer product between an array

of functions and an array of arguments. If F is an array of functions and A is an array

of arguments, then P = @.(FI)A) is a matrix in which P(ij) = (Fi)(Aj).

EXERCISES: Prove that @ . (FIjA) = uncurry. outer F A.

Suppose z is an element of the array A (i.e.. for some i, z=Ai). Then allA z is the

set of all indices for which z =Ak. Therefore we can find the index of the first occurence

of z in A (i.e. APL's iota operator) by min(allA z). In general, if P is some property

(i.e. class), then imgA- 1 P is the set of indices of all elements of A that satisfy P. A

sorted reflexive sequence of these indices is just t 1' imgA- 1 P

142 reain to uequencm

It is easy to convert arrays to sequences and vice versa. Suppose all the elements

of A are distinct, then A-' is a function that returns the index of an element of A. We

want to define a sequence S such that zSy if and only if x preceeds y in A, i.e. the

index of x is one less than the index of y. To put this functionally, we want to define S

so that y=Sx means that y is the successor of x in A, i e.. that the index of y is one

greater than the index of z.

[.

Y =Sz *os A =A- 1 z +1

SA-ly = (1+).A-lx

y = A (1+).A-lz

Hence, S = A (1+).A- 1 . Notice that this is just the image of the (1+) structure under

the function A-: S = A-'$(I+) (the $operation is discussed in the next chapter).

Next, we will consider the opposite process: converting a sequence to an array.

Suppose we have a sequence:

s o a2 a3 l

-40-

.............. llam'mmfdm~'n & mn~ai' ,::""- -- >_- '-.-..-,"---•.. ...

RELATIONAL PROGRAMMING

We wish to convert this to an array:

0 a0o

A= 1 al

2 an

3 as

Thus, for each element at in the sequence, we must find its index i in the resulting

array. If we can define a relation R such that R(ai) i then R -1 will be the array we

seek. Now R(al) is just the number of predecessors of at in S. That is, a0 has no

predecessors, so R(ao) = 0; a2 has two predecessors, so R(U 2) = 2, and so on. Since S

defined an immediate predecessor relation, S" defines an ancestral predecessor rela-

tion:

p= a 0

Since zSxy means z Is a predecessor of y, y =Sxz means y is a successor of z. Thus the

set of successors of any element a is then unimgS~a, and the set of predecessors of a

is unimg.invS+a, e.g.

unimg.invSa 2 = Ja 0 , al

Alternately, unirnmg.invS+a = allSa is the set of all elements that bear the S+ relation

to a. The size of this class is then the desired index:

size(allSa 2) = 2

Hence, R(a) = size(allS~a), so R = size.(allS4). Now, we know that A is R - 1, so we can

define the function sa0 which converts a sequence into a 0-origin array:

-41-

*. I. --

RELATIONAL PROGRAMMING

saO S = [size.(allS+)] -

To produce a 1-origin array, the only alteration is:

sa S [size. (allS

14.3 at army opemUona

Next we will consider the concatenation of arrays. If A is an array such that Ai =a,

then we can write A:

A = a 1 , 2:z 2, .. . :a

where n is the length of the array. Similarly, suppose that B is an n element array,

then the concatenation of these arrays is

A cat B = Jm: 1 m:anJ u m+l:b, m+n:b.!

We can see that A cat B = AuB' where B' results from B by shift its indices by m:

B' = m+l:b l m+n:bni

How do we compute B'? Observe:

B'i = B(i-m) = B[(-m)i] = B.(-m)i

Hence, B' = B. (-m) and A cat B = A u B. (-m), where m is the length of A. The

length of A is just size.dom A, so

A cat B = A u B. (-size.dom A)

We will finish our discussion of arrays by investigating the generation of sorted

arrays. Let S be a set of integers to be sorted, then [-cTS] is a structure which relates

lesser elements to greater elements. Now if x is any element of the set, all[<TS]z is

the set of all elements less or equal to than x. Thus size(all[!9S]x) = size.(all !4S)x is

the number of elements of S less than or equal to z. This is just the index of X in the

sorted array we seek. Hence if A is the sorted array, iAz if and only if

z[size.(allItS)]i, so A = [size.(all <tS)] - '. Of course this can be generalized to any

ordering relation.

-42-

......................

RELATIONAL PROGRAMMING

15. Jmhanaiuc and Homomorphic hmas

15.1 Umagin

Consider any relation R and any biunivalent function f. If we take each node n of R

and replace it by fn we get a relation closely related to R called the image of R under

f, symbolized f SR.

a C

efe
R f SR

FIgure 13. Image of a Relation

It is easy to define f SR. Observe that if S = f SR then (fx)S(fy) just when zRy3 .

Conversely uS'u whenever there are x and y such that zRy, u =fz and v =fy. Hence,

u9u * 3[zRy A u =fz A v =fy]

es, Bry [fu A xRy A yfv]

t* r[f -1z A zRy A /fv J

e#u[f -11R If]v

Hence,fSR=f-1IRIf =f.R.f -1 .

The image operation is also useful when f is not biunivalent. For example, if fb =fd

then f SR (with the R in Figure 13) is:

""fe fb f d

I.e., we merge the nodes corresponding to b and d.

The S operation is clearly related to the img operation - they both compuLte the

image of a structure. Since 6.[f If].un x:y = (fz):(f y), we have this relationhip

between the images of relations and sets:

f SR = img(-.[f Ilf].un)R

~-43-

*" . . *

.° "°
°

"• ,' . * ." ""°
•

,. "

RELATIONAL PROGRAMMING

That is. f S ig(i .[f 11].un).

The image operations have many uses. For example, since [1..n] n (1,2. 7), we

can see that

(-n+)S[1..n] = (m+1,m+2,. . . ,m+n)

Hence the identity [m+1..m+n] = (m+)S[1..n]. To compute a list of the powers of two

from 20 to 216 we write (2t)S0.. 16]. where zty = x'. Finally, to compute a list of the

sines of the angles from 0°=0 rad. to 90°=ir/ 2 rad. we write

sin. (xr/ 180) S [0..90]

To se that this works:

sin.(xr/180) (o,1. . 90)

= (siL(xir/ 180)0, sin. (xir/ 180)1..... sin.(xir/ 180)90)

= (sin(Oxir/ 180), sin(ixir/ 180), sin(9Oxi'/ 180))

= (sin 0°, sin 1 , sin 90*)

EXERCISES: Show that inv = [aO.inv.un]$.

15.2 imng o functionme structures

We have seen how, given a function f and a relation of values V we can form a rela-

tion f SY in which the shape of V is the same as the shape of f 8V and each member

v EmemV corresponds to fv in f S. Now we will address the converse problem: given

a relation of functions F and a value v, how can we construct a relation F!v such that

the shape of F is the same as the shape of F!v and each member f EmemF

corresponds to fv in F!v. This is clearly the image of F under some unknown function

9: F!v = VSF. We will solve for 9. Observe pf = fu = f@v = (@v)f. Hence W = (@V)

and F!v = (@u)SF. That is, F!v is the image of F under the operation 'apply to v'. We

can eliminate v from this definition:

(!v= F!tu = (@ti)$F = (SF)(*v) =(SF).@ v

-44-

* • g .- ,-. .~*..***.

,4 '..m l l

K. -. _.

RELATIONAL PROGRAMMING

Therefore F!- (SF).@. Notice that the F! is a function derived from a functional

structure just as FS is a function derived from a functional record.

We now consider some applications of this operation. To form a sequence by apply-

ing each of a sequence of operations to the same argument we write, for example:

(sin, costan)!d = (sin 6, cos d, tan 6)

In particular, (J',g)! is just f-g and Backus' constructor [f,g. h] is just our
['.g .. .

Recall our previous example in which we computed the sines of the angles from 0 to

89* by

sin.(xff/ 180) S [o..89]

We can extend this to compute a table of the sines, cosines and tangents of the angles

from 00 to 89° by using both of the image operations:

(sin.cos,tan)l.(xiT/ 180) S [0..89]

This produces a sequence of sequences of the form

((sin 0°, cos 00, tan 00), (sin 10, cos 10, tan 10). (sin 890. cos 890, tan 890))

In general F!$R has an outer structure the same as R's, each of the elements of which

has a structure the same as F's. Thus it is sort of an "outer product" between F and

R in which the members are fr for f Mm F and r Mm R.

- To convert a sequence of sequences such as this into a matrix requires an applica-

tion of the sa operator at each level of structure. Let S be the sequence of sequences.

First convert each of its elements to an array by sa$S. Next, convert the resulting

sequence to an array by sa[sa$S]. The result of the latter operation is an array of

arrays that can be converted to a two dimensional matrix by uncurrying. Thus the

sequence to matrix conversion is

ssmS= uncurry.sa[sa$S]

-45-

r'.4

RELATIONAL PROGRAMMING

Therefore,

ssm = saS sa uncurry

This can be read: To convert a sequence of sequences to a matrix, convert each of its

elements to an array, convert the result to an array, and uncurry that result.

EXERCISES: Define an outer product operation PFR which has the outer structure

of F but the inner structure of R, Thus, the matrix corresponding to PFR is the tran-

spose of the matrix corresponding to F!SR:

(ssm PFR).inv = ssm(F!$R)

15.3 bwmorphism and the utrueture function

Carnap [Carnap58] defines two relations to be isomorphic when there is a

biunivalent relation between their members that preserves their structure. That is, R

is isomorphic to S:

R!,S * :af Ebun[R = f $S]

Thus, two relations are isomorphic if one is a biunivalent image of the other.

Equivalently, two relations are isomorphic if their arrow diagrams are equivalent when

their node labels are removed. The isomorphism of sets is defined in the same way:

S!-T **, 3fcbun[S = imgf T]

', The structure of a relation is arrow diagram for the relation with its node labels

removed. For example, the structure of R in Figure 13 is:

str R

Thus two relations are isomorpn i if they have the same structure. Mathematically the

structure of a relation is just the set of all relations isomorphic to the given relation:

str R = IS ISNRJ = allt-R. Thus str R is an equivalence class under L. Alternately,

-46-

?,7

RELATIONAL PROGRAMMING

, strR = JSIS-RJ

= JS 3 Ebun[S=f SR]I

= img[$R]bun

That is, strR is the class of all biunivalent images of R. Note that RnS <- strR=strS.

The structure of a set is defined in exactly the same way. Since CimgSF = imgFS,

we have

strS = JT)Tn-SJ = allS = img[CimgS]bun

Observe that if, following Russell and Whitehead [Whitehead701, we define a number as

the class of all classes isomorphic to a given class, then the size of a class is just the

set of all classes isomorphic to that class: size S = JT I T~S . But this is just the

definition of the structure of a class. Hence for all sets S, size S = str S. In other

words, the structure of a set is its cardinality. When the identity of its elements is

ignored, the only structural characteristic still possessed by a set is its size:

str 1,8,2j = stricat,dog,cow? = $,'' = 3

16. Data Structures

16.1 definition

Simple relations are not adequate for modeling all structures. For example, sup-

pose we write this sequence: (1,2,3.2,4,5). This is defined to be the relation

I 1:2, 2:3, 3:2, 2:4, 4:5 J

To make its structure more apparent, we will draw this as an arrow diagram:

"" R -

This is certainly not what we expected, and it will not give the results we expect. For

example, we cannot scan through this "sequence" because R(2) is multiple valued.

-47-

", , - . C' '. -. "., .';" "" ,- 'L _ , .. .i'i .". ; . .'

RELATIONAL PROGRAMMING

To avoid this problem it is often better to use data structures (or interpreted struc-

tures). A data structure S is a pair (D,R), where R is a relation (a simple structure)

that defines the form part of the data structure, and D is a function that associates

data values with the members of R; it is called the data part of the data structure.

Usually domLD = memR, but this does not have to be the case; we will see examples

later.

The structure that we intended by writing (1,2,3,2,4,5) can be correctly represented

* by a data structure (D,R) in which R = (a,b,c,d,e,f) and

D = ja:1, b:2, c:3, d:2, e:4, f:5J.

*It doesn't matter what a, b. c, d, e, f are, so long as they are distinct. We will write data

. structure sequences with angle brackets: <1,2,3,2,4,5>.

16.2 qpationm on data structures

We need functions for both interrogating and updating data structures. The data

and form parts of data structures can be extracted by a and w, respectively. In partic-

ular, if n is a node in S, nEmem(oS), then ixSn is the value associated with that node.

A common situation is to inquire the value of a node selected by applying a function f

to the form of a data structure; we write this vf S. For example, vaS is the value of

the first element of S and v(wS)S is the value of the second element of S. In general,

vf(D,R) = D(fR) = D @ fR = @(DfR) = @. [IdlI]f(D,R)

Therefore, vf @. [Idlif] and v = (@.).(ldI).

Next we define operators 9 and 6 that alter their argument function so that it

operates on either the form or the data part of a data structure, but leaves the other

part unchanged. That is, pf (DR) = (DJR) and 6f (D,R) = (fD,R). Therefore

(pf = Idlif and 6f = f 111d, so rp = Idil and 6 = 1id.

We will define an operation 11 such that lf S is the image of the structure S under

the function f, that is, lIf S is a structure with the same form as S but with values

-48-

r " .. ,,' ".".,' .- .-. ,- -.- -., ,-uh ~ hd~ l, "m'l =.a'- - ,.rS,. '.-' . - --,' " , •--- --- *.. -: . '*-******i**--j -- -,.. .:-:

-.-

RELATIONAL PROGRAMMING

derived by applying f to the data of S. Thus "lfR is the analog for data structures of

f SR for relations and f.R for records and arrays. Suppose S = (D,R) and

. fR = (D',R). For any n CmemR we must have D'n =f(Dn), so D' = f .D = [f .]D.

Hence, we get 11f S from S by applying [f.] to the data part of S, so llf S = 6[f.]S,

and rIf = 5[f.]. For example, if S is any data structure whose values are numbers,

then 1][i1+]S adds one to each element of the data structure.

The H operator leaves the form of the data structure unchanged; next we consider

operators that reform data structures. First we define operators that filter a data

structure by removing some of its nodes. In the simplest case we just throw away the

nodes we don't want, only retaining those that satisfy a given property P. Hence,

(DR') = (D,RTP) = (D,[TP]R) = r[TP](DR)

Hence i[?P] filters a data structure by eliminating all those nodes that do not satisfy

P. Suppose that we want to eliminate the negative nodes of a data structure. Thus we

wantzEP * aSii O * n (aS) I> 0, soP = all(aS I-)0.

This simple form of filtering will often lead to nodes becoming isolated. That is, if we

filter the sequence

< 3, 4, -2, 6, 7, -1, 2, -4>

by the set P = all(aS -)O then we will get

3 4 6 7 2

Note that the node whose value is 2 (a positive number!) is not even in the relation

anymore since it has no neighbors (it is still in the data mapping, however). Usually we

would prefer to connect up the remaining elements of the sequence, yielding

<3,4,87,2>. How can this be accomplished?

We will define an operator 4) such that DPS is the data structure resulting from

filtering the data structure S by the predicate P. Suppose S = (D,R) and

OPS = (D,R'). R' will be derived from R by adding some new pairs to R ̂ P. In

-49-

:-:.:...:-..:..~~~........:.. ... :....................-.........-

P V, V. .. W. W- W. I . r F

RELATIONAL PROGRAMMING

particular, we want to add just enough pairs to directly connect those nodes that were

indirectly connected In R but are not indirectly connected in RIP. We will call this

operation t, so R'= CR.

Observe that xR4 y if and only if y is reachable from z in one or more steps. Simi-

larly z(R IR*)' if and only if y is reachable from x in to or more steps. Therefore,

first take our original relation R and compute R":

Then eliminate the undesirable members by restriction, S = RtP:

There are clearly many redundant edges here. We want to eliminate any edges that

can be generated from the others; that is, we want a minimal set of edges. Since S IS'

are all the edges of length two or greater, these are the redundant edges:

* If we delete these edges from S we will have only the nonredundant edges left, so

S\(S IS+) is

3 4 6 7 2

We can now define (. First we define a useful operation 1A that minimizes a relation

by eliminating all of its redundant edges: AR = R \ R 'IR. To see that this works just

-50-

e..". ~ 4 4* 4.,,.. """" " * ," , -..... *.... .*. . *-*- . , : . : .:.. - . -.-- - .- . . .,.,. - . . .

h," ,, *

RELATIONAL PROGRAMMING

expand the transitive closure:

1tR = R\RIR +

= R \ R I(R'uR2uRu . ..)

= R \ (R 2 uR3uR4 ..)

:.= RNR 2\R3\R4\"'

Hence, to filter a relation R by a predicate P we use/.[R+t'P]. Therefore,

(PR = R' = jA[R~tP]

= 1A.[tP][tracR]

= t&.[tP].trac R

where we have used trac R = R +. Hence we have that

"" CP =,u. [?P].trac

Notice that this definition is really quite readable. It says, "To filter a relation, com-

pute the transitive closure (trac), eliminate undesirable nodes [1tP], and eliminate

redundant edges (ju)."

We now want to extend t into the operation I on data structures. Recall that $PS

means that a node is to be included in the result only if its value satisfies P. Hence, if

.V1 S = (D,R) then we want to filter R by F where nEF if and only if Dn EP. Now, the set

of all nodes whose value is in P is just the inverse image of P under D, F = img.invDP.

Therefore, we want to fiter R by irng.invDP, which we do by t(img.invDP)R. Hence,

.P(D,R) = (D, ([img.invDP]R). We can factor (D,R) out of this equation:

OPS = OP(DR)

= (D, ([img.invDP]R)

= (D, ([(@P).img.invD]R)

= (D, (.(@P).img.invD R)

= (D, uncurry[t.(@P).img.inv](D,R))

= (aS, uncurry[(.(@P).img.inv]S)

-51-

*.- .,- ,-.- -,, .- , -,,. ... ,,
...- . . -, - L..i,*

-4

REIATIONAL PROGRAMMING

= (a- uncurry[t.(OP).img.inv])S

Therefore,

P= a.vuncurry[(.(@P).img.inv]

17. Radhdaig Sructuem

17.1 bmic concepts

In this section we will discuss several methods for reducing structures, that is, for

applying a function to each element of a structure and accumulating the results. Since

no one method has yet been selected, this section should be taken as a report of work

in progress.

A general paradigm for processing a structure, such as a file, is the following:

1. Perform some initialization.

2. Read the next (or first) element of the file.

3. Take this value and the results of processing the previous values.

4. Process these to yield new cumulative values and continue from step (2).

5. When the end of the file is reached, return the accumulated result of processing all

of its elements.

A simple form of this appears in APL's reduction operation:

+/V = V1+(. .

A more general form is Backus' insert:

/ f:<Zj ,n> =f :<Xl .-. f :<Xn-, Ii> ... >

Our first example of scanning structures will be to express this operation in the rela-

tional calculus.

-52-

* *_Q-.... . ,%..-. * . .*. %

i i ' ' -' " " " : ''" ° : ' - "' " " " * I "*'''" , " ," I. '. ,... "" '- . - -

RELATIONAL PROGRAMMING

17.2 duction of arrayn

We are given an n element array A and wish to compute:

" " t = A(n)+A(n-l)+' +A(2)+A(1)

. where we have assumed that the domain of A is [1..n]. We saw in the section on ances-

trals (§13) that iter[-T -, F] will iterate the application of F with T used as the termi-

. nation condition. Consider how the analogous loop would be written in Pascal:

S:=0; i:=0;

while isn+1 do

begin S := S+A[i]; i:= i+1 end

On each iteration two functions are performed: S is increased by A[i] and i is incre-

mented by 1. Let's represent the state of the computation by a pair (s,i), where s is

the cumulative sum so far and i is the index of the next element to process. We will

use F to represent one processing step, so that, if (s',i') is the new state, we can solve

for F as follows:

* F(s.i) = (s'X)

= (s +AL, i+ 1)

=(+[s.Ai], [1+]i)

= (+.[IdlVA](s,i), [1+].c,(s,i))

= (+.[IdIIA]T 1+.w)(si)

Hence, F = (+.[IdIA]:1+.c).

It remains to determine the termination condition, T. If z is a state, i.e., a pair

(s,i), then zET when i=n+1. Hence, zET when .z = n+1, so T is the set of all states

mapped by w into n + 1. Hence, T = all w n + 1. The final state, zx,, containing the sum

is iter[- T -. F]xi, where ;=(0,1) is the initial state:

!= iter[-T -, F](0,1)

Now, the total t is just azx,, so

-53-

= • I I - ' i l l :1 I
"

' ' '' ' '' " '" ' " ' "

RELATIONAL PROGRAMMING

t = a.iter[-T - F](0,1)

* We can generalize this to any function I with initial value i:

t = a.iter[-T -, F](i,1)

where F = (f. [IdjJA]T 1+.co)

and T = all co (1+sizeA)

This result can be improved by directly extracting the result from the final state.

That is, we want to define a filter p such that t = o.F*(i,1). Hence we want z1 9t, so

zjgt :b (tn +1) Sot. Now, note that [,n +I]t =(f,n + 1). so t[t+1](t,fn+1) by the

definition of application. Therefore s = [,n+l]1 and we have the simplified formula

t = [.n+l].F*(il). This leads us to the following definition of the array reduction

operation;

(f #)A = (,n+1]1.F(im)

where F (j.[IdjA]71+.o)

and m = min(dom A)

and t = max(dom A)

Therefore, if A is an array indexed mn to n, then (+$O)A is the summation of A,

2 rn

Using this operation, the inner product of arrays A and B can be written simply as

*+$O(ARB).

EXERCISES. Show that +$0(AXB) is the inner product of A and B.

17.3 reduction of squence

Next we will consider the scanning of sequences. Suppose S is a sequence:

S = (s 1,S,2 - s,EOF)

where EOF is an "end marker"; it can be any value. Now, we wish to find the result

!:: -54-

-'.....,: -

RELATIONAL PROGRAMMING

f S S 2 f .f

that is

f(f(" f(i.,s). S

for some function f and starting value i. The state can be represented by a pair (t,s),

where t is the result so far computed and s is the rest of the sequence to be pro-

cessed. Hence, (t',s') = F(t,s) where t = f(t,as) ands' = 0s. Therefore,
'U:'

F(t.s) = (t',s') = (f[t,as], Os)

= (f. [Idlia](ts), 0.c(t,s)) = (f. [IdlIa]7 O.cw)(t,s).

Hence, F = f. [Idlla]. 0.w.

What is a terminal state? Notice that fl(sR ,EOF) = . so a terminal state will have the

form (r,o), Thus the set of terminal states is the set of all those states mapped into €

by w: allwo. Hence,

r = while[- alde, F](i,S)

To put this in a more useful form, we will define a function f §i such that r = (f §i)S.

This is simply

f §i = while[- allwo, f. (Idila)T O.]). (i,)

Then, the sum of the elements of a sequence S is just (+§O)S.

1a. Eimmplew

In this section we will give several examples of relational programs.

Suppose we have a file € of employee records, where r = On is the record for the

employee with the employee number n. We will suppose that employee records are

functions defined so that:

-55-

55" *, ~ *j ~ * * ~ 9 4 . -

I -" ,'' . "" , "' , '- -""- ,""" -""" ,''" S -, ", . .,. . . . " , , . " , • " " " -

RELATIONAL PROGRAMMING

rN = employee name

rH = hours worked so far this week

rR = pay rate

We are given an update file U such that L4L is the number of hours worked by employee

n today. We wish to generate a new payroll file 0'.

N SOLUTION: Let r = On and r' = O'n be the old and new employee records. It is clear

that r' is the same as r except for its H field. In order to modify part of a relation, we

*. will use the conditional union (or overlaying operation) defined by:

R;S = R u -..domR - S

Then. if h' represents the new value of the H field, the new employee record is

r' = (Hh'); r, where h'is just the cumulative hours worked, h' = nH + n. Therefore,

by the definition of ':

'n = r' = (H,h'); n

To find ' we must factor out the employee number n. To do this, note that SnH =

[@H](On) = [@H].On. That is; [@H].4 = OSH is a slice of the payroll file: the hours

worked for each employee. Therefore,

h' = 1nH+ Un = [@H].fn + Un

= (tH T U)n

Now, define the updating function u by

- [H.].(44H T U)n

Then, O'n = u(n); On = [4,u]n. Therfore, the solution to our problem, the new payroll

file, is I' = u-S, where u [H,].(t8H F U)

-5I-

i " ,, -. ' ' " -"-' . . . - . ,: : . .- , _. .. _. :_ ' ,: . .- , - .'. ',- .'- .-.... - -.-..-

RELATIONAL PROGRAMMING

18.2 check ining

Suppose we wish to take the payroll file from the previous example and generate

checks for the employees. We will assume that a function C is available such that

* C(mp) returns a check in the amount p made out to the name m.

SOLUTION: We will ignore overtime computations. Hence, if n is an employee

number then 4nN is his name and

p(n) = 4nHx ibnR

is his pay. Therefore p = $H X 4R. Now observe that his check c (n) is

c(n) = C(mipn) = C(nNpeN) = C(,6N n,pn) = C (46NTp)n. Combining these we

have the file F mapping employee numbers into checks:

F = C [1i46N(DH RPR)]

from which we can factor out the old payroll fie:

F = C [GN7 (OH NOR)].

If we just want a set of checks, this is dom.invF.

18.3 pseudo-natural notation

Relational programs can be made less intimidating by using the pseudo-natural

notation described in [MacLennan82]. This notation uses words in place of symbols and

uses a comma convention to suppress many parentheses. The frequency table pro-

gram from §1, F = size.(all T), can be written:

'Freq-table' means all text then size.

Here, 'Freq-table' = F and 'text' = T.

The payroll example looks like this in the pseudo-natural notation:

'Updates' means:

Old-Master slice Hours, each add Hours-Worked,

then pair-with Hours.

-57-

' ', -* - 'e __Y "- '.°. ,' . . ,..-., - . . / , - . ., . " " ; .

RELATIONAL PROGRAMMING

'New-Master' means Updates each replace Old-Master.

*Here, 'Updates' = u, 'Old-Master' = 0, 'slice' = 6, 'Hours' = H, 'each add' = T, 'Hours-

Worked' = U, 'then' = 1, 'pair-with' = 7r, 'New-Master' = ', and 'each replace' =

The check issuing example is also easily put into this notation:

'Checks' means

Old-Master then:
4.j

something slice Name

also something slice Hours each times something slice Rate,

then Write-check.

Here, 'Checks' - F, 'something' represents an omitted argument, 'Name' - N, 'also' -

-, 'each times' X x, 'Rate' = R, and 'Write-check' = C.

-' 19. Imlementation

19.1 introduction

The primary goal of our investigation has been to determine if relational program-

ruing is significantly better than conventional methods. It would be premature to

devote much effort to implementation studies before it is even determined if relational

programming is an effective programming methodology. However, a brief discussion of

implementation possibilities is probably not out of line.

The most obvious representation of a relation is the eztetsional representation, in

which all the elements of a relation or class are explicitly represented in memory.

There are many kinds of extensional representations, such as hash tables, binary trees

and simple soe'ted tables. Of course, performance can be improved through the use of

associative memories and active memories (in which each memory cell has a limited

processing capability).

Some relations and classes will be so large that it is uneconomical to represent

them explicitly in memory. In these cases an intensional representation

-58-

RELATIONAL PROGRAMMING

[MacLennan73] should be used. Here a class or relation is represented by a formula or

expression for computing that relation or class. Operations on the class or relation are

implemented as formed operations on the expression. This is feasible because of the

simple algebraic properties satisfied by relations. It can be seen that an intensional

representation is really just a variant of a lazy evaluation mechanism [Henderson76,

HendersonBO]. Sometimes an intensional representation is necessary; for instance,

relations of infinite cardinality. such as the numerical operators and relations, require

an intensional representation.

19.2 ---mpuabilty

It can be shown on theoretical grounds that some of the operators we have

described are not implementable in their full generality. For example, if unimg were

applicable to all computable functions, it would be possible to solve the halting prob-

lem, since

Halts(f ,x) :e unimglf =

Since the halting problem is not solvable, we cannot implement unimg and the other

operators used in the definition of Halts so that they works on all computable func-

tions. Similar arguments set bounds on the implementability of many of the other

operators.

L
These limitations do not prevent the use of the relational operators as a

specification language. For this purpose it is only necessary that relational programs

precisely specify the relationships between inputs and outputs, not that the programs

be implementable. However, if we wish to use the relational operators for executable

specifications or for a full-fledged programming language, then the issue of implemen-

tability becomes important.

10.3 watamd al rqmpltaUan

It should be clear that all the operators are implementable on extensionally

-59-

-S .t, 4 ., ., - . . - -,. . .. - .. - . - . -- - . . . -

RELATIONAL PROGRAMMING

represented sets and relations, that is, on sets and relations whose elements are expli-

citly listed in some form in the computer's memory. Obviously, only finite sets and

-' relations can be represented extensionally. Suha Futaci [Futaci82] has analyzed the

complexity of the algorithms associated with several different extensional representa-

tions.

19.4 intensional reprmentationa

Infinite sets and relations must be represented intensionaUy, that is, without expli-

citly listing their elements. There are several ways of accomplishing this. For exam-

pie, infinite sets can be represented by their characteristic functioms: total, comput-

*. able, Boolean-valued functions that determine whether or not a given element is in the

set. Since we require these functions to be computabla they can be expressed in a

finite algorithm and so are finitely reresentable in the computer's memorys .

Another intensional representation of infinite sets makes use of computable

enumeration functions. If f is an enumeration function for a set then f (1), f (2).

are distinct elements of the set. If n is greater than the cardinality of the set, then

f (n) might not halt.

One of the most common intensional representations of infinite relations makes use

of the corresponding computable function. That is, the computable function f can be

used to represent the relation R when y=f(z) *: (x:y)ER. Clearly, this representa-

tion can be used only when R is right univalent. Also, if z A domf then the computa-

tion of f (z) might not halt.

19.5 eliminating polymorphim

When we investigate each of the various extensional and intensional representations

. of sets and relations, we find that different combinations of the operators are imple-

mentable on each representation. This could lead to a very confusing situation for the

*3. Of course, computabe characteristic functions only allow (by definition) the representetion of recursivo
sets. There is little to be lost in restricting our attention to recursive sets, however.

-60-

'I! -o -, - -

"" " " " " "n ' """"" ' ' ' ' ' ' "
"' " """ "" "' , ' ,"" "'? '" " '- ' """ '" " , '""'.,-" " ,-' ,-" '" _""" " ,," " '- '..- '",";,'" -", 4

RELATIONAL PROGRAMMING

TABLE 1. Sets Represented by their Characteristic Functions

Set Ov2eration Ogeration on Characteristic Function
XCS S()
- S -.,5"

SnT SAT
SuT SVT
S\T S . T
SDT -. SVT
SxT A.(SIIT)

xRij R(x~y)
urimgRz R. (,x)

allRz R. (z,)
invR R.inv
S-'R S.a A- R
R4-S R 7 S.w
RtS R AA.(SIIS)
RIIS R. a$^ S. w$
RTS R. (ldlia) 7 S. (Idlig)

relational programmer. Without consulting a table of some kind the programmer

would never be sure whether or not a particular combination was implementable.

Therefore, relational programming will be simplified if we can divide the operators into

disjoint classes in such a way that each operator is applicable and implementable on

exactly one representation. Fortunately, when we investigate the use of the relational

operators we find that certain operators are mostly used on finite sets and relations

and others are mostly used on computable functions. Thus we have a basis for a divi-

sion of the operators.

To accomplish this goal it is necessary to eliminate any polymorphism , that is, any

operators that are both implementable and useful on more than one representation.

For example, the set operations (n, U, \, etc.) are useful and implementable on both

finite sets and infinite sets represented by characteristic functions. However, the set

operations on infinite sets are easily expressed as abstractions and compositions of the

Boolean operations applied to the corresponding characteristic functions; see Table 1.

The simplicity and directness of this representation of infinite sets and their operators

permits us to eliminate them as basic objects in relational programming. Thus, the set

operations (r), u, \, etc.) will only be allowed on finite sets and relations.

-61-

RELATIONAL PROGRAMMING

Since we have eliminated characteristic functions as built-in representations oF

infinite sets and relations, we are left with only two others: enumeration functions and

computable functions (for right univalent relations). We have chosen to eliminate

enumeration functions because they have few uses and these can be easily expressed

using the functional operations.

4i This leaves us with two classes of objects in relational programming:

0 Finite sets (and hence relations)

0 Computable functions

There are only a few operations that are both useful and implementable on both of

these classes. For example, the application operation can be used both for applying a

-. computable function to its argument and for looking up an item in a table (a finite rela-

- tion). Therefore we define two versions of this operation: f@z, which applies the com-

putable function f to z, and t x (suggesting subscripting), which applies the finite

relation (table) t to x. We allow f@x to be abbreviated fx and t',z to be abbreviated

ti.

For some of the polymorphic operations either the intensional version or the exten-

sional version can be easily expressed in terms of other operations. In these cases the

easily expressible version can be dropped with little loss of convenience. An example of

this is img.invfp, where f is a total function and p is a characteristic function. This

can be writtenp.f since p.f is the characteristic function of img.invfp.

19.6 mdAMonal aperatwo

The results of the separation process are displayed in Tables 2-5. Table 2 lists the

primitive operations on finite, extensionally represented sets and relations. These

operations are considered primitive because they are not simply defined in terms of

other operations, Tables 3 and 4 show the non-primitive operations on extensionally

represented sets and relations, that is, those that can be simply defined in terms of

-82-

RELATIONAL PROGRAMMING

TABLE Z Primitive Extensional Operations

O t Meaninv
t4w& application
t IU relative product
tu construction
z :, pair formation
s ut union
un z unit-set formation
cur t Currying
unc t un-Currying

*dx unique element selection
sizez cardinality
strt structure of relation

t+ transitive closure

TABLE . Non-primitive Extensional Operations (Part 1)

Qeraor_ Definition
(X.2,) un(z:y)
(z,) un.(x:)
(,V) un.(:y)
Az (z.Z)
zet or.img[x=]tS ct and.(irg[Ect])s
s=t s~t AtCs
inv t img[:.(TI,Hd)!]t

dom t ig Hd t
4 rng t dorn.inv t

mem t domt u rngt
* Lm(z,t) zEdomt

Rm(z,t) zxErngt
Mm(z,t) z Ememt

run t and. img(i=.size.[unimgt]), domt
lun t run. inv t
bun t runt A lunt
init t domnt \ rngt

term t rngt \ domt
t0 t+ u (img:.A).mem t

p-,t fllter(p.Hd)t
t 4-p tllter(p.Tl)t

other operations. Although these operations are non-primitive, we would expect that

they would be built-in in a relational programming system. These definitions make use

of several new primitive operations, which are defined in Table 5. They also make use

of the operations on elementary pairs: Hd = o.un and TI =.un.

-63-

.: oO . . o .. o . o , o.

RELATIONAL PROGRAMMING

TAlE' 4. Non-primitive Extensional Operations (Part 2)

O~~erator]eflnitin

a Id.init
,W O.term

A t t -. i termt

t;u t u it domt -b u
z cit (z'at)ut
t crz t u(C.t'z)
mins a.(img<)sxs
max s .(irg<) sxs
snt dom s -, t xun0]
s\t domL , t -, sxun0]

m0..mj f(O,unO) where f(n.s)=(n+l.suunn)

tSz img(Hd T Oz. TI)t
t!z ox it
At t \tit +

index~et img[4 T Id]t
selectp inig. (indexp)
joinrp imgu. dom. inv. 1. [indexp[lindexp]
as t img[A&-TA4.1+](domt \ uamax.dom t)
sa t

- where f [z, (i. a)] = (i + 1, a u[i,z])
Sao t f §(0,0) (f defined above)
rpf t img[HdT f.Ti]t
rpif t img[j'. Hd TI]lt

t catu t u rpi[+size.dom t]u
rsort s img 29s xs
sort s size.inv.all.rsort s

unimgtz rng[unz - t]
unirmgt imgf(domt) where fz = z:(unimgtz)

I ssm unc.sa.sa$

197.? intesiomi aqpmtru

All the intensional operators can be expressed using recursive definitions and

lambda expressions. Nevertheless, it is useful to divide these operators into two

-. classes, primitive and non-primitive, on the basis of whether they can be easily defined

in terms of the other operators. The intensional operators are shown in Tables 6 and 7.

20 cmidusIkh

Of course, we are not the first to propose introducing aspects of a relational calculus

into programming. Codd [Codd70] has used a relational calculus as the basis for data

base systems. Although he defines several operations on relations (viz., permutation,

.•

RELATIONAL PROGRAMMING

TABIl 5. New Primitive Extensional Operations
andltruel = true
andifalsel = false
anditruefalsel = false

oritruej = true
orlfalsel = false
oritrue,falsel = true

, unionIS 1,S 2 S.... ,I =uS,

fiteryS = fzXzESA v(z){ (a finiteset)

TABLE 6. Primitive Intensional Operations

OQpratn~r -Definitinn

.f@z fz

imgfs Ifzt JEsJ
(f .g)z f (gz)

zir 7r.(z,)
7FZ 7r. (z)

(f1 g)z (fz,gz)
f St img[f iI]t

(fg)z (fz)(gz)
(p- -;g) if pz then fz else gz
curryf [f.].Tr

uncurryf f.aicOp,(d.,-) (d, A[,r-pd,]))
iter[y-,fII (v - iter[y -f : Id).f

TABLE 7. Non-primitive Intensional Operations

Opierator Oaflnitin

while[pj] p - iter[p -f]; Id
f V, while[~o.., (f. [Idfla] II .,).A].(i,)

V- while[no.a, 1+11fI.(0,)vf @. [Idil]
IdIlIlJIM

extend(t,f) Edomt -, t4; f
restrict(s,7) img[i. Idiff .Als

join, tie, composition, and restriction), this small set of operations is insufficient for

general purpose programming. These remarks also apply to Childs' reconstitutcd

definition of relations [Childs69], which is also oriented towards data bases. Feldman

and Rovner [Feldman69] augmented Algol with several relational operators for associa-

tive access to a data base. Their operations, which are our plural description and

image, are quite limited, being based on a traditional von Neumann language.

-65-

J1'..*-' ' - . %., , ."* .,.'--

RELATIONAL PROGRAMMING

* One general purpose language that does make extensive use of sets and relations is

SETL [Kennedy75]. It provides most of the familiar operations on sets (e.g., union,

:: intersection, difference, powerset, image). SETL differs from relational programming

*' in three significant respects: (1) it can only handle finite sets, (2) many operations

* must still be performed in a word-at-a-time fashion using the set former, and (3) it

resorts to conventional control structures.

-, Finally, we must mention logic programming systems, such as PROLOG [Kowalski79,

vanEmden76], which use predicate logic to describe computational processes. These

*systems also differ from relational programming in two significant respects: (1) they

" have a word-at-a-time programming style due to the use of variables representing indi-

viduals in the clauses of the program, and (2) they are implemented using a resolution

theorem prover, whereas a more conventional procedural implementation suffices for

relational programming. Essentially the same remarks apply to Popplestone's i ela-

.1 tional programming [Popplestone79], which is like logic programming except that it

uses "forward inference" rather than "backward inference."

In summary, no other programming style that we are aware of combines the univer-

sal use of relations with a rich set of operations on those relations that can be imple-

mented in a deterministic, procedural way. It is hoped that the preceeding discussion

has made plausible some of the advantages claimed for relational programming in the

Introduction. Considerable work remains to be done in evaluating the effectiveness of

a relational calculus as a programming tool. For instance, the optimum set of combi-

nators and relational operators must be selected. Another non-trivial problem is the

selection of a good notation for the relational calculus. More from convenience than

conviction we have based our notation on [Whitehead70] and [Carnap58]. Making rela-

tional programming an effective tool will require designing a notation that combines

readability with the manipulative advantages of a two-dimensional algebraic notation.

This is all preliminary to any serious considerations of software or hardware implemen-

tation techniques.

-66-

RELATIONAL PROGRAMMING

21. Heferenec

[Backus78] Backus, J. Can programming be liberated from the von Neumann style? A

functional style and its algebra of programs, CACM 21, 8 (August 1978), 613-641.

[Carnap58] Carnap, R. Introduction to Synbolic Logic and its Appications, Dover,

1958.

[Childs6g] Childs, D.L. Feasibility of a set-theoretic data structure based on a reconsti-

tuted definition of relation. IFIP 68 Proceedings, 420-430, North-Holland, 1969.

[Codd7O] Codd, E.F. A relational model for large shared data banks, CACM 13, 6 (June

1970), 377-387.

[Curry58] Curry, H.B., Feys, R. and Craig, W. Cbmbinatory Logic, I, North-Holland,

* Amsterdam, 1958.

[Feldman69] Feldman, J.A. and Rovner, P.D. An Algol-based associative language, CACM

12, 8 (August 1969). 439-449.

[Futaci82] Futaci, Suha. Representation Techniques for Relational Languages and the

Worst Case Asymptotical Time Complezity Behaviour of the Related Algorithms,

MS Thesis, Computer Science Department, Naval Postgraduate School, June 1982.

[Kennedy75] Kennedy, K. and Schwartz, J. An introduction to the set theoretical

language SETL, J. Comptr,. and Math. th Applications 1 (1975), 97-119.

[Kowalski79] Kowalski, R. Algorithm = logic + control, CACM 22, 7 (July 1979), 424-436.

[Henderson76] Henderson, P. and Morris, J.H., Jr. A lazy evaluator, Record 3rd ACM

S*mp. on Prinmcples of Programming Languages, 1976, 95-103.

[Henderson80] Henderson, P. Functional Programming Application and Implementa-

tion, Prentice-Hall, 1980, 223-231.

[MacLennan73] MacLennan, B.J. Fen - an axiomatic basis for program semantics, CACII

18, 8 (August 1973), 468-474.

-67-

t 'i "" ',,' '; '€,, -' '. ;,', - - . _: =..-=

RELATIONAL PROGRAMMING

[MacLennan75] MacLennan, B.J. Semantic and Syntactic Speciflcation and Extension

of Languages, PhD Dissertation, Purdue University, December 1975.

[MacLennan8la] MacLennan, B.J. Introduction to Relational Programming, Proceedings

*: of the 1981 Conference on functionaL Programming Languages and Computer

Architecture, ACM, October 18-22, 1981, 213-220.

[MacLennanflb] MacLennan. B.J. Programming with a Relational Calculus, Naval Post-

-* graduate School Computer Science Department Technical Report NPS52-81-013,

September 1981.

*: [MacLennan82] MacLennan, B.J. A Simple, Natural Notation for Applicative Languages,

SIGPLAN Notices 17, 10 (October 1982), 43-49.

[MacLennanB3] MacLennan, B.J. Overview of Relational Programming, SIGPLAN Notices

18, 3 (March 1983), 36-45.

' [Popplestone79] Popplestone, R.J. Relational programming, in Hayes, J.E. et al. (eds.),

MaZchina InteUigence 9. Halsted Press, 1979, 3-26.

5[Schwartz75] Schwartz, J. Automatic data structure choice in a language of very high

level, CACM 18, 12 (December 1975), 722-728.

[vanEmden76] van Emden, M.H. and Kowalski, R.A. The semantics of predicate logic as

a programming language, JACM 23, 4 (October 1976), 733-742.

[Whitehead7O] Whitehead, A.N. and Russell, B. Principia Mathematica to *56, Cam-

bridge, 1970.

-68-

," "-*,, "%- ,""* .-- ,-*'".*" %. ."."." - ,-, . ,' , ," ,'. , ", .". ." .". . ".". . . "- . " •.. "., ,,

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration1
* Code 012A

Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52Hq 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Professor Bruce J. MacLennan, Code 52NI 12
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Dr. Robert Grafton1
Code 433
Office of Naval Research
800 N. Quincy
Arlington, VA 22217

Dr. David Mizell1
Office of Naval Research
1030 East Green Street
Pasadena, CA 91106

>5'Mr. John Backus 1
IBM Research
5600 CottleARoad

Professor Peter Henderson1
Department of Computer Science
SUNY at Stony Brook
Long Island, NY 11794

Dr. Olle Olsson
Department of Computer Science
University of Uppsala
Box 2059
S-750 02 Uppsala
Sweden

1 -69-
.. .* * ~ %

Dr. Sueo limori
Department of Mathematics
Faculty of Education
Saga University

-~ Saga City, 840
Japan

Professor Maurice Clint
Department of Computer Science
The Queen's University of Belfast
Belfast BT7 iNN
Northern Ireland

Professor Christopher Holt
Department of Computer Science
The Queen's University of Belfast
Belfast BT7 INN
Northern Ireland

Professor D. A. Gustafson
Department of Computer Science
Fairchild Hall
Kansas State University
Manhattan, KS 66506

Professor Richard T. Snodgrass
Department of Computer Science
The University of North Carolina

at Chapel Hill
New West Hall 035A

2 Chapel Hill, NC 27514

Mr. William Bex
726 Cowper St.
Palo Alto, CA 94301

Professor Satish Thatte
Department of Computer

and Conmmunication Sciences
221 Angell Hall
435 South State
The University of Michigan
Ann Arbor, MI 48109

Dr. Michael Wise
Department of Computer Science
University of New South Wales
P.O. Box 1
Kensington NSW 2033
Australia

A

-70-

: ... - - -° . . i I . . ,: _ . . " _.. ..*. .- . ."

Professor Horst Kremers
Department of Geodetic Science
Stuttgart University
Keplerstrasse 11
D-7000 Stuttgart 1
Federal Republic of Germany

Professor Harvey Abramson
Department of Computer Science
The University of British Columbia
2075 Wesbrook Mall
Vancouver, B. C. Canada
V6T 1W5

Dr. M. Sintzoff
Philips Research Laboratory
2 av. Van Becelaere
1170 Brussels
Belgium

Mr. A. Finelli
Universite de Paris VI
Bibliotheque Informatique Recherche
4 Place Jussieu, Tour 55
75230 Paris Cedex 05
France

Mr. W. H. Fisher
Engineering Research Center
Western Electric
P.O. Box 900
Princeton, NJ 08540

Dr. Mehdi Jazayeri
Synapse Computer Corporation
801 Buckeye Court
Milpitas, CA 95035

Professor P. Raulefs
Universit t Kaiserslautern
Fachbereich Informatik
Postfach 3049
D 6750 Kaiserslautern
West Germany

Professor John Conery
Department of Computer and Information Science

University of Oregon
Eugene, OR 97403

-71-

: ,, " ' - , ,-, . -. .. -.- . ,. . -. -

. . -., _ # ,;, ; :i ; -' .w W . - -. -' _ < . *- ' . .. - - -- - -- -- '. -;--. -.-. • -.---. - . -.

!1

Professor S. Ceri
Laboratorio di Calcolatori
Departimento di Elettronica
Politecnico di Milano
20133 - Milano
Italy

Mr. Mark Himmelstein
1323 Tulip Way
Livermore, CA 94550

Professor Werner Trattnig
ERL 457

* .: Computer Systems Lab.
Stanford Unviversity
Stanford, CA 94305

Professor Rodney Farrow
Computer Science Department
Columbia University
New York, NY 10027

Professor Mark Linton
Computer Science Department
Stanford University
Stanford, CA 94305

CDR Mike Roth
Naval Data Automation Command
Code 40
Washington Navy Yard
Washington, D.C. 20374

Dr. Ted Glaser
849 Berkeley St.
Santa Monica, CA 90403

I
-72-

FC - p ED

11=8

I 4'

6d

