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Symmetric Set Theory
A General Theory of Isomorphism, Abstraction, and Representation
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Abstract:

e It is possible to represent a finite sct of points (atoms) by a finite sequence of points, However a
finite set of points has no distinguished member and therefore it is impossible to define a function which takes
a finite sct of points and returns a ﬁrsl');oinl in that sct. Thus it is impossible to represent a finite sequence
of points by a finite sct of points. ‘The theory of symmetric sets provides a framework in which this
obscrvation about sets and sequences can be proven. The theory of symmetric sets is similar to classical
(Zermello-Fraenkel) set theory with the exception that the universe of symmetric sets includes points
(ur-clements). Points provide a basis for general notions of isomorphism and symmetry. The general notions
of isomorphism and symmetry in turn provide a basis for natural, simple. and universal definitions of
abstractness, essential propertics and functions, canonicality, and representations. It is expected that these
notions will play an important role in the theory of data structeres and in the construction of gencral
techriques for reasoning about data structures.
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1. INTRODUCTION

Finite scts of points can be represented by finite lists of points, but it is impossible to represent finite
lists of points with finite sets of points. This is because a set of points has no distinguished member and
therefore it is impossible to define a function which maps a sct of points to a "first” point in that sct. While
this simple obscrvation scems straightforward and correct, it is very difficult to prove. What is meant by
“represent” or by "a distinguished member"? Intuitively a list has more structure or contains more
information than a set. But what does this mean? One approach to defining the mecaning of
“representations”, "distinguishcd members” and "more structure” is to study the gencral naturc of
mathematical objects (such as sets and sequences). One approach to the general nature of mathematical
objects is set theory. Symmetric set theory is a new sct theory which provides simple universal definitions of
the above notions.

Currently the most widely studied formal theory of mathematics as a whole is Zermello-Fracnkel set
theory (ZF) and its variants. The primary difference between ZF sct theory and symmetric set thcory involves
points. A point is an object which has no members (and is thus not a set). In ZF set theory there is only one
point (the null sct) while symmetric set thcory requires the existence of many points. The following
discussion of this issuc is from the introduction to Foundations of Sct Theory by Fracnkel, Bar-Hillel, and
Levy [Fraenkel et. al. 58] (they refer to points as individuals).

Let us refer to thosc elenents which have members as sefs and to those clements which have no
members as individuals. ...

The existence of at least onc individual is called for by both philosophical and practical reasons.
... Letus, however, stress that referring to one of the individuals as the null sct is done only for reasons
of convenience and simplicity, and can be regarded as a mere notational convention.

Having decided that we need an individual we now face the question of whether we need more
than one individual. It turns out that for mathemagtical purposes there scems to be no real need for
individuals other than the null set. ‘Therefore we shall not admit any such individuals into ZF.

While it is true that most mathematics can be done in a framework where the null set is the only
point there arc notions which are best defined in a framework where many points are present. For example
cvery mathematical object seems to have a natural notion of isomorphism associated with it. There is a
natural notion of what it means for two Turing machincs, or context free grammars, or topological spaces to
be isomorphic. ZF set theory provides no satisfactory general notion of isomorphism. ‘The terms
"representation”, "distinguished clement”, and "more structure” are very hard to define in a framework

where only one point is present.  However these notions can be given simple universal definitions in the
presence of many points. '
‘The notion of isomorphism can be approached from two different directions. The first is to extend

-t e

standard notions of isomorphism for particular types of objects to a notion of isomorphism for arbitrary sets
(\ which are built up out of points. 'This type of isomorphism will be called a structural isomorphism, ‘The

= 4

sccond approach to the notion of isomorphism is o consider the symmctries (automorphisms) of a universe
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<U €. A pair <U €> is a universe of objects where U is a universal domain and € is a binary relation on U
where x€y is read “x is an element of y”. A point of <U €5 is an clement p of U such that there is no x in U
such that x€p. 'The universe of symmetric sets has lots of points and lots of u(xlomorphimns. In particular
there is a natural one to onc correspondence between the the permutations of the points of <U €> and the
automorphisms of <U €> (since ZF sct theory allows only onc point there are no non-trivial symmetries of
<U €> in ZF sct theory). In the theory of symmetric sets it can be shown that two objects x and y are
structurally isomorphic just in case there is an automorphism (a symmetry) of <U €> which maps x to y. This
result justifies the intuition that isomorphic objects are indistinguishable,

Philosophers of mathematics have observed that mathematical descriptions of structures such as the
natural numbers do not determine the identity of those structures [Benacerrat 65). ‘The best one can hope to
do is to determinc identity "up to isomorphism”. The theory of symmetric scts reflects this observation. A
specification for a particular object x might be a sentence P such that &(y) holds just in case y is x. However
consider any first order formula @ of one free variable whose only non-logical symbol is €, If x and y are
isomorphic objects then there is a symmetry of <U € which maps x to y and thus &(x) holds in <U €D just in
casc @(y) holds in <U €>. Thus if there are several different objects which are isomorphic to x then no such
sentence @ can name x. In the theory of symmetric scts (hcrc.arc always many objects which are isomorphic
to x.

The theory of symmetric sets provides a simple and natural measure of the "abstractness” of objects.
A more abstract object is an object with "less structure”. A precise definition of this notion can be
approached in three different ways. First the symmetries of the universe of symmetric scts greatly restricts the
predicates and functions which can be defined in terms of the structure of <U €. A function FF will be called
essential if it commutes with any symmetry (automorphism) of <U €, i.c. for any symmetry p of <U €> and
any element x of U, p(F(x)) must equal F(p(x)). Given two clements x and y of U there may not exist any
essential function F which maps x to y. For example thete is no essential function which maps a set of points
to an clement of that set. An object y is called an abstraction of an object x just in case there is an essential
function F which maps x to y. This notion of abstraction can also be approached by studying the symmetrics
of particular objects. The symmetry group of an object x, denoted A(x). is the set of all automorphisms of
<U €> which leave x fixed. The notion of an abstraction can also be delined by saying that y ts an abstraction
of x just in case A(y) contains A(x). A third approach to the notion of abstraction is via the notion of
contextual isomorphism and the general notion of a “canonical” object. 'Two objects x and y are said to be
isomorphic in the context of / just in case there is a symmetry of 7 which maps x 10 y. For example consider a
circle and two points p and q which arc in the same plince as the circle. ‘The points p and g arc isomorphic in
the context of the circle just in case they are the same distance from the center of the circle, An object y is said
to be canonical in the context of an ohject 2 just in case the isomorphisin class of y in the context of 7, Iyl,_. is a
singleton set (there is no canonical point on a circle or canonical corner on a square). It turs out that y is an

abstraction of x just in case y is canonical in the context of x,

Given the above notion ol abstractness it is possible to provide a precise notion of "gepresentation”,

FFor example finite sets can be represeated as tinite sequences because there is an essential function which
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1. INTRODUCTION -3 August 1983

maps any sequence to to the corresponding set. However it is casy to show that there is no esscntial function
which maps finite sets of points to finitc scquences of points. Thus sequences can not be represented as sets,

Mathematics is often done in the framework of some fixed but arbitrary context. Intuitively a
context is a collection of objects which are taken to be fixed during the course of a mathematical discussion.
The natural numbers, the real numbers, and the empty sct are all usually assumed to be fixed objects even
though their "true identity” can not be specified. The result relating essential functions, symmetry groups,
and canonical objects can be gencralized to account for context,

In addition to the different treatment of points there 1s another less important distinction between
symmetric set theory and ZF sct theory. The axioms of ZF set theory are (an infinite number of) sentences of
first order logic while the axioms of symmetric sct theory are precise conditions on the universe <U €> which
arc stated in English rather than first order logic. Thus symmetric sct theory avoids all of the clumsiness of _
first order logic. Furthermore it is shown in an appendix that a simple extension of the axioms of symmetric
sct theory specify the structure of <U €> up to isomorphism, something which could never be donc in first

order logic.
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2. THE AXIOMS OF SYMMETRIC SET THEORY

In deciding on axioms for a universe of mathematical objects there are several considerations. First
the axioms should be as clear, simple, and natural as possible. Sccond, since ZI- sct theory is well established
the axioms should not differ unnccessarily from ZF sct theory. Finally, and most interestingly, the axioms
should provide a basis for defining universal notions of isomorphism, abstraction, and representation.
However one should not expect to immediately see how the axioms of symmetric set theory provide a basis
for general notions of isomorphism, abstraction, and representation. These notions can be defined only after
the consequences of the simple set theoretic axioms have been investigated.

No proof of the consistency of the axioms of symmctric sct theory is presented in this section.
However it is shown in an appendix that the consistency of the axioms is cquivalent to the existence of a
strongly inaccessible cardinal. The appendix also shows that any universe satisfying the axioms is determined
up to isomorphism by a "height” and a "width" where the hcight can be any strongly inaccessible cardinal
and the width can be any cardinal at least as large as the height. Thus if there are strongly inaccessible
cardinals then there are many different (non-isomorphic) universes satisfying the axioms. There is however a
unique (up to isomorphism) minimal universe <U €> whosc height and width are both the least strongly
inaccessible cardinal. Throughout the following sections however the universe will be taken to be some fixed
but arbitrary modecl of the axioms.

2.1. The Nature of the Universe <U €>

The universe of symmetric sets is taken to be a pair <U €> where U is some domain and € is a
binary relation on U. Some clements of U can be thought of as scts in the standard way. For example
consider the pair <U € given as follows:

Uistheset {abcde f}. The relation € is given by:

a€d b€d c€d
a€e b€e
a€f c€f

In this situation a, b, and ¢ are points.

Definition: A pointis an clement p of U which has no members, i.c. x€p for all x in U,

In the above example the element d represents the set {abc}. ¢ represents the set {a b}, and €

represents the set {ac}. Note that the relationship between d and the set {a b e} is given by the relation €
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and can not be defined purely in terms of the set U or the clement d. Not all subscts of U need have
representations in U. In the above example there is no representation for the set {c f}.

Definition: A subsct C of U is represented in <U € just in casc there is an clement z of U
such that x€z just in case x is in C; in this casc z is called a representation of C.

It is important to note that the notion of representation expressed in the above definition is not the
same as the notion of representation intended in the title of this paper. A more general notion of
representation will be presented section four. However in this scction the term “representation™ will be used
only in the sense given in the above definition.

The axioms of the theory of symmetric scts imply that the universe U is not empty. While a special
axiom to this effect is not nceded, the fact that U is not empty will be emphasized with an explicit axiom.

Axiom zero. U is non-empty.

The first axiom of symmetric set theory is that representations are unique.

Axiom One, Extensionality: Representations of non-empty sets are unique, ie. for any
non-empty subset C of U there is at most onc clement x of U which represents C.

The universe <U € should be thought of as containing representations for tuples, functions, and
relations as well as representations for subsets of U. For example if x and y are clements of U then z will be
called a representation for the pair <x y> just in case z represents the set {x {x y}}, or more preciscly 2
represents a set {x w} where w represents the sct {x y}. Functions and relations are represented by sets of
tuples in the standard way (or more preciscly a function is represented by a set of elements of U cach of which
represents a tuple). Again the term "r'cprcscntalion" is being used here in a different sense from that

intended in the title of the paper and a more gencral definition is given in section four.

2.2. The Comprehension Axioms

Given the above axioms it is possible that U contains only points, i.e. that no clement of U
represents a non-empty subset of U. Axioms that require that certain non-cmpty subscts of U be represented
in <U €> arc called comprehension axioms. The first comprehension axiom makes use of the following

definition:

Definition: A subsct C of U will be called small just in case there is some subset C' of U
which is represented in <U € such that the cardinality of C" is as big as the cardinality of C.
A subset C of U which is not small will be called large.
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By definition every subsct C of U which is represented in <U €) is sinall. However it has not been
guaranteed that every small subset of U is represented in <U €. This is the first comprehension axiom.

Axiom Two, Strong Comprehension: Every small subsct of U is represented in <U €,

The above comprchension axiom implies that the cardinality of a subset C of U determines whether
or not C is represented in <U €. If C is small then it is represented in <U €D, if it is large then it is not. This
leads to the following lemma:

Lemma 2.1: If two clement sets are small then for any small subscts C and C of U all
functions from C to C’ are represented in <U €.

Proof An ordered pair <x y> of clements of U is taken to be the set {x {x y}}. Thus if two element
scts are small any ordered pair of elements of U is represented in <U €>. Any function from C (o
C' is a set of such pairs with the same cardinality as C and is thercfore a small subset of U,
One modcl of the above comprehension axiom is a universe <U €> where U is infinite and a
non-empty subset C of U is small just in case it has less than seven members. To rule out such a universe
some further axioms are necded.

Axiom Three, Infinity: There exists an element of U which represents a countably infinite
subset of U.

Axiom Four, Power Set: 1If a subset C of U is small then any subset of U with the cardinality
of the power st of C is also small.

Axiom Five, Union: A small union of small scts is small, i.e. for any family F of subsets of U

if F is small (has cardinality less than or cqual to some small subset of U) and if each set in F

is small then the union of all sets in F'is also small,

There is one final comprehension axiom which does not correspond to any axiom of ZF sct theory.
This final axiom will turn out to be important in later sections.

Definition: P(U) is the sct of all points in <U €,

Axiom Six, Point Comprehension: P(U) is large.

This axiom implics that for any small subsct C of U there is a set of points C' which is the same size
as C. Since both C and C’ are small lemma 2.1 implics that the bijections (one to one onto functions) from C
to C’ are represented in <U €>. ‘Thus any small set can be "identified” with a set of points.
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2.3. The Foundation Axiom

The Foundation axiom is the final axiom of the theory of symmetric sets. It states that there are no
infinitcly decreasing membership chains,

Axiom Seven, Foundation: There is no infinitely decreasing sequence of clements of U, i.e.

there is no infinite sequence x| 3 x23x33

The foundation axiom has important implications. It implies that there is no element x of U such
that x€x (otherwise the infinite sequence all of whose elements were x would be an infinite decreasing

sequence). In fact there can be no containment loops, i.c. no sequence x| €x5€ ... x, such that xp€xp. The

n
foundation axiom is equivalent to the statement that every subsct C of U contains a lower bound under €, i.e.”
any subset C of U contains a lower bound x such that there is no y in C such that y€x. The foundation axiom

can also be characterized in terms of the transitive closure of €.

Definition: 'The binary relation € * is defined to be the transitive closure of €, i.c. for any

two elements x and y of U, y€ *x just in case y€x or there is some finite sequence 7}, 2y,

7, such that y€z; €2,€ ... zn€x.

The foundation axiom ensures that the relation €1 is a partial order on U and that €1 is well
founded. The fact that €1 is a well founded partial order on U allows one to define functions on U by
recursion on € T, For example it is possible to define a function P which maps every clement of U to its
underlying set of points. This function is defined by recursion on € *+ as follows:

Definition of the function P:
P(g) = {q} for any pointq
P(x) = UyExp(y) for any non-point x

Thus for any element x of U we can talk about the points P(x) of the ¢lement x. Note that P(x) is
always a subsct of U rather than being any particular element of U (in fact P(x) is always a subsct of P(U), the
set of all points). It is not immediately obvious that for any element x of U the set P(x) is small and therefore
represented in <U €. However this does follow from the axioms preseated so far.

Theorem 2.2: For any clement x of U, the set P(x) is small,

Proofi  The proof is by induction on € *, Fora point p the sct P(p) is just {p} which is clearly
small. Now consider any clement x of U which is not a point and such that for every y such that

13 *y, P(y) is small, P(x) equals the union over y€x of P(y) and therefore P(x) is a small union of
stnall scts and must be small. -

e e Y- AP TP e i £
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3. ISOMORPHISMS

A point is that which has no part.
- Euclid

It scems that every preciscly defined object has a natural notion of isomorphism associated with it.
For cxample graphs, context free grammars, Turing machines, and topological spaces all have a natural
associated notion of isomorphism. Al of these notions of isomorphisin are based on identifications between
the points of one object and the points of another. This observation motivates a notion of structural
isomorphism defined for arbitrary elements of the universe <U € of mathematical objects.

Itis intuitively clear that isomorphic mathematical objects are in some sense identical. The strongest
sense in which two elements x and y of U can be identical is if there i some symmetry (automorphism) of
<U €> which maps x to y. It turns out that under the aforementioned notion of structural isomorphism two
objects are structurally isomorphic just in case there is a symmetry of <U €> which maps onc to the other.

‘The notion of isomorphism can be generalized to take into account an arbitrary but fixed context,
At one level any two points p and q are isomorphic. However if p and g appear in some fixed context then p
and g need not be considered somorphic. For example p and q are isomorphic in the context of the set
{p q {rs}} but they are not isomorphic in the context of the set {p {q r}}. It turns out that for any clement z
of U which is taken as a fixed context there is a natural and general definition for when two clements of U are
isomorphic in the context of z.

The universe <U € is intended to be a model of the universe of all mathematical objects. For this

reason the term "object” will be used as a synonym for the phrase "an clement of U”,

3.1. The Symmetries of <U €>

An automorphism or symmetry of <U €> is a onc to on¢ onto map p from U to U {a permutation of
U) such that for any x and y in U, p(x)€p(y) just in casc x€y. [t can be shown that for any symmetry p of
<U €> and any object x, p(x) is a point just in casc x is a point. Thus for any symmetry p of <U €> the
restriction p]P(U) of p to the points P(U) is a onc to one onto map from P(U) to P(U), i.c. pIP(U) is a
permtation of P(U). 'The first important theorem concerning the symumetries of <L €3 is that cach synunetry

is determined by its corresponding permutation of P(U).

Theorem 3.1 1f p and p’ are two symmetrics of <U € such that p|P(U) equals p’|P(U) then

p equals p.
Proofs The proofis by induction on €1, By assumption p and p’ are the same function on points,
Consider any x i U such that pand p” have the same value on all dlemients y of U sach that y€ Ty,

Since popresenes the membership relation the set represented by p(x) cquals {p(v): yEx}.
Sitatharly the setrepuesenivd by p'tn) equals {p'(y ) yCxb But sinee pand p* are the same function
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on all y€+x. p(x) and p’(x) must represent the same set. Thus by cxtcn‘sionality p(x) must cqual
p'(x).
Any symmetry of <U € dectermines a permutation of P(U) and theorem 3.1 shows that the induced
permutation of P(U) uniquely determines the symmetry. It can also be shown that every permutation of P(U)

corresponds to a symmetry of <U €D,

Theorem 3.2: Any permutation p of P(U) can be extended to a symmetry of <U €.

Proof: Let p be any permutation of P(U). The extension of p to all of U is defined by induction on
€% viathe following relation:

p(x) = the representation of {p(y): y€x}

The set {p(y): y€x} is guaranteed to be represented in <U €> because it can be no larger than the
set represented by x. 1t follows from the above equation that if y€x then p(y)€Ep(x) and further if
p(y)Ep(x) then y€x. It remains only to show that the extension of p o all of U is one to one and

onto. Consider the inverse pcrmutation p'l of P(U) and the extension of this inverse to all of U. It
can be shown by a standard induction on €%t that p'l(p(x)) cquals x for all x in U and thus the
extension of p is one to one. Similarly it can be shown that p(p'l(x)) must cqual x and thus the
extension of p is onto.

Theorems 3.1 and 3.2 imply that there is a natural one to one relationship between the permutations
of the points P(U) and the symmetrics (automorphisms) of <U €>. In classical set theory there is only one
point and there is only one symmetry of <U €>, namely the identity function.

If there is a symmetry of <U €> which maps x to y then x and y are truly indistinguishable. More
concretely let ® be any first order formula of one free variable whose only non-logical symbol is €. 1f there is
a symmetry of <U €> which ‘maps x to y then &(x) holds in <U €> just in casc ®(y) helds in <U €D,

‘Theorem 2.2 says that for any object x the set P(x) is small and thus P can be thought of as a
mapping from U to U. A simple induction on € * can be used to show that the mapping P commutes with
symmetrics of U €, i.e. that for any symmetry p of <U €> and any object x, P(p(x)) cquals p(P(x)).

Lemma 3.3: For any symmetry p of <U €> and any object x, P(p(x)) equals p(P(x)).

3.2, Structural Isomorphisms

There is a natural definition for what it means for two graphs. or languages, or lists of points to be
isomorphic. All of these objects can be represented by elements of U and it would be nice if the notion of
isomorphism which is defined for clements of U corresponded to the natural notion of isomorphism for such
objects. ‘This ohservation leads to the definition of structurel isomorphism presented below.

Any two points have the same structure simply because neither has any structure. Farger objects are
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structurally isomorphic just in case there is an identification between the points of the objects which preserves
the structure of those objects. For example let p, g, r, and s be any four distinct points. ‘The set {p q} is
isomorphic to the sct {r s}, but not the set {rsp}. In fact any two sets of puints arc isomorphic just in case
they have the same number of elements. ‘The triple <p p q2 is isomorphic to the triple <r r s> but not to the
triple <rs s>,

To define the notion of structural isomorphism precisely it is nccessary (o build up some
terminology. Lt C be any sct of points. U(C) is defined to be the set of all elements x of U such that P(x) is a
subsct of C. Thus U(C) is the set of objects which are built up out of the points in C. Let p be any function
mapping C to arbitrary points. Any such function p can be extended to a function p* defined on all of U(C)

via the following inductive definition:
p'(p) = p(p) for points p
p'(z2) = The representation of {p'(y): y€z} for any non-point 2 in U(C).

For example if p(p) is r and p(q) is s then p'(<p @>) is <r s>. Thus the function p’ "replaces” the
points of an object by their image under p. " the inductive definition of p'(z) the set {p'(y): y€z} is
guaranteed to be represented in <U € because it can be no larger than the set represcated by z. In the
following discussion any function p defined on the points C will be assumed to be defined in the above way
on all of U(C).

Definition: A structural isomorphism between two clements x and y of U is a bijection p
from P(x) to P(y) such that p(x) equals y (any function defined on P(x) will be assumed to be
defined on x via the above relation). ‘The elements x and y are said to be structurally
isomorphic just in case there cxists a structural isomorphism between them.

As an cxample let a group <G > be a pair of a sct of points G and a function ° from GXG 10 G
satistying the standard axioms for a group. Notice that P(CG ¢>) cquals G. Now consider two groups <G o>
and <G’ *" and let p be any bijection from G to G'. Clearly p(G) equals G’ so p(<G °>) equals <G' p(°)>.
Thus the bijection p is a structural isomorphism between <G > and <G’ ™ just in case p(°) equals ©*. Since
funciions arc represented by scts of tuples an element of o is a triple of points <p ¢ > where r is the value of
peg. Thas p(°) is a set of triples of the form <p(p) p{q} p(r)>. The sct of triples p(°) will equal the set of
triples @ just in case for any triple <p g r> in e the triple <p(p) p(q) p(r)> is in °', i.e. just in casc p(r) cquals
p(p)o’plq). This statement is equivalent to the cendition that p(p)e’p(q) equals p(peq) which corresponds to
the standard notion of isomaerphism between groups,

The notion of a structural isomorphism can be related to the symmetries of <U €. Tt has alrcady
been shown that there is a natural one to one correspondence between the antomorphisms of <U €> and the
permutations of P(U). ‘The following theorem relates bijections between sets of points and permutations of

PU).
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Theorem 3.4 Any bijection between two small sets of points can be extended 1o a
permutation of all of P(U).

Proof Sketch: 1et C and C be any two small scts of points and let p be any bijection from Cto C'.
Let p be any member of cither C or C'. Since C and C” need not be disjoint p may be in both C and

C’ and thus both p(p) and p'l(p) may be defined. In general any point p in either C or C is

contained in somc minimal chain of the form ... p'](p'l(p)).p'l(p). p. p(p). p(p(p))... (more
preciscly the minimal chain containing p is the least subset of CUC” which contains p and is closed

under p and p']). The minimal chain containing p can be one of four types. First it might be a
loop, in which case p is already a permutation of the minimal chain containing p. Second it might
be infinite in both direction in which case p is also alrcady a permutation of the chain. Third the
chain may have a "first” member which is in C but not in C and a last member which is in C” but
not in C. Finally the minimal chain containing p may have only one endpoint, cither a starting
point or an ¢nding point. In these cases p is not a permutation of the minimal chain containing p.
To remedy this situation one can extend the function p to more points and convert any chain of the
these last types into cither a cycle or a chain which is infinite in both directions. To make such an
extension there must be enough points in P(U) which are not in C or C. But since both C and C
arc assumed to be small this last condition can be readily shown.

The main result of this section can now be proven,

Theorem 3.5 Two clements x and y of U are structurally isomorphic just in case there is a
symmetry of <U €> which maps x to y.

Proofi  If x and y arc structurally isomorphic then there is a bijection p from P(x) to P(y) which
maps X to y. Any extension of p to more points will still map x o y. Thus theorem 3.4 implics that
p can be extended to a permutation of P(U) which maps x to y. On the other hand if there is a
pennutation p of P(U) which maps x to y lemma 3.3 implics that P(p(x)) equals p(P(x)) so p(P(x))
cquals P(y) and thus p maps P(x) onto P(y). Thus the restriction of p to P(x} is a bijection from P(x)
to P(y) which maps x to y.

T".eorem 3.5 demonstrates that the two natural notions of isomorphism between syminetric scts

coincide, Thus there is never any ambiguity in what is meant by two elements of U being isomorphic.

3.3. Symmetry and Contextual {somorphisms

Since there is a natural notion of isomorphism for clements of U there is also a natural notion of
automorphism or symmetry. For example there are two structural symmetries of {p q}. the identity map on
the points p and q and the function which exchanges p and q. Since any structural isomorphism can be
eatended to a symmetry of <U €D there is no need to distinguish between structural isomorphisms and

permutations of P(L).

Definition: “The symmetry group of an object x, denoted A(x), is the sew of all permutations
p of PCLY) such that p(x) equals x.

‘I here is a contextual notion of isomorphism where two objeets X and y are isomorphic in a context 7
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justin case x and y bear exactly the same relationship to 2. For example let 2 bé the set {p q {rs}} where p, q,
r, and s arc points. Clearly the point p is just like the point q with respect to z (both p and q are members of z
and neither is a member of a member of 2). Similarly the point ris just like the point s with respect to 2. On
the other hand p is not like the point r since p is a member of 7 while r is not.

As another example et y be the set {<p > <q r> <r p>}. This represents a directed graph with nodes
p. Q. and r and edges from p to . q to 1, and r to p. In other words y represents a cyclic dirccted graph of
three nodes, Notice that cvery node of y looks like every other node. More precisely y has three structural
symmetries corresponding to three rotations of the graph. For any two nodes there is a rotation which maps

one to the other.

Definition: 'Two objects x and y will be called isomorphic in the context of an object z just in
casc there is a symmetry p of z such that p(x) cquals y. The set of things isomorphic to y in
the context of z will be denoted Jyl,.
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4. ABSTRACTION, REPRESENTATION, AND OTHER APPLICATIONS

There is an informal distinction in mathematics between essential and contextual properties. For
cxample consider an open set of some topological space. The fact that the st is open is a contextual property
of that sct while the cardinality of the set is an essential property. In the framework of symmetric scts this
distinction is easily made precise. Any two isomorphic objects have the same cssential properties. An
essential predicate @ is any predicate on U such that ®(x) is cquivalent to ®(p(x)) for any object x and point
permutation p. An cssential function is one that commutes with automorphisms of <U €, i.e. F(p(x)) always
cquals p(F(x)).

In mathematics one often encounters a notion of a "canonical” or "natural” transformation or
relationship. For example a sct of points has no natural or canonical element, there is no natural or canonical”
point on a circle, and a square has no canonical corner. On the other hand one can choose a canorical
clement of an ordered pair. Once particularly well known example is the dual space of a lincar vector space.
‘The dual space IXX) of a linear vector space X is the set of lincar functions from X to scalars. If there is a dot
product operation * defined on X then there is a natural isomorphism between X and D(X) where the lincar
function associated with a vector x is Ay.x*y. However if no dot product vperation is specified for X then
while X and IX(X) are still isomorphic there is no natural or canonical isomorphism. On the other hand there
is always a canonical or natural isomorphism between X and D(XX)). A simple and natural definition for
this notion of canonical is given by saying that y is canonical in the context of x just in case the isomorphism
class of y in the context of x, |y|x. contains only onc object.

The theory of symmetric sets provides a simple general measure of the abstractness of objects. An
object ¥ can be said to be an abstraction of an object x just in case any onc of the following three conditions
held: A(y) contains A(x). lyl, is a singleton set, or y cquals F(x) for some essential function F. It turns out that
these three criterion are equivalent and there is no ambiguity in what is meant by y being an abstraction of x.

There are many representation thcorems in mathematics. For example every Boolean algebra can
he represented by an algebra of sets. Of course the notion of a representation is also heavily used in computer
science where alphabets are represented as binary codes and sets are represented as lists.  This raises the
natural question of what is meant in general by a representation. The theory of symmetric sets provides a
natural framework in which to develop a general theory of representation,

Mathematicians often talk about fixed but arbitrary structures which form a context in which to
investigate other structures. For example the natural numbers are assumed to be a fixed set even though their
“truc identity” can never be specified. The same holds for the real and complex nuinbers. Another ¢xample
of contextual objects are the fixed constants "truce™ and “false” which are used in discussions of logic, Suill
another example from logic is the fixed but arbitrary alphabet from which the sentences of logic are

constructed, Even the "empty set” can be viewed as an object which is taken to be fixed but whose identity is

never specificd. ‘The general notion of a context can be handled in a natural way in the theory ol synmmetric

ses. A context is an ohject 2 (which may have lots of internal structure) which is "taken to be fixed”. This
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means that only symmetries of z are considered when talking about isomorphisms, symmetry groups, essential

propertics, and canonical objects.

4.1. Essential Functions, Canonicality, and Abstraction

The set {p g} can be thought of as cssential property of the pair <p q@>. That is to say that given a
pair of points onc can derive in a natural way a set of two points. The reverse does not seem to hold, given a
set of two points there is no natural or canonical way to derive a pair of two points. Similarly given a pointp
there is no natural or canonical sct of two points which contains p. Conversely given a sct of two points there
is no natural or canonical clement of that set. Recall that for any objects y and z, |y|Z is the set of all things
isomorphic to y in the context of z, i.c. lylZ is the set of things which can be written as p(y) for some symmetry

pofz

Definition:  An object y will be called canonical in the context of an object z just in case lyl,
is a singleton sct.

There are many intuitive examples of objects which are not natural or canonical. There is no natural
or canonical point on the perimeter of a circle. There is no canonical corner on a square, There is no natural
or canonical coordinate system for three dimcasional space. On the other hand consider an oblique triangle
(where no two sides have the same length). One can choosc a canonical vertex for such a triangle by choosing
the vertex connecting the two shorter sides.

There is another intuitively satisfying notion of what a canonical object is. Intuitively y is canonical
in the context of z if one can define a function which takes 7 and unambiguously returns y. This notion of a
canonical object is problematic because for any two objects z and y there is a function which maps z to y.
However one wants a definable function, Remember that the universe <U €> has many non-trivial
automorphisins and every function from U to U which is defined in terms of the structure of the universe
<U €> must respect those automorphisms. In particular any function F defined in terms of the structure of

<U €> must be essential in the following sense:

Definition: A function F from U to U will be called essensial just in case for every syminctry
p ot <U €> and cvery clement x of U, F(p(x)) equals p(1°(x)).

Intuitively the image of an object x under an esseatial function F can contain no more information

than the object x itself, Thus it might be said that 1(x) is an abstraction of x.

Definition:  An object y wili be called an absiraction of an object 7 just in case y cquals F(7)
for some ¢ssential function I,

‘The main result of this section relates the the notion of canonicality, the notion of abstraction, and the

symmetry groups of objects,
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Theorem 4.1, The First Abstraction Theorem: For any objects y and z the following are
equivalent:

5

s 1) A(y) contains A(z).
2) [yl, is a singleton set.

J) y cquals I-(2) for some essential function F.

Proof!
1<=>2: If A(y) contains A(z) then for any symimnctry p of z, p(y) equals y so |y|Z contains only

y. On the other hand if |y|Z is a singlcton sct then p(y) equals y for any symmetry p of 250 A(z) is a

subsct of A(y).

1=>3: Given that A(y) contains A(z) an essential function F from U to U can be defined as
follows: Of course F(z) is defined to be y. For any w which is isomorphic to z let p be some point
permutation such that p(z) equals w and define F(w) to be p(y) (this is cquivalent to defining
F(p(z)) to be p(k(2)) for any point permutation p). 1t must be shown that this definition of Ii(w) is
independent of the choice of p. In particular if p and p’ are two point permutations such that p(z)
* cquals p'(z) cquals w then it must be shown that p(y) equals p'(y). If p(z) equals p'(z) then

p'l(p‘(z)) equals z so p'lop’ is a symmetry of z. But since A(z) is a subsct of A(y), p"op’ is a

symmetry of y and thus p'l(p‘(y)) equals y which implics that p'(y) equals p(y).

It will now be shown that for any w which is isomorphic to z and any point permutation p,
F(p(w)) equals p(F(w)). Since w is isomorphic to z there is some point permutation p’ such that w
cquals p'(z). Now F(p(w)) equals F(pep'(z)) which equals pep'(F(z)) which cquals p(p'(F(2))
which cquals p(1(p’(z)) which cquals p(F(w)). Thus for any w isomorphic to z F satisfics the
condition for being an essential function. ‘To complete the definition of F let F(w) be w for any w

not isomorphic to z.
: 3=>1: Suppose F is an essential function such that F(z) equals y and lct p be any symmetry of

z. Since F is an cssential function p(F(2)) equals F(p(z)) which equals F(z). Thus p is a symmetry
of F(z), i.e. p is a symmetry of y. Thus A(y) contains A(z).

4.2. Abstraction and Poi_nts

The notion of abstraction has some important relationships to points, The first lemma about points

concerns the isomorphism classes of points in the context of an object x.

B S et~ Sermeemrg or v peg ptoqet

Lemma 4.2: For any object x and point p, |pl, is either a subsct of P(x) or is all of P(U)-P(x).

Proof.  For any symmctry p of x. p(P(x)) cquals P(p(x)) equals P(x). Thus any symmetry p of x
induces a permutation of P(x). Thus for any point p in P(x). “’lx is a subsct of P(x). On the other

hand for any two points r and s which arc not in P(x) there is a symmetry of x which exchanges r
ands. ‘Thus if ris not in P(x) then Irlx contains all of (U)-P(x). Furthermore for r not in P(x), Mx

can not intersect P(x) since otherwise there would be some point p in P(x) such that |p}, was nota
subset of P(x). Thus cither p is in P(x) and [p], is a subsct of P(x) or p is not in P(x) and Ipl, cquals ;

PU)-P(x).

Corollary 4.3: For any object x and point p, p is in P(x) just in case lplx is small,
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Corollary 4.3 immediately implics that for any object x the set P(x) it determined by the symmetry
group of x. In fact Corollary 4.3 Icads directly to the following thcorem:

Theorem 4.4 For any objects y and x, if y is an abstraction of x then P(y) is a subset of P{x).

Proof: 1.ctp be any point in P(y). Since A(y) contains A(x), Iply contains |p|,. But by Corollary 4.3
Iply is small so lplx must also be small and therefore p must be in P(x).

Theorem 4.4 immediately implies that for any for any cssential function F and any object x, P(F(x))
is a subsct of P(x). It is important to realize that the converse of theorem 4.4 docs not hold, i.e. if P(y) is a
subsct of P(x) then y nced not be an abstraction of x. For example {p q} is not an abstraction of {p q r}.

4.3. Representation and Transformational Isomorphisms

Any finite sct of points can be represented by a finite list of points though there is no canonical
representation for a set of points as a list of points. More precisely there is an essential function I which maps
any finite list of points to the finite set of points contained in that list and any finite sct y can be written as
F(x) for some finite list x. Note that the function F is from the representations to the represented objects.
Also note that the function from represcntations to represented objects is onto, i.¢. cvery object which is to be
represented must have a representation.  These observations Icad to the following definition of a uniform

representation,

Definition: Let C and R be subscts of U, let F be an essential function, and let F(R) denote
{F(x) for x in R}. F is said to be a uniform representation of elements of C as clements of R
just in case F(R) contains C.

Note that lists of points can not be represented as scts of points becausce there is no essential function
which maps a sct of points to a list of those points (there is no canonical representation of a set of points as a
list). A similar cxample involves multiscts. A list of points can be used to represent a multisct of points, but
multisets of points can not be uscd to represent lists.

‘There are certain cases in mathematics where two different (non-isomorphic) things are "esscntially
the same thing”, For example an equivalence relation on a sct of points C is a relation, i.c. a sct of pairs,
which is reflexive, symmetric, and transitive. A partition of C is a family of disjoint subscts of C. Any
cquivalence relation on C can be viewed as a partition of C and vice versa. Another simple example involves

the representation of tuples. For example a tuple of points <p @> can be viewed as the set {p {p q}} or as the
sct {q {p q}}. The following definition makes the notion of "essentially the same™ more concrete.
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Definition: An cssential function F from U to U which is also a permutation of U will be
called a transformational symmetry of <U€>. Two objects x and y will be called
transformationally isomorphic just in case there is a transformational symmetry of <U €>
which maps x to y.

If two objects x and y arc transformationally isomorphic then there is a sensc in which they are
indistinguishable. More precisely the following lemma holds:

Lemma 4.5: For any transformational symmetry F there is a translation operator T which
maps any monadic essential predicate @ to a monadic essential predicate T(®) such that for
any object x, d(x) holds just in case T(®XF(x)) holds.
Progf. Since F is a permutation of U it has an inverse F! which is casily shown to be an essential
function. Let T(®) be the predicate )\w.d>(F'l(w)). Clearly ®(x) is equivalent to T(®)F(x)).
Furthermore T(®) is easily seen to be an essential predicate.

Lemma 4.5 gives a precise rclationship between objects which are transformationally isomerphic. In
particular if x and y are transformationally isomorphic via the transformational symmetry F then any esscntial
statement {or question) ®(x) concerning X is equivalent to some essential statement T(®)y) concerning y. It
turns out that two objects x and y are transformationally isomorphic just in case A(x) cquals A(y). However
the condition that A(x) equals A(y) does not ensure that there is a definable transformational symmetry F
which maps x to y.

Definition: A function F from U to U will be called definable just in case there is a first order

formula & of two frce variables whose only non-logical symbol is € such that for any two

objects x and y, ©(x y) holds in <U € just in case y equals F(x).

Consider the real numbers <R + * <> where R is a set of points, + and * are binary operations on
R, and < is a total order on R. A(KR + * <) is the group of all symmetries which leave cvery point in R
fixed (any symmetry of <R + * <> must lcave one and zero fixed). Now consider a pair <R <™ where <'is
a well ordering of the set of points R. It is easy to show that A(KR <) is also the group of all permutations
which leave every point in R fixed. Since AKKR + * <) cquals AKR <€), <R + * <) is transformationally
isomorphic to <R <™. However there is probably no definable transformational symmetry of <U €> which
maps<R + * <> to<R <.

4.4. Context

Intuitively a context is a collection of objects which are taken to be "fixed”. There are some objects
which arc taken to be fixed over all of mathcmatics. For example mathematicians often speak of “the”
natural numbers, even though' the identity of the natural numbers can not be specificd (though the structure
of the numbers can be specified up to isomorphism), The same holds for "the” real numbers, or "the”
complex plain, In logic one often assumces that there is a particular thing which is the constant “true” and a

particular thing which is the constant "false™. A more controversial example is the empty set. There are other
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examples of "context” where the context is not even specified up to isomorphism. ‘The phrase "fixed but
arbitrary” is often used in mathematical writing and serves to specify a context for a mathematical discussion.

As another example of context consider a lincar vector space. A lincar vector space has an associated
ficld (usually “the” real or complex numbers) such that any vector can be scaled by an clement of the field.
In discussions of linear vector spaces the ficld is usually taken to be fixed. Thus in relating two vector spaces
one usually assumes they have the same associated ficld of scalars.

As yet another example consider a particular first order language L. The language L. is taken to be a
scquence of typed symbols which determines a sct of well formed formulas. Such a language is usually taken
to be arbitrary but fixed in discussions of logic.

To gencralize the results of the previous section it is uscful to define the notion of a contextual

symimetry group.

Definition. The symmetry group of y in the context of z, denoted Al(y). is the sct of all
symmetries of z which are also symmetries of y. More simply A L(y) equals A(y) intersect
A(z).

Note that any symmetry of the pair <y 2> must be a symmetry of y and a symmectry of z, and
anything which is a symmetry of both y and z must be a symmetry of the pair <y 2>. Thus A(<y 2>} is the
interscction of A(y) and A(z) so Az(y) cquals A{Ky 2>). The notion of an essential function can also be made

contextual:

Definition: A function F from U to U will be called essential in the context of z just in case
for any object x any symmietry p of 7, F(p(x)) equals p(F(x)).

A good example of a contextually essential function is the cardinality function on finite sets. Let
<N <> be “the” natural numbers where N is a set of points and < is a binary relation which orders those
points. The function F which maps any finite set x to the natural number representing the size of x is essential
in the context of <N <>. Notc that this cardinality function is not essential outside of this context because
F(x) can be a point not found in x. The following lemma provides an alternative characterization of functions

which are contextually essential,

Lenvna 4.7: A function F from U to U is essential in the context of 7 just in case it can be
written as Ax.G(<x £>) for some essential function G.

Proof: If F can he written as AX.G(<x 2>) then it is casy to show that F is essential in the context of
7. On the other hand 1ssume F is essential in the context of 7. First if w is not a pair whose second
component is isomorphic to z then G(w) is defined to be w. If w is a pair whose sccond component
is isomorphic to z then w can be written as p(<x z>) for some ebject x and point permutation p. In
this case G(w), which can be written as G(p(<x 2>)), is defined to be p(1°(x)). 1t must first be shown
that G is well defined, ie. that if p(<x 7>) cquals p’(<y 22) then p(1(x)) equals p'(IF(y)). First note

that p'l(p'(<y 7)) equals <x 7> so p"(p'(y)) equals x and p'l(p'(l)) cquals 2. ‘Thus p"op‘ is a
Lop'(y)) which

symmetry of 2. Now since F is essential in the context of 7, p'lop'( F(v)) equals I(p”
equals F(x). Butif F(x) cquals p'l°p'(l-’(y)) then p(F(x)) must equal p'(F(y)).
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It follows directly from the definition of G that G(<x #>) cquals 1-(x) and thus F can be written
as Ax.G(<x 2>). To show that G commutcs with arbitrary point permutations let w be any object
b and p be any point permutation. If w can not be written as p'(<x 2>) for some x and p’ then G(w)
«w cquals w and G(p(w)) cquals p(w) so the result is trivial. On the other hand suppose w can be
written as p'(<x z>). In this casc G(p(w)) cquals G(pep'(<x 7)) which cquals pep'(F(x)) which

cquals p(G(p'(<x 2>))) which cquals p(G(w)).

The following abstraction theorem is a generalization of the first abstraction theorem.

Theorem 4.8, The Second Abstraction Theorem: For any objects x and y and context z the
following are cquivalent;

1) A (y) contains A (x)
2) |y|(x > Is asingleton set
3) y cquals F(x) for some function F which is essential in the context of z

Prooft  'The first condition is equivalent to the statement that A(<y z>) contains A(Kx 2>). The
second condition is equivalent to the statement that Ky z>l<x D is a singleton set. Finally lemma

4.7 implics that the third condition is equivalent to the statement that <y 7> equals G(<x 2>) for
some essential function G. Thus the equivalence of these three statements follows directly from the
first abstraction thcorem,

4.5, Essential Predicates

Essential functions have been shown to play an important role in characterizing the nature of
abstractions and the notion of a natural or canonical property. Essential predicates are closcly related to
essential functions and can play much the same role in constructing abstractions.

Definition: A binary predicate @ on U is called essential if for any objects x and y and point
permutation p, ©(x y) holds just in casc ®(p(x) p(y)) holds.
The relationship between predicates and functions can be made more explicit by defining a monadic
function Fq, for each binary predicate @,

Definition: For any binary predicate @ on U, Fyg, is the function from U to subsets of U such
that Fq,(x) cquals {y: d(x y)}.

For example let @ be the predicate such that @(x y) holds just in case y is a pair whose first
component is x. In this case Fg(x) is the sct of all pairs whose first component is x. Note that Fg(x) is a targe
set and thus has no representation in <U €3, Thus in general Ftb can not be thought of as a function from U
to U. The following definitions will be useful in discussing the functions associated with essential predicates.

Definition:  Let € be any subset of U, P(C) is the union over x in C of P(x). For any point
‘ permutation p, p(Q) is the set {p(x): x in C}. The symmetry group of C. denoted A(C). is
C the set of alf point permutations p such that p(C) equals C. “The isomorphism cliss JC], of €

in the context of an object 7 is the family of all sets which can be writien as p(C) for some
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point permutation p.

For any c¢ssential predicate @ the function I~‘¢ commutes with point permutations, i.c. Fq,(p(x))
equals p(lg(x)). Thus I, can be thought of as an essential function. However as the above example shows
I-'q,(x) can be large and P(Fq,(x)) can be all of P(U). Thus some of the theorems concerning cssential
functions do not apply to Fg,. However many of the results concerning essential functions can be generalized
to the functions associated with essential predicates.

Theorem 4.9, The Third Abstraction Theorem: For any object z and (possibly large) subsct C
of U the following are cquivalent:

1) A(C) contains A(z)
2) [C], is asingleton family
3) Cequals F q,(z) for some essential predicate ©.

The proof of the above theorem is analogous to the proof of the first abstraction thcorem. In
showing that 1) implies 3) the predicate @ is defined by sctting ®(p(2) p(y)) to be true for any point
permutation g and any element y of C, and ¢(w x) to be false if <w x> can not be written as <p(z) p(y)> for
soine y in C.

Esscntial predicates can be thought of as defining abstraction functions from objects to mose
abstract objects. For an cssential predicate @ and object x it does not scem very important that l~‘¢(x) may be
large, the important point is that the symmetry group of Fg(x) contains the symmetry group of x.

A good example of the use of essential predicates in defining abstractions is a muitiset. I.ct fand g
be two finite functions (they cach have a finite domain). The functions fand g will be said to represent the
same multiset if there exists a bijection ¢ from the domain of f to the domain of g such that for any x in the
domain of £, {x) cquals g(e(x)). Intuitively f and g represent the same multiset if for any range clement y, f
and g map the same number of objects onto y. Let @ be the binary predicate on U such that &(f g) holds just
in case f and g are finite functions which represent the same multiset. It is casy to show that @ is an
equivalence relation on finite functions and that Fe,(1) is the equivalence class of f under this refation. ‘The

symmetry group of Fd,(f) is not the full pcrmutation group on P(U) but is larger than the symmetry group of
. Thus Fg(f) can be thought of as the multiset abstraction of f,
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S. RELATION TO OTHER WORK

The notions of isomorphism, symmetry, and representation are ubiquitous in mathematics and
probably have numerous indcpendent origins. The relationship between symmetry and permutation groups
is also well known. This relationship has been studied in some detail and it has been shown, for example, that
not every permutation group can be represented as the symmetry group of a graph [Biggs 74]. But whilc the i
notions of isomorphism and symmectry have been cxtensively used for objects of a given type (c.g. graphs,
groups, algebras, languages, grammars) these particular notions of isomorphism do not provide a notion of

ismorphism defined over all mathematical objects.

Catcgory theory provides one gencral approach to the notion of isomorphism. A category can be
thought of as a directed multigraph with an associative composition operator © on arcs and for cach node n an

assigned “identity” arc from n to n. The nodes of a category arc often associated with sets and the arcs with
functions between these sets. Thus the arcs are called "morphisms”. An isomorphism is defined to be an arc :

p which has an "inverse” arc p'1 such that both p*’p'l and p'1°p are identity arcs [Schubert 72). Category

theory provides a general theory of isomorphism to the extent that every mathematical object can be thought
of as a node ("object”) in a category. For cxample a group can be thought of as a nodc in the category of
groups, a graph as a nodc in the category of graphs, ctc. However the category containing a given object must
be defined separately for cach type of object. In fact the category containing an object of a given type is
usually defined in terms of the notion of isomorphism (and homomorphism) for objects of that type.
Therefore category theory docs not provide any satisfying general notion of isomorphism for arbitrary
mathematical objects.

‘T'he notion of a #ype uscd in universal algebra and computer science provides another approach to a
general definition of isomorphism. An algebra is a domain together with some functions defined over that
domain. [n the universal study of algebras cach particular algebra has a fype (or signarure or language) which

is a sct of symbols which are interpreted by that algebra. For example the type of a group is the single binary
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function symbel °. ‘There is a natural definition of isomorphism for the algebras of a fixed type such that two
algebras A and B are isomorphic just in case there is a bijection from the domain of A to the domain of B

which maps A’s interpretation of any symbol to B's interpretation of that symbol.

The notion of type also plays a critical role in many modern computer fanguages [Tennant 81},

‘There is one particular outlook on the types of computer data structures which provides a basis for a notion of

isomorphism. Under this view a type is a collection of objects which can be defined in a "natural” way from a
collcction of base types. For example if A and B are base types then the sct of functions from A to Bis also a

BNt ame——

type. Similarly the set of pairs AX B of an clement of A and an clement of B is a type. As another example let
the type SubScts(AXA) be the collection of all scts of ordered pairs of clemients of the base type A. More
simply SubSctd(AXA) is the type containing all directed graphs whose nodes are members of AL Severadl

people studying such datr types and have employed permutations of the clements of base types to define a
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notion of a "natural” function between types [Aho & Ullman 79} [Dunlaina & Yap 82]. In fact Dunlaing and

>

13
¥
R
i




et e e B i e

5. OTHFR WORK o <22 August 1983

Yap implicitly use a notion of isomorphism based on permutations of the cleriients of basc types in defining
the automorphism group of an arbitraiy typed object.

While there are strong similaritics between symmetric sct theory the above mentioned work on data
types (especially that of Dunlaing and Yap) there is also an important difference. Symmetric set theory bases
the notion of isomorphism on points rather than types. When the notion of isomorphism is bascd on points
the isomorphism class of an object is an cssential property of the object and docs not depend on viewing that
object as an instance of some type (or as a member of some category). Thus it can be argued that the need for
types (or catcgories) in defining the notion of isomorphism is a byproduct of the fact that ur-clements were

left out of sct theory.
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7. APPENDIX: CONSISTENCY AND CHARACTERIZATION THEOREMS

This section contains somc results concerning the cxistence and nature of universes <U €> of
synunetric sets. 1t is shown that the cxistence of a universe <U €> of symmetric sets is equivalent to the
existence of a strongly inaccessible cardinal. It is also shown that a universe <U €> of symmeltric sets is
completely characterized by its “height” and "width"., These results provide insight into two obvious
questions.  First, are the axioms for symmeltric scts consistent?  Sccond, to what cxtent are the axioms
categorical. i.e. under what conditions are two universes isomorphic?

7.1. Consistency and Strongly Inaccesible Cardinals

There does not seem 1o be any satisfactory proof that there exists a universe of symmetric sets.
However a simple condition can be given which is equivalent to the consistency of the axioms of symmetric
sct theory. In essence the consistency of the axioms depends purely on the consistency of axioms three
through five (infinity, power set. and union). Axioms three through five characterize what is known as a
strongly inaccessible cardinal. "L hus the axioms of the theory of symumectric sets are consistent just in case there ;
exists a strongly inaccessible cardinal. This result is of interest because strongly inaccessible cardinals have
been studied in the context of Zermello-Fraenkel sct theory and it is gencrally believed that it is impossible to
prove that strongly inaccessible cardinals do not exist. Thus there is strong evidence that the theory of |
symmetric scts will never be proven inconsistent.

Definition: A sct U will be said to have a strongly inaccessible cardinality just in case it meets
the following conditions:

1) U is uncountably infinite
2) If C is a subset of U smaller than U then the power set of C is also smaller than U.

3) For any family F of subsets of U if FF is smaller than U and every member of F is smaller

than U then the union of all members of I is smaller than U.

The main result of this section will be proven in two parts. First it will be shown that any set U
which is larger than some inaccessible cardinal can be expanded to a model <U €> of axioms one through six
(the foundation axiom is initially ignored). It will then be shown that any model <U €> of axioms one

through six contains a substructure <U" €> which also satisfics axiom seven (foundation). These two results
will fead directly to the main result that a set U can be expanded to a universe <U € just in case U is larger J
than some strongly inaccessible cardinal,

For any set C let Sm(C) be the family of all non-empty subscts of C which are smaller than C. The
following lemma concerning Sm(C) is a standard result of set theory and will be stated without proof:

Lemma A.1: For any infinite sct C, Sm(C) is the same size as C.

The next letima is a direct predecessor to the main result of this section,
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Lemnma A.2: Any set U which is larger than some strongly inaccessible cardinal can be
cxpanded 10 a model <U € of axioms one through six,

Proof:  To ensure that there will be a large number of points a subsct P(U) of U is chosen such that
both P(L) and U-P(U) are the same size as U (this can always be done for any infinite set U). Since
U is larger than some strongly inaccessible cardinal we can choose some subset U™ of U with a
strongly inaccessible cardinality. Let Si(U U') denote the family of all non-cmpty subsets of U
which are smaller than U’. Since since Sm(U U’) is a subset of Sm(U) lemma A.1 implies that
Smi(U U") can be no larger than U, On the other hand Sm(U U’) contains all the singleton subscts
of U and thus Sm(U U) is as large as U. "Thus Sm(U U’) has the same cardinality as U and there is
a bijection t from U-P(U) to Sm(U U such that cach clement x of U-P(U) represents some
non-empty subsct fix) of U which is smaller than U’ and every such subset has a unique such
representation. The relation € is now defined such that x€y just in case v is in U-P(U) and and x is
in f{y). The resulting structure <U €> clearly satisfies axioms onc and two (extensionality and
strong comprehension). A subsct of U is small in <U €> just in case it is smaller than U'. The
definition of a sct with strongly inaccessible cardinality now directly implics that <U €> satisfics
axioms three through five (infinity, power sct, and union), The fact that P(U) is as big as U implies
that <U € satisfies axiom six.

It can also be shown that any modcl of axioms one through six can be used to generate a mode! which also

satisfies foundation.

Lemma A.3; Any model <U € of axioms one through six contains a substructure which is a
model of axioms one through scven.

Proofi  An clement x of U will be called a well founded clement if there are no infinitely
decreasing € chains containing it. Let U’ be the subset of U consisting of the well founded
clements of U. The substructure <U" € clearly satisfies the foundation axiom so it is sufficicnt to
show that it also satisfics axioms one through six. Note that every point is well founded so P(U) is
contained in U and thus by the point comprehension axiom U’ is a large subsct of U, If x is a well
founded clement of U then every y such that y€x is also well founded and thus any well founded
clement represents the same subset of U whether it is viewed as an clement of <U €> or as an
clement of <U"€>. Since no two clements of U represent the same set under <U €> no two
elements of U’ represent the same set under <U" €> and so <U" € satisfics cxtensionality. To show
that <U" € satistics the strong comprehension axiom let C be any subset of U' which is small with
respect to <U €D, i.c. there is an x in U which represents C.  Since every member ot C is well
founded x must also be well founded and thus x is in U™ and thus C is represented in <U' €. Thus
every subset of U' which is small with respect o <U € is represented in <U' €>. On the other
hand no set which is large in <U €> can be represented in <U' €>. ‘Thus a subset of U’ is
represented in KU € just in case it is small with respect to <U €>. The fact that U' is large and that
a subset of U is small in <U” € just in case it is small in <U €> immediately implies that <U' €>
satisfics the axioms of infinity, power sct and union. Since U’ contains P(U) the number of points
in U is large so <U" €> also satisfics the point comprehension axiom,

L.emmas A.2 and A.3 lead directly to the main result of this section.

Theorem A.4: A set U can be expanded to a model <U €D of the axioms of symmetric sct
theory just in case U is larger than some strongly inaccessible cardinal.

Proofs  1f U is larger than some strongly inaccessible cardinal then by lemma A.2 it cin ‘be
cxpanded to @ maodel <U O of axioms one through six such that P(U) is the same size as U. By
lemma A.3 there is a substructure <U €> of <U €> which contains P(U) and which satisfics all of
the anioms of symmetric set theory, But since U™ has the same cardinality as U it is also possible to




7. APPENDIX -26- August 1983

directly extend U to a model <U € of all of the axioms,

On the other hand if U can be expanded to a model <U €5 of axioms two through five (strong
comprehension, infinity, power set, and union) then it is easily shown that U must be larger than
some strongly inaccessible cardinal.

7.2. The Height and Width of a Universe

A universe <U €> of symmetric sets is characterized (up to isomorphism) by two "numbers”, its
height and its width. 'The height and width of a universe <U € are defined as follows:

Definition: 'The width of a universe <U € is defined to be the cardinality of its set of points
P(L). A subsct C of U will be said to be minimally large in <U €> if no subsct of C which is
smaller than C is large in <U €>. The height of a universe <U € is defined to be the
cardinality of any minimally large subset of U.

Tlic following lemma can be demonstrated directly from the comprchension axioms.

Lemma A.5: The height of any universe <U € is a strongly inaccessible cardinal,

The constructions used in the consistency theorems of the previous scction show that for any
strongly inaccessible cardinal there is a universe with that height. Since P(U) is required to be a large set the
width of a universe must always be at least as large as its height. The constructions used in the consistency
theorems further show that the width of a universe can be any cardinality larger than its height.

A universe can be thought of as a rectangle which is no higher than its width. The points of the
universe should be thought of as lying along the bottom edge of this rectangle. The main theorein of this

scction can be proven directly.

Theorem A.6: Any two universes of symmetric sets with the same height and width are
isomorphic,

Proof: Let the universe be <Uj €>and <U, €4>. Since both universes have the same height a

sct is small with respect to one universe just in case it is small with respect to the other universe,
Since P(U 1) and I’(Uz) are the same size there cxists a bijection p from (U A P(Uz). The

function p can be extended to a function @ from all of Uy into U, via the following inductive
definition:

o(p) = p(p) for any point p in P(Uj)
o(x) = the representation for {a(y): y€;x} for x not a point

I'he set on the right side of the second equation is guaranteed to have a representation in U,
because it is no larger than the sct represented by x. it is casy to show by induction on x under
€l F that o Y€ zo(x) justin case yC 1x- To show that e is a bijection it is sufficient to construct an
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inverse function o1 such that for any x in Uy o'l(a(x)) equals x and for any y in U, a(o'l(y))

cquals y. The inverse function ol is defined by cxtending p'1 from P(U,) to all of U via a relation

analogous to that above. The two conditions relating o and o'l

€ 1 + and €, + respectively.

can then be proven by induction on

There a few other results which help to characterize a universe <U €>. These results will be stated
briefly without proof. First it can be shown that in general the size of U cquals the size of P(U) (which is at
least as large as the height of U). Sccond the notion of "rank” uscd in ZF set theory can also be defined for
symmetric sets. The details of this definition are not important but onc result concerning a characterization of
small sets will be mentioned, For any subset C of U let P(C) be the union over x in C of P(x). It turns out
that a subsct C of U is small just in case P(C) is small and the rank of C is less than the height of the universe.
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