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SECTION 1

INTRODUCTION AND SUMMARY

Hg-Cd-Te is a semiconductor material particularly useful as
an infrared detector. Although it has been grown for some
years, there are still problems in achieving crystals of desired
quality. In order to improve the crystal growth technique, the
knowledge and understanding of the liquidus-solidus phase dia-
gram are of crucial importance. This study has addressed the
theoretical calculation of the phase diagram of HgCATe.

Heretofore, we have known that the pair approximation of
the cluster variation method (CVM) provides a good theoretical
phase diagram of III-V compound semiconductors wuch as GaAs and
In-As, as reported in Section 2 and Appendix A. 1In this project
we have applied a similar theoretical technique to Hg-Cd-Te,
which is a II-VI semiconductor.

The special qualitative features of the II-VI liquidus as
compared with the III-V case are that the former is asymmetric
with respect to the 50-50 composition, and that the liquidus is
sharply peaked at the 50% composition. 1In order to explain
these two features theoretically (Section 3 and Appendix B), we
have allowed vacancies in the pseudo-lattice model of the liquid
phase, and have included molecular species HgTe and CdTe in the
liquid phase. It has been discovered that the peak in the
liquidus results when the interaction between an atomic species
(Hg, CAd or Te) and a molecular species (HgTe or CAdTe) is
repulsive.

Using the associated liquid model developed in Section 3, a
theoretical treatment of the liquidus of the ternary Hg-Cd-Te
has been developed in Section 4 (and in Appendix C). 1In this
treatment no lattice defects are included in the solid phase.
The liquidus in both the Te-rich region and that in the Hg-rich
region agree with experiments reasonably well. The special
feature of the work that differs from the previous regular
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& solution theory treatment of Brebrick et al. is that the
nearest-neighbor interaction parameters used in formulating the

: free energy of the liquid phase are treated as being independent

;3 of temperature and composition.

S It is known that the electrical properties of the semicon-

¢ ductor depends greatly on the lattice defects in the Hg-Cd-Te

iﬁ crystal. Thus, in Section 5 we take into account lattice vacan-

b cies and antiatoms in the crystal (details are described in

:3 Appendix D). The lattice is composed of two fcc sublattices,
one for Te atoms and the other for Hg and C4. The theory uses
intersublattice pair probabilities and intrasublattice pair
probabilities as the basic variables and includes intersublat-

P

A R D

N tice and intrasublattice nearest-neighbor interaction energies.
- The method of calculating the liquidus and solidus using
3 the solid with defects (of Section 5) is explained in Section 6,
D and the details are presented in Appendix E. The main results
gf are the number of Hg vacancies in Figure 1G the Hg partial pres-
sure in Figure 11, and the relation between the two in Figurel2,

ﬁ These results agree well with Vydyanathan's experiments.
%ﬂ Interstitial atoms have not been taken into account in

'é Sections 5 and 6, but their plausibility is discussed in

Section 7.
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SECTION 2

III-V DIAGRAM CALCULATIONS USING THE "PAIR" METHOD

o Calculations of phase diagrams of III-V systems form the
basis of the II-VIsystems, which are the main concern of this
£ . study. Therefore, we have included the main results of III-V

'3 calculations in Figures 1, 2, and 3 even though they had been

A done before this effort was begun. They were calculated by

. ‘ Stringfellow and Greene! and also by the author.2 The

Y formulation in Reference 2 is basic in subsequent work developed

s in this study. Therefore, Reference 2 is attached as Appendix A

1 in this report.

) In modeling and calculating the free energy of the liquid

% | phase, a pseudo-lattice structure is assumed. Configurations of

? nearest-neighbor pairs on the lattice are chosen as the basic

a variables, and thus the method is called the "pair" method
(which is also called the gquasi-chemical approximation or
Bethe's approximation).

! The excellent agreement between theory and experiments in

."' “ 3

Pigures 1, 2, and 3 supports the usefulness and the reliability

A-I.

of the pair method. Noteworthy features in the liquidus curves
in Pigure 1 are that the curves are symmetric with respect to
the 50% composition, and also well rounded near the maxima.
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Figure 1. Liquidus curves of

I1I-V semiconductors.
So0lid curves are
theory and circles
are experiments.
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Figure 3.

The calculated iso-
thermal liquidus of
Ga-In-As ternary sys-
tem at 1250°K. The
numbers along the
curve are x in the
solid composition,
(GaAs) _x(InAs)x.
Four tie lines are
shown.

Pseudobinary ligquidus
and solidus curves of
InAs-GaAs (a) and
InSb-InAs (b). The
solid curves are cal-
culations, and the
circles and triangles
are experimental
results.
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SECTION 3

II-vI BINARY LIQUIDUS-SOLIDUS CALCULATIONS USING THE
"PAIR" METHOD AND THE ASSOCIATION MODEL

Different from the III-V cases of Figure 1, the liquidus
curves of Hg-Te and Cd-Te are not symmetric at right and left
and are peaked near the 50% composition. 1In order to take into
account these two features, the model of the liquid phase is
modified in two aspects: vacancies are included in the pseudo-
lattice structure and molecular species of HgTe or CdTe are
added. When the effective interaction of molecular species and
atomic species is repulsive, we can explain the sharp peak near
the 50% composition. The results are shown in Figures 4 and 5,
and are published in Reference 3, which is attached in this
report as Appendix B.

The model of the liquid state in which the molecular
species are included is called the associated model. In such a
model, the number of species is four (i.e., Hg, Te, HgTe and
vacancy). The cluster variation method (CVM)* formulation of
the pair method for such a system has a decisive advantage over
the quasi-chemical approximation treatment of the same problem,
although the two approaches give exactly the same results,
because of the intuitive ease of the CVM formulation.
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{' SECTION 4

- Hg-Cd-Te LIQUIDUS-SOLIDUS PHASE DIAGRAM

'?Q In the binary cases of Section 3, the main input to the

i theory are the values of interaction potentials between nearest-
S neighbor pairs in the pseudo-lattice structure of the liquid

$3 phase. These same interaction potential values of binary cases
it}

’iﬁ . are used for the ternary liquid phases as well.
- In the Hg-Cd-Te liquid phase, we work with three atomic
;& species, two molecular species and vacancies on the pseudo-

:i lattice structure. The details are in Reference 5 which is

J; reproduced as Appendix C. The main results are presented in
.2 Figures 6, 7 and 8, which indicate good agreement between theory
. and experiments. Figure 6 shows the Hg corner (of the triangu-
*if lar Gibbs diagram), and Figure 7 and 8 depict the Te corner. As
Eg opposed to the regular solution approach which uses the "point"
ko variables only rather than the "pair" variables, the present

A method treats the energy parameters as being independent of

i{f temperature and composition, and common to both the Hg and Te
0 corners.
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SECTION 5

Hg-Cd-Te SOLID PHASE WITH LATTICE DEFECTS

In the treatments of Sections 3 and 4, the solid phase is
regarded as perfectly stoichiometric. In actuality, the mea-
sured hole concentration is associated with Hg vacancies. It is
also known that antiatoms exist, which means that Te atoms may
sit on the Hg-Cd sublattice, and Hg or Cd atoms may sit on the
Te sublattice.

The structure of such a solid phase with lattice defects
has been calculated and is attached as Appendix D. The Gibbs
free energy for the solid phase in Appendix A and B is repre-
sented by a single point because it is for the perfect stoichi-
ometric state. It is different when lattice defects are
included. Figure 9 shows an example of how the Gibbs free
energy changes as a function of the vacancy concentration in the
Hg-Cd sublattice.

13
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(7 SECTION 6
? Hg~-Cd-Te LIQUIDUS AND SOLIDUS INCLUDING
‘g LATTICE DEFECTS IN SOLID
f? Combining the solid phase theory in Section 5 (and Appendix
o D) and the liquid phase theory used previously in References 3
5 : and 5, we have formulated the coexistence of the liquid and solid
-Ef phases., Coexistence is derived by using the conditions in which
\@ ) the chemical potentials of each species in the liquid and solid
't ) phases are equal and when the two phases are under the same
'%3 pressure.
E; The details of the formulation are described in Appendix E.
% The main results are shown in Figures 10, 11 and 12. 1In calcu-
. lating these figures, the interatomic potentials are adjusted so
;? that we can come to reasonable agreement with experimental data
:é by Vydyanath®. These curves are calculated for the
23 Hgg_ gCdg, ,Te solid composition.
Figure 10 plots twice the number of vacancies in the Hg-C4
5; sublattice per cm3 against 1/T for the liquid-solid coexistence
éa condition. The solid curves are the present theory and the
:i broken curves are the experimental hole concentration due to
Vydyanath®. The upper curves are when the solid coexists with
N the Te-rich liquid, and the lower curves are for the Hg-rich

LA

liquid. The fair agreement between the theory and the experi-

P at e
Aebataa’a

ments supports the view that a Hg vacancy contributes two holes

2

in the valence bond®,
In adjusting energy parameters to change the general shape

Al

of the curves, we note two properties. Notations are from
B . Appendix E.
(Il As we make €¢,,, ¢,;, and ¢,, more negative, keeping
€, 2 €15 = (e;,+e,,)/2 fixed, the 2 Vy
10come down parallel to themselves.
[II] As we decrease u;; and u,, together, the ng curve
for the Te-rich case does not change, while the VHg for

4

curves in Figure

O3 "

9

Y

X YRy

the Hg-rich case increases.
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The partial pressure, PHg' of Hg in the vapor phase
can be calculated from the chemical potential of Hg when we
assume that Hg in the vapor phase behaves as an ideal gas.
Figure 11 plots PHg against 1/T. The solid curves are the
present theory and the broken curves are Vydyanath's
experiments®. The theory uses the same energy parameters as
those for Figure 10, The PHg value at 500°C for the Hg-
rich growth is chosen at the experimental value, 6.5 atom.

In adjusting the theoretical curves, we noted the following
property:

[III] The energy parameter, €33, controls the direction of
the two PHg
point further upward.

curves. When €33 is more negative, the P curves

Hg

The energy parameter values that we used are in Table 1.

The energy, is for intersublattice pairs. These pairs are

U..,
1)
predominantly Hg-Te and Cd-Te, and thus the uij values for these

pairs are negative (attractive) while the rest are positive
(repulsive). The eij is for intrasublattice pairs; its sign is
opposite to that of uij’ The eij values for the Hg-Te and Cd-Te
pairs were chosen as zero, but they can be positive; since the
number of these pairs are very small, the actual values are not
important in the phase diagram calculations.

After a crystal is made from a Hg-rich melt or a Te-rich
melt, the lattice defect properties can be changed by
controlling the Hg partial pressure on the crystal. Figure 12

shows the relation between 2ng and P These intermediate

Hg"
points are calculated by changing the chemical potential value
in the theory. The intermediate points lie almost on a line in
Figure 12, in a manner similar to the experiments reported by

Vydyanaths.
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Table 1.

Solid State Energy Para-
meter Values Used in Com-
puting Figures 10and 1L
The Values Are in Units

of °K
Intersublattice pair energy, Uy 5
3

i 1 (Hg) 2 (ca) 3 (Te)
1 (Hg) 1600. 2000. -1100.
2 (C4) 2000, 1600. -1100.
3 (Te) -1100. -1100. 1500.

Intrasublattice pair energy, €3

i : 1 (Hg) 2 (Cad) 3 (Te)
1 (Hg) | -1200. | -1700. | oO.

2 (C4) -1700. -1600. 0.

3 (Te) 0. 0. -1200.
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SECTION 7

INTERSTITIAL Hg IN THE Hg-Cd-Te CRYSTAL

In the treatment of Sections 5 and 6, we neglected the
possibility of interstitial atoms. Since Hg is volatile, it is
worthwhile to consider interstitial Hg atoms.

As is discussed in the Introduction (and Figure 1) of
Appendix D, the Hg-Cd-Te crystal is made of two fcc sublattices.
We call the white fcc sublattice in Figure 1 of Appendix D as
I, and the black sublattice, II. When we shift the fcc I and
fcc II by a half of the cube edge, they occupy interstitial
vositions. We can also call the new fcc sublattices III and IV.
The small corner cube shown by dotted lines in Figure 1 of
Appendix D now has the structure shown in (a) of Figure 13, and
an adjacent small cube becomes (b). There are also small cubes
of structures in Figure 13 (¢) and (d4).

Finally, we can consider whether a Hg atom can easily
assume an interstitial position II or IV. In Figure 13, we see
that a I site and a III site have the same nearest neighbor
configuration, while a II and a IV site have nearest neighbors
of their own. Since in the original structure, Hg atoms sit
predominantly on I sites, we see that it is quite easy for a Hg
atom to come to a III interstitial site. It is therefore rea-
sonable to take into account in the theory the interstitial Hg
atoms sitting on the III interstitial sublattice sites. The
number of such interstitial Hg atoms will depend on the Hg-Hg
and Hg-Cd interactions between I-III sites. Note that the I-III
distance is larger than the I-II distance, but smaller than the
intrasublattice I-I distance.

Such intersitial atoms have not been treated in the present
report, but are to be included in future studies.
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two interstitial positions III and 1V.
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THEORY OF TERNARY II-V SEMICONDUCTOR PHASE DIAGRAMS

Ryoichi KIKUCHI

Hughes Research Laboratories, Malibu, California 90265, USA

Liquidus-solidus phase diagrams of III-V semiconductors are caiculated using the Cluster Variation Method and related
techniques developed recently. The liquid phase is treated assuming a lattice model. An equilibrium state is derived by
minimizing the grand potential (G), keeping the chemical potential fixed. The resulting nonlinear equations are solved
using the Natural Iteration Method which has a propérty that the value of G always decreases at each iteration cycle.

The phase boundary is derived from an intersection of two G curves; the correct forms of G values to be used are
derived from geometrical considerations. Temnary phase diagrams caiculated for In-Ga—~As and In~-Sb—As agree well with
previous calculations of Stringfellow and Greene and with experimental data.

For ternary cases, a tie line connecting coexisting liquid and solid phases are proved to be orthogonal to the phase

boundary curve in the chemical potential diagram.

1. Introduction

Some years ago Stringfellow and Greene (1],
to be cited as S-G, applied the pair ap-
proximation of the quasichemical method
(QCM) {2] to calculate liquidus and solidus phase
diagrams of III-V binary and ternary semicon-

" ductor systems. Their results for In-Ga-As and

In-As-Sb agree very well with experiments.

After ‘their work, the present author
developed a new method of calculating phase
diagrams [3, 4] as an application of the hierar-
chical cluster variation method (CVM). The new
method in refs. 3 and 4 uses the grand potential
minimization rather than matching of individual
chemical potentials as has been done by S-G
and others, and also uses the natural iteration
method (NIM) in solving simultaneous nonlinear
algebraic equations. The new approach is more
compact than other existing methods and thus
presents an easier means of generalizing it to
more complicated systems.

The present paper reports how the new

-method is formulated, using the systems treated

by S-G as examples. The numerical results are
exactly the same as those of S-G, but some of
the formulae are interpreted differently and also
additional properties of the systems not reported
by them are presented.

All existing theoretical treatments of phase
diagrams (liquidus and solidus) of III-V and
II-VI compounds make use of Vieland’s work
[(5), which establishes the difference between
reference levels of the liquid and the solid phases
of the same material. We will also use the rela-
tion developed by Vieland.

In formulating the liquidus-solidus diagram
the free energy of the solid is relatively easy to
figure out. However, to treat the liquid phase
accurately is a difficult task and one beyond the
scope of the present work. Therefore, we follow
S-G and use a lattice model for the liquid phase.
Since the formulation is done using the pair
approximation (which is equivalent to the QCM
used in ref. 1) of the CVM, we do not need to
specify the lattice structure for the liquid phase
except the coordination number 2.

2. Sketch of S—-G’s work of binary liquids

This section reviews those formulations of the
S-G paper [1] that are relevant to our develop-
ment in later sections in order to show the rela-
tions between their work and the present one.
We do not use their notation, but follow the
standard formulation of the pair approximation
of the CVM.

In treating the liquid phase, S-G use the lat-

PREVIOUS PAGE
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tice model of the coordination number z =20
(since we often use z/2, it is written as  in this
paper). Each lattice point is occupied by either
an A atom (designated by a subscript i = 1) or a
B atom (i = 2), and we do not allow vacancies in
the lattice. The probability of finding an ith
species on a lattice point is written as x; (i = 1 or
2). The probability of finding an i-j nearest-
neighbour pair is written as y; (i,j=1 or 2).
These variables satisfy the mutual relations

x,szyy. i=1and?2, 2.1)
and the symmetry relation

Yiz = ya. 222)
The normalization relation is

Xy X;= 1. (2.3)

The potential energy of the lattice liquid is
written as

E=2N 3% anm

where 2N is the total number of lattice points in
the system, and ¢, is the potential energy for a
nearest-neighbor pair i—j. The energy expression
(2.4a) can be rewritten using (2.1) and (2.2) as

E = 2N (ex, + exx; — deyn), (2.4b)
where ¢ is defined as

deme +en—2¢p. @2.5)

The entropy according to the pair ap-
proximation of QCM is equvalent to that of
CVM and is written as

S=2kN [(Zu—l)zx.lnxi-w 2;‘% lny;,],
2.6)

where k is the Boltzmann constant. Using E in
(2.4b) and S in (2.6), we can write the free

energy
F=E-TS 27
as a function of x and y values. In (2.7), T is the

absolute temperature. Note that S in (2.6) is for
2N lattice points.

(2.4a)

28

When the x values are fixed, there is only one
independent variable for which we can choose
yi2. The equilibrium state is derived by minimiz-
ing F in (2.7) with respect to y,; keeping T and
the x values fixed. The differentiation leads to

Yuyn=e %y}, (2.8)
where we define
B = 1/kT. 2.9)

Eq. (2.8) corresponds to, for example, (3a) of
S$-G, and we can derive the identity between
S$-G’s 2,5 and our ¢ as

0 = —dwe. (2.10)
Eq. (2.8) can be solved with the aid of (2.1) as
Y12 = yu = 2x:%2/(1 + 1), 2.11)

where r is written as 8 in S-G and is defined as
rml+4xx (e - 1))'R. (2.12)

In deriving the chemical potentials, it is helpful
to use
N, = 2Nx,, i=land2,
Nq-ZNYU, i,j-landz.
In terms of N values, we can write F in (2.7)
explicitly as
F = w(e N, + éxN; — 4eNp)

(2.13)

—kT [(2» ~DT LWN)-0 3T LN

(- 1).2’(2N)], 2.14)

where the £ function is defined as
(2.15)

When F is a minimum with respect to y,,=
Ni/(2N) and (2.8) hoids, the chemical potentials
i are defined from (2.14) by differentiation as

L(x)mxlnx-x.

oF
sy = (3N|)~,_Nn we + kT [In N+ In %],

aF
My (5Nz)~,1v,, weyn + kT [ln x;+wlin %]
(2.16)
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S-G calls the last ratio the activity coefficients:

yam [ﬁﬂ' and ypm [ﬁ]‘ @.17)

Using the y,; expression in (2.11), we can verify
that (2.17) agrees with S-G’s eq. (4).

Note that, in eqs. (2.8) and (2.12), the only
energy parameter we need for the equilibrium
properties of the system is ¢, defined in (2.5). The
individual ¢, and e» appear in (2.16), but they
play the role of only defining the zero levels of
the chemical potentials u,.

3. Grand potential formulation of the liquid
phase

In S~-G’s formulation (review above) and in
most current formulations of phase equilibria,
one starts with the free energy and minimizes it
keeping the composition fixed in order to obtain
the equilibrium state. The grand potential for-
mulation to be presented in this section leads to
exactly the same results as those of the previous
section, but has several advantages in mathema-
tical convenience.

We start with the grand potential, which is
defined as

G-F-ﬁm. 3.1)

where 4, are related to the chemical potential
but for a moment can be regarded as Lagrange
multipliers for adjusting the number of atoms N,.

To facilitate our further discussions, we write
G in (3.1) in full using (2.42) and (2.6):

® = BGIN)
=80 3 e —Ho - [T 26+ T 2]
to 3 L0~ (w-1)
-1 [ ni+ T ua ] 48 (1- Tn). 62

where SA is a Lagrange multiplier used for the
normalization of y,:

=S (33)

The & function is defined in (2.15). In (3.2), the
2 %(x;)) sum and 2 x4i; sum are repeated and
halved for the sake of later mathematical con-
venience.

To derive the equilibrium state, we minimize
the grand potential G in (3.2) with respect to the
pair variables y,, treating all four of them as
being independent (in contrast to treating only
y12 as independent in section 2) and keeping 4, as
fixed (rather than keeping x;, as fixed, as in
section 2). In so doing, we regard x; and x, in
(3.2) as different linear combination of y;:

X = 2 Yi and X, = 2 yii (34)
7 i

When we minimize @ in (3.2), keeping B and 4,
fixed, we arrive at

2= ey~ K20~ Din(xz)+ w In,

-18Gi; + 3;)-AB =0 (3.5)
or
Yy = 2e(x,x,) e 1¥Ca)

x exp[-Bc,, +£ G ,z,.)]. (3.6)

We now see that the normalization (3.3), the
reduction relations (3.4), and the ‘“‘superposition™
relations (3.6) form a set of equations to be
solved for y,’s. The NIM solves them systema-
tically as follows.

Note that, for the NIM, we fix the 8 and 4:'s.
We start with the first input values x, and x..
Different from the Newton-Raphson method
(NRM), any guess values for the first input lead
to a converged solution. The initial guess value is
used on the right-hand side of (3.6) without the
normalization factor exp(AB/w), to derive the
first output y, exp(—AS/w). These quantities are
used in (3.3) to obtain the normalization factor
exp(AB/w), and hence the output y, in (3.6). This
set of the first output y, is used on the right-hand
side of (3.4) to derive the second input set x, and
x;. The iteration cycle is repeated until the con-
secutive outputs are sufficiently close to each
other.

It was proved previously [6] that the grand
potential @ in (3.2) always decreases step by step
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at each iteration cycle. The proof is reviewed in
the appendix. This proof guarantees that the
iteration always converges to a minimum of &.
When @ is a2 minimum and the set of equations
(3.3), (3.4) and (3.5) is satisfied, we can simplify

the expression of & by forming
Ezg-.p-g,,%-m (3.72)
or

A= (3.7)

Thus, the Lagrange muitiplier introduced in (3.2)
for the normalization of y,’s has the meaning of
the grand potential per lattice point in the equil-
ibrium state.

One particular case of present interest to us is
when i = j in (3.5), which leads to
,z.+a-..¢.+kr[1nx.+.ln§]. (38)
Compared with (2.16) we see that ;i; of the
present section is related to the chemical poten-
tial 4 derived in section 2 as
o= gdy A 3.9)

Because A is only an additional constant, we can
safely also call 4, used in (3.1) and (3.2), a
chemical potential.

Use of the meaning of A in (3.7b) and the
relation for s, in (3.9) leads to a useful relation
trom the G expression (3.1):

F'ZM}-

Note that in this treatment of the liquid phase
there is no difference between the Heimholtz
free energy and the Gibbs free energy because
the volume is kept fixed in the model.

In the previous section it was shown that when
the composition x, (and x;) and the temperature
T are ’.wn! m equiﬁbrim values of yu, Y1
and y» can be determined by the parameter ¢
only, as we see in (2.11) and (2.12). Therefore,
we expect that the y,’s in (3.6) should also
depend only on ¢ and not €, and ¢y explicitly,
although the latter appear in (3.6). We can derive

(3.10)

30

the formulae for y;’s which depend only on € as
follows.
We write

Yi =X -il; Oy +y8)
and use this in the energy expression in (2.4a):

E =2wN {g‘ﬂ [‘i‘%; ()'v"')'ﬁ)]‘*g;!w)'v}
=2wN {g €x; + g ,}a; (e —He+ ‘ii)]yl'i}-

(3.11)

(3.12)
We define
§me Y+ ) (3.13a)
which can be written explicity as
C-u =én=0,
(3.13b)

&= & =2,

where ¢ is defined in (2.5). When (3.13a) is used
in (3.12), we can write

E=2aN [f‘ ¢m+ggz,,y.,].

When this expression of energy is used in (3.2),
two changes need to be made: ¢; should be
replaced by & defined in (3.13), and 4; should
be replaced by

(3.14)

Hy = G — w6y, i=1and 2. (3.15)
These two changes appear in the minimization
relations in (3.5) and (3.6).

In the NIM, to solve the y,’s from (3.6), which
is now modified, together with the subsidiary
conditions (3.3) and (3.4), we fix the value of 4,
which now replaces 4i; in (3.6), and do the itera-
tion. The 4,’s are the parameters that control the
concentration x;, and the fact that 4, is made up
of two terms i, and we; in (3.15) is immaterial as
far as the equilibrium solution is concerned. It is
to be noted that, since &, in (3.13) depends on €
only and not on €;; and e, separately, the equil-
ibrium solution for the y,’s depends on € only in
agreement with what we noted at the end of
section 2. The relations between the i and x;’s
and A are also independent of €, and €, By
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using the modified equation (3.5), modified so
that ¢, u;, and s, are replaced by &, /i, and 4,
and by comparing with the relations for the w,’s
in (2.16), we can derive

o=y A+ wdy, i=1and 2, (3.16)

which agrees with (3.9) when (3.15) is used. The
relations in (3.16) agree with the fact that e;; and
ex appear explicitly when we write the u, values
in (2.16).

The actual numerical computation of the
equilibrium state is made with & defined in
(3.13) replacing ¢, and with 4, replacing 4, in
(3.6). Since we assume that there are no vacan-
cies in the system, we have

n+xn=1 (3.16)

This imposes a mutual relation between 4, and
iz, and thug there is one degree of freedom in
choosing them. In calculating binary systems we
usually treat the two components symmetricaily
and use the condition

h+,=0. 3.17)
Sometimes, however, we use the condition
B2 =0, (3.18)

as we see in section 9.
When we combine (2.10) with (3.13b) we see
that our & is related to 2,5 of S-G (1] as

=& = Na/z, (3.19)

where z is the coordination number used for the
liquid phase.

4. Derivation of the binary liquidus

The liquidus of a ITI-V system like Ga-As,
In~As, Ga-Sb, and In-Sb schematically looks
like fig. 1a. The point P is in the liquid phase,
and Q is on the solid phase of the composition
AB. The width of the solid phase can be neglec-
ted in this study and thus we assume that the
solid phase has the fixed composition x, = x, =4,

Since the two points P and Q coexist, the
tangent of the F curve at P in fig. 1b passes
through Q, which is the value of the free energy
in the solid phase. This condition is now expres-

(a}

(bt

‘ﬁq

A AB 8

— Xy

Fig. 1. Schematics of the liquidus curve (a) and the free
energy F (b) for a binary semiconductor. Points P and Q
coexist.

sed in mathematical form. First, the equation of
a tangent of the F curve at P can be written as

F-FP = (gz)m(x; = x;M). @.1)

Using the normalization of x;, in (2.3) and the
definition of u, in (2.16), we can write

@)=, -G
= [uf’ - uf2N. @.2)

When (4.2) and (3.10) are substituted into (4.1),
we obtain

F={u®x +ux,]2N. 4.3)

This is the equation for the tangent to the F
curve in fig. 1b going through the point P. Eq.
(4.3) looks similar to the general expression of F
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in (3.10), but is different in the sense that x, and
x; are variables independent of the point P.

The next important step is to estimate the
value of the free energy of the solid phase at the
point Q. For this purpose we follow S-G [1] and
use the relation originally derived by Vieland [5].
Vieland’s relation says that the free energy of
one mole of molecular AB in the solid phase is
written as
FQy=F'?—(T.~T)4Sa, @49

where F'@ is the free energy of the supercooled
liquid system at Q' in fig. 1b. This state is
“supercooled” because it is not stable compared
with the solid phase. In (4.4) T, is the melting
temperature of the solid AB, as indicated in fig.
la, and AS, is the entrepy of melting of one
mole of the solid. Eq. (4.4) is important in fixing
the relative zero points of the solid and liquid

phases.

We can use (3.10) in writing F9,
FO = @@+ uf)N, 4.5)
where 2N is the total number of atoms in the
liquid phase, and Ny =N, = N,

In the (F, x,) plane, a line passing through the
solid point (F@, x‘@) is written as
F-F9=a(x,—x{"), 4.6)

where a can be any value and, as shown in fig.
1b,

@ =i 4.7
Eq. (4.6) is to be compared with the liquid coun-
terpart (4.1).

The condition that the solid at Q in fig. 1bis in
equilibrium with the liquid at P is that the
tangent lines (4.1) and (4.6) become identical.

To put this in mathematical form, it is con-
venient to introduce the following two expres-
sions:

GmFP - (gz)")x?)_ 4.8)
G,m F@ - ax{®, 4.9)

Since no confusion is expected with the analysis
in section 3, we may call G, and G, grand poten-

tials also. In (4.9), x{? actually is }, as we see in
(4.7). Since a in (4.6) and hence in (4.9) can be
any value, and since we require that the lines in
(4.1) and (4.6) coincide, we require

dF\®

a= (Ex‘,) ) (4.10)
When

Gi=G, (4.11)

we can prove that the tangent to F, at P goes
through the solid point Q as follows. Using G, in
(4.8), we can write eq. (4.1) for the tangent to the
F curve at P as

F- (g—)"’x, =G, 4.12)

We can show using (4.10) that the point
(F9, x{9) lies on this line when (4.11) holds,
because

FO-qx(@ =G, =G, (4.13)
For numerical computation, (4.11) can be fur-

ther simplified. We use relations (4.2), (4.3),

32

(4.4), and (4.5) to obtain

GI =2Np #

Gs = N(“'ﬁm + “'&0'))_ (Tm - T)Asm
=N@P - uf?). (4.14b)

Substituting thes two expressions into (4.11)

yields

N(”'s’) +“£”) = N(“'P') + #5‘”)“" (Te—T)AS.

4.15)

In reducing the equation in the next step, we

have to be careful about the mole number. When

one mole of GaAs melts, it produces one mole of

Ga and one mole of As. Thus, the total number

of atoms in the liquid phase is two moles. If 4S,,

in (4.15) is measured for one mole of GaAs, N in

(4.15) is the Avogadro number N,,. Thus, by
dividing both sides by N,,, we obtain

(4.14a)

M"’+#§”=M°”+u$°”-(7'm-T)%f—“‘- 4.16)
7

We can further simplify this by using (3.16) and

--------
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Tabie 1 1400 T T T T
Parameters used in the calculation of Ga-As, In-As and
In~-Sb binary liquidus. L GaAs
T.@) 4S. i (calimole) i 7
(cal deg™ mole™') L

GaAs 1511 147 -4380/6 1000 InAs =
InAs 1218 147 —6070/6
InSb 803 13.3 -3980/6 "

*In table 1 of S—G (1] the unit of AS. is written as cu. Usually 50
eu means entropy unit and represents the number in units of the TC
gas constant R. Their eu should read cal deg™' mole™'. T, is the
melting temperature of the compound, 4S,, is the entropy of 600 \nSb =
melting of the compound, and ¢ is the energy parameter of the
pair in the liquid phase in eq. (2.52). ]

400
adopting the condition (3.17) as
A®) =A@ (T, - r):‘%t. @.17) - .
vg

The numerical calculation of finding the liqui-
dus at a temperature T is done in the following o
way. We use the values of 4S5, and T, given in *ay OR xgp

table I, which shows the values used by S-G [1].
First, we solve the supercooled liquid state for
the temperature and determine the value A @ for
the point Q' in fig. 1b; for that purpose, we use
the NIM of section 3.

Next we vary i {" in the liquid phase and find the
value A" which satisfies (4.17). Then the point P is
on the liquidus. We have used this formulation and
calculated the liquidus curves for GaAs, InAs, and
InSb. The results agree exactly with those of fig. 3
in S-G [1] and thus fit nicely with experiments. To
make the presentation complete, we plot the
curves in fig. 2.

The &, values in table I are negative. This
shows from the definition of &; in (3.13) that the
different species of the pair in the table have the
tendency to attract in the liquid phase.

S. Ternary liquid phase

In section 3 we worked out the binary liquid
phase using the grand potential and NIM for-
mulation. The advantage of the formulation is
that it is applicable to the ternary liquid system
almost without change except for the subscript i
or j taking values 1, 2, and 3, corresponding to
the A, B, and C components.

Fig. 2. Liquidus curves of I1I-V semiconductors. Solid curves
are theory, calculsted independently by Stringfellow and
Greene {1) and Kikuchi in this paper. Circles are experi-
ments.

To make sure of the relations, and also to
rewrite equations using é; and &, we now re-
examine the equations in section 3 one by one.
Eq. (3.1) for the grand potential G holds without
change when Z, is for i=1, 2, and 3 and as
before 4, is a parameter related to the chemical
potential. We then use the pair approximation
expression of the CVM and write G as in (3.2).
At this point, however, we use §; introduced in
(3.13a) and 4, in (3.15) and write G as

0 m g ik
x [z L)+ 3 2(x,)]
+w ;g(yu)'(w -1)-1i8
[zar3
+8A [1—;,«,]. .1)

33

PO PN I PN




438 R. Kikuchi/ Theory of temary OI-V semiconductor phase diagrams

Different from (3.13b), we need three energy 6. Ternary solid phase

P At
L B RN
LA AR
RN

.
Lt afalata

parameters &3, é3 and &,.

The normalization of y, is written as in (3.3),
and the geometrical relations in (3.4) hold. When
the grand potential is minimized with respect to
¥y using (3.4), we arrive at

%-M—m-l)h(m)'*ﬂlﬂw
~1BGL + i)~ A8 =0 (5.22)
or
s i+ £ )]
(5.2b)

The set of equations for nine y, values is solved
with ease using the *{IM. The NIM is particularly
useful when the number of variables is large.

The chemical potential x, can be written in the
same way as in (2.16). Comparing (5.2) with
(2.16) we see

fa A =y -, i=12and 3, (5.3)

which are similar to the binary case (3.16).
When the grand potential G in (5.1) is a
minimum and (5.2) hoids, the same transfor-

As an example, consider a ternary solid of
composition (GaAs),_,(InAs),. This possesses a
structure modified from a zinc-blende structure,
shown in fig. 3. It is made up of two f.c.c.
sublattice: As occupies the white f.c.c. sublattice
in fig. 3, and Ga and In share the black f.c.c.
sublattice. Let us write the three species Ga, In,
and As by subscripts i = 1, 2, and 3 in this order.

First, we examine the energy of this system.
Since each Ga and each In are individually sur-
rounded by four As atoms, the nearest neighbor
interactions contribute the energy

E = N(4e;3x, + denx,), 6.1)

where N is the number of black sublattice points
in fig. 3, x; is the fraction of Ga and In atoms on
this sublattice, and ¢ is the interaction potential
between the ith and the 3rd (As) species.

Our first calculation, based on the energy
expression (6.1), was not in good agreement with
experiment. Therefore, as the next step, we have
introduced the second-neighbor interactions: in-
teractions among Ga-Ga, Ga~In, and In-In on
the black sublattice of fig. 3. We write the frac-
tion of i-j (i,j =1 and 2) second-neighbor pairs

mation as (3.72) leads to the identity as y; and the interaction potential for this pair as

5 A = G/2N). 5.4) ::. Then we can write the total potential energy

s Using this and using the relation between G and

:f F in (3.1), we can derive E=4N ﬁ €%, + 6N ﬁ; ﬁ €iVi, 6.2)

1= =] /o

9

~ F-G+2(,z.+m)N,--$u.M, 55

8 where we used (5.3), (5.4), and the relation be-

tween g, and ; in (3.15).

- Similar to the last comment in section 3, we

can impose one condition among three 4, values

5. because of the normalization relation

| z =1, (5.6)

.:' It is convenient to impose the condition

= i =0, )

'@ or Fig. 3. Structure of III-V semiconductor solid phase. If all

. . black balls were the same, the structure is the zinc-blende
f;=0. (5.8) type.
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where 6N is the number of second-neighbor

bonds in the black sublattice of fig. 3. Using a

procedure similar to (2.4), eq. (6.2) can be

rewritten as

E = N[4€13 + 6€)x, + (4€x + 6€x)x, + 24€,y12],
6.3)

where, analogous to (2.5), we define,

4(, = 2!‘12 — € —€n. (64)

Since we assume in this paper that no vacancies
occur in the lattice and thus that the white lattice
points in fig. 3 are all occupied by As atoms, we
can take the statistics of the black sublattice
only. The entropy for this sublattice can be writ-
ten exactly as in (2.6) with the coordination
number 2w = 12. When F = E — TS is minimized
with respect to y;, keeping x; and x; fixed, we
obtain an equation with the form of (2.8):

yuyr = v exp(4Be,), 6.5)
the only difference being that the —e¢ in (2.8) is
replaced by ¢, in (6.5). The definition of ¢, in

(6.4) has a sign different from (2.5). Eq. (6.5)
can be solved as in (2.11) and (2.12) as

yu-%";—",’, (6.62)
r = {1 +4x;x;{exp(4B¢,) — 1]}'2. (6.6b)

When the free energy is minimized with res-
pect to yi2 and (6.6) holds, the chemical poten-
tials of the species i = 1 and 2 in the solid phase
are written in exactly the same way as in (2.16).
Comparing the energy expressions (2.4b) and
(6.3), and remembering that the number of lat-
tice points in the liquid phase in section 2 was
written as 2N and that the number of points on
the black sublattice in fig. 3 is N, we see that

foy; = d€;3+6€; +kT(61Iny, —111n x;),
fori=1and 2,

where the subscript s stands for the solid phase.
At this point note that the free energy of the
black sublattice for the composition x; =1—x;, is
written in the same way as (3.10):

6.7)

F,= Z BaxN. 6.8)

35
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In the special case where x,~1,y, also ap-
proaches unity so that (6.7) and (6.8) reduce to

FOIN = u) = 4¢,3 + 66y, when x, -1,
(6.9a)

and similarly
FOYN = 40 = 4¢,y+ 665, when x;—»1. (6.9b)

When we examine the meaning of F¥), we see
that it is the free energy of the GaAs solid phase
at the temperature of interest to us. Recall that it
was already calculated in (4.4) as FO,. There-
fore, when we have the data for the entropy of
melting A4S, and the temperature of melting T,
for the solid-phase GaAs, we can calculate
FO/N =pu{). The corresponding data for InAs
leads to the value F/N = u%. Using (4.4) and
(4.5), we can write them explicitly as

1@ = ufP + uf) - (T - T) A58
Navw

(6.10)
where the subscript | indicates that the quantity
is in the liquid phase, and uf{¥ is the chemical
potential of the ith species (i =1 and 2) in the
supercooled liquid state in which As composition
is 50% and the other 50% is the ith species.

When we compare our (6.5) with eq. (3a) of
S-G [1], we see that our 4¢, in (6.4) corresponds
to S—G’s f24c-ac in the solid phase by

4e, = 20scac/2, 6.11)

where z =12 is the coordination number of the
f.c.c.

7. Geometry of the ternary coexistence condition

We now consider the condition that the solid
phase of section 6 and the liquid phase of section
5 can coexist. As in section 5, we write Ga, In,
and As by the subscript i = 1, 2, and 3. When the
number of these atoms are writtenas N, (i =1, 2,
and 3), the condition in the solid phase is

Ni+N,;=N;= N, (7.1)
where N is the number of lattice sites in one
f.c.c. sublattice. The total number of atoms in the
solid phase is 2N. Thus, for the liquid phase we
require

,2 N, =2N (7.2)
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so that the number of atoms does not change
when the solid melts. However, relation (7.1)
does not hold in general in the liquid phase
because the composition in the liquid phase can
be different from that in the solid phase.

Because N in (7.2) is fixed in our paper, the
number of independent variables for the com-
ponents is equal to two in the liquid phase: N,
and N,. The allowed range of N; and N; is the
rectangular triangle (0,0), (2N, 0), and (0,2N),
shown in fig. 4. For the purpose of our analysis it
is convenient to introduce the following vari-
ables:

U=sN+Ny; V=N—N,, (7.3)
or
Ni=¥U+V), Ny={U-V). (7.9)

In the solid phase, U = N is constant, as is
shown in (7.1) and also in fig. 4, and thus V is the
only composition variable. When we consider the
free-energy axis perpendicular to the plane of N,
and N, in fig. 4, the free energy F, for the solid
phase is a planar curve which lies within the
vertical plane U= N, + N, =N, The derivative
of F, with respect to V' is

dF, 1[/4F, dF,
pt P i L - —t -= -
dv 2 .(aN2)N‘ (3N2)N.] s = u2), (75)
lrnz
N
V)
N
(/.4 4o° Py
(,o‘v
('oo 4’1"‘. Ny
N m

Fig. 4. Relation between the (Ny, N,) coordinate system and
the (U, V) coordinate system.

SN T T
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where we have used the u,; for the solid defined
in (6.7).

At the composition V'@, the free energy value
is written as F!9. When we consider a plane
which contains the tangent dF,/dV at this point,
the equation of the tangent plane is written using
an arbitrary constant a as

F-F@=a(U-N)+ (%Fv!)w’(v- vy (16)
This arbitrary coefficient @ has an origin similar
to that of the a used in (4.6) for the binary
case.

Now we consider the free energy F, surface for
the liquid phase in the same three-dimensional
F-N-N, space based on fig. 4. We consider a
certain composition P in the liquid phase as in
fig. 4 and form a plane tangent to the F; surface
at P:

*

e-er=(@)-om
)
+(38) v-veey. an

Note that in this equation F is a function of the
variables U and V and represents a plane in
F-U-V space. The same comment holds for
(7.6).

The condition that the solid state at (N, V')
and the liquid state at (U™, V") coexist is that
the tangent planes in (7.6) and (7.7) become
identical. For the purpose, two sets of mathema-
tical equations need to be satisfied. One is that
the coefficients of U and those of V be equal,
respectively:

o)
(g"'—vl)“” - (g—";'):’ (7.8b)

The other requirement is that (7.6) pass through
the point (F?, U®, V) or, equivalently, that
(7.7) pass through (F{9, N, V1)),

For the purpose of satisfying these two con-
ditions, it is convenient to introduce the follow-
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ing two functions:

6mF@-aN - (§5) Ve, (7.92)

6= - (38 ) Uﬂ)-("f}) Ve, (19b)
Then we can prove that when (7.8a) and (7.8b)
are satisfied,

G@ =GP (7.10)

satisfies the second requirement. The proof is
similar to what we did in section 4. Using (7.9a),
we can rewrite (7.6) as

6= F -t~ (&),

When we use (7.8), we can rewrite this further as

o= 2-(35) o)

On the other hand, (7.10) requires that (7.11b) be
equal to (7.9b). Then, when

(7.11a)

(7.11b)

U=U® and V=V, (7.12a)
it follows that
F=FP, (7.12b)

This means that (7.6) passes through the point
(F", UP, V) and the proof is finished.

Thus, what we need when calculating the
coexisting solid and liquid phases is to evaluate
G and GI” in (7.9). The derivative dF,/dV in
(7.9a) has already been derived in (7.5). The
derivatives in (7.9b) are derived using

(:ﬁ) =p—p; and (BS)N‘=“2 s,

(7.13)
and referring to (7.4) as
aﬂ aF ]
aNl N'z aNz Ny
1+ u2=2p3), (7.14a)
[ aN' Nz aNz ] %0‘1 “2)
(7.14b)

Before substituting these derivatives in G{@

and GIP of (7.9) we first examine a. We use
{7.14) and (7.5) in (7.8) to derive
a={uf+pf-2uP), (7.153)
el - @) =" - uf). (7.15b)
It is convenient to define & in place of a as
ima-{pQ+u?). (7.16)

By replacing a in (7.15a) by & and adding and
subtracting (7.15a) and (7.15b), we obtain

@ +p@=pP-ud, (7.17a)
G+u@=pP-pd. (7.17b)
These relations are helpful when we examine the
limit of either N; or N, approaching zero. For

this purpose, we first rewrite the u,, in (6.7) for
the solid phase as

fhe; = 463+ 6€; + kT[In x; + 6 In (ya/xP),

i=1or2. (7.18)

When the solid composition x; goes to zero, we
know that

i =1
Xi
and therefore that when N; approaches zero, u.;

becomes negative and its absolute value becomes
large as

(7.19)

(7.20)

Since we expect @ and u!{” in (7.17) to remain
finite, we see

pP>kThx{®@ as x{@-0. (721)

The relations in (7.20) and (7.21) guarantees that
the ternary system results reduce smoothly to
those of the binary system.

We now rewrite G{? in (7.9a). We use & of
(7.16) and dF/dV of (7.5) in (7.9a) to derive

60 = FO- (6 +Hu@+ w)IN
K- @V, (7.220)

We further use (7.1) for N and (7.3) for V1@ to
transform

G@ = F@—gN - (uPN{? + pQN),

= kT In x..

(7.22b)

[P o
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Since we see from (6.8) that the terms in paren-
theses are equal to F{@, we arrive at the simple
result

G@ = -GN. (7.22¢)

The G{™ in (7.9b) is transformed as follows.
We use (7.14) for the derivatives and use (7.3) for
U and V to derive

G =FP = - uINE — ()~ uPINP.
(7.23a)

Then, using the expression for F(® in (5.5), we
arrive at the resuit

G =2uPN. (7.23b)

Remember that 2N is the number of lattice
points in the lattice model of the liquid phase.

When we substitute G{@ of (7.22c) and G of
(7.23b) in (7.10), we obtain the relation to be
satisfied for coexistence:

-a =2u. (7.24)

This relation further leads to an important con-
sequence. When we use this in (7.17), we obtain

wi = p+ud,
pQ=p+ul. (7.25)

These are exactly the thermodynamic conditions
that show the chemical potential of the AC
molecule (1{)) in the solid phase is equal to the
sum of the chemical potentials of the A atom
and C atom in the liquid phase. The fact that the
coexistence condition (7.24) leads to the
established thermodynamic relations (7.25) sup-
ports the correctness of the analysis in these
sections.

8. Derivation of ternary liquidus and solidus

In the previous section we formulated using
u’s. As discussed in section 3, in the actual
computation we use a’s, which differ from u’s
by A +we;, as was shown in (3.16) and (5.3).
Therefore, the next step is to rewrite the key
equations in terms of &'s.

Using (5.3) we rewrite (7.17) as

@ +pP =4~ 4P+ wle - €).
for i=1 and 2. ()]

We can let g, satisfy either (5.7) or (5.8). In this
section we chose the latter. Then, (8.1) can be
written as

AP =+ u @ - wle; —€), fori=1and?2,
aP=0. 8.2)

From (6.7) and (6.9), we can write

My, =uQ+kT(6Iny, —111nx),

for i=1 and 2. (8.3)
The constant term & is obtained by using
Vieland’s formula [5] from the liquid phase of
the 50-50 composition as in (6.10). The quantity
wf: on the right-hand side of (6.10) is the chem-
ical potential in a binary liquid phase, so that it is
rewritten using (3.16) as
wiP+ufd =GP+ A + o6 + 410+ A + wen.

(8.4a)

Since we use (3.17) to calculate u?, we can
simplify (8.4a) as

wi?+ ufs? =24 + w(e; + en). (8.4b)
This is a part of £ in (6.10). Suppose we define
”'(?) as

A=puD-w(e+e), i=1and2. (8.3

Then A can, without knowing ¢; + €, be
evaluated as
(i3)
A9 =20~ (TP~ T) & (8.6)
Avg
where A is calculated for the liquid phase of the
50-50 composition. This relation replaces (6.10).
Corresponding to (8.5), we define

lzs.l = phg; > w(E,',' + €33), i=1and 2. (87)
Then the relation (8.3) changes into

o =pagQ+kT(6Iny,~11Inx), i=1and?2.
(8.8)
We then use (8.7) and rewrite (8.2) in terms of
a9
AP =aP+a,
AP =puQ+4q, (8.9)
AP =0,
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where Note that this A is different from A in (8.12).
G =G + 206, 8.10) If the relation does not hold, we change & and

The coexistence condition (7.24) can be re-
written, using & in (8.10) and £, in (3.16), as

-G =2A. (8.11)

Note that 2we,; cancels out, and 2%’ =0 in (8.9)
is used here.

The long transformations done so far in this
section simply mean that, for the phase diagram
calculation, we can treat the liquid phase as
though the A-A, B-B, and C-C pair inter-
actions vanished.

Thus, the actual computational steps are as
follows.

(a) We first solve 1-3 and 2-3 binary liquid
equilibrium states for 50-50 composition and
then estimate (8.6):

A486»
A= -(TP-T)FL, i=land2,
Avg
(8.12)

where A is the Lagrange multiplier used in (3.6).
As was the case in section 4, T is the melting
temperature of the AC solid, and 4S%” is the
entropy of melting of one mole of the solid.

(b) Choose a composition x{?=1-x{? in the
solid phase and calculate (8.8):

AP =aQ+kT(6Iny?-111nx(?),
i=1and?2, (8.13)

where y(@ is calculated analytically using x(? as
in (6.6) when the second-neighbor interaction
energy ¢, is given.

(c) Assume a value & and calcuiate i!{® from
8.9):
AP =aP+d, fori=1and2,

8.14

P =0, )

(d) When 2/ (i =1, 2 and 3) are thus given,
we can calculate the ternary liquid phase using
the NIM of section 5. The normalization

parameter A is then derived and used to see that
the coexistence relation (8.11) holds:

-7 =2 (8.15)

39

repeat the procedure from (c). When (8.15)
holds, then the liquid phase for this & is the
phase which coexists with the solid phase chosen
in (b).

As an example, we calculate the phase
diagram for Ga-In-As. The calculation is based
on the binary phase diagrams in fig. 2, which were
calculated using the parameters in table 1. The
additional parameter we need for the ternary
case is ¢, in (6.4) for the second-neighbor inter-
action in the solid phase. In view of (6.11), we
used the value

4e¢, = 2800/6 cal/mole (8.16)

which is consistent with the value used by S-G.
2(GaAs-InAs) = 2800 cai/mole. Our ¢, cor-
responds to S-G's £ divided by 24. The positive
value of ¢ in (8.16) shows from (6.4) that Ga and
In in the solid have a tendency to repel each
other. A liquidus isotherm at 1250K and a few
tie lines are plotted in fig. 5. The solid phase is
always on the pseudobinary line
(GaAs)l—x(InAs)x-

The liquidus and solidus on the pseudobinary
line are plotted in fig. 6a. The calculated curves
are exactly the same as those calculated by S-G

As

Fig. 5. The isothermal liquidus of Ga-In-As ternary system
at 1250 K, calculated independently by Stringfellow-Greene
(1] and Kikuchi in this paper. The numbers along the curve
are x in the solid composition (GaAs),..(InAs), Four tie
lines are shown.
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0 02 04 06 0.8 1.0
InSd inAs
i)
Fig. 6. Pseudobinary liquidus and solidus curves of InAs-
GaAs (8) and InSb-InAs (b). The solid curves were cal-
cuiated independently by Stringfellow~Greene (1] and
Kikuchi in thic paper, and the ¢5.cles and triangles represent
experimental resulits.

and agree well with the experimental points
marked in the figure.

Although the computed results are the same, a
slight difference in the identification of the
energy parameter ¢, between this paper and 5S-G
may be worth pointing out. We identified ¢, as
the parameter for the second-neighbor inter-
action (in the zinc-blende-type lattice) between
Ga and In in the solid phase, as introduced in
section 6 and illustrated in fig. 3. On the oth-r
hand, S-G regarded (2(GaAs-InAs) as the
parameter for the GaAs~InAs interaction.

The calculation was also done for the In-As-
Sb system. The energy parameters are those in
table I together with the solid phase value

4¢, = 2900/6 cal/mole. (8.17)

The liquidus and solidus on the pseudobinary
line are plotted in fig. 6b; they are in good
agreement with S-G’s curves and with experi-
mental data.

9. The orthogonality relation

At the end of section S we commented that
either (5.7) or (5.8) could be used as the con-
dition for the 4. In section 5, we used ;=0 in
(5.8). We now form linear combination of 4, and
define
AT = Gy + )3,
so that

3 at=o, ©2)

which is of the form of (5.7). Solving (9.1) for 4,’s
we can write

i=1,2and3,  (9.1)

- -y
i

h=at—-as, i=1,2 and 3. 9.3)

Since the % satisfy condition (9.2), we can
plot them on a star-shaped graph. An example is
shown in fig. 7. Each 4% (i=1, 2 or 3) point
corresponds to a coexisting liquid state P and a
solid state Q and thus to the tie line PQ. We can

Fig. 7. The chemical yotential diagram corresponding to fig. 5
The numbers along Ne curve are the x values corresponding
to those 1n fig. § The ji curve at x is perpendicular to the tie
line at x in fig §
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now prove that the tie line PQ is perpendicular
to the tangent of the 2% curve.

From (5.3) the chemical potential u(®’ at the
liquid point P can be written as

pP=g+ A +og=[G -4+ A+ we,
i=12and3. ©.4)

where we used (9.3). The chemical potential for
an AC unit and a BC unit in the solid phase can
be written as 19’ and 1@ in (7.25). Furthermore,
using (9.4) we can write them as

p$9’=ﬁ.7—ﬁ.§+2,\ +U(€i;+€33), i=1and 2.

9.5
Along a liquidus isotherm for T, the change of
the grand potential G due to the change in the
chemical potential is written for the liquid phase
as
3
AGPP=2N 3 xPau D, (9.6a)

where 2N is the total number of atoms in the
liquid phase. Using (9.4), we can rewrite this as

AGP =2N [ﬁ XPAGT — A+ AA ]

(9.6b)

At the other end of the tie line the solid phase
is made up of Nx,; AC units and Nx,; BC units:
these have chemical potentials «{Q and (D,
respectively, as shown in (9.5). Thus, the change
of the grand potential along the solid phase
isotherm is
46O =N 3 x,.8u9. 9.72)
In rewriting this expression, note that the coor-
dinate x{? for the solid state in the Gibbs trian-
gle plot is:

x@=ix,.. i=1and?2,
@ =i (9.7b)

Combining these relations with (9.5), we can
rewrite (9.7a) as

AG® =2N[x{@A4% - 8% +AA). (9.7¢)

The grand potentials G{™ and G{@ are equal
when P and Q are connected by a tie line. Thus,

41

AG” and AG( are also equal. Then, by equat-
ing (9.6b) and (9.7c), we obtain

3 (- 107 =0 9.8)

Note that x{" ~ x{? and 42} are components on
three coplanar axes. It was proved in the appendix
of ref. 4 by simple geometry that the components
of these vectors on Cartesian coordinate systems
obey an equation similar to (9.8). Therefore, we
can conclude that the tie line represented by
2P~ x{? (i =1, 2, and 3) is perpendicular to the
tangent of the i? curve.

Appendix
Proof that the grand potential decreases as the
interaction proceeds in the NIM

In this appendix we prove that the grand
potential G or @ in (3.2) decreases in one itera-
tion step of the NIM. We rewrite (3.5) as
Wy = Bwey — 2w — 1) In (xx) + w In ¥y

~4B(i +4,)-AB =0, (A.1)
where x; and x; are the input to the iteration
cycle, y; is the output, and other quantities are
constants. We can rewrite the grand potential &
in (3.2) as

P{yy} = o %: €y~ KXo -1)
x[z xhnx+3x lnx,-]

+o; %: yilny; =18 [2 b+ x,ﬁ.,].
(A2)

This is a function of the input x; and y, values, as
indicated by {y;}. Note that in (A.2) x, and x,
represent

X = ;; y; and x = ; Yii (A3)

In later transformations we use &{y,}, which is
derived by replacing the x; and y; values by %,
and y; values. The relations (A.3) hold for
quantities with carets also.

Next, we use (A.1) and form
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gmﬁv*ﬂ@ g[-‘mi‘i(zw-l)
X[Zx,lnx,»'f-z,n lnx,]

+o T oingy =18 [ 5+ T i |
~AB8 =0. (A4d)
Since this vanishes, we can simplify ®{y;} in
(A.2) by subtracting (A.4) from (A.2) as
Pyl =w g yy(n y; —In 3;)+ AB.
Then from (A.1) we form

gfﬂv’ﬁ@ gfvfii‘i(zw—l)
x[z,i, Inx+2 2,~lnx,-]

+o T gi—18 [T 4+ 3 24
-A8 =0 (A.6)
and subtract this from ®{y;}, which is derived
from (A.2):
Py} = 2w -1)
x [g 200 £, =Inx)+ 3 %(n %, ~In x,)] +AB.
(A7
We note that #{y;} in (A.5) is the input value
of the grand potential, and #{y;} in (A.7) is the

output value. We are interested in the difference
between the two:

(A.5)
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Sy} - (il =Qw -1) 2. % In(¥—x,)
+o %: yi In(yy/¥;).

In transforming this expression, we use Gibbs’s
lemma [7):

Anesr+1-et 20, (A.9)

which holds for any real number 47n. The left-
hand side is a decreasing function of An for
negative values of A7 and an increasing function
of An for positive values of An; it vanishes for
4An =0. We rewrite (A.8) as

(A.8)

D{yy} - {9y} = Qw —1) Z (& In(&/x) + x; = %]
to g [yy In(ys/95) + 95 = yil. (A.10)

Since the summand of each term is non-negative
because of (A.9), we therefore have proved that

P{yy}— ®{y;} = 0. (A.11)
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LIQUIDUS CALCULATION QF II-VL COMPOUND SEMICONDUCTORS*

Ryoichi Kikucht
Hughes Research Laboratories
Maliby, CA 90265 U.S.A.

(This paper was presented at CALPHAD X Vienna, Austria July 1981)

ABSTRACT. The pair approximation (which {s equivalent to the quasi-chemical method) i3 used
to calculate liquidus of II-VI compound semiconductors. For the liquid phasge, a
quasi-lattice structure is assumed, and the pressure and the associacion property
are taken into account. Vieland's formula is used for the free energy difference
batween liquid and solid. Numerical calculation was made with the Hg-Te and
Cd=-Te systems. For each system, one set of parameters is found which computes
the liquidus in good agreement with experiments for the entire composition and
temperature ranges.

A particular attention is paid to the shape of the liquidus curve near its
top. Experimentally {t looks pointed, although thermodynamics requires it to be
rounded. Our calculation shows that when the AB-A and AB-B interactions are
repulsive, the theoretical curve looks potated and the top region has a very
small radius of curvature.

l. Introduction

A theory of liquidus of III-V semiconductors was formulated using the quasi-chemical
method by Stringfellow and Greene (1), and later by the present author (2). In the latter,
the cluster variation method (CVM) approach (3,4) was used; the pair approxiaamtion of CVM
is equivaleat to the method commonly known as the quasi-chemical method (S).

In the present paper, we extend the previous treatment (2) to the II-VI semiconductor
liquidus calculations. The main difference {s the assoclation property, that means
{aclusion of molecular species {n the liquid phase in the II-VI case.

The liquid phase is reprasented by a lattice structure. In the pair spproximation we
are using in the paper, the information on the structure of the lattice appears only in the
coordination number which {s written as 2w.

2. Cheamical Potentials of the !.iquid Phase

The two atomic species in the system are writtea as A and B. They are, for example,
fig and Te. We sssume that in the liquid phase the molecular species AB also exists. We
use a lattice model for the liquid phase, and thease species can sit only on lattice points.
Although in reality obviously the liquid does not have a lattice structure, the approxi-
mation {s considered acceptable because the local correlation among atoms and molecules
in the resl liquid system can be simulated adequately using the lattice structure, as far
as no superlsttice structure is introduced.

The three species A, 8, and AB are designated by i=l, 2, and 3. Ve also include
vacancies (i=4) in the lattice in order to take into account the pressure effect. The
probability of finding sa 1th species on & lattice pofat Le written as xy and the
probability of finding an {-j nearest-neighbor pair {s written as 714 These
variables satisfy the geomstrical relation or the reduction relation:

#Supported by U.S. Army Research Office
Received 6 November 1981
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4
x, = E Ty {=1,...,4 2.1)
L=l

Since there is no superlattice structure {(n the lattice, the symmetry relacion
holds:

ylj - 711 (2.2)
The normalization relation is
4
E xi - 1. (2.3)
i=l

Before going into the msin treatment of the liqutd phase, in this section we discuss
the chemical potentials of species in the liquid phase. Por this purpose we write the
Aalwholtz free energy Fef-TS. The energy E {s written as

4 4
£ = uN E E e“yu - N:,x, (2.4)

t=l 4=l

whera N i{s cthe number of lattice points in the liquid system, €44 is the
interaction potential for the nearest-neighbor i-] peir, and ¢, il the formstion
energy of the AB molecular speciles. Since we sssume no {nteraction enetgy with

vacancies, we tequire

€14 % S4q ° 0 for i=l,...,& (2.9)

The entropy formula {s the same as Fquation 2.6 in Reference 2:
$ = kN (20-1) L L(x) - w Ly, (2.6)
i

where the L(x) function originates in the logarithm of a factorial and is defined as

i(x) 3xlax-x . (2.7)

The S expression in Equation 2.6 is for the pair approximation of the CVM and is the same
se the expraessioa used in the quasi-chemical. method (3).

When we use ¥ in Equation 2.4 and S in Equation 2.6, we can write the Helmholtz free
enarcgy ¥ as

Pe Nt (2.8a)
vhere

ftew z ‘U"-J - 4%y = xT (Zu-l)z L(xl) - w Z L(yij) (2...,,
i,} i 1,5

Yor the discussion of chemical potentials, it is coavenient to use the relation of
tquation 2.1 and write
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LIQUIDUS CALCULATION OF 1I-VI COMPOUND SEMICONDUCTORS

Yig = %1 ° Z Y13 (2.9
I

Based on this relation, we treat f as s function of xq (i=l,...,4) and Y14
(1#3).
The number of the ith species in a lsttice {s written as Ny which satisfies

NL =-x, N, i=1,...,4 (2.10)

Note N, i{s the number of vacancies. When we use the Helaholtz frue energy F as the
thermodynanic potential, the total volume of the system is fixed. In the lattice model,
this means that the total number of lattice points ¥ is fixed. We can choose N,, N,, and
N, as independent and write N, as

Ny = N-N - "2 - Ny . (2.11)

We then calculate chemical potentials as follows:

moE @5?)&2."3 ) (gﬁ{)uz,u:‘,nﬁ B (%EZ)NI,NZ,Ns (2-12)

When we use the free energy expression in Fquation 2.8, we can obtain explicitly,

uy = gy, + k‘r[ln Xy + W 1n(yu/xlz>] = by (2.13)
where

W, 2 g;‘ - kT[lll L7 + w ln(y,.‘/x‘z)] . (2-16)

We can perform the same differentiation as Equation 2.12 for i=2 and 3 and obtain

W o= we, - € +kTlln x; + w ln(yu/xlz)] ~ ¥y for =1, 2 and 3 (2.15)
where we wrote ¢; as a general term but it {s defined as

¢y =0 for L # 3 (2.16)

and ¢4 is the energy parameter in Equation 2.4 and 2.8b.

The total number of A atoms including those in molecules AB is written as Np, We
define the corresponding quantity Ny for the B atoms. Then

NA - Nl + NJ N
N = N, + N5 . (2.17)
When the compositions Nj and Ny are given, the system adjusts itself to come to the
value of N, such that the free energy i{s s minimum with respect to Ny« In order to see
this relation, we can use NA, Nn’ and N, ss independent and write N;» Ny, and N as
“1 - “A - Ns »
Ny=Ng-¥; ,

N, =N =N -Ng+Hy . (2.18)
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=
. When we nminimize ¥ with respect to N, keeping N, and Ny fixed, we can use
', Equation 2.12 and corresponding relations for is2 sad 3 to obtain
- g = U+, . (2.19)
-": This is the equilibrium condition among atoms A and B and the molecular species AB.
£ We can use Pquation 2.18 agsin and derive that u, in Equation 2.12 is identical to
. the following differentistion:
- u_.)
b Uy - (2.20)
1 (3\!A ¥y
2
g This says that the chemical.potential ¥; can be calculated by either Equations 2.12 or
o Equation 2.20.
:_- 3. _Grand Potential
b In numerically solving the liquid state, it is convenient not to fix the composition
\ Ny but to let it vary by using Lagrange multipliers. We define the grand poteatial G
% as
- 4
o = a 1]
AN G=E~-T5 - E uglty (3.1)
! .3 {=]l

vwhere, at this stage, u{ is regarded as Lagrange multipliers. Since N is fixed and we
treat N, as dependent as in Equation 2.11, we actually do not need ug in Equation 3.1.
~, S0 we require

i

LY
‘A
N uy =0 . (3.2)
i
«* We use Equation 2.9 and rewrite the energy E in Equation 2.4 as
. 4 4
1 .‘ n
N E = uf E €% * E ‘ij"ij - N E ; €;X; (3.3)
A is] i%j im]
N,
o= vhere we define
&5 % 65 - i (c“ . ‘jj) (3.4a)
- Specisl cases are
2 g, 20  iwl,....6 (3.4b)
aand
-
o -~ ~ 1
s €4 ™ €41 " -7 €4 (3.4¢)
;. When we combine B in Equation 3.3 and the chemical potential terms in Fquation 3.1,
.t we can write
' 4 4
£ ‘Z WiNg = "“Z IR Z (wegg - €g = wiley . (3.5
i=l i,j ' is]
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We can simplify this wvhen we write

d; % ug i (3.6)
u; Ty - owe v g, i=1,2,3 .
* Because of Equations 3.2, 2.5, and 2.16, we see
i, =0 . 3.1

’ When we combine Bquations 3.5 snd 2.6, we can write the graad potential G in
Equation 3.1 explicitly as

-m‘\- A.. ..
[ 2 N ngeuyu

- (QQu- 1) ZL(xi) + Z L(yij) + Bx<1 - Z yij) (3.8)
i 1,1

l'-]

where

g = is (3.9)

and A is a Lagrange multiplier. The A terms are added in Equation 3.8 in order to take
ianto account the normalization of Yij

The equilibrium state is obtained by minimizing G in Equation 3.8 with T and ﬁl
fixed:

- - R T P
T}:;:Buc-lj - 2=l g (xyxg) ¢ wlay; -3 B G v E) - 8= 0 (310

At this point we digress and exsmine the i=j case. Using Equation 3.4 we can derive

U e A ln‘[ln x; + um(yﬁ/xiz)] for i = 1,2,3 . (3.11)

The fourth equation can be simplified by using Equations 3.7 and 3.4 as
A= k’r[lnxk + wln (y“/xtz)] . (3.12)

When we compare this with Equation 2.14, we identify H, uged in Section 2 as
W, = A (3.13)

Use of this in Equation 2.15 and comparison with Equation 3.11 allow us to derive

-~

vy woug o~ owe e, i®1,2,3 (3.14)

Purther, vhen we compare this with Equation 3.6, we can idencify
wiewp o, i=1,2,3 (3.15)

which means that ui'_ used in the expression of ¢ in Equation 3.1 is actually the chemical
potencial itself, Therefore, from now on we can drop the prime from u;_

JWhen thie relation is used, Eum becomes the Gibbs free energy G itself.
Thue G in Equation 3.1 is i

G=F-G=-pwN (3.16)
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vhere v is the volume pev lattice point in the lacttice model of the liquid phase.

The identity in Equation 3.15 leada to snother important relation. We caa write the
association equilibrium relation in Equation 2.19 in terms of u; using Equations 3.15 and
3.14:

~

ax’“z‘ﬁa'““ss“ll"zz)'ﬁs“ . (3.17)

We can interpret the mesning of the energy constant u as follows. When ﬁ,. in
Equation 3,11 is written as

i FRTlna;, i=1,2,3 , (3.18)

then & is called the activity. Equation 3.l1 together with 3.12 gives the explicit form
of a; as

M w1
¥ii b/
Ii -‘i(ﬁ) !6(;4%) (3.19)
i 6 /-

which says that a; is roughly proportional to the fractional smount Xx{. When we use
4§, we can write Equation 3,17 as

ﬁ; = exp (~u/kT) . (3.20)

This shows that the energy comstant u controls the smount of sssociation, a larger -u
leading to a larger a,, i.e., larger association.

When ¢ in Equation 3.8 is 4 minimum and Equation 3,10 holds, we can simplify ¢ by
forming

s 86 . o2 | T
[] iy [) g y‘.j 371'.5 8A . (3.21)

This means that all terms in ¢ cancel each other except the only one 3A., Comparison of
Equation 3.21 and 3.16 leads to the relation

Aw ~pv . (3.22)

Now we go back to the equations in 3,10, and write it a»
yij * .,,,[1‘;5 - 8ty o 55 Gig ﬁj)] (xixj)(z“"l)/(z"') (3.23)

When 8 = 1/KT and ii; are given, this relation and the redvction relations ina Equation 2.1
form a set of simultaneous equations to be solved for Yij- We can solve them using the
NIM(3).

The energy parsmeters ve need are seven: &,,, &3, $33, S1u4s 24, 34 in
Equations 3.4 and u in 3.17. The values of these saven parametars are to be supplied by
whatever means before the computation etarts. In solving the set of simulteneous equations
we fix two values {i; and {i,. When {i; and {i, are given, u, is determined from the
association relation Equation 3.17; note ﬁ., ® 0 as in Equation 3.7. We then proceed to
solve the equations using NIM. Aftar the iteration has converged, the pressure is derived
from the relation in EZquation 3.22. The two adjustadble parsmeters ﬁx and ﬁz can be so0
chosen that the pressure p and the composition Np/Ny can take chosen values.

4., Derivation of the Liquidus

‘-“
.

Darivation of the liquidus curve was formulated in Section 4 of Reference 2 based on
the geometrical conscruction that the tangent of the Gibbs free energy curve for the liquid
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phase goes through the Gibbs free energy point for the solid phase. We can use the similar
formulation in the present problem. We assume as in Reference 2, that the solid phase has
the fixed compoeition, N, = Ny, and thus the Gibbs free energy for the solid at T is
represeated by s single poiat racher than a curve.

The geometrical construction of Reference 2 leads to the coexistence condition that

MENIN IO IINC .1

whare the superscripts () and (s) stand for liquid and solid, respectively. This equation

holds in the present case also.

The chemical potentials for the solid state can be calculated using Vieland's
method (6), and is written as

"1(‘) . "z(' - “1 + “z - {1, =T &5, (4.2)

where (c) indicates the supercooled liquid state of the composition Ny = Ny at T, T
is the melting temperature of the solid and 48, is the entropy of melting per molecule
AB. The value of T, is to be supplied from experiments.

In the present case we can use !qunu.on 2.19 and simply write u, for u, + u, in
Bquation 4.2. FPurther, we can use Equation 3.14 to write

u3(") - ”‘,(C) - ;3(!- - %(c) 4.3)

Note a caret on U on the right-hand side. Combining these three equstions, we can write
the condition for the liquidus as

A ¢ A ) I T (4.4)

Thus the procedure of deriving the liquidue curve is the following. At the
tewperature T and rcuurc p, the up.rcoolcd scace (c) is firsc solved. This solution

gives the value u, Then Bquation 4.4 is used to derive u, L) for the
liquid -ntz whl.ch co’xuts with the solid at this T znd h\)ﬂtion 3.17 is then used to
evaluate i, When ve assign a value to uy

all the pu--:cn nre ceady to solve the umlnnnmu Bquanon. 3,23 for the liquid state
(2). The adjuscable value ul(" - “2( 1) is determined so that the pressure of
the state becomes equal to the desired value p.

In Section 3 we noted that the pnnnt !omlcnon hu seven energy parameters at our
disposal. Among the seven, the three ¢,,, ¢;, aad ¢;, avre related to vacancies and hence
have little effect in the liquidus calculations because the number of vacancies (in the
pseudo~-lattice model) is slways small, less than 10=*, in the present calculations.

In the LII-V case, in which no wolecular species exiscs, [ 3 and ‘23 do anot appear in
the theory sad hence ‘lz is the ouly energy parameter., We know in the III-V case (2) that
‘12 controls the shape of the liquidus curve, ukin; it higher or lower. 1n the present
11-V1 case, aleo, ‘lz controls the uqm.du- curve in the similar way., when '312 is large
the liquidus goes up, except at Ty vhich is fixed.

The energies l: together with u, control the smount of association, In
order to single out :he auocfuion property, we calculate the special case ‘13 =
keeping the liquidus symmecric. The calculated results are in Pig. 1, in which the number
written next to & curve is the value of the ratio VLITRK ¥ €15 Por lower curves for
which the ratio is positive, and hence &, = &,; is negative ?x ¢., attractive), the
liquidus shows the rounded top. Por upper curves for which the ratio is negative, i.e.,
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7,
; €13 323 is positive and repulsive, the liquidus shows a pointed peak. As the shape
changes from the rounded top to the pointed top, around -2 of the ratio, the shoulders are
almost linear. At -3 and -4 of the ratio, the inflection points are observed., For -5, a
phase sepsration occurs in the liquid phase. The liquidus similar as the -5 case is
" observed in the Zn-rich side of the Zn-Te binary liquid (7).
‘3' Although the upper curves in Fig. 1 are pointed, the peak still has a rounded top
M3 with a small radius of curvature. This is in agreement with the thermodynamic
o requirement (8).
4 700
600
4
500
400
2,
FIG. 2
Hg-Te binary liquidus. Dots
N are experiments (9).
2
-f 10 T T T —=3
e L E
[+] 20 A0 80 80 100 -
A %py 8 |
":- ONT."SOOI
i’ rre. 1 ak *
& Liqutdus curves for different § E
: valuas of atom-molecule inter~ 2 -
action psrameters. A horizon- - I
’ tal short line marks 600°C for § L
2 each curve. 3
_:ﬁ a0l - Te
\g_ c ON Mg 3108
“ C b
n‘ -
a0t ok I i i 1
100 20 ™) « 300 w0

©
FIG. 3

Replots of the low temperature
parts of the Hg-Te liquidus.
The vertical axis is the
composition of the ainority
species.
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LIQUIDUS CALCULATION OF II-VI COMPOUND SEMICONDUCTORS 9

Pigure 2 shows the Hg-Te binary liquidus. The dots are Harman's experimnu (9). In
calculating the theory we used the following values. The ml:mg temperature is Harman's
experimental value T, = 673°C. The entropy of melting at T, is 43, = 9.2 e.u. which
u in Laugier's paper (10) _Other energy values are €2 ~200/6 cal, €,4,8,,= -8,

3/‘12 = -0,5, el“ - 32“ - ¢3~ = ~1000°, and u = -3000°.

Figure 3 shows the low temperature parts of the liquidus curves for the Hg-rich side
and the Te side. The Te values on the Hg side are based on Riley's experiment (11). They
are plotted in the logarithmic scale so thet a small amount of the minority component is
seen more accurately than in Fig. 2. The curves in Fig. 3 are close to linear. It is
found by trying many parameter value combinations that the slope of the line in Fig. 3 is
controlled by 4S, and almos! solely by it. For a certain value of A4Sy, when we change
ather energy parametars, the line in Fig. 3 goes up or down but the slope remains almost
unchanged at the value determined by 4S,. The dots in Fig. 3 are experiments and the
curves are the theory; they agree well and the theory passes the test vhich is more severe
than Fig. 2. Note that both the Hg-rich and the Te-rich legs agree with experimeats and
both of them coafirm the same value 48, = 9.2 e.u. The fact that 9.2 e.u. is also the
independeatly mesasured experimantal value of 4Sy in Reference 10 supports the validity of
the association model and the consistency of the theory, including Vieland's method of
estimating the free energy of the solid state.

¥igure & is for the Cd-Te binary liquidus. The points are experiments in Reference 7
and the curve is the present theory. The melting tempersture is fixed at the expermenul
value T, = 1082°C. Other parameters are Sy = 5.0 e.u., = -1000/6 cal., &,4,€
=5.5, 8,9/, =3.3, &y = 5 = €3, = ~1000°, and u = -6(}(}0 . Figure 5 correcponds to
Fig. 3 and plots the amount of Cd in the Te-rich leg of the liquidus on a semi~log scale.
The experimental points are due to Harman ('2). As was discussed above, the slope of the
line in Fig. 5 determines the value of As,,. which we found to be 5.0 e.u. This value of
4, is different from 8.8 e.u. reported in Reference 10. Since our estimate is regarded
fairly reliable, further independent experimental measurements of A4S, for CdTe are
desirable.
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10 R. Kikuchi

Although the association model is still controversial (13), the reasonably good
agreemant with experiments supports its usefulness as a working model.

The pair approximation of CVM can take into account the short range order, i.e., the
local atomic arrangement, while the point approximation cannot. The former is recommended
in treating the liquid scate.
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APPENDIX C

' THEORETICAL CALCULATION OF Hg-Cd--Te

RO LIQUIDUS-SOLIDUS PHASE DIAGRAM
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Theoretical calculation of Hg—-Cd-Te liquidus-solidus phase diagram®
Ryoichi Kikuchi

Hughes Research Laboratories, Malibu, California 90265
{Received 28 October 1981; accepted 22 January 1982)

The liquidus~solidus phase diagram of Hg~Cd~Te is calculated using the pair approximation of
the cluster variation method. The work is an extension of previous III-V work and includes
association as an additional feature. The liquid phase is approximated by a pseudo-lattice
structure and includes molecular species as well as atomic species. Vacancies are also considered
in order to take the pressure effect into account. Unlike the regular solution model, the pair
method can take into account the short-range order in the liquid phase. Adjustable parameters
(mostly energies) are first determined to fit Hg-Te and Cd-Te binary experiments. The
association model can explain the asymmetry and the sharp peak at 50% composition. These
parameters and several additional ones constitute the one set of parameters (independent of
temperature and composition) which are used to calculate the entire ternary liquidus—solidus
diagram. Each parameter controls certain features of the diagram. Although the work is still in
progress, reasonably good agreement with known experiments has been achieved for both the Hg

corner and the Te corner. The chemical potential diagram is discussed.

PACS numbers: 64.70.Dw, 68.45. — v, 81.30.Bx

Ternary phase diagrams of III-V semiconductors were pre-
viously calculated' using the pair approximation of the clus-
ter variation method (CVM).2 The work in Ref. 1 gives the
same results as those obtained by Stringfellow and Greene,’
who used the quasichemical approximation of Guggen-
heim.* The present report is an extension of Ref. 1, and in-
cludes association® and vacancies as additional features. Dis-
cussion of associated binary liquids can also be found in Ref.
6. Since the theory is closely related to Ref. 1, the reader is
advised to consult Refs. 1 and 6 for additional and pertinent
background information. Compared with the previously
used regular solution model,® the advantage of the pair
method is that the short-range order in the liquid phase can
be taken into account.

In the liquid phase, x; indicates the probability of finding
an ith species on a lattice point. Since we will discuss both
binary and ternary systems, we will make /i = 1, 2,..., 6 de-
note Hg, Cd, Te, HgTe, CdTe, and a vacancy throughout the
paper. For a Hg-Te binary liquid, weusei=1, 3, 4,and 6
only, and for a Cd-Te binary we use i = 2, 3, 5, and 6 only.
Along with the x,’s we use the probabilities y;;, for finding i
and j species on nearest-neighboring lattice sites. These y;;’s
are the basic variables in the pair approximation of the
CVM. The two sets of variables are connected by the geo-
metric reduction equation '

X, = ;)'y' (1)

The equilibrium state of the liquid phase is determined by
writing the Helmholtz free energy F in terms of y,’s, and
then minimizing the grand potential G =F — =, u, N, with
respect to y,'s. (We write G for the grand potential, not the
Gibbs free energy.) The quantity y, is the chemical potential
(with respect to an appropriately chosen reference state), and
N, is the total number of the ith species in the system. When
G is minimized, we obtain a set of equations

120 J. Vao. Sol. Technol., 21(1), May/June 1962

yy = (xx))"~ V=X exp [%é —Be; + —‘f—(#; +y,)]-
(2)

where z is the coordination number, and 8 = (kT)~' and ¢;
are the energy parameters for an i-j pair. We define ¢; in
such a way that €, = 0 for the same subscripts. One advan-
tage of the CVM formulation is that Egs. (1) and (2) hold for a
ternary as well as a binary system, and also for associated as
well as nonassociated liquids by appropriately identifying
the subscripts. Derivation and discussions of Eq. (2) are in
Ref. 1. In Eq. (2), A is the normalization constant and has the
physical meaning of A = — pv, where p is the pressure and v
is the volume per lattice point.

The mathematical procedure of the problem is to solve
yy's from the simultaneous nonlinear Eq. (2), together with
Eq. (1) for fixed values of €, 4., 5, and z. They are solved by
using the natural iteration method (NIM)’ without further
analytical transformations. In the NIM, the first input is a
set of guess values of x,. We use these values on the right-
hand side of Eq. {2) to calculate y;, as the output. These y,’s
are used in Eq. (1) to obtain the next input set, x,. It was
proved’ that at each iteration cycle the G value decreases,
and hence the iteration procedure always converges.

In deriving the liquidus curve theoretically, we need the
relation between the free energies of the liquid and solid
phases. The chemical potential, 4, for solid HgTe (or
CdTe) is derived from u "' in the supercooled liquid state of
the 50% composition by using Vieland’s formula,® ex-
pressed as

pm =”lll - (Tm — T)AS,,., (3)

where T,, is the melting point and 48, is the entropy of
melting per molecule.

For the Hg-Te binary system, the important adjustable
parameters are €,,, €,,, €y, 45,, and U,, where U, controls

0022-3355/82/080120-04801.00 © 1982 American Vacuum Soclety 129
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FiG. 1. Cd-Te binary liquidus. The curve is the present theory, and the
points are experiments shown in Ref. 9.

the amount of association and connects u,’s as
M+py—pe=U, 4
Details of this equation are found in Ref. 6. Figures 1 and 2

compare the theory (solid curves) of binary liquidus with
experiments. Two features of liquidus curves, which are dif-

700

500
°c
400
300
[+] 0.2 0.4 0.6 08 1.0
Hg Te

FiG. 2. Hg-Te binary liquidus, showing the present theory (curve) and ex-
periments in Ref. 10 (points).
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ferent from the I1I-V cases, are the asymmetry and the sharp
peak at the 50% composition. The theory can derive asym-
metry when €,,7¢,,. The atomic pair interaction ¢,, is at-
tractive (i.e., negative). When ¢, and €, are repulsive (i.e.,
positive), the liquidus shows a peak at the 50% composi-
tion.® When — U, is large, the association property in-
creases and the peak becomes sharper. Then when — €,./€,;
is larger, the left shoulder of the Hg-Te liquidus goes up, and
when — €, is smaller, the entire liquidus curve becomes
lower (except that T, at the 50% composition is anchored).
The value of 4S,, controls the shape of the leg parts of the
liquidus curves in Figs. 1 and 2.

The values of the parameters we used in calculating the
curves in Figs. |1 and 2 are: €,; = — 200/6 cal,
€1/€3= — 8.0, €,,/€,3;= —0.5, U, = — 3000 °,
€13 = ~— 1000/6 cal, 625/523 = — 5.5, 635/623 = —3.3,
U, = — 6000, 4S5,,(HgTe) = 9.2 e.u,, T, (HgT) = 673°C,
4S,,(CdTe) = 5.0¢e.y, T,,(CdTe) = 1082 °C, ¢,, = — 1000°,
i=1,2,.,5, and €, = 0. The energy units are left as they
were used in computations. The value of z is chosen as 6 in
the numerical work; however, z = 4 or 8 does not change the
results very much.

In calculating binary liquidus curves, several cases were
noticed in which different combinations of some parameters
led to practically the same shape. Therefore, the above val-
ues of the parameters are not altogether unique.

However, the value of AS,, (HgTe) is believed to be accu-
rate because 9.2 e.u. leads to a good agreement in both Hg-
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F1G. 3. The Hg corner of the ternary Hg~Cd-Te liquidus. The solid curve is
the present theory, and the broken curves are Riley’s experiments, Ref. 12.
The numbers 0.2 and 0.4 are the values of x in the solid phase
{(HgTe), (CdTe),.
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FIG. 4. The ternary Hg-Cd-Te liquidus near the Te corner. The solid curves
are the present theory, and the broken curves are the experiments of Har-
man in Ref. 13. The numbers 0.2 and 0.4 have the same meaning as in Fig. 3.

rich and Te-rich leg parts and also is the value reported by
Laugier."

For the ternary system (as was done in Ref. 1) we need ¢,,
the interaction of a Hg—Cd pair on one of two fcc sublattices
which constitute the zincblende structure. Besides ¢,, ad-
justable parameters are €,, for the Hg-Cd pair, ¢, for the
Hg-CdTe pair, €5 for the HgTe—CdTe pair, and ¢,, for the
Cd-HgTe pair. ,

In comparing with other experiments, we first examined
the Hg corner. The value of ¢, adjusts the general shape of
the curves, and the best choice we could make was ¢, = 0.
The values of €,, and €, were adjusted to bring the Cd con-
centration to the right range. The values we chose to plot in
Fig. 3 were €,, = 500" and €,; = 900", For these energy val-
ues, Cd species exist more or less equally in the atomic Cd
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Cd/Hg

FiG. 5. The Hg-Cd-Te liquidus and solidus in the Te-rich side. This is a
replot of Fig. 4. The experimental points are those of Harman, in Ref. 13.
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Te

FIG. 6. The Gibbs diagram of the Hg—Cd-Te liquidus and solidus. The
upper Te-rich side is for 450 °C, and the lower part is for 460 °C. Note the

phase separation in the lower part.

form, and the molecular CdTe form.

After these values are determined we move to the Te-cor-
ner in Fig. 4. The shape of the curve is adjusted by €,s. In the
region of Fig. 4, HgTe predominates over CdTe; thus, when
€,s i8 attractive, CdTe increases (the contribution of atomic
Cd is negligible). We chose the value €, = — 120" to draw
Fig. 4. Figure S replots the data in Fig. 4 in a different way.
The circles are Harman’s experiments'* for temperatures
ranging between 450" and 550 °C. Although the experimen-
tal points of different temperatures lie on one curve, and the

H“Te
-
09 01

+4000. 4 W

0.991
F1G. 7. The chemical potential diagram corresponding to Fig. 6.
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600 °C theoretical curve fits the experiments well, the theo-
retical curves for other temperatures are shifted.

It should be pointed out that the values of €,, €,,, and'€ 5,
which have been determined in Fig. 3, have a strong effect on
Fig. 4. The fact that the same set of values of ¢, , €,,, and €,
leads to a satisfactory agreement with experiments in both
Figs. 3 and 4 can be counted as a merit of the theory. The
value of €,5 determined from Fig. 4 Las practically no effect
on Fig. 3 because the amount of HgTe in the Fig. 3 region is
much smaller than the amount of Hg. Since no detailed ex-
perimental data were available for the Cd-rich region, we left
€,, undetermined for the Cd-HgTe interaction and used
€5, = 0 in computation.

Figure 6 is the Gibbs diagram of the liquidus—solidus.
Note especially the tie line which goes all the way across
from the Hg corner to the point near CdTe, in agreement
with the report of Ref. 14. Since our value of €, = 500°
shows the repulsion between Hg and Cd, there is a phase
separation in the liquid phase. In Fig. 6 the state of
Hg = 0.976, Cd = 0.024 coexists with the state of
Hg = 0.027, Cd = 0.968. (These values are not reliable be-
cause €,, = 0 is tentative.)

Figure 7 shows the chemical potential diagram as it corre-
sponds to Fig. 6. The chemical potentials for Hg, Cd, and Te
are adjusted (linearly shifted) so that the sum of the three is
zero. In that case, u,, u,, and u, can be plotted' in the star
diagram of Fig. 7. The upper curve is for the Te corner and
the lower curve is for the Hg—Cd side. Each point on the two
curves represents the coexisting states of the liquid and the
solid. A number next to a mark on the curves is the composi-
tion x in the solid phase, (HgTe), _, (CdTe), . The point tobe
noted is that a tie line in Fig. 6 is perpendicular' to the u
curve at the corresponding x point. The phase separation
near the Cd-Hg edge in Fig. § is represented by the discon-
tinuous change of slope in the bottom part of Fig. 7.

The pair approximation has been known for many years,
and is known to give more reliable results than the regular

J. Vae. 8ci. Technol., Vol. 21, No. 1, May/June 1982
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solution method. The difficulty, however, in applying the
pair treatment to a system of many components was that a
large number of variables had to be calculated by solving
nonlinear equations. This difficulty was solved by the NIM.’
Different from the Newton-Raphson method, the NIM
does not need matrix inversion, and it guarantees positivity
of all probability variables being calculated. The large num-
ber of variables does not cause any problem.

Although the association model used in this paper is still
controversial,'* the good agreement between experiments
and the present theory, which uses one set of parameters,
suggests the usefulness of the model as a working hypothesis.

The author wishes to express his thanks to Lloyd deVaux
of Hughes Research Laboratories for the discussions and his
continued interest in this work, and also to Kevin Riley of
Santa Barbara Research Center for allowing the paper to use
his experimental results before publication.
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1. INTRODUCTION

In the liquidus calculations of III-V and II-VI
semiconductors in References 1, 2 and 3 by the author, and also
in those by Brebrick et al, the solid phase was treated as
stoichimetric without lattice defects. In actuality, lattice
defects are important since the electrical properties of the
semiconductor are affected by the defects. 1In this appendix we
formulate the Hg-Cd-Te solid phase, including lattice defects.

The solid Hg-Cd-Te lattice is shown in Figure 1. It is
made of two interpenetrating fcc sublattices. On the white fcc
sublattice, Hg and Cd atoms are distributed, while the black fcc
sublattice is occupied by Te atoms. For this examination we
allow vacancies in both sublattices, and also we include
antiatoms, which means Te atoms on the HgCd sublattice and Hg or
Cd atoms on the Te sublattice.

8797-5

V\

>fb
\\ 1
|

|

N

1

. o m——— w— e ——

Figure 1. Structure of the Hg-Cd-Te crystal.
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In calculating the free energy, we use the pair approxi-
mation of the cluster variation method (CVM)S5. Although the two
sublattices are both of the fcc structure, each fcc lattice is
disordered by itself, and hence there is no frustration effect
which is characteristic in the ordered fcc structure.
Therefore, the pair approximation is expected to be a reliable
method.

In contrast to the ordinary pair approximation, we use two
kinds of pairs, intrasublattice and intersublattice; thus the
entropy expression of the present formulation has not been used
before.
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2. VARIABLES

We use the designation I and II for the HgCd sublattice and
the Te sublattice. On each lattice point we have either a
Hg, Cd, or Te atom or a vacancy; these four species are
designated by i = 1,2,3 and 4.

The probability of finding an ith species on the sublattice
I is written as Xr,i° This is a "point"™ variable. The
probability of finding an i-j nearest-neighbor pair in the I
sublattice is written as yI,ij’ this is the variable for an
intrasublattice pair. The corresponding variables, Xy1,i and
YII,ij are similarly defined for the sublattice II.: Anoth:;
pair variable, zij’ is for the probability of finding an i

h .
species on a nearest-

species on the sublattice I and a jt
neighboring II sublattice (note the order of the two

is an intersublattice variable. Note that z,.

subscripts); zij 14

and z.. are different, while y. .. = y. ...
ji I,ij I,ji
These variables are related by the following relations:

xI,i = yI L, = 5 ., (2.1a)

. (2.1b)

The normalization relations are

1 = i,j yI,ij = i;j YII'ij =i,j zij . (2.2)

In subsequent sections we minimize the grand potential
under constraints. The constraints written in Equation (2.1)
can be treated using Lagrange multipliers, aI,i and aII,iaS

- ) )"
’2); *1,1 [23: Y1,ij ? zij] * 129 %3 1T YrIr,ij -21: 2i5
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3. GRAND POTENTIAL

The entropy expression can be derived by using, for

example, Barker's procedure®:

S/kN = 15 [zi:°e("1,i) +§i':£(xn,i)]
¢ [ B L ()] - ¢ EL(er) + 0

(3.1)

where k is the Boltzman constant, N is the number of lattice
points in one of the fcc sublattices, and [2(x) is defined as

Jz(x) = x%nx - x . (3.2)

In writing the energy expression, we need two kinds of

energy parameters: eij for an intrasublattice pair and uij
an intersublattice pair. Using these parameters, we can write

for

the total energy of the system as

We assume that a vacancy does not contribute potential
energy, Sso that

€ = €,, = U,, = =0 for i = 1,2,3,4 (3.4)

i4 4i ia = Yai
The grand potential, &, is defined as

nae-Ts-Zi:uiNi ' (3.5)
where Lj is the chemical potential and N; is the total number
(both of the ith species). For the vacancy i = 4, we

define ¥, = 0, since we do not need the chemical potential for a

vacancy. Using the variables xI,i and xII,i’ we can write
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When we combine the two terms, E -E:uiNi in Equation
(3.5),it is convenient to define

N

sij = eij - (eii + jj)/2.
(3.7a)

A\ -
and

Wi =g - 20y - 6 ey (3.7b)
Then we can write

[E -4 uiNi]/N

- DI N XA
A vs IS [YT,ij ¥ Yn.ij] e 12':3' Bij 2y T T (kpp v oxp)

(3.8)

where each summation goes over i = 1,2,3,4 and j = 1,2,3,4.
From Equation (3.7), the parameters with carets have the

properties:
A A A
eii = uyy = 0 and My = 0 (3.9a)
A /\
14 = %41 = " %3372
(3.9b)
N A

Ujg = Ugy = - uyy/2

It is convenient to use these energy parameters with carets
because in the limit of no vacanies, the individual €ii and u
do not contribute to the state of the system.
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/

' Combining the energy and chemical potential terms in

E Equation (3.8) and the entropy expression in Equation (3.1), the
) grand potential, @, in Equation (3.5), together with the

2 constraint terms, is written explicitly as follows:

¢ .

b . ® = BA/N = 68 iz,:j/‘;\ij [yI'ij + yH'ij] + 48 iz?j Gij ’z\ij

o
!
w0
=
e
»
L]
+
Fe)

o,9) ¥1,i5 * 5):(“11,1 *ory,3) Yi1,i4

J - 12 (“1,1 + an'j) 2y (3.10)
d
7 where the A terms are for the normalizations and the o terms are
' the constraints derived in Equation (2.3).
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e 4. MINIMIZATION OF THE GRAND POTENTIAL

{

S The equilibrium state of the system is obtained as a

3? minimum of the grand potential, ®, or ¢ in Equation (3.10). 1In
e e e . .

:ﬁ: minimizing it, we regard YI,ij’ yII,ij and zij as independent.
LA We treat Xy, and xII,i as averages of y's and z's; the weights
LY are arbitrary, but we use the following expressions:

£ x. =t [Ty X

1o I,i 4 jI,ij 3 "ij

e (4.1)

]

1 fa )>
X11,53 = 1 (3 i Yrr,iy 1 %iy) -

ﬁ% Differentrations of ¢ in Equation (3.10) with respect to

% Y11,i5 and Zi5 lead to the following equations:
.'- _ A
o noyr,i3 = PA/6 + AR Y 4y
) - 2
o n ¥rr,i5 = Brrr/6 + nVpp,i4 (4.2)
o A
&
5 where we separated out the normalization factors, x's, and the
o quantities with carets are defined as
2% o .15 o a2 e e e
- YL gy = et (xp,yoxp,4) ¢ B[ iy * Tels * uy)l- ep y-eg g
e
L - A i 7 ~ - -
n ¥11,15 = 16’l“("11,i"11,j)+ B[eij BT CIRAUED R %11,
A N A
% tnzgy =ygnlxp yxpq 4) + B[‘uij + 7l + “J)]+ 3 (eg,; + opg,4)
xL (4.3)
2%
o The equilibrium state is solved from Equation (4.2) and
L]
& (4.3), and the constraint relations in Equations (2.1) and
0 (2.2).
BN
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When these equations are solved, ¢ in Equation (3.10) can
be simplified as

°=O—z 0o 2 _a;.;____zz 9%

i, Y1,i3 Wr,i5 b3 Y11,ij Wr1,i A i3 ¥z

=8 (A_ + A, + 2

z t 1 1) = 8N .

On the other hand, since the iuiNi term in Equation (3.5) is the
Gibbs free energy, we can identify @ as the difference between

the Helmholtz and Gibbs free energies, so that
Q= -pv , (4.5)

where V is the total volume of the system. From the last two
equations, we can derive the pressure expression as

p = - (Xz + AI + AII) N/V . (4.6)

Since we will need it later, let us derive the chemical
potential expressions from Equation (4.3) by eliminating a's.
Making i = j, we obtain

A 15
"1 T kT[' 2 (ag,goxpg,g) #3000 (yg, 5 vy q9) + 2 0 zii]

(4.7)
-1
5 (A, + A+ AII) .
This holds for I =1,2,3,0or4. The XA terms can be rewritten from
the i = 4 case as
1 = -3
70+ ) kT[ 2 (xp,4%11,4) + 30 (vp,44¥11,44) +220 244'

(4.8)




.......................................

5. ITERATIVE SOLUTION OF THE EQUATIONS

The set of equations in the previous section is solved
- iteratively. The method is called the Natural Iteration
.. Method.’ The flow chart of the iteration procedure is shown in
> Figure 2. 1In using this scheme we fix the values of the
energies, Gaj,'&ij' the chemical potentials, ﬁ}, and the
temperature, 8. The three chemical potential values control the
equilibrium composition and the pressure.

In the flow chart of Figure 2, the second step is called
the Minor Iteration. It solves the Lagrange multipliers (a's)
using the following procedure. The variable «

- ;.A-.
[ A

i '1;

pnt

I.i is contained
’
in both the Y1 terms and z terms of Equation (2.1a), as is seen
in Equation (4.3). Using (4.2) in (2.%a), we write the latter
2 as

BAI/6 -a

a ' -3Q .
e e 3 I,i 2: 3 I,i~n

[+ )
I,i) _"I,in - .Brz/4
3 e yI,ij e e 3 e zij .

o (5.1)

, Since YI,ij and Zi5 are individually normalized to unity, one of
the four equations, i = 1,2,3,4, in Equation (2.1a) is
A redundant. This means that we need only three ay's. Or we

- may choose, for example,

11,3 . (5.2)

Then we can eliminate the normalization factors A's in Equation
(5.1) and write

- a -3a .
v -a z:e I'i§\ 3ap 4 z:e Ly

_-: e I,i 1.2__4& = @ :L_:_/\_____ll . (5.3)

ay
1 J Yr1,35 T 2ij

72




-
L.

)
2
AN

[ TR P

13300-6

LY.

— XLi o *m,i

«¥a

-

Y

" MINOR ITERATION SOLVES
]
P oL & o,
q

D"{!l,({

ata

N 4.2) & (2.2)
i ‘

X XI,RH,)\

2

(4.2)

YLij o YIii ¢ i

l 2

XL o *m,i

A St
l‘_A:a-'n:.

A

i

he £on
PLE

MW

Pt

Ly

NO

TEST < TESTF

ity-b Aty

YES

' SOLVED

T Figure 2. Flow chart of the Natural Iteration Method.

73

TP I PG e R T g S T S i S S S R L PN e e te e e e e . PN
W AT AN e e . - - PRI R L e e s e
0 . 'ﬁ‘ AL o ..'\v'.'-' ‘-.. ..'.'.'... '-.‘ WU '-'.' ORA te .-. N o e e Tt '.n,.". oY .‘ a "

T $ LENGERE § (T

»

. " %l
X




[P B i P At B M A o
-

L]

.
4ata

a2

p NI ™

2227275375000

Ay i Ay

& g

> i3

‘l’
)]
¢l

L 4

When we use this expression as the iterative equation for «

I:
we use célnput) for the “I i written inside the summation signs,
and the outside a_ . is written as a‘°“t9“tl Thus, we write

I,i I,1
PPN DI
qloutput) _ (input) _ Y Yr,ii 234
*1,i = %,i tgtn i NN 554} - (53.4a)

7 ¥1,35 T %ij

In this equation, we use a damping factor, Y. We assign to Y a
certain constant value between 0 and 1 in the iteration
calculation. When Y = 0, the output a 1is equal to the input
a and the iteration does not proceed. When Y = 1, the

éogtput) which is the next input value, may sometimes
overshoot. Usually, Y = 0.5 leads to stable convergence of the
iteration.

For & the equation corresponding to Equation (5.4a) is

I1,i’

qloutput) _ (input) 1 I,.i

11,3 = 1,3 f-—l—'—l ‘2——3 (5.4b)
II,

The chemical potential controls the composition as follows.

We first combine xI,i and xII,i and define

xg = (xI,i + xn'i)/z. (5.5)

Using xj's, we define

N, Xy - x2

(5.6)

n3 X + x3 = x3 o

Then, ", signifies the Hg-Cd composition, and N3 represents the

deviation from the stoichiometry. Using n's, we can write the
chemical potential terms in the grand potential as
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where

=
w
~—
oy
+
=
Ry
~——
~N
P -
!
wt)
~
N

(5.8a)

=>
(1]
>
+
N=>
N
~N
-~
+
N=>
~
N

or

=4+ -1 (5.8b)

From Equation (5.7), we see that the value of ﬁ} controls
1 - x,; as U, increases, 1 - x, increases and the vacancy
concentration decreases. The value lof 4); controls the Hg-~Cd
composition; as 4\, increses x, - x, increases. As the value
4y increases, the non-stoichiometry x, + x, - x3 increases.

When we treat a ternary system, we expect it to reduce to
the binary case when one of the ternary components reduces to
zero. For example, when X, reduces to zero, ﬁ} goes to - %,
whereas 4, and ﬁ} remain finite. We can establish the
correspondence between the ternary and the binary case by this
procedure.
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6. SUMMARY

The Hg-Cd-Te crystalline state is formulated using the pair
approximation of the CVM, including vacancies and antiatoms, but
without interstitial atoms. The crystal is made of two fcc
sublattices I and II. On each lattice point, one of the four
species is found: Hg, Cd, and Te atoms and a vacancy. The
treatment uses nearest-neighbor intersublattice potentials, uij'
and nearest-neighbor intrasublattice potentials, eij' The basic
variables are intersublattice pair probabilities, zij’
intrasublattice pair probabilities, yI,ij and yII,ij'

In order to solve the equilibrium state, the grand
potential, ® = E - TS -ZZi Ui Nj, is written in terms of y's and
z's, and is then minimized with respect to the variables. The
resulting equations are solved for given values of T and uji's by

and

an iterative technique.
This solid state treatment is a part of the work on the
liquidus-solidus calculation in Appendix E.
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(' A.  INTRODUCTION

,;2 The liquidus and solidus of the binary Hg-Te and Cd-Te

gf systems and the ternary Hg-Cd-Te have been calculated by the

g: author s 2 using the pair approximation of the cluster varia-

i tion method (CVM). In these calculations, the free energy, F,

:; , of the binary solid state was represented by a point in the F

tﬁ vs. composition space because the solid phase was assumed to be
f% ] stoichiometric and free from any lattice defects. Since the

. lattice defects are of practical importance, we included vacan-
. cies and antiatoms in the solid phase in Appendix D of the pres-
ﬁ; ent report. This appendix reports the procedure of combining

f; the new solid phase in Appendix D and the liquid phase of Refer-

ence 2 to obtain the liquidus and the solidus.
- In the ternary liquid treatment of Appendix C, not many
?% equations were written because of the page limitation. Actu-
ally, the equations in Appendix B for the binary liquid can be
v3ed for the ternary liquid as well without much change. Thus,
we may refer to Appendix B when equations for a ternary liquid

Ay are needed.
X
7 B. COEXISTENCE CONDITIONS
’ When two phases coexist, one of the conditions of coexist-
Ej ence is that the chemical potentials of each component are equal
¢
kﬁ in the two phases; 1i.e.,
w5
o

e where 1, 2 and 3 denote Hg, Cd and Te species. It should be
mentioned here that the previous work of the Hg-Cd-Te liquidus
and solidus? could not use Equation (2.1) because the solid
phase was represented by a singular structure, as was mentioned
in the previous section, and because ui(s) was indeterminate.

.
W

'(.-‘l'o
l"h'_lrl!l;

¥ o
‘

A
i The second condition of coexistence is that the pressure of
ﬁ; the liquid and that of the solid are the same. Since our models
i: of the liquid and the s0lid both contain vacancies, we can cal-

}@ culate pressures of both phases and equate them for coexistence.
3
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When we compare chemical potentials in the liquid and solid
phases, we need to determine the reference levels in the two

phases.

ui(s'iB) + u3(sli3) = ui(Scl,i3) + u3(sc2,i3) - (Tm - T) Asm,

where s and scf in supercript stand for solid and supercooled

We use Vieland's equation®, as was done in Reference 2.
It is written for binary cases as follows:

.....................................
......................................................

i =1 and 2 (2.2) v

liquid, respectively, and i3 indicates that this equation is for
the i-3 binary case. 1In the last term, Ty is the melting
temperature, and A4Sy, is the entropy of melting (per molecule)

of HgTe (i

= 1) or CdTe (i = 2) solid.

c. STEPS OF LIQUIDUS - SOLIDUS CALCULATION

The liquidus-solidus calculations are done in the following

steps.

The temperature T and the pressure p are fixed

throughout the calculation. 1In this and subsequent sections we
use the names i = 1, ..,6 for atomic Hg, Cd, Te, molecular HgTe,
CdTe and a vacancy in the liquid phase.

(1)

(2)

(3)

First, we solve the Hg-Te and Cd-Te binary liquid
states for the 50-50 composition. This state is
unstable below the melting temperature, Tp, and was
called the supercooled state in Section 2, with the
designation_sc? in qugt1on (2.2). We calculate the
sum, uj(8,13) 4 u,l , for a binary

solid phase from the left-hand side of Vieland's
relation (Equation 2.2).

Then, we solve the binary so}xd gtates, Hg-Te
and Cd-Te, and 4 (S, are

obtained. The superscript (s i3) indicates that this
is the i3 binary solid state (i = 1 or 2).

Next, we solve the ternary solid state. As we
remarked in Section 5 of Appendlx D, ﬁh(s)

controls the Hg:Cd ratio and f\,(8) controls

the (Hg + Cd): Te stoxc?imetry. The third chemical
potential parameter, 1\ , controls the

number of vacancies and thus the pressure. By
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selecting these three chemical potential parameters,

[ we make the solid phase take the desired composition
P and the prescribed pressure, py. For this state,
i the three values,‘ﬁ;. in Equation (5.8b) of Appendix
N D are written as 1 (S/123) to note that it is
b for the ternary case.
(4) In the solid phase, u; and ﬁ} are related by Equation

iol (3.7b) of Appendix D:
R A (s) o s
:. l-li( ) = ui( ) - 2uii - Geii . (3.1)
N * We assume that u;; and €;; remain the same, indepen-
i dent of the ternary composition. Then we can write
E\ ui(s'123) + u3(5r123) = Ui(s'iB) + u3(sri3)
+ (B (s0123) +/u\3(s,123))
T: - (ﬁi(s'i3) + @3(5,133
i=1and2 . (3.2)
:% On the right-hand side the first two terms are
L. calculated using the Vieland formula (Equation 2.2),

and the terms with carets are calculated in solving
X the solid phases. Thus, we can evaluate the left-hand
2 side quantity.
u& (5) In the coexisting states, uj's are equal in the
% liquid and the solid phases, as was stated in Equation

(2.1). Thus we can replace the u's on the left-hand
:Q side of Equation (3.2), by the corresponding u's for
' the liquid phase. For the first two terms of the

A
L}
—l'.l_

right-hand side of Equation (3.2), we use Equation
(2.2). Then we can write.

9,08 R

A

ui('q') + u3(2') = ui(sczli3) + u3(SC£,i3) - (Tm_T) Asm

/
+

D (80123) 4 py(s,123)

-

N - (/u\i(s,is) +/,,\3(s.i3))

i i=1and2 . (3.3)
4
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(6)

(7)

Since both ui(z) and u, (5¢%+13) are for the liquid
phase, we can use Equation (3.b) of Appendix B and
place carets on them to write

/u\i(l) +/u\3(2) =/u\i(scl,i3) +/u\3(SC2,i3) - (Tm—T) A sm

(@1(5,123) + By (80123)

+
i (xu\i(s,n) +/u\3(s,13)>
i =1and 2 (3.4)

We choose B (%), Th?E combining with Equatio? 53.4),
we know M (%) anga &, J. Using these three M (%
values, we can solve the liquid state. When the
liquid state '§ solved, we examine the pressure. We
then vary ﬁy‘l to come to the prea?s}gned va}u?. Por
of the pressure. By calculating uy'%’from ﬂb 2) using
Equation (3.6) and (3.15) of Appengix B, we get

ug M = ) 4 wegy - ey (3.5)
Note that these are different from the solid relation
in Equation (3.1).

Since we knoY ?he value of ﬁg(s) in Step (3), we can
s »

ca%c?late ¥g from Equa?l?n (3.1). We then plot

u3'S) and u;(%against 10\,'S) used in step 3. We vary

ﬂh(s) and find the value for which

u3(s) = u3(9¢) N (3.6)
This point is the coexistence point. Note that in
going from Equation (3.2) to Equation (3.3), we use
the relationship
ui(s) + u3(s) = ui(l) + u3(2) for i =1 and 2 . (3.7)

The combination of Equations (3.6) and (3.7) are
equivalent to the coexistence condition (Equation 2.1).
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D. SUMMARY

¢

4

We have described the procedures of calculating the
liquidus~solidus of the Hg-Cd-Te system. For the solid phase,
the method in Appendix D is used and the lattice defects
(vacancies and autiatoms) are included. The liquid phase is
, modeled using a pseudo-lattice structure, as was done in
?f " Reference 1 and 2.

‘ The detailed steps, (1) through (7), of computing the
liquidus and solidus for the coexistence condition are described

AP ey

a3 in Section 3.
: The main results are shown in Figures 10, 11 and 12 of the

of main text of this report.
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