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SECTION 1

INTRODUCTION AND SUMMARY

Hg-Cd-Te is a semiconductor material particularly useful as

an infrared detector. Although it has been grown for some

years, there are still problems in achieving crystals of desired

quality. In order to improve the crystal growth technique, the

knowledge and understanding of the liquidus-solidus phase dia-

gram are of crucial importance. This study has addressed the

theoretical calculation of the phase diagram of HgCdTe.

Heretofore, we have known that the pair approximation of

the cluster variation method (CVM) provides a good theoretical

phase diagram of III-V compound semiconductors wuch as GaAs and

In-As, as reported in Section 2 and Appendix A. In this project

we have applied a similar theoretical technique to Hg-Cd-Te,

which is a I-VI semiconductor.

The special qualitative features of the II-VI liquidus as

compared with the III-V case are that the former is asymmetric
with respect to the 50-50 composition, and that the liquidus is

sharply peaked at the 50% composition. In order to explain

" these two features theoretically (Section 3 and Appendix B), we

have allowed vacancies in the pseudo-lattice model of the liquid

phase, and have included molecular species HgTe and CdTe in the

liquid phase. It has been discovered that the peak in the

liquidus results when the interaction between an atomic species

(Hg, Cd or Te) and a molecular species (HgTe or CdTe) is

repulsive.

Using the associated liquid model developed in Section 3, a

theoretical treatment of the liquidus of the ternary Hg-Cd-Te

has been developed in Section 4 (and in Appendix C). In this

treatment no lattice defects are included in the solid phase.

The liquidus in both the Te-rich region and that in the Hg-rich

region agree with experiments reasonably well. The special

feature of the work that differs from the previous regular

U.
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solution theory treatment of Brebrick et al. is that the

nearest-neighbor interaction parameters used in formulating the

free energy of the liquid phase are treated as being independent

of temperature and composition.

It is known that the electrical properties of the semicon-

ductor depends greatly on the lattice defects in the Hg-Cd-Te

crystal. Thus, in Section 5 we take into account lattice vacan-

cies and antiatoms in the crystal (details are described in

Appendix D). The lattice is composed of two fcc sublattices,

one for Te atoms and the other for Hg and Cd. The theory uses

intersublattice pair probabilities and intrasublattice pair

probabilities as the basic variables and includes intersublat-

4. tice and intrasublattice nearest-neighbor interaction energies.

The method of calculating the liquidus and solidus using

the solid with defects (of Section 5) is explained in Section 6,

and the details are presented in Appendix E. The main results

are the number of Hg vacancies in Figure 10, the Hg partial pres-

sure in Figure 11 and the relation between the two in Figure 12.

These results agree well with Vydyanathan's experiments.

Interstitial atoms have not been taken into account in

Sections 5 and 6, but their plausibility is discussed in

Section 7.

. ,, 2
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SECTION 2

III-V DIAGRAM CALCULATIONS USING THE "PAIR" METHOD

Calculations of phase diagrams of III-V systems form the

basis of the II-VIsystems, which are the main concern of this

study. Therefore, we have included the main results of III-V

calculations in Figures 1, 2, and 3 even though they had been

done before this effort was begun. They were calculated by

Stringfellow and Greene1 and also by the author. 2 The

formulation in Reference 2 is basic in subsequent work developed

in this study. Therefore, Reference 2 is attached as Appendix A

in this report.

In modeling and calculating the free energy of the liquid

phase, a pseudo-lattice structure is assumed. Configurations of

nearest-neighbor pairs on the lattice are chosen as the basic

variables, and thus the method is called the "pair" method

(which is also called the quasi-chemical approximation or

Bethe's approximation).

The excellent agreement between theory and experiments in

Figures 1, 2, and 3 supports the usefulness and the reliability

of the pair method. Noteworthy features in the liquidus curves

in Figure I are that the curves are symmetric with respect to

the 50% composition, and also well rounded near the maxima.

-. 3
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SECTION 3

II-VI BINARY LIQUIDUS-SOLIDUS CALCULATIONS USING THE
"PAIR" METHOD AND THE ASSOCIATION MODEL

Different from the III-V cases of Figure 1, the liquidus

curves of Hg-Te and Cd-Te are not symmetric at right and left

and are peaked near the 50% composition. In order to take into

account these two features, the model of the liquid phase is

modified in two aspects: vacancies are included in the pseudo-

lattice structure and molecular species of HgTe or CdTe are

added. When the effective interaction of molecular species and

atomic species is repulsive, we can explain the sharp peak near

the 50% composition. The results are shown in Figures 4 and 5,

and are published in Reference 3, which is attached in this

*report as Appendix B.

The model of the liquid state in which the molecular

species are included is called the associated model. In such a

model, the number of species is four (i.e., Hg, Te, HgTe and

vacancy). The cluster variation method (CVM)4 formulation of

the pair method for such a system has a decisive advantage over

the quasi-chemical approximation treatment of the same problem,

although the two approaches give exactly the same results,

because of the intuitive ease of the CVM formulation.

.4' 5
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SECTION 4

Hg-Cd-Te LIQUIDUS-SOLIDUS PHASE DIAGRAM

In the binary cases of Section 3, the main input to the

theory are the values of interaction potentials between nearest-

neighbor pairs in the pseudo-lattice structure of the liquid

phase. These same interaction potential values of binary cases

are used for the ternary liquid phases as well.

In the Hg-Cd-Te liquid phase, we work with three atomic

species, two molecular species and vacancies on the pseudo-

. lattice structure. The details are in Reference 5 which is

reproduced as Appendix C. The main results are presented in

Figures 6, 7 and 8, which indicate good agreement between theory

and experiments. Figure 6 shows the Hg corner (of the triangu-
lar Gibbs diagram), and Figure 7 and 8 depict the Te corner. As

opposed to the regular solution approach which uses the "point"

variables only rather than the "pair" variables, the present

method treats the energy parameters as being independent of

temperature and composition, and common to both the Hg and Te

corners.
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SECTION 5

Hg-Cd-Te SOLID PHASE WITH LATTICE DEFECTS

In the treatments of Sections 3 and 4, the solid phase is

regarded as perfectly stoichiometric. In actuality, the mea-

sured hole concentration is associated with Hg vacancies. It is

also known that antiatoms exist, which means that Te atoms may

sit on the Hg-Cd sublattice, and Hg or Cd atoms may sit on the

Te sublattice.

The structure of such a solid phase with lattice defects

has been calculated and is attached as Appendix D. The Gibbs

free energy for the solid phase in Appendix A and B is repre-

sented by a single point because it is for the perfect stoichi-

ometric state. It is different when lattice defects are

included. Figure 9 shows an example of how the Gibbs free

energy changes as a function of the vacancy concentration in the

Hg-Cd sublattice.

1
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SECTION 6

-.. Hg-Cd-Te LIQUIDUS AND SOLIDUS INCLUDING
44" LATTICE DEFECTS IN SOLID

Combining the solid phase theory in Section 5 (and Appendix
D) and the liquid phase theory used previously in References 3

and 5,we have formulated the coexistence of the liquid and solid
;. phases. Coexistence is derived by using the conditions in which

the chemical potentials of each species in the liquid and solid

phases are equal and when the two phases are under the same

pressure.

The details of the formulation are described in Appendix E.

The main results are shown in Figures 10, 11 and 12. In calcu-

lating these figures, the interatomic potentials are adjusted so

that we can come to reasonable agreement with experimental data

i'. by Vydyanath6. These curves are calculated for the

Hg0 .Cd 0 .2Te solid composition.

Figure 10 plots twice the number of vacancies in the Hg-Cd

sublattice per cm3 against 1/T for the liquid-solid coexistence

condition. The solid curves are the present theory and the

broken curves are the experimental hole concentration due to

Vydyanath 6 . The upper curves are when the solid coexists with

the Te-rich liquid, and the lower curves are for the Hg-rich

liquid. The fair agreement between the theory and the experi-

ments supports the view that a Hg vacancy contributes two holes
in the valence bond6 .

In adjusting energy parameters to change the general shape

of the curves, we note two properties. Notations are from

, Appendix E.

(I As we make el, £22. and £12 more negative, keeping

£12 r £12 - (611+22)/2 fixed, the 2 vHg curves in Figure

10come down parallel to themselves.

[III As we decrease u1 1 and u2 2 together, the vHg curve

for the Te-rich case does not change, while the VHg for

the Hg-rich case increases.

15
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The partial pressure, PHg, of Hg in the vapor phase

can be calculated from the chemical potential of Hg when we

assume that Hg in the vapor phase behaves as an ideal gas.

Figure 11 plots PHg against 1/T. The solid curves are the

present theory and the broken curves are Vydyanath's

experiments6 . The theory uses the same energy parameters as
those for Figure 10. The PHg value at 500*C for the Hg-

rich growth is chosen at the experimental value, 6.5 atom.

In adjusting the theoretical curves, we noted the following

property:
[III] The energy parameter, e33, controls the direction of

the two PHg curves. When E33 is more negative, the PHg curves

point further upward.

The energy parameter values that we used are in Table 1.

The energy, uij, is for intersublattice pairs. These pairs are

predominantly Hg-Te and Cd-Te, and thus the uij values for these

pairs are negative (attractive) while the rest are positive

(repulsive). The eii is for intrasublattice pairs; its sign is

opposite to that of uij. The ij values for the Hg-Te and Cd-Te

pairs were chosen as zero, but they can be positive; since the

• ,number of these pairs are very small, the actual values are not

important in the phase diagram calculations.
* After a crystal is made from a Hg-rich melt or a Te-rich
, melt, the lattice defect properties can be changed by

controlling the Hg partial pressure on the crystal. Figure 12

shows the relation between 2vHg and P Hg These intermediate

points are calculated by changing the chemical potential value

in the theory. The intermediate points lie almost on a line in

Figure 12, in a manner similar to the experiments reported by

Vydyanath6.

.9
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. .Table 1. Solid State Energy Para-
. , meter Values Used in Com-

puting Figures 10 and 11.
~The Values Are in Units

of OK

:,>,"qIntersublattice pair energy, uij

n : I (Hg) 2 led) 3 (Tel

-"1 (Hg) 1600. 2000. -1100.

,:,2 (Cd) 2000. 1600. -1100.

3 (Te) -1100. -1100. 1500.

.,.

Intrasublattie pair energy, ij

1 (Hg) 2 (Cd) 3 (Te)

1 (Hg) -1200. -1700. 0.

2 (Cd) -1700. -1600. 0.

3 (Te) 0. 0. -1200.

__

420

", : .. , . . . ,,,. .. " '/ ; '. .1.,.(Hg)..'.'.-1200.'.. .'..'-1700... .. .. ... . . , - .'. -. .. . .,. ..- - . . -



SECTION 7

INTERSTITIAL Hg IN THE Hg-Cd-Te CRYSTAL

In the treatment of Sections 5 and 6, we neglected the

possibility of interstitial atoms. Since Hg is volatile, it is

.worthwhile to consider interstitial Hg atoms.

As is discussed in the Introduction (and Figure 1) of

Appendix D, the Hg-Cd-Te crystal is made of two fcc sublattices.

We call the white fcc sublattice in Figure 1 of Appendix D as

I, and the black sublattice, II. When we shift the fcc I and

fcc II by a half of the cube edge, they occupy interstitial

oositions. We can also call the new fcc sublattices III and IV.

The small corner cube shown by dotted lines in Figure 1 of

Appendix D now has the structure shown in (a) of Figure 13, and

an adjacent small cube becomes (b). There are also small cubes

of structures in Figure 13 (c) and (d).

Finally, we can consider whether a Hg atom can easily

assume an interstitial position II or IV. In Figure 13, we see

that a I site and a III site have the same nearest neighbor

configuration, while a II and a IV site have nearest neighbors

of their own. Since in the original structure, Hg atoms sit

predominantly on I sites, we see that it is quite easy for a Hg

atom to come to a III interstitial site. It is therefore rea-

sonable to take into account in the theory the interstitial Hg

atoms sitting on the III interstitial sublattice sites. The

number of such interstitial Hg atoms will depend on the Hg-Hg

and Hg-Cd interactions between I-III sites. Note that the I-III

distance is larger than the I-II distance, but smaller than the

intrasublattice I-I distance.

Such intersitial atoms have not been treated in the present

report, but are to be included in future studies.

'- 21
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THEORY OF TERNARY in-V SEMICONDUCTOR PHASE DIAGRAMS

Ryoichi KIKUCHI
A H~~~ughe Resach Laboa~r, Malibu, Califomnas 9OW USA

L-d- d phase diaglrams of M-V samnwnducto are calculated using the Cluster Variation Method and related
tech"iques developed recen y. The liquid phase is treated assuming a lattice model. An equilibrium state is derived by
mmmzumg dh Wand potential (0). keepng the chemical potential fixed. The resulting onlinear equations are solved
using the Naalm Iteration Method which has property that the value of 0 always decreases at each iteration cycle.

The pam boundary ia derived from an intersection of two 0 curves; the correct forms of 0 values to be used are
derived from geomeulal aoideration. Ternary phase diagrams calculated for In-Ga-As and In-Sb-As agree well with
pmviow calculatios of Stingieliow and Greene and with experimental data.

For ternry ames. a tie line omecting coeasting liquid and solid phases are proved to be orthogonal to the phase
boundary aim in the chemical potential diagrm.

1. Iffboduti All existing theoretical treatments of phase

Some years ago Stringfellow and Greene (11, diagrams (liquidus and solidus) of rn-V and

to be cited as S-G, applied the pair ap- I-VI compounds make use of Vieland's work

proximation of the quasicbemical method (51, which establishes the difference between

(0CM) (2) to calculate liquidus and solidus phase reference levels of the liquid and the solid phases
diagrams of ffl-V binary and ternary semicon- of the same material. We will also use the rela-

ductor systems. Their results for In-Ga-As and Ion developed by Vieland.
In-As-Sb agree very well with experiments. In formulating the liquidus-solidus diagram

After their work, the present author the free energy of the solid is relatively easy to
developed a new method of calculating phase figure out. However, to treat the liquid phase

diagrams [3,41 as an application of the hierar- accurately is a difficult task and one beyond the
c c vnescope of the present work. Therefore, we follow, ,. chical dluster variation method (CVM). The new
"method inre.3and4uses the grand potential S-G and use a lattice model for the liquid phase.meho Sinn refs 3o lto and don usieg the grndpoenir
minimization rather than matching of individual Since the formulation is done using the pair

chemical potentials as has been done by S-0 approximation (which is equivalent to the QCM
and others, and also uses the natural iteration used in ref. 1) of the CVM, we do not need to

method (NIM) in solving simultaneous nonlinear specify the lattice structure for the liquid phase
% algebraic equations. The new approach is more except the coordination number z.
" . compact than other existing methods and thus

presents an easier means of generalizing it to L SketchofS-Gsworkof binary liquids

more complicated systems. This section reviews those formulations of the
- The present paper reports how the new S-G paper (1] that are relevant to our develop-

method is formulated, using the systems treated ment in later sections in order to show the rela-
by S-G as examples. The numerical results are tions between their work and the present one.
exactly the same as those of S-G, but some of We do not use their notation, but follow the
the formulae are interpreted differently and also standard formulation of the pair approximation
additional properties of the systems not reported of the CVM.
by them are presented. In treating the liquid phase, S-G use the lat-
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tice model of the coordination number z - 2w When the x values are fixed, there is only one
(since we often use z/2, it is written as w in this independent variable for which we can choose
paper). Each lattice point is occupied by either Y12. The equilibrium state is derived by minimiz-
an A atom (designated by a subscript i - 1) or a ing F in (2.7) with respect to y12 keeping T and
B atom (i - 2), and we do not allow vacancies in the x values fixed. The differentiation leads to
the lattice. The probability of finding an ith yny,22 - e-4yJ, (2.8)
species on a lattice point is written as x (i - 1 or
2). The probability of finding an i-j nearest- where we define
neibmu pair is written as ym (4 j -1 or 2). -1kT. (2.9)

These variables satisfy the mutual relations Eq ( to re p (a)
I" ' 3_Eq. (2.8) corresponds to, for example, (3a) of

A, y., i - 1 and 2, (2.1) S-G, and we can derive the identity between
S-G's fDA and our e as

and the symmetry relation = 4. (2.10)

Y2 ' y21. (2.2) Eq. (2.8) can be solved with the aid of (2.1) as

The normalization relation is ya= yu - 2xlx2/(1 + r), (2.11)

X, + X2 - 1. (2.3) where r is written as P in S-G and is defined as

The potential energy of the lattice liquid is r.[I+4X2(e_40,1l)]11. (2.12)
written as

In deriving the chemical potentials, it is helpful
E , 2&N C. . ,(2.4a) to use

where 2N is the total number of lattice points in N, " 2Nx, i= I and2, (2.13)
the system, and e is the potential energy for a Nqia2Nyb -jI and2.

nearest-neighbor pair i-j. The energy expression In terms of N values, we can write F in (2.7)
(2.4.) can be rewritten using (2.1) and (2.2) as explicitly as

E - 2WN(n 1X + EfX2 - 4A1), (2.4b) F - 0,(e:,N + eN2 - 49, 2)

2 where a is defined as
-+. 4* = 111+ 4t- 2e12. (2.5) 1

The entropy according to the pair ap- - 1(-I).2(2N) (2.14)
proximation of QCM is equivalent to that ofJ
CVM and is written as where the Y function is defined as

S -2kN [(2m -1) x, n xj-<w yu n yv], Y(x) =In lx -x. (2.15)

(2.6) When F is a minimum with respect to Y12=

where k is the Boltzmann constant. Using E in N 21(2N) and (2.8) holds, the chemical potentials

(2.4b) and S in (2.6), we can write the free 14 are defined from (2.14) by differentiation as

energy A" m OF &I+kT

F-E-73 (2.7) N 2 -l 2 -n

as a function of x and y values. In (2.7), T is the A2 = ,2+kT lnx2+wln

absolute temperature. Note that S in (2.6) is for NZ
2N lattice points. (2.16)
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S-G calls the last ratio the activity coefficients: The Y function is defined in (2.15). In (3.2), the

ri.~~ ri. (Y,) sum and I xA sum are repeated and
/AM and ye . (2.17) halved for the sake of later mathematical con-

,.-. [Yvenience.
Using the y12 expression in (2.11), we can verify To derive the equilibrium state, we minimize

,-.-. that (2.17) agrees with S-G's eq. (4). the grand potential 0 in (3.2) with respect to the
Note that, in eqs. (2.8) and (2.12), the only pair variables yi, treating all four of them as

energy parameter we need for the equilibrium being independent (in contrast to treating only
properties of the system is e, defined in (2.5). The y1 as independent in section 2) and keeping 1i, as
individual el and e22 appear in (2.16), but they fixed (rather than keeping x, as fixed, as in
play the role of only defining the'zero levels of section 2). In so doing, we regard x, and x, in

-, the chemical potentials A. (3.2) as different linear combination of y,,:

3. Grand potOe fomutinm ol the liquid x1 - 1yo and x - y. (3.4)
".% # e I

When we minimize 0 in (3.2), keeping P and j,
In S-G's formulation (review above) and in fixed, we arrive at

most current formulations of phase equilibria.
one starts with the free energy and minimizes it 0-Pwj, - (2w - 1)n(xx,)+ w In.y,
keeping the composition fixed in order to obtain ay ,
the equilibrium state. The grand potential for- -Z- + )-AP - 0 (3.5)
mulation to be presented in this section leads to or
exactly the same results as those of the previous
section, but has several advantages in mathema- Y g
tical convenience.

We start with the grand potential, which is x2 +(+ . (3.6)
defined as

We now see that the normalization (3.3), the
-F - ,N (3.1) reduction relations (3.4), and the "superposition"

,I relations (3.6) form a set of equations to be
where A are related to the chemical potential solved for yq's. The NIM solves them systema-
but for a moment can be regarded as Lagrange ticaily as follows.
multipliers for adjusting the number of atoms N, Note that, for the NIM. we fix the P and A's.

To facilitate our further discussions, we write We start with the first input values x, and x,.
O in (3.1) in full using (2.4a) and (2.6): Different from the Newton-Raphson method

(NRM). any guess values for the first input lead
0: -- (2N) to a converged solution. The initial guess value is

" r e, Rw 1)+used on the right-hand side of (3.6) without the
- normalization factor exp(AIo.), to derive the

La first output yy exp(-Ap/o.). These quantities are
+W (yW) - 1) used in (3.3) to obtain the normalization factor

exp(Ap/e), and hence the output yy in (3.6). This
-.p 4 ,/ + li] +PA I- y u,) (3.2) set of the first output yq is used on the right-hand18 'A + Xside of (3.4) to derive the second input set x1 and

x2. The iteration cycle is repeated until the con-
where PA is a Lagrange multiplier used for the secutive outputs are sufficiently close to each

e normalization of y#: other.
1 y . (3.3) It was proved previously (61 that the grand

potential 0 in (3.2) always decreases step by step
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at each iteration cycle. The proof is reviewed in the formulae for yq's which depend only on e as
the appendix. This proof guarantees that the follows.
iteration always converges to a minimum of 0. We write
When 0 is a minimum and the set of equations
(3.3), (3.4) and (3.5) is satisfied, we can simplify y = -, - (YU + y) (3.11)
the expression of by forming
0- - -;and use this in the energy expression in (2.4a):

2Na E= 2t.N jt a. x -Ii I- I I

A 2. (3.7b) 2[N -x+Re + e)]y,

Thus, the Lagange multiplier introduced in (3.2) (3.12)
for the normalization of ye's has the meaning of We define
the grand potential per lattice point in the equi- C# -v_( + ev), (3.13a)

* ibllium state.
- One particular case of present interest to us is which can be written explicity as

when i -j in (3.), which leads to ;u =in -O
•* k [lx+ n "2-jl-9 (3.13b)

A+A _4]+kT in,+ui hi]. (3.8) i, 2 =i2 , -2,
LJ where. is defined in (2.5). When (3.13a) is used

Compared with (2.16) we see that I of the in (3.12), we can write
present section is related to the chemical poten-
tial s, derived in section 2as E -2UN1 + imy (3.14)

d -/Z+ A. (3.9) When this expression of energy is used in (3.2),
Because A is only an additional constant, we can two changes need to be made: e1 should be
safely also call AZ, ued in (3.1) and (3.2), a replaced by iv, defined in (3.13), and A. should
chemical potential. be replaced by

Use of the meaning of A in (3.7b) and the
relation for in (3.9) leads to a useful relation
from the 0 expression (3.1): These two changes appear in the minimization

relations in (3.5) and (3.6).
F - pNu (3.10) In the NIM, to solve the yv's from (3.6), which

is now modified, together with the subsidiary
Note that in this treatment of the liquid phase conditions (3.3) and (3.4), we fix the value of A,
there is no difference between the Helmholtz which now replaces A in (3.6), and do the itera-
free energy and the Gibbs free energy because tion. The i's are the parameters that control the
the volume is kept find in the model. concentration xj, and the fact that A. is made up

In the previous section it was shown that when of two terms A and we, in (3.15) is immaterial as
the composition x, (and x2) and the temperature far as the equilibrium solution is concerned. It is
T ar given, the equilibrium values of Yul, Y12, to be noted that, since iq in (3.13) depends on e
and y, can be determined by the parameter e only and not on el and en separately, the equil-
only, as we see in (2.11) and (2.12). Therefore, ibrium solution for the yq's depends on e only in
we expect that the yv's in (3.6) should also agreement with what we noted at the end of
depend only on f and not ell and e,, explicitly, section 2. The relations between the Ai, and x,'s
although the latter appear in (3.6). We can derive and A are also independent of ell and e12. By
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using the modified equation (3.5), modified so
thatE c.pand 11are replaced by iAh andA, T
and by comparing with the relations for the Ws
in (2.16). we can derive

+Aw+i,, i-l and 2, (3.16) T -P0

which agrees with (3.9) when (3.15) is used. The
relations in (3.16) agree with the fact that et, and
ft appear explicitly when we write the 1 values
in (2.16).

The actual numerical computation of the
equilibrium state is made with i, defined in AA s
(3.13) replacing ev, and with A replacing A in - .2

*. (3.6). Since we assume that there are no vacan-
cies in the system, we have

X, +x2  . (3.16)

This imposes a mutual relation between jZ, and
choosing them. In calculating binary systems we \
usually teat the two components symmetrically b

and use the condition

,At+A -.O.(3.17)

Sometimes, however, we use the condition A B

A2=0, (3.18) Fig. L.Scheinatics of the iquidw curve (a) and the free

as we see in section 9. ener F (b) for a binary semiconductor. Points P and Q

When we combine (2.10) with (3.13b) we see cexin

that our 112 is related to flA of S-G ( as sed in mathematical form. First, the equation of
i - Ei2  a AM/Z, (3.19) a tangent of the F curve at P can be written as

-*, where z is the coordination number used for the dF (4.1)
liquid phase. F- V = - - •

Using the normalization of x, in (2.3) and the
4. DeIvadon of the binary iquids definition of A in (2.16), we can write

The liquidus of a rn-V system like Ga-As, (dF_ [(PF) (F ]P"
In-As, Ga-Sb, and In-Sb schematically looks 2 ( 2 ),, \ xi),,J
like fig. la. The point P is in the liquid phase, - -(4.2)

and 0 is on the solid phase of the composition
• AB. The width of the solid phase can be neglec- When (4.2) and (3.10) are substituted into (4.1),

ted in this study and thus we assume that the we obtain
solid phase has the fixed composition x, - x2 j. F - [u)xl + 'x2N. (4.3)

Since the two points P and 0 coexist, the
tangent of the F curve at P in fig. lb passes This is the equation for the tangent to the F
through 0, which is the value of the free energy curve in fig. lb going through the point P. Eq.
in the solid phase. This condition is now expres- (4.3) looks similar to the general expression of F
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in (3.10), but is different in the sense that xz and rialsaso. In (4.9), xJ°) actually is ,as we see in
x2 are variables independent of the point P. (4.7). Since a in (4.6) and hence in (4.9) can be

The next important step is to estimate the any value, and since we require that the lines in
value of the free energy of the solid phase at the (4.1) and (4.6) coincide, we require
point ). For this purpose we follow S-G [1 and (4.10)
use the relation originally derived by Vieland (51. a Md(4.1"

* Vieland's relation says that the free energy of

one mole of molecular AB in the solid phase is When
written as 01 ,61

F0- 10,, (4.11) -T)S, (.4
-(4.4) we can prove that the tangent to F at P oes

where FPo is the free energy of the supercooled through the solid point Q as follows. Using 'in
liquid system at 0' in fig. lb. This state is (4.8), we can write eq. (4.1) for the'tangent to the
"supercooled" because it is not stable compared F curve at P as

* with the solid phase. In (4.4) T. is the melting
temperature of the solid AB, as indicated in fig. F- -2) x2 0" . (4.12)
la, and AS, is the entropy of melting of one
mole of the solid. Eq. (4.4) is important in fixing We can show using (4.10) that the point
the relative zero points of the solid and liquid (FIO), xj") lies on this line when (4.11) holds,
phases- becauseWe can use (3.10) in writing F0, PO)-az = 0, a0. (4.13)

Fm'-= ( +" (4.5) For numerical computation, (4.11) can be fur-

where 2N is the total number of atoms in the ther simplified. We use relations (4.2), (4.3),
."2 liquid phase, and N, - N 2 - N. (4.4), and (4.5) to obtain

In the (F, x2) plane, a line passing through the - (4.14a)
*:: solid point (PO), z (') is written as

F- PO)- a(xz2- xf°), (4.6) ,- N(AJ&1 + A&j)- (T. - T)dSm
,- _N(A.r)_-/g )). (4.14b)

where a can be any value and, as shown in fig.
lb, Substituting thes two expressions into (4.11)

S, . (4.7) yields.,)(47 N (, "F + j,&?j - N (AJ1" + I&F) + (T".- T)AS. .
Eq. (4.6) is to be compared with the liquid coun-
terpart (4.1). (4.15)

The condition that the solid at 0 in fig. lb is in In reducing the equation in the next step, we
- equilibrium with the liquid at P is that the have to be careful about the mole number. When

tangent lines (4.1) and (4.6) become identical..-. one mole of GaAs melts, it produces one mole of

To put this in mathematical form, it is con- Ga and one mole of As. Thus, the total number
venient to introduce the following two expres- of atoms in the liquid phase is two moles. If AS,,
sions: in (4.15) is measured for one mole of GaAs, N in

AdF () (4.15) is the Avogadro number NA,1 - Thus, by
rin F - (X x ),  (4.8) dividing both sides by NA, we obtain

-Pei) - axi. (4.9) j) + A )- (T -. ASm (4.16)
NMIg

Since no confusion is expected with the analysis
in section 3, we may call 0, and 0, grand poten- We can further simplify this by using (3.16) and

-V.
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Table I Co
Parameters used in the calculation of Ga-As, In-s and
In-Sb binary iquidus.

T ". (K) A. 1,2 (i/1mole)
(al des' uol")

GA 1511 14.7 -43806
lS 1215 14.7 -6070/6

lab 803 13.3 -3980/6

41n table I ol S-0 (1] the unit of A is writtenam eu. Usually
mm etlopy unt and repreents the number in unts o the T t

m constant R. Their en should read cal de('mole'. T. isthe
meling temperature of the compouand. M., is the etropy of 60-(S

* * melting of the compound, and e is the ener' parameter of the
pai rn the liquid pbie m eq. (2.).

adopting the condition (3.17) as

SA( P) - A((M- (T= _ T) A (4.17)

The numerical calculation of finding the liqui-
dus at a temperature T is done in the following 0 .

0.0 0.2 0.4 0.6 0.8 1 0

way. We use the values of AS. and T. given in ,OR Sb

table 1, which shows the values used by S-G (1]. Fg 2. Liquidi carves of Wl-V semiconductors. Solid curves
First, we solve the supercooled liquid state for we thory, calculated idlependently by Stringtellow and
the temperature and determine the value k ' for Greene [I) and KDikfh in this paper. Circles are experi-
the point 0' in fig. lb; for that purpose, we use menS.
the NIM of section 3.

Next we varyj 1in the liquid phase and find the To make sure of the relations, and also to
value A (P) which satisfies (4.17). Then the point P is rewrite equations using iq and A, we now re-
on the liquidus. We have used this formulation and examine the equations in section 3 one by one.
calculated the liquidus curves for GaAs, InAs, n eq(31fo the gand potetil 3 hond witout.
InSb. The results agree exactly with those of fig. 3 Eq. (3.1) for the grand potential 6 holds without

in S-G [1] and thus fit nicely with experiments.To change when Z is for i=1, 2, and 3 and as-make the presentation complete, we plot the before ill is a parameter related to the chemical
ckes in psg. 2. potential. We then use the pair approximation

Thcurves i a fig. 2. expression of the CVM and write C) as in (3.2).
sho ws frmte inition o am n(3ate At this point, however, we use iq introduced in.' shows from the definition of it in (3.13) that the (3.13a) and A in (3.15) and write 6 as
different species of the pair in the table have the
tendency to attract in the liquid phase. -

S. Termry liquid phe x (x,) + (

In section 3 we worked out the binary liquid
phase using the grand potential and NIM for-
mulation. The advantage of the formulation is
that it is applicable to the ternary liquid system x r.,i, + x,i, 1
almost without change except for the subscript i X .+

or j taking values 1, 2, and 3, corresponding to +PA 1 - y,,d. (5.1)
the A, B, and C components. Laui
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Different from (3.13b), we need three energy 6. Tenry Sd phase
p ermeters itz, o and i3w. As an example, consider a ternary solid of
and the nometrical relations in (3.4) hold.sihenn (GaAs,(1nAs),. This possesses a

d tstructure modified from a zinc-blende structure,
the grand potential s minimized with respect to shown in fig. 3. It is made up of two f.c.c.

S.* y , tsin (3.4) we arrive at sublattice: As occupies the white f.c.c. sublattice

-.-m oNI~id (2 l)in(x )+m iny e  in fig. 3, and Ga and In share the black f.c.c.
V o ,sublattice. Let us write the three species Ga, In,

-- P(A +$;)- APB -. 0 (5.2a) and As by subscripts i - 1, 2, and 3 in this order.
First, we examine the energy of this system.

or Since each Ga and each In are individually sur-
r R ] rounded by four As atoms, the nearest neighbor

Y, em"(zz)O- ') exp- 4 + 2 (A + A)]. interactions contribute the energy

(5.2b) E - N(4el3xI + 4ex 2), (6.1)

The set of equations for nine yv values is solved where N is the number of black sublattice points
with ease using the 11IM. The N1M is particularly in fig. 3, x is the fraction of Ga and In atoms on
useful when the number of variables i large. this sublattice, and e,3 is the interaction potential

The chemical potential 14 can be written in the between the ith and the 3rd (As) species.
same way as in (2.16). Comparing (5.2) with Our first calculation, based on the energy
(2.16) we see expression (6.1), was not in good agreement with
• 5j& + A = -a i - 1, 2 and 3, (5.3) experiment. Therefore, as the next step, we have
5 - -1 a 35 introduced the second-neighbor interactions: in-

which are similar to the binary case (3.16). teraction among Ga-Ga, Ga-In, and In-In on
When the grand potential 0 in (5.1) is a the black sublattice of fig. 3. We write the frac-

mnimmum and (5.2) holds, the same transfor- tion of i- (i. 1 and 2) second-neighbor pairs
mation as (3.7a) leads to the identity as yv and the interaction potential for this pair as

A A - 61(2N). (5.4) ev. Then we can write the total potential energy
as

Using this and using the relation between 0 and
F in (3.1), we can derive E -4N e,,x, + 6N ,,y 4, (6.2)

(5.5)

where we used (5.3), (5.4), and the relation be- 5-
tween A and A in (3.15).

Similar to the last comment in section 3, we
can impose one condition among three A values
becuse of the normalization relation

S1. (5.6)

It is convenient to impose the condition

-0, (5.7)

or Fig. 3. Structure of Il-V semiconductor solid phase. If all
black balls were the same. the structure is the Ainc-blende:- ,0. (5.8) n.
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where 6N is the number of second-neighbor In the special case where x1-I,y also ap-
bonds in the black sublattice of fig. 3. Using a proaches unity so that (6.7) and (6.8) reduce to
procedure similar to (2.4), eq. (6.2) can be F(/IN'Aso?' 4m13 +6ll, when x,--,,
rewritten as (6.9a)

E - N[4el3 + 6 fu)xt + (4,3 + 6 un)x2 + 24,y12, and similarly

(6.3) FS/N f 4e23+6e2,, when x2-- '1. (6.9b)

where, analogous to (2.5), we define, When we examine the meaning of F!I, we see

4e, 2e2- ell - f72. (6.4) that it is the free energy of the GaAs solid phase
at the temperature of interest to us. Recall that it

Since we assume in this paper that no vacancies was already calculated in (4.4) as Fn. There-
occur in the lattice and thus that the white lattice fore, when we have the data for the entropy of
points in fig. 3 are all occupied by As atoms, we melting AS, and the temperature of melting T.
can take the statistics of the black sublattice for the solid-phase GaAs, we can calculate
only. The entropy for this sublattice can be writ- FO/N =-;.(?. The corresponding data for InAs
ten exactly as in (2.6) with the coordination leads to the value FSIN = T. Using (4.4) and
number 2w = 12. When F = E - nh is minimized (4.5), we can write them explicitly as
with respect to Y12, keeping x, and x2 fixed, we

45(3)
obtain an equation with the form of (2.8): = + A &I - (TO - T) -8, (6.10)

YIY12 ' YI exp(4,), (6.5)
where the subscript I indicates that the quantity

the only difference being that the -e in (2.8) is is in the liquid phase, and At1) is the chemical
replaced by e, in (6.5). The definition of E, in potential of the ith species (i = 1 and 2) in the
(6.4) has a sign different from (2.5). Eq. (6.5) supercooled liquid state in which As composition
can be solved as in (2.11) and (2.12) as is 50% and the other 50% is the ith species.

2X 2  (a When we compare our (6.5) with eq. (3a) of
12 n (6.6a) S-0 [1], we see that our 4e, in (6.4) corresponds

r- fI + 4xlX2 [exp(4P.) - ID"~. (6.6b) to S-G's 1 Ac-ac in the solid phase by
4 E, = 2 Ac~esdZ, (6.11)

When the free energy is minimized with res-

pect to Y12 and (6.6) holds, the chemical poten- where z = 12 is the coordination number of the
tials of the species i - 1 and 2 in the solid phase f.c.c.
are written in exactly the same way as in (2.16).
Comparing the energy expressions (2.4b) and 7. Geometry of the ternary coexistence condition
(6.3), and remembering that the number of lat- We now consider the condition that the solid
tice points in the liquid phase in section 2 was phase of section 6 and the liquid phase of section
written as 2N and that the number of points on 5 can coexist. As in section 5, we write Ga, In,
the black sublattice in fig. 3 is N, we see that and As by the subscript i - 1, 2, and 3. When the

S=4, 3 + 6e+ kT(6In y- n x,), number of these atoms are written as N (i = 1, 2,

for i - 1 and 2, (6.7) and 3), the condition in the solid phase is

NI+N 2 -N 3mN, (7.1)
where the subscript s stands for the solid phase. where N is the number of lattice sites in onetwer thi poin note numbe the latee energy in one
At this point note that the free energy of the f.c.c. sublattice. The total number of atoms in the
black sublattice for the composition X1 - 1 X2 is solid phase is 2N. Thus, for the liquid phase we
written in the same way as (3.10): require

F, = A/.jxjN. (6.8) , =2N (7.2)
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*.-., so that the number of atoms does not change where we have used the #,j for the solid defined
when the solid melts. However, relation (7.1) in (6.7).
does not hold in general in the liquid phase At the composition V °), the free energy value
becamuse the composition in the liquid phase can is written as Flo). When we consider a plane
be different from that in the solid phase. which contains the tangent dFJdV at this point,

Because N in (7.2) is fixed in our paper, the the equation of the tangent plane is written using
number of independent variables for the com- an arbitrary constant a as
ponents is equsl to two in the liquid phase: NM ()
and N2 . The allowed range of NI and N2 is the F -FO))a(U-N)+ ( )

rectang r ftbde (0,0), (2N, 0) and (0, ZN),

shown in fig. 4. For the purpose of our analysis it This arbitrary coefficient a has an origin similar
is onvenient to introduce the following vari- to that of the a used in (4.6) for the binary
abes: case.

(7.3) Now we consider the free energy F surface for
N, + N2 ; V N-N, (.) the liquid phase in the same three-dimensional

or F-N-N2 space based on fig. 4. We consider a
N,- RU + V); N 2-RU - V). (7.4) certain composition P in the liquid phase as in

fig. 4 and form a plane tangent to the F surface
In the solid phase, U-N is constant, as is at P:

shown in (7.1) and also in fig. 4, and thus V is the , (P)
only composition variable. When we consider the F - F ) ('-) (U - U')
free-energy axis perpendicular to the plane of N, au V

and N2 in fig. 4, the free energy F, for the solid F (P)
phm is a planar curve which lies within the + la I V())..

vertical plane U -M N + N2 = N. The derivative

of F, withrespectto Vis Note that in this equation F is a function of thed ( NF, (aF,\ 1 (5 variables U and V and represents a plane in
dV 2 2J N%1 \ 8N2)M fJ J -  F-U-V space. The same comment holds for

(7.6).
The condition that the solid state at (N, VO° ))

M2 and the liquid state at (UtP), V') coexist is that
the tangent planes in (7.6) and (7.7) become
identical. For the purpose, two sets of mathema-
tical equations need to be satisfied. One is that
the coefficients of U and those of V be equal,

_ respectively:

(8 jX (7.8a)
Na V

OPdF. o aF
d V - u") *(7.8b)

The other requirement is that (7.6) pass through

-"N, the point (FIP), U("), V(P)) or, equivalently, that
(7.7) pass through (Fl° ), N, VO)).

Fi 4. Relation between the (NI, Nz) coordinate system and For the purpose of satisfying these two con-
the (U, V) coordinate system. ditions, it is convenient to introduce the follow-
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ing two functions: and Or) of (7.9) we first examine a. We use

dF (0) (7.14) and (7.5) in (7.8) to derive
(Io).n F,(' -- - d V° 4 V', (7.9a) a = 4 T,, + L&, Y- 2;L Tl), (7.15a)

F ()U(P,_- F (P)t) i6L( ' - 146, ) - f("?,) -/ A'T). (7.15b)
61) F P ) -. ~~P Qt'.. lN VP) (7.9b)4)) (.1O r -)UM ') " (7.9b) It is convenient to define d in place of a as

Then we can prove that when (7.8a) and (7.8b) a - J(A(I) +I1)). (7.16)
are satisfied,
Op ) O 6p' (7.10) By replacing a in (7.15a) by & and adding and~subtracting (7.15a) and (7.15b), we obtain

satisfies the second requirement. The proof is
similar to what we did in section 4. Using (7.9a), ' + /t 'P =/tse" - ar' (7.17a)
we can rewrite (7.6) as d + JA13 ) =/= ) -/tS ). (7.17b)

OP' F - fU - (df'Vo)V. (7.11a) These relations are helpful when we examine the
dV) limit of either N, or N approaching zero. For

this purpose, we first rewrite the I,., in (6.7) forWhen we use (7.8), we can rewrite this further as tesldpaea
the solid phase as

J°) F- INU- V V. (7.11b) 41,3=4+6ei,+kT[lnx+6 n(yxI)],
i=lor2. (7.18)

On the other hand, (7.10) requires that (7.11b) be
equal to (7.9b). Then, when When the solid composition x goes to zero, we'- know that

-U=U" and V=V"P, (7.12a)

it follows that 'l1, (7.19)

F = FrP). (7.12b) and therefore that when NI approaches zero, A,j

This means that (7.6) passes through the point becomes negative and its absolute value becomes
(Fl), U(' ), V()), and the proof is finished, large as

Thus, what we need when calculating the 1&.j-,kTInxj. (7.20)
coexisting solid and liquid phases is to evaluate
0(Q) and O1P) in (7.9). The derivative d.FJdV in Since we expect d and AT ) in (7.17) to remain
(7.9a) has already been derived in (7.5). The finite, we see
derivatives in (7.9b) are derived using AF"..kTInx(o ) as xS° '- 0 . (7.21)
/aF I F(.S-) N2 =l - g and aN 1 Nt = -L , p- 3 , The relations in (7.20) and (7.21) guarantees that

(7.13) the ternary system results reduce smoothly to
those of the binary sTtem.

and referring to (7.4) as We now rewrite in (7.9a). We use d of

( F i ME aF) +.. 1 (7.16) and dFJdV of (7.5) in (7.9a) to derive

kau 2v 2 ii aN) F +
-jAp + 2- 2 3), (7.14a) -jpL?'- p'3')V"°'. (7.22a)

tFV , [( .F _ (/.. F'aN) ,, -(/ _). We further use (7.1) for N and (7.3) for V"ol to
, NVJ 2 La 1V] aN J transform

(7.14b) =Fl"' - &N-(js 1qNI"'+ p1PNSP').

Before substituting these derivatives in o (7.22b)
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Since we see from (6.8) that the terms in paren- We can let Aj satisfy either (5.7) or (5.8). In this
theses are equal to F10), we arrive at the simple section we chose the latter. Then. (8.1) can be
result written as

()= -N. (7.22c) "Z)'> = & + ,() - e- - e33), for i = I and 2.

The 6Y') in (7.9b) is transformed as follows. i 0. (8.2)
We use (7.14) for the derivatives and use (7.3) for From (6.7) and (6.9), we can write
U and V to deriveor -,,Fr' -_(pA" s," )Ne_(rt)N " ,-/ .p,, 4? + kT(61In y"-llln x,)'
O (7.23a) for i= I and 2. (8.3)

7 a 'The constant term ,,(0) is obtained by using
Then, using the expression for F' in (5.5), we Vieland's formula [5] from the liquid phase of
arrive at the result the 50-50 composition as in (6.10). The quantity

01P) - 2/p')N. (7.23b) jAJ?) on the right-hand side of (6.10) is the chem-
ical potential in a binary liquid phase, so that it is

Remember that 2N is the number of lattice rewritten using (3.16) as
points in the lattice model of the liquid phase.

When we substitute ( o) of (7.22c) and Of') of pA9' + J = 2if9' + A + + Jif? + A + (0513.
(7.23b) in (7.10), we obtain the relation to be (8.4a)
satisfied for coexistence: Since we use (3.17) to calculate ,,, we can

-d = 2;4T ). (7.24) simplify (8.4a) as

This relation further leads to an important con- AT3) + A
f f? = 2A + 10 (Eli + e13). (8.4b)

sequence. When we use this in (7.17), we obtain This is a part of I,,) in (6.10). Suppose we define
A'q ) ffi T)+ AT),,..° as
A1' A +A'. (725) - A (e + e 33), i = I and 2. (8.5)

These are exactly the thermodynamic conditions Then a(,, can, without knowing d, +E,3,. be
that show the chemical potential of the AC evaluated as
molecule (j ,.') in the solid phase is equal to the
sum of the chemical potentials of the A atom 032A-(T 39- -(8.6)
and C atom in the liquid phase. The fact that the
coexistence condition (7.24) leads to the where A is calculated for the liquid phase of the
established thermodynamic relations (7.25) sup- 50-50 composition. This relation replaces (6.10).
ports the correctness of the analysis in these Corresponding to (8.5), we define
sections.

"i = J 
f 

- oW(Eff + C33), i = I and 2. (8.7)
S. Derivation of ternary liquldus and solidus

Then the relation (8.3) changes into
In the previous section we formulated using T

IA's. As discussed in section 3, in the actual A2.,-A i2O+kT(6Iny,-11lnx,), i=1 and 2.

computation we use I's, which differ from /p's (8.8)
by A +each, as was shown in (3.16) and (5.3). We then use (8.7) and rewrite (8.2) in terms of
Therefore, the next step is to rewrite the key
equations in terms of 11's.

Using (5.3) we rewrite (7.17) as Ai1) - A.& + ,
& + A(8? = At," - AT' + (eii -e 33), lisp) A'(0 + 6, (8.9)

for i=I and2. (8.1) 2A)=01
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where Note that this A is different from A in (8.12).
&( the relation does not hold, we change ,& and

repeat the procedure from (c). When (8.15)

The coexistence condition (7.24) can be re- holds, then the liquid phase for this & is the
written, using a in (8.10) and 13 in (3.16), as phase which coexists with the solid phase chosen
-& = 2A. (8.11) in (b).

As an example, we calculate the phase
Note that 2&m33 cancels out, and 1T) = 0 in (8.9) diagram for Ga-In-As. The calculation is based
is used here. on the binary phase diagrams in fig. 2. which were

The long transformations done so far in this calculated using the parameters in table I. The
section simply mean that, for the phase diagram additional parameter we need for the ternary
calculation, we can treat the liquid phase as case is e. in (6.4) for the second-neighbor inter-
though the A-A, B-B, and C-C pair inter- action in the solid phase. In view of (6.11), we
actions vanished, used the value

Thus, the actual computational steps are as 4, = 2800/6 cal/mole (8.16)
follows.

(a) We first solve 1-3 and 2-3 binary liquid which is consistent with the value used by S-G,
equilibrium states for 50-50 composition and fl(GaAs-InAs) = 2800 cal/mole. Our e, cor-
then estimate (8.6): responds to S-G's 2 divided by 24. The positive

ASQ3)  value of e, in (8.16) shows from (6.4) that Ga and
9 = 2A - (T 3) - T) ', i = I and 2, In in the solid have a tendency to repel each

NAq (8.12) other. A liquidus isotherm at 1250K and a few
(81) tie lines are plotted in fig. 5. The solid phase is

where k is the Lagrange multiplier used in (3.6). always on the pseudobinary line
As was the case in section 4, T$3) is the melting (GaAs)1_.(InAs),.
temperature of the AC solid, and .S°3  is the The liquidus and solidus on the pseudobinary
entropy of melting of one mole of the solid, line are plotted in fig. 6a. The calculated curves

(b) Choose a composition xj°) = 1 - xS° ) in the are exactly the same as those calculated by S-G
solid phase and calculate (8.8):

= j l + kT(6 In y(OQ -11 In xi°)),

i = I and 2, (8.13)

where y O) is calculated analytically using x °) as
in (6.6) when the second-neighbor interaction
energy e, is given.

(c) Assume a value 6 and calcuiate 1VP) from
(8.9):

* £l"P)- j )+&, for i = land 2,
(8.14)

(d) When 11r) (i = 1, 2 and 3) are thus given,
we can calculate the ternary liquid phase using

- the NIM of section 5. The normalization Fig. 5. The isothermal liquidus of Ga-In-As ternary system

parameter A is then derived and used to see that at 1250 K, calculated independently by Stringfellow-Greene
the coexistence relation (8.11) holds: [1] and Kikuchi in this paper. The numbers along the curve

are x in the solid composition (GaAs),(nAs), Four tie
,, . = 2A. (8.15) lines are shown.
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100 , 1 , , , , ,,9. The orthogo a ty relation
12W -At the end of section 5 we commented that

"C ,10I -' either (5.7) or (5.8) could be used as the con-
dition for the AZ. In section 5, we used 113 0 in

' - (5.8). We now form linear combination of Z and
-m , "J " ; . define

0 0.2 0.4 0.6 0.8 1.0
A . GaAs I"- i (JI I + /12)1 3 , i1, 2and3, (9.1)

'a'

so that

,j.Z = 0, (9.2)

which is of the form of (5.7). Solving (9.1) for j,'s
.0 we can write

A * 3, i = 1, 2 and 3. (9.3)

Since the jl satisfy condition (9.2), we can
Si I , ,,plot them on a star-shaped graph. An example is

0]' 0.2 0.4 0.0o.8 1.0 shown in fig. 7. Each f& (i = 1, 2 or 3) point

1,) ,"A, corresponds to a coexisting liquid state P and a
solid state 0 and thus to the tie line PQ. We can

Fig. 6. Pseudobnary liquidus and soidus anwes of InAs-
GaAs (a) and ISb-In (). The solid curve were cal- m3 As

*cujated indeenny by Stringfellow-Greene (1) anld 140

. Ki¢ Kgmdi in tis paper. and the c.,lue and triangl repiesen t2,
experimntal results.

and agree well with the experimental points
marked in the figure. So 0.

Although the computed results are the same, a

slight difference in the identification of the OS
energy parameter , between this paper and S-G 05
may be worth pointing out. We identified e, as
the parameter for the second-neighbor inter- -, ,
action (in the zinc-blende-type lattice) between
Ga and In in the solid phase, as introduce% in G

7. section 6 and illustrated in fig. 3. On the oth--r .,00 /-
hand, S-G regarded D(GaAs-InAs) as tht +,12 0O

parameter for the GaAs-!nAs interaction. '40 on
The calculation was also done for the In-As- IW -

Sb system. The energy parameters are those in lo

table I together with the solid phase value ,L

4e, - 2900/6 calmole. (8.17)

The liquidus and solidus on the psedobinary
line are plotted in fig. 6b; they are in good Te nwers along ie curve are the x values corresponding
agreement with S-G's curves and with experi- to those in fig. 5 The j! curve It z is perpendicular to the tie

mental data. line at x in fig 5
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now prove that the tie line P0 is perpendicular 4d1 and A&0P) are also equal. Then, by equat-
to the tangent of the #2! curve. ing (9.6b) and (9.7c), we obtain

From (5.3) the chemical potential ij4P) at the
liquid point P can be written as (xi ) - x1°)4A * =I 0. (9.8)

= +k + wai, = 1* -/1* +,k + oei, Note that x ") - x(1) and AI are components on

i = 1 2 and 3. (9.4) three coplanar axes. It was proved in the appendix

where we used (9.3). The chemical potential for of ref. 4 by simple geometry that the components
of these vectors on Cartesian coordinate systemsan AC unit and a BC unit in the solid phase can obey an equation similar to (9.8). Therefore, we

be written as /AJ and j in (7.25). Furthermore, can conclude that the tie line represented by
-." using (9.4) we can write them as x, -x ) (i = 1, 2, and 3) is perpendicular to the

14 IT, = 11- 1*3 + 2A + wa + e33), i= 1 and 2. tangent of the 11 , curve.
(9.5)

Along a liquidus isotherm for T, the change of Appendix
the grand potential 0 due to the change in the Proof that the grand potential decreases as the
chemical potential is written for the liquid phase interaction proceeds in the NIM
as In this appendix we prove that the grand
'" 3 potential 0r or 0 in (3.2) decreases in one itera-

0 = 2N 'x)A' , (9.6a) tion step of the NIM. We rewrite (3.5) as
0,1 = Oev- (2a,- 1)In (xr) +a win9,where 2N is the total number of atoms in the

liquid phase. Using (9.4), we can rewrite this as A(A +A)A0 0, (A.l)

r.i ], where x, and x are the input to the iteration
4d1 ) = 2N x4P)AA * - 44 * + 4A [ (9.6b) cycle, 9# is the output, and other quantities are

I constants. We can rewrite the grand potential 0
At the other end of the tie line the solid phase in (3.2) as

is made up of Nx,., AC units and Nx,.2 BC units;
these have chemical potentials ;p4.J ) and Aj2), 0(y}= Owa eiy - (XW- 1)
respectively, as shown in (9.5). Thus, the change
of the grand potential along the solid phase [ I
isotherm is xx In xI ,

Ad0,9' = N tX, 4 7..A8) (9.7a) +w .yq In y,- Xl

In rewriting this expression, note that the coor- (A.2)
dinate 401) for the solid state in the Gibbs trian- This is a function of the input x, and Y, values, as
gindicated by {yo}. Note that in (A.2) x, and x,

x4°) = jx,., i - 1 and 2, represent
"~SQ -, = (9.7b)" (x, -Tyq and x= y,. (A.3)

Combining these relations with (9.5), we can I
rewrite (9.7a) as In later transformations we use 0{9 J, which is

°= 2N~x1°)4,i7 -
4 t +4A1. (9.7c) derived by replacing the xj and yq values by i,4010) and Py values. The relations (A.3) hold for

The grand potentials Of') and 61o) are equal quantities with carets also.
• when P and Q are connected by a tie line. Thus, Next, we use (A.l) and form

41
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Z. Y O-, - [#Y - 2w- 1) Ofyq,- (Y#) = (2w- 1) ln(.-x,)

Xx , in x, + xiin x +W 7, y ln(yd/9q). (A.8)

In transforming this expression, we use Gibbs's
+aa Z y Inyq1 [Zx Z j lemma [7]:

""- A .-0. (A.4). Aq e A, + 1 - eA1 2- 0, (A.9)

Sveiwhich holds for any real number Ji?. The left-Since this vanishes, wecns-r-imlify 'bl'. I~q hand side is a decreasing function of Ai for

(A.2) by subtracting (A.4) from (A.2) as ngaie vs o a ncreasing function
"-" negative values of dn and an increasing function

y( n) .of dq for positive values of Ai; it vanishes for0({,vq} to yiln yy - In Yy) + Ap. (A.5) =0Werwie(g)a
Ai = 0. We rewrite (A.8) as

Then from (A.1) we form {yq}- 019yl = (2i - 1) (n(VIxi)+ x - Z]

- -" - (2a, - 1) + to Z [y, In(yj,,) + Y, - y11]. (A.10)

, L in xj + 2, R In xj Since the summand of each term is non-negative
I Ibecause of (A.9), we therefore have proved that

[i +to " In 'A- L ' + O{ '2] qy}- cya} > 0. (A. 11)

-A 0 (A.6) Refereaes

and subtract this from 0{9q}, which is derived (11 G.B. Stringfellow and P.E. Greene. J. Phys. Chem. SoLids
from (A.2): 30 (1969) 1779.

(21 E.A. Guggenheim. 'Mixtures" (Oxford Univ. Press.
- -~2i -1)Oxford. 1952).

[ , ] + 31 R. Kikuchi, Acta Met. 25 (1977)195.
X n in x)J +A [ (] R. Kikuchi, D. de Fontaine, M. Murakami and T. Nak-

amura, Act& Met. 25 (1977) 207.(A.7) (51 U. Vieland, Acta Met. 11 (1963) 137.

We note that 40{yu} in (A.5) is the input value (61 R. Kikuchi, J. Chem. Phys. 60 (1974) 1071.
of the grand potential, and ,{Yq) in (A.7) is the [71 J.W. Gibbs, Elementary Principles in Statistical

Mechanics in: The Collected Works of J. Willard Gibbs,
output value. We are interested in the difference vol. 1I (Yale Univ. Press, New Haven, Conn., 1957) p.
between the two: 130.
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LIQUIDUS CALCULATION OF Il-Vt COMPOUND SZKICONDUCTORS*

Ryoichi Kikuchi
Hughes Research Laboratories

Malibu, CA 90265 U.S.A.

(This paper was presented at CALPHAD X Vienna, Austria July 1981)

ABSTRACT. The pair approxistion (which is equivalent to the quasi-chemical method) is used
to calculate liquidue of lI-VI compound semiconductors. For the liquid phase, a
quaal-lattice structure is assumed, and the pressure and the association property
are taken into account. Vieland's formula ts used for the free energy difference
between liquid and solid. Numerical calculation was made with the Hg-Te and
Cd-Te systems. For each system, one set of parameters is found which computes
the liquidus in good agreement with experiments for the entire composition and
temperature ranges.

A particular attention is paid to the shape of the liquidus curve near its
top. Experimentally it looks pointed, although thermodynamics requires it to be
rounded. Our calculation shows that when the Al-A and AB-B interactions are
repulsive, the theoretical curve looks pointed and the top region has a very
small radius of curvature.

1. Introduction

A theory of liquidus of IlI-V semiconductors was formulated using the quasi-chemical
method by Stringfellow and Greene (1). and later by the present author (2). In the latter,
the cluster variation method (CV) approach (3,4) was used; the pair approximation of CVM
is equivalent to the method commonly known as the quasi-chemical method (5).

In the present paper, we extend the previous treatment (2) to the II-VI semiconductor
liquidus calculations. The min difference is the association property, that mans
inclusion of molecular species in the liquid phase in the II-VI case.

The liquid phase is represented by a lattice structure. In the pair approximation we
" are using in the paper, the information on the structure of the lattice appears only in the

coordination number which is written as 2w.

2. Chemical Potentials of the ?.Ljud Phase

The two atomic species in the system are written as A and B. They are, for example,
gR and To. We assume that in the liquid phase the molecular species AS also exists. We
"a a lattice model for the liquid phase, and thee species can sit only on lattice points.
Although in reality obviously the liquid does not have a lattice structure, the approxi-
mation is considered acceptable because the local correlation among stone and molecules
in the real liquid system can be simulated adequately using the lattice structure, as far
as no superlattice structure is introduced.

The three species A, U, end AU are designated by i-1, 2, and 3. We also include
vacancies (i-4) in the lattice in order to take into account the pressure effect. The

o, probability of finding an ith species on a lattice point is written as xi and the
probability of finding an i-J nearest-neighbor pair is written as These
variables satisfy the gometrtcal relation or the reduction relation:

~!rted by U.S. Army Research Office
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2 R. Kikuchi

4
- 1" Yij t-l,...,4 (2.t)

i-t

Since there is no suportattice structure in the lattice, the symmetry relation
holds:

Yij " Yj. (2.2)

The normlisation relation is

4

S- L. (2.3)

lefore going into the min treatmnt of the liquid phase, in this section we discuss
the chemical potentials of species in the liquid phase. For this purpose we write the
alsholtz free energy F-g-TS. The energy I is written as

4 4

Z - E E tl2jYj - Nc.x 3  (2.4)

i-i J-1

where i is the number of lattice points in the liquid system. cf is the

interaction potential for the nearest-neighbor i-j pair, and '3 1s the foruation
energy of the AS molecular species. Since we assume no interaction energy with
vacancies, on require

6 i4 " 9 4 0 for itl...,4 (2.5)

The entropy formula is the same as 8quation 2.6 in Reference 2:

S - kN (2w-l) L(zi) - - L(ytj) (2.6)

where the L(x) function originates in the logarithm of a factorial and is defined as

L(x) I x In % - x . (2.7)

The S expression in qution 2.6 is for the pair approxiation of the CYW and is the sane
as the expression used in the quasi-chesicaL method (5).

iben we use 9 in Squation 2.4 and S in Equation 2.6. we can write the Hslmholtz free
energy I as

."f t(2.8a)

where

f " " J YJ - '323 - kT (2w-l)E L(.,) - E . L(Yij) (2-....,

i.j t i,J

Tor the discussion of chemical potentials, it is convenient to use the relation of

,quation 2.1 and write
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LIQUIDUS CALCULATION OF II-VI COMPOUND SEMICONDUCTORS 3

Yjj Ii Fli(2.9)
J*i

Based on this relation, we treat f as a function of xi (i-L,...,4) and YLJ
(L*J).

The number of the ith species in a Lattice is written as Ni, which satisfies

N1 L xL N , l-i,...,4 (2.10)

Note N4  i the number of vacancies. When we use the almholtz from energy F as the
thermodynamic potential, the total volue of the system is fixed. In the lattice model,
this means that the total number of lattice points I is fixed. We can choose N1 , N 2 , and
N 3 as independent and Write N4 as

N4  N - N1- 2 - 3  (2.11)

We then calculate chemical potentials as follows:

k (Ii-)fl .N - (kT-)N2 ,NN 4 - (ki4)Nl,N2.N3 (.2

When we use the free energy expression in Equation 2.8, we can obtain explicitly,

W1 . We 11 +4 lcT [in X1 + W ln(yi/i) -11 14v (2.13)

where

K, 3 - kT ln X4 + wi 1+( 4 4 Nx4 2) . (2.14)

We can perform the sam differentiation as Equation 2.12 for 1-2 and 3 and obtain

Mi " it - It 
+ 
kT ln xi + ( ln(Yii/xi

2
) - M. for 1-1, 2 and 3 (2.15)

where we wrote It as a general term but it is defined as

*I " 0 for i 0 3 (2.16)

and C3 is the energy parameter in Equation 2.4 end 2.8b.

The total number of A atom including those in molecules AB is written as NA. We

define the corresponding quantity Nj for the B atoms. Then

NA . NI +N 3

NS - f2 + N3 (2.17)

When the compositions NA and Ng are given, the system adjusts itself to come to the
value of N such that the free energy is a minimm with respect to R3" In order to see

this relation, we can use VA. N, and N3 as independent and write N ,, N2, and 4 aS

N, = NA - N3  ,

N2 - NS - N3

4 - N - NA - N, + Hq3  (2.18)
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4 R. Kikuchi

When we minimize F with respect to N3 keeping Nk and N1 fixed, we can tuse
Equation 2.12 and corresponding relations for 1-2 and to obtain

U3 - u1 + M2  " (2.19)

This is the equilibritm condition mug atom & and I and the molecular species AB.

We can use Equation 2.18 again and derive that ol in Equation 2.12 is identical to

*" the following differentiation:

--1-k-) (2.20)

*.,This says that the chemLcal.potential ual can be calculated by either Equations 2.12 or
Equation 2.20.

3. Grand Potential

In numerically solving the liquid state, it is convenient not to fix the composition
Ni but to let it wary by using Lagrange multipliers. W. define the grand potential G
as

4

9- TS - "jN (3.1)
.i -

where, at this stage, a4 is regarded as Lagrange multipliers. Since N is fixed and we
treut N as dependent as in Equation 2.11. we actually do not need w. in Equation 3.1.
So we require

0 (3.2)

e use Equation 2.9 and rewrite the energy E in Equation 2.4 a

/4 4

* E us I i,. E 2djyi - 1 'ix (3.3)
i *j i

where we define

- C ~ (3.4a)

Special cases are

i 0 it... ,4 (3.4b)

and

J.

When we combine 9 in Equation 3.3 and the chemical potential term in Equation 3.1,
we can write

4 4

9 "F ii UjNj + Y N F -jdx (3.5)

i-l i,j i-I

48
"+*4.

I - I . . .. .... . + " " "
++

'' " dlllllld l~l~lm 4 ~a ~ k, ,,' -. .a.a.,.



LIQUIDUS CALCULATION OF II-VI COMPOUND SEMICONDUCTORS 5

We can simplify this when we write

i a u- - 49.i c+ *l i-1,2,3 (3.6)

-ecause of Equations 3.2, 2.5, and 2.16, we see

A -0 
(3.7)

.hen we combine Equations 3.5 and 2.6, ve can write the grand potential C in

Equation 3.1 explicitly as

6 WF Zjyi~j - itxi

;N. i L ,

-(2%w- 1) ~L (x ) + w E L(y**) + SX(l- yij (3.8)

where

B (3.9)

and A is a Lagrange multiplier. The I terms are added in Equation 3.8 in order to take
into account the normalization of yij"

The equilibrium state is obtained by minimizing G in Equation 3.8 with T and
fix.ed:

3. T ij ij i Bo . ~ ~ l(x xi) + IsIny. Y Bj (5 + ia. X6 - 0 (3.10)

At this point we digress and examine the i-j case. Using Equation 3.4 v can derive

ui + X- W [in xi + QLn(,(Yaxt2)] for i - 1,2,3 (3.11)

The fourth equation can be simplified by using Equations 3.7 and 3.4 as

X 0 k [10 X4 + w In(74/x 4 2)] 3.2

When we compare this with Equation 2.14, we identify Uv used in Section 2 as

li . X (3.13)

Use of this in Equation 2.15 and compsrison with Equation 3.11 allow us to derive

i v - Weli + Ci - i - 1,2,3 (3.14)

Turther, when ve compare this vith Equation 3.6, ve-can identify

Uj - pi , i - 1,2,3 . (3.15)

which means that Pj used in the expression of 6 in Equation 3.1 is actually the chemical

potential itself. Therefore, from now on ve can drop the prim from 4.

.When this relation is used, E mift becomes the Gibbs free energy G itself.
Thus G in Equation 3.1 is £

F- G -PN (3.16)
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6 R. Kikuchi

where v is the volume per lattice point in the lattice model of the liquid phase.

The identity in Equation 3.15 leads to another important relation. We can write the
association equilibrium relation in Equation 2.19 in terms of vi using Equations 3.15 and
3.14:

t * A1 -A (33 ll - c22) 9 (3.17)

We can interpret the meaning of the energy constant u as follows. When 4 in
Equation 3.11 is written as

-. : kT In ai , i - 1,2,3 (3.18)

then aj is called the activity. Equation 3.11 together wit.h 3.12 gives the explicit form
of at as

at  [i  (3.19)

which says that at is roughly proportional to the fractional amount xi. When we use
at , we can write Equation 3.17 as

ep (-u/kT) (3.20)

This shows that the energy constant u controls the amount of association, a larger -u
leading to a larger a3, i.e., larger association.

When * in Equation 3.8 is a minimum and Equation 3.10 holds, we can simplify * by
forming

0 a N~ 4 -tj r.j (.1

This mans that all terms in * cancel each other except the only one OX. Comparison of

Equation 3.21 and 3.16 leads to the relation

, a -pv (3.22)

*Now we go back to the equations in 3.10, and write it as

" -exj7 - At +~ * j (,xjx)(Z2-)/(2w) (.3

When A , /IkT and j are given, this relation and the reduetion relations in Equation 2.1
form a set of simultaneous equations to be solved for yij" We can solve them using the""" 1X1(3).

The energy parameters we need are seven: 212, £13, £23, C14, i2, i3, in
Equations 3.4 and u in 3.17. The values of these seven parters are to be supplied by
whatever mans before the computation starts. In solving the set of simultaneous equations
w- fis twe values Aland " When A, and 02 are given, P3 is determined from the
association relation Equatfon 3.17; note A a 0 as in Equation 3.7. We then proceed to
solve the equations asing KIM. After the iteration has converged, the pressure is derived
from the relation in Equation 3.22. The two adjustable paramters and 2 can be so
chosen that the pressure p and the composition NA/NI can take chosen values.

4. Derivation of the Liquidus
Derivation of the liquidus curve was formulated in Section 4 of Reference 2 based on

the geometrical construction that the tangent of the Gibbs free energy curve for the liquid
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LIQUIDUS CALCULATION OF I1-VI COMPOUND SEMICONDUCTORS 7

phase goes through the Gibbs free energy point for the solid phase. We can use the similar
formulation in the present problem. We assume as in Reference 2, that the solid phase has
the fixed composition, NA - NB, and thus the Gibbs free energy for the solid at T is
repreented by a single point rather than a curve.

The geometrical construction of Reference 2 Leads to the coexistence condition that

(.) C ) W() 2() (4.)

where the superscripts (t) and (s) stand for liquid and solid, respectively. This equation

holds in the present case also.

The chemical potentials for the solid state can be calculated using Vieland's
method (6), and is mitten as

I(a) . W2 (a) = 0I
(c) . U2(c) - (Tm - T) ASm (4.2)

where (c) indicates the supercooled liquid state of the composition NA - HS at T, Tm
is the melting temperature of the solid and 48, is the entropy of melting per molecule
411. The value of Ts is to be supplied from experiments.

In the present case we can use Equation 2.19 and simply write P3 for Wi * P2 in
Equation 4.2. Further, we can use Equation 3.14 to write

P3 () (c CLW . () - ;(c) (4.3)

Note a caret on i on the right-hand side. Combining these three equations, we can mrite
the condition for the liquidus as

; (&) - ; (c) - (Tm - T) d 3  .(4.4)

Thus the procedure of deriving the liquidue curve is the following. At the
temperature T and pressure p, the a percooled state (c) is first solved. This solution
gives the value I3(c). Then Equation 4.4 is used to derive ;3

(l) for the
liquid stat which coexists with the solid at this T tad p. ,,ation 3.17 is then used to
evaluate PLil) + 112

(
.1 henus assign a value to Ul( ) 

- 2 ,
all the parameters are ready to solve the simultaneous Equations 3.23 for the liquid state
(i). The adjustable value ;1

(
1 ) - 2

(
) is determined so that the pressure of

the state becomes equal to the desired value p.

3. Choice of the Energy Parmeters

In Section 3 we noted that the present formulation has seven energy parameters at our
disposal. Among the seven, the three tl,, C24 and e34 are related to vacancies and hence
have little effect in the liquidus calculations because the number of vacancies (in the
pseudo-lattice model) is always small, less than 10-4, in the present calculations.

In the Ilt-V case, in which no molecular species exists, £3 and £23 do not appear in
the theory and hence i12 is the only energy parameter. we kn;o in the Ill-V case (2) that
i12 Controls the shape of the liquidus curve, making it higher or lower. In the present
II-VI case, als, i12 controls the liquidue curve in the similar way. When -12 is large
the liquidus goes up, except at T. which is fixed.

The energies i13 and i23, together with u, control the mount of association. in
order to single out the association property, we calculate the special case ^13 " 23 ,
keeping the liquidus symmetric. The calculated results are in Fig. 1, in which the number
written next to a curve is the value of the ratio i 1 C12 - C231 " For lower curves for
which the ratio is positive, and hence i13 " i23 is negative (i.e., attractive), the
liquidus shows the rounded top. For upper curves for which the ratio is negative, i.e.,
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8 t. Kikuchi=8

t13 " t23 is positive and repulsive, the liquidus shows a pointed peak. As the shape
changes from the rounded top to the pointed top, around -2 of the ratio, the shoulders are
almost linear. At -3 and -4 of the ratio, the inflection points are observed. For -5, a
phase separation occurs in the liquid phase. The liquidus similar as the -5 case is
observed in the Zn-rich side of the Zn-Te binary liquid (7).

Although the upper curves in Fig. 1 are pointed, the peak still has a rounded top
", vith a small radius of curvature. This is in agreement vith the thermodynamic

requirement (8).

700 7,

S00 -4-

400 - -3

-2
3m

.1.

FIG. 2
*1 Wg-Te binary liquidus. Dots
2 are experiments (9).

0 20 40 o0 s0 100
A "PB

'Ltqutdus curves for different
values of atom-molecule inter- -1

aetiou parameters. A horizon- 15

each curve.
.: ~tal shor.t elne marks 6o'C for L

a, ..h ,,. |]'

am of I

"o, ~~~~,00 0 30 40 O I0

PFIG. 3

Replots of the low temperature
parts of the Hg-Te liquidus.
The vertical axis to the
composition of the minority
species.
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LIQUIDUS CALCULATION OF II-VI C00POUND SEMICONDUCTORS 9

Figure 2 shows the fi-Ta binary liquidus. The dots are Herman's experimsents (9). In
calculating the theory we used the following values. The malting temperature is larman's
experimental value T. = 673°C. The entropy of maltin; at To is m = 9.2 e.u. which
is in Laugier's paper (10). Other energy values are el; -200/6 cal, i 1 3 / 1 2 ' -a,izs/iI2 - -0.5, i14 " 224 * i34 ' -1000.1 end u - -3000 .

Figure 3 shows the low temperature parts of the liquidus curves for the Hg-rich side
and the Ta side. The Ta values on the R side are based'on Riley's experiment (11). They
are plotted in the logarithmic scale so that a small mount of the minority component is
seen more accurately than in Fig. 2. The curves in Fig. 3 are close to linear. it is
found by trying many parameter value combination. that the slope of the line in Fig. 3 is
controlled by AS, and almoe

- 
solely by it. For a certain value of AS, when we change

other energy parters, the line in Fig. 3 goes up or down but the slope remains almost
unchanged at the value determined by 4S. The dots in Fig. 3 are experiments and the
curves are the theory; they agree well and the theory passes the test which is more severethan Fig. 2. Note that both the fg-rich and the Te-rich legs agree with experiments and

both of then confirm the sm value h * 9.2 e.u. The fact that 9.2 e.u. is also the
independently measured experimental value of AS in Reference 10 supports the validity of
the association model and the consistency of the theory, including Vieland's method of
estimating the free energy of the solid state.

Figure 4 is for the Cd-Ta binary liquidus. The points are experiments in Reference 7
and the curve is the present theory. The melting temperature is fixed at the experivmental
value Ts = 1082*C. Other parameters are 49, - 5.0 e.u., Z- -1000/6 cal., 13 /C12
-5.5, 23/212^ , -3.3, i 4 - ^€2 - Z3 4 - -1000, and u - - 6 dJ 0 . Figure 5 corresponds to
Fig. 3 and plots the aount o Cd in the Te-rich leg of the liquidus on a semi-log scale.
The experimental points are due to Harman (,-). As was discussed above, the slope of the
line in Fig. 5 determines the value of 4Sr, which we found to be 5.0 e.u. This value of
ASm is different from 8.8 e.u. reported in Reference 10. Since our estimate is regarded

i fairly reliable, further independent experimental measurements of 4S, for CdTe are
desirable.

_________________0.1_ 1250-a

a00.
on3
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present theory.
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10 R. KLkuchi

Although the association model is still controversial (13), the reasonably good

agreemnt with experiments supports its usefulness as a working model.

The pair approximation of CVM can take into account the short range order, i.e., the

local atomic arrangement, while the point approximation cannot. The former is recommended

in treating the liquid state.
-9
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Theoretical calculation of Hg-Cd-Te liquidus-solidus phase diagram a)

Ryoichi Kikuchi

.Hughe Research Laboratoris Malibu, Calfornia 90265

(Received 28 October 1981; accepted 22 January 1982)

The liquidus-solidus phase diagram of Hg-Cd-Te is calculated using the pair approximation of
the cluster variation method. The work is an extension of previous III-V work and includes
association as an additional feature. The liquid phase is approximated by a pseudo-lattice
structure and includes molecular species as well as atomic species. Vacancies are also considered
in order to take the pressure effect into account. Unlike the regular solution model, the pair
method can take into account the short-range order in the liquid phase. Adjustable parameters
(mostly energies) are first determined to fit Hg-Te and Cd-Te binary experiments. The
association model can explain the asymmetry and the sharp peak at 50% composition. These
parameters and several additional ones constitute the one set of parameters (independent of

* temperature and composition) which are used to calculate the entire ternary liquidus-solidus
diagram. Each parameter controls certain features of the diagram. Although the work is still in
progress, reasonably good agreement with known experiments has been achieved for both the Hg
comer and the Te comer. The chemical potential diagram is discussed.

PACS numbers: 64.70.Dw, 68.45. - v, 81.30.Bx

Ternary phase diagrams of Il-V semiconductors were pre- [=(xx,)1zL-X exp[- -le, + 1 +luj,
viously calculated' using the pair approximation of the clus- Z Z(/AI +
ter variation method (CVM).2 The work in Ref. 1 gives the (2)
same results as those obtained by Stringfellow and Greene,3  where z is the coordination number, and 6 = (k T) ' and ey
who used the quasichemical approximation of Guggen- are the energy parameters for an i-j pair. We define e, in
heim.' The present report is an extension of Ref. 1, and in- such a way that e, = 0 for the same subscripts. One advan-
cludes association5 and vacancies as additional features. Dis- tage of the CVM formulation is that Eqs. (1) and (2) hold for a
cussion of associated binary liquids can also be found in Ref. ternary as well as a binary system, and also for associated as
6. Since the theory is closely related to Ref. 1, the reader is well as nonassociated liquids by appropriately identifying
advised to consult Refs. I and 6 for additional and pertinent the subscripts. Derivation and discussions of Eq. (2) are in
background information. Compared with the previously Ref. 1. In Eq. (2), A is the normalization constant and has the
used regular solution model,5 the advantage of the pair physical meaning of A = - pv, wherep is the pressure and v
method is that the short-range order in the liquid phase can is the volume per lattice point.be taken into account. The mathematical procedure of the problem is to solve

In the liquid phase, x, indicates the probability of finding y's from the simultaneous nonlinear Eq. (2), together with

an ith species on a lattice point. Since we will discuss both Eq. (1)forfixedvaluesof6,, M,,6andz.Theyaresolvedby
binary and ternary systems, we will make i = 1, 2,..., 6 de- using the natural iteration method (NIM)7 without further
note Hg, Cd, Te, HgTe, CdTe, and a vacancy throughout the analytical transformations. In the NIM, the first input is a
paper. For a Hg-Te binary liquid, we use i 1, 3, 4, and 6 set of guess values of x,. We use these values on the right-
only, and for a Cd-Te binary we use i = 2, 3, 5, and 6 only. hand side of Eq. (2) to calculate y as the output. Thesey.'s
Along with the x,'s we use the probabilitiesy,, for finding i are used in Eq. (1) to obtain the next input set, x,. It was
andj species on nearest-neighboring lattice sites. These y0's proved' that at each iteration cycle the G value decreases,
are the basic variables in the pair approximation of the and hence the iteration procedure always converges.,CV'.aThehtwoesets ofevariablesoareuconnected byntheggeo
CVM. The two sets of variables are connected by the geo- In deriving the liquidus curve theoretically, we need the
metric reduction eciuation relation between the free energies of the liquid and solid

.. "phases. The chemical potential, p (", for solid HgTe (or
.. (1) CdTe) is derived from I ' ) in the supercooled liquid state of

The equilibrium state of the liquid phase is determined by the 50% composition by using Vieland's formula,' ex-
writing the Helmholtz free energy F in terms of y0 'S, and presed as
then minimizing the grand potential G soF - Z, #,N, with (I _ (T. - TAS,, (3)
respect toy#'s. (We write G for the grand potential, not the
Gibbs free energy.) The quantityu, is the chemical potential where T, is the melting point and AS, is the entropy of
(with respect to an appropriately chosen reference state), and melting per molecule.
N, is the total number of the ith species in the system. When For the Hg-Te binary system, the important adjustable
0 is minimized, we obtain a set of equations parameters are e 13, E,4, 44, 4S, and U, where U, controls
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* 10 N. Klwchk Thwrgoa calculton 130

1100 -ferent from the III-V cases, are the asymmetry and the sharp
1100 peak at the 50% composition. The theory can derive asym-

metry when e, 4 #e3,. The atomic pair interaction el 3 is at-
tractive (i.e., negative). When E, 4 and e3,, are repulsive (i.e.,

10 - - positive), the liquidus shows a peak at the 50% composi-
tion.6 When - U, is large, the association property in-
creases and the peak becomes sharper. Then when - ef/e 1 ,3

9o _ is larger, the left shoulder of the Hg-Te liquidus goes up, and
when - 6 1 3 is smaller, the entire liquidus curve becomes

-. lower (except that T., at the 50% composition is anchored).
The value of AS. controls the shape of the leg parts of the
liquidus curves in Figs. I and 2.

"c The values of the parameters we used in calculating the
curves in Figs. I and 2 are: 6, 3 = - 200/6 cal,

700 4 14/E, 3 = - 8.0, 43 4 /EI 3 = - 0.5, U, = - 3000 *,
62 3 = - 1000/6 cal, 6 2 ,/E 2 3 = - 5.5, e 35 /E 23 = - 3.3,
U2 - - 6000", AS,. (HgTe) = 9.2 e.u., T, (HgT) = 673 "C,

o $AS,. (CdTe) = 5.0 e.u, T, (CdTe) = 1082 "C, e, = - 1000,
i = 1, 2,..., 5, and e6 = 0. The energy units are left as they
were used in computations. The value of z is chosen as 6 in

__ the numerical work; however, z = 4 or 8 does not change the
results very much.

In calculating binary liquidus curves, several cases were
400 noticed in which different combinations of some parameters

0 0.2 0.4 0.6 0.8 led to practically the same shape. Therefore, the above val-
Cd To ues of the parameters are not altogether unique.

However, the value of AS, (HgTe) is believed to be accu-
FIG. i. Cd-Te binary liquidus. The curve is the present theory, and the

" points are experiments shown in Ref. 9. rate because 9.2 e.u. leads to a good agreement in both Hg-

10-3

the amount of association and connects y, 1 s as
\ 460C' 1,+/3 - M4 U- (4)

Details of this equation are found in Ref. 6. Figures I and 2
compare the theory (solid curves) of binary liquidus with
experiments. Two features of liquidus curves, which are dif-

"0.4
S_4300

0
:SIMIo- _3_-,8

4 K

SW -

,e" ec

400-

.3 10-5 I II I J I it

0.01 0.1

20- I________ FRACTION OF Te
0 0.2 0.4 0.6 0.8 1.0

MoI; TO FIG. 3. The Hi corner of the ternary Hg-Cd-Te liquidus. The solid curve is
the present theory, and the broken curves are Riley's experiments, Ref. 12.

Ft. 2. Hs-Te binary liquidus, showing the present theory (curve) and ex. The numbers 0.2 and 0.4 are the values of x in the solid phase
perinents in Rd'. 10 (points). jHTe), *CdTe)..
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FIG. 4. The ternary Hg-Cd-Te liquidusneartheTecorner. The solid curves
are the present theory, and the broken curves are the experiments of Har- FIG. 6. The Gibbs diagram of the Hg-Cd-Te lquidus and solidus. The

masn in Ref. 13. The numbers 0.2 and 0.4 have thesamemeaningu in Fig. upper Te-rich side is for 4S0 T, and the lower part is for 460 C. Note the
phase separation in the lower part.

rich and Te-rich leg parts and also is the value reported by form, and the molecular CdTe form.
Laugier.I After these values are determined we move to the Te-cor-

For the ternary system (as was done in Ref. 1) we need e,, ner in Fig. 4. The shape of the curve is adjusted by es. In the
the interaction of a Hg-Cd pair on one of two fcc sublattices region of Fig. 4, HgTe predominates over CdTe; thus, when
which constitute the zincblende structure. Besides e,, ad- e," is attractive, CdTe increases (the contribution of atomic
justable parameters are E,2 for the Hg-Cd pair, ,, for the Cd is negligible). We chose the value e4s = - 120' to draw
Hg-CdTe pair, e4s for the HgTe-CdTe pair, and E24 for the Fig. 4. Figure 5 replots the data in Fig. 4 in a different way.
Cd-HgTe pair. The circles are HamMn's experiments' 3 for temperatures

In comparing with other experiments, we first examined ranging between 450' and 550 "C. Although the experimen-
the Hg corner. The value of e, adjusts the general shape of tal points of different temperatures lie on one curve, and the
the curves, and the best choice we could make was , = 0.
The values of e,2 and e,, were adjusted to bring the Cd con-
centration to the right range. The values we chose to plot in 1 5 TO

Fig. 3 were E,2 - 50 and e,5 = 90. For these energy val- 0.9 0.1
ues, Cd species exist more or less equally in the atomic Cd

0.8 000c +200."

0.8

Cdl1A 0.99 Ar0.90.99

0 _ 0.9999 -4000. 0.95
0.01 0.1 1.00 09909

Cd/Hg

FtO. S. The Hg-Cd-Te liquidus and solidus in the Te-rich side. This is a
replot of Fil. 4. The experimental points are those of Harman, in Ref. 13. FIG. 7. The chemica) potential diagram corresponding to Fig. 6.
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600",C theoretical curve fits the experiments well, the theo- solution method The difficulty, however, in applying the
retical curves for other temperatures are hifted. pair treatment to a system of many components was that a

It should be pointed out that the values of e,, e 2, and'e,., large number of variables had to be calculated by solving

which have been determined in Fig. 3, have a strong effect on nonlinear equations. This difficulty was solved by the NIM.'

Fig. 4. The fact that the same set of values of e, e, 2 , and e, 5  Different from the Newton-Raphson method, the NIM

leads to a satisfactory agreement with experiments in both does not need matrix inversion, and it guarantees positivity

Figs. 3 and 4 can be counted as a merit of the theory. The of all probability variables being calculated. The large num-

value of e 4 j determined from Fig. 4 Lts practically no effect ber of variables does not cause any problem.

on Fig. 3 because the amount of HgTe i. the Fig. 3 region is Although the association model used in this paper is still

much smaller than the amount of Hg. Since no detailed ex- controversial,'" the good agreement between experiments

perimental data were available for the Cd-rich region, we left and the present theory, which uses one set of parameters,

e2, undetermined for the Cd-HgTe interaction and used suggests the usefulness of the model as a working hypothesis.

e 24 = 0 in computation. The author wishes to express his thanks to Lloyd deVaux

Figure 6 is the Gibbs diagram of the liquidus-solidus. of Hughes Research Laboratories for the discussions and his

Note especially the tie line which goes all the way across continued interest in this work, and also to Kevin Riley of

from the Hg comer to the point near CdTe, in agreement Santa Barbara Research Center for allowing the paper to use

with the report of Ref. 14. Since our value of e, 2 = 500' his experimental *results before publication.

shows the repulsion between Hg and Cd, there is a phase
separation in the liquid phase. In Fig. 6 the state of
Hg = 0.976, Cd = 0.024 coexists with the state of '"Supprtedby U. S. Army ResearchOffice.
Hg = 0.027, Cd = 0.968. (These values are not reliable be- 'A. Kikuchi. Physica 103B, 4111981).

cause E24 = 0 is tentative.) 'R. Kikuchi, Phys. Rev. 81, 988 (1951).
Figure 7 shows the chemical potential diagram as it corre- 'G. B. Stringfellow and P. E. Greene, J. Phys. Chem. Solids 30,1779 ( 1969).

sponds to Fig. 6. The chemical potentials for Hg, Cd, and Te 4E. A. Gugenheim, Mixtures (Oxf"-d University Oxford, 1952).

are adjusted (linearly shifted) so that the sum of the three is 9T. Tung. L. Goioka. and R. F. Beick. J. Electrochem. Soc 12, 1601

zero. In that case, Al,, l2, and A3 can be plotted' in the star 6R. Kikuchi, Calphad 6. 1 (1982).
diagram of Fig. 7. The upper curve is for the Te corner and 'R. Kikuchi. J. Chem. Phys. 60, 1071 (1974).

the lower curve is for the Hg-Cd side. Each point on the two 'L i. Vieland, Acta Metall. 11, 137 (1963).

-curves represents the coexisting states of the liquid and the '. SteininSer, A. 1. Strauss, and R. F. Brebrick, J. Electrochem. Soc. 117,
1305(1970).

solid. A number next to a mark on the curves is the composi- T . Harman, Physics and Chemnstry of1- VI Compounds, edited by M.

tion x in the solid phase, (HgTe), - (CdTe)5 .The point to be Aven and J. S. Prener (North4tolland, Amsterdam, 1967), p. 767.
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7 .7

1. INTRODUCTION

In the liquidus calculations of III-V and II-VI

semiconductors in References 1, 2 and 3 by the author, and also

in those by Brebrick et al.", the solid phase was treated as
stoichimetric without lattice defects. In actuality, lattice

defects are important since the electrical properties of the

semiconductor are affected by the defects. In this appendix we

formulate the Hg-Cd-Te solid phase, including lattice defects.

The solid Hg-Cd-Te lattice is shown in Figure 1. It is
made of two interpenetrating fcc sublattices. On the white fcc

sublattice, Hg and Cd atoms are distributed, while the black fcc

sublattice is occupied by Te atoms. For this examination we

allow vacancies in both sublattices, and also we include

antiatoms, which means Te atoms on the HgCd sublattice and Hg or

Cd atoms on the Te sublattice.
8797-5

Fi;ure 1. Structure of the Hg-Cd-Te crystal.
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In calculating the free energy, we use the pair approxi-

mation of the cluster variation method (CVM)5 . Although the two

sublattices are both of the fcc structure, each fcc lattice is

disordered by itself, and hence there is no frustration effect

which is characteristic in the ordered fcc structure.

.. Therefore, the pair approximation is expected to be a reliable

- method.

In contrast to the ordinary pair approximation, we use two

kinds of pairs, intrasublattice and intersublattice; thus the

entropy expression of the present formulation has not been used

before.
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2. VARIABLES

*We use the designation I and II for the HgCd sublattice and

the Te sublattice. On each lattice point we have either a

Hg, Cd, or Te atom or a vacancy; these four species are

designated by i = 1,2,3 and 4.

The probability of finding an i th species on the sublattice

I is written as xi i . This is a "point" variable. The

probability of finding an i-j nearest-neighbor pair in the I

sublattice is written as YI,ij; this is the variable for an

intrasublattice pair. The corresponding variables, x iii and

YII,ij are similarly defined for the sublattice II." Another

pair variable, z.., is for the probability of finding an i thi) th
species on the sublattice I and a j species on a nearest-

neighboring II sublattice (note the order of the two

subscripts); zij is an intersublattice variable. Note that zij

and zji are different, while YI,ij =YIji"

These variables are related by the following relations:

x z (2.1a)

x xII'i "YII'ij i (2.1b

The normalization relations are

I y I,ij= YIj i j zi (2.2)

.* In subsequent sections we minimize the grand potential

. under constraints. The constraints written in Equation (2.1)

can be treated using Lagrange multipliers, aI'i and aII'ias

12 ,i Ylij - ij + 12 1 aII,j YIIij - Z ij
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I...

=6FI(c. 1  + Yii j + 6 ~ c 1 1 + ci

"I. (2.3)
: :: ~ ~~-12 j ii j

1, + j.,i)zi

This expression will be used in Equation (3.10).
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3. GRAND POTENTIAL

The entropy expression can be derived by using, for

example, Barker's procedure6 :

S/kN = 15 [ JpQ(xi, ) + Z:Jp-I I,1 )
-6 +i + 14

'\' Y )IIJ i C j(3.1)

where k is the Boltzman constant, N is the number of lattice

points in one of the fcc sublattices, andjQ(x) is defined as

E(x) -xtnx - x . (3.2)

In writing the energy expression, we need two kinds of

energy parameters: cij for an intrasublattice pair and uij for

an intersublattice pair. Using these parameters, we can write

the total energy of the system as

E/N = 6 1,C + Yii~i + 4 .uij ij (3.3)

We assume that a vacancy does not contribute potential

energy, so that

e 14 
=

4 i m ui4 = u4i 0 for i = 1,2,3,4 (3.4)

The grand potential, , is defined as

- E -TS - 'l1 iNi ' (3.5)

where Pi is the chemical potential and N i is the total number

(both of the ith species). For the vacancy i = 4, we

define P4 = 0, since we do not need the chemical potential for a

vacancy. Using the variables x I, and x we can write
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Ni =N (I,+i I xII, ) (3.6)

When we combine the two terms, E -EuiNi in Equation

(3.5),it is convenient to define

e ij e zij -(ii + Cjj)/2.

(3.7a)

uj uij- (uii + ujj)/2.

and

i -Pi - 2uii - 6 'ii " (3.7b)

Then we can write

[L - U~ II

- 6 ij [YT,ij + YIIij + 4 uij zij - i *i (x, iI,i)

(3.8)

where each summation goes over i = 1,2,3,4 and j = 1,2,3,4.

From Equation (3.7), the parameters with carets have the

properties:

ii Uii = 0 and P4= 0 (3.9a)

4 C 4i C ii/2

(3.9b)

ui4 = u4i _ui/2

It is convenient to use thece energy parameters with carets

because in the limit of no vacanies, the individual Li and uii

do not contribute to the state of the system.
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Combining the energy and chemical potential terms in

Equation (3.8) and the entropy expression in Equation (3.1), the

grand potential, 9, in Equation (3.5), together with the

constraint terms, is written explicitly as follows:

4' -E ON 60 ;C ^-j[ji + yj~j + 48 E.J " i'j Uij zij

- 8 1 xii + xII'i

-15 [~.( 1, i) + c~xij]

+ 6 [.i-.J-'y 1 1 ij) +F.J_'(y .3ij] + 4 ~ 3-14
11,) IP3 IIj+ O z (1 - ; z + OX. (I- 1 + axi [ ,

-1,3 zij 1i,3 YI'ij I -Er YII'ij)

Ij I,j 3 Y,ij + 6E(aII,i + aII,j) yIIij

- 12 iE, (' + I . zij (3.10)

where the X terms are for the normalizations and the terms are

the constraints derived in Equation (2.3).
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4. MINIMIZATION OF THE GRAND POTENTIAL

The equilibrium state of the system is obtained as a

minimum of the grand potential, 0, or 0 in Equation (3.10). In

minimizing it, we regard YI,ij' YIIij and zij as independent.

We treat xI, i and xiiK i as averages of y's and z's; the weights

are arbitrary, but we use the following expressions:

x (34y +)

Differentrations of 0 in Equation (3.10) with respect to

YIIij and zij lead to the following equations:

-.£n YIij =  /6 + n YIij

In YII,ij = 1111/6 + In yII,ij (4.2)

"n zi= 1Xz/4 + In z I

where we separated out the normalization factors, x's, and the

quantities with carets are defined as

£n YIij 16 n xi,i xi,j ) + I Iij + 1 6 LUi + ij - a1 1 iaIj

n j5IIn(xi i )+ 0 + 16i +Uj - Qii,i-iI,j

.n. nzij -"In (xi'ixiij) + [uij + 'i + + 3 (a + ai ).
£nj 16 n(x, 3 1 ,) B[i 16(oi + iiIi I,

(4.3)

The equilibrium state is solved from Equation (4.2) and

(4.3), and the constraint relations in Equations (2.1) and

(2.2).
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When these equations are solved, * in Equation (3.10) can

be simplified as

:: I -- - . YI, ij aYj,ij " " YII'ij I~ j i i i

(4.4)

-0 (= X + X + X BQIN

On the other hand, since theliIiN. term in Equation (3.5) is the

• ,Gibbs free energy, we can identify 0 as the difference between

the Helmholtz and Gibbs free energies, so that

-pV ,(4.5)

where V is the total volume of the system. From the last two

equations, we can derive the pressure expression as

P = - (Xz + X I + XI) N/V (4.6)

I Since we will need it later, let us derive the chemical

potential expressions from Equation (4.3) by eliminating a's.

Making i = j, we obtain
%r

= kT £n (x I i xII i ) + 3 In (YIii YII,ii) + 2 In z i

(4.7)
-2 (z + +II

This holds for I =1,2,3,or4. The X terms can be rewritten from

the i = 4 case as
(ZX+ II = kT[- '2tn (i• 4 x1 i, 4 ) + 3Ln (Yr, 4 4 Yii, 4 4 ) +2In z4 4] .

(4.8)
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5. ITERATIVE SOLUTION OF THE EQUATIONS

The set of equations in the previous section is solved

iteratively. The method is called the Natural Iteration

Method.7  The flow chart of the iteration procedure is shown in

Figure 2. In using this scheme we fix the values of the

energies, Cij ' u i, the chemical potentials, ui, and the
temperature, 8. The three chemical potential values control the

equilibrium composition and the pressure.

In the flow chart of Figure 2, the second step is called

the Minor Iteration. It solves the Lagrange multipliers (a's)

using the following procedure. The variable a ii is contained

in both the yI terms and z terms of Equation (2.1a), as is seen

in Equation (4.3). Using (4.2) in (2.1a), we write the latter

as

/6 a -3aS e I ' i  I,iB ez/4 I 3 I,ie ee ,ij = e i e zij

(5.1)

. Since yI,ij and zij are individually normalized to unity, one of

* the four equations, i = 1,2,3,4, in Equation (2.1a) is

redundant. This means that we need only three aI's. Or we

may choose, for example,

a 1,3 0 a 11 ,3 (5.2)

Then we can eliminate the normalization factors X's in Equation

(5.1) and write

i I i~I  e3aI,i/
"-aI~ e ' ,ii 3aIei zi(53

e (5.3)

I YI,3j 3 ij
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MINR TEATION SOLVES

(4.2) & (2.2)

(4.2)

(2.1

SOLV ED

Figure 2. Flow chart of the Natural Iteration Method.
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When we use this expression as the iterative equation for

we use (input) for the ii written inside the summation signs,
u Thus, we write

and the outside ali is written as IitpuT

a(output) = a(input) + (5.4a)aI'i -- I'i 4 Z' n I,3 ^-i

- In this equation, we use a damping factor, Y. We assign to Y a
certain constant value between 0 and 1 in the iteration

calculation. When Y = 0, the output a is equal to the input

a and the iteration does not proceed. When Y = 1, the
output), which is the next input value, may sometimes

overshoot. Usually, Y = 0.5 leads to stable convergence of the

iteration.

For aII, the equation corresponding to Equation (5.4a) is

a(output) = (input) +[ n Ii IiI i (5.4b)Iiij --iij 4 E i^

The chemical potential controls the composition as follows.

We first combine xI,i and x IIi and define

Xi= (Xi + XIi ) / 2 . (5.5)

Using xi's, we define

n 2  x 1 - x 2

(5.6)

-' 3  X1  + X 2 - X 3

Then, n2 signifies the Hg-Cd composition, and n3 represents the

deviation from the stoichiometry. Using n's, we can write the

, chemical potential terms in the grand potential as

74

4 4o- . 4 S . . . . . . .... . . . . .



7:4 . -I7.

i' (xI + Ii = U2 + w'3 + X ( - , (5.7)

where

111

wV 1 + ^U 4 - '2 (5.8a)

ou 1 + + ^3/2

11 =3 +31 +u

12 '1v + P -I (5.8b)

11 3 iv Uw

From Equation (5.7), we see that the value of ^Uv controls

1 - x 4 ; as uv increases, 1 - x4 increases and the vacancy

concentration decreases. The value lof Ou controls the Hg-Cd
composition; as ^Pu increses xI - x 2 increases. As the value

O1w increases, the non-stoichiometry x 1 + x7 - x3 increases.
When we treat a ternary system, we expect it to reduce to

the binary case when one of the ternary components reduces to
zero. For example, when X2 reduces to zero, 1gost-

whereas 1'1 and ^P remain finite. We can establish the

correspondence between the ternary and the binary case by this

procedure.

4.7

75

:,"'¢'-.', ,:'i ""€',"',:.,?.': " .;'.:::;--;-i !..: P,.?.i., :,i,;.::;-:.'?-;...'.;:i.':-?i;, . ... . .......-..... "......"......"..-.....,..,..".".-......."..;......,.......".-......,.,", .



" 6. SUMMARY

The Hg-Cd-Te crystalline state is formulated using the pair

*approximation of the CVM, including vacancies and antiatoms, but

*. without interstitial atoms. The crystal is made of two fcc

sublattices I and II. On each lattice point, one of the four

species is found: Hg, Cd, and Te atoms and a vacancy. The

treatment uses nearest-neighbor intersublattice potentials, uij,

and nearest-neighbor intrasublattice potentials, eij" The basic

variables are intersublattice pair probabilities, zij, and

intrasublattice pair probabilities, yI,ij and YII,ij"

In order to solve the equilibrium state, the grand

potential, E - TS -Ei Pi Ni, is written in terms of y's and

z's, and is then minimized with respect to the variables. The

resulting equations are solved for given values of T and ui's by

an iterative technique.

This solid state treatment is a part of the work on the

"* liquidus-solidus calculation in Appendix E.
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APPENDIX E

HgCdTe LIQUIDUS AND SOLIDUS, INCLUDING

LATTICE DEFECTS IN SOLID
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A. INTRODUCTION

The liquidus and solidus of the binary Hg-Te and Cd-Te
systems and the ternary Hg-Cd-Te have been calculated by the

author1 ,2 using the pair approximation of the cluster varia-

tion method (CVM). In these calculations, the free energy, F,

* of the binary solid state was represented by a point in the F

vs. composition space because the solid phase was assumed to be

A stoichiometric and free from any lattice defects. Since the

lattice defects are of practical importance, we included vacan-

cies and antiatoms in the solid phase in Appendix D of the pres-

ent report. This appendix reports the procedure of combining

the new solid phase in Appendix D and the liquid phase of Refer-

ence 2 to obtain the liquidus and the solidus.

. In the ternary liquid treatment of Appendix C, not many

equations were written because of the page limitation. Actu-

ally, the equations in Appendix B for the binary liquid can be

Li' ed for the ternary liquid as well without much change. Thus,

w-e may refer to Appendix B when equations for a ternary liquid

are needed.

B. COEXISTENCE CONDITIONS

When two phases coexist, one of the conditions of coexist-

ence is that the chemical potentials of each component are equal

in the two phases; i.e.,

-i . Ui(s) i = l, 2 and 3, (2.1)

-* where 1, 2 and 3 denote Hg, Cd and Te species. It should be

mentioned here that the previous work of the Hg-Cd-Te liquidus

and solidus 2 could not use Equation (2.1) because the solid

phase was represented by a singular structure, as was mentioned

in the previous section, and because i ( was indeterminate.

The second condition of coexistence is that the pressure of

the liquid and that of the solid are the same. Since our models

of the liquid and the solid both contain vacancies, we can cal-

culate pressures of both phases and equate them for coexistence.
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when we compare chemical potentials in the liquid and solid

phases, we need to determine the reference levels in the two

phases. We use Vieland's equation 3 , as was done in Reference 2.

It is written for binary cases as follows:

,i(s,i3) + P3 (s,i3) = Ui(scki3) + 3(scZ 'i3) - (Tm - T) ASm ,

i -l and 2 (2.2)

where s and scl in supercript stand for solid and supercooled

liquid, respectively, and i3 indicates that this equation is for

the i-3 binary case. In the last term, Tm is the melting

temperature, and ASm is the entropy of melting (per molecule)

of HgTe (i = 1) or CdTe (i = 2) solid.

C. STEPS OF LIQUIDUS - SOLIDUS CALCULATION

The liquidus-solidus calculations are done in the following

steps. The temperature T and the pressure p are fixed

throughout the calculation. In this and subsequent sections we

use the names i = 1, ..,6 for atomic Hg, Cd, Te, molecular HgTe,

CdTe and a vacancy in the liquid phase.

(1) First, we solve the Hg-Te and Cd-Te binary liquid
states for the 50-50 composition. This state is
unstable below the melting temperature, Tm, and was
called the supercooled state in Section 2, with the
designation sct in Equation (2.2). We calculate the
sum, Mi(si 3 ) + P3(s,13), for a binary
solid phase from the left-hand side of Vieland's
relation (Equation 2.2).

(2) Then, we solve the binary so id tates, Hg-Te
and Cd-Te, and Ui(si3) + 03s,3) are
obtained. The superscript (s,i3) indicates that this
is the i3 binary solid state (i - 1 or 2).

(3) Next, we solve the ternary solid state. As we
remarked in Section 5 of Appendix D, /,u(s )

controls the Hg:Cd ratio and V s ) controls
the (Hg + Cd): Te stoickimetry. The third chemical
potential parameter, , controls the
number of vacancies and thus the pressure. By
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selecting these three chemical potential parameters,
we make the solid phase take the desired composition
and the prescribed pressure, p.. For this state,
the three values, wi , in Equation (5.8b) of Appendix
D are written as ui'(s ,123) to note that it is
for the ternary case.

(4) In the solid phase, ui and ^]i are related by Equation
(3.7b) of Appendix D:

l i(s).,() - 2uii - 6eii * (3.1)

We assume that uii and E., remain the same, indepen-
dent of the ternary composition. Then we can write

Pi~,13)+ 113 (123) . ,(s,i3 ) + u3(s,i 3 )

)+ (s, 123 ) 3 + (si123)

-(.(s, i3) + ̂ (si3

i = 1 and 2 . (3.2)

On the right-hand side the first two terms are
calculated using the Vieland formula (Equation 2.2),
and the terms with carets are calculated in solving
the solid phases. Thus, we can evaluate the left-hand
side quantity.

(5) In the coexisting states, Pi ' s are equal in the
liquid and the solid phases, as was stated in Equation

(2.1). Thus we can replace the u's on the left-hand
side of Equation (3.2), by the corresponding u's for
the liquid phase. For the first two terms of the
right-hand side of Equation (3.2), we use Equation
(2.2). Then we can write.

Pi(") + 3( ) = i(sct,i3) + 43 (scl,i3 ) - (Tm-T) ASm

+ (ui(s,123) + ^3(s,123))

- (i~(si3) + ^3 (si3))

1 and 2 . (3.3)
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Since both ( and ui(sc9,i3) are for the liquid
phase, we can use Equation (3.b) of Appendix B and
place carets on them to write

9i() +/ ( £ ) ffi/ (sc£, i 3 ) + ^ 3(sc£, i 3 ) _(T-) S
7 9) + 'I'(9) = I~ Sli 1 ) (TmT) A Sm

+ (,,(s,123) ^$3(s,123))

- (I.ysvi3) + ^ (si3))

and 2 (3.4)

(6) We choose U.3 !) . Th,, combining with Equatiofl 3.4),
we know 0,R) and *2 ) . Using these three .
values, we can solve the liquid state. When the
liquid state iT solved, we examine the pressure. we
then vary 113(Z to come to the prea ssgned va , P'
of the pressure. By calculating P k 'from U 3 1') using
Equation (3.6) and (3.15) of AppenAix B, we get

M ~.(4+W (3.5)
U3( + 33 e3

Note that these are different from the solid relation
in Equation (3.1).

(7) Since we knol the value of 3(s) in Step (3), we can
callte. U3 s from E n(31.We then plot
P3()and U3 aais w ue in Step 3. We vary
w and find the value for which

3 (S z (3.6)

This point is the coexistence point. Note that in
going from Equation (3.2) to Equation (3.3), we use
the relationship
Ui (s ) + 13(s ) = ui(9) + U3(" for i = 1 and 2 . (3.7)

The combination of Equations (3.6) and (3.7) are
equivalent to the coexistence condition (Equation 2.1).
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D. SUMMARY

We have described the procedures of calculating the

liquidus-solidus of the Hg-Cd-Te system. For the solid phase,

the method in Appendix D is used and the lattice defects

(vacancies and autiatoms) are included. The liquid phase is

modeled using a pseudo-lattice structure, as was done in

Reference 1 and 2.

The detailed steps, (1) through (7), of computing the

liquidus and solidus for the coexistence condition are described

in Section 3.

The main results are shown in Figures 10, 11 and 12 of the

main text of this report.
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