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ADVANCED TELEPROCESSING SYSTEMS

* Defense Advanced Research Projects Agency

Annual Technical Report

September 30, 1982

* INTRODUCTION

This Annual Technical Report covers research carried out by the Advanced Teleprocessing Sys-
tems Group at UCLA under DARPA Contract No. MDA 903-82-C-0064 covering the period from
October 1, 1981 through September 30, 1982. Under this contract we have three designated tasks as
follows:

TASK I. PACKET RADIO SYSTEMS

The extension of our analytic and design techniques to modern multi-hop packet radio
networks will be studied. The applications and extensions include access methods,
large network control and management, queueing network models, approximation
methods, capture phenomena, conflict-free algorithms, reliability, routing procedures,
topological studies, TDMA in a multi-hop environment, and multiplexing methods.

TASK HI. RESOURCE SHARING AND ALLOCATION

Extended concepts of "power" in networks will be studied. The extensions include
more complex topologies and configurations, extended queueing disciplines, general
distributions, other definitions of power, effects of varying the traffic matrix, fairness.
The problems of large scale internetting with respect to resource allocation and sharing
will also be studied further.

TASK III. DISTRIBUTED PROCESSING AND CONTROL

Overall principles of distributed processing and distributed control will be studied. The
issues of sequencing in data base updates, distributed control, and distributed process-

.1 ing (involving the calculation of concurrency of processing) are the subjects of concern
here.

A major contribution of our research during this period is contained in Reference 5 listed
below, namely "Channel Access Protocols for Multi-Hop Broadcast Packet Radio Networks", by Ran-
dolph Nelson. This Ph.D. dissertation (supervisored by Professor Leonard Kicinrock) makes a number
of contributions to the field of access protocols for multi-hop systems. In this report, slotted ALOHA
is analyzed in a mobile packet radio network. Furthermore, a new protocol known as Spatial- TDMA is
described and analyzed; this is a collision-free system for which we find the mean response time and
allows us to determine the absolute minimum delay averaged over all messages in the network. Yet



another protocol referred to as Rude-CSMA is discussed and analyzed and is an access protocol which
permits terminals to transmit even after they sense a busy channel. The performance of the system and
the conditions under which it is useful are discussed. The entire dissertation is reproduced as the main
body of this report immediately following the list of research publications below. This list of publica-
tions summarizes the results of this annual period and the abstract of each paper is given along with the
reference itself.

RESEARCH PUBLICATIONS

1. Nelson, R. and L. Kleinrock, "Spatial TDMA: A Collision Free Multi-Hop Channel Access
Protocol," ICC '82 Conference Proceedings, Philadelphia, Pennsylvania, June 13-17, 1982, pp.
1C.4.1 - 1C.4.4, submitted to IEEE Transactions on Communications.

In this paper we define a broadcast channel access protocol called Spatial-TDMA
which is designed specifically to operate in a multi-hop packet radio environ-
ment where nodes are assumed to be stationary. The protocol defined assigns
transmission rights to nodes in the network in a local TDMA fashion and is
collision-free. Methods for determining slot allocations and slot sizes are
developed and a solution is found for determining the assignment of capacities
for the links of the network that minimizes the average delay of messages in
the system.

2. Levy, H., "Record Recognition and Duplicate Elimination of Personnel Lists," Computer
Science Department, University of California, Los Angeles, Master's Thesis, June 1982.

Personnel lists consist of records which contain descriptions of individuals.
Each such description can be the person's name, address, birth date, profes-
sion, etc. Due to misspelling or other reasons these descriptions are not
mathematically exact in their computer description. For this reason, it is very
likely that one person can be represented in different lists by records which are
not exactly identical to each other.

In the presence of this property it is desired to recognize personnel records.
More specifically, it is required to identify if two records r1,r2 represent the
same person.

This problem is confronted in this work. While the solutions offered by exist-
ing methods are based on heuristics only, we propose a method which com-
bines heuristics with the statistical behavior of the lists and which finds a sub-

* optimal decision criteria for this problem. Assuming that a similarity measure is
defined, we find an optimal selection method (which identifies if two records
are the same), based on this measure.

.~~~ 
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3. Takagi, H. and L. Kieinrock, "Output Processes in Contention Packet Broadcasting Sys-
tems," Computer Science Department Report No. CSD421006, July 1982.

The processes consisting of the packet interdeparture times in contention-type
packet broadcasting systems are studied. The channel access protocols con-
sidered include slotted and unslotted ALOHA and carrier-sense-multiple-access
(CSMA) with collision detection or with delay capture effect. Through analysis
of the channel activity cycle, the distribution, mean and coefficient of variation
of the packet interdeparture times are explicitly derived. Taking the reciprocal
of the mean interdeparture time, we obtain the channel throughput. Cases with
dissimilar users are also considered. Application of the present results to the

LN packet queueing processes is suggested.

4. Klelnrock, L., "A Decade of Network Development," Journal of Telecommunications Network,
Spring 1982, pp. 1-11.

The network technologies developed over the past decade, due largely to
incredible advances in integrated chip production, have set the stage for an
enormous DP revolution the impact of which will soon be felt in the business
community and in the home and consumer markets. We have been able to
identify those fundamental principles which render this new technology so cost
effective. End-to-end communication services are now coming into place which
will pass data, voice, video, fax, graphics, etc. from an individual terminal in an
office or a living room across vast distances to remote processing facilities. The
technological issues have been addressed, and in this paper we describe some of
the successes and some of the remaining problems to be solved. As engineers,
we cannot restrict our efforts to the purely technical (and "nice") problems,
but rather we must accept the further responsibility of familiarizing ourselves
with the overall environment in which our "products" must perform; if we fail
in this regard, the world of commerce, trade and business will ignore our best
efforts as irrelevant to its needs.

5. Nelson, R., "Channel Access Protocols for Multi-Hop Broadcast Packet Radio Networks,"
Ph.D. Dissertation, Computer Science Department, University of California, Los Angeles,
July 1982, Report No. CSD-820731.
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ABSTRACT

* A multi-hop packet radio network consists of a set of geographically distributed nodes
(e.g. computers, terminals, etc.) which communicate using radio transceivers over a shared,
broadcast radio channel. In this dissertation we study algorithms, called channel access protocols,

* that are executed by the nodes of the network to schedule their transmissions on the channel.
In particular, we analyze the performance obtained in mobile networks where nodes use the
slotted-ALOHA protocol and determine network parameters that maximize throughput. These

I results are extended when we obtain a tight upper bound for the performance of all protocols in
a mobile environment. This bound can be used as a standard by which we compare the perfor-
mance of other protocola in multi-hop mobile networks and we show that slotted-ALOHA is
about 36% efficient in such environments.

In a related area, we define a new protocol, spatial-TDMA, designed expressly for net-
works in which nodes are stationary. This protocol is collision-free and we find the mean delay
for messages passing through nodes using the protocol. This leads us to formulate and solve a
capacity assignment problem for networks using spatial-TDMA, which minimizes the delay

.. j *averaged over all messages in the network.

Another protocol we define, rude-CS MA , uses information only about a node's local
environment. This protocol is called "rude" because, under certain circumstances, the
throughput of the network is increased if nodes, after sensing a busy channel, transmit packets
with a non-zero rate. We derive the performance equations for this protocol and then find sys-
tem parameters that maximize throughput for different network topologies.

.4%
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LIST OF NOTATION

The following is a list of nocations used in the thesis. Notations are consistent
throughout and we have organized the list according to the chapter in which the notation first
appears.

CHAPTER 2

A Mean density of terminals on the plane.
R Transmission radius of nodes in the network.
N The average number of neighbors.

0 The capture parameter of the network.
n The number of nodes in the network.
p The probability of transmitting.

N The effective number of neighbors.
E The expected number of successes in the network.
G The offered load of packets from a circle of radius R.
G The effective offered load.

CHAPTER 3

R0  The radius of the entire network.
R1  The random variable for the euclidian distance for nodes one hop away.
R 2  The random variable for the euclidian distance for nodes two hops

away.
3 The random variable for the euclidian distance for nodes three hops

away.
e The random variable for the angle between the vectors of the first and

second hop.
f (N) The maximum fraction of successful transmissions.

Viii
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CHAPTER 4

T The size of the time frame.
C, Clique i.

t' The total time from the time frame allocated to C,.
_ The time vector.

k

The sum of the elements of t, tIII- t,.
I-I

C The set of all cliques, C - (C1I C,, ••• Ck I.

"I, The average flow over a time frame of messages from node i to node /.

• The total flow of messages in the network over a time frame.
., The average flow of messages over a time frame over arc i.
T The external arrival time allocated to a specified queue over one time

frame.
T. The internal arrival time allocated to a specified queue over one time

frame.
TI The service time allocated to a specified queue over one time frame.
L,, The average number of external arrivals to a specified queue over one

time frame.
L, InThe average number of internal arrivals to a specified queue over one

time frame.
.'aM' The rate used in the fluid approximation over external arrival periods

for a specified queue.

MI, The rate used in the fluid approximation over internal arrival periods
for a specified queue.

M" The rate used in the fluid approximation over service periods for a
specified queue.

T, 1 T corresponding to queue i.
T III T, corresponding to queue i.
" T, corresponding to queue i.

Lex L,,x corresponding to queue i.
L L,, corresponding to queue i.
Di(t) The average delay of messages passing through queue 'for time vector

ai

i~ix
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CHAPTER 5

x Parameter to rude-CSMA protocol.
y Parameter to rude-CSMA protocol.

YO Average rate of message arrival to nodes in rude-CSMA.
A Average transmission time.
p Equal to v/o/I.
s,(S) The state of node i, s,(S) = 1 means node i is transmitting, otherwise it

is not transmitting.
S The state of the system, S - (sI(S), s,(S), . s,(S)).
Nt (S) The number of neighbors of node i, in state S, that are transmitters.
" Nb(S) The number of neighbors of node i, in state S, that are not

transmitters.
B (S) The number of adjacent transmitters in state S.
BOW The number of adjacent non-transmitters in state S.
M(S) The number of transmitters in state S.

E(S) The expected amount of successful transmissions in state S.
r (S) The rate at which node i presents packets to the channel in state S.
r' (S) The rate at which node i ends its transmission in state S.
H(S,x,y) The probability of being in state S for parameter values x and y.
E(x,y) The expected throughput for parameter values x and y.
N" The effective number of idle neighbors.
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CHAPTER I

INTRODUCTION

In this section we will briefly recount some of the events that lead to the development
of computer networks. We will then define terms used to describe packet radio networks and

4' delineate the problems which are addressed in this dissertation.

'S 1.1 A Little History

The basic problems of computer science are those involved with sharing resources. In
the 1960's, since computing machinery was expensive, designers of computer systems broke
away from the one-job one-machine system configuration and developed the policy of multi-
programming. This decreased the cost of the machine time dedicated to each job, but required
considerable effort to create and implement operating system software. As the complexity of
the system environment increased, so did the intricacies of the operating system, and issues
concerning its functionality and implementation became major efforts. In some sense the
operating system became another component of the resource sharing problem it was designed
to solve. The difficulty associated with managing the complexity of these systems, combined
with economics, served as a catalyst to -teer things away from building larger systems. Mass

- fabrication of integrated circuitry drastically reduced the cost of computers to the point where it
was no longer vital to operate systems at high utilizations to be cost effective, and thus provid-

* ing more computers, instead of making them larger and more powerful, became more feasible.
The resource sharing problems that were created with this trend consisted of developing
efficient methods to allow distributed users to share many smaller machines rather than provid-
ing them sufficient processing power from one large, commonly shared machine. Besides prob-

'S lems in distributing processing, this approach created the need to connect these machines with a
communications network. The resource sharing problems of operating systems were thus
extended to include those associated with computer networking.

Experimental networks, such as the ARPANET of the department of defense
[Klei76aJ, demonstrated the feasibility of the network approach. This network used point to
point cable to link the communication processors of the network together, which, since the net-
work itself was a shared resource, became the next part of the resource sharing problem. The
inflexibility of point to point cable to changes in the topology of the network motivated network

S.,. designers to seek a more flexible transmission media for the links of the network. The success-
ful implementation of the ALOHA-NET [Abra7Oa] of the University of Hawaii showed that it
was possible to use broadcast radio as this new media. A new resource then, the radio



spectrum. was added to the set of resources which had to be efficiently shared.

In such networks, if two or more nodes transmit simultaneously, their signals collide
and neither signal is successfully received. Thus the resource sharing problem of scheduling
transmissions on the channel to minimize the number of collisions in the network became an
important research area. This brief historical account leads us to the present day and to the
topic of this dissertation.

Our major purpose in this dissertation is to lend understanding to these scheduling algo-
rithms, called channel access protocols, for radio networks. Before delineating the set of prob-
lems addressed in this dissertation and its major contributions, we must make a few definitions
in the next section. In the sections following this, we will then relate in a more precise
manner, the basic principles of resource sharing with the results of our investigations.

1.2 Preliminary Definitions

In this section we briefly define the essential elements of a packet radio network. A
packet radio unit is a hardware device consisting of a communications section which transmits and
receives signals, and a logic section which constructs, decodes. and processes messages. The
unit of information sent by the transmitter is called a packet. We will distinguish two types of
radio units, regular packet radios and repeaters. This classification depends on the nature of the
programs the unit executes and we allow units to change from one classification to the other.
Typically the function of repeaters is to form communication links between regular units which
are separated by distances greater than their transmission range, and thus relay messages from

* one unit to another. To prevent repetitious language, we will use terminals and nodes to mean
regular packet radio units.

The topology of the network is the spatial placement and transmission range of the
nodes of the network. The channel is the communications media used by the transceivers and
in our work will be broadcast radio. We say the channel is idle with respect to a certain node at
a certain point in time, if that unit does not detect a signal on the channel at that time, and that
the channel is busy otherwise.

Suppose a terminal t, is sending a message to terminal a and that a is within range of
t, s transmission. Also assume that ti's message is sent over the time period [0.t] We say
that a captures ri's signal at time T, (0 < 'r < 0, if a can decipher the information in r, s signal
at r-. We say that ti's transmission is successful if a captures il's signal over all 7- in [0,t] other-
wise we say ti's signal collided with other signals (possibly noise) on the channel. In a typical
radio environment there are two parameters that govern the capture of signals, power and time.
In power-capture, t1's signal will be received by a in the presence of a transmission by t,. if the
ratio of the power of the two signals received by a is greater than a certain number. 13-1, called

* the capture-ratio. If P3-0 (non-capture) a will receive il's transmission only if there are no
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other transmitters within a's hearing range, and if /3-1.0 (perfect-capture) a will receive if t, is
closer to a than t2. With time-capture, t1's signal is received by a if t, began transmitting at
least a certain time, the capture time, prior to the beginning of t,'s transmission.

Packets originating in one node may need to be sent to several intermediary nodes to
reach their final destinations. We call each transmission in this relay a hop and distinguish
between single-hop and multi-hop environments. A single-hop environment is said to be Iine-o:
sight if each node detects transmissions from all the nodes in the network, and said to be hidden
if some nodes do not hear all the nodes in the network. In the hidden environment we assume
terminals can only send packets to terminals they can hear. In the multi-hop environment ter-
minals send packets to destinations that are outside their transmission ranges and a routing algo-
rithm is needed to specify the next node that is to be the recipient of the packet.

Nodes execute an algorithm called the channel access protocol to determine when to
transmit their packets and the information used as input to this algorithm is called the policy
state information. If terminals use data containing information about a proper subset of the
nodes in the network, the policy is said to be a local policy, otherwise we say it is a global pol-

icy.

We will judge the performance of the network by its delay-throughput characteristics.
The throughput of the network is the average number of messages reaching their final destina-
tions over a unit time interval over a specified region of the network. In single-hop environ-
ments, this region is defined to be the entire network and thus the throughput of the network is
equal to the average number of successful messages on the channel per unit time. In multi-hop
environments however, several successes can occur simultaneously in different parts of the net-
work, and thus we calculate throughput over a region of unit area. The maximum throughput
of a particular network for a particular channel access protocol is called the capacity of the net-
work. The delay of the network is the average time between message arrival at the originating
node and delivery to the final node. A certain policy will be said to be optimal if we can show
that no other policy using a subset of the policy state information achieves a greater
throughput.
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1.3 Statement of the Problem

The problem we will study in this dissertation consists of creating efficient transmission
policies for multi-hop packet radio broadcast networks. Thus the shared resource is the broad-
cast radio channel and the objective is to maximize the capacity of the channel over given sets
of policy state information. To elucidate some of the characteristics of this problem, let us first
discuss problems in developing protocols for the single-hop line-of-sight environment. In net-
works of this type all nodes share identical information about the status of the channel. This
information is obtained by sensing the channel and is exploited, for example. in the CSMA4
family of protocols [Toba74a). In CSMA. a terminal wishing to transmit a packet on the chan-
nel, first senses the channel to determine if it is idle or busy. If idle. the terminal transmits its
packet immediately. otherwise it refrains until some future time and again senses the channel.
Collisions occur only if two or more terminals sense the channel within a propagation delay
(defined to be the average delay between the time a message is transmitted on the channel and
the recognition that this terminal is transmitting by all the nodes in the network) of each other,
and hearing it idle, all transmit their packets. If the propagation delay between terminals is
small, the probability of this event is also small and collisions are infrequent.

What other information would be valuable in determining efficient transmission policies
for single-hop systems? Suppose the identities of the busy terminals were known by every ter-
minal in the network. An optimal policy which both maximizes throughput and minimizes
delay could then be created by giving busy terminals permission to transmit in some specified
order, say first-come first-served. It is well known that the performance of such classical
queueing systems are a lower bound for all possible access schemes. Such state information
must be sent over the channel, though, at a cost in the delay- throughput performance of the

system. Indeed this communication and the optimal use of specific control information lie at
the root of the difficulty of determining optimal policies for single-hop line-of-sight environ-
ments IMoll8lai. Thus we have that to efficiently share the channel, one needs ways to distri-
bute control information and since the channel is the only means to perform this communica-
tions, the control information requires efficient methods to use the channel. We are reminded
of such a cycle mentioned in the introduction in the case of operating systems, where part of
the structure it needed to manage to effectively share computing resources, was the operating
system itself.

The complexity of the problem is greatly increased when the hidden environment is
considered since each node hears only a proper subset of the nodes in the network, and neigh-
boring nodes do not necessarily agree on the state of the channel. If we try transmitting to
another node in the network after sensing the channel idle. as in CSMA. there is no guarantee
that the receiver, who hears a different subset of nodes than the transmitter, will also sense an
idle channel. The set of subnetworks created by the local information, in essence one for each
terminal in the network, have a high degree of interdependence. For any two nodes, there is a
set of terminals that can hear both of them. and simultaneous transmission to this tner,'erence
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set will result in a collision.
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FIGURE 1.1
A Sample Network.

For example, in Figure 1.1 transmitters r, and 12 have interference set N, to which they both

4 transmit, and sets N,, and N,2 which hear only their respective transmitters. There are three

distinguishable cases for successful transmission on the channel. There are no successes if both
t! and t2 send to N, or if both do not transmit. One success will occur if exactly one of the ter-

minals ti transmits or if both transmit and one terminal sends to N, while the other sends to

N,. Finally there are two successes if both terminals send to N,, and N. Coordinating their

transmissions to maximize the number of successes, is called the interference problem and will

be a major area of concern in this dissertation.

In the hidden terminal environment knowing the identities of busy terminals is not

sufficient, as in one-hop networks, to generate optimal transmission policies. One must now
also know the destinations for packets in each of the queues, and the traffic characteristics for

future arrivals of messages.

-There are some theoretical results we can prove for optimal transmission policies. In

figure 1.1 let q,, and q,2 be the conditional probabilities that when the transmitters transmit they

send packets to N,, and N, respectively and suppose transmitters send packets with probabilities

P,, and P,2 . Using the above definitions we can derive an expression for the expected number

of successes. There will be one success if exactly one of ti, and t2 transmits. or if both
transmit, if one of them transmits to the interference set (and its transmission suffers a
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collision) and the other to either set or N,. Writing this out using the above notation we

have:

P One Success] - P, (l - P,,) + P,(l - P,) + P, P,,((1 - q,,)q,,+ (I - q,,)q,)

Two successes can only occur if both transmitters send packets to sets N, and N, The proba-

bility for this is:

P[ Two Successes] - P,1 P 2 qI qt,

The expected number of successes is then given by:

E - Pf One Success] + 2 P[ Two Successes]

E - PI + P'2 - P P 2  + q,1 )

We wish to maximize this over choices of (P,, P ). The solution will occur in the interior of

the feasible set 0 4, 1 ,P,2 <,1 only if the Hessian matrix (the matrix of second partial deriva-

tives i.e. 82E ) is negative semi-definite [Avri76a]. The Hessian however is

0 -I + q,
q + q,2  0

which is clearly not negative semi-definite since the determinant of the second principle minor
is negative. We thus conclude that the optimal solution occurs at one of the vertices of the

feasible set. There are four such vertices and we can eliminate (0,0) immediately since it has a
throughput value of zero. This leaves three pairs to consider namely (0,1), (1,0). and (1,1).
The expected number of successes for vertex (1,1) is equal to 2-(q,+q, 2) and equals I for

(1.0) or (0,1). We see then if q, +q 2 <I the optimal policy is to be rude and transmit packets

r"* regardless of the state of the channel, and if q,1 + q,, > 1 the optimal policy lies on either the

(1,0) or (01) venice. We should note that to make the policy fair. in the sense that each user
obtains an equal share of the capacity of the channel, we would alternate, in some fashion,
between (1.0) and (0.1). This result generalizes to the case of n interfering terminals where
the optimal policy lies on one of the vertices of a (0.1)" hypercube. To achieve maximal

throughput, it does not make sense to assign transmission permission to a node if its transmis-
sion will cause a collision, and thus the above example implies that an optimal assignment of
transmission permissions does not allow collisions in the network. This motivates why we

define a collision-free protocol for multi-hop networks called spatial-TDMA in Chapter 4.
Another observation we can make from the above example, which motivates another protocol.

rude-CSMA. which we define in Chapter 5, arises from the fact that under certain cir-
.- cumstances nodes in the above example should transmit even if they sense a busy channel. In

rude-CSMA nodes adjust the rate at which they present packets to the channel according to the
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activity of the channel in their local environments and do not necessarily refrain from transmit-
ting if they sense a busy channel. The idea, as in the example, is that a message may be des-
tined towards a node outside the range of the other transmitters in the local environment and
thus transmitting will tend to increase the throughput of the network.

We can refine the above model by first noting in the above strategy that collisions do
sometimes occur, and we have assumed that terminals have packets to send at all times. If we
relax these assumptions we can create a policy that maximizes the expected throughput over all
time by analyzing a more complex model. Suppose now we know the messages and their desti-
nations for all the terminal's queues as well as the topology of the network. Also suppose we
know the arrival rate of new messages to each terminal and the distribution of message destina-

-* tions. Then by modeling the system as a Markov decision process [Mine7Oa] we can assign
permissions to transmit to nodes in the network and using a dynamic programming technique
called policy-iteration IHowa6Oaj can determine a global transmission policy that will maximize
the expected number of successes over all time. This decision policy is collision-free and is
easily implemented if information about the queues of the network were known to all nodes.
In general however, dissemination of this information would require considerable channel capa-
city and thus tends to counteract the optimality of the proposed policy.

1.4 Previous Work in the Area

We briefly give in this section an overview of related research in the area of channel
access protocols and will concentrate on broadcast protocols for the single-hop and multi-hop
environments.

Single-hop - There is a vast literature for the single-hop line-of-sight environment and
we will only discuss results relevant to later sections. The most elementary contention protocol
for this environment was developed by Abramson [Abra7OaI and is called the ALOHA protocol.
In this protocol a terminal transmits a message as soon as it arrives, and messages transmitted
concurrently, collide and are not received by their intented nodes. Collided packets are re-
transmitted after nodes wait a randomly selected period of time. It can be shown that under
the assumptions of an infinite population of terminals offering Poisson traffic at a constant rate,
the maximum throughput of the system over a finite period of time is 1/2 e. or about 18% of
the bandwidth of the channel, and that the system will eventually form an infinite backlog of
messages waiting to be sent over the channel [Lam75a]. The throughput of the system can be
doubled [Robe72a] by using the ingenious device of dividing the time axis into slots equal to
the length of packets. This protocol, called slotted-ALOHA, operates in a similar fashion to

ALOHA except that nodes are allowed to begin transmission only at the beginning of time
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slots. This system is also unstable [Lam75a], but several methods for stablizing it have been
proposed.

Observe that in the ALOHA system radio units transmit even if the channel just prior
to their transmission is busy, hence guaranteeing a collision. Tobagi [Toba74a] analyzed a class

*!ii of protocols called Carrier Sense Multiple Access (CSMA) which attempt to avoid this futile colli-

sion. In CSMA when a node wishes to transmit a packet, it first senses the channel to deter-
mine if the channel is busy. If the channel is idle, the node transmits the packet immediately.
Collisions only occur if two or more nodes sense the channel idle and begin transmitting within
one propagation time, r. of each other. If the channel is sensed busy. the node refrains from
transmitting the message and executes one of the following variants of the protocol.

1-persistent The node waits until the channel becomes idle and transmits with probability 1.

p-persistent - The node waits until the channel becomes idle and transmits with probability p.

If the channel remains idle for a propagation delay then the node again transmits

its packet with probability p. If the channel becomes busy, the node repeats the

protocol after waiting a randomly selected period of time.

non-persistent - The node reschedules sensing the channel to a random time in the future.

The magnitude of the propagation delay r is critical to the performance of the protocol.

If r is small, the probability of a collision is also small since a transmitting terminal is heard by

all the nodes in the network in a very short period of time. On a satellite channel however,
where the propagation delay is large (on the order of 1/4 second), a terminal transmitting on
the channel after hearing it idle, will not be heard until 1/4 of a second later. During this time
there is a large probability that other terminals will sense the channel, hear it idle, and sn
transmit their packets on the channel thus resulting in a collision. The throughput of ,ui*
persistent CSMA for propagation delays typically found in land based packet radio networks is
about 87% of the bandwidth of the channel.

Tobagi also studied the single-hop hidden environment and devised a protocol. Busv-

Tone-Multiple-Access [Toba75a] in which a central station, assumed to be within line-of-sight of

all terminals in the network, emits a signal indicating if the channel is busy or idle. In this way
all terminals by listening to the busy tone share the same channel status information and can

use this information to control their transmissions. This is actually a simplification of Tobagi's
model since he considered problems associated with correctly detecting the busy tone in the
presence of noise, and therefore nodes do not always have the same channel status information.

It should be noted, that operating the CSMA protocol in the hidden environment without the
busy tone concept, results is severely decreased throughput since nodes sensing an idle channel

will transmit, and have the possibility of colliding another transmission already in progress. We
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will derive equations for the maximum throughput of CSNIA in the multi-hop environment in
Chapter 3 of this dissertation.

Multi-hop - Silvester [SiIv80a} considered a packet radio network consisting of ran-
domly placed terminals on the plane, with finite transmission radii, using slotted-ALOHA. His
derivation assumed the existence of a routing algorithm which would send. for each transmis-
sion, packets to terminals that were closest to the final destination. His results showed that to
maximize the throughput of the system, terminals should transmit with a radius such that their
transmissions would, on the average, be heard by approximately six other nodes. Because of
this finite range, there could be several simultaneous successful transmissions in the network
during any given slot, and this phenomena was named spatlal re-use of the channel. In Chapter
2 we generalize this model to include capture and find optimal operating points for the network.

Akavia [Akav78a] studied a multi-hop model in which a continuum of terminals used

slotted ALOHA to send packets to neighboring terminals. Transmitters in his model are
assumed to have perfect control over the range of their transmission and receivers are assumed
to be equipped with perfect capture. Let us classify the traffic into a node to help us explain
some of his results. Define N to be the average number of packets in the queue of a terminal.
T to be the average time packets spent in the queue, and X to be the average arrival rate of

packets to the queue. By Little's result [Litt6la] we know that N - A T. We say that the
traffic into a terminal is bursty if N < < 1 and is steady otherwise. By using an ad-hoc formula
for the delay of ALOHA networks, Akavia showed that if traffic into a terminal was bursty, ter-

minals should transmit with enough power to reach their destinations in one hop. On the other
hand, for steady traffic he found there is an optimal transmission range that minimizes the
delay of the system, and in this case packets require several hops before reaching their final
destinations. In another approach throughput was increased in the single-hop environment by
dividing terminals into groups with different transmission powers and assuming the transmis-
sions from low power groups do not interfere with those of higher power. It can be shown that
the throughput of the ALOHA channel increases and as the limit of the number of power
groups goes to infinity, it is shown the throughput of the system goes to one.

Tobagi considered the 2-hop environment in a series of papers [Toba80a. Toba80b]
where he analyzed two topologies for different access schemes. In both topologies, a set of N
repeaters are assumed to receive packets from N independent sets of packet radio networks
each consisting of an infinite number of terminals offering traffic at a Poisson rate. Repeaters

send this traffic to a central station CS, and only terminal-to-CS traffic is considered. The two
topologies arise in the manner in which repeaters are assumed to be connected to the CS. In
the Star topology, repeaters are assumed to have a link to the CS but are not connected to any

other repeater, and in the Fullv Connected (FC) topology all repeaters and the CS are assumed
to be mutually connected. Repeaters initially are assumed to have a single buffer for storing
packets.

9
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In the first model, terminals use slotted-ALOHA to send packets to their repeaters.
Upon successful reception of a packet, a repeater forwards the packet to the CS according to
one of two protocols. The first protocol. Delay First Transmission (DFT). operates by having
repeaters with packets to send, transmitting them with probability p in each slot. In the second
protocol, Immediate First Transmission (IFT), nodes transmit newly arrived packets with pro-
bability I in the next slot, and collided packets are re-transmitted in the following slots with
probability p. This variation, which avoids the initial packet delay. would intuitively decrease
the overall packet delay from the repeater to the CS in low traffic conditions. This is verified in
Tobagi's paper. Tobagi observed that although increasing the buffer size from one to two
packets did improve the delay of the system, further increases in buffer size had only a minor
effect. The system is said to be channel bound rather than storage bound

In the second model, the FC topology is studied where terminals use non-persistent
CSMA and the repeaters use the IFT protocol. Because of the increased throughput of CSMA
over slotted-ALOHA, the throughput of the two-hop system is also increased. Since successful
reception of a packet by a repeater, say a, implies in the FC case that no other repeater is
transmitting, the channel in the next slot will be idle if a does not transmit its received packet.
With IFT however, a does transmit thus taking advantage of this information, and a collision
will occur only if at least one other repeater received a packet simultaneous to a. The probabil-
ity of this is low and it is shown that the delay suffered by a packet in going from a repeater to
the CS is about one packet transmission time. Once again the system is not storage bound and
increasing the buffer size has little effect on the performance of the system.

Capture - In the paper by Roberts [Robe72bl, power-capture is defined and the
throughput for a single-hop slotted ALOHA line-of sight system is derived. It is shown that
capture increases the usable bandwidth of the channel and delay equations are derived for satel-
lite and ground packet radio systems. It is also shown that as the capture ratio varies from no-
capture to perfect-capture, the throughput of the system increases.

Fratta and Sant [Frat3OaJ considered a packet radio network with repeaters and regular
packet radio units distributed randomly on the plane. Using a power-capture model they
derived lower and upper bounds on the throughput per unit area of the system as a function of
the traffic offered per unit area. It is shown that the bounds for this throughput are a function
of the traffic per area and the density of the repeaters. Traffic is assumed to originate at the
nodes and after being transmitted to the repeaters, is sent, by some unspecified means to a cen-
tral station. In a second model, a network of randomly placed nodes is studied for throughput
characteristics in the single-hop line-of-sight environment. Under the assumption that each
node transmits with the same probability in each slot, and that they transmit to all other nodes
with equal probability, it is shown that the system has an asymptotic throughput of I packet per
slot.
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Davis and Gronemeyer (Davi8Oal studied a spread spectrum system with time-capture.
They studied a slotted ALOHA line-of-sight system, and developed a clever way to prevent ter-
minals close to a given receiver from "stealing" the channel from terminals further away. This
stealing would occur because their proximity to the receiver would give them an unfair advan-
tage of being received first, and thus be more likely to be captured over more distant nodes.
By causing terminals to delay transmitting for a period of time linearly dependent upon their
distance to the receiver, and by adding to this a randomly selected interval of time, it is shown
that all nodes will have transmission times uniformly distributed over some interval. Thus each
node, regardless of its distance to the receiver, has an equal chance of being the first to be
received.

1.5 Contributions of this Dissertation

In this section we outline the main contributions of this dissertation. In Chapter 2 we
analyze the set of packet radio networks in which nodes are randomly distributed on the plane
to determine throughput characteristics of the network as a function of transmission probability
and range of transmission. This network topology corresponds to a mobile packet radio net-
work and the shared resource we consider in this chapter is the spatial-capacity of the radio
channel. In our model of the network, nodes use slotted-ALOHA to access the channel and
have the ability to capture signals. We derive the following equation for the throughput of the
network:

yQ3B,N~p,) - ±5 -nV (1 - p)(0 - e-, V2) p e-v Q
* 4 64

where Q 4p)j + ~IQ - P-JAi), n is the number of nodes in the network, N is
Np , (2j+1)! 3

the average number of neighboring nodes that are within the transmission range of a randomly
selected node, p is the probability of transmitting in any random slot, and a3 is the capture
parameter of the receivers of the network (recall a signal is captured if the ratio of its power to
that of the other signals on the channel is greater than 0-1 and that /3-0 is non-capture and
P3-1 is perfect-capture). We can see that the throughput of the network increases as vfn and
this factor represents the spatial-capacity of the channel. This dependency results from the fact
that, because a transmission is heard by only a small subset of the nodes in the network.
several transmissions can be simultaneously successful in any given slot. Typical receivers in
such networks have a capture parameter of /3-0.7. For this value, the point on the (NV, p)
plane thac optimizes throughput can be found to be NV-4.99 and p-.21 at which point the
throughput of the network is given by .074vrn. If we define the offered load, G, of the system



to be the average number of packets presented to the channel from an area equal to that of a
transmission radius. then our results show that Gz I optimizes performance. This is a generali-
zation of the same result for the single-hop environment. In essence this model corresponds to
finding optimal solutions to the interference problem using a minimal set of information.

We extend these results in the third chapter by determining an upper bound for the
spatial-capacity of random networks over all protocols in a mobile environment. The goal is to
free the model of the second chapter from the slotted-ALOHA assumption to determine which
insights obtained from that model generalize. In particular, we find that the maximum
expected fraction of successful transmissions in a connected random planar packet radio net-
work. over all protocols, is upper bounded by:

f (N) - .9278/N

where, again. N is the average number of neighboring nodes that are within transmission range
of a randomly selected node. This is a good rule of thumb to use in judging the performance
of other protocols with these network assumptions. When we evaluate the performance of our
results for optimal slotted-ALOHA against this upper bound, we find that this protocol achieves
about Ile of the performance given by the above equation. Recall that this is equal to the
efficiency of slotted-ALOHA in a single-hop environment, and thus we have the intuitively
pleasing result that the maximal capacity of slotted-ALOHA is the same in single-hop and
multi-hop environments.

In the fourth chapter we seek to find the average delay messages encounter in passing
4 through a network using a collision-free protocol. This causes us to define a new channel

access protocol, called spatial-TDMA, for multi-hop environments in which nodes are assumed
to be stationary. This corresponds to solving the interference problem with full global informa-
tion. One advantage of using broadcast radio in such an environment lies in the fact that the
capacity of the links in such a network can be dynamically allocated in an adaptive manner.
Allocating this capacity is a resource sharing problem which we also address in chapter four. In
particular we determine an approximation to the average delay that messages experience in
passing through the nodes of a network using such a protocol. We determine that the delay is
highly dependent upon the total time in a cyclic time frame during which specified nodes in the
network are allowed to transmit, and also upon the ordering of such transmissions. This leads
us to define a capacity assignment problem which attempts to minimize the average message
delay for all messages in the network over all possible orderings and lengths of transmission
periods. Although this problem is mathematically intractable, we do find such optimal operat-
ing points for networks in which the ordering of the intervals has been randomly assigned.

r This is a upper bound on the delay that would be obtained for the best possible ordering.
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In the fifth chapter we seek to determine optimal use of the information that nodes

obtain when they sense the channel in their local environments. This causes us to define a new

class of protocols called rude-CSMA which use this information. We formulate the protocol.

derive equations for its performance, and optimize it over different classes of networks. This

investigation corresponds to solving the interference problem using only local information. In
these protocols we assume that nodes, after sensing the channel, can estimate the number of
transmitting nodes that are within their hearing distance. Intuitively, if this number is large,
there is high probability, if the sensing node transmits a packet, that its message would undergo

a collision. If however, there was only one transmitter, say, in its local neighborhood, then.
there exists the possibility that the sensing node would be sending a packet to a radio unit that
was outside the transmitting node's range, and it would be successfully received. Thus

transmitting with a non-zero rate might increase the number of simultaneous successful
transmissions in the network. This motivates the protocol and explains why we have called it
"rude-CSMA", since nodes sometimes transmit even when they sense the channel busy. If we

define the state S - (sI(S), s2(S), , se(S) ) of the system to be a binary vector in which
s,(S)-1 if node i is transmitting a packet and equal to 0 otherwise, then the rate at which node
i presents packets to the channel (assuming that s,(S)-O) in state S is given by:

y b(S) yV (S)
r0(S) - 0 Y

where V0 is the arrival rate of messages to each node of the network, No (S) is the number of

neighboring nodes of node i that are not transmitting, N, (S) is the number of transmitting
neighboring nodes, and x and y are parameters of the protocol. On the other hand if node i is
a transmitter, s(S)-I, then the rate at which its transmission stops is given by:

ri (S) -

which corresponds to exponential packet lengths. One sees that the protocols defined by these
rates have ALOHA (x-1, y-l) and CSMA (x-1, y-O) as special cases and thus should have
an optimal performance as good as either of them. It can be shown that the steady state proba-

bility of state S is given by:

S(S) - C ps x (sy )

where C is a normalization constant, M(S) is the number of transmitters, B(S) is the number
of neighboring nodes that are not transmitters and BI(S) are the number of neighboring
transmitters for state S. Using these equations we analyze specific networks to determine the

parameter values (x, y) that achieve maximal throughput. In particular, we find that over all
random topologies that we studied, y-O had maximal performance and thus nodes should
engage in a type of CSMA protocol (never transmit when the channel is sensed busy). For lat-
tice type networks we found that, for certain input values, throughput was increased if nodes
after sensing a busy channel, transmit with a non-zero rate (i.e. y;60). It thus turns out that.
in real networks (which would have topologies more random-like), the binary information
obtained from sensing the channel is sufficient to determine if one should transmit or not.

13
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We have adopted what we hope will be a clear writing style in this dissertation.
Chapters have been made as self-sufficient as possible to allow the reader to selectively read
portions they find most interesting without the necessity of reading all the previous material.
This of course, implies that there is a certain amount of redundancy and repeated definitions in
the text, but it is hoped that these repetitions will serve to clarify the material rather than to
bore the reader. A list of symbols and notations which are used throughout the dissertation is
included in the beginning pages and all notations used in a chapter are defined in the introduc-
tory sections of the chapter.

1.6 Applications of Packet Radio Networks

The main advantages of packet radio networks over conventional networks is that they
are not dependent on fixed topologies. are easy to establish, and can operate unattended. These
characteristics allow terminals to be mobile and to be attached to a diversity of computing and
sensor devices. Many interesting new applications of this technology can be found in [Lick78al.
In one such application, sensors are carried by elderly persons which monitor their physical
orientation while walking. If the sensor detects a horizontal position (implying they fell down)
it notifies the client's home computer which telephones a hospital with a preprogrammed mes-
sage and the location (as determined by the local radio network) of the client. When medics
arrive, they can solicit the help of a physician located, miles away, by attaching sensors to the
client's body that transmit data the doctor can use to control and monitor the treatment given.
Any number of other applications using unattended sensors that communicate with computers
to control and monitor specific activities such as alarm systems for security, fire, and gas or
water leakage, are natural applications of such networks.

The fact that it is not necessary to use wires to connect devices together allows easier
implementation of communication systems. One can imagine a hierarchical network in which
the lowest level is a local community radio network that transmits packets to a central subnet-
work station. These packets would then be relayed along intra-city high bandwidth lines to a
main switching station that connects with a long haul inter-state network having links to inter-
national satellite facilities. Since radio is used on the local level, there is no necessity ior erect-
ing poles and stringing cable directly to subscriber's equipment. Besides beautifying the
landscape of our cities, this also has the advantage that providing service to a new subscriber is
as easy as outfitting them with proper radio equipment. Both voice and data would pass digi-
tally over this network thus supporting a mobile telephone system and providing access to a
wealth of data and computing resources resident on the net.

14



Since packet radios will be inexpensive and about the size of a pocket calculator
[Kahn78al, we would imagine their use will be widespread and thus revolutionize the manner

* in which the society negotiates its information transactions. No longer will we have to physi-
* . cally wait in lines to negotiate our banking business, for instance, when such transactions could

be performed from the convenience of our homes (or even our cars!) and some information in
the present form of newspapers, magazines, books, stereo records, photographs and video could
be sent digitally over the network, stored on disk, and recalled at our convenience.

In emergency situations, say as in an earthquake disaster, the flexible topology of
packet radio networks is necessary to establish communications, since in such situations land
based lines will likely be destroyed. The immediate adaptation of such networks to changing
topologies is critical to the performance of such an operation in which new rescue teams con-
tinually arrive with more packet radio units; and the fact thai it is easy to change the responsi-
bilities of a radio unit from a regular packet radio unit to an unattended repeater, allows a
multi-hop network to be configured rapidly thus increasing the useful range of these networks.

15
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CHAPTER 2
OPTIMAL THROUGHPUT FOR SLOTTED-ALOHA IN A MOBILE NETWORK

In this chapter we derive the throughput equation for a mobile packet radio network in
which nodes use slotted-ALOHA to access the channel. We then optimize this equation over
certain parameter values to find the optimal throughput for these networks. This corresponds
to solving the interference problem using a minimal amount of information.

2.1 Introduction

In this chapter we analyze a basic trade-off in multi-hop radio networks which concerns
the throughput of the network. Recall that throughput is defined to be the number of packets
reaching their final destinations per unit time. To illustrate the problem discussed in this
chapter we will consider a network under two different cases. First suppose that all nodes of
the network transmit with a very small power. This implies that packets must be relayed over
several hops before reaching their final destination and thus tends to decrease the throughput of
the network. We cannot however conclude that increasing the range of the tradismitters of the
network will increase the throughput of the network. For suppose nodes do have an increased
range of transmissions. Then messages must be relayed fewer times, but at each hop there is a
higher probability that the transmission is not successfully received due to the increased

amount of interference caused by each transmission. This then increases the number of colli-
sions in the network and tends to decrease the throughput.

The tradeoff can thus be summarized as: increasing the power at which a node
* transmits decreases the number of hops needed to reach the final destination but causes more
-' interference at each hop, while decreasing the power has the corresponding opposite effects.

Finding the operating point that maximizes the throughput for a random network is the prob-
lem that is discussed in this chapter and corresponds to solving the interference problem in

2 which nodes use a minimal set of information (namely the density of terminals on the plane).

16



22 The Models

Throughout this chapter we will make the following assumptions about the network:

a. Topology - We assume that packet radios are distributed according to a Poisson
point process on the plane with a mean density of A, packet radio units (also called
terminals) per unit area. We are interested in finding the throughput for an area
containing a large number, ni, of packet radios and will ignore edge effects. This
topology represents an instantaneous snapshot of a large mobile packet radio net-
work.

b. Stations - We assume that each packet radio transmits with fixed power, and that
all n stations (i.e. terminals) in the network transmit with the same power on the
same frequency band. Receivers are assumed to be able to receive a signal from
another station if that station is within a radius R of the transmitter, and under
certain circumstances, can successfully capture one of several simultaneous
transmissions within its hearing range. Let us refine the definition of capture
given in the introduction by considering a receiver a which is within range of two
transmitters t1 and t2 and assuming that tj has a packet destined for a. Let P, and
P2 be the powers of the signals received by a, and r, and r2 be the distances
between a and the two transmitters. Whenever both tj and t,) transmit their pack-
ets simultaneously, their signals interfere with each other. In the absence of cap-
ture, station tj will not be received correctly. With capture however, station a can
successfully receive t1's transmission if P1 /P2 > 0-1 (0 < 3 1), where '3 is
called the capture-ratio. Assuming omni-directional antennas on the plane and
equal transmitting power for all stations, this ratio of powers can be converted into
a ratio of distances since the power of a received signal decreases as the inverse
square of the distance. Thus, using this distance measure, a will capture tj if
r2/ r, > P-112. From Figure 2.1 we see that t1 will be successful if t, lies outside

-* the circle of radius r,61/ called the capture radius. Observe that 63 0 implies
that simultaneous transmission will always cause a collision (non-capture), and
1-I1 implies tj will be received if it is simply closer to a than t2 (perfect-capture).

Well designed FM receivers have a capture ratio approximately equal to 0.7

[Robe72bJ. Although the appearance of the exponent (-1/2) of /3 in the above
equation appears awkward, this selection simplifies later equations. The last
assumption we make about the stations is that each radio is always busy, and thus
we study the heavy traffic case.

17



FIGURE 2. 1.
Definition of Capture.

C. Channel Access Method - We assume that the time axis is slotted and that the
probability a station will transmit a packet on the channel in any given slot is p.

d. Traffic Matrix - Since nodes are Poissonly distributed on the plane with mean
density X, and since any station can send and receive packets within a radius R.
every station has on the average N - XwR2 neighbors ( terminals within its hear-
ing and transmitting range). We assume the global traffic matrix for all the n
nodes in the network is uniform, and thus the probability of sending to any partic-
ular node in the network is I/ n.

e. Routing - We choose to study the case where packets destined towards a particu-
lar node F in the network are routed with equal probability towards one immediate
neighboring node that lies in the general direction of F For example in Figure 2.3
there are k terminals within transmitting range of t that are closer to F than to t.
Transmitter t will pick one terminal from these k neighbors with probability 111k.
Suppose t transmits to node i. We call the difference of the distances betweenr
and F, and i and F, the forward progress of the transmitted message.

18



Let us justify the random routing assumption by comparing it to an optimal routing

model. In such a routing policy packets are assumed to be relayed to a neighboring terminal

that is closest (furthest along the path) to that packet's final destination. Such an optimal rout-

ing policy is not realizable for a mobile packet radio network since it requires the exact location

of all terminals (which are assumed to be moving) as well as that of the final destination, and

,* would provide an upper bound for network performance. This upper bound can be easily calcu-

, lated in networks without capture because the probability of being successfully received is %
independent of the distance between the transmitter and receiver. In the capture environment

however, nodes closer to the transmitter have a greater probability of receiving a transmitted

signal than those further away. This non-uniformity makes the calculaton of the distance

covered in one transmission for an optimal routing policy difficult.

. 2a, a

F

Ir k

-9k

FIGURE 2.2.
The Routing Assumption.

To be specific, suppose a transmitter t has a message to send to a particular final node F (Figure
2.2). Suppose t has k neighbors lying in the half circle of his transmission radius, towards F.

" and that their distances from t are (r1 , r 2.  rk). Let (:i, : ...... :,) be the vector of pro-

jected distances towards F, hence if t transmits to node i at r_ the progress towards F will be :..
Let P(r,) be the probability that node i successfully receives t's transmission. A locally optimal
routing algorithm for this system is defined as one that sends all packets tow. to the node

j that has the maximum value of :, P(r). To determine this value, one must calculate the

joint probability for (ri, r 2.  rk ) and (:1. :: ... :4) for all k. to determine the density for
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the maximum projected distance. This would then be unconditioned on k to determine the
density for the maximal forward progress. In the non-capture environment P(r,) = P(r,) for

all i and ], and thus maximizing :,P(r,) implies picking the maximum :,. Over all sets of k
nodes, the probability that the maximum projected distance is equal to a certain value, say :, is
seen to be the probability that there are no terminals in the half circle from t that are closer to
F (the shaded region A in Figure 2.3).

r.r

FIGURE 2.3.
Probability of Successful Reception.

Since terminals are Poissonly distributed on the plane, this probability equals e- 11. In the cap-
ture environment however, P(r,) - P(r,) only if r, - r,, and the above calculation is no longer
valid. The optimal routing algorithm now will no longer always pick the node with the max-
imum :,, because the product :,P(r,) may not be maximal. To avoid these computational
complexities and in endeavoring to create a practical bound for packet radio networks, we have
chosen to assume a random routing policy (assumption e. above). Random policies have been
proposed for networks of this kind [Klei64a. Liu80a] and our calculations will be a lower bound
on the performance for algorithms that always send packets in the direction of their final
destination.

20
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With this random routing assumption we will analyze two models that differ in the way
capture is defined in relation to the maximum transmission distance R. Continuing with the

scenario of the previous section, it is certainly true that in the presence of multiple simultane-
ous transmissions receiver a can only successfully receive packets from its closest transmitting

neighbor. Thus we can say that a receives from tj if tj is a's nearest transmitter, and there are
no other transmitters within the capture radius. Let us therefore suppose in our scenario that t"

is a's closest transmitter and is located a distance r away. Our two models differ in the way
they define the capture radius in relation to the maximum transmitting distance R. Suppose
r,6" 2 > R, or in words, that the capture radius is greater than a's maximum hearing distance.

Certainly a transmitter located further than R, say at r' such that R < r' <r 3-  will have no

effect on a's reception since his signal will be too weak to be received. Thus in Model 1 we
define the capture radius to be equal to the minimum of r/3- 1 2 and R. The area that must
contain no other transmitters for a to successfully receive e1's transmission, the clean area, for
Model 1 is the annulus of inner radius equal to r and outer radius equal to the minimum of
r8 -3 112 and R. This definition for the capture radius for Model I however gives weak signals

coming from a transmitter located at a distance slightly less than R, say at R-E, a greater pro-
bability of being successfully received than a transmitter with a smaller value of r, since the
clean area, the annulus of inner radius R-e and width e, is infinitesimal. In practice however.
if there was a transmitter at a distance slightly greater than R, say at R + E, it would di-upt
reception since the ratio of the powers of the two transmitters would be close to I even though
the second transmitter's signal was very weak. Model 2 attempts to account for this

discrepancy by defining the clean area to be rf3- i 2 regardless of the relationship between rg3- 12

and R. We observe since the clean area for perfect capture (3 = 1) is identical in both models,
we would expect our equations to the same for this case.

We must comment that both models make two simplifying assumptions about the cap-
ture phenomenon. In actual practice, one particular transmitter, say t1 , will be captured by a
certain receiver if the ratio of its received power, to the sum of the received powers of all other
signals simultaneously heard by the receiver, is greater than the specified capture ratio. Letting

P,, be the receiver power for the i'h transmitter, k be the number of transmitters the receiver

hears, and assuming that the powers are sorted into decreasing order

(P, > P,, > ... > P,). we have that tj is captured if P,/. P, > 3-'. In our models we
-2

approximate the sum of all the powers of terminals r2 through tk by the p-wer of the next
strongest signal t 2. This assumption however, is not crucial as we will see later, since the
optimal choice of system parameters tends to separate transmitting stations so that on the aver-
age if a receiver hears more than one terminal transmitting, with high probability it hears
exactly two transmitters and therefore the above sum and P., are identical. The second simpli-

fying assumption we make is that capture is a deterministic phenomenon such that if the ratio
of the received powers is greater than 3 then the signal is captured with probability 1. In
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actuality however, capture is probabilistic and has a density that is a function of the ratio of the
% received powers and of the capture parameter. The results of our deterministic model can be

applied to this more realistic model however, without too much error, by using a value of #3 so
k

that if P,111 P,' > 6- then the actual probability of being captured is greater than some
'-2

specified confidence probability (say 0.95).

2.3 Analysis of Model 1

2.3.1 Expected Number of Successful Receptions

* We first calculate the probability of successfu! reception for a randomly selected termi-
nal in the network. Let us assume that terminal a captures the transmission of its closest

* transmitting neighbor t. Conditioned on this, a will successfully receive tCs packet if the packet
was addressed to a and if a did not transmit in the current slot. This occurs with probability

P f E, I no interference 0 p) 0N

where E, is the event of a successful reception.
We can see this by first defining the following events

E,- The event that t sends to a.

Ed - The event that tsends in the direction of a.

NO~) - The probability that there are i other terminals besides a in the half circle of radius R
from t.

In Figure 2.2 for example their are k terminals in the half circle from t towards F and
* transmitter t is sending in the direction of all the labeled terminals in the figure.
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We know that

PIE,] - P[E,Ed] P[Edl] + P[EIE 1 P[EJ]

but P[E, IEj -0 since we do not allow packets to go away from their destination. Since t's
destination is uniformly distributed over the plane, a randomly chosen terminal a within a
radius R of tis in the direction of F is equal to the probability that a lies in the half circle of
radius R directed from t to F Since a is equally likely to be in either half we have P[Ed] = 1/2.

Calculating the remaining term, PIE, I Ed]. we have

PIE, Ed] = PiE,IEd,N(I)] PiN(i)lEd

Each of these terms is known, for P[N(i)IEd] =P[N(i)] is Poisson with parameter k7rR 2/2
and PiE, Ed, N(i)] - 1/0 + 1), since if there are i other terminals besides a. making a total of
i + I terminals, t will select one of them with equal probability. Recalling that the average

number of neighbors is N - hMrR 2. we have:

PiE, jEd] - 1 e-v 2 (N/2)' - 2 (1 e.v2)

, I i! N

Combining with the previous calculations we obtain:

•[E~ I P(EE ) I]- 01-e-"V'2)

r 2  d N

Knowing that the packet was addressed to a in the absence of interference we know that a will
successfully receive t's packet if a does not transmit, thus giving the (1 - p) term and estab-

*lishing the above expression.

• We must now calculate the probability that there is no interfering traffic. We do this by
first conditioning on the distance between a and r to be r (r <R), and then analyzing two cases:

Case 1. 8-/2r<R (Figure 2.4a)

In this case a will receive the packet if there are no other transmitters in
(rrr-62), the clean area. This area is equal to fr(/-2r)2-frr - ifrrr(l//3-1)
which contains no transmitters with probability e-  ' "d- .

Case 2. f3"-12 r > R (Figure 2.4b)

The area that must now be clean is seen to be (7rR 2 - ,rr2) which occurs with pro-

bability e
-A D

"  R2 -
_,2.

JJ
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* FIGURE 2.4a.
Capture: Case 1.

-I

FIGURE 2.4b.
Capture: Case 2.

The density for the distance between a randomly selected terminal and its closest
transmitting neighbor, can be easily calculated. Letting X be the random variable for this dis-
tance, and knowing that busy terminals are Poissonly distributed on the plane with parameter
A p we have

Pt(X r I - P~no busy terminal in (O-r)J e -
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Hence letting f(r) be the density for X

f (r) - P[ < rJ -2 7r P pr eA'-7 2

Using this in the above, after unconditioning we obtain:

Q (- p) (I - e- 2) ( e- eApwr 2(1/0-1) 27rxpre-Pr' dr

N+ f

+ f e- 2 ) 2i7rkpre-A,7r drf

Performing the integration we have:

P[E,]-(1-p)(I - e 2 )e -evP) + (1 -) Np)V v/J

For future equations let Y A,60( - e.vP) + (1 - A3) Npe-vP.

We will discuss two special cases to see that they are intuitively plausible.

Case 1. 83 - 0 the non-capture case for which

PIES) - (1 - p)(l - e"') p e-Vo

Intuitive explanation - For a to receive, it must not transmit and this occurs with proba-
bility (I - p). Receiver a also cannot be isolated from other nodes in the network. In
particular one half circle of radius R must contain at least one other terminal and this
occurs with probability (I-e--v'2). Out of the neighbors in this region only I can
transmit (occurring with probability NpevP) and on the average that transmitter is

surrounded by N neighbors and thus transmits to receiver a with ')robability 1/N.
Combining all the above probabilities we obtain the same expression as above.

Case 2. /3 - I the perfect capture case where

PIEP) - (1 - p)Q - e- ) -VP)

NN

RBIV

Intuitive explanation -Again a must be silent which occurs with probability 1 -

and must not be isolated from nodes in one half circle of radius R which occurs with

-oe

p= orftrobeqaislt Y -e '-.1Thee - ) mus be at l3eas -n rasitngsainnisnegbr

:-. ilscessfullysrecivle by a. thpoabiliy itrtrnsitsa packie.oao heaeaei
•I/N.
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To calculate the expected number of successes in the network (denoted by E) we
merely have to multiply the previous probability by the number of nodes n in the network to
obtain:

E-n PIE] - (E (1- p)(l - e- Y (2.1)

We can check this equation against the well know single-hop slotted-ALOHA results for
the infinite population model with Poisson traffic statistics. We do this by setting, in equation
(2.1) n-N and (-0, and then performing two limit operations. By letting p- 0 as n--o in
such a way as to preserve the product G - np to be a constant, we obtain Poisson traffic
characteristics with parameter G. We then obtain

lim - , (1 - p) (-e - N/2 ) N p e- vP - G e-G

p--o
G-np-coy onr

This reaches its maximum at G-I giving the familiar maximum throughput for the slotted-
ALOHA channel [Abra77a] of l/e.

It can be seen that the function E is increasing in 3, the capture-parameter, by writing
E as a linear function of 3:

E - H(P3) - K (p3 (I - - P (Q - Np)) + IV p e- -vP)

where K - - (1 - p)(l - e This describes a straight line with slope

m- I - e-P ( - Np). But this slope is always positive since m <0 implies eVP <I-Np
which is seen to be false by expanding evP in a Maclaurin series. We conclude that increasing
the receiver's ability to capture signals increases the expected number of successes in the net-
work.

Recall that Y, as defined above, is the probability that there is no interfering traffic to
a's successful reception. We see that Y-3(I - eNP) + (1 - P)Npe -v can be viewed as a
convex combination of P since 0 K,3 < 1. We cannot resist interpreting 3 then as a probability
(mathematicians beware !) to see if this interpretation provides some intuitive insight into our
problem. If we interpret (3 as the probability of capturing signals, then for the non-capture
case, (-0, we have that the probability that a has no interference is given by:

Y3-o" Npe - "

This however, is the probability that there is exactly one transmitter within a's local environ-
ment which is a necessary condition for non-interference with non-capture. Likewise when
3-1, the perfect-capture case, we have:

Y,3_1 - I - e- vP
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which is the probability that there exists at least one transmitter within a's local environment.
This of course, with perfect-capture, is a necessary condition for successful reception since
non-interference is certain (a always captures its nearest transmitter). We thus have the intui-
tively pleasing result that we can view je as being the probability of capturing signals.

We now seek to determine the maximum number of expected successes in the net-
work. Certainly this number must be less than n/2 since every successful receiver is associated
with exactly one successful transmitter. It is easy to verify this analytically. Numerically calcu-
lating the maximum of E for various values of )9 demonstrates that the maximum expected
number of terminals in the network that could engage in successful communication at any
given slot is about 21% for perfect capture and about 14% for the non-capture environment.
The exact values are reported in Table 2. 1. We note here that the values of N and p that max-
imize the probability of success, do not also maximize the throughput of the network (see
Table 2.2). This is a result of the dependency of the probability of successful transmission and
the maximum transmission range R as seen in the equation N- XirR , and will be discussed
in greater length in the next section. Observe that the results of Table 2.1 would only be appli-%
cable to networks in which all packets went exactly one-hop to reach their final destination.

* 3 N p P[E1

-60 7 -.9%90 .29377 .07280
0.1 2.0594 .29974 .07557
0.2 2.1365 .30594 .07846
0.3 2.2195 .31239 .08154
0.4 2.3085 .3 1963 .08484
0.5 2.3036 .32585 .08835
0.6 2.5044 .33276 .09210
0.7 2.6102 .33970 .09609
0.8 2.7201 .34659 .10030
0.9 2.8326 .35331 .10477
1.0 2.9462 .35977 .10946

TABLE 2.1
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2.3.2 Expected Number of Successful Transmissions

Since every successful packet in the network has exactly one receiver-transmitter pair
associated with it, the number of successful receivers in the network is equal to the number of
successful transmitters. Thus our calculation in this section should yield (2.1) of the last sec-
tion. The approach in this section however, allows us to calculate the density for the distance
covered in a successful transmission, and serves to support our assumption of random routing.
In analyzing an optimal routing algorithm, the spatial information used in determining the next
terminal in the route must also be used in calculating the probability of successfully transmit-
ting a packet to that terminal. Such calculations in [Klei78a] where the authors assumed an
optimal routing policy, were performed separately and produced an inconsistency in their

results. Since a determination of the maximal transmitted distance, say z, implies in their cal-
culation that there are no terminals in area A of Figure 2.3, the calculation of the probability
of success is the probability there are no transmitters within a radius of R of the receiver. This
in Figure 2.3 is equal to e-P v - A) where A' is the intersection of circle C and area A. In
[Klei78a] knowledge that A' contains no transmitters was not used in their calculation of the
probability of successful reception. With this inconsistency the expected number of successful
receivers in the network is not equal to the expected number of successful transmitters. The
two ways we calculate the expected number of successes in the network do however agree and

thus assure us that our assumption of random routing is consistent with both derivations.

To calculate the expected number of successful transmissions in the network over one
slot, we first calculate the probability that a randomly chosen station will successfully transmit a
packet to a neighboring station, and then multiply this probability by the number of stations in
the net, n. Let us define:

X - a random variable denoting the distance between the transmitter and its intended receiver.

E - The event that the randomly chosen terminal transmits a packet in the given slot.

E, - The event that there exists at least 1 other station in the half circle of radius R in the

direction of the intended final destination.

E- The event of successful reception of the transmission by its intended neighboring termi-
nal.
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FIGURE 2.5.
Probability of Successful Transmission.

Since we assume that routing is uniform over all the nodes in the right-hand region of
Figure 2.5 we have:

Pt X < rIE,,E,] - f r2/2 - 2

ifR
2/2 R

Differentiating we obtain:

Pfr 4 X,<r+drIE,,E] - T dr

Our definition of the capture phenomena for Model 1 implies:

P [r 4 X 4r + dr, E, IE,E, - ( (1 - p) e - "r " im R12 dr (2.2)
R 2

The probability of successful transmission, P(ES], is found after unconditioning and integrating:

PfE,] - p (1 - p) (0-e-') - er 1~pmn~1I2 dr

Breaking this integral up into regions IO,RA3" 2I and (R)1",R] we obtain:
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Thus the expected number of successful transmissions is found to be

£- (-) (1 - p) (-e - V/2) y

which is the same as (2.1).

2.3.3 Expected Forward Progress

We are now in a position to derive the density for the distance between transmitter and
receiver for a successful transmission. Referring back to equation (2.2) and using (2.3) we

have.
P:= Pr X r r+ dr, E,]

P[r K, X 4 r+drIE] - (X rdE

p (1 - p)(l - e- ,v/2) 2 r -A4m,nlr(-1/2.R)J dr (2.4)
:"'.---P[ E,] R"

or defining g(r) to be the density for r and - - 2,, we may rewrite equation (2.4) in regions
S Y

to obtain

1 2 r eCxp' 2 'a 0 4 r K, R,6 1 /2

SR2
g(r)- 12 r -APWR 2  Rg3112 (2.5)e.' R 4 r < R

S.R2

It can be easily verified that this integrates to I and thus is a proper density.

Suppose as shown in Figure 2.6, transmitter t is sending a packet to final destination F
through intermediate node a. We wish to calculate the progress of the packet towards its finAl

destination. To simplify the calculation we assume that forward progress will be the same for

any node on the line perpendicular to the direction of the destination, line L in the figure. This

assumption is reasonable if the distance D is much greater than R. Because terminals are ran-

domly distributed on the plane, for a given distance r and a given destination F, the angle 0
will be uniformly distributed over (-r/2,,r/ 2 ). Define Z to be the random variable denoting

the forward distance. We see that for a given r the probability that Z is less than some value z
is the same as the probability of 101 being larger than cos-'(:/r) or letting F(:) be the
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FIGURE 2.6.
Expected Forward Progress.

distribution of Z we have

F(zlr
F~zlr)- 2 cos-'(z/r)O < r<R

Differentiating this with respect to z we derive the conditional density

- 0 0 2 r<z

0 0<r z 4 r < R" r r N -zlP

We can now calculate the expected progress given r
II~~ r

E[Z2r] : z. f (zr) dz f 22.r 2

-, We can uncondition this by using the density of (2.5) to obtain

i r g(r) 2 r2 e
- P 2I'a dr + e-AIR2 r2  (2.6)

I3



The second integral within the brackets is equal to 2 R3 (1 93,/9) e- OIR2 and letting the
3

first integral be denoted by INT, we can write equation (2.6) as

" 4N- T + 4 e (1 - 3'/) (2.7)
s R 2 i 3 s i

In Appendix A it is shown that

2fO d e- 2  (4 k X) 'j!

. t2e d  k (2 j + )!

and thus using this for INTin (2.7) and reducing we finally obtain:
2i: 6- r(8 (4 Np- j!)

-a--eVPR L~'-'(211)!+ 2(I - g3.-g)j (2.8)"': s Np R (2j+l)! 328

-_ (4Np) ij!

For future equations, let Q , (INp)'j_..- (
Np Y=, (2j+l)! 3

2.3.4 Expected Throughput

We can calculate the expected throughput for the network for each slot. For any ran-
domly selected terminal, the expected path length between it and another randomly selected

terminal igiven i as d - 128 . Since .:, as calculated in the previous sec-temnlis ivnin [Kend6al2~ asd I- "

tion is known, the number of hops h a randomly selected packet will take is given by h - d/.
Therefore the average number of messages delivered to their final destinations per slot, the

throughput, is given by -/ - nP[Ej1 ] - -PfEJ /d. Using the previously derived equations

for the quantities above we obtain the final result:

.y(/3,Np,) - -5 (I - p)(l - ev'2 ) p e- vP Q

The increase in the throughput y with the square root of the number of terminals in the net-
work is a result of the spatial reuse of the channel. Observe that the equation obeys our intui-

S' tion for p - 0 or p - 1 when the throughput is zero, and that the (l-ev2) term is the proba-

•- bility that the network is connected over one hop. Once again we can show that the throughput
,o . of the system is an increasing function of 3 since if the function is increasing in a - /3,/1 then

it is also increasing in 3. Thus y is linear in a with slope in - - -which
(2/+1)! 3
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is clearly Positive since the minimum of m is 2/3. Thus as we have seen previously, increasing
the capture- parameter can only increase performance.

2.3.5 Discussion of Results

In all the following graphs and Tables we use normalized throughput
-y'(N,p,3) -y(N,pP)/'Jn hence eliminating the dependency of the size of the network from
our equations. We must note that the square root of n dependency on the throughput of the
network is an important factor that lets us achieve, by reducing the strength of transmitted sig-
nals, throughputs greater than that obtainable by running the network as a one-hop ALOHA
network. For example, in Table 2.2 for 13 - 0.7, we see that vy' - 0.0749282. To determine the
number of terminals needed in the network to achieve throughput greater than Ile we set

-V '> Ile which implies n =z24. Thus in a network with more than 24 terminals, it pays to
voluntarily limit the transmission ranges so that on the average only N-4.99725 other termi-
nals are within hearing range. Figure 2.7 demonstrates graphically the result we saw in the pre-
vious pages that increasing the capture-parameter improves system performance. Here we plot

vas a function of p for a fixed N and various values of 63. In Table 2.2 we have listed the
maximum y' over all possible N and p values for a fixed 83 value. We note again that the y' is
increasing in )9. Observe that the spread of the optimal values of N and p over all 63 values is
not wide. Since these values do not change substantially with 13, the capture- parameter of
packet radios in the network does not need to be known to a high degree of accuracy to deter-
mine the network's N and p values that achieve optimal performance. In Table 2.2 we have
also listed the probability of a successful transmission as well as the expected forward progress
for the same N and p values. By comparing Tables 2.1 and 2.2, we observe that values of N
and p which maximize y' do not also maximize P[Ej. Although it might seem intuitive that

V maximizing the number of successes in the network by picking an optimal transmission range
R and hence by picking N - XnrR 2 would increase the throughput of the system, a little
thought shows that this is not necessarily true. We can see this from Table 2.1 where the N
values that maximize PfEJ are seen to be small, approximately 2.6 for6 13- .7. The network is
in this case divided into many receiver- transmitter pairs in an attempt to take full advantage of
the spatial reuse of the channel and although this increases the probability of successful
transmission, packets in such an environment must pass over many hops before reaching their
final destinations. This tends to decrease the number of packets reaching their final destina-
tions in any one slot, and thus reduces the throughput of the system. This tradeoff' between
the probability of success and the throughput of the system as governed by the number of hops
between source and destination is a fundamental issue of multi-hop systems and occurs in
several guises. For example, we have already shown that increasing g3 will increase y/. This
increase in y' can result from an increased P[Ej, an increased (thus increasing the average

33



0.1

0.098-______

4..0

0.07

~ 005 -0.

004

003-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

p

FIGURE 2.7
Normalized Throughput as a Function of p.

for N -5 and ~3-0.1, 0.7, and 1.0.
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•3 N p Y' PE]

0' 4.33261 7118012 0.0584586 0.05991 0.42441
0.1 4.36181 0.18193 0.0591979 0.06285 0.40834
0.2 4.41670 0.18531 0.0605900 0.06577 0.39687
0.3 4.49194 0.18978 0.0624732 0.06879 0.38797
0.4 4.58656 0.19523 0.0648259 0.07190 0.38094
0.5 4.70160 0.20155 0.0676626 0.07526 0.37541
0.6 4.83818 0.20867 0.0710160 0.07875 0.37120
0.7 4.99725 0.21647 0.0749282 0.08242 0.36823
0.8 5.17892 0.22474 0.0794432 0.08624 0.36649
0.9 5.38063 0.23324 0.0845999 0.09022 0.36601
1.0 5.59807 0.24164 0.0904239 0.09433 0.36682

TABLE 2.2

number of hops a packet takes from source to destination), or a combination of both. We see

in Table 2.2 that as 3 increases from 0 to .9, P[E] increases and 1 decreases. Thus for optimal
throughput packets must travel over more hops but they "hop" more frequently, once again

showing the tradeoff between P[E] and .

In Figure 2.8 we show the relationship of y' as a function of p for fixed N and )3. We

notice that for any N, optimal performance is degraded for small changes of p from its optimal
value, p*, but that as N increases, the curves around this p" become narrow. This variation of

-y' for large N results from the fact that the transmission of any packet radio interferes with a
larger number of other terminals. This increase in the number of collisions increases the sensi-

tivity of the throughput for perturbations of the transmission probability from its optimal value.

We also observe, for distinct values N, and N2, such that N, > N2, there exists a transmission
probability, p" such that for all p, < p* < p2 then 'Y'(N 2,P1 ,3) > y'(N,pj,3) and

-.1 y'(N2 ,p2,3) < y'(Np 2,P3). This can best be seen by looking at Figure 2.8 where we see that

for the two model 1 curves for N-2 and N-S, there exist p ' .45 such that, for all p>p the

N-2 curve dominates (has a greater throughput) the N-5 curve, and the opposite holds for

p>p . Intuitively, we expect that for large p, systems with small N would have better perfor-
mance characteristics since being less densely populated they are inherently more immune to
interference than systems with higher N values. On the other hand for small p, since the time

between transmissions grows larger in the small N case, one would expect that systems with
higher N would have better performance.
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We can unify our discussion of Figure 2.8 by defining the offered load per unit area to
be G - Np. From previous results [Abra73a] for finite population slotted-ALOHA networks,
we know that G - 1 optimizes network throughput. In the multi-hop environment however,
connectivity of the network must be preserved. This consideration, as noted before, manifests
itself in the c - (l-e- v/2) term appearing in the equation for -y. If p is large, G = I implies
that N - /p = 1 which tends to disconnect the network since c .39. Obviously optimal
throughput for this case would have N > 1 and thus G > 1. We would thus expect G = I
only in cases where p is small enough to make N sufficiently large to assure connectivity. We
must however take account of capture in discussing the offered load. In the non-capture
environment we would expect the offered load that maximizes throughput to be less than that
for the capture environment because the probability a transmission suffers a collision is greater
for /3- 0 than for /3 - 1. Thus increasing G = Np has a greater effect in increasing the
number of expected collisions in environments with non-capture than for those with perfect
capture. To check this intuition, we numerically calculated the N value that maximized Y' for
fixed 0 and p and plotted G - Np against p in Figure 2.9. We see that curves for high /3
values dominate those for lesser values, justifying our belief that the offered load that maxim-

izes throughput can be greater for larger /3, and that as p increases so does G, illustrating the
relationship of the connectivity factor c has in sparse environments. We can lend some
mathematical insight into these graphs by defining the effective number of neighbors, N', to
satisfy N - N'/(0 - e-V/2). One then interprets N as the the average number of terminals per
unit area that results when we randomly distribute terminals on the plane with an average den-
sity of N' terminals per unit area, and condition upon having a connected network. The
(1 - e-v'") term is thus seen to be the conditional probability of hop connectivity. Using N'
instead of N in calculating the offered load, G' - p N' = I implies that N' = 1/p and using
this in the above equation that defined N', we would have N =N = l/p(l - e- /2p). To check
this intuition, we used the values obtained in generating the offered load curves of Figure 2.9
for/3 - I where we have seen that for low p values, G = 1. In Table 2.3 we produce the N
and p values that optimize y', as well as their product, the offered load G in the left part of the
Table. In the right we tabulate the hypothesized values using the effective number of neigh-
bors N'. We see that N and N are approximately equal and that the effective number of neigh-
bors, N' is strictly less that N. Comparing G and G' we see that G' is much closer to I
throughout the range of p lending support to our previous intuitive arguments.

In our last plot for this section, Figure 2.10, we graph -y as a function of N for 3 - .7

and various values of p. Observe that for the near optimal N for p = .2, (namely ,V - 5) the
curve is very flat. This implies it is not necessary to determine N to a high degree of accuracy
to achieve near optimal performance.
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N p G -Np N-=N N' G'z N'p

10.07969 0.1 1.0079 10.0678 10.0121 1.0012
6.28435 0.2 1.2568 5.4471 5.9661 1.1932
4.91683 0.3 1.4750 4.1095 4.3614 1.3084
4.14327 0.4 1.6573 3.5038 3.3779 1.3511
3.62592 0.5 1.8129 3.1639 2.6733 1.3366
3.24784 0.6 1.9487 2.9477 2.1259 1.2755
2.95583 0.7 2.0690 2.7986 1.6793 1.1755
2.72158 0.8 2.1772 2.6896 1.3027 1.0421

1 2.52836 0.9 2.2755 2.6067 0.9774 0.8796

TABLE 2.3

2.4 Analysis of Model 2

Recall in Model 2 we assume that any other transmitter within r3 - 2 of a packet radio

receiving a packet from another transmitter a distance r away, will cause a collision on the

channel. We thus do not need to divide the clean area into two regions. We will be brief in
describing the results of this section, since most derivations follow lines similar to those in

model 1.

2.4.1 Expected Number of Successful Receptions

The clean area for a transmitter at a distance of r from the receiver is now r 1 -1/2, and

thus the probability of this area has no other transmitters is e- P' 2 a. we thus have:

piE5I - p (1 - p)(Q - e - 
1

/2) o r eP,, 2/11 dr

Integrating this over [0,R I yields:

P[E (1 -p)( - e 0leVPi0)
N

and hence the number of successful receptions is

E- n 9 (1 - p)(l - e - v"2) (I-e -Vp/S)

% Once again, the expected number of successes in the network is an increasing function in 3.
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This can best be seen by writing E as a function of 13 and showing that the slope is positive.

Let H(p) - K 63(1-e - vp/) where K - n(1 - p)(l - e-V 2) / N. Differentiating H(3) with

respect to /3 yields H'(3) - 1 -e-VP(Np//3 + 1) which must be greater than zero since
evP/" > I + Np//3. It makes no sense to try to obtain the limit of the above expression for

i' the infinite population, Poisson traffic slotted-ALOHA model as we did in model 1. The reason

for this concerns our definition of capture for model 2. If we let /3 go to zero, the capture
radius r 3-;" goes to infinity. Since all our derivations assume terminals to be Poissonly distri-
buted over the plane with parameter X, this infinite capture radius will contain an infinity of ter-
minals which for any p > 0 will have an infinite number of transmitters with probability 1,
thus guaranteeing a certain collision. The equation above rightly indicates that for /3 = 0 the

expected num-tber of successes is zero. In model 1, since the capture radius was limited to a
maximum of R, it did make sense to let 3-0 since the capture radius was bounded. Once
again we can determine analytically that E < n/2 and produce Table 2.4 which contains the
probability of success for various /3 values. Observe that for 3 = 1 these results agree with
those of model 1.

3 N p P[Ej

0.1 1.1295 0.20379 0.02737
0.2 1.5243 0.24990 0.04467
0.3 1.8104 0.27811 0.05794
0.4 2.0412 0.29824 0.A6775
0.5 2.2373 0.31373 0.07789
0.6 2.4089 0.32622 0.08578
0.7 2.5621 0.33660 0.09272
0.8 2.7011 0.34543 0.09889
0.9 2.8284 0.35307 0.10443

1 1.0 2.9462 0.35977 0.10946

TABLE 2.4

2.4.2 Expected Forward Progress

We first calculate the density for the distance between a successful transmitter and its
receiver. Using the same definitions as in the previous section, we have

g(r) - o (I - p)(I - e- wI) 2r 1, 3
P[EI R 2

defining I p (I-p)(I - we can write g(r) as
s P[Ej
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1 2 r -Ap~r 2'

g(r) 1 2 r e_-P~r 21"

We thus calculate the expected forward progress for each transmission to be

E[Z] -
-

4 2 kr2s: [ i R 2 f r2 e-kr dr

where k - Xirp/l. Using the result from Appendix A to expand the integral and then simpli-
fying, we finally obtain

'.'. - = ~ ~~~2 R e v / f.(N/)i J
- e - (2j(4Np+g) 1 ) (2.9)

2.4.3 Expected Throughput

Using the previous results, we can now write

= ±----- /3 (1 - p)(l - e- 2) e -'vP /0 (4Np//)'- (2.10)64I (23)Tj+l)! (210

Again this is an increasing function of /3, has the square root dependency on the number of
nodes in the network, and explicitly accounts for p -0., p = I cases and network connectivity.

2.4.4 Discussion of Results

To compare the performance of the two models we produced the same Tables and
graphs for Model 2 as we did for Model 1. Earlier we observed that the two models should be
identical for 6 - I cince the clean area in both models for this case are identical. Algebraic
comparison between similar formulas from both models shows that they are equal for /3 = 1
and the results in this section show that as /3 grows larger, the results of the two models are
approximately equal. We therefore restrict our discussion of the curves and Tables in this sec-
tion to relevant differences between the two models.
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/3 N pP[EJ

0.1 3.02345 0.06747 0.0136244 0.02092 0.33920
0.2 3.42712 0.10981 0.0254929 0.03610 0.34538
0.3 3.77498 0.14025 0.0360910 0.04805 0.35002
0.4 4.08648 0.16375 0.0457039 0.05787 0.35371
0.5 4.37335 0.18264 0.0545213 0.06616 0.35676
0.6 4.64158 0.19828 0.0626785 0.07330 0.35936

*0.7 4.89561 0.21153 0.0702766 0.07953 0.36159
0.8 5.13830 0.22293 0.0773940 0.08503 0.36355
0.9 5.37173 0.23289 0.0840929 0.08993 0.36528
1.0 5.59807 0.24164 0.0904239 0.09433 0.36682

TABLE 2.5

We observe in Table'2.5 that for model 2 there is a wider spread for optimum N and p
values for the range of /3 values. This is due to the larger capture radius for small /S. One
curious difference between this and Table 2.2 is that here as 63 increases so does Zwhereas in
model 1 we observed a decrease in the 1 values. The increase for model 2 can be explained by
the fact that for low values of /3, small values of r, the distance between transmitter and
receiver, have higher probability than greater r values because the capture radius for these
values is large. As /3 increases, the capture radius for a fixed r, decreases in model 2 and thus
larger r values are more heavily weighted and thus increase F. This explains the increase inF
for model 2. In model I however, the capture radius was bounded to be less than R. Thus the
clean area is small for terminals that lie close to R and this increases the probability that the
projected distance will be large. This is the reason why the throughput for model 1 is always
larger than that for model 2.

In Figure 2.7 we plot y as a function of p for N - S and various A3 values. Once again
we see the dominance of the higher /3 curves. We can also observe that curves for model I
dominate those for model 2. Comparison of the curves for the two models on this plot shows
the dominance of throughput values of model I over those of model 2. This dominance is a
result that the probability of collision is much larger in the second model for any value of N

4 and p and hence decreases the expected throughput of the system. Figure 2.9 shows again the
fluctuations of the offered load for increasing p values and we note that the curves for /3=0.7
is almost identical to the same curve for model 1. Figure 2.10 shows the flatness of throughput
curves for fixed /3 and p, over values of N.

7...
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2.5 Conclusions

In this chapter we have analyzed two models of capture in a random planar network
where slotted-ALOHA was used to broadcast packets on the channel. The results of the two
models are similar for capture-ratios achievable on good FM receivers and thus either could be

used to analyze networks of this kind. Since increasing the capture parameter increases the
throughput of the network we can conclude that capture is a beneficial phenomenon and
throughout the following chapters all of our network models will assume that radios can capture
signals. The tradeoff between the probability of a successful transmission and the expected
number of hops taken by a packet in the network has been delineated, and we have seen that
even in ideal conditions with perfect capture and one-hop messages. no more than 21%1 of the
nodes in the network on the average, are engaged in productive communications in each slot.
The square root of n dependency on the throughput has been shown to substantially increase
the throughput of the network over conventional one-hop ALOHA networks when the number
of nodes in the network is sufficiently large. The critical parameter to network optimization has
been shown to be the value of p, the probability of transmitting in any given slot and we have
seen that an offered load of G==1 optimizes network performance.

In the following chapter we eliminate the slotted-ALOHA assumption from this model
and address a more basic question. In that chapter we seek to determine the throughput of the
best protocol in the mobile multi-hop environment. We will derive a tight upper bound for the
performance of an optimal protocol in this environment and then use that as a standard to
determine how well slotted-ALOHA performs in comparison to this approximation. Some of
the observations we have made in this chapter, we will see, generalize to this optimal protocol.
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CHAPTER 3
AN UPPER BOUND FOR THROUGHPUT FOR ALL PROTOCOLS IN A MOBILE NETWORK

From Chapter 2 we know how well slotted-ALOHA performs in a multi-hop mobile
packet radio network. In this chapter we remove the slotted-ALOHA assumption from the net-
work model and determine an upper bound on the best performance for any protocol in a
mobile multi-hop network.

3.1 Introduction

In the previous chapter we analyzed a packet radio network consisting of randomly dis-
tributed nodes on the plane and determined optimal range and transmission probabilities for the
slotted-ALOHA protocol. One of the parameters of the system, N, the average number of
neighboring nodes, contained the range factor (since N-xirR2, where A was the density of
nodes on the plane and R was the fixed range of transmission) and was varied to maximize the
throughput of the network. In this chapter we assume we are given a connected, random, net-
work with a fixed N (it is not a parameter that can vary) and seek to determine, under these
assumptions. the maximum number of simultaneous transmissions in the network that can be
successful. This number, divided by the number of nodes in the network, will give the max-
imum fraction of successful transmissions that are possible in networks of this type and will be
an upper bound for any random access protocol. This can be used then as a standard to evaluate
the performance of other protocols. In Chapter 4 we will refine the definition of an optimal

* protocol of this type and will derive its delay characteristics.

3.2 Model and Analysis

We will assume that nodes of a packet radio network are distributed on the plane
according to a Poisson point process with a mean density of x radio units per unit area. With
no loss of generality we will assume that radios transmit with a range of one unit (R-0). The
average number of neighbors they have, N. therefore, is given by ;V - Air. From any given

* node, a, another node, b, is said to be i-hops away if there exists a path from a to b that con-
tains i-l other nodes and no other path exists between a and b that contains fewer nodes. In
our derivation we will focus on a section of the network containing m nodes, and thus will be
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concerned with a portion of the network of radius R0 . where n - A R. Our final results are

independent of n. We will assume the network formed by these n nodes is connected. We

should mention here that our network model, as in Chapter 2, is that of a mobile packet radio

network (thus the random distribution of nodes on the plane). In such networks it is

extremely difficult for nodes to ascertain the locations of other nodes in the network, and, in

particular, nodes do not know the direction of the recipients of their transmitted packets. Our

results here are applicable only to protocols that do not utilize information concerning the loca-

tion or direction of their neighboring nodes.

To motivate how we propose to calculate our upper bound suppose a node, a, is

transmitting a packet to one of its neighbors. Let Si be the set of nodes that are i-hops away

from a, and define a k-order independent set to be a set of nodes that are all mutually k or more

hops away from each other. A maximal k-order independent set is a k-order independent set to
which no other node of the network can be added. It is clear that if all nodes of a maximal 3-

order independent set transmit, and these are the only transmitting nodes in the network, all of

their transmissions will be successfully received, where by this we mean that nodes in the net-

work that are possible recipients of any of these messages, hear exactly one transmitter.

4° ,

'..o

FIGURE 3.1
A maximal 3-order independent set.

An example of such a set is shown in figure 3.1. In this figure, nodes of the 3-order indepen-

dent set are indicated by the larger circles. We can easily show the following property of maxi-

mal 3-order independent sets:
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Lemma: For any maximal 3-order independent set M, no node not in the set can transmit
without causing interference with a transmission of at least one node in M.

Proof: Suppose a was such a node. Using the previous definitions, it is clear that Si n M - 0
(where 0 is the null set) otherwise a would be interfering with its own reception from nodes in

M. If S2 n M 0 o then this implies there is a node that simultaneously receives signals from
a and also from another node in M. Thus S 2 n M - o, but this implies that M is not maxi-
mal since a is at least 3 or more hops away from every node in M.

We should observe that this lemma is also true for maximal k-order independent sets
where k-4,5, and thus we cannot immediately conclude that a maximal 3-order independent

set corresponds to the greatest number of transmissions in the network that are guaranteed to
cause no collisions. Intuitively, however, to achieve maximal throughput we would want
transmitters to be as close to each other as possible, without having collisions detract from the

" • throughput of the channel. To make this more precise, let Sk be the set of all maximal k-order
independent sets, and let Lk be the cardinality of the largest set in Sk (we are assuming here a
finite but arbitrarily large graph). Then, since a k+l-order independent set is also a k-order

independent set, we have that Lk > Lk+l. Thus, since collisions occur for k - 1, 2. we can con-
clude that the largest number of successful transmissions, without allowing collisions, is given

by L3.

Since nodes in this scenario that are allowed to transmit are mutually at least three hops
away from each other and at best exactly three hops, in the ideal case we can imagine the plane
being tessellated with equilateral triangles having sides equal to the average distance between
nodes three hops away. This tessellation is motivated in figure 3.2 where we have connected
the nodes of the maximal 3-order set of figure 3.1 (not all such configurations will result in a

hexagonal shaped figure). For such a tessellation each vertex corresponds to a transmitting
node of the network. The number of such triangles, for a given section of the network, will

correspond to twice the number of vertices. This can be seen in figure 3.3 where we have
mapped each vertex to the triangle lying directly above it (shown by the arrows in the figure).
The shaded triangles have no corresponding vertices and can then be seen to be equal in
number to those that are mapped to vertices. If we let A be the average distance between
nodes three hops away, then the area of each triangle is given by ,j3 X2/4. Letting T be the

number of triangles in network under consideration whose total area equals 7rR, we can write:

T - ir R 0/WV'X/ 4)
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FIGURE 3.2
Tessellation of Figure 3.1.

FIGURE 3.3
Mapping of vertices to triangles.

The fraction f of successful transmissions then can be written as:

f -T/2n -2

In Appendix B it is shown that X -2 and thus we have (using the fact that N X 7):

fV)-.9068/NV (3.1)
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This then represents the fraction of successful transmissions that occur in a network
using a protocol that schedules transmissions in a manner that at all times a maximum number
of nodes in the network transmit and there is no possibility for collisions. To check the intui-
tion that lead to this equation we generated random planar connected graphs with different
mean densities. These graphs had from 50 to 90 nodes. Using these graphs we found the size
of the maximal 3-order independent set. The fraction of these nodes was then calculated. In
Figure 3.4 we have plotted f (N) as well as these generated values and we see a close match.

1.0

0.8

0.8-

0VALUES FROM GENERATED POINTS

0.4

0.2-

0C1. I I I I I
1 3 5 7 9 11

N

FIGURE 3.4
Comparing f (N) with Generated Data.

The data that lies above the f(N) curve is a result of the edge-effects obtained from generating
finite graphs. In such graphs, nodes at the edge of the graph are more likely to belong to maxi-
Mal independent sets since they have neighbors only on one side. This tends to increase the
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size of the maximal 3-order independent sets.

It is interesting to graphically see what K=2 means in terms of transmission areas.

FIGURE 3.5
Xin terms of transmission areas.

We see in figure 3.5 that this average third hop distance implies that the plane is covered with
unit circles from transmitters located at the vertices of the equilateral triangles. Observe that
there is no overlap of the circles and that very little of the plane is not covered. In fact it is
well known that this arrangement of circles maximizes the density of the area of the plane
covered by exactly one circle provided that no area is covered twice [Will79a]. Viewing the
problem in this manner leads us to inquire about the arrangement, allowing possible overlap of
circles, that yields the highest density of singly covered area. This density will yield an upper
bound to the fraction of the expected number of successful transmissions for a mobile packet
radio network since, in the absence of capture, the probability that a transmission is successfully
received is equal to the fraction of area that is covered by only its transmission. We can use
figure 3.6 to this end. This figure is a reproduction of one of the triangles of figure 3.5. where

we have drawn the triangles with a length less than 2 units. In this figure let 1(x) be the area
of overlap within the triangle, and let EWx be the area which is not covered in the circle tessel-
lation. First let us derive equations for these two functions. We can use the equation derived
in Appendix B for A ()(equation (B.7)) to write:

1Wx - (if-A (x. M)/2
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FIGURE 3.6
Section of Plane with Overlapped Tessellation.

which after some manipulation becomes:

. 1(x) - cos-(x12) - x _n

The amount of area within the triangle that is covered is C(x)- a-/2-31(x) and subtracting
.: this from the area of the triangle gives:

- 2  V x) - ! 1 - 11E-W - x T + 3cos- 2x/2) -

Now suppose we wanted to "partially" tessellate the plane with unit circles in such a
way that the sum of the overlapped and the uncovered areas was minimized (thus maximizing
the amount of singly covered area). It is clear from figure 3.6, that 1(x) is increasing in x and
E(x) is decreasing, and thus seeking a minimum is a well formed problem. Letting the objec-
tive function be F(x) we then have:

F X /3X 2 17_ _
f~)- x - T+6 cos-'(x/2) - 3 x4

This function is minimized for x -1.92 15 which gives the tessellation shown in figure 3.7 (the
points of intersection form a 12-gon). We can also derive the fraction of the plane that is
covered by this type of tessellation by forming the ratio of the covered area to the area of the
triangle. When this is done. the fraction is determined to be .9278, (as compared to .9068 of
equation (3.1)) and thus about 92% of the plane is singly covered. We can thus write the
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FIGURE 3.7

Allowing Collisions to Increase the Bound.

upper bound as:

f (N) - .9278/N (3.2)

This arrangement of circles on the plane was conjectured to have the highest density of singly
covered area in 1964 fToth64al and has recently been proved by Ernst Strass at UCLA (unpub-
lished manuscript). We should observe that for reasonably large N, equations (3.1) and (3.2)
agree for practical purposes and thus all the approximations and conclusions made using equa-

* Ltion (3.1) are also applicable to our new bound.

If we let G be the offered load (the average number of packets presented to the chan-
nel per unit time) of traffic coming from the area of one circle, we clearly see that G Z 1. This
corroborates our results of the previous chapter where we found that Gzil for the slotted-
ALOHA network analyzed there. As mentioned in Chapter 2, this result is a generalization of
that for a single-hop network where it can be shown that an offered load of one packet per unit .

time optimizes performance [Abra7Oa]. We can derive a rule of thumb for multi-hop packet
radio networks by approximating equation (3.2) as:

f(N) Z 1/N

It can best be interpreted by looking at figure 3.7. Here we see that the plane can also be
viewed as being almost tessellated by circles of unit radius, the center of which contains a

52

IA

.. . . . . . . .* . ( ~.~. )S~
- 5 - * 5 5 * . .. -. - .



""-. transmitter. Since each transmitter sends to an average of N other nodes, it is clear that only
one of N nodes will be successful, thus giving the approximate I/N ratio.

3.3 Comparison to slotted-ALOHA

We can compare this optimal fraction of transmissions to that of the slotted-ALOHA
radio network studied in the previous chapter. In that chapter, the equation for the probability

of successful transmission in the non-capture case, (which corresponds to our t'.V)) was given

by:

P(N,p) - (1-p)p(l-e-N/ 2)e ~NVp (3.3)

where p is the probability of transmitting in any randomly selected slot. Recall the (I-e - .V/2)

term in this equation is a factor that represents the probability that the network is connected.
Since our derivation offiN)assumes a connected graph, we should eliminate the connectivity
term from equation (3.3) before comparing the performance of this system to that of the

optimal protocol.

For a given N, P(N,p) achieves a maximal value for:

p A q(N) -
2N

We can thus write the maximum fraction of successful transmissions for the slotted-ALOHA

network as:

P'(N) - q(N)(-q(N))e-vv¢ v' (3.4)

The efficiency of a protocol is defined to be the ratio of its performance to that of the

optimal protocol and thus we define:

e(N) P'(N)/f'(N)
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FIGURE 3.8
The Efficiency of slotted-ALOHA.

In figure 3.8 we have plotted f(N), P'(N) and e(N) for 14N<1. In this figure we observe
that e(N) increases in N. To find its limit, we observe:

Surn q(N) - I/N

hence we have:

lim e(N) I/(C92 7 8e) - .396

Thus the capacity of slotted-ALOHA at best is about 40/6 of the channel capacity as given by
our approximation. Observe that the optimal capacity of slotted-ALOHA occurs when the den-
sity of terminals approaches infinity. This of course corresponds to an unrealistic network

configuration. The increase in efficiency as N grows larger is. however. very slow. For realistic
size networks, looking at figure 3.8. we see that we can approximate the efficiency to be about
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Ile. In a single-hop environment slotted-ALOHA achieves a maximum capacity of Ile and
thus we have the intuitively pleasing result that the maximum capacity of the slotted-ALOHA
protocol is about Ile in both single and multi-hop environments.

3.4 Comparison with CSMA

In this section we will use the method defined in the previous sections to derive an
* equation for the optimal performance for CSMA in a multi-hop environment and then will cal-

culate the efficiency of this protocol. In a CSMA environment, nodes that hear an idle channel
can transmit packets on the channel. In a random connected network the maximal number of

-~ nodes that could transmit using the CSMA protocol is equal to the size of the maximal 2-order
independent set. We can calculate the fraction of nodes in such a network using methods

developed in previous sections. If we imagine, in figure 3.3, the length of the equilateral trian-
gle to be the average euclidean distance for nodes separated by 2 hops, defined to be T. then
g(N), the fraction of nodes in a maximal 2-order independent set, can be calculated as:

g(N) - 2.214/N

-where we have used the result derived in Appendix 8 that Y - 1.2881. If we assume the frac-
tion of the nodes in a maximal 2-order independent set that transmit is p, then the fraction of

-. transmissions in the network is given by g(N)p. Unlike the derivation of the optimal protocol

- - however, in this case not all transmissions are successful. We can calculate the probability that
- -~ a randomly selected transmitter is successful by using figure 3.9. In this figure we have shown

the triangle tessellation corresponding to a maximal 2-order independent set, and the circular
tessellation that results when nodes on the vertices of the triangles transmit. If we suppose in
this figure that P is a transmitter, then we can calculate the probability that it is successful by
determining the probability that P is sending its message to a neighboring node located in one
of the areas labeled A, B, or C of the figure. We will assume a uniform probability in making
this calculation and also assume that each transmission corresponds to a series of messages hav-
ing infinitesimal length. This assumption allows us to calculate the expected fraction of mes-
sages that are successfully received before being collided by an interfering transmission. An
alternative way to model this is to assume that each receiver captures the first signal that is sent
to it. Although such perfect time capture (DavigOaI is not attainable in real networks, this
assumption will allow us to calculate an upper bound for network performance. Area C + B
forms half of the intersection of two unit circles separated by a distance of Y. and can be
shown to be equal to i7/2 - A (F, D)/2 - .3845 where A () is derived in Appendix B3 (equation

- (B.7)). The area of the triangle is easily seen to be .7094 and thus we can write the following
equations:

V.
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FIGURE 3.9
Tessellation for CSMA Calculation.

-/6 - .3845 - A + B
.7094 - 3(A+B)+C

which can be solved to yield A -. 0467, B -. 0923, and C -. 2921. We can convert these areas

into probabilities by dividing by ff/ 6 to obtain P4 -. 0891, PB-.1762, and Pc=. 5579. Each
area is influenced by only a subset of the possible transmitters surrounding it, and we can write
the probability that P's transmission is successfully received as:

Q - P4 + 2P(I-p) + Pc(1-p) 2

The fraction of successful traffic then is given by C(N,p) -g(N)pQ which is maximized for
p*-.4599 at which point Q - .4421. Using this in the expression for C(N.p) allows us to cal-

culate the maximal fraction of successful transmissions in the CSMA network which is given
by:

C*(N) - .4504/N"

Thus we have the efficiency of the CSMA protocol in the multi-hop environment under ideal
assumptions is about 48.5%. This performance is in striking contrast to the efficiency of CSMA
in the single-hop environment [Klei75a] where under commonly held assumptions it has a
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throughput of about 87%. We may also note that the performance of CSMA in the multi-hop
environment under ideal assumptions is not much greater than that of slotted-ALOHA.

3.5 Densities of e, R , R 2 and RI

, As a by-product of this research, we derive in Appendix B the probability density func-

tions for R1 , R 2, R 3, and E which are plotted in figures 3.10, 3.11, and 3.12. In table I we
give the means and variances for these random variables.
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FIGURE 3. 10
The Density of R 2.
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FIGURE 3.11
The Density of R3.
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FIGURE 3.12
The Density of E.

Density Mean Variance
R1  0.6667 0.0555
R2 1.2881 0.0639
R 3  2.0000 0.1870
0 2.3254 0.2807

Table I
Means and Variances for R 1 , R 2, R2 . and 0
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3.6 Conclusions

In this chapter we have calculated an upper bound for the maximal expected fraction of
successful transmissions obtained in a random connected planar packet radio network. The
method utilized is notable in that it produced an intuitively pleasing result that I (N) z I/N "
and was simple, although tedious, to calculate. Using this optimal performance as a standard,
we compared the slotted-ALOHA and CSMA protocols to it, and have shown that these proto-
cols, for realistic networks, have an efficiency of about 36%, and 48.5% respectively. The pro-
bability density functions for the euclidean distance for nodes separated by one, two, and three
hops was derived as a by-product of this research. In the next chapter we will investigate the
delay characteristics of the optimal protocol which was discussed in this chapter. This will lead
us to formulate a capacity assignment problem for networks using this protocol.
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CHAPTER 4
SPATIAL-TDMA

In the previous chapter we determined the maximal throughput for a network which
used an protocol that gave a maximum number of nodes in the network permission to transmit
over all periods of time in a manner that did not allow collisions. In this chapter we formally
define this protocol, called spatial-TDMA, and determine its delay characteristics. This leads us
to formulate an optimal capacity assignment problem for networks of this type which we
address in a later section. First we will review the motivation for defining such a protocol and
the definition of the capacity assignment problem.

4.1 Introduction

Networks have traditionally consisted of a set of switches connected together by some
form of cable. Because cable must be strung point to point, and often require land acquisition

* . and construction of supporting structures, the design of such networks requires careful, long-
range planning and it is not surprising that considerable research has been devoted to the prob-
lems of this initial design. One problem that has been extensively studied, for example arises
when the locations of the nodes of the network and their traffic characteristics are assumed to
be known. In this case, one must determine a procedure for choosing the capacities of the
communication lines. Since the cost of the network is an increasing function of these capaci-
ties, it is important that the designer of such a network select the assignment of the capacity of
the links of the network to minimize network expense (under the constraints of preserving a
tolerable delay for messages in the system). Various solutions
fKlei64a, Cant74a, Fran7la, Meis7laI have been proposed for this, and other problems of a
similar genre, which are commonly classified as Capacity Assignment Problems. As one can
expect however, network specifications often change, and an optimal design for an initial net-
work may be far from optimal after changes are made either to the traffic characteristics of the
nodes or to the network's topological structure. Indeed, even the minor change of optimally
adding one new node to a wire network can be a formidable problem. Besides the difficulty of
connecting cable from the new node to its adjacent neighbors, one must also solve the capacity
assignment problem again for the changed network. If the traffic offered by the new node
changes the loads on the links of the already existing network, then some of them will need to

14

61



be upgraded to higher capacities. Likewise, other lines might be able to have their capacities
reduced if some of the flow through them can be routed over the new lines. Upgrading exist-
ing lines however, is expensive, and the cost of preserving this optimality in the network after
the addition of a new node could be so formidable that the designers would have to settle for a
less than optimal solution. As the process of adding new nodes to the net continued, it would
not be surprising to see performance seriously deteriorate.

To avoid these problems, one needs to use a more flexible medium for inter-connecting

the switches of the network. As we saw in Chapter 1. a broadcast medium such as radio, offers
flexibility to topological changes, and has the property that capacities can be changed to reflect
alterations in the specifications of the network. Connectivity in such networks is determined by
the power of the transmitters of the network and thus is easily controlled, and the addition of
new nodes is free of the cost of stringing cable. There still remains of course, the problem of
re-adjusting the capacities of the lines of the system in an optimal manner. Indeed, determin-
ing the capacity of a specific link in a radio net, and adjusting the capacities of all the nodes in
the network in some optimal manner, are not straightforward problems and depend upon the
protocol that nodes use to determine when to transmit messages.

We address the above issues in this chapter and formulate a collision-free channel
access protocol that nodes use to determine when they have permission to transmit. With this
collision-free property, a multi-hop packet radio network can be made to simulate a wire net-
work, and the determination of the capacity of an arc is straightforward. The basic idea of this
protocol is to allocate specific periods, from a specified cycle time, during which nodes can
transmit. This allocation has the property that during any period, no link is denied transmission
rights if it would not potentially cause a collision (thus this is similar to the protocol that was
discussed in Chapter 3). The capacity of an arc is then proportional to the amount of time
from the cycle during which it has permission to transmit. We first will discuss the delay
characteristics of such a protocol and then propose a method for assigning periods and adjusting
their durations.

r. 4.2 Description of the Protocol

Throughout our discussion we will assume, as in wire networks, that the locations and
connectivity of the packet radio transceivers and the expected flow of traffic between any two
nodes i and j, yi,, are known. A fixed route between all possible source -destination pairs is
also assumed to be given. This allows us to calculate the flow on the i"arc. a of the net-
work. These are standard assumptions made before addressing the capacity assignment problem
for wire networks. There are however, other assumptions we will make that are particular to
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the radio environment. We assume the channel is noise-free and that receivers have the ability

" to capture one of several signals on the channel. Our results do not depend upon the particular

definition of capture and will only arise in determining the compatibility matrix discussed in the ii
next section. We will also assume that nodes of the network are time synchronized so that all

nodes share common knowledge about period beginning and ending points in the time cycle,

which we will assume has a length of T time units. In general, since distances between nodes

of the network vary, time synchronization implies that each slot has associated with it a guard

band that is used to assure that messages lie wholly within the slot. This wasted capacity is not

taken into account in our calculations.

Knowing the locations of the nodes in the network and the capture parameter of the

system, allows us to generate a compatibility matrix. In such a matrix, a 1 in the (i,j) position

indicates that arc i and arc j of the network can simultaneously transmit (specifically. their

corresponding nodes being able to transmit in these directions) without causing a collision.

Such an arc is said to be enabled. Using this compatibility matrix as the adjacency matrix of a

graph, one can generate a set of cliques containing arcs having the property that all arcs in the

same clique can be simultaneously enabled without causing a collision. If we let C, denote the

ilh clique, we can form a clique cover C - { CI, C2, • , Ck ) with the property that every arc is

contained in at least one member of C. For each clique in the clique cover one can assign an

interval of time, t,, from a given time cycle (i.e. a frame whose structure repeats), during which

arcs in that clique are enabled. Since any particular arc can be contained in more than one

clique, the times during which an arc is enabled depend upon the times assigned to the cliques

of which it is a member.

In Figure 4.1 we exemplify this construction. In this figure, the six nodes (A through

E) have arcs which are labeled 1 through 10. When node B enables arc 7, nodes A, C, and E
hear the transmission and B's message is addressed to node E. During this transmission, if we

assume that receivers cannot capture transmissions, one of arcs 5 or 6 can also be enabled

without causing collisions. In the compatibility matrix shown in the figure, then, the 7'th row

contains a 1 in the 5'th, 6'th. and 7'th positions. Each row of this compatibility matrix is gen-

erated in a like manner. Using this matrix, we have generated all possible maximal cliques

C1, C 2, "" , CI0, and from these have selected a particular clique cover consisting of
i ~ C - { C, C2, •••,CJ }

If we denote the cycle time of the frame as T time units, we can allocate time durations
6

t, (not necessarily contiguous), where T - t, to each of the cliques during which their arcs
,"'. t-I

are enabled. Each frame then consists of a set of durations during which cliques are enabled,
and the sequence of the frame cycles every T time units.
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FIGURE 4.1.
Creation of the Cliques.

4.3 Queueing Approximation
*0

•
.

In this section we will describe an algorithm for approximating the average system time

(queueing plus transmission) of messages passing through a single node using spatial-TDMA.

The queueing system at a given node created by this protocol consists of non-overlappifng inter-

nal arrival, service, and external arrival periods which are enabled during specific periods of the

frame. For example in Figure 4.2 we have shown a queue (contained in a single node of the

network) with its corresponding frame, Figure 4.3. The queue contains two switches s, and s.

which are used to control the internal input and service processes. At most one of these

switches can be closed during any part of the frame since we do not allow simultaneous recep-
tion and transmission by radios in the network. During the first 20 time units of the frame in

Figure 4.3, we see an internal arrival interval, during which s, is closed (s, will be open) to allow

arrivals to enter from inside the network (arrivals from the attached host computer called
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FIGURE 4.2
Model of Queue for Nodes in the Network.
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FIGURE 4.3
A Time Frame.

external arrivals can also occur during this time). These arrivals occur at rate I,, message units
(assumed to be packets, bits, etc...) per time unit where we have normalized transmission rates
so that each time unit can accommodate at most one message unit. We will model the internal
arrival process as a truncated Poisson process. The number of internal arrivals to the queue

during the first interval then is distributed as a Poisson process with parameter 4i, subject to the
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condition that no more than 20 message units arrive during this interval. In general, for an
internal arrival interval of m time units, if we let P[k intl m) be the probability that k internal
arrivals occur in m time units, we have:

P[k intl ml- k , 1, • m:;" k! I (m /I,,)' e-t/i

1-0

During the next phase of the frame, a service interval, of 10 units in which S2 is closed (s, is
open) and message units are served at the rate of one per time unit. During this time a max-
imum of 10 message units can be serviced. The next phase we show is an external interval dur-
ing which both s, and s2 are open and no internal arrivals or services are allowed. In the figure
we have labeled the section of the frame during which both switches are open as being idle to
indicate that no new messages from the network can arrive and that the node cannot transmit.
This does not imply however that the are no active processes during this time. Indeed, over
the entire frame as mentioned before, external messages (from the node's attached host) can
arrive. As shown in Figure 4.2 these arrivals immediately enter the tail of the queue at a rate
of /,,. Again this arrival process is assumed to have Poisson statistics and thus the probability
that k external arrivals occur in m time units is given by:

""(M IX) k  - (M le' )

P[k extl ml m k

Switches s, and s2 are then turned on and off according to the time patterns depicted in Figure
4.3 and continue to cycle every 100 time units. Observe that there is no limit on number of
messages that can arrive from the attached host computer over the course of a frame as there is
from messages arriving from inside the network.

An exact analysis for the average system time has not been carried out as of yet and

thus we seek an approximate formula. Fortunately a fluid approximation [Klei76a] to this sys-
tem gives very good results and we will illustrate this method using Figure 4.4. In the fluid
approximation, waiting times are calculated by assuming the actual backlog of packets in the
queue is approximated by the average backlog.

In figure 4.4 we have plotted the growth of the average backlog of message units in the
system during the course of the frame shown in figure 4.3. For reasons to be explained later,
we have started this growth pattern at the beginning of the last external interval (i.e. at t-90).
During this interval, since internal arrivals are prohibited, only external arrivals can add to the
backlog. If we assume the rate at which the queue increases during an external period to be

Mex, we see that the expected backlog grows linearly with this slope during this interval. As
• : '. the frame progresses to the first interval, the growth rate for the backlog is given by M,, which
S, is the sum of Mx and the additional rate offered by the internal arrivals. A service period fol-
,-.. lows in the next interval and the backlog drops by a rate of M, < 0 message units per time

unit. Since external messages can arrive during any type of interval, M, is equal to :' less
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FIGURE 4.4
The Backlog for Figure 4.3.

the service rate of I message unit per unit time. As seen in the figure, the backlog of message

units in the queue drops to zero before the service interval is finished. Internal arrivals during
this time are assumed to be immediately serviced and thus do not contribute to the backlog.
This process continues in this manner until the last external period, at which point it starts
from a zero backlog once again. We will call a point on the frame a zero-point (it is a regenera-

tive point for the frame) if, starting with an empty queue at this point, yields a backlog of zero
after exactly one frame.

We now calculate the rates described in the previous section. First we make the follow-
ing definitions:

Let T - Length of the time frame
T,,- Total time of external intervals per frame
Ti,- Total time of internal arrival intervals per frame
T,- Total time of service intervals per frame
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From our previous discussion we can write:

I,, - ,.,

I,. + Mex

The area under the backlog curve represents the number of message-time units accumulated by
messages arriving during the frame. Dividing this by the average number of message units that
arrive during the frame, L,, + L, gives, by Little's result, [Litt6lal the average time spent in
the queueing system. Because we began the calculation at a zero-point, message delays for all
arrivals to the frame are counted. It is clear we can always find a zero-point on any frame satis-
fying T., , L , + Lx

This then describes the algorithm for the approximation which we summarize as:

1. Find azero-point.

2. Calculate the area under the backlog curve.

*3. Divide by L , + L,. to arrive at the average system time.

It is clear that the ordering of the intervals and their lengths greatly influences the aver-
age system time. Suppose, for example, that we change the frame in Figure 4.3 by coalescing.
all the service and intervals together and placing them on the frame as shown in Figure 4.5. -

Although it has exactly the same interval lengths, this translation increases the average system
time (in fact it is a worst case example). In this system, any messages that arrive during the
internal arrival interval must wait at least 30 time units before being serviced. If the service
and internal arrival intervals are interchanged, it is clear that the average system time would
decrease by at least this much. In fact, the system that has the minimum average system time
is one that spreads arrival and service intervals in infinitesimal units that alternate with each

other. In this way, an arrival is immediately serviced in the following interval after accruing lit-
tle waiting time. In a practical implementation of spatial-TDMA, however, there are limits to

how small one can make interval sizes since radios have a finite switching time between
* transmission and reception, and choosing a frame pattern that minimizes the system time for

one particular queue in the network does not in general decrear-! the total average message
delay for messages in the entire network. In fact, finding the alternation that does achieve the
minimum delay for all message in the network is a very difficult problem which we will address

* in a later section.
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FIGURE 4.5
A Worse Case Cycle.

4.4 Discussion of Delay Results

In this section we compare simulation results with those found using the fluid approxi-
mation described in the previous section. Numerous frames were randomly generated that had
the same input parameters (T, T, T,,,, Te, L,.,, and L,,) and results of the simulation checked
against those of the approximation. Three such frames are shown in Figure 4.6 where +1 steps
correspond to internal arrival intervals. 0 to external intervals, and -1 to service intervals. In

7' all three frames T-10000, T, - 6000, T,,, - 2000, T, - 2000, the average service and internal
arrival intervals have length 200, and the average external arrival rate is 200 message units over
the frame time T. The mean service time as a function of p for these frames is shown in Fig-
ure 4.7.

4 There are several interesting features of these curves. We first see the close match
between the simulation and approximation thus assuring us that the approximation is accurate.
The variation between the mean system time for the three frames is very large which shows the
dependency upon the ordering and size of the intervals of the frame. For example. for p-=.7,
set I has a mean system delay of about 650 time units whereas set 3 has a value of 2800. more

* :. than four times as much. The extreme delays of the third frame arise from the long periods
* .~(9000, 10000) and (0, 2000), during which there are no service intervals. All packets arriving

during these periods create a backlog that cannot be depleted until much later in the frame. On
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FIGURE 4.6

Three Randomly Generated Frames.
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FIGURE 4.7

Curves for the Three Frames of Figure 4.6.

the other hand, the fortuitous placement of intervals in frame I consists of groups of arrival
intervals followed by service intervals that allow an accumulated backlog to be serviced quickly.

Even though there is a large variance in the curves, there is a striking similarity in the
shapes of the curves. The curves are very well approximated by a piece-wise linear function
(shown as a dashed line in the figure). We note that they do not approach infinity at p - 1.

Since other queueing systems have explosive growth as p-I, arising from the omni-present
1/(1 -p) term in most queueing equations, this behavior is very unusual. The explosive
growth for most queueing systems arises, however, from the fact that there is variation in the
arrival pattern of messages to the queue, and as p-I the probability that a sequence of arrivals
saturates the queue approaches 1. In spatial-TDMA however, the number of arrivals for each
internal arrival interval is constrained to be no greater than the normalized interval length. and

5, thus the variance of arrival statistics is also constrained. Besides reducing queueing delays, this
restriction on the number of messages that can enter the system during an interval also acts as
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a natural flow control mechanism for messages in such a network.

The slope changes in the piece-wise linear approximation occur when the arrival rate is
so large that a sufficient number of arrivals to an internal arrival interval cannot be serviced in
the next set of service epochs. For example, the change about the point p = .6 for frame 2
arises from the fact that for p > .6, some arrivals over the interval (6000,7800) must wait until
the next service set of intervals (1200, 2300) to be processed. For lesser values of p, p < .6,
most arrivals to (6000,7800) are serviced in the interval (7800,9100) and thus suffer less
delay. Naturally as p increases, the proportion of messages that must wait until (1200, 2300) to
be serviced grows and so does the mean system time. Each of the breaks in the piece-wise
linear approximation can be explained in this manner.

S2.0

INPUT 1.0
- . I1.-:

IOLE 0.0

SERVICE . ...1".0..

-2.0' I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

TIME

FIGURE 4.8
Reducing the Average Period Size.

In Figure 4.8 we have shown a frame for the same input parameters but where the
average size of the service and internal arrival intervals is equal to 20 time units instead of 200
as in those of Figure 4.6. The corresponding mean system time curve is shown in Figure 4.9.
We see a marked decrease in the mean system time for this frame in comparison to the previ-

ous set of frames. This demonstrates the dependency of the mean system time upon the size
of the intervals. If we adjust the frame to minimize the mean system time, as shown in Figure
4.10 (where for illustrative clarity we have only shown a portion of the frame), the resultant

delay is approximately equal to I time unit throughout the entire range of p. For such a frame
the niajority of the arrivals to the system are immediately serviced in the following service

interval.
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The Curve for Figure 4.8.

4.5 The Capacity Assignment Problem

4.5.1 Introduction

In the previous sections we determined, for a given frame. a good approximation for
I. the average delay messages experience in passing through a network using spatial-TDMA. We

observed that the ordering, size, and number of periods from the 1kime allocated to internal
and external arrivals and service periods, had a great influence on the mean delay. One obser-
vation we made was that, in general, the mean delay decreased as the average size of the
periods decreased. In practical implementations of this protocol there is a minimum size for

* any period which is determined by the switching time for radio is in the network and by over-
head considerations. Let us therefore suppose that all periods in a frame have a length

73

.4-



2DE 0 I I

SERVICE -, i.0I

0.0 10.0 20.0 30.0 400 500 60.0 70.0 80.0 90.0 1000

TIME

FIGURE 4. 10
An Optimal Frame.

determined by this minimal switching time, and let us normalize the frame duration. T. to this

slot size. We will say that one message unit can be transmitted during this duration. With this

restriction, then, every frame consists of a number of unit slots assigned to the cliques of the

clique cover in some particular permutation. This restriction does not effect the optimality of

frame selection to any great degree, since the unit slot is. in the continuous frame case, a lower

bound to slot size anyway, and is usually very small in relationship to T. We will therefore, in

a later section, take the liberty to refer to the size of the intervals Te,, T,, and T, as being :on-

tinuous parameters when we pose a convex programming problem.

Before beginning to develop the capacity assignment problem, let us first establish our

notation. Suppose we are given a clique cover, C - (C 1 , C 2, ' , CA. I, and a time vector,

t(-(, t2, , tk), where t, is the time from the frame (having duration T) allocated to C.
k

We will denote r I I - , r, and will say a time vector t is feasible ifr >0. IIr I< T. and cer-

tain flow constraints, which are defined later, are satisfied. Let the total flow of messages into

the network per frame be given by y and let a, be the flow of messages into queue i over that

time. Let q be the number of queues in the network. For a given feasible time vector, t. and

queue i, let D(t) be the average delay of messages passing through queue i, and let T',. T.,

and T be the total amount of time from the cycle allocated for the internal, external, and ser-

P vice periods respectively. Also for queue i let L , and L,., be the average traff.': flow from

internal and external sources over a time frame. It is clear that a,-(L' + L ,.,)/T and we will

define the (kx 1) binary vectors LW',, Vf_,, and Yf' to tisfy T,,,. T,- and

.iT; lt. Observe that we can form a matrix M' from these vectors that will satisfy
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With these definitions we can define the capacity assignment problem formally as:

Minimize -- iQ
!.,All Possible Frames Y

subject to t 0
t111 T 0

Before discussing the complexity (and mathematical intractability) of solving this prob-
lem, let us first establish that the feasibility region is convex. Suppose that t and t' are two
feasible time vectors. To show convexity we need to show that pt + 01-p) r' where 0 (p K,1 is
also feasible. This is obvious however, since, using the first constraint:

The same argument holds for the second constraint.

The complexity of solving this capacity assignment problem arises from the fact that the
optimization occurs over all feasible time vectors, t, and all possible ways of allocating periods
in frames satisfying 1. Even if we were given (by some divine mathematician!) the time vector

-. which was optimal, finding the frame (the ordering of all T slots) that achieves minimal delay
is in itself mathematically intractable. In the following sections we will present an approach that
finds optimal time vectors over the class of frames that have been randomly selected, but first
we will address the question of feasibility.

4.5.2 Feasibility

In this section we establish a procedure for determining if a given clique cover, for a
given set of queues and corresponding flows a,, permits a feasible time vector. It is easy to
create cases where, no matter how one adjusts the components of a time vector, some queues
will have more flow into them than they can accommodate. We have already seen that the
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feasible region is convex. This allows us then to formulate the feasibility problem as a linear
program:

Minimize II tII

subject to t >0
M..tL;, >O0 i 1, 2, -. q

L,.- LeX> 0 i==1, 2, "' q

If the solution to this linear program has I It 1< T than any vector with t + e where e >0 and
El I=T- t! is a feasible time vector, otherwise no feasible time vector exists. We might

add that phase 1 of solving this linear program can easily be solved by a time vector having all
components equal to ti-Max (L;,, + L,.), and that phase 2 of the program can halt as soon as

the objective function IIt II becomes less than T. Thus this feasibility program can be
efficiently solved.

4.5.3 Average of All Randomly Generated Frames

Due to the mathematical intractabilities of the frame assignment problem, we seek in
this section to create an approximation to the average delay of messages in passing through a
queue in which the alterations of frame periods have been randomly selected. This will
represent an upper bound to the mean delay obtained with an optimal ordering and, as we will
see, will lead to a tractable program. Let us therefore intuitively motivate our approximation to
this delay. Recall that we have normalized the time axis into time slots equal to the transmis-
sion of one message unit. Suppose we are given Te, T,,T, and T, and have selected one of the
possible random frames having these time values. Select a point in this frame, T' where r< T
and let T,,., T,,,, and T, be the number of external, internal, and service slots used in generating
the frame up to time T'. Since the frame was randomly generated, the next slot, T'+ 1, will be
drawn with a uniform probability from the remaining population of slots. For the purpose of
clarity, we will focus our discussion in terms of service slots (analogous statements can be made
for external and internri arrival slots). At the T'+ I step, the probability that the next slot

selected is a service period is given by P, = (T-T 1)(T- T,- T,,- T,,,). The original proba-
bility of selecting a service interval was given by P, - T1 T. and thus we see this probability

I. changes as the cycle is generated. If T is large howevt,, over most of the frame, one would
expect that the probability of selecting a service period at each step does not differ much from
P,. Intuitively, T,, T,,, and Te., decrease at a rate in proportion to their sizes, and since their
sizes are assumed to be large, their relative proportions do not alter significantly over most of
the frame. Only when most of the slots have been given out. when T' is close to T. will we
expect a wide variation in P,'. The main point is that until this time, P, has remained close to
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P, and the major component of the delay, as determined by the backlog curve of the fluid

approximation, has already been determined. We thus conclude that the delay obtaineu from

generating frames using the initial probabilities, P, P,, and P, throughoot the frame ger ,ra-

tion will not differ much from those generated by allowing P, to change throughout frame gen-

eration.

Now that we have motivated the approximation, let us describe it more precisely. Sup-

pose we are at a height k on the backlog curve. From the previous discussion. the probability

that the next slot is an external, internal, or service slot is given by Pe,-= T,. T, P,, - T,,/ T and

Ps=T/T respectively. Recall that I,-L,,/T is the probability that a randomly selected slot

contains an internal arrival. Define u i=1, 2 to be the probability that i arrivals come into the

system in the next slot, and let d be the probability that a message leaves the system in the

next slot. Using the above definitions we can then write:

U1  = P1. I,, + pl,[ (I -Ie ,.) +.(1 ) I
U2  = P, Il 1

eY

d = P,( -lex)

and the evolution of the height of the backlog curve is given by a random walk with the above

probabilities. The state transition graph for this random walk is given in figure 4.11.

U2  U2  U2  U2  U2  U2

I-., . .. ............ . ..

d d d d d d d

FIGURE 4.11
State Transitions For the Random Walk.

The state transition equations are given by:

(u1 +u 2)PO - dP1  (4.1)
(u, +u,+d)P, - u1Po + dP2

(uI +u2 +d)Pk . U2Pk-2 + UIPk-I + dPk.-. k>2

where Pk is the probability that the system is in state k. Before solving these equations, let us

determine how we will use the solution to generate our approximation to the average delay.
We will proceed in the same way as in the fluid approximation, namely finding the area under

the backlog curve and then dividing by the average number of customers that entered the sys-

tem. Suppose we knew the steady state probabilities Pk of being at step k in our approxima-

tion. Points at a height k that move to k +I incur an increase in the area that is equal to

-: k +.5 where the k arises from the rectangle of height k and width 1, and the .5. from the
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triangle having unit width and height. Similar calculations can be made for other steps and we

can write the average area for each step as:

A - Po(u,+.5u) + Pju1 (i +.5) + u,(i+1) + d(i-.5)] (4.2)

" Po(u2+.5u,) + P(uj +u 2 +d) + (l-PO)(U2 +.5u,-.5d)

In these equations T is the average value of k. We can calculate both P and Po by using stan-
'.4

dard transform methods on equations (4.1) [Klei76a. Defining the z-transform of P, to be
Pz)- P, :', we have: .,-

p(:)w v2u 2 + Ul - d

u2z2 + (u, + u2):- d

from which, using standard theory we can derive:

- 3u 2+u,
d-2u2 -u 1

d-2u2-ul
d

and using these in equation (4.2) yields:

A - P(ui +u 2 +d) (4.3)

Thus we can calculate the average delay by dividing by the average number of messages that

arrive in a randomly selected slot to determine the following delay equation:

T (3u,+u0,D(Te,. T,. 7') - (Let+L,,,) (d-u 2 - u1) (u, + u, + d) (4.4)

We have denoted D(-) as being a function of three variables for the purpose of clarity. Since

T T, + T , + T, only two of the variables are independent.

-"I

4.5.5 Comparing the Approximation with Randomly Generated Frames

In this section we want to show the results when equation (4.4) is compared with data

obtained when we generate random frames and calculate their mean delay using the fluid
approximation. Our procedure was. for a gi,,en set of parameter values Le,. L ,. T.,. T,. and

T,, to generate 1000 random frames and determine the minimum, maximum. mean. and vari-

ance of the delays for these samples. We then compared the average delay to equation 14.4) to

*, determine if the approximation was close. We performed this procedure for many different

pq
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selections of parameter values and all showed similar behavior. To demonstrate this behavior
we have selected two sets to plot. Each of these sets had T-1000. Set I has T,,,-400,
T,-1OO, 'T, 1 00. L.-100, and we varied L,, over the range 2O(<L,,,<38O. Set 2 had
T,-300, T,,-200, T,-500, L,i-200 and L,~ varied over 20<,L,,<280. In figure 4.12 we show
how the approximation fared in relationship to the mean of the generated frames.
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FIGURE 4.12
Validating the Approximation.

We wee in this figure that the approximation is very close to that of the sample mean anid that
only for very large values of p does it break away from the generated frames. This is explained
by the fact that the approximation is "more stochastic" than the randomly generated frames
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since it is given by a random walk, and that for high p values the random walk tends to spend a
lot of time "attemphing to escape to infinity" in contrast to the generated frames that have an
upper bound to their maximum height.

P We can extract more information about the randomly generated frames by looking at
Table 4. 1. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

p Mean Variance Min Delay Max Delay

0.24000 1.019933 0.059683 0.882035 1.292519
0.280000 1.173994 0.076922 1.000477 1.418889
0.320000 1.345148 0.097195 1.122492 1.737658

*0.360000 1.519549 0.123856 1.228147 2.035303
0.400000 1.723441 0.145813 1.376908 2.425304
0,440000 1.919901 0.193245 1.435101 2.563087
0.480000 2.158198 0.218624 1.594046 3.138185
0.520000 2.434490 0.241395 1.902604 3.434316
0.560000 2.769812 0.325750 1.993773 -1191554

0.600000 3.172192 0.414819 2.390554 4.6 C 67 2
0.640000 3.621928 0.522270 2.618372 5.937060
0.680000 4.222784 0.670217 2.910517 7.552518
0.720000 4.881158 0.869889 3.210058 9.927224
0.760000 5.741120 1.051270 3.566030 9.822580
0.800000 7.005569 1.534562 3.751551 15.805325
0.840000 8.766911 2.257944 5.079778 19.209290
0.880000 11.501342 3.460731 6.268044 32.473289
0.920000 15.094280 4.126865 7.613554 34.197002
0.960000 122.544538 17.200002 19.852835 165.090919

TABLE 4. 1.
In this table we list, for given values of p, for set 1, the mean delay, variance, minimum delay,
and maximum delay that was found over the generated frames. We see that although the
difference between the minimum and maximum delays are often quite substantial (especially
for large p) the variance is usually very small. This implies that the mean of all the generated
frames is not much different from the mean of a particular generated frame. Another way to
see this is to plot the coefficient of variation (defined to be the variance divided by the mean)
as a function of p. In figure 4.13 we plot this, as well as the variance, and see that the
coefficient of variation is quite small throughout all ranges of p. Using this approximation we
are now in a position to formulate the capacity assignment problem for networks of this type.

4I
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FIGURE 4.13
The Coefficient of Variation as a Function of p.

4.5.5 The Capacity Assignment Problem for Random Frames

In this section we will create the capacity assignment problem for spatial-TDMA net-

works in which the time slots to cliques have been performed in a random manner. We first

.,p 
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suppose that there exists a feasible time vector. Knowing this we can then formulate the capa-
city assignment problem as:

minimize ~ -D,(M'I)

subject to t >, 0
11t1T <o

M~~L e-L >~0 i-1,2, q

Once again the feasibility region is convex and it can be also shown, by differentiating D,()
that the Hessian matrix of second partials is positive semi-definite and thus the objective func-
tion is also convex. We thus have a convex programming problem which can be solved using
any number of well-known solution techniques (Avri76aI.

4.6 Conclusions

The flexibility offered by broadcast radio presents clear advantages over the use, in con-
ventional networks, of point to point cable. Besides being more adaptable to changing topolo-
gies ( and as demonstrated in this paper, changing traffic characteristics) radio does not require
the construction of elaborate supporting mechanisms for their implementation (this is not to
imply that packet radio networks do not have their technical problems!). The design of net-
works that use spatial-TDMA is facilitated since precise specifications of topologies and traffic
characteristics do not initially need to be known. Very often the true flow of traffic between
nodes of a network are only known after the network has been used for a period of time. As
shown before, incorrect estimations of the traffic flows can be disastrous for a wire network.
With radio however, network designers have the ability to simply alter capacities to match the
actual traffic flows. A straightforward approach based on the results of this paper, would be to
start with an initial guess of the traffic flows. These would be used to determine the initial
capacities, and the system would be allowed to operate for a period of time during which statis-
tics of the actual traffic flows would be gathered. These more precise estimations would then be
used to again assign capacities. This process could be refined further, where perhaps several
capacity assignment plans could be incorporated to match the flows during different parts of the
day, of the week, of the year etc... since traffic patterns frequently change according to a
predictable schedule (for example there is very little traffic flowing from the east coast after 5
p.m.). Scheduling and synchronizing changes between different plans, would be a non-trivial
implementation problem.

S.. The above advantages of radio based networks can also be combined with the results of
the extensive research into the behavior of wire networks. Since with spatial-TDMA. radio net-
works simulate wire networks, many of these results can be readily adapted to the radio
environment. For instance, routing and flow control techniques designed for wire networks can
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be run without modifications on the radio net. In particular, the flow-deviation algorithm
[Frat73aJ could be used to calculate an optimal (minimal average delay) routing policy. In this
procedure, flows on the arcs are altered (preserving the flow required between source-
destination nodes of the net) in a fashion that lowers the average delay until a minimum is

* found. Since the function for the average delay is different in our case than that of the stan-
dard flow-deviation algorithm, we would have to modify the algorithm slightly but the overall

strategy would be similar since the equation for the mean delay is convex. After executing this
algorithm, the flows on the arcs would be changed, and thus we could run the capacity assign-
ment algorithm specified in this paper to re-assign capacities to the arcs. After this new capacity
was assigned, it would be followed by the flow-deviation algorithm again and this alteration
would continue until the change in the average delay became smaller than some specified value.
This Capacity and Flow Assignment problem has been developed for wire networks [Klei76al and
one could adapt similar procedures to be used in the radio environment.

Thus it would appear that radio networks using spatial-TDMA have both the advantages

4. of a flexible topology and that of being able to draw from the wealth of results created for con-
ventional wire networks. It also however suffers from some of the disadvantages of wire based

networks. In both spatial-TDMA and wire networks, nodes are assumed to be stationary and
* 4 besides help from adaptive routing procedures, there is no allowance for dynamic changes to

the capacities of the arcs of the network. Indeed it would be somewhat tragic if the most
salient feature of the radio media, its ability to adapt to topological changes, was not taken into
account in the design of the channel access scheme of a packet radio network. The channel
access scheme for such a network would need to account for changing topologies and traffic
demands. Certainly the access scheme as presented in this paper does not have these charac-

-~ - teristics. However by modifying the scheme in a manner which allows dynamic slot adapta-
tions, in a local fashion, to topological and traffic demands, spatial-TDMA can be made to
operate in such a mobile environment.

Another drawback of spatial-TDMA concerns the nature of the traffic flowing in the
net. Since arcs are enabled for specific periods of time during the cycle, efficient use of the

channel requires that messages be available for transmission during these times. To elucidate
the traffic characteristics most suitable for spatial-TDMA, imagine that traffic arrives to the arcs
in the network in a steady flow. The queue sizes at each arc then would never grow large

N because the queue could be steadily decreased during the transmit periods of the cycle for that
arc, and we would expect the message delay to be small. In contrast to this, if we imagine the
same average flow arriving to the arcs in large bulks, with long interarrival idle periods, large
queue sizes are formed which, because the arc only has fixed time from the cycle in which to
transmit, would take a long time to empty. This would then result in large message delays. We
can thus conclude that spatial-TDMA is most suited for steady streams of traffic. We might

I' note here that random channel access protocols are most suited for the case of bursty traffic.
As an example of a network where spatial-TDMA would be suitable. suppose that terminals
were connected to nodes of a spatial-TDMA network. If there was a sufficient number of
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terminals connected to each node. the net total flow from all these bursty sources, according to

the law of large numbers, would be steady and thus suitable for our proposed protocol. In fact,

any method which concentrates many bursty sources into one traffic stream will allow spatial-

TDMA to be effectively utilized.
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CHAPTER 5

RUDE -CSMA

So far we have considered the interference problem under the conditions of using
minimal information (in Chapter 2) and of using global information (Chapters 3 and 4). In
this section we consider an intermediate approach to this problem that uses local information
which nodes obtain when they sense the channel. This investigation leads us to define a two-
parameter family of protocols for the multi-hop environment called rude-CSMA.

5.1 Introduction

Let us first review the CSMA protocol as defined for the single-hop environment that
was discussed in Chapter 1. It is well known that CSMA [Klei75aJ is an efficient channel access
protocol for single-hop packet radio environments. In this protocol, nodes of the network sense
the channel prior to transmitting packets. If the channel is sensed busy, the sensing node
refrains from transmitting (to avoid a collision) and re-schedules its transmission until a future
time. In a multi-hop environment sensing the channel provides information only about a sub-
set of the nodes in the network and thus a transmission by one node that is surrounded by
silent nodes is not guaranteed to be successful. An example of this is shown in figure 5.1. In
this figure suppose node 1, wishing to send a message to a neighboring node, senses the chan-
nel idle and transmits its packet. It is clear in this network, I's packet will be successfully

4 received only if node 4, as well as its destination, are not transmitting. Thus we can conclude,
that in an optimized network (where the objective is to maximize the number of successful 5

transmissions in the network over time) there is some relationship between the rates at which
nodes in the network present packets to an idle channel. In particular, for our example, the
rate that node I presents packets to an idle channel in an optimized network, is functionally
dependent upon the rate that node 4 presents packets to the channel.

Another relationship can be hypothesized by supposing that node 1, wishing to send a
packet, senses the channel busy. In single-hop networks this implies that node I will refrain
from transmitting until a future time. In our example, however, if node I senses the channel
busy due to a transmission from node 3. this implies (assuming that node 1 is not sensing the
channel if it is receiving a message) that node 3 is transmitting a message to node 4. Thus if
node 1 transmits to node 2. its reception will be successfully received without interrupting node
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4 FIGURE 5.1
A sample network.

3's transmission. Thus it appears that if node I senses the channel busy it should not neces-
sarily refrain from presenting packets to the channel. Clearly the rate at which it offers such
packets will depend upon the topology and traffic generation rates of the nodes in the network
but we can conclude from these motivating arguments that, in some cases, throughput would
be increased if nodes transmitted even when the the channel was sensed busy. This charac-
teristic, namely transmitting even though other nodes are using the channel, explains the appel-
lation 'rude-CSMA" for the protocols we define in the following section. We should mention
that these relationships were also discussed in Chapter 1 when we showed in Figure 1.1 that

4 there were cases when it was advantageous for transmitters ti and t2 to transmit even if they S

sensed a busy channel.

This hypothetical reasoning leads us to question how the rates of offered packets to the
channel should be adjusted to achieve maximal throughput. In this chapter we investigate a
family of protocols which attempt to use the local information contained in the state of the
channel to determine the rate at which nodes transmit packets on the channel. The question
we hope to shed light upon in this chapter is: How can the "free" information obtained from
sensing the channel be best used to maximize the throughput of multi-hop networks. We will
see that the family of protocols we create to answer this question include both ALOHA and
CSMA as special cases, and, being generalizations of them, should have an optimized perfor-
mance that is at least as good as either of them. To further motivate the protocols that will be
precisely defined in the next section, suppose node i is ready to transmit a packet to one of its
neighbors. After sensing the channel, suppose ifinds the channel busy. Besides the binary
information contained in the channel status. i also obtains the power of the received signal.
Suppose then (Figure 5.2) that the received power is very small. This implies that the number
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of transmitters within range of i is small and furthermore that they are not very close to i. If
we assume that all nodes transmit with tne same power, this implies that the immediate area
surrounding i is free of transmitters and thus that there a possibility that if i transmits, the sig-
nal will be successfully received by its destination. The percentage of area of the shaded region
of the circle shown in the figure is in fact the probability that i will be successful. On the other
hand, suppose the received power is large (Figure 5.3). This implies that either there are a few
transmitters very close to i or many far away. In the first case the environment covered by a
transmitter very close to i would greatly overlap that covered by i and thus a transmission byI
would most likely cause a collision. In the second case. Figure 5.3, since there are a large
number of transmitters around i, the probability that one of i's neighbors hears a silent channel
is very small and thus if itransmits, its signal would have a high probability of causing a colli-

4 sion. We can conclude from this hypothetical scenario that the decision to transmit depends
upon the number of transmitters and their locations in i's immediate environment. In the pro-
tocols defined in this chapter we will assume that given the power of the received signal on the

4' channel, the number of transmitting nodes within the hearing distance of any given node can
be estimated. Later we will show that this assumption, although being unrealistic, is not too
restrictive.

* 5.2 The Protocol

We will define the state S of the network to be a binary vector

S - (St (S), S2(S), - , s,,(S) ) where n is the number of nodes in the network and s,(S) - I
if node i is transmitting and 0 otherwise. For a given node, say node i, there exists a subset of
the other nodes of the network which are its neighbors. This set is denoted by

A, - (j I node]j is within hearing distance of node

In general for a multi-hop network. A, is a proper subset of all the nodes in the network. Thus
i's decision to transmit will depend only upon the states of the nodes contained in its hearing
region A, For a given state S, suppose node i has a packet which is ready to be transmitted.
Node i senses the channel and based upon the power of the received signal, estimates the
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number of transmitters within its local hearing distance. Denote this number by:

Ni() si (S)
iE 4

Likewise the number of neighbors not transmitting in i's hearing range can be estimated as:

M6 (S) -IA,--1Vi(S)

We assume in our mathematical model that these estimates are exact. According to these
values node i adjusts the rate at which it presents packets to the channel, and in particular, for
state S, the rate at which node i transmits (assuming that s, (S) - 0) is given by:

r' ~ s (S)S)Y (5.1)

where x and y are given parameters of the protocol and -yo is a given arrival rate of packets to
each node of' the network (from the attached host computer). In the case that node i is a
transmitter, (s,(S) - 1), we assume the packet transmission time is exponentially distributed
with an average length of I/M time units and thus the rate at which i's transmission stops is 1
given by:

r', (S) - 1AL (5.2)
For any given state S, with these rate definitions, one can determine the rate at which the sys-
tern changes into any other state S', and it is clear that the state vector and rate definitions
define a continuous time, finite state, Markov process. A generalized form of this process can
be found in [Ke1179a]. Observe that this two parameter family of protocols contain ALOHA
(x-1, y-l) and CSMA (x-1, y-0) as special cases. To optimize the performance of the net-
work we need to determine the (x,y) values that maximize the expected number of successful
transmissions over a unit time interval. For a given state S. define E(S) to be the expected
number of successful transmissions for that state. It is clear that E(S) can be calculated if the
traffic matrix, topology, and capture ratio for the system are known. For example, suppose in
Figure 5.4 that nodes are equally likely to transmit to any of their neighbors. Nodes in Figure
5.4 are labeled I if they are transmitters and 0 otherwise. We can determine E(S) by calculat-
ing the probability that silent nodes in the network successfully receive a packet destined
towards them. Thus node 2 in the figure is adjacent to only one transmitting node (node 1)
which transmits in that direction with probability 1/4. The expected success then for node 2 is
1/4 as it is for nodes 3 and 4. In the same manner nodes 6 and 7 have a 1/4 probability of
receiving node 5's transmission successfully, whereas node 8 has no chance of receiving either
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FIGURE 5.4
Calculating E.

node 5's or node 9's reception since they will collide. For the state shown then, the expected

success is:

E(S) -=3(1-) + 2 (')-

0

~Similar procedures can be generated that handle cases with different assumpriz:,s of the traffic
matrix and capture parameter than those or" the previous example. Observ,, that these assump-
tions correspond to a packet radio network in which terminals have only a transmitter buffer.
and radio units are assumed to capture the first transmitted signal they receive. This perfect
time capture is an ideal assumption and could alternatively be modeled as an upper bound on"

.'. throughput to a packet radio network without time capture in which the exponential messag,'" !

length corresponds to a bulk of very small packets. To explain this suppose a radio unit iis

successfully receiving a transmission from another unit I over the time period 10.11. It is possi-

42

ble that another node k, within i's hearing radius but not within i's range, starts transmitting at
time t. Clearly, assuming non-capture, this implies that i will hear a collision at t, and will not
successfully receive the rest of j's message if I was sending a single packet message. However
if we assume that I was sending a series of very short packets, then only those sent after time t

* will be lost. In the limit as the packet size goes to zero. E(S) then will measure the fraction of

time the channel that is being used successfully when the system is in state S.
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Let -(S,x,y) be the steady state probability of state S for a given (x,y). In Appendix

C we show that with rate equations (5.1) and (5.2), fl(S,x,y) is given by:
fl I(S,x,y) -y .Ws
4) - C P(S) X-8 0 (S) y8 1(s)

where M(S) - , si(S)
i-I

C - W1Ox,y) x 0o(°)

P - Ydo/
, I8(0,x,y) - x - s pM (S) 0 BS(S )

S

In this equation C is a normalization constant, and for state S, M(S) is the number of

transmitters, Bo(S) is the number of adjacent nodes that are not transmitting, and Br(S) is the
number of adjacent transmitters. Using this we can write the expected number of successes in
the network over a unit time interval as:

E(x,y) - 1 H(S,x,y) E(S)

Naturally we would like to maximize this function over feasible (xy) values. Besides the
non-negativity of x and y however, there is a constraint concerning the average rate at which a
node presents packets to the channel. This actual rate must not be greater than the arrival rate

of packets to that node, which is defined to be yo. Rate equation (5.1) shows that this actual
transmission rate is a function of S, and this, averaged over all states, must therefore be less
than yo. We thus have, letting 1,(S) be the complement of the i'* component of S:

":". x 6Cs (S i (S)
Y. 0 S i(S) II(S,x,y) < yo i - 1,2, n

S

For a given topology and traffic matrix, we can thus formalize the mathematical program P as:

Program P

max E A . fl(S,x,y) E(S)
(Xy) S

subject to:

,":,I - , xVgO Y y v iJ s "Yj(S) rl (S,x,y) > 0 i-1,2, .",

S

This is the problem that we will address in this chapter. We should note however that optimal
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(x,y) values are functions of the topology and traffic matrix of the network. We will call the
first constraint equation in P the flow constraint and will say that it is saturated if the equation is

an equality for some equation.

5.3 Discussion of Results

In this section we will discuss the results we obtained when P is optimized over
different topologies. We wrote computer programs which, for a given topology, calculated
E(S and H(S,x,y) and then optimized P over all feasible (x,y) pairs. Besides special topolo-
gies which we studied, we also ran P for connected networks which were randomly generated
for varying mean densities. Unless stated otherwise, in all networks we have assumed a uni-
form local traffic matrix. As typical of most Markovian models, the state space of the system
grows exponentially with the number of nodes of the network, and thus to keep the program
computationally tractable, we restricted our optimization to relatively small networks. We do
not believe however, the applicability of our results are dependent upon the size of the net-
work.

5.3.1 Special Topologies

In figure 5.6 we plot the values of x and y that achieve optimal performance for the
network of figure 5.5, which is a generalized version of the network used to motivate this work.

7. The curves for the graph in figure 5.1 show similar behavior. These curses have many interest-
ing properties. First we observe that ovtr the range of p shown , *e are three distinct types of
behavior. For very small p values, p<,.15, we see that x and E increase rapidly while *
remains very small. The increase of E over this range is explained by the fact that for small p
values, there are very few transmissions, and thus very few which cause collisions (or inter-
preted in the case of perfect time capture, few transmissions that aren't first) and thus increas-
ing p tends to increase E in a linear manner. We see this behavior clearly as p goes from 0.05
to 0.1 during which E doubles from about 0.35 to about 0.6. As p continues to grow beyond
0.1 the increase is les-s than linear due to some collisions in the network. It is clear that over
this range, since there are so few transmissions in the network, the y parameter of rate equa-
tion (5.1) is non-critical. Using an interactive program we wrote to determine how E varied as
a function of y, we found very little change over all values of y, thus the sudden increase in y

-' at pr-.2 should not be interpreted as demonstrating singular behavior.
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FIGURE 5.5
A Lattice Network.

The increase in x over the range 0.054p4,0.2 can be explained by first observing that
for this range the chance of collisions is small and thus nodes present packets to the channel as
fast as they can generate them, which in our case is approximately equal to yv.2. We should
mention that for these small values of p, the optimal x value lies on the boundary of the feasi-
ble region, hence the flow constraint of P is saturated. We can explain the linear behavior of
the x curve over this region with an intuitive argument. From our previous discussion we
know that E is linear in p for small values, and it can be approximated closely by E -4.6p + .1.
For the most part, successful states for these small p values correspond to one transmitter in
the network. Thus using our equation for 11 (S,x,y), we can write E - kpx 2 ", where k is a
constant of proportionality. We can then write:

4.6p + .1 - kpx- 3  (5.3)

Using the initial values from figure 5.6 we can determine k - 10.09. Solving equation (5.3) for
x therefore yields:

100 1233

which for small values of p is very closely approximated by:

x a 2P + 1.1

This then explains the linear shape and slope of x over this region. In summary then, over the
first region of the curve in figure 5.6, £ and x are approximately linear with slopes 4.6 and 2

respectively, and y is not a critical parameter of the system.
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FIGURE 5.6
Curves for the Lattice Network.
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The second region of the graph, from p-0. 2 to p-0.35, will now be explained. First
we observe that the expected success rises only slightly over this range. Although there are
more transmissions in this range, there are also more collisions which limit the number that are
successful. The sudden increase of y at pO.2, as mentioned previously, should not be looked
on as being as singular, but does demonstrate the increased importance of y's effect on the
throughput of the system. Observe that over this range y < 1, and thus from equation (5.1),
this parameter acts to inhibit transmissions when there is a neighboring transmitter (although
not to the extent of excluding such transmissions). This supports our conclusion from the
scenario in the beginning that sometimes in a multi-hop network it is beneficial to transmit
even if the channel is sensed busy. The decrease of x over this range arises because it is no
longer on the boundary of the feasible region. However, since x is greiter than I in this
region, we conclude that this parameter tends to increase the rate of packets offered to the
channel during idle channel periods.

Over the region p>0.35 , E is again not altered to any great measure. Both x and y
decrease now in an effort to prevent collisions on the channel. As p becomes much larger, we
see that x< 1, which indicates that even the x parameter tends to act to inhibit the number of
packets on the channel. Over this region, the flow constraint equation is not saturated for any
node in the network indicating that the effective transmission rate of packets on the channel is
less than -/0. Hence optimizing the throughput of the network has the effect of limiting the
flow of packets in the network. We will explain the general shape of the x curve when discuss-
ing random topologies in the next section.

The next special topology we will study is that of ring networks as shown in figures 5.7
and 5.10. In each of these rings we have assumed that messages always travel clockwise (thus
the arrows in the figures). We observe that y-O for all p values and thus nodes in such net-

- . works should refrain from transmitting if they sense a busy channel. This is actually obvious
from the defined topologies since the sensed transmission would either be directed towards the

sensing node or be the intended recipient of the sensing nodes transmission. In each case then
,-' transmitting would cause a certain collision. Knowing that the nodes will use the CSMA proto-

col allows us to solve for the steady state throughput using an alternative method, thus giving
intuitive insight into the solution and corroborating our equation for I(S,x,y). To generate
the states for this process, we observe there are five states which have one transmitter, and five
states that have two transmitters (we do not allow two transmitters to be adjacent). We can
thus form the Markov chain shown in figure 5.9. In this figure a is the arrival rate of messages
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FIGURE 5.7
A Ring of Five nodes.

J:

*into each node and corresponds to -yox2 in our model. Solving this chain yields:

PO -/ l(+5(aj.) +5(a/p))
-, M S(a/1.)Oo

P2 M 5 (a/A) 2po

where P, is the equilibrium state probability of state i. It can easily be checked that using our
equation for 1H(S,x~y) yields the same set of equations with a - yox . In each of states I and 2
there is an expected success of 1 packet, and thus maximizing the throughput of the network
corresponds to maximizing the probability that the system is in states 1 or 2. This can most
easily be performed by minimizing the probability the system is in state 0. It is clear that this
occurs for (a/lA)-oo, and in figure 5.8 we see the monotonic rise of throughput with p. and
the increase in x which corresponds to lying on the boundary of the feasibility region.

Quite a different phenomena is observed for the case of a ring with an even number of
nodes as shown in figure 5.10. To intuitively motivate this we draw the corresponding Markov
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FIGURE 5.8
Curves for the Five Node Ring (y-0).
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FIGURE 5.9
4 Markov Chain Representation of a 5 Node Ring.
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FIGURE 5.10
A Six Node Ring.

2a a

. N2

FIGURE 5.11
Markov Chain Representation of a Six Node Ring.
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chain in figure 5.11. which can be solved to yield:
P,) 

i( + 2( / A13 + 9(a/ 
!A)2 +6(a/1A)

iP - 6 WO Pa

P2 6(a/) 2poP :. 3 (a/,s) 2Po

P3  - 2(a/) 3Po

where a-yox 2 and state 2 corresponds to a configuration congruent to I and 3 being
transmitters and state 2' to I and 4 being transmitters.

2.2
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E
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I 
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FIGURE 5.12
Curves for the Six Node Ring (Y-O).

The expected success for each state is: 0 for states 0 and 3, and I for state 2. and 2 for state 2'.
Thus we wish to maximize P2 + 2P2 ' over a. This situation is much different than the previous
odd number ring because increasing a, has the effect of increasing P3 which has an expected
throughput of 0. The objective then is:
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Max-

This maximum occurs for (cxig) - at which point the objective function is equal to 1. In
figure 5.12 we see this behavior in the curves for x and E. For p,<. 3 the flow constraint in P
is satisfied and the (tt/A) values are much less than the optimal value of I because there is not
enough input to satisfy this condition. For p>0.3 however, the input into the system is
sufficient to reach optimal throughput and the x values shown act to control the rate of this
input to achieve optimal throughput. For example for p-O.5, x=1 .4 yields a-px2=0.98 (where
we have normalized 1A to be equal to 1). We notice over this range that the optimal throughput
of 1 packet per time unit is obtained.

We observe with rings a striking difference in the behavior of the system (in terms of
the a-yrpc2 parameter) which depends on the number of nodes in the network. In particular
for an odd number of nodes, optimal performance was obtained for (X--. whereas for an even
number of nodes we saw that a<-o achieved maximal throughput. This dependency results
from combinatorial considerations on how transmitters could be distributed in the nodes such
that no two adjacent nodes were transmitters. In odd node rings, when the maximum number
of transmitters is generated, the expected throughput for the configuration is greater than zero
(in fact it is always equal to 1), whereas for even node rings, this configuration yields a zero
throughput. This tends to make optimal a values for odd node rings greater, but not neces-
sarily infinite, than those for even node rings. We might question if such behavior is obtained
when the rings are cut at one spot and made into tandems.

FIGURE 5.13
A Five Node Tandem Network.

In figures 5.13 and 5.15 we show a five and six node tandem with their associated curves in
figures 5.14 and 5.16. Both graphs show similar behavior. Once again for 1)<0.4 the flow con-

V. straint equation in P is saturated and after that the x parameter acts to meter the actual flow of
packets into the network.
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FIGURE 5.14
Curves for the Five Node Tandem (Y-0).

FIGURE 5.15
A Six Node Tandem.
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5.3. Ranom Tpoloies Curves for the Six Node Tandem (y-0).

In this section we report on the results which were obtained when P was run on graphs
which were randomly generated. Many such graphs were created. with varying mean densities

and all such graphs exhibited similar behavior. This characteristic allows us to make the
blanket statement that in a random multi-hop network, over the continuum of protocols

defined by all possible (x.,y) pairs, optimum performance was obtained for those pairs that had
v-0. As stated in the introduction this corresponds to a CSMA type protocol. From the many
graphs which were analyzed we have picked two to show here. This selection was based more
on the aesthetic qualities of the graphs rather than any particular characteristic of the curves
associated with salving P. In figure 5.17 we show a 7 node network with a mean number of'
neighbors. N equal to 2.28. The corresponding set of curves are shown in figure 5.18. We see
that for low values of p. both E and x are linear indicating that there are very few collisions in

i.1 the network. The slope of E becomes nearly zero for p>0.2 implying that after this point the

amount of new successful transmissions in the network is small in comparison to the number of
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FIGURE 5.17
A random graph with N= 2.285.

collisions that arise from the increased traffic load. The shape of the x curve for p>0.3 can be
explained by first noting that over this range the flow constraint of P is not saturated. Next we
make a definition. Suppose for each node i, we investigate all state vectors having the property

* that i and all its neighbors A, are silent. Under these conditions, if i senses the channel, it will
detect that it is idle and offer packets to the channel at a rate defined by the protocol. Let 1, be
the set of all state vectors satisfying this condition. We can then define the effective niumber of'
idle neighbors, denoted by N', by finding the average number of silent neighbors a randomly

selected idle node has when it senses the channel prior to a transmission. This can be written
as:

*N - IA, rT1(S, xj)
S'EI

*Because of topological variations. some nodes are more likely to be both idle and surrounded
by idle neighbors than others (in fact the probability is decreasing with the number otf neigh-
bors) and thus in general N**N. Define f to be the average time a random node in the net-
work waits before transmitting when it hears an idle channel. Since E does not vary much over
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FIGURE 5.18
Curves for graph in figure 5.17 (y-0).

p>0.3 it is not surprising to find that x varies as a function of p to preserve the fraction of
time nodes transmit when sensing an idle channel. This has been verified by observing (by
using an interactive program) that the probability distribution for state vectors does alter
significantly as p ranges greater than 0.3 for optimized x values. We thus can equate rates to
obtain:

" x-v  1/I

We can solve for f and N" by picking two points from figure 5.18. At p-0. 72 we have x=l
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and thus can write 0.72--1/t or /=-.36. At p-=0. 3 2 we have .32(1.8) '.72 which implies that
V'-I.4. Thus we can write x as a function of p as:

v - (1/fp)I v - (.72/p) "1 p>0.3 (5.4)

Equation (5.4) was used to generate the second curve in figure 5.18 and we see a relatively
close match. In general then. for a CSMA environment, we can write a general equation relat-
ing x with p as:

Intuitively. for the graph of figure 5.17, we would expect .V< N since nodes having the greater
number of neighbors, node 4 for instance, have a much smaller probability of being both idle
and surrounded by idle neighbors. than a node, say node 1. that has far fewer neighbors.

7

6

N - 314

FIGURE 5.19
A random graph with N-3.14.

In the second graph of this section. figure 5.19. we again see in its associated set of
curves. figure 5.20, similar behavior. As stated in the beginning of this section. this behavior
was typical of all the curves for the random graphs we generated.
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FIGURE 5.20
Curves for figure 5.19 (y-0).
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5.4 Conclusions

In this chapter we have defined rude-CSMA which is a two parameter continuum of
protocols for multi-hop channel access. This family of protocols has been shown to include
both ALOHA and CSMA as special cases. The optimum performance of rude-CSMA for spe-
cial topologies was investigated, and we have seen that for lattice type networks, under certain
conditions, transmitting even after sensing a busy channel tends to increase the throughput of
the system. In all other topologies studied including rings. tandems. and random graphs.
optimal performance was obtained when the protocol used was CSMA with optimized channel
input rates. Thus we must come to the interesting conclusion that for practical networks.
rude-CSMA is not that "rude" afterall. This justifies the statement in the introduction that
assuming nodes could determine the number of transmitters from the received power of sensed
signals was not too restrictive an assumption. The binary information contained obtained from
sensing the channel appears to be sufficient to determine the optimal transmission policy. The
curves generated for these protocols under varying assumptions have proved to be intuitively
insightful and their interesting properties have been explained.
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CHAPTER 6
CONCLUSIONS

In the previous chapters we analyzed the interference problem under various sets of
policy state information. We have also seen that the difficulty of the problem concerned the
fact that all nodes of a packet radio network are interrelated, and that changing the behavior of
one node in such a network, causes global effects. Coupled. dependent systems like these are
very difficult to analyze and our approach in each of the models we analyzed, undertook in
some manner a means to control the dependency. In Chapter 2 we essentially ignored the
dependency and determined the best performance obtainable for slotted-ALOHA networks in 1
which only the mean density of terminals on the plane was known. This model corresponded

to solving the interference problem using a minimal set of policy state information, and in
Chapter 3 we established an upper bound on the performance for all protocols which use such ;e

information. In Chapter 4 we strictly controlled the dependency between nodes of the network

by using the global information of their location and traffic characteristics. We saw the strongj
inter-relationship between all of the nodes when we attempted to determine optimal time
frames for networks using spatial-TDMA, and needed to resort to solving the capacity assign-
ment problem over the class of frames that were randomly generated. The coupling between
the nodes of the network was again encountered in the fifth chapter where we sought to control
the inter-dependencies by determining a protocol, rude-CSMA. which used only local informa- i
tion to deter-nine when to transmit packets on the channel. The coupling in this model was
restricted, for each node, to the subset of nodes in its local environment. The particular rate -

definitions given for the protocol allowed such a de-coupling and also allowed us to solve for
the steady state probabilities of the system state in closed form.

We may pose the following question: Where does the subject go from here? It is the
author's opinion that probably the most important area of research, that would shed light on
the interference problem as well as numerous other such such problems, concerns the develop-
ment of more sophisticated mathematical tools which are especially designed to work with
dependent systems of interacting processes. Most of the relevant mathematics used to analyze
such systems, such as stochastic processes and probability theory, are only tractable for systems
in which the random variables are independent. Short of having any other mathematical tools.
the network analyst often makes the rather blatant assumption that the random variables associ-
ated with the network are independent. This assumption is certainly false. Although the
approximations that arise from such assumptions often lead to models that ire good predictors
of network performance, without proper validation procedures there seems tc be no mathemati-
cal way to determine the effect that certain assumptions have on the accuracy of the resultant
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network model. This puts network designers in the rather nebulous position of not knowing
what to believe, and forces them to simulate, or in some other way. to validate the model and
thus nullify the "precision and cost effectiveness" of analysis. A current trend in solving cou-
pled systems of this type consists in establishing sets of equations for the state of the system in
terms of unknown parameters. These parameters form the coupling between state variables.

* - The solution of these equations then involves guessing initial values for these parameters and
then iterating through the equations until they converge to a final set of values. These final
parametric values form a consistent set of equations for the system but do not necessarily
correspond to an optimal solution of the system. Other methods for bypassing the coupling of
the random variables, such as assuming average behavior in all relationships, suffer from the

* same flaws, namely, optimality is not easily shown and procedures are needed to validate the
model. There is thus a great need for more sophisticated mathematical tools.

In pertaining to extensions and generalizations of this dissertation, we can make the fol-
lowing comments. In Chapter 2 we assumed that terminals were uniformly distributed on the
plane in an effort to model a mobile packet radio network. In many networks, however, there
is a tendency for nodes to form clusters rather than to be uniformly spread. For example, taxis
tend to be more densely populated in areas of a city in which the demand for transportation is
greatest. To model such a network, one would have to change the model of the second chapter
to include the case where terminals were distributed on the plane according to a non-uniform
density. This would imply that the range and probability of transmission would depend upon
the local topology of the network. In Chapter 4 we solved the capacity assignment problem for
spatial-TDMA networks over the class of frames that were randomly selected and claimed that
this formed an upper bound to the mean delay obtained by an optimal frame. An important
contribution would be an algorithm that efficiently produced an optimal assignment of time
slots to the cliques of the network. The author of this dissertation worked intensely on this
problem but was only successful in developing heuristic solutions that required substantial com-
putation for their execution. Since spatial-TDMA could be a very useful protocol for local area
radio networks, optimal performance is an important consideration. We commented in the con-
clusions to Chapter 4 that a form of spatial-TDMA that worked in a mobile environment would
be desirable. Although the author has developed a formalization of such a protocol, more work
needs to be done to make the protocol both efficient and practical. We can make similar com-
ments about possible generalizations to rude-CSMA of the fifth chapter. In that model, solu-
tions were obtained only for the case where the average rate of incoming packets to nodes of
the network was the same. Once again this uniform assumption is often not found in practice
(in the above example, taxis in the central part of the city may be using their transmitters more
often than those on the outskirts). Unfortunately assuming different rates changes the tracta-
bility of finding a closed form solution to the Markov process defined by the state transition
rates, and thus increases the complexity of finding optimal parametric values. If an efficient
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method by which terminals in a mobile network determine their local topology (the locations of
their neighboring nodes) can be developed, then an extension and marriage of rude-CSMA and

spatial-TDMA could be possible. This. besides being interesting, certainly would increase the
performance of the network.
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APPENDIX A
An Expansion of the Integral of Chapter 2

We claim

t2 e- k
1
2 dt - .-k (4 2)! (A.1)~0

Define

F(n) -f 2n e -k 2 dt
0

We then wish to find F(1). To do this we first set up a recurrence relationship between F(n)
and F(n+l). Integrating by parts we find

2l n +I  e - 2 Ic t2 n  t ,2 d

F(n) - x - f -- ( - 2kt2) ek 2 dt
2n+I 2n

-- x 2" n1 e- 2  F(n) + F(n+)
2n+l 2n n

x2#'+ n eCt 2 + T2k (A2)
2n+ n + 1F(n+1)

Using this relationship, we claim

,-1 (2 k)J-' X 2 1+ e-
k 2  2k'- oF(I) - . + - FGi) for all i

i-1 ai a,-,

where ai - 1 .3 .5 ..... (2j+l) - (2j+l)!!. We prove the assertion by induction. It is true
for 1 - 2 from the recurrence relation (A.2). Therefore assume it is true for i - L, then we

p...r............-.. . . .
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can show it is true for i - L +1 as follows: By assumption

-I (2 k)' - ' .2 i -1 e - 4':"  (2k)L - I

F(l) - + F(L) (A.3)
a, aL-I

Using (A.2), the last term can be written as:

( (L 2L 4 +1A(2k)_ F(L)- (2k)L-i xL e - "  2k F(L+)
aL- aL-I 2L+1 2L + 1

- (2k)-1 x 2L-1 e'- 2 + (2k) L F(L +0
aL- (2L + 1) aL- (2L + 1)

but aL-1 (2L + 1) - aL so

.- + ( F(L+I1 (A.4)
aL aL

We can put the first term of (A.4) into the sum of (A.3) to obtain

L (2 k)' - 1 x2l !  (2k)L
F(l) + F(L+I)

- a, aL

and thus we prove that the expression is true for the L+1'st term. If we continue in this

manner we finally obtain

F(1) - im L (2 k) ' x2 -l e 2

•L- i- ai

(2 k)/-' x2 i I e - k2  (A.5)
/-I a,

Simplifying a, we have

a - 1 3..... (2j + 1)

- (2j + 1)!
24 ..... (2j)

'J

:', (2j+ lD,!"

2 j!

and using this in (A.5) we finally obtain (A.1).

.1
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APPENDIX B

Calculating the densities for one, two, and three hops

We will first review the assumptions and definitions discussed in Chapter 3. Let points
be distributed according to a Poisson process on the plane. Create a non-directed graph by join-
ing points with an edge if the euclidean distance between them is less than or equal to one unit.

For a randomly selected point, P0, another point p is i hops away, if there exists a path from Po

to p containing i - 1 other points and no other path exists with fewer points. Assuming there
exists a path between any two points of the graph, we derive in this appendix, the probability
density functions for the euclidean distance between points that are separated by one, two, and
three hops. In particular looking at figure B.1, we will derive the density functions for the vari-
ables r1, ri, r3, and also 0.

P3

.r3

"~r CoCo2l.

,

C,,

FIGURE B.1
A typical example of a three hop configuration.

We will use the following notations throughout the derivations (these are shown in figure B.1 ):
p, will be the t'" point from P0, r, will be the distance from p, and po, will be the distance
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from Pi and p2. 1 is the angle between the line segments (po, Pl) and (pl,P2), and C is the cir-

cle associated with p,. We will assume that each circle has a radius of I unit. The random vari-

ables associated with the above quantities will be denoted as R_ - and Z. The derivations

that are to follow require extensive use of the Law of Cosines and the Law of Sines for

numerous defined triangles. To facilitate reading these derivations, we have followed the for-

mat of writing the initial equation that follows from these laws on the left side of the page and
then showing the equation for the unknown quantity along the right side. It was felt in this

way the triangle that was used in the derivation could more easily be identified by the reader.

We will first derive the densities for R 1, R 2, and 0 producing conditional densities that will be

necessary for the much harder derivation of the density for R 3.

B.I The Density for R I

Since points are randomly distributed according to a Poisson distribution, and since we

are assuming that the resultant graph is connected. we see in figure B.2 that the probability dis-

tribution for the first hop can be formed by the ratio of the two areas:

P[R, < rjl = f'ri2/" = r12

Differentiating this with respect to r, will give the probability density function:

hj(rj) - 2 r, (B. 1)

-J

B.2 The Density for R 2

In figure B.3 we see that the conditional probability distribution can be written as:

P[R2< r2 l RI= r1l = B(r 1 , r_)!A (rl, 1)

where B(r 1 , r7) is the shaded area in figure B.3 and A (r ri,) is the area contained in C, that is i

not contained in Co or B(rt, r,). It is clear that B(r 1 , r,) = A (ri, 1)-.4 (ri. ri), and thus we

* need to derive an expression for A (.). We will derive this function under more general condi-

tions where the radii of the circles are not both equal to 1. We will use figure B.4 to facilitate

this derivation.
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771

C' PO

FIGURE B.2
Calculating the density for the first hop.

In this figure, T(r1 , r2) is the area formed by the triangle of vertices po. pl, and P,

1 W(rj, r-) is the area which added to T(r1 , r2) would form the sector of radius r, and angle 6.
and A (ri, r2)/2 is the shaded area in C1. Since A (ri, r2)/2 is contained in a sector of radius I
and angle 0, we can write:

A (ri. r,)/2 4 - W(rj, r,)

" but W(rj, r2) can easily be seen to be:

W(rt, r 2) = )212 - T(ri, r,)
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We can thus derive .4 (r1 , r,) if we can derive equations for b. 6, and T(',, r. By following
the format discussed in the introductory remarks. we can use the Law of Cosines repeatedly to
obtain:

. =r,'+rj2 -2rr 2cos(S) - 6 = cos - t ---

We can thus write T(r, r,) in terms of known quantities to get T2r1 , r,) rsin(rb)/2. Cor-
4 bining this all together we have:

A4 (r 1. r,) - cos-II _ r 2 r 2  r,2 cos-1( r, r,-I + r,+r,-I (8.2I)

We can thus write:

A(r, r2)
P[R-,,lrIR- r I - - -- r

.4 (rI. 1)

The conditional density h(r 2 i r,) can thus be found as:

hr,) =d A(l - I 14r,( I +4 ri B.3)

where after tedious calculation we have:

A'(r 1, r2 ) -= L r+2 - V r + r V +COS ( V)

2V 2 2IrV 4  22 V

where we have defined:

Sr 2,. 2  rr , r 2 +r,-

, ,< I r +l r] =I I2-<r I <

V3 2 21  V.4

V0-" -V2 r

o..1

.............. r.
"" h2(r -. .. r. - r lr B3

-":' .. . . . . . . . . . . . . .



Using this conditional density and the density for R I just found. we can find the unconditional
density for R, as:

h,(r,) =f hir, ir1) 2r, dr1  I <,r, 2 (BA4

B.3 The Density for 0

We will derive the density for 0 for a < ir since the case for #4> is completely analo-
gous. For this derivation we will make use of figure B.3.

*:F

.4P

D4 y

F FUR 0,
CacltnPhO dniyfr0~V-0

In hi fgur. (# Ir1)isth shde aea D s hetrange ored y oitsPi.an Pan

Itsfigure. ( l is the tranhaoderiep.pad a ngle Dm n is the triangle momdb oit 7ade uP andr
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tex po and angles b and v- 20,. We can write the conditional density for - as:

Bt<I rI)
P[(-..<. I Ri1=r (ri . I) > ,,,cosrI/2)

From the figure it is clear that:

B(.91 r1) 9- ,)1)2 - (C + D)

We thus need to derive the areas C and D. First we will derive the length ofv. By the Law of

Cosines we have:
*4

I = r,2 +Y 2 -2rtjvcos(0)

which we can solve by the quadratic formula to obtain:

y = r1cos() + (1 - rt 2sin2 (4) )12

Using this we will next derive C and D:
. 1 r1I - ,- a - sin-'(rlsin(04))

sin(O) sin(a)

gera - (N- #,,) - -20,. -)

sin(7r'-) =sin(0,.,) sin(r-j3)

E -- 2Qsin(,b) , --- 0

. F - '/2rQsin((b)
and then C and D can be written in terms of known quantities as:

C = __ -E D = '/2rtsin() - F
192

°,f .
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The conditional density, k(ON r1 ) then is:

dB(041 rl) o /
-r) - dOA (ri, 1) -Icos'(ri/2) (B.5)

and the unconditional density can be found as:

Sk(6) = f k(6 1 r1 ) 2rldr.
max(2cosN .0)-

While we are at this point, we can easily derive j(: 1i, ri), the conditional density of
the euclidean distance from point p, to p2 given r, and 0. In figure B.5 we see that under these
conditions, Z must lie on the line from P to Q. Because points are assumed to be distributed
according to the Poisson distribution, the conditional density will be uniform over the length of
the line segment from P to Q, and thus using the derived expression for Y above, we can
write:

.j(:1 rj) = l/(1-y) _v :(<l (B.6)

B.4 The Density of R3

The calculation becomes considerably more complex and tedious as we progress to the
third hop. As in the derivation for R 2, we will first calculate the distribution, conditioned
appropriately, by forming a ratio of two areas. Figure B.6 shows a 3 hop configuration for a
given rl, 0, and z. Any node in the third hop must lie within that portion of C, that lies out-
side C, and C2. In the figure we have defined the angles and lengths that are needed to calcu-
late the area contained in the two wedges A,(y I r , 0,:) and A(.v r1, q,:) that are highlighted
in the figure. If the total area lying only in C3 is T(r,0,:), and if Y,,4j v< I+r (bounds to be
derived later) then:

P[R 3<Y I R 1-ri, 0-0, Z-:1 A-Iyr 1 ,:)+,(v I r.,,:) (B.7), " T(rb z,)l'

The upper bound. . lt+rl. arises because at yv-l+r the circle of radius y from pn becomes
tangent to C1. For y'>l-4-rl, as shown in the figure, the area is increased by the circular
annulus labeled B(y'1rj,,.:). The area for this band was derived in equation (B.2), and thus
we have:

B(y'lr t ,o,:) . A (l+r 1, l+r) - 4 (.v',I+rl)
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.1** I
d L(Y) Radius Y' from p0

FIGURE B.6

Deriving the third hop density function.

We can thus write:

PtR3<(y'j I-1 r1, 0-, Z-:1 4 4 (+rrI.)+Bv'rH:)(B.8)

where I+r 1<,y<I+r),3, A,,,,()-A,(-) +A,,(-), and the upper bound is at the point where
the arc of radius I +r2 from p0 becomes tangent to C., and the expression for r,- can be found
in the previous section. It is clear that T(rj, 04, :) can then be expressed as:

The only unknown quantities needed to calculate the distribution then are equations for
I r1, .: and A,(yv ri, . This can be done using the defined angles and lengths

4 12 1i
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shown in figure B.6. First we will deri~e A,(' r1. . :).

The objective of this derivation will be to find the length U(y). of the arc subtended by

angle 6. Once this is found. the integration of this from v". the minimum allowed value for

r3, to v, will be equal to the area of the shaded wedge. The derivation proceeds by a rather

long deduction of angles and lengths:

r. 2 =r 1
2 +:2-2r,:cos() - r,- r1

2 2- 2 2r1-cos(H))-1 2

r, 2  V2 + -1 2vcos(rc) (V " .cos-I + +2-

r, 
2 -+2cos(3)- r-2

- =r :sin(9)J
sin() n() - 8=sin- -

r I y - sin - ' - 8n( ) a

sin(y +S) sinG3)

I: r2 [sin(a) I

sin-Gb1+--y) sin-a-

Thus we have U(y) -Y6 expressed in terms of ri, 0, and :, and we can write:

", A,,(.vlrh,o :) *= U(r) dr v,<y<l+r

I,

We can determine .v" from figure B.7, where we see that:
'Ir Y r12 + 1-2 r, cos(O -cos-'(:/2))] 2

and thus y - max(r 2,y,,).

.12
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YU1
0 r,

FIGURE B.7
Deriving the upper and lower bounds.

The derivation of AI(y I ri, 0,:z) proceeds along similar lines, and we have:

1- r 2 +y 2 -2r~ycos(c) - c - cos ~I 11 +V

'2 r l"

..

2 1

-"~~2 1,, +y2 y , - r22 .'-

r2-: b sn 1 si *d Cr -

4t..-

'.
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and thus L(y) - bY is also expressed in terms of ,. H, and -. We then have:

.4,(" rL L(r) dr K,,, I-r,

%here again from figure B.7 we have:

Y, Ir2 -- 1 - 2 r, cos(2-,r- H - cos-'(:i/2)) "

and thus v', - max(r ,,y,).

We can now express the conditional distribution HI(ri r. H.:) in terms of r1 .j. and

The conditional density for R 3 can then be found by differentiating:

h3I(r 31 r 1, - dH(r 3 Ir, 1 . (1B.9)

dr 3

Using equations (B.I), (B.5). (B.6). and (B.9) we can find the unconditional density for R3 as:

l h3J3)fffh3(r31 r, a,:)j(: 1 9, r,)k((1 r1,h(r,) d:dodr, (B. 1O)

i'.i ',cos-'(ri/2) 4 0 7 r

0O4 r I1

14r3 3

,°12

, 4

4,

i 124

!~~~..... ...., ............... ..-.... •....,... ...- ,-...-..... ,.. -.....- ,..--.•:•--..,,.-



I
APPENDIX C

Derivation of l(S..v)

In this appendix we will determine a formula for M(Sx,v) and this will permit us to
explain the particular definition of the rates that were defined in Chapter 5 (Equations (5.1) and
(5.2)). It turns out that with these rate definitions, determining the steady state probability dis-
tribution for any given topology is mathematically tractable because the Markovian process
defined by these rates define a reversible process [King69a]. Intuitively a reversible process X(t)

'd is one in which the direction of time has no effect on the statistics of the process and thus X(t)
and X(-t) have the same probability distribution. Finding closed form solutions for reversible
processes is simplified because that reversible processes satisfy detailed balanced equations. Let
U (S) be the steady state probability of state S and let q (S, S') be the rate at which transitions
between states S and S' occur. The detailed balanced equations state:

I (S) q(S,S') = H(S') q(S',S) (C.I)

In general Markov processes satisfy global balance equations that equate the total probability
flux entering a state to that leaving the state. These equations state that:

. H(S') q(S', S) - : n (S) q(S, S') (C.2)
4 S,

We can depict equation (C.1) in Figure 1.1 where the equation states that the net probability
flux across the cut is zero. For reversible systems, equation (C.2) shows that the net flow
across arcs connecting any two states (the cut in Figure C.2) is equal to zero. Equation (C.2)
can be used to simplify finding closed form solutions if reversibility can be proven, and a useful

tool to do this is Kolmogorov's criteria.

12
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FIGURE CA
Global Flow Balance Equations.

9'1

FIGURE C.2

-p Local Flow Balance Equations.
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Theorem: (Kolmogorov's criteria)
Let S1, S2, . , Sk. S' - S] be any sequence of states. Then a Markov process defined over
these states is reversible if and only if the rate transitions satisfy:

q(S', S2) q(S 2 , S3 ) ... q(S"-. S) q(S. Bk'-) =

q(Sk " , S') q(S', S1 ... q(S 3, S2) q(S 2. S')

To determine H(S.x,y) for our system, we will first need to make some preliminary
definitions. We can imagine that the network for any particular state S, is a labeled graph
G(S) in which the edges are determined by the adjacency sets A, and the state vector S deter-
mines the labeling. We will define an i-arc (-0 or i-1) to be an arc in G(S) which has bothnodes labeled i. The number of i-arcs in G(S) will be denoted as B,(S) and NI(S) will be the

number of neighbors of node j that are labeled i. Let T,(S) be an operator acting on state
S - (s,(S), s,(S), , s(S) ) which complements the i"' component, thus:

T,(S) - (s,(S), s,(S). • ,s,_ 1(S). " (S), s,+(S), • s,,(S))

and we will say a transition is a 0-1 transition if s,(S) - 0 and for some /, we have
Ti(S) = S' (1-0 transitions are define in the analogous way). We can now prove a lemma
that will be used to show that the process defined by rate equations (5.1) and (5.2) is reversi-
ble.

Lemma: For any state S. N,(S) - I B,(S) - B,( T(S)) I

Proo." Let B',(S) equal the number of i-arcs in the sub-graph consisting of all nodes not con-
tained in A (A1. It is clear that B',(S) - B',(T(S)). Let k be the number of i-arcs (and
thus the number of neighbors labeled i) of which node j is a member in s'vate S and k' be the
number in state TiS). Since T,(S) and S differ in the i"' component exactly one of k and k'
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will be non-zero. We can write:

B,(S) k- + B' (S)
B,(T,(S)) k' + B',(S)

and thus

pr. B.(S) - B,(T,(S)) I= k - k'.

Observe that for a known 0-1 transition involving node j we can eliminate the absolute value

sign in the above to get N6(S) - Bo(S) - Bo(T,(S)). In a like manner, if node/ is involved

in a 1-0 transition we have N'(S) = B(T,(S)) - BI(S). We are now in a position to prove

that the Markov process described before is reversible.

Theorem: The Markov process described by rate definitions (5.1) and (5.2) defines a reversible
- Markov process.

Proof, We will show that Kolmogorov's criteria is satisfied. For any closed sequence of states
S. S2. S', Kolmogorov's criteria is trivially satisfied if S"'  T,(S') for some ./since

the probability of two or more components of S' and S '+ ' differing is zero. Thus assume that

the sequence of states consists of single component transitions. Since there are only two types
of transitions, all closed cycles must contain an even number of states. Let
Si, 2, • • • , S 2"m, S2?' l - S' be such a sequence. Let

- q(S1 S2  (S 2, $3) q(S 2m, S 2 m1)

AP2 - q(S 2m'I, S 2 m) "" q(S', S2) q(S 2, S')

We must show that IV, - '2 and will refer to their corresponding sequences as the forward and
backward sequence respectively. We first note that since there are an equal number of 0-1
and 1--0 transitions in %' and 'P we can write A', " yo"' D, where D, contains all the fac-
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tors of x and v. We thus must show chat , = (P2. Concentrating first on the exponent of.x in

these expressions, define the two sets:

C = ( S ,S' - ) j -i T,(S') = S' . .(S') =01

*C, - (S' , S') ! 2i T,(S' ') = S', s, (S' - ') = 0)
In words, C, contains the 0-1 transitions for the forward sequence and C, for the backward

sequence. Since a 0-1 transition in the forward sequence is a 1-0 transition in the backward
sequence, we know that C1 l C2 - o. Since C! only contains 0-1 transitions we can write.

using the lemma, the exponent of x in the forward E1 , and backward E,. sequences as:

E,= Bo(S) - Bo(S')
.S. 3') i C,

Suppose now that S', S' - , S"' is a sub-sequence of states from the forward
sequence such that (S', S'V') E C1. Since the portion of El for this sequence alternates sign,
the sum telescopes and we can write for this sub-section:

., BO(S) - Bo(Si-1) = Bo(S') - Bo(St ' - )

and since for this sequence of states, (S' t, S') 4 C, I = i, i+l, i+k-1. we can conclude

that E, is not affected by this telescoping. It is thus clear that in calculating El and E, we only

have to look at sections of either sequence where a change in the type of state transition occurs.
Denoting these places of state transition as S" we have:

El [Bo(S'")-Bo(S'2 )I 4- [Bo(S')-Bo(S'4)] + + [BO(S'2k-!)-Bo(S'k)]

E 2
I [Bo(S'I)-Bo(S' 2k)] + [Bo(S 2 k- I)-Bo(S'2-k- 2)] + + [B,(S'3)-B(S'2 )]

and thus see that E,- E2. An analogous argument can be made for the exponent of Y con-
cluding the proof.
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Knowing that the Markov process is reversible allows us to use the detailed balance
equations (5.1) to prove the following theorem.

Theorem C. 1: The equilibrium probability for state S with transitions rates defined by equations
(5.1) and (5.2) is given by:

[I(S.x,v) C= p9 4.;) -B0 (s) x Y s)

where:
.A.

.A(S) = s,(S)

C =- 1(0,x,y) x
- 8f(0

.=. p ="/p

H(B,(0v V18o f~'(s) - 5 BOI)8(s)'::" ~ ~~F(O,x,y)= [x-n° ,vs-°s 1'] ' x Y

S

Proof" To avoid cumbersome notation let fI(S,x.v) = [I(S). Since the process is reversible we
can use the detailed balance equations to state:

FI(S) q(T(S),S) (C.3)
-l(T,(S)) q(S, T(S))

If s,(S) - we can write equation (C.3) as:

-I(S) V6(s) vV(Sl
r1 ( T ) P

which by using the lemma can be re-written (for the case of a 0-1 transition) as:

['(S) Bo(r,(S))-B,(S) Ba(S) - 8 fTS))SS) =p x Y s, (S)= I (C.4)

We can use this relationship to write 1-(S) in terms of HI(0) by telescoping a product of rate
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ratios. Suppose ij. i%, i3, • g) are the indices of S which are equal to 1. Define the fol-

lowing operator:

F0 - 1
F,= 7, Fj- 1 /=1.2.. ' (S)

Observe that Fo(S) = S and F1t(s)(S) = 0 (a vector of all zeros). We can then write equation

(C.3) as:

H(0) [I(Fo(S)) HI(F,(S)) H(FWjs)-(S))
- q(Fi(S), F0(S)) q(F,(S), F1(S)) q(Ff,5) (S). Ft,1 -I (S))

q(Fo(S).F 1(S)) q(Fi(S),F 2(S)) q(F ) -I(S), Fv ,f)(S))

Which can be simplified by using equation (C.4) to:
.A1'S.q-I ;-

[I(S) I. B0(F,.(S))- BoF,(S) I Bj(FS)) -B(F-(S))H(S Po tfs) x 1,-o .1

Once again these sums telescope and we are left with:

H(S) Vp .(S) 8O(FfS,(S))-8 0(F0(S)) 8 (F0 (S))-aB(Ff(s)(S))

[1(0) = "

We can thus write:

I(S) - 1(0) p € s) xBOO - 0(S) 8 s) - 81()

and using the fact that BI(O) - 0 and defining C = [(0) xa0 we finally obtain:

H(S) - C PI(S) x-8 0(S) yB 1(S) (C.5)

We can determine [(O) by using the normalization constraint I U(S) = I to determine the

equation for [H(0) given in the statement of Theorem C.I.
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