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ABSTRACT

L /Lih present a brief survey of the current state of the art in network
ON reliability. We survey only exact methods; Monte Carlo methods are
not surveyed. >

: s

o “Most network reliability problems are, in the worst case, NP-hard and

:ﬁ are, in a sense, more difficult than many standard combinatorial optimi-
ng zation problems:n)

g.>A1though the above sounds very discouraging, there are in fact linear

and polynomial time algorithms for network reliability problems of
) special structure.tD

k'\BHe review general methods for network reliability computation and dis-
cuss the central role played by domination theory in network reliability

o computational complexity. We also point out the connection with the

more general problem of computing the reliability of coherent structures,
& {c-£.Barlow-and—Proschan (1981)}>) The class of coherent structures
) contains both directed and undirected networks as well as logic (or
;ﬁg fault) trees without not gates. This is a rich area for further research.
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1. INTRODUCTION

Figure 1 is a well-kno;n example of a computer communication network.
A two-terminal reliability problem would be that of computing the probability
that the distinguished node labelled UCSB can communicate with the distin-
guished node labelled CMU via some set of arcs or edges. Edges may be sub-

X ject to failure. In this paper, the edge success probabilities are assumed

asa e s

known and the associated success events are assumed independent given those

[Fe.

probabilities. A typical network reliability problem is to calculate effi-
ciently the probability that a specified set of nodes can communicate with

each other at a given time. Edges may be either directed or undirected, the

AR A

direction, when it applies, will be denoted by an arrow on the edge.

§ “ In this paper, we present a brief survey of the current state of the

'Y art in network reliability. We survey only exact methods; Monte Carlo methods
i are not surveyed. There are many papers in this field, some give methods to
'3 simplify or solve the problems while others calculate the complexity of net-

3 work reliability problems. In 1975, Rosenthal showed that certain fault tree
o2 and network reliability problems are inherently difficult and almost certainly
5 have no fast algorithm. Since then, this class has grown to contain a number
:i of other network reliability problems and some of the questions that he raised
f regarding other related problems have been answered.
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€£ - We begin with a very brief introduction to the theory of computational
‘gé complexity and NP-completeness. More details can be found in Garey and

3 * Johnson (1979). An algorithm is a polynomial time algorithm if for a

EE; problem of size n , its running time is bounded by a polynomial in n .

;; Any algorithm that is not a polynomial time algorithm is generally referred
& to as an exponential time algorithm. In combinatorics, the so-called

_E; "satisfiability" problem is in the class NP-complete, i.e., given an arbi-
_;ﬁ trary Boolean expression in product of sums form, determine whether or not
" there exists an assignment of values TRUE or FALSE to the variables which
 2: makes the entire expression TRUE (a Boolean expression can be obtained for
i: every network in terms of Boolean indicators for the edges and nodes). A
;? problem P 1is said to belong to the class NP-complete if (i) given a pur-
éi ported solution its validity can be checked in polynomial time, (ii) the

{i ' existence of an algorithm to solve P in polynomial time implies the exis-
o tence of algorithms to solve the satisfiability problem in polynomial time.
 33 It is generally believed that no polynomial time algorithm exists for any
o

fh of the NP-complete problems. Any problem not NP-complete but which can

':’ be proved to be at least as hard as NP-complete problems is known as an

;§ NP-hard problem.

‘21 Most network reliability problems are, in the worst case, NP-hard

“) [Ball (1977 and 1980)]. Network reliability problems are, in a sense, more
;g difficult than many standard combinatorial optimization problems. That is,
,iﬁ given a tentative solution to a combinatorial problem, often its correct-
2% , ness can be determined in polynomial time. However, given a purported so-
§§ lution to a reliability problem, it cannot even be checked without comput-
?? ing the reliability of the network from the beginning.
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Although the above remarks sound very discouraging, there are in fact

) ’-"’ﬁ‘:"(’t .’FZ%:
»

linear and polynomial time algorithms for network reliability problems of

& special structure. These will be reviewed in Section 3. In Section 2,

é; we review general methods for network reliability computation and discuss
%1

2 the central role played by domination theory in network reliability com-

) putational complexity. We also point out the connection with the more gen-
%3

»? eral problem of computing the reliability of coherent structures [cf. Barlow
i and Proschan (1981)]. The class of coherent structures contains both di-

~ rected and undirected networks as well as logic (or fault) trees without

‘{ not gates [cf. R. R. Willie (1978)]. This is a rich area for further re-
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* 1 .
Y- 2. COMPUTATIONAL COMPLEXITY OF FACTORING ALGORITHMS: DOMINATION THEORY !
»:
% Consider a graph G = (V,E) with vertex set V and edge set E = -
. |
N {1,2, ..., n} . Vertices do not fail, but at an instant of interest, an i
[
ﬁs edge 1 has reliability Py » independent of the states of other edges.
* I
N |
2 Figure 2 is a network graph with edge set E = {1,2,3,4,e} . Since no ar- ;
3?3 rows appear on edges, this is an undirected network. The graph, together
ES with the distinguished nodes K = {s,t} , define a network reliability
kX
e problem - namely, calculate the probability that s and t can communi-
]
:1 cate. The distinguished nodes also define the topology of the problem - ;
’ﬁj namely, the family of minimal path sets, P = [{1,3},{1,2,4},{e,4},{e,2,3}] .
™ (A minimal path set is a minimal set of elements whose functioning implies
?
o that the distinguished nodes can communicate.) A different set of distin-
e,
‘2 . guished nodes would define a different topology.
2
¥
a
;_'l
»
S UNDIRECTED TWO-TERMINAL NETWORK
%
FIGURE 2
i
;g Figure 3 is a rooted directed graph with distinguished node set K =
4;"
- {s,t,v} . The "root" is vertex s , the unique node with no entering edges.
:ﬁ: ) The problem is to compute the probability that s can communicate with
'gz both v and t . The topology for this problem is defined by the family
OB
P of minimal path sets P = [{2,5},{1,3,5},{2,e,4},{1,3,4},{1,2,4}] .
s
A
...4
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DIRECTED NETWORK

FIGURE 3

Graphically, a minimal path for this problem is a “rooted tree." For

Al B Bl g s

example, the following acyclic rooted directed graph is a "tree" correspond-

ing to Figure 3.

ey

: v
‘ .
; -
. 8 3 t |
1 4 ]
ROOTED TREE !
FIGURE 4 ‘ ]

Since, historically, not much emphasis has been placed in the reli-

SN SToal

ability literature on computational complexity and because these problems

are, in general, NP-hard, many different algorithms have been suggested to
solve these problems. Many algorithms are based on minimal path sets and/or [
cut sets (a minimal cut set is a minimal set of elements whose failure im-
plies that some distinguished nodes cannot communicate). In general, how-

ever, it is neither necessary nor desirable to find the family of minimal

paths or cut sets in order to calculate network reliability.
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The reliability of a graph, G , with distinguished nodes K , is the
probability, RK(G) , that all elements of at least one minimal path set
are working or one minus the probability that all elements of at least one
minimal cut set have failed. Note that RK(G) depends on the distinguished
node set KCV as well as G . Different methods exist to evaluate this
probability. These methods are quite general and can be used relative to
any system reliability problem. We shall roughly classify them into three
main classes. Let Ai denote the event that all elements in the ith mini-

mal path set are functional and Zi denote the complement of this event.

Let p be the number of minimal path sets.

(i) The Inclusion-Exclusion Method

P n
G =Pl u aA]l-= PQA,) - ) P[AA,] + ...
x [1=1 1] 121 S =1 jzi 1

2.1)
r-1

+ CLPTRIAA, AT

If there are p path sets, then this calculation involves

2p -1 terms. In some cases, two different intersections of

Ai's will correspond to the same event so that these different

intersections of Ai's will have the same probability. If one

intersection consists of an odd number of Ai's and another

intersection consists of an even number of Ai's s their prob-
abilities in the inclusion-exclusion expression will cancel.
Satyanarayana and Prabhakar (1978) and Satyanarayana (1982)
give algorithms that generate only the non-cancelling terms.
In the reduced inclusion-exclusion expression, there will be a

coefficient for the term corresponding to the event AlAz cen Ap .

(This event will in general correspond to several different

intersections.) The coefficient for this term is called the
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. stgned domination, dK(G) . This coefficient is the number of
odd formations of G minus the number of even formations of

* G . (A formation is a set of minimal path sets whose union
constitutes the edge set E . It is odd (even) if it has an odd
(even) number of minimal path sets in it.) The absolute value of
this coefficient is called the domination, DK(G) = IdK(G)I . As
we shall see, this number is a measure of the computational com-
plexity of certain factoring algorithms for undirected networks.
The network corresponding to Figure 2 has 6 formations of which
4 are odd and 2 are even so that dK(G) = 2 1in this case.

(ii) Sum of Disjoint Products

Re(G) = P(A)) + p(KlAz) + ...+ p(xlxz ) . (2.2)

Zp_lAp
For p path sets, there are p terms but the time needed to

. generate each term may be exponential in p . Most methods based
on Boolean techniques belong to this class. Such methods have
been proposed by Abraham (1979), Fratta and Montanari (1973),
Aggarwal, Misra and Gupta (1975), etc. One proposed by Lee (1979)
for flow networks can easily be modified by using concepts of
Satyanarayana (1982) to give the reliability of communication
networks. This method, based on the idea of using backtracking
and depth first search introduced by Gabow and Myers (1978), is
the most efficient method in this class for the undirected all-
terminal and the directed source-to-all-terminal problems; i.e.,
the distinguished set of vertices is the set of all vertices of the
graph. The amount of computational work required is proportional to 1

the number of spanning trees or rooted spanning arboresences. [See

Deo (1974) for a detailed discussion of graph theory concepts.]
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j . (iii) Pivotal Decomposition or Factoring

If R(G| e 1is the reliability of G under the condition

{i ) that edge e 1is working and R (G | € the reliability of G
f% under the condition that edge e 1is not working, then using

E: the pivotal decomposition [cf. Barlow and Proschan (1981)],
8 R©) = p R | & + (1 - pIR (G | O . (2.3)
:. RK(G) for any graph G can be computed by repeated applica-

é tion of this decomposition. Undirected graphs have some special
lg properties that can be used to simplify this method. If the

o vertices are assumed to be working, then RK(G | e 4s the same
}S as RK(Ge) where G_ 1is the graph obtained from G by delet-
:S ing edge e and merging its end points. Similarly, RK(G | e)
. is the same as RK<G - e) where G - e 1is the graph with e

? deleted but no vertex deleted. These schemes have been dis-

3 cussed by a number of writers, among them, Moskowitz (1958) and
,i Misra (1970). 1In the literature, the above relationship has
,gf been referred to as the Factoring Theorem. It is important to
3 note that this method can be employed using the graph repre-

" sentation but without knowing the minimal path sets. However,
§ unless some kind of probability reductions are performed (e.g.,
" parallel and series reductions) after each pivot, this method
f: will be equivalent to state space enumeration.
322 The Factoring Algorithm for Undirected Graphs

<
‘: A factoring algorithm for computing K-terminal reliability would be

: equivalent to state space enumeration were we not to make simple probability
25
by
v

:‘xﬁ
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reductions as the algorithm proceeds. We recursively apply Equation (2.3),
making probability reductions as we go. The edge selection strategy for
computing (2.3) attempts to avoid creating subgraphs with irrelevant edges.

Figure 5 shows the binary computational tree resulting from using the
factoring algorithm for the two-terminal problem corresponding to the graph
at the top of Figure 5 with distinguished nodes s and t , so that K =
{s,t} . 1In the initial step, we pivot on edge e forming two subgraphs:
Ge , corresponding to e working, and G - e, corresponding to e failed.
Parallel and series probability reductions are now possible. 1In a parallel
probability reduction, two edges, say 2 and 3 in Ge , are replaced by a
single edge with associated probability P, + Py - PyP3 - Likewise in Ge s
this new edge with edge 5 are in series. The two edges in series are then
replaced by a single edge with associated reliability (p2 + Py - p2p3)p5 .
(In Figure 5, the parallel and series reductions are not shown.) Pivoting
now proceeds on edge 4 resulting in two additional subgraphs, each of which
can be reduced to a single edge by series and parallel probability reduc-
tions. The "leaves" of the tree are the four subgraphs at the bottom of
the tree.

If each edge i has probability p of working, it can be shown
using the binary computational tree (illustrated in Figure 5) that the sys-

tem reliability in this case is

RK(G) = pz(((((p v P)P) u P)P) 1 p) +PQ - P)(((p 1 p)p)(p2 1 p))

+pA-p (G N1 G+ A -G 1 ppd

8
= (93 + p“ + ps - 596 + 4p7 -p)+ (2p4 - p5 - 4p6 + 4p7 - ps)
8 8
+ (394 - 495 - p6 + 397 -p)+ (p3 - 2p4 + 2p5 - 396 + 3p7 -p)
= Zp3 + 4p4 - Zps - 13p6 + 1427 - 4p8 .
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The lower case "ip" operator, u. , corresponds to calculating the reli-

ability of parallel edges; i.e.,
Py 4 Py =Py + Py - PyPy -

In Figure 5, Si =] - Py - The four graphs at the bottom of the tree

are the leaves of the tree and each has domination one since each is
series-parallel reducible (Chang, 1981). The domination of the top graph,
it turns out, is DK(G) = 4 (the number of "leaves" at the bottom of the
tree) and the tree has 2DK(G)- 1 = 7 nodes so that the computational run-
ning time is proportional to the domination. Satyanarayana and Chang (1983)
found that in general the number of leaves in the binary computational tree
using a factoring algorithm with series and parallel probability reductions
is at least equal to the domination. Using a simple edge selection strate-
gy, they further showed that it is possible to create a backtrack structure
which has exactly DK(G) leaves where DK(G) is the domination of G .
Therefore, this edge selection strategy is optimal for factoring algorithms

using series and parallel probability reductions.

Domination Theory for Coherent Systems

A network graph G with distinguished nodes K CV has a topology
defined by the minimal path sets P = [Pl,Pz, cees Pp] . The network may
have both directed and undirected edges. By definition, all nodes K can
communicate if and only if all edges in at least one minimal path set oper-
ate. In Barlow and Proschan (1981), a set of edges or components E , and
a family of minimal path sets, P , is called a coherent system, (E,P) ,
if P = [PI’PZ’ cees Pp] is a minimal family, i.e., no P, 1s contained

i

P
in another member of the family and E = U P1 . Coherent systems include
i=1

.............
.....
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all network graphs as well as logic trees (or fault trees) without not gates.

A k-out-of-n system with n > 2 and 1 < k <n 1is a coherent system which

f.\ cannot be represented as a network (unless replicated edges are allowed).

f‘i The two-terminal network in Figure 2 will be used to illustrate ideas.

3 For this example, E = {1,2,3,4,e} while P = [{1,3},{1,2,4},{e,4},{e,2,3}] .
' By pivoting on component e ¢ E , we create two subsystems, correspond-
,f ing to the system with e failed and to the system with e perfect, res-
pectively. Let P(e) = (p, | e e P, and P, ¢ Pl and P(e') = [P, | e ¢ P,
\ and Pi ¢ P] . Then

P = Pe) UP(e") .

iy -
»

In our example, P(e) = [{e,4},{e,2,3}] and P(e') = [{1,3},{1,2,4}] . In

\.:i

: all cases, v l’i CE-e . Inour example, U Pi = E - e so that
“n 3

o, ", 1] L]

. P eP(e’) PeP(e')

- . (E - e,P(e')) 1s coherent and corresponds to our system with e failed.
” R

ey

b7 1f U P:l CE-e, then (E - e,P(e')) would have no formations so that
ﬂ P,eP(e')

W i

y in this case d(E - e,P(e')) =0 and (E - e,P(e')) would be noncoherent.
.3"‘ (In this setup, d(E,P) denotes signed domination.)

‘;:,: To describe a system with e perfect, let

-.::: P—e-[Pl-e,Pz-e, ooy Pp—e] .

%

s If e¢P, ,then P, is included as it is. Let M[P - e] be the set
oy

o minimization of P - e . In our example,

G

2

g P-e=[{1,3},{1,2,4},{4},{2,3}]

"_‘ and

Yoty

1,
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i
31 . since {4} C {1,2,4} . 1In this case,
ol
x UA, =E-e,
.
; A eM[P-e]
‘.: i
X
-j so that (E - e,M[P - e]) corresponds to our example system with e
perfect. In general, we only know that
:3 U Ai CE-e

AieM[P—e]

so that (E - e,M[P - e]) might be noncoherent.

The following signed domination theorem is proved in Barlow (1982). i

It was first proved by Satyanarayana and Chang (1983) for undirected networks.

i Theorem 2.0: (Signed Domination Theorem)

For any coherent system (E,P) and e ¢ E ,

:t .
: d(E,P) = d(E - ,M[P - e]) - d(E - e,P(e")) .
DA
4
In our example, d(E - e¢,M[P - e]) =1 and d(E - e,P(e')) = -1
55 so that d(E,P) = 2 .
= Using Theorem 2.0 and induction, it is easy to verify the following

"

corollary for undirected networks.

Corollary:

For a coherent system corresponding to a K-terminal undirected network

problem,
dE,P) = 1)*"pE,p)

vhere D(E,P) = |d(E,P)| 1s the domination, n is the number of edges ‘

and v d1s the number of vertices or nodes.
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S B Satyanarayana and Chang (1983) proved the following domination theorem.
A

' . Theorem 2.1: (Domination Theorem)

Q: For any K-terminal undirected graph,

A

& D(E,P) = D(E - e,M[P - e]) + D(E - e,P(e')) .

;i Proof:

3 -

By Theorem 2.0,

Al

d(E,P) = d(E - e,M[P - e]) - d(E - e,P(e")) .

i

X By the corollary to Theorem 2.0,

¥

N d(E,P) = (-1 pee,p)

3

} 3

#

By if the undirected graph has n edges and v nodes. The subgraph corre-
« sponding to e working has signed domination

N d(E - eM[P - e]) = (1)@ V=D _ o yip - o))

'3 since e has been contracted and its two end vertices merged into one.

‘ﬁ Similarly, the subgraph corresponding to e failed has signed domination

d(E - e,P(e)) = (-1) PV _ e pe'))

Qé since only edge e 1is deleted. Hence,by Theorem 2.0,

-1)=(v-

- a(E,P) = (1D o up - e

3 - 0OV E ey

5

pe
ok
-
hy
i
b
.
:

: - (1)@ D-O-1)+1p 0 o MIP - e]) + D(E - e,P(e"))] . Q.E.D.

The domination theorem is in general not true for directed graphs.

For example, the domination of the cyclic directed graph in Figure 3 is zero.
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- (In fact, all directed networks with cycles have domination zero [cf. R. R.

Willie (1980)]).) However, if we pivot on e ,we obtain a subgraph corre-
sponding to e deleted which has positive domination. Hence, the domina-
tion theorem is not true for this example.

From Theorem 2.1, it can be shown that the computational complexity of
any factoring algorithm for undirected networks based on pivoting and par-
allel and series reductions will require at least 2D(E,P) - 1 steps.
(Every binary computational tree has number of nodes equal to twice the
number of leaves minus one.) By using an edge selection strategy for which
both D(E - e,M[P - e]) >0 and D(E - e,P(e')) > 0 , the number of steps
is exactly 2D(E,P) - 1 . This is illustrated by Figure 5.

The factoring algorithm, namely pivoting followed by parallel and
series probability reductions and repeated until only single edges or "K
trees" are obtained, can be applied to any coherent system reliability
problem. (A K-tree of a graph G with respect to K 1is any minimal graph
which connects all the distinguished nodes in K .) However, the optimal
edge selection strategy is only known because of the domination theorem.
The domination itself is mainly of theoretical interest. In the worst case,
the domination will be exponential in the number of edges and would normally
not be computed. It does, however, offer a sort of theoretical benchmark.
For example, if we delete all arrows from a directed graph, the resulting
undirected graph will have a domination value which will provide an upper
bound on the best factoring algorithm for the directed network. This is so
because the domination of the two subgraphs created by pivoting on an edge
in the undirected graph will be at least as much as the domination of the

undirected graphs corresponding to the subgraphs obtained by pivoting on

the same edge in the directed graph.
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3. SPECIAL STRUCTURES

Although the factoring algorithm can, in principle, solve all reli-
ability problems, it is, in the worst case, an exponential time algorithm.
For very large networks,we need linear or polynomial time algorithms in
order to calculate system reliability in "reasonable" computing time. By
introducing additional probability reductions, such algorithms have been
found for both directed and undirected network graphs of special structure.

An undirected graph G = (V,E) 1is said to be basically series-parallel
if the graph (without distinguished nodes) can be reduced to a single edge
by series and parallel replacements. A replacement as opposed to a prob-
ability reduction does not involve the probability measure which may be
associaced with the graph. For example, Figure 2 can be reduced to a single

edge by series and parallel replacements as follows:

4 \ Q
[
C :
1
— ' 2 I — |
\ / |
\\ ’; 6

SERIES AND PARALLEL REPLACEMENTS

FIGURE 6

Note that vertices s and t are no longer distinguished. Edges e and
1 are replaced by a dotted line using a series replacement as are edges 3
and 4. Finally, the remaining three edges in parallel are replaced by a

single edge. No probability calculations are involved.
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The network in Figure 1 on the other hand is not basically series-

parallel. Neither is the network in Figure 7.

EXAMPLE NETWORK WHICH IS NOT BASICALLY SERIES-PARALLEL

FIGURE 7

A directed network is basically series-parallel if the underlying un-
directed graph (without arrows on edges) is basically series-parallel.
For example, the network in Figure 3 is basically series-parallel.

A. Satyanarayana and R. K. Wood (1982) provide linear time algorithms
for calculating the K terminal reliability of undirected networks which are
basically series-parallel. They introduce probability reductions called
polygon-to~chain reductions to accomplish this.

A. Agrawal and A. Satyanarayana (1983) provide linear time algorithms
for calculating the source to K terminal reliability of rooted, directed
networks which are basically series-parallel. One node in K is designated
the root and the reliability problem is to calculate the probability that the

root can communicate with the remaining K C V vertices.
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i
;% - The Minimal Domination of Undirected Graphs

b . The minimal domination M(G) of a graph G 1is defined by

Z M(G) = minimum D_(G)
K:|K|=2 K

S vhere K 18 a distinguished set of nodes of G . While the domination

'§ DK(G) depends on both the graph G and the distinguished set of nodes

b7 K , M(G) obviously depends only on G . Whereas DK(G) =] 4if and only
g if G 1is reducible to a "K-tree" by series and parallel probability re-

4 ductions, [Satyanarayana and Chang (1983)], M(G) = 1 if and only if G

is basically series-parallel [R. K. Wood (1982)]. Thus, the graph at the

; top of Figure 5 has DK(G) = 4 where K= {s,t} , but M(G) = 1 since G
% is basically series-parallel. Using series and parallel probability reduc-
'i ’ tions and the po;ygon-to-chain reduction in Table 1, RK(G) can, in this
: case, be computed without pivoting so that a linear time algorithm exists
3 for this problem and in fact for all such problems where G 1s basically
% serieg-parallel. There are 6 additional polygon-to-chain reductions nec-
I~ essary to treat cases where |K| > 2 . [See R. K. Wood (1982).]

3 Figure 8 provides an example graph where the domination is DK(G) =
: 2UEI-2/3 M@G) =1 .

X A O
- 8 e o o t

;i ’ -0 &,

ﬁ
' : FIGURE 8
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The minimum domination theorem was proved by R. Procesi-Ciampi (1981). |

5 [See also Satyanarayana and Procesi-Ciampi (1981).]

By e

Theorem 3.1: (Minimum Domination Theorem)

For any undirected graph G = (V,E) ,

bt re g

L - Bt

M(G) = M(Ge) + M(G -e) .

,r‘”.

P

R. K. Wood (1982) used this and other properties of minimum domination to

evaluate the computational complexity of undirected networks relative to

pivoting and polygon-to-chain reductions.

S AN 2

péadyits X IR R

A

it

L

0 " 'tk o
S AN TR Yo

1 =

s Al L

o 8

RN T I I L B A P S I IURE A .
. - L) Y

“ N
-

Sy

S T T e, R

MO L A T A T Rt
e W, e RS

WALHE LS EA TR ERERE RN RN B



v .. LM e I - s . . PN - N -
RS N vl A e e T ) f P C . LIPS o e . e - -

)
. e

AN 4. GONCLUSION |
by . A theoretical breakthrough occurred in 1978 with the publication by |
- Satyanarayana and Prabhakar which first introduced the idea of domination |
3 into network reliability. This paper was concerned with directed graphs
and suggested that directed cyclic graphs have domination zero, a result
; rigorously proved by R. R. Willie (1980). In 1981, Satyanarayana and
§ Chang (see their 1983 paper) first noticed the connection between domina-
? tion theory and the computational complexity of factoring algorithms. This
‘3 was followed by the notion of minimal domination and the development of
’3 linear time algorithms for special structure graphs [cf. R. K. Wood (1982)].
X The probability measure associated with the graphs in the literature
3 surveyed is extremely simplistic and unrealistic for many practical network
: : reliability problems. However, a theoretical basis now exists for more
research into realistic probability measures. At the present time, there is
a 7 no comparable theoretical basis for analyzing the computational complexity
3 of logic (or fault) trees. These structures are perhaps more useful in
5 practice than networks. Further research is badly needed in this field.
o
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