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• ; ,ABSTRACT

r.4

We present a brief survey of the current state of the art in network
reliability. We survey only exact methods; Monte Carlo methods are
not surveyed.

-'Most network reliability problems are, in the worst case, NP-hard and
are, in a sense, more difficult than many standard combinatorial optimi-
zation problems.-

" >Although the above sounds very discouraging, there are in fact linear
and polynomial time algorithms for network reliability problems of
special structure.-

">We review general methods for network reliability computation and dis-
cuss the central role played by domination theory in network reliability
computational complexity. We also point out the connection with the
more general problem of computing the reliability of coherent structures.
e f. The class of coherent structures

contains both directed and undirected networks as well as logic (or
fault) trees without not gates. This is a rich area for further research.
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A SURVEY OF NETWORK RELIABILITY

by

Avinash Agrawal and Richard E. Barlow

1. INTRODUCTION

Figure 1 is a well-known example of a computer communication network.

A two-terminal reliability problem would be that of computing the probability

that the distinguished node labelled UCSB can communicate with the distin-

guished node labelled CMU via some set of arcs or edges. Edges may be sub-

ject to failure. In this paper, the edge success probabilities are assumed

known and the associated success events are assumed independent given those

probabilities. A typical network reliability problem is to calculate effi-

ciently the probability that a specified set of nodes can communicate with
- each other at a given time. Edges may be either directed or undirected, the

direction, when it applies, will be denoted by an arrow on the edge.

In this paper, we present a brief survey of the current state of the

art in network reliability. We survey only exact methods; Monte Carlo methods

are not surveyed. There are many papers in this field, some give methods to

simplify or solve the problems while others calculate the complexity of net-

work reliability problems. In 1975, Rosenthal showed that certain fault tree

and network reliability problems are inherently difficult and almost certainly

have no fast algorithm. Since then, this class has grown to contain a number

of other network reliability problems and some of the questions that he raised

regarding other related problems have been answered.

.4 " ' "" - . '. . - " . . .: i. . ..... . i.. . ....' ' ' :' / .
4 , , e o . o . . . . . , . . ° ° . ' '
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We begin with a very brief introduction to the theory of computational

complexity and NP-completeness. More details can be found in Garey and

Johnson (1979). An algorithm is a polynomial time algorithm if for a

problem of size n , its running time is bounded by a polynomial in n

Any algorithm that is not a polynomial time algorithm is generally referred

to as an exponential time algorithm. In combinatorics, the so-called

"satisfiability" problem is in the class NP-complete, i.e., given an arbi-

trary Boolean expression in product of sums form, determine whether or not

there exists an assignment of values TRUE or FALSE to the variables which

makes the entire expression TRUE (a Boolean expression can be obtained for

every network in terms of Boolean indicators for the edges and nodes). A

problem P is said to belong to the class NP-complete if (i) given a pur-

ported solution its validity can be checked in polynomial time, (ii) the

existence of an algorithm to solve P in polynomial time implies the exis-

tence of algorithms to solve the satisfiability problem in polynomial time.

It is generally believed that no polynomial time algorithm exists for any

of the NP-complete problems. Any problem not NP-complete but which can

be proved to be at least as hard as NP-complete problems is known as an

NP-hard problem.

Most network reliability problems are, in the worst case, NP-hard

[Ball (1977 and 1980)]. Network reliability problems are, in a sense, more

difficult than many standard combinatorial optimization problems. That is,

given a tentative solution to a combinatorial problem, often its correct-

ness can be determined in polynomial time. However, given a purported so-

lution to a reliability problem, it cannot even be checked without comput-

* ing the reliability of the network from the beginning.

ON.
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Although the above remarks sound very discouraging, there are in fact

linear and polynomial time algorithms for network reliability problems of

special structure. These will be reviewed in Section 3. In Section 2,

we review general methods for network reliability computation and discuss

the central role played by domination theory in network reliability com-

putational complexity. We also point out the connection with the more gen-

eral problem of computing the reliability of coherent structures [cf. Barlow

and Proschan (1981)]. The class of coherent structures contains both di-

rected and undirected networks as well as logic (or fault) trees without

not gates [cf. R. R. Willie (1978)]. This is a rich area for further re-

search.

..

.1

.4

-

. ,4 . ' " " , ' . . ¢ ' . - . " " , " . " . " . * . " - " " " . . , . " . . , " . - . . . . . .. .

., , - - . , o ' . . . . . -. o . .. " . . " . . - - .. . . - , . " .*. . . - .. . - . " .
*1 W , . , • J , , ' " • , ' , , , . . . ,. , - . . - . " . . , . . . . . . . , . - ' " . " - . - , . '



5

2. COMPUTATIONAL COMPLEXITY OF FACTORING ALGORITHMS: DOMINATION THEORY

Consider a graph G - (V,E) with vertex set V and edge set E =

{l,2, ..., n) . Vertices do not fail, but at an instant of interest, an

edge i has reliability p, , independent of the states of other edges.

Figure 2 is a network graph with edge set E - {1,2,3,4,e} . Since no ar-

rows appear on edges, this is an undirected network. The graph, together

with the distinguished nodes K - {s,t} , define a network reliability

problem - namely, calculate the probability that s and t can communi-

cate. The distinguished nodes also define the topology of the problem -

namely, the family of minimal path sets, P - [{l,3},{l,2,4},{e,4},{e,2,3}]

(A minimal path set is a minimal set of elements whose functioning implies

that the distinguished nodes can communicate.) A different set of distin-

guished nodes would define a different topology.

e 4

1 3

UNDIRECTED TWO-TERMINAL NETWORK

FIGURE 2

Figure 3 is a rooted directed graph with distinguished node set K -

{s,t,vl . The "root" is vertex s , the unique node with no entering edges.

The problem is to compute the probability that s can communicate with

both v and t . The topology for this problem is defined by the family

of minimal path sets P = [{2,51,{1,3,5},{2,e,4},{1,3,4},{1,2,4}1

,, , . ,. , .. g ... .. ,. .. *, ., ,....,a .. . .. . .. .,..,,. ,. *... °., ., , . . ,.. , - , .. . . .. . . . .. .
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DIRECTED NETWORK

FIGURE 3

Graphically, a minimal path for this problem is a "rooted tree." For

example, the following acyclic rooted directed graph is a "tree" correspond-

ing to Figure 3.

''1

v

ROOTED TREE

FIGURE 4

Since, historically, not much emphasis has been placed in the reli-

ability literature on computational complexity and because these problems

are, in general, NP-hard, many different algorithms have been suggested to

solve these problems. Many algorithms are based on minimal path sets and/or

cut sets (a minimal cut set is a minimal set of elements whose failure im-

plies that some distinguished nodes cannot communicate). In general, how-

ever, it is neither necessary nor desirable to find the family of minimal

paths or cut sets in order to calculate network reliability.

.1
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-The reliability of a graph, G , with distinguished nodes K , is the

probability, RK(G) , that all elements of at least one minimal path set

are working or one minus the probability that all elements of at least one

minimal cut set have failed. Note that RK(G) depends on the distinguished

node set K C V as well as G . Different methods exist to evaluate this

probability. These methods are quite general and can be used relative to

any system reliability problem. We shall roughly classify them into three

thmain classes. Let A denote the event that all elements in the i mini-i

mal path set are functional and Ai denote the complement of this event.

Let p be the number of minimal path sets.

(i) The Inclusion-Exclusion Method

RK(G) = U A 1 = i - i P[AIAj + I "

p-l (2.1)

+ (- )p Ip A1A2  ... A ] .

If there are p path sets, then this calculation involves

2p - 1 terms. In some cases two different intersections of

A 's will correspond to the same event so that these different

intersections of A i's will have the same probability. If one

intersection consists of an odd number of A i's and anotherUi
intersection consists of an even number of A 's , their prob-

i

abilities in the inclusion-exclusion expression will cancel.

Satyanarayana and Prabhakar (1978) and Satyanarayana (1982)

. give algorithms that generate only the non-cancelling terms.

In the reduced inclusion-exclusion expression, there will be a

coefficient for the term corresponding to the event A1A2 ... A

(This event will in general correspond to several different

intersections.) The coefficient for this term is called the

, 4.. 4.,- *.. - , ,,,,- . ..''.- p-. " .--. ..-. -.---.-- *--,< - -'.-..--. 4... ' -".- .-. .. - * . ' -. -L ... .*.-
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signed domination, dK(G) This coefficient is the number of

odd formations of G minus the number of even formations of

G . (A formation is a set of minimal path sets whose union

constitutes the edge set E . It is odd (even) if it has an odd

(even) number of minimal path sets in it.) The absolute value of

this coefficient is called the domination, DK(G) = IdK(G)I . As

we shall see, this number is a measure of the computational com-

plexity of certain factoring algorithms for undirected networks.

The network corresponding to Figure 2 has 6 formations of which

4 are odd and 2 are even so that dK(G) =2 in this case.

(ii) Sum of Disjoint Products

RK(G) = P(AI) + P(;1A2) + ... + P(I ... A A (2.2)

For p path sets, there are p terms but the time needed to

*i generate each term may be exponential in p . Most methods based

on Boolean techniques belong to this class. Such methods have

been proposed by Abraham (1979), Fratta and Montanari (1973),

Aggarwal, Misra and Gupta (1975), etc. One proposed by Lee (1979)

for flow networks can easily be modified by using concepts of

Satyanarayana (1982) to give the reliability of communication

networks. This method, based on the idea of using backtracking

and depth first search introduced by Gabow and Myers (1978), is

the most efficient method in this class for the undirected all-

terminal and the directed source-to-all-terminal problems; i.e.,

the distinguished set of vertices is the set of all vertices of the

graph. The amount of computational work required is proportional to

the number of spanning trees or rooted spanning arboresences. [See

Deo (1974) for a detailed discussion of graph theory concepts.]

% v * * 4 , ,, _ , , ..... . ... . . .. . .. . ......... ....
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(iii) Pivotal Decomposition or Factoring

'If RK(G I e) is the reliability of G under the condition

that edge e is working and RK(G I e) the reliability of G

under the condition that edge e is not working, then using

the pivotal decomposition [cf. Barlow and Proschan (1981)],

RK(G) - PeRK(G I e) + (1 - Pe)iRK(G I e) . (2.3)

RK(G) for any graph G can be computed by repeated applica-

"* tion of this decomposition. Undirected graphs have some special

properties that can be used to simplify this method. If the

vertices are assumed to be working, then RK(G I e) is the same

as RK(G) where G is the graph obtained from G by delet-
*1 e) e

ing edge e and merging its end points. Similarly, RK(G I e)

is the same as RK(G - e) where G - e is the graph with e

deleted but no vertex deleted. These schemes have been dis-

cussed by a number of writers, among them, Moskowitz (1958) and

Misra (1970). In the literature, the above relationship has

been referred to as the Factoring Theorem. It is important to

note that this method can be employed using the graph repre-

sentation but without knowing the minimal path sets. However,

unless some kind of probability reductions are performed (e.g.,

parallel and series reductions) after each pivot, this method

will be equivalent to state space enumeration.

The Factoring Algorithm for Undirected Graphs

A factoring algorithm for computing K-terminal reliability would be

equivalent to state space enumeration were we not to make simple probability

.', -' - . . • " : : .:,..- -,- ' , . , " . . " - ' ' -- " - " . .
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reductions as the algorithm proceeds. We recursively apply Equation (2.3),

making probability reductions as we go. The edge selection strategy for

computing (2.3) attempts to avoid creating subgraphs with irrelevant edges.

Figure 5 shows the binary computational tree resulting from using the

factoring algorithm for the two-terminal problem corresponding to the graph

at the top of Figure 5 with distinguished nodes s and t , so that K

{s,tl . In the initial step, we pivot on edge e forming two subgraphs:

Ge , corresponding to e working, and G - e, corresponding to e failed.

Parallel and series probability reductions are now possible. In a parallel

probability reduction, two edges, say 2 and 3 in G , are replaced by a

single edge with associated probability P2 + P3 - P2P3 . Likewise in Ge

this new edge with edge 5 are in series. The two edges in series are then

replaced by a single edge with associated reliability (P2 + P3 - P2P3)P5

(In Figure 5, the parallel and series reductions are not shown.) Pivoting

now proceeds on edge 4 resulting in two additional subgra~phs, each of which

can be reduced to a single edge by series and parallel probability reduc-

tions. The "leaves" of the tree are the four subgraphs at the bottom of

. the tree.

If each edge i has probability p of working, it can be shown

using the binary computational tree (illustrated in Figure 5) that the sys-

tem reliability in this case is

RK(G) p2 (((((p p)p) U p)p) U p) + p - p)((p L p)p)(p p))

+ p(1 - p)((p(p U p)) U (p2))p + (1 -p) 2 ((p 3 L pp2

3 4 5 6 7 8 4 5 6 7 8(p + p + p 5p + 4p _p) + (2p _p 4p + 4p _p)

+ (3p4 -4p5 p6 + 3p7 _ P ) + (p3 2p4 + 2p5 3p6 + 3p7 p8)

3 4  5  6  7  8

2p + 4p -2p 5 -13p + 14p7 -4p 8
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The lower case "ip" operator, t , corresponds to calculating the reli-

ability of parallel edges; i.e.,

PiL Pj = Pi + PJ - PiP"

In Figure 5, pi W 1 - pi * The four graphs at the bottom of the tree

are the leaves of the tree and each has domination one since each is

series-parallel reducible (Chang, 1981). The domination of the top graph,

it turns out, is D K(G) - 4 (the number of "leaves" at the bottom of the

tree) and the tree has 2DK(G)- 1 - 7 nodes so that the computational run-

ning time is proportional to the domination. Satyanarayana and Chang (1983)

found that in general the number of leaves in the binary computational tree

using a factoring algorithm with series and parallel probability reductions

is at least equal to the domination. Using a simple edge selection strate-

gy, they further showed that it is possible to create a backtrack structure

which has exactly DK(G) leaves where D K(G) is the domination of G .

Therefore, this edge selection strategy is optimal for factoring algorithms

using series and parallel probability reductions.

Domination Theory for Coherent Systems

A network graph G with distinguished nodes K C V has a topology

defined by the minimal path sets P - [P1 ,P 2 , ... , Pp ] . The network may

have both directed and undirected edges. By definition, all nodes K can

communicate if and only if all edges in at least one minimal path set oper-

ate. In Barlow and Proschan (1981), a set of edges or components E , and

a family of minimal path sets, P , is called a coherent system, (E,P) ,

if P - [PIP 2 ' ..., P p] is a minimal family, i.e., no Pi is contained
P

in another member of the family and E - U Pi Coherent systems include
i-l

:*?.- --- - .
0. .
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all network graphs as well as logic trees (or fault trees) without not gates.

A k-out-of-n system with n > 2 and 1 < k < n is a coherent system which

cannot be represented as a network (unless replicated edges are allowed).

The two-terminal network in Figure 2 will be used to illustrate ideas.

For this example, E - {1,2,3,4,e) while P - [{l,3},{l,2,4},{e,4},{e,2,3}]

By pivoting on component e c E , we create two subsystems, correspond-

ing to the system with e failed and to the system with e perfect, res-

pectively. Let P(e) - [Pi I e c Pi and PI c P] and P(e') - [Pi l e J Pi

and Pi c P] . Then

P - P(e) U P(e')

In our example, P(e) - [{e,41,{e,2,3}] and P(e') - [{l,3},{l,2,41] . In

all cases, U P, C E - e . In our example, U P1  = E - e so that

* PcP(e' ) PicP(e')

(E - e,P(e')) is coherent and corresponds to our system with e failed.

If U Pi C E- e , then (E - e,P(e')) would have no formations so that

PicP(e')

in this case d(E - e,P(e')) - 0 and (E - e,P(e')) would be noncoherent.

(In this setup, d(E,P) denotes signed domination.)

To describe a system with e perfect, let

% P - e - [1 - eP 2 - e, ..., P - el

If e i Pi . then Pi is included as it is. Let M[P -e be the set

minimization of P - e . In our example,

P- e [{l,31,{l,2,4},{4),{2,3}]

and

M[P- e] = [{l,3},{41,{2,311
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since {4) C {1,2,41 . In this case,

U Ai  mE e

- AicM[P-e]

so that (E - e,M[P - e]) corresponds to our example system with e

perfect. In general, we only know that

Ui A CE - e
A AicM[P-e]

so that (E - e,M[P - e]) might be noncoherent.

The following signed domination theorem is proved in Barlow (1982).

It was first proved by Satyanarayana and Chang (1983) for undirected networks.

.4 - Theorem 2.0: (Signed Domination Theorem)

For any coherent system (EP) and e c E

d(EP) - d(E - e,M[P - e]) - d(E - eP(e'))

In our examle, d(E - e,M[P - e]) - 1 and d(E - e,P(e')) - -1

so that d(EP) - 2

Using Theorem 2.0 and induction, it is easy to verify the following

corollary for undirected networks.

Corollary:

For a coherent system corresponding to a K-terminal undirected network

problem,

d(EP) - (-1)n-v+lD(EP)

where D(E,P) - Id(E,P)I i the domination, n is the number of edges

and v is the number of vertices or nodes.

" - . .. , .' '- . .' . . " " . ". . . .. " " - ,
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Satyanarayana and Chang (1983) proved the following domination theorem.

Theorem 2.1: (Domination Theorem)

For any K-terminal undirected graph,

D(E,P) - D(E - e,M[P - el) + D(E - eP(e'))

Proof:

By Theorem 2.0,

d(E,P) - d(E - e,M[P - el) - d(E - e,P(e'))

By the corollary to Theorem 2.0,

d(E.P) - (-)n-V+ D(E,P)

if the undirected graph has n edges and v nodes. The subgraph corre-

sponding to e working has signed domination

d(E - e,M[P - el) - (-l)(n 1) (vl)+lD(E - e,M[P - el)

since e has been contracted and its two end vertices merged into one.

Similarly, the subgraph corresponding to e failed has signed domination

d(E - e,P(e')) - (-l)(n-1)-v+lD(E - e,P(e'))

since only edge e is deleted. Hence,by Theorem 2.0,

d(EP) - (-l) (n-)-(v-l)+lD(E - eM[P - e])

- (-l)(n-)-V+D(E - eP(e'))

- (-l)(n-l)-(v-l)+l[D(E - e,M[P - el) + D(E - e,P(e'))] Q.E.D.

The domination theorem is in general not true for directed graphs.

For example, the domination of the cyclic directed graph in Figure 3 is zero.

.................................... . 4- ... ...
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(In fact, all directed networks with cycles have domination zero [cf. R. R.

Willie (1980)].) However, if we pivot on e ,we obtain a subgraph corre-

sponding to e deleted which has positive domination. Hence,the domina-

;' tion theorem is not true for this example.

From Theorem 2.1, it can be shown that the computational complexity of

any factoring algorithm for undirected networks based on pivoting and par-

allel and series reductions will require at least 2D(E,P) - 1 steps.

(Every binary computational tree has number of nodes equal to twice the

number of leaves minus one.) By using an edge selection strategy for which

both D(E - e,M[P- e]) > 0 and D(E - e,P(e')) > 0 , the number of steps

is exactly 2D(E,P) - 1 . This is illustrated by Figure 5.

The factoring algorithm, namely pivoting followed by parallel and

series probability reductions and repeated until only single edges or "K

trees" are obtained, can be applied to any coherent system reliability

problem. (A K-tree of a graph G with respect to K is any minimal graph

which connects all the distinguished nodes in K .) However, the optimal

edge selection strategy is only known because of the domination theorem.

The domination itself is mainly of theoretical interest. In the worst case,

the domination will be exponential in the number of edges and would normally

not be computed. It does, however, offer a sort of theoretical benchmark.

For example, if we delete all arrows from a directed graph, the resulting

undirected graph will have a domination value which will provide an upper

bound on the best factoring algorithm for the directed network. This is so

because the domination of the two uubgraphs created by pivoting on an edge

in the undirected graph will be at least as much as the domination of the

undirected graphs corresponding to the subgraphs obtained by pivoting on

the same edge in the directed graph.

.. . . .. . .. . .. . .. . . . . . • .. . . ... . . .
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3. SPECIAL STRUCTURES

Although the factoring algorithm can, in principle, solve all reli-

ability problems, it is, in the worst case, an exponential time algorithm.

For very large networks, we need linear or polynomial time algorithms in

order to calculate system reliability in "reasonable" computing time. By

*:, introducing additional probability reductions, such algorithms have been

found for both directed and undirected network graphs of special structure.

An undirected graph G - (V,E) is said to be basicaly series-parallel

if the graph (without distinguished nodes) can be reduced to a single edge

by series and parallel eplZacements. A replacement as opposed to a prob-

ability reduction does not involve the probability measure which may be

associaced with the graph. For example, Figure 2 can be reduced to a single

edge by series and parallel replacements as follows:

e e I
a~ 4 II

22 I

1 3/ 3%

SERIES AND PARALLEL REPLACEMENTS

FIGURE 6

Note that vertices s and t are no longer distinguished. Edges e and

1 are replaced by a dotted line using a series replacement as are edges 3

and 4. Finally, the remaining three edges in parallel are replaced by a

single edge. No probability calculations are involved.
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The network in Figure 1 on the other hand is not basically series-

parallel. Neither is the network in Figure 7.

EXAMPLE NETWORK WHICH IS NOT BASICALLY SERIES-PARALLEL .

FIGURE 7

A directed network is baeialy aerties-parallel if the underlying un-

directed graph (without arrows on edges) is baaicaZly 8eries-paral.

For example, the network in Figure 3 is basically series-parallel.

A. Satyanarayana and R. K. Wood (1982) provide linear time algorithms

f or calculating the K terminal reliability of undirected networks which are

basically series-parallel. They introduce probability reductions called

polygon-to-chain reductions to accomplish this.

A. Agrawal and A. Satyanarayana (1983) provide linear time algorithms

for calculating the source to K terminal reliability of rooted, directed .

networks which are basicaZly series-para.~eZ. One node in K is designated

the root and the reliability problem is to calculate the probability that the

root can comunicate with the remaining K C V vertices.

* ~ % . ~ .':.*..,-.
. ..*.- .
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The Minimal Domination of Undirected Graphs

The minimal domination M(G) of a graph G is defined by

M(G) - minimum DK(G)

K:IKI-2

where K is a distinguished set of nodes of G . While the domination

DK(G) depends on both the graph C and the distinguished set of nodes

K , M(G) obviously depends only on G . Whereas DK(G) - 1 if and only

if G is reducible to a "K-tree" by series and parallel probability re-

ductions, [Satyanarayana and Chang (1983)], M(G) - 1 if and only if G

is basicaZly series-parallel [R. K. Wood (1982)]. Thus,the graph at the

top of Figure 5 has DK(G) - 4 where K - {s,t} , but M(G) - 1 since G

is basically series-parallel. Using series and parallel probability reduc-

tions and the polygon-to-chain reduction in Table 1, RK(G) can, in this

case, be computed ithout pivoting so that a linear time algorithm exists

for this problem and in fact for all such problems where G is basically

series-paraUe. There are 6 additional polygon-to-chain reductions nec-

essary to treat cases where IKI > 2 . [See R. K. Wood (1982).]

Figure 8 provides an example graph where the domination is DK(G) -

2 ( 1 1J- 2 ) / 3 but M(G)- 1

0 >e t

FIGURE 8

%... ........... ..................... -.................. ............- .-.
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The minimum domination theorem was proved by R. Procesi-Ciampi (1981).

[See also Satyanarayana and Procesi-Ciampi (1981).]

Theorem 3.1: (Minimum Domination Theorem)

For any undirected graph G - (V,E)

M(G) - M(G e ) + M(G - e)

R. K. Wood (1982) used this and other properties of minimum domination to

evaluate the computational complexity of undirected networks relative to

pivoting and polygon-to-chain reductions.

, e
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4. ONCLUSION

A theoretical breakthrough occurred in 1978 with the publication by

Satyanarayana and Prabhakar which first introduced the idea of domination

into network reliability. This paper was concerned with directed graphs

and suggested that directed cyclic graphs have domination zero, a result

rigorously proved by R. R. Willie (1980). In 1981, Satyanarayana and

N Chang (see their 1983 paper) first noticed the connection between domina-

tion theory and the computational complexity of factoring algorithms. This

,* was followed by the notion of minimal domination and the development of

linear time algorithms for special structure graphs [cf. R. K. Wood (1982)].

The probability measure associated with the graphs in the literature

surveyed is extremely simplistic and unrealistic for many practical network

reliability problems. However, a theoretical basis now exists for more

research into realistic probability measures. At the present time, there is

no comparable theoretical basis for analyzing the computational complexity

of logic (or fault) trees. These structures are perhaps more useful in

practice than networks. Further research is badly needed in this field.

.1

4* . '. ° o " . ° . -. .o- .•. •.• -• -. - - •. .. . . - - - .. . . - . . . .

° . , . g , . %. * *'. . •*t ~ t, a. - . . . %. .. .. . ..t- .
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