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THE TRAVELLING SALESMAN PROBLEM IN GRAPHS

WITH 3-EDGE CUTSETS

by
G. Cornuejols, D. Naddef, and W. Pulleyblank

ABSTRACT

fhe suzhers
In this paper we analyze decomposition properties of a graph which,

when they occur, permit a polynomial solution of the travelling salesman
problem and a description of the travelling salesman polytope by a system

of linear equalities and inequalities. The central notion is that of a

3-edge cutset, namely a set of 3 edges which, when removed, disconnects

thesr

the graph. Conversely, gur approach can be used to construct classes of

graphs for which there exists a polynomial algorithm for the travell}ng L
creer——— ,'5 ; Mustra tfe K

salesman problemf”;;.illustrafé‘zhe approach on two examplesA Halin

graphs and prismatic graphs.
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THE TRAVELLING SALESMAN PROBLEM IN GRAPHS

WITH 3-EDGE CUTSETS

by

G. Corfz"me'jols, D. Naddef, and W. Pulleyblank

1. Introduection

Many NP-hard graph problems become polynomially solvable for
special classes of graphs. For example, the problem of finding 2 maximum
weight stable set in a genmeral graph is NP-hard, but is polynomially
solvable for series-parallel graphs (Boulala, Uhry [2]), for claw-free graphs
(Minty [23], see also Sbihi [27]) and for perfect graphs (Grétschel, Lovasz
aad Schrijver [15]). Many optimization problems on graphs can be
. formulated as integer programs. There is a polyhedron naturally
associated with any integer program, pamely the convex hull of the i
feasible integer solutions. Following the pioneering work of Edmonds on
matchings [8] and matroids {0], the development of a polynomial
algorithm for such a problem bas ofien been very closely related to the
obtaining of a system of linear equalities and inequalities whose solution
set is the corresponding polybedron. Knowledge of such a linear system is
useful for two ressons: First, if the size of the system is small, then general
livear programming methods can be used to solve the integer program.
Second, even when this linear system is large, linear programming duality
provides a good optimality criterion.

T

Recently Grétschel, Lovasz and Schrijver [15] have shown that there
is indeed a close conmection between the problem of finding a polynomial
optimization algorithm and the problem of finding » linear description of
the underlying polybedron. They showed, by making use of the
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THE TRAYELLING SALESMAN PROBLEM 3

polynomially bounded Schor-Kachian ellipsoidal algorithm for linear
programming, that there exists a polynomially bounded algorithm for an |
optimization problem if and only if there is a polynomially bounded '
algorithm for the associated separation problem: given a point z, either
verify that it belongs in the polyhedron or else find a hyperplane that
separates it from the polyhedron. (See [15] for a precise description of this

resuit.)

In fact, their algorithm for finding 2 maximum weighted stable set
in a perfect graph makes use of an earlier theorem of Chvatal which gives
a complete linear system sufficient to define the convex hull of the.
incidence vectors (or characteristic vectors) of the stable sets. The
Boulala-Uhry algorithm for series-parallel graphs is developed in
connection with a2 defining linear system for the stable set polyhedra for
these graphs. Curiously, the Minty algorithm for maximum weight stable
sets in claw-free graphs does not provide an explicit linear description of
the associated ;)olyhedu, and it would be fair to say that the obtaining of

EArais 4 gr v g

such a linear system is one of the outstanding open problems of polyhedral
combinatorics. Giles and Trotter [11] bave shown that such a system will
be less “simple” than for the other classes for which such a system is
known. i

At present, perhaps surprisingly, only very few classes of travelling
salesman problems (TSP’s) are known to be polynomially solvable (see
Gilmore and Gomory [12], Sysio 28], Lawler {20], Garfinkel [10], Cutler [7]
and Ratlif and Rosenthal [26]) . They are generally cases of the
asymmetric TSP and assume 32 special cost structure. To our knowledge
there is no nontrivial class of graphs for which the TSP polytope has been
explicitly described by a system of linear inequalities.

In this paper we show that the TSP can be solved polynomiaily for a

class of graphs which includes, as special cases, Halin graphs and prismatic
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4 CORNUEJOLS ET AL

graphs. This algorithm is based on some more general decompositior
properties which are presented in Section 2. (It is interesting to relate
these decomposition ideas to those of Boulala and Ubry [2].) Sectionp 3
gives the examples of Halin and prismatic graphs whereas Section 4 deals
with polyhedral theorems. The last two sections contain additional results
and extensions. The remainder of this section will be devoted to some

basic definitions and notation.

We let Gm(V,E) denote a graph with vertex set V and edge set E.
If an edge ¢€E is incident with vertices u,v€EV, then we write c==(u,v).
For any SCV we let §S) denote the set of edges with one end-vertex in S-
and the other in V-S, ie., S)={(uv,v)EE:u€S,v¢S). For vEV we
abbreviate §{v}) by §v). When S and V-S each contain at least two
vertices, we call §S) a nontrivisl edge cutset, or simply an edge cutsef, and
call S. and V-S its shores. (For v€V, we call §v) a trivial edge cutset. )
For SQV, we let GXS denote the graph obtained by shrinking (or
contracting) S. That is, the vertices of G XS are all vertices of V-, plus
a new pseudovertex 5 obtained by identifying all vertices of S. The edges
of GX S are defined as follows (Figure 1):

(i) An edge with both ends in S disappears;
(ii) An edge with both ends in V-S remains unchanged;

(ili) An edge of §S) now joins the incident vertex of V-S and the

pseudo-vertex S.

For any SCV we let 7(S) denote the set of edges of G having both
ends in S and we let G{S| denote the subgraph of G induced by the
vertex set S, i.e., G(S|m(S,%(S)). Uf zmm(z(c):e€F) is any fuaction from
E into R then for any EGE we define z(£)mY(2(e):c€E).

A Hamilion cycie of G is a cycle passing through each vertex exactly

once. A Hamilton path between vertices ¢ and v is a path joining 4 and v

oL ISP L . . e e e, e T NN S W .~ -
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THE TRAVELLING SALESMAN PRODLEM 5

Figure 1

which passes exactly oace through each vertex of G. A graph is called
Hamiltonsen if it contains at least one Hamiltoa cycle. A lowr is the
incidence vector of the edges beloaging to a Hamilton cycle. Thus a tour
is a 0-1 vector 2==(2(¢c):c€EE) having |E| components, such that the set of
edges having z(c)m=1 is the edge set of a Hamilton cycle. )

The travelling salesman polytope, TSP(G), is the convex hull of the
tours of G. That is, TSP(G) consists of all those yER® which can be
expressed as a convex combination of tours of G. Therefore, TSP(G) is
the smallest convex polytope in R® which contains all tours of G. Every
extreme point of TSP(G) will be a tour, and conversely, every tour is an
extreme point of TSP(G). )

Now suppose that we are given a vector [m(i(ec):e€E) of real edge
costs. The cost of a set EGE is simply {(E)=Y (l(e):e€E). The
travelling selesmen problem (abbrevisted by TSP) is the following: Given a
graph Gs==(V E) and a vector [m(l(¢):e€E) of edge costs, ind 2 Hamilton
cycle for which the cost of the edge set is minimized. This problem is well
knowa to be NP-hard for general graphs. It has attracted a great deal of
attention in the last two decades and references on the subject are too
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6 CORNUEJOLS ET AL

numerous to be listed here compietely. One can consult for example Little
et al [21], Held and Karp [10] and more receatly, Gritschel (14}, Crowder
and Padberg [6}.

Solving a TSP is equivalent to minimizing Y (/(¢)z(c):¢€E) over all
2€TSP(G), for the minimum of aan linear objective function over a
polytope is always attained at an extreme point, in our case a tour.
Because of the fact that the aumber of Hamilton cycles in 2 graph can
grow exponentially with the number of vertices, the above definition of
TSP(G) does not provide a reasonable means for solving the travelling
salesman problem. However a classical result of polyhedral theory is that
every polytope is the solution set to a finite system of linear inequalities.
For several classes of graphs described in this paper, the size of such a
system for TSP(G) grows linearly with the number of vertices, even
though the number of tours grows exponentially. Thus the polyhedral
results presented here-enable us to solve TSP’s in these classes of graphs
using standard linear programming algorithms as an altel;n;ative to the
direct algorithms presented in the paper.

However a complete description of TSP(G) by a system of linear
inequalities is not known for general graphs. It is known that the number
of essential inequalities in such a system can grow at least exponentiall'y
with the number of vertices. A partial description can be found in
Grotschel and Padberg {16], Grotschel [13], Cornuejols and Pulleyblank (S|
and Grétschel and Pulleyblaak [17].

2. Some Basic Resuits
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THE TRAVELLING SALESMAN PROBLEM

The basie reduction:

Let {¢,f,g} be a 3-edge cutset and let S and V-5 be its two shores.
Assume (see Figure 2) that there are distinct vertices u,v,w, of S incident
with ¢,f.,g respectively. Let L,,,l,e,lw be the costs of the optimal
Hamilton paths between v and v,u and w and v and w respectively in
G|S], where we set this cost to some large value L if no such Hamilton
path exists. (For example, we can let L be twice the sum of the absolute
values of the edge costs plus one.)

Figure 2

Let a,8,¢ be defined by the following system of equations:
a+ fm=l,,
B+ emL

a+ e=L,,.

This system has the unique solution

1
Q-E(Lu'l‘ vt Leo)

CER TS VTS IRT
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8 CORNUEJOLS ET AL

ﬂ-%(L--Ll' + Lu)

1
‘-?(Llu‘Ln"' L)

Now define the vector !’ of edge costs for G XS by letting !’ =={ for all
edges except ¢,/ and g and by letting !‘(c)mi(e)+a , I'(f)=i(f)+ 8,
{!(g)==l(g)+ec. f GXS has no Hamilton cycle or if the cost of an
optimum Hamilton cycle of GX S with respect to [’ is at least L /2 then
G bas no Hamilton cycle. Otherwise the cost of an optimum Hamilton
cycle of GXS, with respect to !/, is the cost of an optimum Hamilton.
cycle of G with respect to [. Furthermore the optimum cycle for GX S
can be extended to am optimum Hamilton cycle of G, with respect to {,
by taking an appropriate optimum Hamilton path of G|S].

Thus, eflectively, the basic reduction reduces the TSP for G to four
TSP's, three for GX(V-S) to compute L,,,L,, and L,,, and one for
GXS. This rather simple observation does, however, bave some useful
algorithmic consequences as observed below.

A S-connected greph is a graph such that at least 3 vertices must be
removed in order to disconneet it. Given a vertex set SCV, let SmV_§,

LEMMA 2.1. Given 3 3-connected graph G and vertex sets S, and 5, snc'h
that |§(S))|==|§ S,)|=3, then at least one of S; and J, is contained in one
of S; and 3.

PROOF: Suppose the conclusion is faise. Then the sets S,NS;, S;N3,
3inS; and SiNT, are all nonempty and so, since G is 3-comnected, each
bas at least three edges in the coboundary. Let J, be the set of edges
joining modes of $;NS, and 3)NT, and let J; be the set of edges joining
nodes of 3NS, and SN Then  [§Sy)I+ &SVl

=HASINS+ AFNS I+ (]SS BT 26, Since
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THE TRAVELLING SALESMAN PROBLEM

|8(S1)|+ |5(S2)|=6 we must have therefore that J,=J,=@ and
|8 S51NS2)|=|H 51N S, )| = |H SINS,)|=|HSiNS>)|=3. But this means that
&S1NS2) can contain at most one edge of ore of &S,) or &§S.), say &S,).
Therefore §35)NS.) contains at most one edge of §S;). Then since
5S1NS;) must contain at least two edges of S.), §SNS.) contains at
most one edge of &S;). Since J,m=@ we have, therefore, that
|4 31N S2)| <2, contradictory to G being 3-connected. ]

We say that a class C of 3-connected graphs is fully reductble if it
satisfies the following:

(i) if GEC has a 3-edge cutset with shores S and I, then both G XS
and GX 5 are in C; and

(ii) the TSP can be solved in polynomial time for the graphs in C which -
do not have a 3-edge cutset. We call such graphs irreducidle.

The basic reduction introduced in this section enables us to

polynomially solve the TSP for the graphs in any fully reducible class.

The basic algorithm:

Input: A 3-connected graph G=(V E) belonging to a fully reducible
class C and a vector of edge costs. |

Output: A minimum cost Hamilton cycle.

Step 1. If G contains no 3-edge cutset, then the TSP polynon;ially
solvable in G, since GEC. Solve the TSP and stop.

Otherwise find a 3-edge cutset with a shore S which is minimal with
respect to set inclusion. Go to Step 2.

Step 2. Solve three TSP's in GX § imposing in turn that each pair
of edges of §S) be in the solution. We can force a pair of edges in §S) to -
be in the solution by giving a large cost to the third edge of S). (Note
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that the minimality of S insures that G X § will contain no 3-edge cutset,
so solving TSP's in G X § is polynomial.)

Step 8. Modify the edge costs of the members of §S) as described in
the basic reduction and recursively apply the algorithm to G X S. Extend
the optimum tour in GX S found by the algorithm to an optimum tour of
G by combining it with the appropriate tour of G X3 found in Step 2.
Stop.

Note that Step 1 can be performed in polynomial time by simply
trying all sets of edges of cardinality three.

This algorithm provides a framework which can be specialized for
specific fully reducible classes. The actual time for such a class will
depend on how efficiently we can find the 3-edge cutset required in Step 1
and how efliciently we cap solve TSP’s in irreducible graphs. In the next
section we show that for the case of Halin graphs, the basic algorithm
specializes to 3 linear time algorithm. i

As mentioned in the introduction, the existence of a polynomial
algorithm for a combinatorial optimization problem is often related to
finding a system of linear inequalities which define the convex hull of its
feasible solutions. When the graph G has a 3-edge cutsei we have a
remarkable polyhedral result relating TSP(G), TSP(GXS) and
TSP(G x 3), where S and T are the shores of the 3-edge cutset.

"

o The basic polyhedral theorem:

~ THEOREM 2.2, Suppose that G has a 3-edge cutset with shores S and
" 5. A linear system suflicient to define TSP(G) is obtained by taking the
:! union of linear systems sufficient to define TSP(G X S) and TSP(G X 3).
. PROOF. Every tour of G induces a tour in GX S and one in GXJ, and
o therefore it satisfies linear systems defining TSP(G X S) and TSP(Gx3).
L |

- .. SRR AP T TS P S S e e TR T Y L . e
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THE TRAVELLING SALESMAN PROBLEM 1

Conversely, we need to prove that every solution # to the union of these
systems can be expressed as a convex combination of tours of G.

Let 2! be the restriction of £ to GXS. The vector z! satisfies the
linear system defining P(G X S) and so can be expressed as a convex
combination of tours of G XS. That is, if T! is the set of tours of GX S,
then z'==Y (N ¢:1€ T!) where X >0 for all t€T" and Y (At €T )=r".

Let ¢,f,9 be the three edges of the 3-edge cutset joining S to 5, and

let

ple,f)mY(\:t €T and ¢, ==t ==1])

B(fg)=Y (Nt ET" and ¢y =i, ==1)

sle,g)=Y (N :tET" and ¢, ==t =1) _
Then

2, -’cl'“(e J )+ “(e v’)
fyemzlamp(e,/ )+ u(/.9) (2.1)

iymzlamp(e,g)+ u(f,9)
Note that the linear system (2.1) together with the values 2,, 3, and
2, uniquely determines the values u(e,f), #(/,9) and u(e,g).

Now let z° be the restriction of 3 to G X5, and let T2 be the set of
tours of G X 5. Anologously we obtain z°=Y}(c,¢:¢t€T?) where o;>0 for
all t€T? and Y}(0y:tET?)m1. We define

Ae,f =Y (0:¢€T? and ¢, =t =1)
S .9)mY (01:t€T? and ¢; mmt, me1)

re,g)=Y (0p:t€T? and ¢, ==t, =1).

h N N, S . TR Py i . S o P P P PO i



12 CORNUEJOLS ET AL

Then Ae./), AS.g) and e, g) satisly the system (2.1), replacing » with ‘
v. So we must have i{e,f Jmu(e,f), AS.g)m=u(/,9) and Ae,f Jmpy(e,f). ‘
Therefore we can combine the tours { in T and ¢/ in T? to obtain s set T :
of tours of G and a set of coeflicients n,>0 for all (€T satisfying
Y (n:t€T)m1 and iy (n t:t€T). Thatis, 7 is a convex combination
of tours of G and the proof is complete. (]

This theorem enables us to obtain a complete linear description of
TSP(G) for any graph G in a fully reducible class provided that we know
a linear descriptioa of the travelling salesman polytopes of the irreducible
graphs in the class. Some examples of this are given in the next section.

3. Some Examples
One method of constructing a fully reducible class is to start with a -
specific set of irreducible graphs aand them close the class under a
composition which is the inverse of the basic reduction. First we introduce
some useful irreducible graphs. .
For certain graphs G=(V E), the polytope TSP(G) is given by the

following linear system:
0<z,<1for all c€EE (3.1)
z(§v))=2 for &l vEV. (3.2)

We call such graphs elementary. For these graphs, not only can we solve
the TSP as a small linear program, but we can solve this linear program
polynomially by reducing it to a weighted bipartite matching problem.
(In fact the linear program minimize ({z:z satisfles (3.1), (3.2)) can be
solved in this way for any graph.) However all elementary graphs we know
bave a sufficiently simple structure that the TSP is more easily solved by
direct methods.

..........
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Conversely, we need to prove that every solution £ to the union of these

systems can be expressed as a convex combination of tours of G.

Let 2! be the restriction of # to GXS. The vector z! satisfies the
linear system defining P(G X S) and so can be expressed as a comvex
combination of tours of G XS. That is, if T!is the set of tours of GX S,
then zl==Y (N £:t€T") where ;>0 for all (€T and Y (A :t €T )1,

Let ¢,f,9 be the three edges of the 3-edge cutset joining S to 5, and
J let
|".:;
X wle,f y= Tt ET" and t,met, =1)
5 B/ 9)= T (M:tET" and ty it m1)
-
::Z:: ple,g)mY (A :t€ET! and ¢, mt, =1)
Then
-_ t,mzlmp(e,f )+ p(e,g) )

2ymzl=mp(e,f 1+ u(f,9) (2.1)

fymzlamy(e, g+ p(f.9).

Note that the linear system (2.1) together with the values i,, Z, and
%, uniquely determines the values u(e,f), #(/.9) and u(e,g).

Now let 22 be the restriction of # to G X 5, and let T? be the set of
tours of G X 5. Anologously we obtain z’==Y(c¢¢:t€T?) where o, >0 for
o all t€T? and Y}(0;:t€T?)=m=1. We define

e,/ )mY (0:t€T? and ¢, ==t =1)

S ,9)mY(0:t€T? and tymmt, ==1)

e, g)mY (o:t€T? and ¢, =ty m1).

LS A i ACk LAl el it i -Sr bt S PO RV L i i e R i .."'."‘_'. .'_' e W TR TN TR TR T TN TR . R - e w To
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12 CORNUEJOLS ET AL

Then Ae.f), AS.g) and Ae,g) satisly the system (2.1), replacing p with
v. So we must have e,/ Jmp(e,f), {/,3)mu(f,g) and fe,f Jmsy(e,f).
Therefore we can combine the tours ¢ in T" and ¢’ in T? to obtain a set T
of tours of G and a set of coefficients 7,20 for all (€T satisfying
Y (m:t€T)m1 and z=m=Y(n ¢:¢t€T). That is, # is a convex combination
of tours of G and the proof is complete. []

This theorem enables us to obtain a complete linear description of
TSP(G) for any grapk G in a fully reducible class provided that we know
a linear description of the travelling salesman polytopes of the irreducible

graphs in the class. Some exampies of this are given in the next section.

3. Some Examples

One method of constructing a fully reducible class is to start with a
specific set of irreducible graphs and then close the class under a
composition which is the inverse of the basic reduction. First we i!modnce

some useful irreducible graphs.
For certain graphs G==(V E), the polytope TSP(G) is given by the

following linear system:
0<z2,<1for all c€EE (3.Y)

2{8{v))=2 for all vEYV. (3.2)

We call such graphs clementary. For these graphs, not oanly can we solve

f:‘f the TSP as a small linear program, but we can solve this linear program
L. polynomially by reducing it to a weighted bipartite matching problem.
(In fact the linear program minimize ((z:z satisfies (3.1), (3.2)) can be

solved in this way for any graph.) However ail elementary graphs we know
have a sufficiently simple structure that the TSP is more easily solved by
direct methods.

ENEI R . e L. . o . . .
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THE TRAVELLING SALESMAN PROBLEM 13

The following is 2 useful tool in showing that 2 graph is elementary:
LEMMA 3.1. (cf Grotschel [14]). Let  be an extreme point of the
polytope defined by (3.1), (3.2). Then !;6{0.%,1} for all ¢€E and,

moreover, the set of edges ¢ with !;,.% partitions into the edge sets of an

even number of vertex disjoint odd cycles.

COROLLARY 3.2. If G does not have two vertex disjoint cycles, then G

is elementary.

This implies that the complete graphs K;, K, and Ks and the
complete bipartite graphs K, and K33 (or, in fact, K3, for n 22 ) are all
elementary. Moreover, we have the following:

LEMMA 3.3. If Gm(V E) is elementary then for any E' CE, the graph
G' =(V,E') is elementary. L
PROOF. A linear system sufficient to define TSP(G') is obtained by
deleting the variables corresponding to ¢e€E-E' from the system (3.1),
(3.2) for G. This is equivalent to adjoining the equations z,=0 for all
¢€E-E' to (3.1)(3.2) for G. (Polybedrally, TSP(G') is 3 face of
TSP(G).) O

In particular, any graph on five or fewer nodes is elementary.

A useful infinite class of elementary graphs is the class of wheels.
For 23, the whee! W, cousists of a cycle containing & vertices, called rim
vertices, plus a centre vertex adjacent to each rim vertex. (See Figure 3)
The fact that wheels are elementary follows from Corollary 3.2. In Section
5 we give other examples of elementary graphs.

Let Gg-( VDEI) and Gﬁ-( VQ,EQ) be two ;raphs. Let "16 V! and
va€V, be two vertices of degree three, say v jw{e,,f,,0,} and
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Figure 3. A wheel

5(vy)m{esf2,92). We say that the graph G is odtained from G, end G;
by S-splicing if it is constructed as follows: The vertex set of G is
(Vi={n1})J(Vz-{v2}). The edge set of G is E;UE, where the edges ¢; and
¢, are identified, as well as the edges f, and f;, and g, and g,. Therefore
in G each of these three edges has one end in V, and the other in V,.

%

&
< /j\‘l

—

(See Figure 4.)

Figare 4. 3-splicing

..............
------------------------
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We will write G=G;” "' +G3¥*"* or sometimes simply G=G,¢G,. or
G=G;'+G,! or GmG)'+G,. Notice that if Gm=G;'#G;*, then G, is
isomorphic to G X (V{v.}) and G, is isomorphic to G X(V-{v,}).

We define the closure ¢ci(C) of a class C of g.nphs with respect to 3-
splicing as follows: GEci(C) if either GEC or there exist G,,G,€cl(C)
such that Ga=G,#G,. The graphs in ¢/(C) which are irreducible with
respect to our basic reduction will all belong to C. If C is a class of
graphs for which we can polynomial solve TSP’s, then ci(C) will be a fully
reducible class of graphs.

If a graph G has no degree three vertex, then it cannot be used in 2

3-splice. If a graph G is not Hamiltonian, and it is used in a 3-splice, then
the result will not be Hamiltonian. Hence the graphs which are useful to
us as “‘building blocks” are those which are Hamiltonian and have at least
one degree three vertex, for.example wheels, X, K33 and some subgraphs
of K. . -

For all these examples, the TSP is easily solved. Note that for the
wheel W, there are precisely & different Hamilton cycles, depending on
between which consecutive pair of rim vertices we visit the centre. A
minimum cost Hamilton cycle can be found in linear time by computin‘g
the minimum, over all pairs /5 of consecutive rim vem'ces.‘ of

l(c,r)+ {(c,r! }~i{r,r') where c is the centre of the wheel.

THEOREM 34. Let C be‘hélm of elementary graphs. Then for any
G=(V.E)€ci(C), TSP(G) is defined by

0<z,<1 for all e€E, (3.4)
z(&v))m2 for all veV, (3.5)
z{C)=2 for all 3-edge cutsets C of G. (3.8)
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PROOF. All the constraints are valid. It follows from repeated
application of Theorem 2.2 (the basic polyhedral theorem) that (3.4) - (3.6)
sufficient. Note that when we perform a 3-splice Gm=G,'¢G;!, the
constraints (3.5) for v, in G, and for v, in G; become the constraint (3.6)
for the 3-edge cutset created by 3-spiicing. (]

Let W be the class of wheels. Then 3.4 applies to c/(W). A subclass
of c/{(W) has received some study on the literature. These are the so
called Halin graphs, or roofless polyhedra which are described as follows:

A Halin graph H=TUC is obtained by taking a tree T having no

vertices of degree two, embedding it in the plane in a planar fashion then

adding new edges to form a cycle C containing all the leaves (degree one
vertices) of the tree in such a way that the resulting graph is planar. (See
Figure 5). These graphs were introduced by Halin [18] as an example of a
class of planar edge minimal 3-connected graphs. They are exactly those
3-connected planar graphs for which one face shares one edge with every
other face. Bondy and Lovast (see [22]) showed that these graphs are
Hamiltonian and moreover, the deletion of any vertex leaves a Hamiltonian
graph. It can also be verified that for each edge ¢, there exists a Hamilton
cycle containing ¢ and another that does not contain e¢. They were
studied from a point of view of matching theory by Lovasz and leér
[22], Pulleyblank {25] and Naddef and Pulleyblank [24]. Recently Sysio
and Proskurowski [29] bave shown that several NP-complete problems are

polynomially solvable for these graphs.

Since Halin graphs are 3-conpected and planar, there is a planar
embedding of such a graph which is unique, up to the choice of the infinite
face. Thus determining whether or not an arbitrary graph is a Halin graph
tequires simply finding a planar embedding, verifying 3-connmectivity, and
then seeing if there exists a face such that the deletion of the edges in its
boundary leaves a tree. Therefore Halin graphs can be recognized in

& ¥ s W ¥ M. 8 v




THE TRAVELLING SALESMAN PROBLEM 17

MRSt
Sa e
g7y B . Y L.

€ 5 004 00
‘afa s e

"
R .
[

34,

Z:;‘
XY
.~
., Figure 5. A Halin graph. : -
'j?. polynomial time.
We can see that the class H of Halin graphs is contained in ¢/(W) as
follows. Let G==TUC be a Halin graph. If T is 3 star then G is 2 wheel.
If T is not a star, then there exists a nonleaf vertex v of T adjacent only
N to leaves of T plus one other nonleaf vertex. Let S consist of v plus all

adjacent leaves of T. Then |§{S)|==3 and G XS is a Halin graph and
Gx7J is 3 wheel. Thus G can be obtained by 3-splicing a wheel to a
. smaller Halin graph. Therefore, by induction, GEc/(W). For a more
detailed description of these ideas for Halin graphs, see [4].

It is easy to see that we can construct precisely the class of Halin
graphs from wheels if we restrict 3-splicing as follows: For any Halin graph

G=TUC we call a vertex v a rim vertezif v is in C. (This is consistent

with our definition for wheels.) Similarly edge ¢ is a rim edgeif ¢ isin C.

TSE Vil YU L'-L‘-‘.‘l‘\-i
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We ouly permit splicing between rim vertices, with the additional
condition that rim edges must be identified with rim edges.

Now we describe how the basic algorithm specializes for Halin
graphs. As we already noted, the TSP in a wheel can be solved in linear
time. In order to find 3-edge cutsets with minimal shores we do the
following. Represeat T as a tree rooted at some nonleaf vertex r, order
the children of each vertex on the basis of the planar embedding of T, and
then perform a postorder scan of T. (In other words, each node is
processed after ail its children have been processed.) When a node is
processed there are three possibilities: if it is a leaf of T it is bypassed; if it.
is a ponleaf vertex v different from r then v together with the adjacent
leaves form 2 suitable set S; if v is equal to r then G is 2 wheel. Note
that when we recursively apply the basic algorithm to G X S, we can start
our postorder scan with the vertex obtained by shrinking S.

Finally, note that GX 3 will be 2 wheel W,. Therefore finding a
minimum cost Hamilton cycle whick uses a prescribed ‘pair of edges
incident with a rim vertex u is easy. If either edge joins u to the centre

vertex, there is a unique possibility. If neither edge joins v to the centre,
there are (-2 possibilities.

Therefore the basic algorithm, specialized to the case of Halin xnph's
can be implemented in time linear in the number of vertices. See [4] for

more details.

A 2- factor of a graph is a set of vertex-disjoint cycles which span the
vertices (i.e. every vertex of the graph belongs to exactly one cycle of the
2-factor). Edmonds {8] has described the convex hull of the incidence
vectors of the 2-factors of a graph (the 2- factor polytope ) by a system of
linear inequalities. In order to describe this system, we require a definition.
A blossormn B=m(S,J) is a subgraph of G consisting of SCV having |S|>3
and an odd cardinality set JC &§S) of edges such that each ¢€J is incident

...........................
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LR Tl T S5 N G Yt Yt WRSE WOE Tt TR NP TR TOA SR TR SO WA ST WAr SR TR TR Wit WP TOur e . AP U WP Y W S A




4 .
Sy

S "[ g 'a.il'.‘. '_';‘:. i-.'_n E"'-"a".‘_

aras

I’{l.l

»
b
I
)

b

b

4

P

THE TRAVELLING SALESMAN PROBLEM 19

with a different vertex of S. We let P?(G) denote the 2-factor polytope of
G.

THEOREM 3.5. (Edmonds [8]) For an arbitrary graph G=(V,E), PXG)
defined by

0<z,<1 forallec € E (3.7)
z(&(v))=2forall vE V (3.8)

2(1(S)+ z(J)<LIS|+ (] /]-1)/2 for every blossom (S,J) of G. (3.9)

In addition to this theorem Edmonds gave a polynomial algorithm to
find a minimum cost 2-factor in 2 graph. Therefore graphs for which every
9.factor is a Hamilton cycle constitute interesting building blocks for 3-
splicing. Note that the fully reducible class obtained as the closure of
these graphs-contains that generated 3s the closure of elementary graphs.
In particular it contains Halin graphs. .

Recently Cornuejols, Hartvigsen and Pulleyblank (3] have described
the convex bull of the triangle-free 2-factors of a graph (i.e. Those 2-
factors in which every cycle has length at least 4) and have given a
polynomial algorithm to find a minimum cost such 2-factor. Thus, 'tl;e
class of graphs where every triangle-free 2-factor is a Hamilton cycle can
be closed under 3-splicing to form a fully reducible class. This class

contains those introduced earlier in this section.

Now we turn to another fully reducible class of graphs, called
prismatic graphs. A graph G, is a prism if it consists of two vertex
disjoint cycles of length p, say with vertices (uy,....u, ) and (vy,...,3),
where in addition each pair u;v; is joined by an edge. (See Figure 6.) Note
that prisms are Hamiltonian and regular of degree 3 and so they generate
Hamiltonian graphs by 3-splicing. A graph is called prismatic if it belongs
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to the closure of prisms under 3-splicing. (See Figure 6.)

Figure 6. The prism G; and a prismatic graph G,*G3+G;.

When p is odd the prism G, has exactly p Hamilton cycles, all using
s pair of edges (45 (% ¥, 1) and o other edge (wyv;) , kyfi,i+ L.
(Here and in the.remainder of this section, the indices of the vertices are
assumed to be defined modulo p, eg. u,, ;mu,.) On the other hll;d, when
p is even, the prism G, has p+ 2 Hamilton cycles, namely the » Hamilton
cycles described above for odd p plus two new cycles H; and H, coataining
all the edges (w;v;) and every other edge of the cycles {u,,..,u,} and
{vy ...,9)}. Whether p is odd or even, 2 minimum cost Hamilton cycle

can be found in linear time.

Next we will show that TSP(G) is particularly simple for a prism. A
simplez a polytope such that, for any extreme point, there is a
hyperplane that does not contain it but contains all the other extreme
points. For example triangies and tetrahedra are simplices whereas squares
and cubes are not. As a consequence, in 2 defining linear system for a
simplex, the number of inequalities required is equal to the aumber of
extreme points of the simpiex. This number is always relatively small. In
fact, as will become c¢'.ar in Section 4, the total number of relations needed

Ak ool e P I TP TP TP L. S VS OO S
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in a linear system defining a simplex (number of equalities and inequalities)
is equal to the number of variables plus one (except for isolated points,
which are simplices and can be defined with just as many equalities as

variables.) Every polytope which is not a simplex requires more relations.

Suppose we are given a polytope SCR® having 3 set W of extreme
points and satisfying a linear system Az<),Czm=d. Then S is a simplex
and our defining linear system is 2 minimal defining linear system if and
only if the following conditions hoid:

(3.10) C consists of n-| W|+ 1 linearly independent rows;

(3.11) A contains |W| rows and for each wEW there is an inequality
az<j3 from Az<} such that aw==J for all wE W\ and ar < 4.

For (3.11) ensures that W is aflinely independent and hence S is a simplex
of dimension |W|[-1. By (3.10), Cz=d is 3 minimal set of equations. An
inequality sz<pg valid for S is essential if and only if there are dim(S)
affinely independent members z of S satisfying az=f. By (3.11) we have
all such essential inequalities, and conversely, all our inequalities are
essential. (See also Section 4.)

THEOREM 3. If G, is a prism, then TSP(G,) is a simplex. When p >3
is odd, 2 minimal defining linear system is: ;

z(& w))=2 for every vertex w of G,,

é z(u; v;)==2

il
{up U, )<1 for k=12,...p.
When p >4 is even, a2 minimal defining linear system is:

z(§w))=2 for all vertices w of G, except one;

t 2(wv;)+ (p-2)[2(up Uy )+ 2(h 04, 1)| S2p-2 for k==12.....p;
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32 2w )+ (p=2)2(H,)2p(p-1) for j=1,2,

I3

where H, and H, are as described above.

PROOF. First suppose that p is odd. Then G, is nonbipartite and it is
well known (and easy to verify) that the equations z(5(w))m=2 for all
vertices w of G, are linearly independent. If we let  be the incidence

vector of the two disjoint cycles of length p, then Z satisfies all of these

equations but ti(u, v;)m0. Therefore the equation éz(u,- v;)=2 is-

i1 i=l
linearly independent of these other equations so (3.10) holds. (Note that
G, has 3p edges and p distinct Hamilton cycles.) Moreover, (3.11) follows
immediately, since for each edge (u,u;., ) there is a unique Hamilton cycle
which does not use this edge.

Now suppose that p is even. Then G, is bipartite and so if.we take
all the degree constraints z(5{w))==2 except one, we have (3.10) satisfied.
Consider 2 Hamilton cycle which uses only two edges of the form (u;v;),
say (s,v;), (8;419+1)- Then it satisfies all of the first p inequalities with
equality except the one corresponding to k==j. It also satisfies the last
two inequalities as equations. The Hamilton cycles H; both satisfy the
first p inequalities as equalities and each also satisfies as an equation the
one of the last two inequalities corresponding to the other. Therefore
(3.11) is satisfied. (]

:
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4. Polyhedral Theorems.

Theorem 2.2 (the basic polyhedral theorem) showed that we could
obtain a linear system sufficient to define TSP(G) from linear systems
sufficient to define TSP(G X S) and TSP(G X 3) where §S)=§3) is a 3-
edge cutset of G. In this section we show that stronger results are true.
First we review certain facts concerning linear systems and their solution
sets. (See Bachem and Grétschel {1]) for a good introduction to polyhedral
theory.)

Let P={z€R*:Az<),Czmmd}. If we are interested in using linear
programming techniques to solve an optimization problem ‘

Minimize (/z:2€P)
it is often desirable to have our defining linear system as small as possible.
In particular, we want to eliminate any redundamt equations or
inequalities. First we assume
(4.1) no inequality from the set Az<) is satisfied with equality by all

2€D. In other words, if any of the inequalities can be drpdc into

equations without changing the solution set we do so.

A consequence of assumption (4.1) is that any equation which is
satisfied by all z€P is a linear combination of the equalities Cr==d.
Subject to (4.1) a fundamental result of polyhedral theory is that the
defining linear system is minimal if and only if
(4.2) the rows of C are linearly independent,

(4.3) for any inequality sz</J from the system Az<), there exists 2zEP

satisfying sZ==f

(4.4) for any two inequalities 6':<5' and 4’z</# from the system
Az <), there exists EP satisfying s':==p' and a° < 5.
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A face of a polyhedron P is defined to be the set of all z€P satisfying

- cz==v for some inequality cz <1 satisfied by all members of P. A facet is
- a maximal (with respect to set inclusion) nonempty face of P which is
different from P. Conditions (4.3) =nd (4.4) require that, for each
inequality az</ from Az<b , {sEP:az==j} must be a facet of P.

"' The dimension of P, denoted by dim(P) is defined (subject to (4.1)

-

and (4.2)) as the difference between the number of columns and rows of C,
with the convention that the dimension of the empty set is taken to be -1.
A set X of vectors is affinely independent if for any i€X, the set
{z-2:2€X-{2}} is linearly independent and the affine rank of a set is the-
= size of a largest aflinely independent subset. We say that z is an affine
combination of X if there exists a€RT satisfying ¥ (a,:z€X)=1 and
t=mY(a,2:3€X). (Recall that for any set S, R® denotes the set of all
real vectors indexed by S.) It can be seen that dim(P) is one less than the
affine rank of P and that a nonempty face F of P is a facet if and only if
dim(F Jm=dim(P)-1. -

Let J be a 3-edge cutset in 2 graph G==(V ,E). Let J denote the set
of those j€J such that G has a Hamilton cycle which does not use 5. In

"} other words, for each pair of edges of J which belongs to a Hamilton cyc!e
S of G, the other edge is in J. If G has no Hamilton cycles, then Jaf. If,
\ a9 is the case for Halin graphs and prismatic graphs, every edge is missed

by some Hamilton cycie, then JamJ.

When we wish to obtain minimality resuits for a linear representation
of TSP(G), this set J plays an important role. We define a restricted
travelling salesman polytope as follows: for any E' CE we let TSP(G.E')
R denote the convex hull of those tours of G which use all the edges of E',
= (Thus TSP(G 8)=TSP(G).)

We now show that if J=gS) is 2 3-edge cutset in Ge=(V E) then
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we can combine minimal defining linear systems for TSP(G X S,/-J) aad
TSP(GX.S'.J—]) and obtain 2n ewmentially minimal defining system for
TSP(G). There are two technical problems. First, the equations z(J)==2
and z;==1 for j€J-J need not oceur explicitly in either linear system and
yet will be obtainable as linear combinations of equations defining both
TSP(GxS,J-J) and TSP(GX3,J-J). Therefore combining the
equations in these systems results in some redundancies which must be
eliminated. Second, there is one situation in which an inequality is facet
inducing for one of two smaller systems and yet not facet inducing for
TSP(G). This is when it induces the same facet as z; <1 for some j€J in.
one of the subsystems, but this inequality is not facet inducing in the

other.

In the applications we make of this Theorem, these problems will be
minimized. Every edge will appear in some Hamilton cycle and not

appear in another. Consequently we will always have J==J. Moreover,

2;<1 will be facet inducing for all j and the equation z(/)=2 will occur
, explicitly in both subsystems.

L THEOREM 4.1. Let Jm=§S) be 2 3-edge cutset in a graph G for which

2 TSP(G)yéd. Let Py=TSP(GXS,J-J) and let P,mTSP(Gx3,J-J).
_:':::: For im=1,2, let i
Alz<b

2(J)m2

._ z;m1 for j€J-]

Cizmmd’

be a minimal defining linear system for P,, which satisfies (4.1). Then
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(4.5) the union of these linear systems gives 3 linear system satisflying (4.1)
whose solution set is TSP(G);

(4.6) the equations z(J/)m2,z,m=1 for all j€J-J,C'zmd},C?zmmd? are 2
linearly independent basis of the equations satisfied by all
2€TSP(G);

(4.7) an inequality from A'z< 3! or A%z2< b2 is facet inducing, and hence

s T

essential, for TSP(G) unless it induces the same facet as z,<1 for
some F€J, for one of the two subsystems, and this inequality z,;<1
does not induce a facet of the polyhedron defined by the other

system.
PROOF. We first establish (4.5). Let P, and P; be the set of all vectors
5 in RE  which satisfy {z(S)m2,C'zmd’ A':<b'}  and

{z(S)=2,C%zmnd? A%2<b?} respectively. Then TSP(G)GP,NP; Let -
P, and i’g be the sets of all vectors in R® which satisfy linear systems
sufficient to define TSP(GXS) and TSP(GX3) respectively. Then
P,DP, and P,DP, and, by Theorem 2.1, TSP(G)=P,nP;. Therefore
TSP(G)=P,N\P; and so the union of those two linear systems defines
TSP(G).
Now we prove (4.6) and (4.7). Let X'CRE5) be a maximal aflinely
v independent set of tours of P, and let X*CRE® be analagously defined
for P;. For each j€J we choose a tour 2Y€X" such that Z/m0 and a tour
£/ €X? such that j=0. '
For any tours z of GXS and ¥ of GX 3 such that z;=%; for all
j€J, we define the spiice of = and T to be the tour 2’ of G defined by

z; for j€1(S)
zjm{z; for j€1(3)
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We now define the following sets of tours:
X? is the set of all splices of tours of X'-{*:5€J} with the
appropriate tour of {#/:j€}}); '
X? is the set of all splices of tours of X?-{3’:5€J} with the
appropriate tour of {¥:j€J])}
X2 is the set of splices of 3/ and ¥ for all j€J.

Note that
| X UXPUX =] X+ | X1 (4.8)

CLAIM 1: flufguff, forms an affinely independent banis of the tours of
G.

First, we show that they are affinely independent. Suppose there
exists aekt'UM such that

Y (@e2:2€ X UXTUX)m0. : -

Since X! is affinely independent, we must bave a,=0 for all z€X* and
Y (ag:2€X?UX®)m=0. Similarly, since X? is affinely independent, we must
have a,=0 for all z€X%. Thus we must have (L a,2:2€X°)m0, which
implies a,=0 for z€X?, since the members of X3 are affinely independené.
Therefore am0 so X*UX2UX? is linearly independent.

Now let # be a tour in G and let ; be the edge j of J for which
#;=m0. Let ' and :* be the tours of GX S and G X3 rapectively induced
by z. By the maximality of X! and X* there exist a’€éR*' and o’eR™
such that

Y(at:z€X )=1 and '=Y (a}z:2€X")

and

PR - . L .
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Ylaz€X?) =] and :*mY (aiz:3€X7).

Note that this implies that for any €X' such that a}9€0, z;=0, aad
similarly for X2. In other words, the only tours having a! or a? nonzero
are those agreeing with  on J. Now for any z€X?, if z9€2¥ for any €7,
we defive z’ to be corresponding tour of X'. If zme® for some j€J we
define 2’ to be the corresponding tour of X°. The vector ¥)(alz':z€X?)
is identical with # on E-7(S) and equais 3’ on (S). We define z'
analagously for z€X? and have Y (a?z’:2€X?) is identical with i on
E-{3) and equais ¥ on 1(3). Therefore

imY(alz! :2€XY)+ T(ads! :2€X7)-2

a

where 3z is the splice of 3 and .  Since
Y(ak:z€X )+ Y (aZ2€X?) -1m=1, we have expressed i as an affine
combination of members of X"UX”UX' as required. Thus Claim 1 is
established. : i

Note that (4.1) is clearly satisfied for our combined linear system, for
consider an inequality az<p, which belongs to A'2<b?, say. Some tour
2EP, satisfies 63 < 30 there will be a tour 3’ of G obtained by splicing
some tour of P, with 3 which also satisfies 2’ <. i

It follows from Claim 1 and (4.8) that
dim(TSP(G))mdim(P;)+ dim(P,)-| 7]+ 1.

Since we have assumed minimal defining systems for P;, the equations
z(J)m2, z;m1 for j€J-J, C'zmd’ ase linearly independent. Let r; be
the aumber of these equations for P,. By the definition of dimension, we
bave dim(P )+ rym|E—{(S)| and dim(P,)+ r,m|E-A3)|. The linear rank
of the combined system is |E|-dim(TSP(G))mer,+ ro~1-|J-J| since
|E|=s|E~v{S)|+ |[E-1(3)|-|/|. But this is exactly the number of equations
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so they are linearly independent and hence all essential which establishes
(4.6), since our combined system satisfies (4.1).

Now let sz<S be an inequality from the system A!z<}!. Then
there exists a3 set Y! of dim(P,) affinely independent tours in P, all
satisfying azmsf. Moreover, if the facet of P, induced by az<jg is
different from the facets induced by z;<1 for all j €J then for each j€J
there exists a tour z/€Y? satisfying z/==0. We now splice the tours of Y*
and X? in the same manner as we did previously with X* and X? to obtain
dim(P,)+ dim(P,)+ 1-|J| affinely independent tours of G, all satisfying
az=f. Therefore dim(TSP(G)) aflinely independent members of TSP(G)-
all satisfy az==f so the inequality is facet inducing and essential.

Suppose s2</ induces the same facet as z, <1 for some jel. 1t
z; <1 is also facet inducing for P, then we can find sets Y, and Y, of -
dim(P,) and dim{P,) tours respectively of P, and P,, all satisfying z;=1.
Let k€J-{j}. Suppose every z€Y,UY, also satisfies zym=1. If there
existed a tour Z in either P, or P; which satisfied 7,m1 but z,=0, then
we would have contradicted {z€EP, or P;:z;==1} being a maximal proper
face, i.e. 2 facet. Therefore every tour z in P, or P, which has z, =1 must
also have z;=1. But every tour z in P, or P; must have z,=1 or z, =1,
hence must have z,mz,==1. This means that the inequality z,<1 is not
facet inducing for P, or P, , a contradiction. Therefore, for each k€J-{;}
there exists z°€Y, such that 2/=0, and similarly for Y,. So as before we
caa splice Y, aad Y., and obtain
dim(P,)+ dim(P,}~{|J|-1)==éim(TSP(G)) aflinely independent tours of G
all satisfying z,a=1. Therefore the inequality is facet inducing.

Finally, suppose a3</ induces the same facet as z,<1 for j€J, but

2, <1 is oot facet inducing for P;. Then there is some other inequality
¢'z2</ ftrom A’z<$? such that {3€P;:a' zmf’ }=, (2EPyizjm=1}. If we
extend-the tours in these two sets to tours of G in all possible ways, we see
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that ez </ does not induce 3 maximal nonempty face of TSP(G), i.e., the
inequality is not facet inducing and so is inessential.
This completes the proof of (4.7) and the theorem. ]

COROLLARY 4.2. Let J=&S) be 3 3-edge cutset in a graph G for which
TSP(G)5%0. Then

dim(TSP(G )ymdim(TSP(G X S,J-1))+ dim(TSP(G x T,d-J)-| 3|+ 1.

(We actually proved this explicitly in the course of proving Theorem 4.1.)

Now we apply these resuits to Halin graphs. Recall that for 3 wheel
W, we defined a rim edge to be an edge not incident with the centre
vertex.

PROPOSITION 4.3. The following is a minimal defining linear system for
TSP{W,) for a wheel W,:

2, <1 for every rim edge j

z(& v))=2 for every vertex v.

PROOF. The wheel W, has exactly ¢ different Hamilton cycles, each one
omitting 3 differeat rim edge. It is easy to verify that (3.10) and (3.11) are
satisfled so TSP(W,) is a simplex and the given linear system is both
minimal *ad sefficient. [J

We remark that there are two notable omissions in our list of
inequalities in Proposition 4.3. First we do not require z, <1 for a non rim
edge ;. However this inequality can be deduced as follows. Suppose j
joins vertices s aad w. Then the inequality z;<1 can be obtained by
adding 1/2 times the equations z(§v)) for v€{u,w}; -1/2 times the
equations z(¥v)) for vEV(W,}{u,w}; and the inequalities z, <1 for all
kEE(W, - Hu)Ulw)). Moreover, all of the above are part of our linear

. e
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system. Second we do not have inequalities 2,20 for any of our edges.
These can be derived from the fact that every edge is incideat with 2
degree three vertex and each edge £ incident with the vertex has the
inequality z; <1 either explicitly in or derivable from our linear system.
THEOREM 4.4. Let H=TUC be a Halin graph. The following is 2
minimal linear system sufficient to define TSP(H):

2;<1 for all jEE(C);
2(Xv))=2 for all v€V(H);

z(J)m=2 for every (nontrivial) 3-edge cutset J of H.

PROOF. We prove by induction on the number p of nonleaf vertices of T.
If p==1 then H is 2 wheel and the resuit follows from Prop. 43. Ifp > 1
ther the result follows by induction and Theorem 4.1 applied to any
(nontrivial) 3-edge cutset Jof H. []

COROLLARY 4.5. f H=TUC is a Halin graph such that T has p leaf
vertices and ¢ nonleaf vertices then dim(7TSP(H))=p-q.

PROOF. There is a bijection between the (nontrivial) 3-edge cutsets of H
and the edges of T which are not incident with 2 leal. Therefore the
pumber of equations in a minimal deflning system for H . is
(p+ ¢)+ (¢-1)mp+2¢-1. The onumber of edges in H is
(p+ ¢-1)+ pm=2p+ ¢-1. Therefore dim(TSP(H))=p-¢q. [T

In the previous section we discussed those graphs obtainable by 3-
splicing from elemeantary graphs, and observed how Theorem 2.2 provided
an easy meaas of obtaining a sufficient linear system to define their TSP's.

We now show how Theorem 4.2 can be used to give converse resuits.

Let E be the class of those graphs G==(V E) satisfying

-~ s e
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(4.9) for each edge j of G there is 3 Hamilton cycle of G which does not
use j;

(4.10) TSP(G) is defined by the following linear system:

0<32,<1 forall jEE, (4.11)
z(Hv))m=2 for all v€V (4.12)
z(J)=2 for every 3-edge cutset J. (4.13)

First we show that EC ¢/ (Elementary graphs).

THEOREM 4.6. Let G be a graph baving a 3-edge cutset J=§JS). Thenv
GEE if and only if both GX S and GX 5 are in E.

PROOF. If both GXS and Gx 35 are in E, then (4.10) follows from
Theorem 2.2, and it is easy to see that (4.9) is satisied. Coaversely,
suppose GXSEE. Then there must be a facet mot induced by aa
inequality of the form (4.11) or else a valid equation linearly indépendent
of (4.12) and (4.13). Thus an inequality or equation not of the form (4.11)
- (4.13) is essential for TSP(G X S). Therefore, by Theorem 4.2, it is also
essential for TSP(G). Hence G¢E, a contradiction. (J

. Therefore characterizing the graphs in E reduces to the problem of
characterizing graphs G=(V,.E) such that |§S)|>4 for every SCV
satisfying 2<|S|<|V]-2 and for which TSP(G) is defined by (4.11) and
{(4.12). Some resuits in this direction are presented in Section 5. '

Finally we show that not only do we have algorithmic and polyhedral
reductions over 3udge cutsets, but we can also construct optimum solutions
to the dual linear program of minimizing (= for 2z€TSP(G) from optimum
dual solutions for G X S and G X 5 where §S) is a 3-edge cutset.

For convenience, we assume that J==J, i.e., each pair of edges of J

belongs to a Hamiltos cycle. (This assumption could be removed using the
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same ideas as in Theorem 4.1) Suppose that TSP(G X S) and TSP(G X 3)
are defined by the linear systems (A'2<$,C'zmd!) and
(A%2< 82,0 2= d?) respectively. The dual linear program to minimizing
{z subject to this linear system (i.c. to solving the TSP for edge costs () is

the following:
Maximize -n'4-n*b%+ p'd*+ p*d%
subject to
- AMPA%: pIC 4 p2C%m]
', 720

We proceed as in the basic reduction. Let ¢,v and w be the vertices

of S incident .with edges of J and let u’,v’ and w’ be the adjacent

vertices in 3. (Note that our J==J assumption ensures that these vertices
are distinct.) We compute L,,,L,, and L,, to be the minimem costs of
Hamilton paths between ¥ and v, u and w, and v and w respectively in
G|S). (Again, by virtue of our Js=J assumption, these values are well
defined). Again, we compute

am(Ly,+ Log-L )/2
fma(Lyy+ Lyg=Log)/2
em(Log+ Loe=Len)/2-
We now define vectors /* and 2 of edge costs as follows, where cam(u,u’}),

[=(v,v’), g==(w,w’). We define /! for jEE-A(5) by

Ij) i j€EE-AS){e.f .0}
" l(e)-a if jme
FE=N(r)s it jmf

l(g)e if jumg

LA WP A LA ST SR S T Y i - S T T T T T P o U T U
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We deBine {f for jEE-(S) by

I(j) it jEE-(S){e.f .9}
. Jle)ra if jme
PUI=Nir ) 8 it jums
(g)+e if jumg

Note that /2 is just the normal cost vector we use for GX S in the basic
reduction. However by subtracting a,f,¢ to construct I, we have ensured
that the minimum cost (with respect to /!) tours in G X I using each pair
of edges of G will have the same objective value, namely zero.

Let (71,7 ) and (,7°) be optimum dual solutions to minimizing !z
subject to (A'z<)',C'r=d') and to minimizing (*z subject to
(A22<b%,C?zmd?) respectively. Then, since the optimum value of the
first linear program is zero, we have

b4 7ld =0, ST
The optimum value of the second linear program is min{/z:2€ TSP(G)} so
-1*b%+ 7* S*=min{lz:2€ TSP(G)}.

If we extend {* and /2 to be vectors defined on E by letting any undefined

components take on the value zero, then [ms{!4 {2, Therefore
TALFA N+ FIC 4 7 CPml,

7L9°20,

7101+ 72027 142 -7° d*==min {iz:2€ TSP(G)}.

Therefore 7 1,7°,71,7° comprise an optimum feasibl- -olution to the dual
linear program as required.

b
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We illustrate this process for Halin graphs. The only problem is to
compute an optimum solutioa to the dual problem for a wheel W;=(V E)
having centre ¢ and are costs [. Let é and iy be adjacent rim vertices
such that {(9,8)+ {(9,9)-I(d,d) is minimized, over all adjacent pairs of

rim vertices. Our primal linear program is

minimize Iz
subject to
2(Hv))==2 for all ve€V,
2;<1 for every edge j joining two rim vertices.
The dual problem is

. maximize ¥}2x(v)-Y;(n(j):F€EE joins two rim vertices).
v

We deline an optimum dual solution 7,7 as follows:
6 ):=(1(6,6)+ 1(5,5)-1(8,8))/2
Pv):=l(v,u)-2(6) for veV-{i},
Mu,w):=p(u 4+ Hw)-{(u,w) for each pair(u,v)
of adjacent rim vertices.

It is routinely checked that (7,7) is feasible and that it gives the same
objective value as the Hamilton cycle of W, which uses the edges (i,i)
and (o,%@). .

For any arbitrary Halin graph, we can use the general method
described above, together with this specific optimum for a wheel, to

construct an optimum dual solution. Note that this provides a second
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proofl of the validity of our basic reduction - 2 solution to a primal linear
program is optimal if and only if these exists a feasible solution to the dual

linear program giving the same objective value.

= 5. Additional results on elementary graphs
m As stated in Section 3, the travelling salesman problem can be solved

in polynomial time for an elementary graph G=(V,E). Remember that,
for these graphs, the polytope TSP(G) is defined by the linear system

0<z;<1 for all jEE, (5.1)

z(&v))=2 for all vEV. (5.2)

If this system satisfies assumption (4.1), the graph G is called basic _
elementary. An equivalent way of stating assumption (4.1) is
(5.3) for every edge SEE, there is at least one Hamilton cycle which

contains j and at least one which misses ;. .

Examples introduced earlier such as wheels, K33,K,Ks , K5 minus
one edge and Ky minus two nonadjacent edges are basic elementary
graphs. )
' PROPOSITION 5.1. A basic elementary graph with n vertices contains at
least n/2 + 1 affinely independent Hamilton cycles.

PROOF. By assumption (4.1), the dimension of TSP(G) is |E| minus the
number of linearly independent equations (5.2). Note that |E| 2% since
every vertex of G has degree at least 3. [Edges incident with a vertex of
degree 1 or 2 would violate (5.3).] The number of equations (5.2) is at most

n. So the dimension of the polytope TSP(G) is at least % and so the

affine rank is at least /2 + 1. [J
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The next theorem shows the importance of bipartite basic elementary
graphs.
THEOREM 5.2. If G, and G, are two basic elementary graphs and G, is
bipartite, then G,#G, is also a basic elementary graph. Conversely, if a
basic elementary graph G has a 3-edge cutset with shores S, and S,, then
either G X S, or GX S, is bipartite. Furthermore both G XS, and G X S,
are basic elementary graphs.

PROOF. Suppose G =(V,E,) is bipartite. Then the constraint
z(&v,))=2 for a vertex v,EV; is a linear combination of z{§v))=2 for the
vertices vES;m V,-{v,}. As a consequence, in G,*G,, the 3-edge cutset
constraint z{§S;)}=2 is implied by the degree comstraints for v€S, and
thus can be omitted. Now it follows from Theorem 2.2 that, if G, and G,
are elementary, then G,#G, also elementary. If G, and G, both satisfy
(5.3), then coasider any edge j of G,#G,. Without loss of generality
assume that edge ; belongs to G,. By (5.3), there is a Hunilton_cycle of
G; that contains j and another ope that misses j. Any such Hamilton
cycle contains two edges of &S,;) and misses the third edge, say j,. By
(5.3), there is a Hamilton cycle of G, that misses j, and therefore any
Hamilton cycle of G; can be completed into a Hamilton cycle of G,*#G,.
That proves that G,+#G, satisfies property (5.3). f

Conversely, if G is a basic elementary graph, then the assumption

(4.1) implies that the valid equality z(5(S;))=2 must be a linear

combination of the degree constraints z(Hv))=2 for v€EV, ie.

z(&(S,))-Z.EVa,(z(G(v))-‘ZL Let Vam{vEV:a,%0). If V=S, or S,
ve

then GXV is bipartite as required. Otherwise V==V, since
HV)CHS,)=&S,) and G[S;} and G|S,] are connected. Then note that all
the coeflicients a, for v€S; (respectively v€S,), must be equal in absolute
value. (This follows from the fact that the linear combination of degree
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constraints must add to O for every edge of G[S)].) Furthermore G|[S)| is
bipartite, the bipartition being given by the sign of a,. Let
§S1)m{e,f.g) and denote by w,,u;,u, (respectively v,,7,,7,) the vertices
of S, (resp. S;) incident with ¢,/ and ¢. If ay, =a, =a, , thea GX S, is
bipartite since u,,u; and w, belong to the same side of the bipartition of
G[S,). Otherwise, assume without loss of generality that a, =-a, ,+ Then
a,, +a, =1 and a,,+ a,,-l imply a, + 0,1-2. Since these two
coeflicients are equal in absolute value, we must have a, —a,l-l. This

implies a, =0 and a, =0 which contradicts VaV.

Theorem 5.2 gives a way of generating infinite families of basic

elementary graphs, by recursively 3.splicing a basic elementary bipartite
graph onto a basic elementary graph. Unfortunately we only kmow two
irreducible basic elementary bipartite graphs, namely K3 and the 3-8 cage
(see Figure 7.)

Figure 7. The 3-6 cage

By specializing Lemms 3.1 to bipartite graphs, we have that all the
extreme points of the polytope defined by the linear system (5.1) - (5.2) are
2-factors. Thaus, to show that the 3-8 cage is elementary, we have to check
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that all its 2-factors are Hamilton cycles. Since every cycle contains at
least 6 vertices, it suflices to check that the vertices of the 3-8 cage cannot
be partitioned into a cycle of length 6 and a cycle of length 8. This
verification is left to the reader. It is also easy to verily that condition
(5.3) is satisfied.

In the remainder of this section we describe an infinite class of basic
elementary graphs which contains the wheels.

LEMMA 5.3. Let B be a bipartite basic elementary graph and u a degree-
3 vertex of B. Let B’ be constructed from B by inserting new vertices v

and w on two edges of B incident with u, and joining v and w by an

edge. Then B’ is a basic elementary graph.

PROOF. It is clear from the construction of B’ and the fact that B
bipartite that B! cannmot have two disjoint odd cycles. Thus by Lemma
n 3.1 every extreme point of (5.1) - (5.2) is a 2-factor. Now consider 2 2-
factor z of B'. If the edge (v,w) is not in the 2-factor, then z induces a
2-factor in B, and therefore it must be Hamiltonian since be B is
elementary. So assume that the edge (v,w) is in the 2-factor z. Note that
the triangle (u,v,w) cannot be a cycle of z because the removal of these 3

vertices would leave a bipartite graph with one more vertex on one side of
the bipartition. Therefore exactly one of the edges (u,v) or (u,w) must be
in the 2-factor (a comsequence of the fact that u bas degree 3). So z is a
Hamiltoniaa cycle. (] ' :

By Theorem 5.2, every graph obtained as [(W, #B,)»...]|#B, is basic
elementary if B;,1<i<p, stands for Ky, the 3-8 cage or some other
bipartite basic elementary graph. A larger class W can be obtained as

follows.
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(i) Wym=KEW. Let w be the center of W,

s
-

(ii) If GEW and B is a bipartite basic elementary graph, then G*+BEW
for any vyéw.

(iii) If GEW, then the graph obtasined from G by joining w to 2 new
vertex z' placed on some edge (z,u) where z is adjacent to w and
s9éw, also belongs to W.

Note that, through operations (ii) and (iii), the center w of any graph

in W remains well defined. Of course the wheels belong to W, from (i)

and repeated application of (iii). Then, by repeated application of (ii) the

graphs (W, #B,)#..|+B, can be obtained. It is interesting that some or ail |
of their 3-edge cutsets can then be removed by application of (iii). (See

-2 Pl it o P N

UL
»

Figure 8).

Figure 8. An irreducible graph in W
PROPOSITION 5.4. Every graph in the class W is a basic elementary
graph.
PROOF. Assume not and let G be the smallest graph in W which is not
basic elementary. Consider an extreme point 2 of (5,1) - (5,2) which is not
the incidence vector of a3 Hamilton cycle.
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Assume G=G,2B with G;EW and B a bipartite basic elementary
graph. Let e,f,g be the edges in the 3-edge cutset joining G, and B. The
constraint z,+ 2y + z,=2 is implied by the fact that B is bipartite. If
z,mz,m] and z,m=0, then the facts that every 2-factor of B is
Hamiltonian and that z is a non-Hamiltonian 2-factor of G imply that the
2-factor induced by z on G, is non-Hamiltonian. This contradicts the

minimality of G. If z.-z,-% and z,m=1, then the facts that B contains
no odd cycle and that the 2-factor 2 of G has at least two odd cycles

assigned the value -;-imply that the 2-factor induced by z on G, bas at

least two odd cycles with %’s . Again this contradicts the minimality of

G.
Note that z(§w))==2 and the fact that z.-0,7l; or 1 on every edge,

with the %’s occuring on vertex disjoint odd cycles implies that at most 3

edges incident with w have z,>0. Assume that some dnpiicat.ed edge ¢
(step (iii)) has the value z,==0. Then the graph without the duplicated
edge also has an extreme point which is not Hamilton cycle. This
contradicts the minimality of G. Thus in G, step (iii) has been applied at

most twice.

Therefore G must be obtained as [(W3'#B,)# - - - |7 #B, followed by
one or two duplications of the vertex v,, where v;,2<i<p, is the vertex of
B;_, which is adjacent to w. This is equivalent to W3+B followed by one
or two duplications of v.

Consider the case of one duplication, say edge (w,v) is duplicated
into (w,u). Since z must be positive on these two edges, it has to be zero
on at least one of the original edges in W,. Remove it as well as its end
vertex other thas w. Then we have 3 graph B’ obtained from B as
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described in Lemma 5.3. So G is basic elementary.

In the case of two duplications, two of the original edges of W; must
bave z,==0. Removing them leaves a graph with a 2-edge cutset. In this
graph every 2-factor is a Hamilton cycle as a consequence of the fact that
B is elementary. (]

8. Extensions

This paper deals only with ome graph reduction. Specifically 3-edge
cutsets are used to break up travelling salesman problem into four smaller

problems. But other reductions could also be studied. One obvious:

direction is to reduce a graph using its t-edge cutsets, for any given k.
When k=2, this works nicely. Let S and 3 be the shores of a 2-edge
cutset. Then minimum cost Hamilton cycles for G XS and GX 3 can
simply be patched to produce an optimal solution for G. The basic
polyhedral theorem (Theorem 2.2) also holds. When k>4, a reduction into
G xS and Gx T does not seem: to work since 3 Hamilton cycle of G may
use 4 or more edges of the k-edge cutset. Even if every Hamilton cyclef
were to use only two edges of the k-edge cutset, one could not in general
use cost reductions a,3,7,..., (recall the basic reduction in Section 2)

because they would have to satisly {; } equations with only & unkpowns.’

A more promising direction for investigation is to comsider vertex
cutsets instead of edge cutsets. Suppose {u,v} is 2 2-vertex cutset of G.
Let G|S,| and G[S;] be the two connected components of G{V—{u,v}|.
(Note that three connected components cannot oceur if G is a Hamiltonian
graph.) Then solutions of the travelling salesman problem in G XS, and
G X S, can be patched into a solution for G. A simpie polyhedral theorem

also exists.
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The most appealing geaeralization of our basic reduction occurs by
allowing both edges and vertices iB a cutset. (See Figure 9.)

Figure 9. Reductions

First consider the case where G has 3 cutset consisting of two edges
and one vertex, say edges ¢ and / and vertex w. We will show that the
travelling salesman problem on G can be reduced to five smaller problems
(assuming both S, and S, contain at least 3 vertices,) Let pE€S, and ¢€S,
be the endpoints of edges ¢ and / respectively. Compute the values
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:: H,q= minimum cost of 3 Hamilton path from p to ¢ in G[S.]

S .

F L,q= misimum cost of 2 Hamiltoa path from p to ¢ in G[S,U{w]}]
L,o== minimum cost of 3 Hamiltoa path from » to v in G|S;U{w}]

1 L oo™ minimum cost of a Hamilton path from ¢ to w in G{SU{w}].
B Now consider the reduced graph G, given in Figure 9. In order to
reflect in G, the cost of the four Hamilton paths computed above, we

introduce costs a,3,7 for the edges a,),c respectively and we modify the
costs {(e) and {(f) to ! (e)mi(e)+ ¢ and !'(f)m=i(f)+n. A proper set of
values {a,5,7,¢,n} is givea by the system

e =a+ ¢+ 1
Ly ==+ 1+ ¢+ 0
ro=a+ft ¢
o=at 7+ .
A solution to this system is . -
1
”?(—L,."P l'.+ L.-)
pmb 2B+ Lyt 3Lye—L )

7"':"(‘2”""' Lyy-Lye+3Lg)

With these costs, 2 minimum cost Hamilton cycle in G, is also a2 minimum

cost solution of the travelling salesman problem in G.

The graph G; was obtained from G by replacing the graph
G|SaU{w}] by three edges s,b,c. Similarly we can define a reduced graph
G, from G by replacing the graph G{S,U{w]] by three edges, say s’ b’

'W:"i"'-"lvDT 3
, .' ' * l’ -‘ .‘. n. l‘ z R u' l.
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and ¢'. Assume that we know linear systems defining I'SP(G,) and
TSP(G2). Following the proof of Theorem 2.2 it can be shown thai a
linear system defining TSP(G) is simply the unmion of linear systems for
TSP(G,) and TSP(G2). Note bowever that the linear system jﬁt given
for TSP(G) contains variables 2,,2,,2.,3-,2y and 3+ which do not
correspond to edges of G. To get a linear system only in terms of the edge
variables of G we need to eliminate those 6 variables. It tumms out that
this can be done since the following equations are valid (they are degree

constraints)
2z, + zym=2-2, o+ 2y mm2-2,
Zy+ 2, m2-2, and {2,/ 4+ z,m=2-2,
z)+ 2, =2-2(W,) 2y + 2o mm2-2( W)

where W; is the set of edges of G joining S5; to the vertex w, for s==],2,

Now we will mention briefly the cases where the cutset consists of
one edge and two vertices or where it consists of 3 vertices. The travelling
salesman problem in G can then be reduced to six or seven problems on
smaller graphs, respectively. A valid reduced graph G, which
accomplishes this is given in Figure 9. The reader can easily figure out the
costs that must be associated with its wiggly edges. Again, if G; is defined
28 G, except that S, is replaced by S, it is still true that s linear lyst;em
defining TSP(G) is obtained as the union of linear systems for TSP(G;)
and TSP(G,). However now there are not enough valid equations to
eliminate the variables which are associated with edges of G. If we insist
on eliminating these variables we must perform a Fourier - Motzkin
elimination (see e.g. [1]). Then the size of the system defining TSP(G) can

increase exponentially in the number of eliminated variables.
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