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THE TRAVELLING SALESMAN PROBLEM IN GRAPHS

WITH 3-EDGE CUTSETS

by

G. Cornuejols, D. Naddef, and W. Pulleyblank

ABSTRACT

In this paper -w analyze decomposition properties of a graph which,

when they occur, permit a polynomial solution of the travelling salesman

problem and a description of the travelling salesman polytope by a system

of linear equalities and inequalities. The central notion is that of a

3-edge cutset, namely a set of 3 edges which, when removed, disconnects

the graph. Conversely, pu approach can be used to construct classes of

graphs for which there exists a polynomial algorithm for the travelling

salesman problem. We illustrate The approach on two examples Halin

graphs and prismatic graphs.

Ac ,  -

! i



THE TRAVELLING SALESMAN PROBLEM IN GRAPHS

WITH 3-EDGE CUTSETS

by

G. Coriizejols, D. Naddef, and W. Pulleyblank

1. Introdueton

Many NP-hard graph problems become polynomially solvable for

special classes of graphs. For example, the problem of Ending a maximum

weight stable set in a general graph is NP-hard, but is polynomially

solvable for series-parallel graphs (Boulala, Ubry 121), for claw-free graphs

(Minty [231, see also Sbihi 1271) and for perfect graphs (Gr6tschel, Lovisz

and Schrijver [lS). Many optimization problem on graphs can be

formulated as integer program. There is a polyhedron naturally

nssociated with any integer program, namely the convex hull of the

feasible integer solutions. Following the pioneering work of Edmonds on

mawchip 18] and matroids 19J, the development of a polynomial

algorithm for such a problem has often been very closely related to the

obtaining of a system of linear equalities and inequalities whose solution

set is the corresponding polyhedron. Knowledge of such a linear system is

useful for two reasons: First, if the size of the system is small, then general

linear programming methods can be used to solve the integer program.

Second, even when this linear system is large, linear programming duality

provides a good optimality criterion.

Recently Gr6tschel, Lovazs and Schrijver 1151 have shown that there

is indeed a close connection between the problem of finding a polynomial

optimization algorithm and the problem of finding a linear description of

the underlying polyhedron. They showed, by making use of the

[ - % f o -. • ° . - - . - - . - - .. . . . . . . - -



THE TRAVELLING SALESMAN PROBLEM 3

polynomially bounded Schor-Kachian ellipsoidal algorithm for linear

programming, that there exists a polynomially bounded algorithm for an

optimization problem if and only if there is a polynomially bounded

algorithm for the associated separation problem: given a point z, either

verify that it belongs in the polyhedron or else find a hyperplane that

separates it from the polyhedron. (See 1151 for a precise description of this

result.)

In fact, their algorithm for finding a maximum weighted stable set

in a perfect graph makes use of an earlier theorem of Chvatal which gives

a complete linear system sufficient to define the convex hull of the.

incidence vectors (or characteristic vectors) of the stable sets. The

Boulala.Uhry algorithm for series-parallel graphs is developed in

connection with a defining linear system for the stable set polyhedra for

these graphs. Curiously, the Minty algorithm for maximum weight stable

sets in claw-free graphs does not provide an explicit linear description of

the associated polyhedra, and it would be fair to say that the obtaining of

such a linear system is one of the outstanding open problems of polyhedral

combinatorics. Giles and Trotter illj have shown that such a system will

be lea "simple" than for the other classes for which such a system is

known.

At present, perhaps surprisingly, only very few classes of travelling

salesman problems (TSP's) are known to be polynomially solvable (see

Gilmore and Gomory 1121, Syslo 1281, Lawler (201, Garfinkel [101, Cutler 171
and Ratliff and Rosenthal [261) . They are generally cases of the

asymmetric TSP and assume a special cost structure. To our knowledge

there is no nontrivial class of graphs for which the TSP polytope has been

explicitly described by a system of linear inequalities.

In this paper we show that the TSP can be solved polynomially for a

class of graphs which includes, as special cases, Halin graphs and prismatic
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graphs. This algorithm is based on some more general decompositiot

properties which are presented in Section 2. (It is interesting to relate

these decomposition ideas to those of Boulala and Uhry [.) Section# 3

gives the examples of Hain and prismatic graphs whereas Section 4 deals

with polyhedral theorems. The last two sections contain additional results

and extensions. The remainder of this section will be devoted to some

basic definitions and notation.

We let G-(VE) denote a graph with vertex set V and edge set E.

If an edge nEE is incident with vertices u,vEV, then we write c-(u,v).

For any S V we let b(S) denote the set of edges with one end-vertex in S

and the other in V-S, i.e., 6(S)n{(v,v)EE:zES,vfS). For vEV we

abbreviate 6(fv)) by (v). When S and V-S each contain at least two

vertices, we cad (S) a nonfrivil edge cuet, or simply an edge cutset, and

call S and V-S its Aekres. (For vEV, we call (v I a tritial edge cutset. )

For SQV, we let GxS denote the graph obtained by hrinking (or

contracting) S. That is, the vertices of G X S an. all vertices of V-S, plus

a new pseudovertex S obtained by identifying all vertices of S. The edges

of G x S are defined as follows (Figure 1):

(i) An edge with both ends in S disappears;

. (ii) An edge with both ends in V-S remains unchanged;

(iii) An edge of (S) now joins the incident vertex of V-S and the

pseudo-vertex S.

For any S; V we let i(S) denote the set of edges of G having both

ends in S and we let G51 denote the subgraph of G induced by the

vertex set S, i.e., G(SIm(SM(S)). It z-(z(e):eEE) is any function from

£ intoR then for any EE we define z(E)m(z(e):eA ).

A Hamiltn epcie of G is a cycle passing through each vertex exactly

once. A Hamilton path between vertices u and v is a path joining # and v
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which pm.es exactly once through each vertex of G. A graph is called

Homilgrna if it contain at least one Hamilton cycle. A four is the

incidence vector of the edges belonging to a Hamilton cycle. Thu a tour

is a 0.1 vector zuM(z(e):aE-E) having IEI components, such that the set of

edges having x(e)-1 is the edge set of a Hamilton cycle.

The fravellin Wueemon pelylepe, TSP(G), is the convex hull of the

tours of G. That in, TSP(G) consists of all those 16W which can be

expressed as a convex combination of tours of G. Therefore, TSP(G) is

the smallest convex polytope in R19 which contain all tours of G. Everi

extreme point of TSP(G) will be a tour, ad conversely, every tour is an

extreme point of TSP(G).

Now suppose that we are given a vector l-(l(e):eiEE) of real edge

costs. The cost of a set Eg.E is simply l(7m(()e~.The

grovelling saleesan problem (abbreviated by TSP) is the following: Given a

graph Gm(V,E) and a vector l=(l(e):eiEE) of edge costs, find a Hamilton

cycle for which the cost of the edge set is minimized. This problem is well
known to be NP-hard for general graphs. It has attracted a great deal of

attention in the last two decades and references on the subject are too
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numerous to be listed here completely. One can consult for example Little

et al 1211, Held and Karp 1191 and more recently, Gr6tschel 1141, Crowder

and Padberg 161.

Solving a TSP i equivalent to minimizing E(L(e)z(e):eEE) over all

zETSP(G), for the minimum of an linear objective function over a

polytope is always attained at an extreme point, in our case a tour.

Because of the fact that the number of Hamilton cycles in a graph can

grow exponentially with the number of vertices, the above definition of

TSP( G) does not provide a reasonable means for solving the travelling

salesman problem. However a classical result of polyhedral theory is that

every polytope is the solution set to a finite system of linear inequalities.

For several classes of graphs described in this paper, the size of such a

system for TSP(G) grows linearly with the number of vertices, even

though the number of tor grows exponentially. Thus the polyhedral

results presented hen-enable us to solve TSP's in these claes of graphs

using standard linear programming algorithms as an alternitive to the

direct algorithms presented in the paper.

However a complete description of TSP(G) by a system of linear

inequalities is not known for generl graphs. It is known that the number

of essential inequalities in such a system can grow at least exponentially

with the number of vertices. A partial description can be found in

Gr6tschel and Padberg [16J, Gr6tschel 1131, Cornuejois sad Pulleyblank [5
and Grotachel and Pulleyblank 1171.

2. Some Basie Resulte

. .. .*, . ... . . .. -
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The bodle reduction:

Let {ejfg be a 3-edge cutset and let S and V-S be its two shorns.

Assume (see Figure 2) that there are distinct vertices u,v, w, of S incident

with ej j respectively. Let L,,,L6,,LI. be the costs of the optimal

Hamilton paths between us and vi,u and w and u and w respectively in

GISI, where we set this cost to some large value L if no such Hamilton

path exists. (For examsple, we can let L be twice the sum of the absolute

values of the edge costs plus one.)

iie

U f
V-

- Figure 2

Let aebe defined by the following system of equations:

a+ (=Li,

This system has the unique solution

1
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Now define the vector 1' of edge costs for G xS by letting P =I for all

edges except eJ and # and by letting 1L'(e)=If(e)+ a , 10 (f )l(f )+,

(I)=n((#)+e. If G XS has no Hamilton cycle or if the coot of an

optimum Hamilton cycle of G XS with respect to P' is at least L /2 then

G hansno Hamilton cycle. Otherwise the cost of an optimum Hamilton

cycle of GXS, with respect to 1', is the cost of an optimum Hamilton.

cycle of G with respect to 1. Furthermore the optimum cycle for G X S

can be extended to an optimum Hamilton cycle of G, with respect to 1,

by taking an appropriate optimum Hamilton path of G(SI.

Thu, effectively, the basic reduction reduces the TSP for G to four

TSP's, three for GX(V-S) to compute L..,L.. and L., and one for

G XS. This rather smple observation does, howvrer, have some useful

algorithmic conqences an observed below.

A &-connected graph is a graph such that at leasnt 3 vertices must be

removed in order to disconnect it. Given a vertex set SC V, let T= V-S.

LEMMA 2.1. Given a 3-connected graph G and vertex sets S, and Sz such

that I(S)-IqS2)I-3, then at loant one of S, ad 3, is contained in one

of S2 and Xj.

PROOF: Suppose the conclusion is false. Then the sets S~flS2, Sin.7,

Tj~nS2 and Ying', are all nonempty and so, since G is 3-connected, each

han at leant three edges in the coboundary. Let 11 be the set of edges

joining nodes of SIflS2 and 3j and let 12 be the set of edges joining

nodes of ginsi ad sing:- Then I,(SJ)+ 10(S)H!IHJ2

* -- sIt(S l)+ I8(SilS2)i+ I(ssinSg)+ I13lSg)I) ,. Since
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I8(Sjx)I.6I(S 2)=6 we must have therefore that JI-J 2-O and

I6(sils2)-I6(Sin')-I6nS2)-6(Egl.:)1-3. But this means that

6(sifls2 can contain at most one edge of one of b(SI) or 6(S2), say b(SI).

Therefore scriflS2) contain at most one edge of 8(Si. Then since

* 6(~Siflsi) must contain at least two edges of b(S2), o(.ins2) contains at

most one edge of 8(S2). Since Jja-O we have, therefore, that

j6(YflS 2)j:52&, contradictory to G being 3-connected. []

We say that a clas C of 3-connected graphs is fully reducible if it

satisfies the following:

(i) if GEC has a 3-edge cutset with shores S and .,then both G X S

and G X are in C; and

(ii) the TSP can be solved in polynomial time for the graphs in C which

do not hive a 3-edge cutset. We call- such graphs irreducible.

The basic reduction introduced in this section enables us to

polynomially solve the TSP for the graphs in any fully reducible class.

* * The basic algorithms

Input: A 3-connected graph G-( V,E) belonging to a fully reduciblp

claws C and a vector of edge costs.

Output: A minimum cost Hamilton cycle.

Step 1. If G contains no 3-edge cutset, then the TSP is polynomially

solvable in G, since GEC. Solve the TSP and stop.

Otherwise find a 3-edge cutset with a shore S which is minimal with

respect to set inclusion. Go to Step 2.

Step L. Solve three TSP's in G X imposing in turn that each pair

of edges of OS5) be in the solution. We cank force a pair of edges in 6(S) to

be in the solution by giving a large cost to the third edge of b(S). (Note
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that the minimality of S insures that G X 3 will contain no 3-edge cutset,

so solving TSP's in G X " is polynomial.)

Step . Modify the edge costs of the members of (S) as described in

the basic reduction and recursively apply the algorithm to GX S. Extend

the optimum tour in G X S found by the algorithm to an optimum tour of

G by combining it with the appropriate tour of G X 3" found in Step .

Stop.

Note that Step I can be performed in polynomial time by simply

trying all sets of edges of cardinality three.

This algorithm provides a framework which can be specialized for

specific fully reducible classes. The actual time for such a class will

depend on how efficiently we can find the 3-edge cutset required in Step 1

and how efficiently we can solve TSP's in irreducible graphs. In the next

section we show, that for the case of Halin graphs, the basic algorithm

specializes to a linear time algorithm.

As mentioned in the introduction, the existence of a polynomial

" algorithm for a combinatorial optimization problem is often related to

finding a system of linear inequalities which define the convex hull of its

feasible solutions. When the graph G has a 3-edge cutset we have a

remarkable polyhedral result relating TSP(G), TSP(Gx$) and

TSP(Gx 3), where S and Y'are the shores of the 3-edge cutset.

The basic polyhedral theorems

THEOREM 2.2. Suppose that G has a 3-edge cutset with shores S and

3 . A linear system sufficient to define TSP(G) is obtained by taking the

union of linear systems sufficient to define TSP(GXS) and TSP(G X).

PROOF. Every tour of G induces a tour in GxS and one in GX.' and

therefore it satisfies linear systems defining TSP( G X S) and TSP( G X Sr).

I.

,"I ." '* * . .= .. ... .,. ,=. ...,.. -" " " ' " " " " " ' " ' . , . .. .:

i , i .i. . ,r.



THE TRAVELLINJG SALESMAN PROBLEM 1

Conversely, we need to prove that every solution 1 to the union of these

systems can be exprese as aconvex combination of tours of G.

Let z1 be the restriction of i to G X S. The vector z' satisfies the

linear system defining P(GXS) ad so can be expressed as a convex

combination of tours of G XS. That is, if T' is the set of tours of G XS,
then z1 -EXa1:fET1 ) where X,2:0 for all tET1 ad (Xt:tET1 )=!.

Let e,S be the three edges of the 3-edge cutset joining S to .,and

let

p(eJ )-E(Xg:IET' ad t-,

,(,g)-E(X.:9T 1 ad t1-1,-1)

,(,)=-E(X1JteT 1 and £-,1

Then

i-m4-P(ej#)+ pA I).

Note that the linear system (2.1) together with the values if, and

tv uniquely determines the values ja(e,f ), js(f #) and ~(~)

Now let z2 be the restriction of i to G X Y, and let r2 be the set of

tours of G X 3. Anologously we obtain X2_ E * Se tTJ) where ort: 0 for

all tE T2 and E(at,: fE74)- 1. We define

&4e,)-(ejtET' and t-,1

$fY,g)=E(au:1ET 2 and 91=ftmi)

&'(eg)~~c~:ET2 and .*-)
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Thenma $e/ $1,,g) and s4c,p) satisfy the system (2. 1), replacing I& with

P. So we must have Y(eJ )wis(e,f ), SO I)ms(f#) and $jejf)-u(ejf)

Therefore we cam combine the tours I in T' and I' in T2 to obtain a set T

of tours of G and a set of coefficients q12:0 for all 9ET satisfying

E(q,:tET)m1 and iz-E(qjt:9CT). That is, i is a convex combination

of tours of Gand the proofis complete.Q

This theorem enables us to obtain a complete linear description of

TSP( G) for any graph G in a fuly reducible class provided that we know

a linear description of the travelling salesman polytopes of the irreducible

graphs in the Clam.. Some examples of this are given in the next section.

3. Some Examples

One method of constructing a fully reducible class is to start with a

specific set of irreducible grapha and then clos the clams under a

composition which is the inverse of the basic reduction. First we introduce

some useful irreducible graphs.

For certain graphs G=( V,E), the polytope TSP(G) is given by the

* following linear system:

:5z.:51 for aml CEE(.)

z(6(v))=2 for all uE V. (3.2)

We call such graphs elemnentary. For these graphs, not only can we solve

the TSP as a small linear program but we can solve this linear program

polynomially by reducing it to a weighted bipartite matching problem.

(In fact the linear program minimize (lz:: satisfes (3.1), (3.2)) can be

solved in this way for any graph.) However all elementary graphs we know

have a sufficiently simple structure that the TSP is more easily solved by

e. direct methods.
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Conversely, we need to prove that every solution i to the union of these

systems can be expressed as a convex combination of tours of G.

Let z1 be the restriction of i to G X S. The vector z1 satulies the

linear system defining P(G XS) and so can be expressed as a convex

combination of tours of G XS. That is, if T' is the set of tours of G XS,

then z 1-E(Xe1:hET) where X)2:O for all tC-TI and E(Xg:feT1)=1.

Let e,# be the three edges of the 3-edge cutset joining S to and

let

and :-,1

u(f,#)-E,(X:iET1 and £Ii1

Then a,)F(19T 

n

if /p~,)+ s~~)(2.1)

Note that the linear system (2.1) together with the values il* and

ft uniquely determines the values p(ec f), p(fjg) and p(ce,g).

Now let z 2 be the restriction of i to G X 3, and let T2 be the set of

tours of GXg. Anologously we obtain Z2 _ E(alN:ET2) where afa O for

all t ETr and E(,u: IETn)m1. We define

$f,,)=E(t:tE2"' and t,=1=1)

v~e~)-~c,:ET'and t,-tml).
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Then ze,4), ,L) and se,g) satisfy the system (2.1), replacing p with

v. So we must have $4eJ )m(e,f ), 9,g)=P #/,g) and Lejf)m(e,,I).

Therefore we can combine the tours t in T' and II in 72 to obtain a set T

of tours of G and a set of coefficients iaO for all LET satisfying

E( i:9ET)-I and i-,(qj9:tET). That is, J is a convex combination

of tours of G and the proof is complete. Q

This theorem enables us to obtain a complete linear description of

TSP( C) for any graph G in a fully reducible class provided that we know

a linear description of the travelling salesman polytopes of the irreducible

graphs in the class. Some examples of this are given in the next section.

3. Some Examples

One method of constructing a fully reducible class is to start with a

specific set of irreducible graphs and then close the clas under a

composition which is the inverse of the basic reduction. First we introduce

some useful irreducible graphs.

For certain graphs Go-(V,E), the polytope TSP(G) is given by the

following linear system:

0:z,51 for al cEE (3.1)

(61())-2 for 4U veV. (3.2)

We call such graphs elementary. For these graphs, not only can w solve

the TSP as a small linear program, but we can solve this linear program

polynomially by reducing it to a weighted bipartite matching problem.

(In fact the linear program minimize (lz:z satisfies (3.1), (3.2)) can be

solved in this way for any graph.) However all elementary graphs we know

have a sufficiently simple structure that the TSP is more easily solved by

direct methods.

-p

. - . . . € . - o . o o .... . .
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7

The following is a useful tool in showing that a graph is elementary:

LEMMA 3.1. (cf Grf.che, [141). Let r be an extreme point of the

polytope defined by (3.1), (3.2). Then riE{0,-1,1) for all eEE and,
12

moreover, the set of edges e with r.- partitions into the edge sets of an

even number of vertex disjoint odd cycles.

COROLLARY 3.2. If G does not have two vertex disjoint cycles, then G

is elementary.

This implies that the complete graphs K,,K 4 and K, and the

complete bipartite graphs Ku and K,, (or, in fact, Ks.. for n >2 ) are all

elementary. Moreover, we have the following:

LEMMA 3.3. If G--(V,E) is elemtetary then fo ay E' QE, the graph

G' -(V,E') is elementary.

PROOF. A linear system suffrciest to define TSP(G') is obtained by

deleting the variables corresponding to e.E-E' from the system (3.1),

(3.2) for G. This is equivalent to adjoining the equations z;mO for all

.EE-E' to (3.1),(3.2) for G. (Polyhedrally, TSP(G') is a face qf

TSP(G).) Q

In particular, any graph on five or fewer nodes is elementary.

A useful infinite clam of elementary graphs is the clam of wheels.

For k>3, the wheel W& consists of a cycle containing k vertices, called rim

vertices, plus a centre vertex adjacent to each rim vertex. (See Figure 3)

The fact that wheel are elementary follows from Corollary 3.2. In Section

5 we give other examples of elementary graphs.

Let G--(V1,E,) and Gm(V:.,E 2) be two graphs. Let v1EV 1 and

v.EV2 be two vertices of degree three, say 6(v1)-(e 1,fg,} and
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Figure 3.A wheel

6(V2)-{e2,f ,12)- We say that the graph G is obtuined from G, and G2

by S-splicing if it is constructed as follow.: The vertex set of G is -

(V 1-{Vu))U(Vd-V2)). Ihe edge set of G is EjUE2j where the edges el and

e2 are ideatified, as well as the edges fI and 1 2, and #I and #2. Therefore

in G each of these three edges has one end in V, and the other in V2.

(See Figure 4.)

662

Figure 4. 3-splicing
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We will write G-nG1  . or sometimes simply G- G,*G. -or

G-G,1e" or G-G,'sG.. Notice that if G-GeG*', then G, is

isomorphic to G X(V-{v.)) and G2 is isomorphic to G X(V 1 -(vl)).

We define the detae el(C) of a clans C of graphs with respect to 3-

splicing as follows- GlEc(C) if either GEC or there exist C1,GecL(C)

such that G- C1 G,. The graphs in cI(C) which are irreducible with

respect to our basic reduction will all belong to C. If C is a class of

graphs for which we cam polynomial solve TV%'s then cL(C) will be a fully

reducible clasw of graphs.

If a graph G has no degree three vertex, then it cannot be used in a

3-splice. If a graph G is not Hamiltonian, and it is used in a 3-splice, then

the result will not be Hamiltonian. Hence the graphs which are useful to

us as "building blocks" are those which are Hamiltonian and have at least

one degree three vertex, for- example wheels, K4, K,, and some subgraphs

of Ks.

For all these examples, the TSP is easily Solved. Note that for the

wheel Wk there are precisely k different Hamilton cycles, depending on

between which consecutive pair of rim vertices we visit the centre. A

minimum cost Hamilton cycle can be found in linear time by computing

the minimum, over all pairs jii of consecutive rim vertices, of

i(c,r)q 1(c,r' )-(r,rl) where c is the centre of the wheel.

THEOREM 3.4. Let C be class of elementary graphs. Then for any

G-(V,E)EcI(C), TSP(G) is defined by

O!5z~~ for all eEE, (3.4)

z(b(v))-2 for all uE V, (3.5)

z(C)-2 for all 3-edge cutsets C of G. (3.8)
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PROOF. All the constraints re valid. It follows from repeated

application of Theorem 2.2 (the basic polyhedral theorem) that (3.4) - (3.6)

is sufricient. Note that when we perform a 3-splice G-Gly' eG', the

constraints (3.5) for v, in G, and for v2 in G2 become the constraint (3.6)

for the 3-edge cutset created by 3-splicing.

Let W be the class of wheels. Then 3.4 applies to cl(W). A subclass

of c(W) has received some study on the literature. These are the so

called Hahin graphs, or roofess polyhedra which are described as follows:

A Halin graph H-TUC is obtained by taking a tree T having no

vertices of degree two, embedding it in the plane in a planar fashion then

adding new edges to form a cycle C containing all the leaves (degree one

vertices) of the tree in such a way that the resulting graph is planar. (See

Figure 5). These graphs were introduced by Hain [181 as an example of a

clas of planar edge minimal 3-connected graphs. They are exactly those

3-connected planar graphs for which one face shares one edge with every

other face. Bondy and Lovas (see [221) showed that these graphs are

Hamiltonian and moreover, the deletion of any vertex leaves a Hamiltonian

graph. It can also be verified that for each edge c, there exists a Hamilton

cycle containing e and another that does not contain e. They were

studied from a point of view of matching theory by Lovisz and Plumer

1221, Pulleyblank [261 and Naddef and Pulleyblank 1241. Recently Syslo

and Proskurowski 1291 have shown that several NP-complete problems are

polynomially solvable for these graphs.

Since Hain graphs are 3-connected and planar, there is a planar

embedding of such a graph which is unique, up to the choice of the infinite

face. Thus determining whether or not an arbitrary graph is a Hain graph

requires simply finding a planar embedding, verifying 3-connectivity, and

then seeing if there exists a face such that the deletion of the edges in its

boundary leaves a tree. Therefore Halin graphs can be recognized in
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Figure 5. A Halin graph.

polynomial time.

We can see that the class H of Hahn graphs is contained in cl(W) as

follows. Let G-TUC be a Hahn graph. If T is a star then G is a wheel.

If T is not a star, then there exists a nonleaf vertex v of T adjacent only

to leaves of T pius one other nonleaf vertex. Let S consist of v plus all

adjacent leaves of T. Then 16(S)1-3 and GXS is a Halin graph and

G X 9 is a wheel. Thus G can be obtained by 3-splicing a wheel to a

smaller Halia graph. Therefore, by induction, GEcI(W). For a more

detailed description of these ideas for Hahn graphs, see [4!.

It is easy to see that we can construct precisely the clam of Halin

graphs from wheels if we restrict 3-splicing as follows: For any Hain graph

G m TUC we call a vertex v a rim verfez if v is in C. (This is consistent

with our definition for wheels.) Similarly edge e is a rim edge if e is in C.

2.
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We only permit splicing between rim vertices, with the additional

condition that rim edges must be identifed with rim edges.

Now we describe how the basic algorithm specializes for Halin

graphs. As we already noted, the TSP in a wheel can be solved in linear

time. In order to find 3-edge cutsets with minimal shores we do the

following. Represent T as a tree rooted at some nonleaf vertex r, order

the children of each vertex on the basis of the planar embedding of T, and

then perform a postorder scan of T. (In other words, each node is

processed after all its children have been processed.) When a node is

processed there are three possibilities: if it is a leaf of T it is- bypassed; if it.

is a nonleaf vertex u different from r then v together with the adjacent

leaves form a suitable set S; if u is equal to r then G is a wheel. Note

that when we recursively apply the basic algorithm to G X S, we can start

our postorder scan with the vertex obtained by shrinking S.

Finally, note that GX3' will be a wheel WI. Therefore finding a

minimum cost Hamilton cycle whick uses a prescribed pair of edges

incident with a rim vertex u is easy. if either edge joins u to the centre

vertex, there is a unique pomibility. If neither edge joins v to the centre,

there are 1-2 possibilities.

Therefore the basic algorithm, specialized to the case of Halin graphs

can be implemented in time linear in the number of vertices. See [41 for

more details.

A 2- factor of a graph is a set of vertex-disjoint cycles which span the

vertices (i.e. every vertex of the graph belongs to exactly one cycle of the

2-factor). Edmonds 181 has described the convex hull of the incidence

vectors of the 2-factors of a graph (the 2- factor polytope ) by a system of

linear inequalities. In order to describe this system, we require a definition.

A blonoem B-(S,J) is a subgraph of G consisting of SQ V having S11>3

and an odd cardinality set J;6$S) of edges such that each eEJ is incident

P, "" . .
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with a different vertex of S. We let P2 (G) denote the 2-factor polytope of

G.

THEOREM 3.5. (Edmonds [81) For an arbitray graph G-(V,E), P2(G) is

defined by

0:5z,:<1 for all e E E (3.7)

z(6(v))-2 for all v E V (3.8)

z(-(S))+ z(J)<_tSI+ (IJI-1)/2 for every blossom (S,J) of G. (3.9)

In addition to this theorem Edmonds gave a polynomial algorithm to

find a minimum cast 2-factor in a graph. Therefore graphs for which every

2-factor is a Hamilton cycle constitute interesting building blocks for 3-

splicing; Note that the fully reducible class obtained as the closure of

these graphs-contains that generated am the closure of elementary graphs.

In particular it contains Halin graphs.

Recently Cornuejols, Hartvigsen and Pulleyblank 131 have described

the convex hull of the trionmue-free -factore of a graph (i.e. Those 2-

factors in which every cycle has length at least 4) and have given a

polynomial algorithm to find a minimum cost such 2-factor. Thus, the

clas of graphs where every triangle-free 2-factor is a Hamilton cycle can

be closed under 3-splicing to form a fully reducible class. This class

contains those introduced earlier in this section.

Now we turn to another fully reducible class of graphs, called

prismatic graphs. A graph G. is a prism if it consists of two vertex

disjoint cycles of length p, say with vertices (u1 ,.... , ) and (u1,.... ,),

where in addition each pak ui vi is joined by an edge. (See Figure 6.) Note

that prisms are Hamiltonian and regular of degree 3 and so they generate

Hamiltonian graphs by 3-splicing. A graph is called prismatic if it belongs
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to the closure of prisms under 3-splicing. (See Figure6.

Figure 6.The prism 0 5 and a prismatic graph G4 *G*G3.

When p is odd the prism G, kms exactly p Hamilton cycles, nil using -

a pair of edger- (*uiUMwijzug 1) and no other edge (Yue&) , kVi~i+1L

(Here and in the~remainder of this section. the indice of the vertices are

assumed to be defined modulo p, e.g. up,%. Om the other hand, when

p is even, the prism G,, hasp+ +2 Hamilton cycles, namely thep Hamilton

cycles described above for odd, piplu two new cycles M, and Hf2 containIng

afl the edges (vivi) and every other edge of the cycles ( 1 .,u)and
4.. 0 1, . v). Whether, pi odd or even, a minimum cost Hamilton cyce

can be found in linear time.

Next we will show that TSP(G) is particularly simple for a prism. A

simplex is a polytope such that, for any extreme point, there is a

hyperplane that doen not contain it but contains nil the other extreme

points. For example triangles and tetrahedra are simplices whereas squares

and cubes are not. As a cousequence, in a defining linear system for a

simplex, the number of inequalities required is equal to the number of

extreme points of the simplex. This number is always relatively =mall. In

fact, as will become c'-.ar in Section 4, the total number of relations needed
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in a linear system defining a simplex (number of equalities and inequalities)

is equal to the number of variables plus one (except for isolated points,

which are simplices and can be defined with jut as many equalities as

variables.) Every polytope which is not a simplex requires more relatioms.

Suppose we are given a polytope S-R* having a set W of extreme

points and satisfying a linear system Az:5b,C-d. Then S is a simplex.

and our defining linear system is a minimal defining linear system if and

only if the following conditions hold:

(3.10) C consists of a-] NJ+ 1 linearly independent rows;

(3.11) A contains I WI rows and for each ,oEW there is an inequality

az Dp from Az< b such that aw=-0 for all wE W\tb and sib< 0.

For (3.11) ensures that W is affinely independent and hence S is a simplex

of dimension I WI-i. By (3.10), Cz-d is a minimal set of equations. An -

inequality as<# valid for S is essential if and only it there are dim(S)

afanely independent members s of S satisfyig as-#6. By (3.11) we have

all such essential inequalities, and conversely, all our inequalities are

essential. (See also Section 4.)

THEOREM 3.6. If Op is a prism, then TSP(G,) is a simplex. When p 3

is odd, a minimal defining linear system is:

z(6(w))-2 for every vertex w of G.,,

Sz(vi vi.-

L~ zu~u..,.1 )1 for k-1,2,...p.

WThen p 4 is even, a minimal defining linear system is:

z(6(wu))-2 for all vertices w of G. except one;

z(ui u,)-i (p-2)[z(u& u&. 1)+ x(vi&+ )J:52p -2 for k-1,2....,p;
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:(uu,)+ (p-2)z(H)>p(p-1) for j-1,2,

where H, and H2 are as described above.

PROOF. First suppose that p is odd. Then G, is nonbipartite and it is

well known (and easy to verify) that the equations x(b(w))-2 for al

vertices w of G, are linearly independent. If we let 1 be the incidence

vector of the two disjoint cycles of length p, then f satisfies all of these

equations but tf(uvJm0. Therefore the equation t z(u,, )=2 is

linearly independent of these other equations so (3.10) holds. (Note that

G, has 3p edges and p distinct Hamilton cycles.) Moreover, (3.11) foilows

immediately, since for each edge (k a&+ 1) there is a unique Hamilton cycle

which does not use this edge.

Now suppose that p is even. Then G. is bipartite and so if we tke

all the degree constraints :($(u ))=2 except one, we have (3.10) satisfied.

Consider a Hamilton cycle which uses only two edges of the form (u, ui),

say (iuji), (u1 + lvj 1). Then it satisfies all of the first p inequalities with

equality except the one corresponding to k-j. It also satisfies the last

two inequalities as equations. The Hamilton cycles Hj both satisfy the

first p inequalities as equalities and each also satisfies as an equation the

one of the last two inequalities corresponding to the other. Therefore

(3.11) is satisfied. Q

~B
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4. Polyhedral Theorems.

Theorem 2.2 (the basic polyhedral theorem) showed that we could

obtain a linear system sufficient to define TSP(G) from linear systems

sufficient to define TSP(GXS) and TSP(GxS) where S)- .9) is a 3-

edge cutset of G. In this section we show that stronger results are true.

First we review certain facts concerning linear systems and their solution

sets. (See Bachem and Gr6tschel [11) for a good introduction to polyhedral

theory.)

Let P--({ *: zRb,Cx-d}. If we are interested in using linear

programming techniques to solve an optimization problem

Minimize (lz:zEP)

it is often desirable to have our defining linear system as small as possible.

In particular, we want to eliminate any redundant equations or

. inequalities. First we assume

(4.1) no inequality from the set Ax<b is satisfied with equaliki by all

zED. In other words, if any of the inequalities can b -d"- into

equations without changing the solution set we do so.

A consequence of assumption (4.1) is that my equation which is

satisfied by all zEP is a linear combination of the equalities Cf=d.

Subject to (4.1) a fundamental result of polyhedral theory is that the

defining linear system is minimal if and only if

(4.2) the rows of C are linearly independent,

(4.3) for any inequality z< from the system Azb, there exists iEP

satisfying s=i==

(4.4) for any two inequalities slzx,9 and a 2 z <4 from the system

Az<_b, there exists EP satisfying a'!m-0 and a:l<90.

,,. .;.... ..,.. . :.: ..
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A face of a polyhedron P is defined to be the set of all zEP satisfying

cz-y for some inequality cz<S- satisfied by all members of P. A facet is

a maximal (with respect to set inclusion) nonempty face of P which is

different from P. Conditions (4.3) znd (4.4) require that, for each

inequality axfl from Az~b , ({EP:sz-) must be a facet of P.

The dimension of P, denoted by dim(P) is defined (subject to (4.1)

and (4.2)) as the difference between the number of columns and rows of C,

with the convention that the dimension of the empty set is taken to be -1.

A set X of vectors is affnely independent if for any iCX, the set

(z-i:zEX-{1)) is linearly independent and the affine rank of a set is the-

size of a largest affinely independent subset. We say that 1 is an affine

combination of X if there exists aWr satisfying E(a,:zEX)"1 and

-- E(az:zEX). (Recall that for any set S, R S denotes the set of all

real vectors indexed by S.) It can be seen that dim(P) is one less than the

affine rank of P and that a nonempty face F of P is a facet if and only if

dim(F)-dim(P)-I.

Let J be a 3-edge cutset in a graph G-(V,E). Let ) denote the set

of those JWJ such that G has a Hamilton cycle which does not use j. In

other words, for each pair of edges of J which belongs to a Hamilton cycle

of G, the other edge is in j. If G has no Hamilton cycles, then 1-'0. If,

as is the case for Halin graphs and prismatic graphs, every edge is missed

by some Hamilton cycle, then !=J.

When we wish to obtain minimality results for a linear representation

* " of TSP(G), this set I plays an important role. We define a restricted

travelling salesman polytope as follows: for any E' CE we let TSP(G,E')

denote the convex hull of those tours of G which use all the edges of E',

(Thus TSP(G,0)m TSP(G).)

We now show that if Jm (S) is a 3-edge cutset in G-(V,E) then

•. . .
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we can combine minimal defining linear system for TSP(G x S.1-1) aad

TSP(GX3SJ-j) and obtain an essentially minimal definieg system for

TSP(G). There are two technical problems. First, the equations x(J)=2

and ;j1 for jEJ'-1 need not occur explicitly in either linear system and

yet will be obtainable as linear combinations of equations defining both

TSP( G xS,J-J) and TSP( G X YJ-j). Therefore combining the

equation in these systems results in some redundancies which must be

eliminated. Second, there is one situation in which an inequality is facet

inducing for one of two smaller systems and yet not facet inducing for

TSP(G). Thu is when it induces the same facet am xj:5l for some WE in.

one of the subsystems, but this inequality is not facet inducing in the

other.

In the applications we make of this Theorem, these problems will be

minimized. Every %edge will appear in some Hamilton cycle and not

appear in another. Consequently we will always have J-J. Moreover,

zj:5i will be facet inducing for all j and the equation z(J)-2 will occur

explicitly in both subsystems.

THEOREM 4.1. Let J-(S) be a 3-edge cutset in a graph G for which

TSP(G)#O. Let P1-TSP(GXS,J-)) and let P2 -TSP(GX3,J-)).

For i-1,2, let

Aiz<b'

x;-1 forjJ-

be a minimal defining linear system for P,, which satisfies (4.1). Then
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(4.5) the union of these linear systems gives a linear system satisfying (4.1)

whose solution set is TSP(G);

(4.6) the equation ((~2:- Or all jEJfJ,C'z-d 1,C'x-4 3 are a

linearly independent basis of the equations satisfed by all

ze TSP(G);

(4.7) an inequality from Alz<b 1 or A2Z~b2 is facet inducing, and hence

essential, for TSP(G) unless it induces the same facet as z, 51 for

some i~i, for one of the two subsystems, and this inequality z,:51

does not induce a facet of the polyhedron defined by the other

system.

PROOF. We first establish (4.5). Let P1 and P2 be the set of all vectors

in R-w which satisfy (z(S)=2, C'z-d',A's <_ ) and

(z(S)-2,C':-d2,A'z:Sb2 respectively. Then TSP(G)QP~flP2. Let

P1 and P62 be the sets of all vectors in e' which satisfy linear system

sufficient to define TSP(GXS) and TSP(GX.9) respectively-. Then

P12P 1 and P22P 2 and, by Theorem 2.1, TSP(G)-PJfilP2. Therefore

TSP(G)-PAP2 and so the union of those two linear systems defines

TSP(G).

Now we prove (4.6) and (4.7). Let X 1 'V'S be a maximal affinely

independent set of tours of P1 and let rWCR') be analagously defined

for P2. For each jiE) we choose a tour 3 EX1 such that Vy .O and a tour

7 ~i'EX2 such that ijjO.

7 For any tours z of G XS and r of G X3 such that zy -ri for all

jiEJ, we define the uplice of z and T to be the tour z' of G defined by

for jEj$(S)

Z. -for j-S
forj-gs)
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We now define the following sets of tours:

.X' is the set of all splices of tours of X1-{Y:jE)) with the

appropriate tour of (ij:jE.1);

X, is the set of all splices of tours of X'-(ij:jEj) with the

appropriate tour of {N1:jE))

- 3 is the set of splices of V" and!' for all jE.

Note that

• ,1±,Ujvufm-IX'l+ 1I-I1l. (4.8)

CLAIM 1: XfUX 2UfC$ forms an afnely independent bai of the tour# of

G.

First, we show that they are affinely independent. Suppose there

exists su1k that

Since X1 is affinely independent, we must have a,-O for all zEf 1 and

E(a,:zEA. )-O. Similarly, since X2 is affinely independent, we must

have aRmO for all zeVX. Thus we must have (ra 3 z:ze)--O, which

implies a,-O for rzEi, since the members of Xs are adinely independent.

Therefore amO so X 3tX±UX' is linearly independent.

Now let i be a tour in G and let J be the edge j of . for which

I& j0. Let 1' and i2 be the tours of GXS and GXY rspectively induced

by i. By the maximality of X1 and X4 there exist a&GR and alee t

such that

-': EX, )m, and • . - . . ."6X.•

and
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E(4:eX)-1and i*-E(a,'Z:zEX2).

Note that this implies that for any zE.X such that a70, z1-0, and

similarly for r. In other words, the only toun having a, or a" nonzero

are those agreeing with i on J. Now for any zEX, if z7&24 for ay jC-,

we define z' to be corresponding tour of X'. If z- for some jEJ we

define z' to be the corresponding tour of .l. The vector E(a,z' :zEX')

is identical with & on E--(S) and equals V on -(S). We define z'

analagously for ziEX and have F(a,z1:z1E.X) is identical with i on

E-y) and equal. ! on -t). Therefore

where zr is the splice of i1  and e. Since

E(-:rEX1)+ E(a2.rEXs) -1=1. we have expressed I s an dine

combination of members of VUJVUJ as required. Thus Claim 1 is

established.

Note that (4.1) is cleary satisfied for our combined linear system, for

consider an inequality 435A which belongs to Alz<b, say. Some tour

rEP, satisfies a*<$ so there will be a tour 3' of G obtained by splicing

some tour of P2 with i which also satisfies as' <P.

It follows from Claim 1 and (4.8) that

dim(TSP(G))-dim(Pj+ dm(PJ)-jJj+ 1.

Since we have assumed minimal defining systems for Pj, the equations

z(J)M-2, z,-1 for jEJ-1, C'z-d4 are linearly independent. Let ri be

the number of these equations for P,. By the definition of dimension, we

have dim(P,)+ r,-jE-,S)j and dim(P.2 )+ r-E-(9)I. The linear rank

of the combined system is IEI-dim(TSP(G))"ri+ rz-i-jJ-11 since

IEl-IE-i(S)I+ JE-,y().-Jj. But this is exactly the number of equations

• . : </ .. .- .- i: . -i .--. . . . . . - . - . :: L . . .-. . _ , ..- .: -_. S - .
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so they are linearly independent ad hence all essential which establishes

(4.6), since our combined system satisfies (4.1).

Now let sz<0 be an inequality from the system A'z<b. Then

there exists a set Y' of dirn(P,) affinely independent tours in P1 all

satisfying sz-. Moreover, if the facet of P1 induced by az<#8 is

different from the facets induced by zi : 1 for all jE j then for each jE J

there exists a tour z3 iE Y' satisfying zjmO. We now splice the tours of Y'

and X" in the same manner as we did previously with X 1 and X 2 to obtain

dim(P,)+ dim(P2)+ 1-111 anfinely independent tours of G, all satisfying

az-0. Therefore iiim(TSP(G)) affinely independent members of TSP(G)

a satisfy a-- so the inequality is facet inducing and essential.

- .. ~*Suppose sz<0 induces the same facet as z, 51 for some jiE.. If

zj 1 is also facet inducing for P2, then we can Aind sets Y, and Y2 of

dim(P,) and dim(P2) tours respectively of P, and P2, all satisfying zj~I.

Let kEl-{j). Suppose every z1EYUY 2 also satisfies zk-1. If there

existed a tour i in either P, or P2 which satislied i5 -1 but sy-O, then

we would have contradicted {ziEP, or P2:Sml) being a maximal proper

face, i.e. a facet. Therefore every tour z in P1 Or P2 Which has Zk=1 Must

also have sim1. But every tour x in P, or P2 must have zy-1 or zi1

hence must have z-zj-I. This means that the inequality z,:51 is not

facet inducing for P, or P2 , a contradiction. Therefore, for each kiEj-{j)

there exists zl5E Y, such that 4-0, and similarly for Y2. So as before we

can splice V, and Y2 and obtain

dim(Pi)+ dim (P2H1I-1)mdim (TSP(G)) affinely independent tours of G

all satisfying z,-l. Therefore the inequality is facet inducing.

Finally, suppose 4z:50 induces the same facet as zir5l for .iE), but

z, <I1 is not facet inducing for P:. Then there is some other inequality

a/ Z<,Y from Az<12 such that (zE-P,:s' :-jf }.d {zE-P2:z,-I). If we

extend-the tours in these two sets to tours of G in all possible ways, we see
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that x <3 does not induce a maximal nonempty face of TSP(G), i.e., the

inequality is not facet inducing and so is inessential.

Thi completes the proof of (4.7) and the theorem. Q

COROLLARY 4.2. Let Ja6(S) be a 3-edge cutset in a graph G for which

TSP(G)#O. Then

dim (TSP (G))-dim (TSP( GX $,I-)))+ dim( rSP(GQx rJ-)))- J!l+ 1.

(We actually proved this explicitly in the course of proving Theorem 4.1.)

Now we apply these results to Hain graphs. Recall that for a wheel

W& we defined a rim edge to be an edge not incident with the centre

vertex.

PROPOSITION 4.3. The following is a minimal defning linear system for

TSP(W,) for a wheel W:

zy:1 for every rim edge j

z(6v))m2 for every vertex v.

PROOF. The wheel W& has exactly k different Hamilton cycles, each one

omitting a differeat rim edge. It is easy to verify that (3.10) and (3.11) are

satisfied so TSP(Wt) is a simplex and the given linear system is both

minimal -td suffcient. 0

We remark that there are two notable omissions in our list of

inequalities in Proposition 4.3. First we do not require z,:51 for a non rim

edge j. However this inequality can be deduced as follows. Suppose j

joins vertices u and w. Then the inequality z:51 can be obtained by

adding 1/2 time the equations z(bv)) for vE{v,w); -1/2 times the

equations z(6(v)) for uEV(W)-{u,wI; and the inequalities k:<1 for all

kEE(WH0(u)U )). Moreover, all of the above are part of our linear

.- ,...-.../ ..,,. .. ,. -, ,.., . .- .. . ... . . ..-,.
n " S.. . . . . ..".' " .' - -. - .' "- " " " ' " "'",
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system. Second we do not have inequalities znj0 for any of our edges.

These can be derived from the fact that every edge is incident with a

degree three vertex and each edge k incident with the vertex has the

inequality z&5I either explicitly in or derivable from our linear system.

THEOREM 4.4. Let H-TUC be a Halin graph. The following is a

minimal linear system sufficient to define TSP(H):

zj_5l for all iEE(C);

z(6(v))-2 for all vEV(H);

z(J)-2 for every (nontrivial) 3-edge cutset J of H.

PROOF. We prove by induction on the number p of nonleaf vertices of T.

If p- I then H is a wheel and the result follows from Prop. 4.3. If p > I

then the result followl by induction and Theorem 4.1 applied to any

(nontrivial) 3-edge cutset J of H. Q

COROLLARY 4.5. If H-TUC is a Hain graph such that T has p leaf

vertices and q nonleaf vertices then dim(TSP(H))-p-q.

PROOF. There is a bijection between the (nontrivial) 3-edge cutsets of H

and the edges of T which are not incident with a leaf. Therefore the

number of equations in a minimal defining system for H is

(p f)+ (-l)-.p+ 2#-1. The number of edges in H is

(p+ f-1)+P-2p+ q-1. Therefore dim(TSP(H))-p-q.

In the previous section we discussed those graphs obtainable by 3-

splicing from elementary graphs, and observed how Theorem 2.2 provided

an easy means of obtaining a sufficient linear system to define their TSP's.

We now show how Theorem 4.2 can be used to give converse results.

Let Z be the elm of those graphs Gi(V,E) satisfying

h.L..... ......
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(4.9) for each edge j of G there is a Hamilton cycle of G which does not

use j;

(4.10)TSP(G) is defined by the following linear system:

S0<:j<l for all jEE, (4.11)

z(6(V))=2 for nl VEV (4.12)

:(J)-2 for every 3-edge cutset J. (4.13)

First we show that ECCL (Elementary graphs).

THEOREM 4.6. Let G be a graph having a 3-edge cutset J-(S). Then

GEE if and only if both G X S and G X.F are in E.

PROOF. If both GxS and Gx3' are in E, then (4.10) follows from

Theorem 2.2, and it is easy to see that (4.9) is satisfied. Conversely,

suppose G XSfE. Then there must be a facet not induced by an

inequality of the form (4.11) or else a valid equation linearly independent

of (4.12) and (4.13). Thus an inequality or equation not of the form (4.11)

- (4.13) is essential for TSP(GXS). Therefore, by Theorem 4.2, it is also

essential for TSP(G). Hence GfE, a contradiction. Q

Therefore characterizing the graphs in E reduces to the problem of

characterizing graphs G=(V,E) such that IS(S)I 4 for every SCV

satisfying 2:1SI:5IVI-2 and for which TSP(G) is defined by (4.11) and

(4.12). Some results in this direction are presented in Section S.

Finally we show that not only do we have algorithmic and polyhedral

reductions over 3odge cutsets, but we can also construct optimum solutions

to the dual inear program of minimizing Iz for -ETSP(G) from optimum

dual solutions for G X S and G x where (S) is a 3-edge cutset.

For convenience, we assume that 1J, i.e., each pair of edges of J

belonp to a Hamilton cycle. (This assumption could be removed using the

_ '. . . . . . . ..f~- - - -. . . . . .
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same ideas a in Theorem 4.1) Suppose that TSP(Gx S) and TSP(G x3)

ane defined by the linear systems (A'z<b' Clz-41 ) and

(A'x:50C 2z-d') respectively. The dual linear program to minimnizing

Is subject to this linear system (i.e. to solving the TSP for edge costs 1)3is

the following:

MaXimize _.qlbk..; 2 b2 + P141.+ p'd 2

subject to

-91Ak-tA 2+ P 1CI+ p2C2-L

We proceed as in the basic reduction. Let u,v and wo be the vertices

of S incident with edges of J and let u',v' and wo' be the adjacent
vertices in .. (Note that our J-1t assumption ensures that these vertices

are distinct.) We compute L,.,L,, and Lm to be the minimum costs of

Hamilton paths between u and v, v and wo, and v and wo respectively in

GISI. (Again, by virtue of our J-) assumption, these values are well

delned). Again, we compute

*-(Lq,+ Lo.-Lm.)/2

o6-(L.,+ L,.-L..)2

We now define vectors 11 and 12 of edge costs as tollows, where ec-(a,u')

f -(v,v'). g-(wvto'). We define ti' for jE-E--(.3) by

f:(i) if jEE--(3')-{Jj)

11()-a if j-e
11(1 I )-0 if i-f
If(#)-( ifji-f
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We dehe 1/ for jEE--',() by

IU1) it -)
l(C)+ a if i'n

()+ e j-

Note that 12 is just the normal cost vector we use for GXS in the basic

reduction. However by subtracting a,8,c to construct i, we have ensured

that the minimum cast (with respect to 11) tours in G X .' using each pair

of edges of G will have the same objective value, namely zero.

Let () 1, 1) and (le,7P) be optimum dual solutions to minimizing .1z

subject to (Alz:5_,OC': d') and to minimizing I's subject to

(A 2szb 2 ,Cz==d2 ) respectively. Then, since the optimum value of the

rst linear program is zero, we have

_-" 161+ 'd 1-O.

The optimum value of the second linear program is min{1z:zE TSP(G)) so

J-'b'+ Yd=nmin{L::sE TSP(G)).

I we extend 11 and 12 to be vectors defined on E by letting any undeSne l

components take on the value zero, then 1-1+ 1. Therefore
~~~-I) 1Ak-T"A2+ ;"'tt+ .2C2-1n,

S' '+ b2 -I ldl d-=min b::e TSP(G)).

Therefore iT 1,1z,7 , comprise an optimum feasibi- .olution to the dual

linear program as required.

I'l
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We illustrate this process for Hahn graphs. The only problem is to

compute an optimum solution to the dual problem for a wheel Wh=(V,E)

having centre 0 and arc costs 1. Let i and Co be adjacent rim vertices

such that 1(6,i)+(O,)-I(hP) is minimized, over all adjacent painrs of

rim vertices. Our primal linear program is

minimize Is

subject to

z(,(v))-2 for all vEV,

:j1 for every edge j joining two rim vertices.

The dual problem is

maximize -2p()-E(q(j):jEE joins two rim vertices).
fev

We dehe an optimum dual solution 1',7 as follows:

)for VEV-{b),

1v(,me):"J(u)+ (w)-(u,w) for each pair(u,w)

of adjacent rim vertices.

It is routinely checked that (W,7) is feasible and that it gives the same

objective value as the Hamilton cycle of W& which uses the edges (ti,D)

and (O,tb).

For any arbitrary Halin graph, we can use the general method

described above, together with this specific optimum for a wheel, to

construct an optimum dual solution. Note that this provides a second

F.
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proof of the validity of our basic reduction - a solution to a primal linear

program is optimal if and only if these exists a feasible solution to the dual
S linear program giving the same objective value.

5. AdditIonal results on lementar7 graphs

As stated in Section 3, the travelling salesman problem can be solved

in polynomial time for an elementary graph G=(V,E). Remember that,

for these graphs, the polytope TSP(G) is defined by the linear system

0<x <l for all iEE, (5.1)

z((v))-2 for all v V. (5.2)

If this system satisfies assumption (4.1), the graph G is called basic

elementary. An equivalent way of stating assumption (4.1) is

(5.3) for every edge jEE, there is at least one Hamilton cycle which

contains j and at least one which misses j.

Examples introduced earlier such as wheels, Kus,K 4,Ks , K 5 minus

one edge and Ks minus two nonadjacent edges are basic elementary

graphs.

PROPOSITION 5.1. A basic elementary graph with a vertices contains at

least n /2 + I affinely independent Hamilton cycles.

PROOF. By assumption (4.1), the dimension of TSP(G) is lEJ minus the

number of linearly independent equations (5.2). Note that I E j _ since

every vertex of G has degree at least 3. [Edges incident with a vertex of

degree 1 or 2 would violate (5.3).] The number of equations (5.2) is at most
is

n. So the dimension of the polytope TSP(G) is at least -- and so the

afte rnk is at least nJ2 + 1. Q
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The next theorem shows the importance of bipartite basic elementary

graphs.

THEOREM 5.2. If G, and G2 are two basic elementary graphs and G1 is

bipartite, then GGI2 is also a basic elementary graph. Conversely, if a

basic elementary graph G has a 3-edge cutset with shores S and S2, then

either G X S, or G X S 2 is bipartite. Furthermore both G X S 1 and G x S2

are basic elementary graphs.

PROOF. Suppose G1-(V,El) is bipartite. Then the constraint

z(h(vj))=2 for a vertex vE-V is a linear combination of z(b(v))-2 for the

vertices vESlm V1-{u 1 ). As a consequence, in G, eG2, the 3-edge cutset

constraint z((Sj))'=2 is implied by the degree constraints for vES1 and

thus can be omitted. Now it follows from Theorem 2.2 that, if G, and G2

are elementary, then Gj*G2 also elementary. If G, and G2 both satisfy

(5.3), then consider any edge j of- G, *G. Without loss of generality

"p. assume that edge j belongs to G1 . By (5.3), there is a Hamilton cycle of

G, that contains j and another one that mines j. Any such Hamilton

cycle contains two edges of 6(Sl) and misses the third edge, say j1. By

(5.3), there is a Hamilton cycle of GC that mimes j, and therefore any

Hamilton cycle of G, can be completed into a Hamilton cycle of G*G2.

That proves that G1 *G2 sisies property (5.3).

Conversely, if G is a basic elementary graph, then the assumption

(4.1) implies that the valid equality z(6(Sj))=2 must be a linear

combination of the degree constraints z(Ae-))-2 for vEV, i.e.

z(6S,))-2Ea, z((v))-2j. Let Vm{uEVa,#O). If V-S, or S2,
v

then GxfV is bipartite as required. Otherwise f==V, since
6)( S)- S,) and G([11 and G(S2J are connected. Then note that all

the coefficients a, for vES (respectively yES), must be equal in absolute

value. (This follows from the fact that the linear combination of degree

i'I
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constraints must add to 0 for every edge of GIS 1I.) Furthermore GjS4 is

bipartite, the bipartition being given by the sigp of a.. Let

6(Si)-(ejfj) and denote by (respectively v.,v1 ,v,) the vertices

of S, (reap. S2) incident with ejf and p. Nf a, maIma,, then G xS 2 i

bipartite since sa, ,u and s, belong to the same side of the bipartition of

GJSIJ. Otherwise, assume without loss of generality that ai- 1 .Then

a,.+ a,=l and a, + a If - imply age+ all -2. Since these two

coefficients mre equal in absolute value, we must have awe =a,1 -1. This

implies a,=4and aI -0 which contradicts fl-V.Q

Theorem 5.2 gives a way of generating infinite families of basic

elementary graphs, by recursively 3-plicing a basic elementary bipartite

graph onto a basic elementary graph. Unfortunately we only know two

irreducible basic elementary bipartite graphs, namely K3.2 and the M- cage

(see Figure 7.)

Figure 7. The 3M cage

By specializing Lemma 3.1 to bipartite graphs, we have that all the

extreme points of the polytope defined by the linear system (5.1) - (5.2) are

2-factors. Thu, to show that the 346 cage is elementary, we have to check
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that all its 2-factors ae Hamilton cycles. Since every cycle contains at

least 6 vertices, it suffices to check that the vertices of the 3-6 cage cannot

be partitioned into a cycle of length 6 and a cycle of length 8. This

veriflcation is left to the reader. It is also easy to verify that condition

(5.3) is satised.

In the remainder of this section we describe an infinite class of basic

elementary graphs which contains the wheels.

LEMMA S.3. Let B be a bipartite buic elementW graph and u a degree-

3 vertex of B. Let B' be constructed from B by inserting new vertices v

and w on two edges of B incident with u, and joining v and W by an

edge. Then BO is a basic elementary graph.

PROOF. It is clear from the construction of BO and the fact that B is

bipartite that BO cannot have two disjoint odd cycles. Thus by Lemma

3.1 every extreme point of (5.1) - (5.2) is a 2-factor. Now consider a 2-

factor z of BO. If the edge (v,w) is not in the 2-factor, then z induces a

2-factor in B, and therefore it must be Hamiltonian since be B is

elementary. So assume that the edge (v,w) is in the 2-factor z. Note that

the triangle (s, v,w) cannot be a cycle of z becaue the removal of these 3

vertices would leave a bipartite graph with one more vertex on one side of

the bipartition. Therefore exactly one of the edges (u,v) or (a,w) must be

in the 2-factor (a consequence of the fact that u has degree 3). So z is a

Hamiltoniam cycle. [

By Theorem 5.2, every graph obtained u I(WhSBJ 1.ID,, is basic

elementary if B,,lip, stands for K%3, the 3-6 cage or some other

bipartite buic elementary graph. A larger clam W can be obtained as

• .follows.

. - . .
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(i) W--K 4EW. Let w be the center of W3.

(ii) If GEW and B is a bipartite basic elementary graph, then G' *BEW

for any VOw.

(iii) If GEW, then the graph obtained from G by joining w to a new

vertex z' placed on some edge (z,u) where z is adjacent to w and
vu76w, also belonags to W.

Note that, through operations (ii) and (iii), the center t of any graph
in W remains well defined. Of course the wheels belong to W, from (i)

and repeated applicatioa of (iii). Then, by repeated application of (ii) the

graphs [(Wk *B1)e... I *Bp can be obtained. It is interesting that some or all

of their 3-edge cutses can then be removed by application of (iii). (See

Figure 8).

9W
.4

Figure 8. An irreducible graph in W

PROPOSITION 5.4. Every graph in the clan W is a basic elementary

graph.

PROOF. Assume not and let G be the smallest graph in W which is not

basic elementary. Consider an extreme point z of (5,1) - (5,2) which is not

the incidence vector of a Hamilton cycle.

-1

"9
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Assume G=GeB with GliEW and B a bipartite basic elementary

graph. Let eJ # be the edges in the 3.edge cutset joining G, and B. The

constraint 2.zl:+ z,-2 is implied by the fact that B is bipartite. if

x.-stml and so-O, then the facts that *very 2-factor of B is

Hamiltonian and that x is a non-Hamiltonian 2-factor of G imply that the

2-factor induced by x on G, is non-Hamiltonian. This contradicts the

mnality of G. if 4,-21-F and x.-1, then the facts that B contains

no odd cycle and that the 2-factor x of G has at least two odd cycles

assigned the value I~ imply that the 2-factor induced by:x on G, has at

least two odd cycles with i's . Again this contradicts the minimality of
2

G.

Note that x(6(w))=2 and the fact that X*=O,T or 1 on every edge,-

with the y-s occuriug on vertex disjoint odd cycles implies that at most 3

edges incident with ws have s,>O. Assume that some duplicate edge e

(step (iii)) has the value :.-O. Then the graph without the duplicated

edge also ha an extreme point which is not, Hamilton cycle. This

contradicts the miaimality of G. Thus in G, step (iii) has been applied at

most twice.

Therefore G must be obtained as 1((W'eBl)e. ' eB, followed by

one or two duplications of the vertex v., where v,25i~p, is the vertix of

Bi-,1 which is adjacent to ws. This is equivalent to W"3B followed by one

or two duplications of v.

Consider the case of one duplication, say edge (is, ) ii duplicated

into (,v). Since:s must be positive on these two edges, it has to be zero

on at leas one of the original edges in W.I. Remove it as well as its end

vertex other than is. Then we have a graph BI obtained from B as
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described in Lemma &3 So G is basic elementary.

In the can of two duplications, two of the original edges of W3 must

have z.-O. Removing them leaves a graph with a 2-ede cutaset. In this

graph every 2-factor is a Hamilton cycle as a consequence of the fact that

B is elementary. Q

6, Extensions

This paper deals only with one graph reduction. Specilcally 3-edge

cutsets are used to break up travelling salesman problem into four smaller

problems. But other reductions could also be studied. One obvious

direction is to reduce a graph using its k-edge cutsets, for any given k.

When k-2, this works nicely. Let S and ." be the shores of a 2-edge

cutset. Then minimum cost Hamilton cycles for G X S and G X 3' can

simply be patched to produce an optimal solution for G. The basic

polyhedral theorem (Theorem 2.2) also holds. When k2:4, a reduction into

G x S and G X Ydoes not seem. to work since a Hamilton cycle of G may

use 4 or more edges of the k-edge cutset. Even if every Hamilton cycl#

were to use only two edges of the k-edge cutset, one could not in general

use cost reductions a,,,..., (recidl the basic reduction in Section 2)

because they would have to satisfy () ) equations with only k unknowns.

A more promising direction for investigation is to consider vertex

cutsets instead of edge cutsets. Suppose {u,v) is a 2-vertex cutset of G.

Let G(S1 and GJSJ be the two connected components of GIV-{u,v}).

(Note that three connected components cannot occur if G is a Hamiltonin

graph.) Then solutions of the travelling salesman problem in G X S, and

G X S2 can be patched into a solution for G. A simple polyhedral theorem

also exists.

-1"

. .._
.. . . . .
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-The most appealing genersliation of our basic reduction occurs by

allowing both edges and vertices in a cutset. (See Figure 9.)

Se

e

S%

Figure 9. Reductions

First consider the cas where G haa a cutset consisting of two edges

and one vertex, say edges e and f and vertex w. We will show that the

travelling salesman problem on G can be reduced to five smaller problems

(assuming both S, and S2 contain at least 3 verties,) Let pES 2 and IiES2

be the endpoints of edges e and f respectively. Compute the values
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H,,- minimum cost of a Hamilton path from p to q in GIS21

L,,- / minimum cast of a Hamilton path from p to q in G$2SU{]w)

L,,- minimum cast of a Hamilton path from p to v in GIsgU(w)I

L,.- minimum cast of a Hamilton path from q to w in GIS2U{W).

Now consider the reduced graph G, gi en in Figure 9. In order to

reflect in G, the cost of the four Hamilton paths computed above, we

introduce costs a,,7 for the edges a,b,c respectively ad we modify the

costs 1(e) and I(1) to 1'(e)==/(e)+ e and '(f)=i(f)+ q. A proper set of

values {o.P,,e,,/} is given by the system

,-a+ E+ q

P+
LI-O'7+ (+ q

V- a 7 q.

A solution to this system is.

- _ _ ., ,+ L,.)

L
0= 4-2Hpg+ Lp + 3Lp.-LIe)

"71-'(.-2H"+ L,,-L,.+ 3Lee)

j==rM-4,2Hp + Lpq-LPW- qw).

With these costs, a minimum cost Hamilton cycle in G, is also a minimum

cast solution of the travelling salesman problem in G.

The graph G, was obtained from G by replacing the graph

GIS.J(w}I by three edges s,b,c. Similarly we can define a reduced graph

G- from G by replacing the graph G( IU(w)I by three edges, say aI,b

"-""" * ".
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and c'. Asine that we know linear systems defining TSP(GJ and

TSP(G 2). Following the proof of Theorem 2.2 it can be shown that a

linear system defining TSP(G) is simply the union of linear systems for

TSP(G() and TSP(G 2). Note however that the linear system just given

for TSP(G) contain variables a,z,,,z, nd z., which do not

correspond to edges of G. To get a linear system only in terms of the edge

variables of G we need to eliminate those 6 variables. It turns out that

this can be done since the following equations are valid (they are degree

constraints)

x:.+ 4 -2-sl [g+ xv -2-sy
z. + ze -2-r and z,+ so -2-s.

where Wi is the set of edges of G joining Si to the vertex , for i=1,2.

Now we will mention briefly the caes where the cutset consists of

one edge and two vertices or where it consists of 3 vertices. The travelling

salesman problem in G can then be reduced to six or seven problems on

smaller graphs, respectively. A valid reduced graph G, which

accomplishes this is given in Figure 9. The reader can easily gue out the

costs that must be iated with its wiggly edges. Again, if G2 is defined

as G except that S2 is replaced by S1, it is still true that a linear system

defining TSP(G) is obtained as the union of linear systems for TSP(G)

and TSP(G2). However now there are not enough valid equations to

eliminate the variables which are associated with edges of G. If we insist

on eliminating these variables we must perform a Fourier. Motzkin

elimination (see e.g. 1l1). Then the size of the system defining TSP(G) can

,.. increase exponentially in the number of eliminated variables.

. -._'..* iLrfi.L- -.~.i
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