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-. I. INTRODUCTION

g During the period June 1, 1978 to May 13, 1982, the research "Fault

"* Diagnosis of Large Scale Analog Systems" is sponsored by the Office of Naval

Research under Contract Number N00014-78-C-04444. This research is undertaken

at the University of Notre Dame, Notre Dame, 1ndiana under the direction of

- the Principal Investigator, Dr. Ruey-wen Td;u. The long-term objective of this

* .- research is to develop a practical and reliable Automatic Test Program Gener-

ator (ATPG) which will allow us to locate the faulty component(s) of a large

analog circuit when it is faulty. The short-term objective is to search for

viable and amenable concepts under which long-term objectives can be achieved.

During this short period, some significant progress has been made. - .. ...

To be sure, the fault analysis of analog circuit is an uncharted area of

. research. There is no precedence with which we can follow. Indeed, this has

been an exciting, enjoyable and satisfying research. We continuously discover

new problems which, usually dictates the requirements of new methods. As

" "such, new directions of research have been continuously searched and persued.

In the end, we believe we have a very practical and reliable method at hand.

Sowe highlights of this development will be presented In Sectin IV. Fin the

*.i meantime, twenty-two publications have been published, one Ph.D dissertation

and three Master theses have been completed, and a final report of a Workshop

on Analog Automatic Test Program Generation has been completed.

S1-Recently, Dr. Ruey-wen Liu was invited to give an hour-long tutorial

address to the 1983 IEEE International Symposium on Circuits and Systems in

May, 1983. This was a rare honor for the Principal Investigator. It also

* .shows that the general academic public has begun to show interest in this

exciting area of research.

o.-
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The rest of the Final Report is organized in this way. The background of

the analog analysis is presented in Section II. Some important issues are

given in Section III. Some highlights of our research activities will be dis-

cussed in Section IV. A conclusion is given in Section V. Finally, a record

of publications is in Section VI, and selected reprints are attached in the

Appendix.
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"' .. II. THE BACKGROUND

During the past quarter century, the engineering community has witnessed

a tremendous strides in the art of electronics design. On the contrary, elec-

tronics maintenance has changed little since the day of the vacuum tube. As

such, our ability to design a complex electronic circuit is quickly out-
p

distancing our ability to maintain it. In turn, the price reductions which

have accompanied modern electronics technology have been paralleled by in-

creasing maintenance and operation costs. Indeed, many industries are finding

that the life cycle maintenance costs for their electronic equipment now ex-

ceeds their original capitol investment.

"& Given the above, it is quickly becoming apparent that the electronics

maintenance process, like the design process, must be automated. Unfortunate-

44ly, the 50 years of progress in circuit theory, on which our electronics de-

sign automation has been predicated, does not exist in the maintenance area.

As such, the past decade has witnessed the inauguration of a basic research

program to lay the foundations for a theory of electronics maintenance and a

pparallel effort to develop operational electronic maintenance codes.
Thus far the greatest success has been achieved in the digital electron-

- '- ics area to the point that co-mmercialized test programs are now readily avail-

able. On the other hand, the analog testing is still in its infancy. This is

not without reasons.

For one reason, the analog fault diagnosis had a late start. The re-

search and theory development of digital testing started in the mid 1960's

when the large-scale computers were readily available. Not until a decade

later did a commercialized test program first become available. On the other

" hand, it was not until the mid 1970's that the test technology community began

to face up to the analog test problem. Indeed, even in a predominantly

3
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digital world, analog systems were not disappearing. Analog systems were

proving to be among the most unreliable and least readily tested of all elec-

tronic systems. Assuming the same speed for the development of digital test-

-* ing, a commercially available analog testing program would not have been ready

until the mid 1980's.

There are two main reasons for this seemingly slow development of an

effective method for analog fault diagnosis. One reason is that this is an

uncharted area of research. It has no precedence to follow. More time has

*: been spent to find what the real problems are and where the difficulty is.

Another reason is that analog fault diagnosis has inherited certain difficult

-.~problems which are not shared by digit fault diagnosis. These will be ex-

.. plained later.

U
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III. IMPORTANT ISSUES OF ANALOG FAULT DIAGNOSIS

From many experiences accumulated in the past years, successful ones as

- well as unsuccessful ones, we can determine two major issues for analog fault

diagnosis, not shared by its counter part, the digital fault diagnosis. The

two major issues are the tolerance problem and the problem of modeling and

* -simulation of faulty components:

0 Tolerance: Possibly the single greatest unknown in the design of an ana-

log testing program is the effect of the tolerances of the "good" compo-

nent on the performance of a testing program. This tolerance problem has

absolutely no counterpart in the digital testing problem. The effect of

these tolerances can completely dominate the performance of a testing pro-

gram. In an analog circuit, unlike digital circuits, the actual values of

circuit parameters almost always deviates from the nominal values. There-

fore, any analog testing program has to face up to the problem of toler-

ance problem.

. Modeling and Simulation of Faulty Components: Unlike the digital testing,

a complete modeling (and thus simulation) of faulty components is not

"" available for the development of a testing problem. The modes of faulting

* is too many to encounter. For example, a faulty resistor may have an

infinite number of possible resistances (outside of the tolerance). In

fact, it can even be nonlinear. A faulty capacitor may have a model of

parallel RC. A faulty operational amplifier may have a model of 22 tran-

sistors 12 resistors and a capacitor! A good transistor may behave like a

faulty one if its bias is switched due to a fault which occurred else-

rwhere! In fact, in a nonlinear analog environment, we are still in the

process of developing viable CAD models for nominal devices, let alone for

faulty devices. As such, a thorough test of the performance of a testing

5
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program is impossible. Furthermore, each testing program has to be de-

signed based soley on the nominal values of the circuit.

After discussions with potential users, we also find that there are three

.. important measures for the effectiveness of a testing program.

S Test Points. Due to the practical restriction that there are usually only

a few nodes accessible for measurement and testing, the number of required

test points has to be as small as possible

* Post-Fault Computation. Since the post-fault computation is directly re-

"*. lated to the per unit cost, it is important to keep the post-fault compu-

' tation time short and

* Robustness. This issue has been raised many times; only because it is in-

deed the dominant issue at hand. We want the testing program to be relia-

ble when the fault/tolerance ratio is small.

I These two major issues and there effective measures have guided our research

in the past years.

6
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IV. HIGHLIGHTS OF RESEARCH EFFORTS

The fault analysis of analog circiut, to be sure, is an uncharted area of

U research. There is no precedence with which we can follow. Indeed, this has

been an exciting, enjoyable and satisfying research. We continuously discover

new problems which usually dictates the requirements of new methods. As such,

S-new directions of research have been continuously searched and pursued. In

the end, we believe we have a very practical and reliable method at hand.

Some highlights of this development will be presented here.

The initial phase of our research was placed on understanding the prob-

lem. One of the important problems we have learned in the period was the

trade-off problem between the number of text points and the complexity of

fault diagnosis computation. It is known that when all the nodes can be used

" "as test points, the fault diagnosis equation to be solved is linear and the

computation is relatively simple. However, when the number of test points are

reduced then the fault diagnosis equation becomes more and more nonlinear.

Solving these simultaneous nonlinear equations involves complex computation

and the results are less reliable. Under this constraint, we have attempted

'. - to pick the "best" trade-off point. We have found that if the number of test

" points are reduced at particular locations, the fault diagnosis equations be-

come a set of "nice" nonlinear equations, i.e., the sequentially linear equa-

tions. This set of nonlinear equations has a nice property that can be solved

* ~. iteratively by a linear equation. Therefore, we can reduce the number of test

* . points but not increase the complexity of computation. This part of research

-" was a successful one, see [1] and [2), but the result was not good enough to

have practical use. It still requires more than practically allowed test

points to achieve sequentially-linear diagnosable circuits. As such, we have

to look for new directions.
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S--In the next phase, many ideas have been tried and tested: the modular

approach [3], the accessibility approach [5], a comparison study of frequency-

* Idomain approach and time-domain approach [8] and the fualt directory approach

S[121. We have also investigated the estimation, theory aspect [9,10,11], the

computational aspect [4] and the feedback system design aspect [6] of the

* .problem. All these are novel and useful but only for a particular situation.

* We are still left with the lack of a central thought or framework under which

all these approach can be applied. This leads to the third and the final

-i phase of our research.

At this point, we begin to realize that we have been trying to solve an

impossible problem, i.e., the isolation of all possible combinations of faults

i* with a limited few test points. With limited test points available, we can

isolate all possible faults only in theory, but not in practice. Because it

*. is theoretically possible, it kept us on the wrong track for a long time. TheI
difficulty in the implementation of such a theory is that the theory is based

- on the ideal case, i.e., no tolerance for non-fault elements. This tolerance

effect forces us to look for new directions again.

"'ith a limited few test points, our goal is to isolate only a limited

combination of faults. We look for only the cases when numbers of faulty com-

ponents are limited by a few, say k. This is the k-fault diagnosis problem.

By turning our direction in this way, we recognize that we will miss some

situations, such as when the number of fault elements are greater than k.

-" However, the k-fault diagnosis problem makes a lot of sense. First, a system

is faulty usually because only a few of its components are faulty. A large

number of components become faulty at the same time is a rare occurrence.

Therefore, we do not miss too much by considering the k-fault diagnosis prob-

lem. Secondly, the k-fault diagnosis problem was found to be mathematically

.-
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tractable and computationally simple. Finally, by doing so, we do no less

than our counterpart, the fault diagnosis of digital systems. In our counter-

part, most of their successful ones are only for single-fault diagnosis, i.e.,

Sk1l. In the last two years, our attention has soley been devoted to the k-

*fault diagnosis problem. Fortunately, we have been very successful and had

some breakthrough results [14,16,17,18,19,20,21,221.

At this stage, we have only considered the linear circuits. The cases of

[ inonlinear circuits and analog/digital hybrid circuits are left for future

research. In the case of linear circuits, the following has been achieved:

1. The k-faulty diagnosability problem is completely solved.

2. A method for the design of the location of the test points so that a

circuit becomes k-fault diagnosable is available.

S"3. A simple and robust computational method is developed to implement

the above theories.
U

4. The number of test points required is small even for large and

complex circuits.

As a final test to our porogram, we have tested our method on a circuit

jointly supplied by the NAVAIR and the Naval Air Engineering Center. This

circuit is a video amplifier which consisted of 21 nodes and 38 components, 8

of which were transistors. Even for digital circuits, 38 components required

7 test points. We needed only 5 test points for our analog circuit. It is

well known that the diagnosis of analog circuits is a much harder problem than

ZZ that of digital circuits. This demonstrates that our method required very few

test points.

In the meantime, for the same NAVY circuit, the computation time for each

fault-isolation test was less than 10 seconds on the IBM370. This is amazing,

for it translates to less than one dollar per unit cost!

• .-
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Finally, our method has been demonstrated to be reliable. The fault

deviation to the tolerance deviation ratio is about 200% to 5%. Although the

. ratio may be a little high, this is the first method which was shown to have

the capability of taking any tolerance at all.

L
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V. CONCLUSIONS

In summary, we started with an uncharted area of research. During the

. four years, the research experiences have sometimes been painful, hut always

* . exciting and rewarding. Many directions have been tried and failed. But each

time we have learned something new. Finally, a practical, robust, and yet ele-

gant method is at hand. This method has been tested by a circuit supplied by

the NAVAIR and the Naval Air Engineering Center. The result is satisfactory

U and successful.

The problem of fault diagnosis began to attract academic interest. It has

; -'always been that the problem of fault diagnosis is considered as a problem be-

longing to repairing shops. This point of view has been changed. There have

been special sessions on analog fault diagnosis in the IEEE International Sym-

posium on Circuits and Systems in the past two years and definitely will also

be in the next two years. The principle investigator has been invited to give

talks on analog fault diagnosis problems at the Allerton Conference on Communi-

cation, Control and Computing [31, the National Electronic Conference [71, the

IEEE Conference on Decision and Control [14], the IEEE International Symposium

on Large Scale Systems [161 and many times at the IEEE International Symposium

on Circuits and Systems 15,12,18,191. The last talk [19] was an hour-long tu-

torial speech. He was also invited to submit a paper by the Journal of Society

of Instrument and Control Engineers of JAPAN [151.

.•Up to this point, we have just completed the first phase of our research,

the deterministic model approach. Next, we will take the stochastic model

" ." approach, and finally, the artificial intelligence model approach.

* The stochastic model will incorporate the uncertainties, such as the tol-

erance into the model. We have started and nearly completed this part of the

research. Though this part of the research was carried out after the termina-

tion date of the ONR contract, it may be relevant to report that some break-

through results have been obtained. Theoretically, we achieved the Cramer-Rao

* *lower bound, and hence, we have obtained the most efficient algorithm. Practi-

cally, it recovered all the faults that were missed by using the deterministic

* * model approach before. With these encouraging results, we are very optimistic

that the problem of analog fault diagnosis will be completely understood in the

l .. very near future.

iii
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i; -. Sequentially Linear Fault Diagnosis:
Part I-Theory

RUEY-WEN LIU, MEMBER, 1EEE AND V. VISVANATHAN

A&A, gt--A od sohto to d- tradeoff prbkm betwein th set of the inputs and outputs, the connections between the com-
S emeledm sd d cOt of tM pobb l the emadfy hetly degoo ponents and the dynamical nature of the components.
.: aIs CUaiU ms wr Uc a rstm Is squeo du y I Let the vector p denote a subset of the system parame-

&w dmde , -euiesPe L AIds #mvfPet tIL ters which is to be diagnosed. Its relation to the transfer

function is given by

I. INTRODUCTION H(s) - h(sp) (1)

J N fault diagnosis of analog systems we encounter two where the function h is determined by the system struc-
clacses of faults-catastrophic faults and soft faults ture and the nominal values of all the parameters not

*. - [17]. The former occurs due to an extreme change in the included in the subset p, i.e., the parameters which are
performance of some component(s) (a fuse blows or a assumed to be invariant or fault free. Since from q input
circuit shorts out) and results in outright failure of system and m outputs of any linear time-invariant system we can
performance. Diagnosis of such faults [1] is usually based only determine the m X q transfer function matrix H(s),
on the acceptable premise that the system failure is due to we have the following definition.
a catastrophic fault in one (or a few) of its components.
On the other hand, when the values of the parameters of Definition 1

. the system drift there is a degradation of system perfor- The parameters p of an LSDS are said to be diagnosable
mance which is called a soft fault [17]. The drift in if p can be determined from H(s), i.e., h is injective.
parameter values is usually caused by permanent over- Note that given an LSDS the function h may vary

- stress (high temperature, continued overload operation, according to which subset of the parameters of the LSDS
material stress, etc.) or aging. In such cases one has to are to be diagnosed, and, therefore, one subset of parame-

- make the decision that the system performance has ters may be diagnosable while some other subset of the
S, sufficiently degraded for the system to be declared faulty, same LSDS may not.

and the problem of diagnosing the fault is more difficult Since the function h maps p into the space of symbolic
than in the catastrophic case. This is because the faulty transfer function matrices determining conditions under
condition of the system may be caused by changes in the which it is injective is a difficult problem. We propose

• values of many parameters. However, if we can determine instead an approach based on the time-domain repre-
all the parameter values, not only can we decide if a soft sentation of the transfer function matrix H(s). This ap-
fault has occured, but also locate the faulty parameters. proach is based on the following assertion.

• "- This approach will be used in this paper.
In this paper we consider soft faults in linear large-scale Assertion 1 [2]

dynamical systems (LSDS), i.e., an interconnected system Two minimal (controllable and observable) linear time-
whose components are linear and time invariant. When invariant state equation representations '.[A, B, C, D]

,* we study such systems from the point of view of fault and C -[A,,, D J with state spaces of the same dimen-
S. diagnosis, we consider it to have two parts-the system sion n are realizations of the same transfer function

parameters and the system structure. The system parame- matrix H(s) if and only if
ters are real-valued variables. The system structure con- D- L

sists of all the parts of the system that are known (or and
assumed) to be invariant. This may include the location of

CA 'B - C,4^B, i -0, 1 ... 2n-1.

Manuseript received December 4. 1978; revised April 16 1979. The Markov parameters D and CA 'B, i-0, I . .. 2n- I
was sot in part by the Office of Navel Research under

U Grnt NO017S'C.4. Mhu two-part paper is pan of a disertatio are well-defined functions of p. We can therefore write
sb.mitted by V. V'uvatmn to the Department of Electrical En&-
inl& Uivisty of Notre Damoe. in partial fulfilmient of the requiremeiisfo dw M ss rof-"ed gr e vec [ D ; C B ;" ". ;CA " - ' F(p ). (2)
R-w. Liu is with t& Unaiversity of Note Dame, Notre Dam, IN

v. Vbvdm is with the University of California, Berkeley, CA
94720. Clearly we have Assertion 2.

0098-4094/79/0700-0490$00.75 ©1979 IEEE
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Assertion 2 In this paper, we propose a solution to the tradeoff

The parameters p of the LSDS are diagnosable if and problem. It is found that under certain conditions, the

only if F is injective. nonlinear equation (2) can be made to be sequentially
Note that F unlike h is a real-valued function of real linear (see (31)), i.e., a set of nonlinear equations which

variables, can be solved by solving a set of linear equations in a

. Assertion 2 requires that F(.) be injective for the sequential manner. Therefore, an optimal solution to the
*: parameters p to be diagnosable. This is a very strong tradeoff problem becomes the least number of test points

requirement. A less strict but equally useful condition is which makes (2) sequentially linear. Any additional test
that F() be injective in a generic sense.' points to the optimal solution will not reduce the com-putation cost appreciably. One less test point will cause
Definition 2 (2) to be "genuinely" nonlinear, and, therefore, an in-

, A function f: W--.R' is injective in a generic sense if crease of computation cost by an appreciable amount.
The two-part paper gives a partial solution to the tradeoff

V' (xER"3lx' eR", xax' andf(x)mf(x')) problem.

is a proper variety. II. THE LSDS MODEL AND PARTMoJoNG

Definition 3 The LSDS is assumed to be an interconnection of single

A set of parameters p is diagnosable in a generic sense if input-single output (SISO) components. The ith compo-

F(.) is injective in a generic sense. nent may be represented as

Since the "probability" that the parameters will take on Vigi(s) (3)
the exact values of the points on the proper variety equals where g,(s) is a known transfer function and Vi the param-
zero, generic diagnosability is an equally good property asfa a ful dagoisiscocene.eter to be diagnosed, and it has a state equation repre- "

It is not an easy task to determine a necessary and sentation (4), where x is the state vector and a, and b, are,
sufficient condition under which this property holds for respectively, the scalar input and output of the compo-

ficint cnditon uder hic thi proertyholdnto
an arbitrary nonlinear function. At this stage it is perti-
nent to mention that if the Jacobian of the function F(.) (;j+ 6,1ip,
has full column rank in a generic sense it is not necessary b- (3, + 1) 0,Ci (4)
that F(.) is injective in a generic sense. We will illustrate The LSDS is described by the component-connection
this point with an example. model (5) [5], [7), [18].

Exanple 1: Consider the function
y(x) x2  iAx + BPa

b-Cx+DPa (5a)
whose domain is the set of real numbers. The Jacobian of rarL Lrbi
the function is (Ia(x) - 2LuJ b (5b)

J,(x)-2x. where A -diag (d,) and B, C, D, and P are similarly

J,(x) - 0 if and only if x -0. Hence, J,(x) has full column defined. The vector x - vec (X,) and a and b are similarly
rank in a generic sense. However, the set V of Definition 2 defined. Equation (5b) describes the connection between
is, in this case the components and the input-output terminals u and y

of the system. Without loss of generality it may be
V- R - (0} assumed that both the numerator and denominator of

which is not a proper variety. Hence, y(x) is not injective g(s) are monic polynomials [14].
It has been shown [4] that without loss of generality the

in a generic sense. LSDS description (5) with each component being a SISO
Let us consider a tradeoff problem between the cost of system applies to LSDS where some of the components

computing and the cost of test points. In general, (1) or (2)
are nonlinear and the dimension of p is large. Therefore,may be MIMO with a transfer function as follows:

the computation cost is high and the accuracy is low. This p,,g,,(s) pl 2 g12 (s) . . .pg )

situation can be alleviated by an increase of the number
of test terminals. For example, if every parameter can be
measured directly, the function f or F becomes linear and
decoupled. On the other hand, every additional test point p, g,,(s) "" pg,,(s)
is associated with an additional cost, and there is a limit
of numbers of test points to be added to a circuit. This is a By redefining the connections, each one of the above ij

major tradeoff problem for fault diagnosis problems. scalar transfer functions becomes an SIS0 component.
We now introduce a partitioning of the components

'his conept was introduced to the problem of fault diagnosis by Sen and rewrite (5) based on it. The partitioning leads natur-
and Saeks [31. Se [101 or the Appendix for the definition of genericity. ally to the fault diagnosis equations developed in the nextr " I ~ 7 7 7 7? To
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section. Consider the SISO component described by equa- that for values of s whose magnitude is sufficiently large
tions (3) or (4). Let (3+ J(, (8

rn &(degree of the denominator polynomial of j si-

I &(s)) - (degree of the numerator polynomial of It then follows that for the LSDS description (7)
g(.s)). (6) Do - I,D I -0, CIB I - I

and
Definition 4 Di -0

The quantity Ms defined in (6) is called the minimum CiA/.Bj-0
delay order of the ith component and the component is CjA'-'B -I, j-0,-.- ,i-2, i=2,--,K. (9)
called an rn-minimum delay component.

Partition the components of the LSDS into the classes Therefore,
[; S0,. 1," " SK in the following manner. The class Si DP-diag (DoPo, DIP,... DKPK) -diag (Po,0,. ,0).

. onsists of all the j-minimum delay components of the
LSDS. The largest minimum delay order of all the compo- (10)

nents in the LSDS is K. On the basis of this partitioning As a consequence, det [I-L,bDP]:det [I-LooP0 ] and
we can rewrite (5) as in equation (7). The partitioning of by Theorem I of Singh and Liu [71 the LSDS (7) has a
the vectors a, b. and x and the matrices A, B, C, D, P, state equation representation in the composite state space
and L is conformable with the partitioning into the classes of all its components if and only if det [I- LooPo]J0.

* So." S . For example, the matrix P, is a diagonal matrix
whose diagonal entries are the parameters of the compo-
nents that belong to the class S, and L32 consists of the Det [I- L0 0Po]J:0 in a generic sense.

S gains of the connections directed to the components in Proof. Det [I- LooPo] is a polynomial in the entries of
class S3 from those in class S2. the matrix which are themselves polynomials in the vari-

•O o "Ao Xo BoPo ao

At A, x, BP, a,
. . . + . I.

0 00

C, +DP, a, (7a)-- . . + ( a

: 0 0

bxj CK LX DKP L ax]

. ao LOD Lo, "" Lo0 , Lo F bo

aK Lio . . .. . . .  LIK L , !

- - - (7- -)

.. X L

* Let peR8, Po 6 R'o, pGR" ... pxe Rr be, respectively, ables po. Hence, the equation

the diagonal entries of the matrices P, P, P,... Px. Note
that n- no+ n, +.- . nK. Since g,(s) is monic if it is part of

* "- an m-minimum delay component, it can be easily shown can be written as

[":" -: : i ., _- i .i . . . --.. . . i : . . . . . . . .. , . , , _ : ,i. . _ A.
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q(PoPe,". ',Po,) -O (12) Since S(s) has a state equation representation,
where q(, .,,) is a polynomial and hence, a variety V, in S(s) Mj/a2 (20)

W%. Since 
-o

det [I] 960 where M,'s are the Markov parameters of S(s). We want

the point p 0 does not lie on V and hence, V is a proper to equate the coefficients of (19) and (20).
variety. The proof is completed. It follows from (15) and (9) that

Due to Assertion 3 in what follows, we consider only CAJB-diag (M,,mlj,..,mi,, Pj,0,... ,0)
those fault conditions for which det [I- LmP0]0. Let,

where
1 0  Ao+ BoPo(1- LPo)-'L iCo

- oA BOPo(IL- . oP0)' ,-CAiB P,, I 4i~j.

.o C o+ P (I- LOPo) -'LCo Note that my is a function of only P,. Equating the
P - Po(I- LoP0 )- '. (13) coefficients of (19) and (20), we arrive at Lemma 1.

Due to (10) and (13), (7) is equivalent to equation (14). Lemma 1
• " M,- 1(Po"" ,P,) where i-0,1,2,.•..
-.=,ix + ha Imposing (17), the explicit expressions of #, can be

b -x+6a (14a) obtained:

y L b U M,- [ Lyf+_ LoL ] P,[ L. + Lo,,]
where +fj(Po,' " ,Pi -1), i-, I,-.,K. (21b)

A - diag (A0 , A.. ,Ai) The above equations indicates the sequential nature of the

J -Bdiag (90, BP 1,"', BPK) fault diagnosis equations. Note from (2 1 b) that for each i,
= diag (0, C1... CK) is a linear function with respect to P.

' Recall that pi R are the diagonal entrices of P,.

D -diag #0,0,- -,0) (15) Taking the vec of equation (21) and the appropriate dot

and product [81, we have

0 L'01 ... Lox vec[Mc-L,. vecLWA0 LO. Po(po) (22a)
L2o L, "" LIK vec [M,-f#(Po,"',P,_)] Np, i-, -,.,K.

(16) (22b)

LK0  LK " Lr, where

Note that , (23)

I3LI5 h"0. (17) is a function of P0 only.

Note that the existence of the solution to (22) is
III. CONDITIONS FoR GERIc DANos TY guaranteed. If 4,0 is injective, and if N has full column

Let S(s) represent the matrix transfer function of the rank, the solution is unique. Since the column rank of N
LSDS described by (14) and Z(s) the matrix transfer depends on the value of P0, the post-fault values of system
function of the components described by (14a). parameters, it does not shed a light in the design of

diagnosable systems. As such, we will treat the problem in
S(s)r bZ(s)[l-fL,*Z(s)1-'L.+L .~ (18) a generic sense.

With a power series expansion of Z(s) and (I- L Z(s)L
which are valid for values of s whose magnitude is 2
sufficiently large, we have The union of a finite number of proper varieties is a

proper variety.
PofConsider the k I + k2** +I k., polynomials in n

indeterminates with coefficients in R:

q11 ,q "k,
-;; 7 L( ... (19) q2 ,q,"

q,, 0 q ,.z,~l " ",q, "
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The Boolean variable b,, i-1,... ,m, j-1,. ,k, is de- Proof..
fined as follows: Necessity: The proof follows from the definition of a

bu-0, if qy -o generic property.
Sufficiency: By Assertion 3 there exists a proper

Sbj -1, if qu-0. (24) variety V, c Ro such that VpoV0 V, the matrix

It follows from this definition that the proper varieties LooPo)_Lo.]7
.. V c , i-I,. ,m described as +LiOPO(I

qjj- 0, j- ,- -,k, G[ 4i, + L,0P(I - LOOPO -Lo,
can be equivalently described by the Boolean equationsbI bexists. When the matrix does exist it does not have full

= - b jlb I2.b iA;- 1- l ... ,IM
' lcolumn rank if and only if all its n, X n, minors (since there

while the Boolean equation exists a p0 where the matrix is full column rank, it has at
+ bq - 1 (25) least n1 rows) are zero, i.e., if the parameter values P0 areis- e a to common zeros of the polynomials in the numerator of

is equivalent to the polynomial equation each minor. Let V2 be the variety so defined. Since there
qq, -0. (26) exists a po* where the matrix is full column rank, V2 #R, ,

' . -hence it is a proper variety. By Lemma 2,

' e union of the proper varieties V, i-,- ,m, can now

be described as V g VI UV2

|tl b,*b"2 bl,+b 2 ". b 2 + +bmb,, 2 .. , b,,,- 1. (27) is a proper variety. Since Vp 0  V the matrix is defined
and is full column rank, the proof is completed.

We can now express this sum of products as the product Due to Assertion 4, to check if the parameters p of an
of sums, LSDS are quasi-sequentially linearly diagnosable in a

b.b 2 . . . . . . - 1 (28) generic sense we need to check the rank of the matrices at. -only one set of parameter values (say the nominal values).

* where b is a sum of some of the Boolean variables b. of Note that if the parameters p of an LSDS is quasi-
* (27). Since (25) is equivalent to (26) each b1 associates with sequentially linearly diagnosable then all P,'s, i - 1,2,.. -,

a polynomial which is a product of some of the 2 olynomi- can be solved from the linear equations (22b), in a sequen-
als q,. Therefore, (28) represents a variety V. Clearly tial manner. The only exception is po, which has to be
VOW R" and therefore it is a proper variety. The proof is solved from (22a), generally a nonlinear equation. In the
completed. Theorem I follows directly from Lemma 2 and next section we propose a canonical form of the LSDS for

- (22). which (22a) becomes a linear equation in po and as a
consequence the fault diagnosis equations (22) are indeed

Theorem I sequentially linear.
We have so far assumed that all the parameters of the

The parameters p of the LSDS are diagnosable in a LSDS need to be diagnosed. The extension of Theorem I
generic sense if 4o(Po) is injective in a generic sense and to the case where only a subset of the parameters p are to

the matrices N, i.e., be diagnosed is straightforward. Let p'- Col (p,- .. ,po
be a vector which consists of the parameters to be di-

[L + L 0 Poe ]O[4i +L,0fiL0 j], i-l,2... K agnosed. Equation (22a) may be rewritten as

have full column rank in a generic sense. v-qk%(P ) (29)

" Definition 5 where v is a vector determined by M0, L. and the
The parameters p of the LSDS are said to be quasi- nominal values of the parameters which are in Po but not

sequentially linearly diagnosable in a generic sense if the in p . We have Corollary 1 immediately.
conditions of Theorem 1 are satisfied. Corollary 1: The parameters p' of the LSDS are di-

agnosable in a generic sense if the function 4,;(.) is injec-
Assertion 4 tive in a generic sense and for i, ... , K the submatrix

The matrix N,, i.e., of the matrix N, i.e.,

[L + LPou- LOOPo-'o] [ L,. + L0 Po(I - LooPO)-'Lo.]
0: e[ L,, + LYPU-LWOo)- ]0 o [ 4i, + L OPo(I - LOOPo) -' 4,]

has full column rank in a generic sense if and only if it is consisting only of the columns that correspond to parame-
full column rank for some po -pj. ters in p is full column rank in a generic sense.

.. . . * .
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factL s. oGV hmV snnrva n prpe .ri ceived a National Science Foundation Fellow-
Ln etiv V wheed i nonril van proer Ifdt ship at the Stanford University in the summerw of

geneic elaiveto Vandiftfais a Poe ca bemad to 1962. He was a Visiting Associate Professor from 1965 to 1966 (and a
hold if p9 is shifted by a suitable perturbation, arbitrarily Visitingl Professor fromn 1977 to 1978 at the Universty of Cajifornia
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, '. Sequentially Linear Fault Diagnosis:

Part II-The Design of Diagnosable Systems

V. VISVANATHAN AND RUEY-WEN LIU, MEMBER, MEE

*Abssuwct-Dmed an &a resat daelop~ed In Part I a stegye of m Block Diagram Digraph
-: - I lacP .bc by eb h etes F at LSDS a mwde do& mlag e

in a a, smme. , dvpe By 3 appm roitete p bo aswKt A
" LSDS la remind to a cassosW LSD& Next. an aigorlha for the

3 of~h do the points retpbed to mak th pw iee ofa)
eudiLSDS sequesiduly flewly diagoosable in a gemuic se, Is

' I. INTRODUCTION

S YSTEM designers have so far concentrated on the (b)
" performance specifications of the systems they build

and have given little thought to the diagnosability of the
end product. At a seminar nearly two decades ago, the
late Prof. Seshu in a paper about the future of diagnosis

- [91 stated that there would be increased concern for di- (c)
agnosability in circuit design-to the extent that "the circuit
designer is going to be required to supply the diagnostic Fig. I. Equivalent representations.m tests for the circuit he designs." Recently, studies [3]-[6]
have been made on the tests of diagnosability from a
given set of test points. In this paper, a design procedure system. The test points then come into the picture only

for the test points is given so that a given circuit is linearly when fault diagnosis needs to be done.
The component-connection model of the LSDS has a

*., .- sequentially diagnosable.
We first present a strategy of test point location which digraph representation, with the components, input si,"- generators and output detectors and meters being ",dlmreduces an LSDS to a canonical LSDS. We then discuss and the connections being directed edges. The eqwva-

an algorithm to determine the test point locations required lence between the block-diagram representation of the
to make the parameters of the canonical LSDS seque-- LSDS [16, eq. (5)] and the digraph representation is
tially linearly diagnosable in a generic sense. We approach illustrated in Fig. 1. In the rest of this -)aper the terms
the problem from a graph-theoretic point of view. We system node, input node, output node, and edge will be
view the present work as a preliminary result in a field used interchangeably with component, input terminal,- that is largely unexplored. ue necagal ihcmoet nu emnl
t ia y e routput terminal, and connection, respectively.

11. PRELIMINARIESil III. A DECOMPOSITION STRATEGY

We begin this section with the definition of a test point. A major problem of diagnosis is with the 0-minimum

Definition I delay components since it requires that a nonlinear equa-
"a tion be injective in a generic sense. As we mentioned inAn inputo o utput terminal introduced in system for [16] it is not an easy task to determine the necessary and

the sole purpose of diagnosis is called a test point, sufficient conditions under which this property exists. A
An important property that must be satisfied by all test simple sufficient condition can be derived by considering

points is that during normal operation we should be able
to put them in a state in which they do not affect the

vec (Mo - L,) "[LL -,,'ec[ ] I)
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component CX0

bo. Co- 0 X0 .

b[ C, x1

comporent • AK -K•i~n L Jd L-L

"". PO 0 ... 0 ao,
Fig. 2. Decomposition. 0 P0. 0 ... 0 ao-

0 0 0 ... 0 a,

necessary that the number of both the input terminals and +

output terminals be greater than the number of 0-mini-
mum delay components. We propose instead a strategy of 0 0 aK
decomposition which in most cases will require a fewer 0
number of test points.

Consider the subgraph of the LSDS which consists of ao,
the 0-minimum delay nodes and all the edges between a0 .
them except the self-loops and find its minimum node a,
cover [121. Partition the set So [16, section III into SO, and
So. where So consists of the nodes that are not part of the
node cover and So. consists of those that are. Break the
output edges of the nodes in S0. and introduce an input aK
and output node in each edge as shown in Fig. 2. The ----

- signals measured at these output nodes will be described Y
by the vector y, and those introduced at the input nodes Y'

by the vector u,. Under normal operation the correspond--. ing nodes are connected, i.e., u, =y,. When fault diagnosis L110 L,

needs to be done the connection is broken. , K  LYu* 0L0

The vector u which represents the inputs of the LSDS Lo0,  0 LO. ... LO.K I Lo.., Lo.,, Loo.0

other than those introduced by tearing is partitioned as L,. 0 L, • LIK  LI, 0 L10"

[f (3)
"L Ko, 0 L K I . LK K L,,. 0 L Kor

"': where u" consists of the inputs that reach only the compo-
nents in So.. , O/ a ..

Based on this partitioning of u, the partitioning of So  0 1 0 ... 0 0 0
and the introduction of u, and y,. the LSDS description
[16, eqs. (7) and (10)] changes to that in (4) where the
rationale behind the partitioning of some of the vectors
and matrices is made self-evident by the corresponding bo

subscripts. bo.

X01 A0 X0,

.*0  A0 . 0 xb.
A, (4)

,.9""~A X" A X1

-. a .

0 V
U.

ixAK XJC U,

'•"Bo-Po- 0oIo
0'" Note that the L matrices associated with b0. are now

+ BIP, a, associated with u, and that y, - b0.. Also. . is a diagonal
0 matrix. We now decompose the LSDS (4) into two subsys-

0 tems which are defined as follows.
B •P a1 Subsystem I (SS I) is defined by the component-connec-
B xJ jtion model:
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X0" A0 "X The connections between SSI, SS2, and the inputs and

0 outputs of the LSDS is given byA°1

0 
C2

K AK XKJ. L.J. LYo J

* ByPo, a, 0 0 ... 0 01 01 1 0 0
0 0 0 ... 0 0'010 0 0 - - - -4~~~. - 4 - - --.

B0P a. .L."'L 0, 0 , LO-.. LO-.- LO0-o

0 ... 0 1o 0 0
0 0 ". 0 01 1 10 0 0

B P ax

1 CO, 0 X di
b, C, C

- :1 0- o J - (7).K C Kx x K d'

P, 0 . . 0 ao, ----

0 0 .-. 0 a, u"

0 ... 0 aK  It is easy to verify that (5)-(7) are equivalent to the LSDS

description in (4). As a result of the decomposition com-
aw LT,, L0,1  L0 ,. Lo,. ponents in the set So.become a subsystem separate from

a, L1., Lit L I L im' LIthe rest. Note that SS1 is a canonical LSDS. The vectors
" "do 1, -l , dK are considered outputs of SS1 for the con-

x a L, LK LK v  LKo, sistency of the model (5)-(7) with (4), and it is only
---------------------- - outputs d' that are connected to output terminals of the

. 4 - 1 0 0 1 0 0 LSDS. The parameters of SSI are therefore sequentially
i 0 1 I 0 0 linearly diagnosable in a generic sense, by 14, theorem I],

if

d- 0 0 1 o 0 [0 0.;L_ 0-] ZW

" d ,o, L0 , "' L.. x Ly% and

b." [(L,.; L &) + LrPr,(Lo,.,; L, 0.)] r

- b, ( [ 4i +/. P L ] i=I,.-,K

are full column rank in a generic sense. In other words,

btc under this condition the parameters of SS 1 can be sequen-

" tially linearly diagnosed in the generic sense from the
C2  LSDS input-output measurements, without the informa-

tion of SS2. It remains to show that the parameters of SS2
can be linearly diagnosed from the LSDS input-output
measurements if the parameters of SSI are known. This is
done in two-steps, both with an application of a result in

L 15].

Subsystem 2 (SS2): Next, we want to show that SS2 is diagnosable from the
- Ao..xo, + Bo.P.ao" component input-output measurements, i.e., the parame-

ter Po. can be determined from (ao.,bo.). Note that (6).
bo.- Co.xO + Po~ao.. (6) with the subscript 0" omitted for simplicity, is equivalent



7- 7

9 VtXVAI4AShM4 ANID LIU* S2QUETIALLY LINEAR FAULT D1AGi4OWS5 11-DIAGNOSAILE SYS0656

to The discussion above can be summarized in the next

i - Ax + Ba theorem.

b -PCx + Pa. (8) 7Teorem I
This is because of the commutative property of singlein-
put single-output components [16, eq. (3)] b a If the diagnosis matrices of SS1 are full column rank 
&(s). Equation (8) can be decomposed into a component- a generic sense, then the LSDS (4) is sequentially linearly
connection model: diagnosable in a generic sense.

Note that the diagnosis matrices of SS I concerns only
-Ax + Bc with P0, which are those memoryless components which

d-Cx+c (9) are not part of the node cover.

s - Pr (10) Before we discuss the design of the diagnosis matrices
0 Ilrdlin Section V, in the next section we will discuss their

[n 1  0 • (11) graphical structure since it gives an insight into their

bJ 0 1 a design.

The parameters of component (9) are known, while the IV. THE STmucTuRE OF THE DIAGNOSIS MATRICES
parameters of component (10) are to be determined.
Equation (11) is the connection equation. Formulating the Consider the nX q matrix L, + LPoLo),] and the m X
matrix (12) of [151, n, matrix [L + LPoL0I ]. The rows of the matrix [L,,+

oPoLr([4i+ L.,oP0Lo]) correspond to input (output)
nodes and the columns correspond to i-minimum delay

w system nodes. The matrix [L, + LiOPOLOJ(LI +
owhich has full olumn rank. According to Corollary I of LPOLo.]) has a nonzero entry if the input (output) node

[15], (s,r) can be determined from (a,b), without the and the system node that correspond to that position in
information of P. Since P is a diagonal matrix, it can be the matrix have an edge or a directed path through a
determined from (s,r) by (10). Therefore, P can be de- 0-minimum delay node between them. The value of the
termined from (a,b), the input-output measurement of entry is the total gain along the above mentioned directed

. SS2. In fact, P can be determined by solving a set of paths between the two nodes computed by multiplying the
linear equations because (10) is linear with respect to p., gains of edges in series and adding the gains of edges in

. and (s,r) can be determined from (a,b), independently parallel. Thus due to these two matrices we have certain
from P. directed paths from input to output nodes through the

Finally, from the component-connection model (5)-(7), i-minimum delay system nodes.
we want to show that the input-output measurements The matrix [L, + L0PoLoJ T0[L, + LyoPoLJ is a qm X
(ao., bo.) of SS2 can be determined from (uy) with the n. matrix. Each of its columns corresponds to an .-mini-
assumption that the parameters of SSI are known but the mum delay system node while each of its rows coe-n
parameters of SS2 are not. Again, formulating the matrix sponds to an ordered pair of input and output nodes.
(12) of [151, There is a nonzero entry in any position of this matrix if

- 0 0 there exists a directed path between the input and output
0 1 0 nodes of the ordered pair corresponding to the row

Q Q1  Q 2 0 (12) through the i-minimum delay node corresponding to the

I. 0 0 1 column and possibly some 0-minimum delay nodes. Such
where a directed path is called an i/o path. An i/o path is
w eidentified by the ordered par of its end nodes. Note that

Q" - L' +-LW'P ,- . not all directed paths from an input node to an output

Q2 - i," + - L + I LWO- (13) node through an i-minimum deiay node is in i/o path
through that i-minimum delay node. Only those directed

which has full column rank. From Corollary 1 of [15], paths that contribute a nonzero entry to the diagnosis
(av. ,br. ) can be determined from (u,y) without knowing matrix are considered as i/o paths. Fig. 3 considers van-
the parameters of SS2. ous directed paths between an input and an output node
Definition 2 as candidates for i/o paths through the i-minimum delay

node A. All of them except for Figs. 3(e) and 3(f) are validFor a canonical LSDS [16, definition 71, the matrices i/o paths through the node A. In the case of the 0-mini-

LZ0LY0 (14) mum delay components the diagnosis matrix reduces to
L/.Lo and an i/o path through a 0-minimum delay node

and goes through no other system node. Note that in Fig. 3(d)

'+ LIPOL. O [4, + LoPOLo, i-I,. .,K we have the same i/o path through the 0-minimum delay
node B 4 and the I-minimum delay node A.

( If we construct a bipartite graph [13] with X and Y. the

• are called diagnosis matrices, two disjoint subsets of nodes, corresponding to the rows
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" a I A 32 y X2 B A y3 The procedure for constructing the matrices L, and/.,
so that L,.L(D 1 is as given in (17) is best understood by

(a) (b) using the bipartite graph discussed in the previous section.
% We start with the two disjointed subsets of nodes corre-

______ B 4  sponding to the qm possible i/o paths and the n, i-mini-
1 3 A y 3 mum delay system nodes. Each i-minimum delay system

node is matched to a different i/o path. In the digraph of
() (d) the canonical LSDS we then create the i/o path corre-

sponding to the system node by introducing a directed
__ _ _edge of gain I to the system node from the corresponding

C A 5 16 A D y6 input node and from the system node to the correspond-
(*) () ing output node. This procedure is carried out for i-

0, ,,K.
• X 2' X X3. X4, X5. X6, Input nodes However, since all systems have input and output termi-

y'. Y2' Y1' Y5' 6 Output nodes nals which already exist, and have not been introduced
al. 32, 33. B4 , O-in. d lay nodes for the purpose of diagnosis, we should make the best
...C. ,.1-mn. delay nodes possible use of the i/o paths created by these inputs
. , 2-m. delay node (inputs created in the canonical LSDS due to the decom-

position of the LSDS can also be considered as existing
.. Flu. 3. Candats for i/~ p , inputs) and outputs. Stated from a matrix point of view,

and columns of the i-minimum delay diagnosis matrix, some of the rows of Lr and 0, i , , ,K, are already
and drawumns edge teen twoin odea iagnecorsping ma fixed and what we need to do is add a minimum number
and draw an edge between two nodes if the corresponding of extra input and/or output nodes (under normal opera-
entry in the matrix is nonzero, then a complete matching tion the input signals will equal zero and the output
of Y into X [13], is a necessary and sufficient condition signals need not be measured) and appropriate rows in the
for the diagnosis matrix to be full column rank in a above mentioned matrices to make the parameters of the

j generic sense in the space of nonzero entries of the cnna LSDS sequentially linearly diagnosable in a
macannccs LD, seuetill linarl dianosbl in a~ n owvr icmatrices , L Lo , i, Lt Loi, and P0f However, since generic sense. Though this is a conceptually simple prob-

we require that the diagnosis matrices be full column rank lem it is not an easy task to create an efficient algorithma generic sense in the space which will solve this problem for any given canonical
only a sufficient condition for sequentially linear diagno- LSDS.
sis in a generic sense. The algorithm that we present makes the parameters of

n V. DESIGN OF THE DAoNosS MATiCEs the canonical LSDS sequentially linearly diagnosable in a
generic sense but it has not been proved that it will use theIn this section we develop an algorithm for the design minimum possible number of test points required. Starting

of diagnosis matrices that have full column rank in a with the first matrix (LL 0 . the algorithm sequentially
generic sense. Therefore, we assume that all the parame- makes each one of them of full column rank in a generic
ters of the canonical LSDS need to be diagnosed. The sense. In the algorithm we start with the minimum num-
modification of the algorithm to the case where only some ber of test points required, i.e., the minimum number

,- of the parameters of the canonical LSDS need to be required to satisfy the inequality (16). Then, when we are
. diagnosed is straightforward.

dIftecagnodi al ha noexistiworking with the j-minimum delay diagnosis matrix we
If the canonical LSDS has no existing input and output first create the possible i/o paths through j-minimum

terminals then the strategy of adding a minimum number delay system nodes, which go between the existing i/o
of test points to make the parameters sequentially linearly nodes and the test points and the test points themselves

.: diagnosable in a generic sense is trivial. We first choose and help increase the rank of the diagnosis matrix. This
the number of input terminals q and the number of output operation is done in an efficient manner by considering
terminals m which minimize the quantity (q + m) subject the system nodes in the increasing order of the number of
to the constraint input or output nodes to which they are connected. Note

qm> max n,. (16) that we are allowed to create edges only between test
"-0, I.- points and system nodes and not between existing i/o

.- The matrices L. and .,, 0, 1,. - . , K are then chosen so nodes and system nodes since such an edge would change
that the normal operation of the system. At this stage extra test

" I or (17) points are added only if they are needed to make the
"o [" ( diagnosis matrix of full column rank. As a result of the

algorithm each diagnosis matrix has the structure shown
Then by 116, association 4 and theorem 1] the parameters in Fig. 4. Clearly the matrix in Fig. 4 is of full column

, of the canonical LSDS are diagnosable in a generic sense. rank. Notation for the algorithm is as follows.



VIVAMATAN AND UU: S2QU1WnIALLV LDLEA FAULT DIAGNOSIS: -DAONOSABLS SYSTEM 563

A A 3 At,- i/o pathe betw..n exising / nodes 9), 18) If R,(R,) is empty go to step 16(25).
0 A2 0 4 i/o paths bet..n tost points and ei ti. 10), 19) Pop the stack R(R,,). Letj+-l." i/o nodes

0 0 -- 1/o .a.t be en test p 11),20) Create a directed edge of gain I in g from this
A6 A? popped node (test input nodej) to test output nodej (this

At ,l .A ooum 6  
popped node).

A2 , olumn .chelon frm (full colun ran) 12),21) If a new i/o path through i-minimum delay
nodes has been created go to step 9(18).

Fl 4. Suwtue d a diaposis maum. 13),22) Delete the directed edge created in step 11(20).
14),23) Letj-j+ 1. Ifj<s(r) go to step 11(20).

The input and output nodes that are part of the canoni- 15),24) Assign the system node to the set S(SY) and go
cal LSDS before any test points are added are called to step 9(18).
existing nodes while the test points (which are added on 25) Let, +--the number of system nodes in the set S,
by the algorithm) are called test nodes: and, , 1 -.the number of i/o paths in g through i-minimum

delay nodes which are between test input nodes and test
a number of existing input nodes, output nodes.
b number of existing output nodes, 26) Add to g ; test input nodes and I test output nodes
u signal at the a existing input nodes, where F and i are chosen such that
y signal at the b existing output nodes,
an, number of i-min delay system nodes,
P0 nominal value of 0-minimum delay parameters, subject to
K maximum delay order of all the system nodes in (r + F)(s + i) > ii + ii.

the canonical LSDS. 27) Let r*--r+ F and s$-s+i.

28) Create iii new i/o paths through the i-minimum
delay system nodes by adding to g appropriately directed

1) Input g, the subgraph of the canonical LSDS which edges of gain I between the system nodes in S and the
consists of all the nodes, and the edges between !he test input and output nodes so that one and only one of
i-minimum delay nodes, i -0, 1... K, and the input, out- these i/o paths goes through each system node in S,.
put, and 0-minimum delay nodes. 29) Let i+.-i+ 1. If i<K go to step 4.

2) Add to g, r input test nodes and s output test nodes 30) Output g.
where r and s are chosen such that 31) Stop.

r+s is a minimum Note that in steps 7-15, we try to create new i/o paths

subject to by creating edges from a system node to a test output
node; and in steps 16-24 we try to create more i/o paths

(a + r)(b + s), max ni. by creating edges from test input nodes to system nodes.
j -0, 1.

The algorithm that we have presented has some short-
3) Let i-0, comings. In order to minimize the total number of test
4) If i - 0, L-se/0-yo; and else points we have introduced both input and output test

L Lr_ + points. However, an input test point requires the introduc-
L ~U +,~io/.~~L + o0  .tion of a signal generator and could therefore be called an

5) From the columns of L select a basis for its column active test point while an output test point requires only a
space. measurement and therefore is a passive test point. In a

6) To each one of the i-minimum delay nodes that do practical situation one might wish to use more passive
not correspond to the basis selected in step 5 (these are than active test points. Such a requirement can be incor-
called the remaining nodes) assign two numbers called the porated into the algorithm by defining a cost function
U-number and the Y-number, where the U-number is the which assigns a greater cost to an active test point than to
number of existing input nodes that are connected to this a passive test point and then minimizing this cost function
system node either via an edge or a directed path through rather than the total number of test points. Another
a 0-minimum delay node, and the Y-number is the num- drawback is that we have assumed that an input can be
ber of existing output nodes to which this node is con- connected to any component and that the outputs of any
nected either via an edge or a directed path through a set of components can be added to create a system output.
0-minimum delay node. In other words, we have assumed that there are no con-

7), 16) Form a stack R,( R) of the remaining nodes straints on the connections. This may not always be true.
(nodes in S) such that nodes with a smaller U-number One type of constraint that is imposed on the connections
(Y-number) are closer to the top of the stack. Arbitrarily is that the inputs or outputs of two components may not
order nodes with the same U-number (Y.number). be the same physical quantity. For example if the outputs

8), 17) Arbitrary assign an ordering I through s(r) to of two components are voltage and current they cannot be
the test output (input) nodes. Let the set Sx(S,).-0. added to create a system output. Another kind of con-
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ABSTRACT

A theory for the study of analog circuit single-fault-diagnosis prob-

- lem is developed in this paper. First, the concepts of fuzzy, precise,

and source components along with canonical circuits are introduced. A

sufficient condition and an algorithm are then given to determine the di-

agnosibility of a canonical circuit and the identifiability of the faulty

fuzzy-component in the circuit. Finally, an example is included to il-

lustrate the application of the theory.

I. INTRODUCTION

Frequently, a faulty circuit results from very few faulty elements in

the circuit. This observation has been used in several papers concerning

g fault-diagnosis problem of analog circuit. Most of them (1,2,3] employ

the "simulation approach". In this approach, the various element values

*are changed so as to simulate element failures and all the test-point

voltages are computed. These results are used either to prepare a "fault

* n dictionary" which would be supplied to diagnosis technicians, or to com-

pare directly with the measured data to determine the faulty elements un-

der some criterion. The computation time and memory size are greatly re-

*- duced by the use of very-few-fault observation.

In this paper, the single-fault case is studied. By taking advantage

Sof this information, a sufficient condition based on graph theory is ob-

tained. The process involved a decomposition of a circuit into sub-

circuits to satisfy certain properties.

A novelty of the paper is the way it is treated for those elements

whose nominal characteristics are fuzzily specified, or specified with a

large tolerance.

II. PRELIMINARY DEFINITIONS AND ASSUMPTIONS

A circuit component may be a circuit element, a subcircuit or a

"? functional block. Each component is characterized by its characteristic,

such as the resistance of a resistor, the gain of an operational amplifier,

L. -. -- - -? • ,. " '. . . - - -•- -



or the characteristic curves of a transistor.

Definitions.

1. A nominal characteristic is the designed characteristic of the

component.

2. An actual characteristic is the characteristic of the component

at the time of testing.

3. A precise component, or p-comp, is one whose nominal character-

istic is precisely specified. It is fault-free if its actual character-

istic is the same as its nominal one.

4. A fuzzy component, or f-comp, is one whose nominal characteristic

is not precisely specified, but within a specified range. It is fault-

free if its actual characteristic is within this range.

5. A source component, or s-comp, is one whose terminal-voltages

and terminal-currents can be measured at the time of testing.

Examples of fuzzy components are transistors, operational amplifiers

and electrolytic capacitors.

Remarks.

1. For fault diagnosis problems, the nominal characteristics are

usually given and the actual characteristics are unknown.

2. In a realistic case, the actual characteristic of a precise

component may deviate from its nominal one under fault-free case, but the

deviation is small, say less than five percent.

Assumptions. 4

1. The actual characteristic of a component can be uniquely de-

termined from its terminal-voltages and terminal-currents.

2. The nominal characteristic of a p-comp is voltage-controlled, ie.,

its terminal-currents is uniquely determined by its terminal-voltages.

Definitions.

6. A circuit is diagnosable w.r.t. a set of measurements if all

faulty components can be located from the measurements.

7. A component of a circuit is identifiable w.r.t. a set of measure-

ments if its actual characteristic can be determined from the measurements.

III. THE MAIN THEOREM

In this section, a restricted class of circuits will be considered.

It is a class of circuits crucial to one-component-fault problems. The

extention to the general circuit will be considered in the later section.
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Definition 6. A circuit is canonical if it satisfies the following:

(Cl) All components are two-terminal.

(C2) It contains only p-comp and f-comp.

(C3) Its graph is non-separable.

i . (C4) There is neither f-comp only loops, nor p-comp only cutsets.

(CS) There is at most one component connecting any two nodes.

The canonical circuit may be excited by any number of s-comps, con-

*necting across any two nodes, with any waveforms, as long as Assumption 1

is satisfied. With the above condition, the following theorem can be stated.

Theorem 1. A canonical circuit is diagnosable and its faulty f-comp

is identifiable, if

. (Al) at most one component is at fault.

(A2) all node voltages are measurable.

- Proof: The proof of Theorem 1 is based on the following algorithm.

Step 1. Calculate the terminal currents for all p-comps, from their

nominal characteristics and measured node voltages. These currents are

called the estimated currents.
* .Step 2. Calculate the terminal currents for all f-comps, from the

U estimated currents obtained in Step 1. This is done by the fundamental

cutset equations (4,5] associated with the tree containing all and only

. f-comps. The existence of such a tree is guarenteed by Condition (C4).

These obtained currents again are called the estimated currents.

Step 3. Determine the characteristic of f-comps from their estimated

currents and measured node voltages, called the estimated characteristic.

"' 4 . Label each f-comp with the letter "T" or "F", according to

the following rule. If the estimated characteristic is within its spec-
* -- ified range, label it "T", otherwise, "F". There may be zero, one, or

more than one f-comps labeled F. In the last case all f-comps labeled F

have to be in the same fundamental loop.

Step 5. Locate the fault component according to the following rule.

1. If there is no F-labeled f-comp, then there is no faulty com-

ponent in the circuit.

2. If there is one F-labeled f-comp, then this f-comp is at fault.

P 3. If there is more than one F-labeled f-comps, then the p-comp
which defined the fundamental loop containing these f-comps is at fault.

It remains to be shown that the decision made in Step 5 is a correct

one. Since there are at most one faulty components, there are only three

* .* ... - & - . *.. - L - . ... . .... ....--. . ..



possibilities.

1) There is no faulty components. Therefore, the estimated currents

of all p-coups are actual currents. As a consequence, all estimated cur-

rents and estimated characteristics of f-comps are actual ones. Therefore, -

there will be no F-labeled f-components.

2) There is one f-comp at fault. In this case, all p-comps are

fault-free. By the same reason as above, all estimated currents and

estimated-characteristics of f-comps are actual ones. Therefore, there

will be one F-labeled f-comp.

3) There is one p-comp at fault. In this case the estimated current

of this, and only this, p-comp is at error. As a consequence, all the

estimated currents are at error for those, and only those, f-comps in the

fundamental loop defined by this p-comp. Therefore, their estimated

characteristics will also be at error, causing a switch in their labelling

from T to F. Since, in view of Condition (C5), there are at least two

f-comps in every fundamental loop, there will be two or more f-comps

labeled by F. This completes the proof that the circuit is diagnosable.

If one f-comp is at fault, from the above discussion, all estimated

characteristics of f-comps are the actual ones. In particular, the

actual characteristic of the faulty f-comp can be obtained. Therefore,

it is identifiable. The theorem is proved.

The definition of canonical circuit and the conditions of Theorem I

seem to be very restrictive. Actually this is not the case. The only

crucial condition is that there exists no f-comps only loops and that

there is at most one component at fault. The others can be alleviated by

a proper grouping of circuit elements into components. This is illus-

trated by the next example.

IV. AN EXAMPLE

An example will be given which apparently does not satisfy Conditions

(Cl), (C4) and (A2).

Example 1. Consider a voltage regulator as shown in Figure 1. The

measurable node voltages are at nodes (1), (2), (3) and (4), au.- he s-
comps are at the input and output terminals. From these measurements, we

want to locate the one-element-fault.

Note first that node voltages at nodes (A) and (3) are not measurable.

This can be alleviated by grouping elements (Ql,Q2,D2,R5) into a 4-termi-

nal f-comp and (D3,D4) into a two-terminal f-comp. The other f-comps are
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D1 and C. The rest of them are p-comps, Next, the above 4-terminal

-f-comp is further represented by three coupled two-terminal f-comps. The

resulting circuit is shown in Figure 2. Note that all node voltages are

now measurable.

In order to check if the circuit is canonical or not, the s-comps

* are first removed. It is seen that there is a cutset of P1 and P3. This

situation can be alleviated in the following way. Calculate the estimated

* currents for P1 and P3, and see if the cutset equation of P1, P3 and Sl

- is satisfied or not. If it is not satisfied, then the fault is clearly

at either P1 or P3. No further calculations need to be done. If the cut

* set equation is satisfied, then both P1 and P3 are fautlt-free. In addition,

the estimated currents are the actual currents. Therefore, P1 and P3 be-

come s-comps. The remaining circuit no longer has any P-comp, only

cutsets.

Since P3 is now considered as a s-comp, when removed the component

F2 is separable from the circuit. A close check, the actual current of F2

can also be found. Therefore, it can also be considered as a s-comp. The

resulting circuit is shown in Figure 3, which is canonical except that

" components F2, F3 and F4 are coupled.

By the same reasoning a partial answer can be obtained and it is sum-

*' marized in Table 1. Note that only the partial labels are used for the

", decision and the coupling relation between (F2, F3, F4) is not used.

Observed Labels Elements at Fault

Fl F5 F6

T T T (F2, F3, or F4), or no fault

T T F F6 or P4

T F T F5

T F F P5

F T T Fl

F T F P2

F F T F5

F F F More than one fault

Table 1. Diagnosis Diagram for Example 1.
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ABSTRACT and

The conventional methods used for the deter-
mination of the rank of a noisy matrix are based C < 3 4_Sup (ni; A  811 rank 8 >r-

on singular values. It is shown that the singu-
. lar-value approach will create an inconsistancy The numerical rank is related with the singular

especially when the matrix is large. The residual- values as follows.
number approach is presented for this case. Theorem 1 (1]. A matrix A has numerical rank

I. INTRODUCTION (s, C-,r) with respect to 1l.j2 , if and only if

Let the matrices A and A be related by sr 1 > c >Sr I .
Consequently, the numerical rank of a matrix is

where the matrix E is the noise (error) matrix completely determined by its singular values.
whose elements are assumed to be small. A rank However, the singular-value approach will result
degeneracy problem (1] is the determination of the as an inconsistancy. If the rank of an nxn
rank of A from the matrix A . We are especial- matrix is (n - 1.,) then by deleting an aporopri-
ly interested in the case when the rank of A is ate column of the matrix, the rank of the result-
full rank but the rank of A is not. Under this ing matrix should remain to be (n - 1) . This is
case, a square matrix A is usually said to be a not true as shown in the following examole if the
ill-conditioned or near singular (21, (3]. singular-value approach is used.

One may conjecture that a nearly singular Example 1 (1]. Consider the matrix
matrix must have a near-zero determinant, or a
near-zero eigenvalues. This conjecture turns out An a en)eT(n)
to be false. There exists a matrix which is near A n " n
singular but whose determinant and eigenvalues
are equal to unity [41. The current and conven- where In  is the nxn identity matrix and
tional methods for the determination of the rank' T n
and the ill-conditioness of a matrix are based on e (n) . . It is easy to show that
issgl vae(, the singular values of this matrix are (1, 1.its singular values [3), [S]. 1, 0). When any i columns are deleted, the

Let A cR xn , with m • n . There exist remaining nx(n - i) matrix has singular valuesortchogonalI matrices U adV- uhtaorthogos and such at (1, 1 ... , 1, T) . Clearly, when n is large,

A U- [~I there is always one and only one singular value
0- near-zero. In other words, for any (c,5) such

where Z a diag. (s,, s, .... sn ) and sl !.s, that I z.6 c - 0, the numerical rank of the
-. The numbers I s2, ... , S nx(n - i) submatrix is always one less than its
• t -"'" n - " "' full rank, i.e., (n - i 1). for any i < < n.

are unique and are called the singular values. This clearly is an inconsistency because if the
The rank of A is r if and only if sr 0 0 rank of an nxn matrix is r < n, then there

and s,+, a 0. When a matrix is corrupted by a exists a nxr submatrix whose rank is full rank r.

noise, a characterization of the rank of a matrix In this paper, we propose to use the residual
is given by Golub et &1 (11. A matrix A is numbers to determine the rank of a matrix. Certain

said to have numerical rank (6,g,r) with re- nice properties will be presented.

spect to the norm 1111 if
It. RESIDUAL ,4UJBERS

L r •Inf(rank 8S IIA - 8ll <. e}
We consider A c Rxn . Let the rank of A

*This research is supported in part by the denoted by o(A) and the column-space of A by

ONR Grant N00014-78-C-0444. R(A). Let a1 denote the i-th column-vector
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of A, and A1  the remainder of A with ai de-

leted. Without loss of generality, assuume that ,i -7
-,M • n •" i

,. Definition 1. The n residual numbers r where the summation is over non-zero ri's and
of A is defined by

T s 's. It turns out that this is false, as shown

r1 (A) ,a (I - AiAi)a i  () by the following counter example.
• .-. Example 2. Consider

for i 1, 2, ... , n, where A+ is the pseudo-

inverse of Ai (61 and I the identity matrix. A - 0

It is well known that 0 0

r i * min({la 1 - xl 2x1 R(Ai)I It is easy to show that rI - 0, r2  0, r3 u

Consequently, a is a linear combination of the while s- 1, s3 • 0.

column-vectors of Ai  if and only if r. 0 . Clearly, the above conjecture is not satisfied.

- Therefore, A has full rank if and only if ri  0 0 The case of noisy matrices will be considered

for all i . These observations lead to an alter- next.
nate definition of the rank of a matrix A . It
also orovides a residual-number test for the rank 1 T MAIN THEOREM
of A, when not corrupted by noise.

Definition 2. An mxn matrix A has rank r Let us now consider the case when a matrix

if, A Rxn, with m > n, corruoted by a noise

* -" (i) there exists an mxr submatrix B matrix V, i.e.,

such that A V

ri(S) 3-0 , 1 - 1, 2,...
The problem is-to determine the rank of A from

(ii) there is no mx(r+l) submatrix B the measured A . Assume that
such that 1) E~vij] 0
ri(B) > 0 , i - 1, 2, ... , (r+1). 2) Etvijvkl : a if i xek, I

An important relation between a matrix A

and its residual numbers is given by Theorem 2. where E(x] is the expetation of x . Then,

la) EV] 0 (6)
Theorem 2. When (ATA)"l exists, T 22a) ED/v ] a ma 1 (7)

r d -1 (2) where m is the number of rows of V . From (5),

where di is the i-th diagonal element of T ATA + ATV + VTA + v~v (8)

(ATA)-I; otherwise, Let the elements of A be bounded, i.e.,

Id( at 4 I  K for some K . It can be shown thatrI - lim d i' (C) (3) when m- ,

.0 + I AT V Om

where d(e) is the l-th diagonal element of IvTA o 0

(ATA +c 1)-1 for c >0. m

As a consequence, a relation between the 1 T 21
residual numbers and the singular values of A V
can be established. Let , s2  be the
singular values of A . " Therefore, (8) reduces to

Corollary 2.1. If A has full column-rank T•ATA m2i (9)
i-e., o(A) a n, then

Consequently, the singular values i of A is
(4) related to the singular values s of A by

I 1-1 St2 . si2 + M2 (10)

In vienw of Theorem 2, it is reasonable to

conjecture that when o(A) < n, for 1 1, 2, n. This shows that if s r  0

. . I



then ir is near-zero if the noise is small. We mnc 2  10"8 , which is a small number.

want to derive a similar relation for the residual
numbers. Based on Theorem 6, we will give a definition

of the numerical rank of A and an algorithm to
Theorem 3. compute it.

-r(A) + * C jl)ma)ja1 T(ATA + Definition 3. An mxn matrix A has a

A j.l numerica rank (,r) if

nerr(11)

In addition, the third term can be estimated by M there exists an mxr submatrix 8 such

M21A l *2 (I . iz(m .T 2 'ja TzA
ia VAla.II_~ C-i)J (a )ai CAI AT)Ja i !_ i' 1a 1i

izl that

were a .02 and sr is the smallest non-rB) ra 2  , 1 , 2. r.

Sr
zero singular value of A . (ii) there is no mx(rl) submatrix B such

As a consequence, we have Corrollary 3.1. that

Corollary 3.1.

ri(A) +ma2 + ma 1 ia( 2> ri(A) >ri(A) + ma 2 +",aI[A"a

for i- 1, 2, .... n.
ri(B) > m(r+l)o' , i 1, 2, ... , (r+1).

Note that when a r - 0, both sides of the 1

bounds are the same, and we have an equality. Next The above definition is an extension of
2 TDefinition 2 from the noise-free case to the noisy

we need an estimation of 11A+ a1112 . This isi . case. An algorithm to obtain the numerical rank

given by the next two theorems. of a given matrix will now be presented.

Theorem 4. Algori thm.

a) ,A*a.i *2 1 if ai J R(Ai ) Step 0. Let B - A , r - n.

1 ,Aiai 1 2 Step 1. Compute ri(B) for i - 1, 2,..., r.

m if ai c R(Ai ) Step 2. Choose the smallest of ri(B), say
I+I1~ l r (B).1

Step 3. If rs (B) mna 2  and r > 1, then

b) I IA ail r B - Bs, r - r-1, go to Step 1.

ial Otherwise, numerical rank a r, stop.

where r is the rank of A . It can be shown that the above algorithm

Theorem 5. If o(A) - r < n, then there yields the numerical rank (a, r) of Definition 3.

exists aI c R(Ai ) such that Let us now go back to Example 1. it can be

shown that the residual numbers of A(n) are

HA+al 2 r (0, 0, .... 0). When any column is deleted, the
-n-r residual numbers of the remaining nx(n-1)

Combining Corollary 3.1 and Theorem 5, we matrix are ( , , .... ), which are independent

obtain the main theorem. of n . Since

Theorem 6. If 
> n(n-l)a

2

rleA) ' tuna 2  if a is small enough, it can be concluded from

Definition 3 that the numerical rank of A(n) is
for I a 1, 2, ... , n, then o(A) - n . (a, n-1). It can be further shown that when I

Note that Mn 2  mcolumns are deleted from A(n), the residualNoe ht un 2 may not be large even if numbers of the remaining nx(n-i) $ubmiatrix are

' m is large. For example, if we are interested n rthe a eai . Therfore

in the effect on the rank of A due to the round- _ s . Therefore,

off error from a computer operation. Typically, all such submatrices are of full rank as they

a 10. 6  Therefore, even if n a n 100. should be.

L



The differences between the residual numbers1
and the singular values can be seen from (4).

Usually. the residual numbers do not differ very
much from each other, i.e.,

r r

On the other hand, when the numerical rank is
n - 1, it is usually that s .1 S
Therefore, Eq. (4) becomes

I

21

i.e.. the smallest singular value is much smaller
than the residual numbers when n is large. Put

* it into another way. the smallness of the resid-
* ual numbers are distributed equally among them-
* selves, while the smallness of the singular val-

ues are concentrated on the smallest one. It
can be unusually small when n is large, and
therefore, it may not be accurately served as
an indicator for the rank of a matrix. In other

* words, when a singular value is near-zero, there
are at least two possibilities. The matrix may
be near singular, or the matrix may be too large.

In conclusion, the singular-value approach
may work well when the matrix is small, but
fail when the matrix is large, in which case,
the residual-number approach is better.
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i ACCESSIBILITY OF LARGE-SCALE ELECTRONIC CIRCUITS

R. Liu, V. Visvanathan, C. Lin

University of Notre Dame University of California
Notre Dame, IN 46556 Berkeley, CA 94720

ABSTRACT II. ACCESSIBILITY FROM INPUT/OUTPUT TERMINALS

" The problem of fault diagnosis of large-scale The LSDS model consists of three parts, the
analog circuit is studied. Any fault diagnosis masked subsystem, the unmasked subsystem and the
procedure is limited by the number of circuit param- connection-box as shown in Figure 1. The vectors

• . eters to be diagnosed. When such limit is exceeded u and y denote the input and output vectors of
by large-scale circuits, some kind of tearing proc- the LSDS, c and d of the unmasked subsystem and r
ess has to be implemented before a fault diagnosis and s of the masked subsystem. The connection-
procedure can be applied. In this paper, a tear- box consists of the connections between the above
ing process via accessibility of subnetworks is variables. The equations for the three parts are:

- presented. The necessary and sufficient condition
for accessibility is obtained. The implementation a) Unmasked Subsystems
of this tearing process is discussed. The tearing
process can be applied to nonlinear circuits. We assume that the unmasked subsystem is a linear

dynamical system described by:

'(t) Ax (t) + B c (t)
I. INTRODUCTION (1)" d(t) = C x (t) + D c (t)

In the study of Large-Scale 
Dynamical Systems

(LSDS), in order to simplify a problem we often re- where A,B,C, and D are constant matrices and x is
duce it from the level of the overall system to that the state vector for the unmasked subsystem.
of its components or subsystems. Tearing or Dia-
koptics [1] is such an approach for the analysis of b) Connection Box

large-scale networks. For the fault diagnosis of
LSDS there is to technique which is equivalent to The connection box is described by (10]:

*tearing. Existing methods of fault diagnosis (for c
example [3-6]) attack the problem at the LSDS level. c L L L d R R R c

The easiest way to transfer the problem of
fault diagnosis from the level of the overall sys-
tem to that of the subsystems is to have direct r -L L L s +R R R (2)

access to the inputs and outputs of each subsystem. LruI Ir ry
However, such direct access may not be available to
us. In such a case if we can determine the inputs L L L L u R R R
and outputs of the components of interest from the Yd ys yu L yc yr yyj

LSDS inputs and outputs, we have effectively ac-
cessed them. Intuitively, we can say that this The L's and R's are constant matrices. Note that
would be possible if a mapping existed from the d,s and u are inptfts to the connection-box and c,r
space of input-output waveforms of the LSDS to the and y are the outputs.

-"space of input-output waveforms of the components.
Such a map would be the basis of our tearing ap- c) Masked Subsystem
proach. In this paper, we explore these concepts
and determine the necessary and sufficient condi- The inputs and outputs of the masked subsys-
tions for the existence of such a map which takes tem are related by some functional form

*' i ''.  as much advantage of the known information as pos-
sible. We then lay the intuitive basis for a
strategy of tearing which simplifies the problem which is assumed unknown. For example, the rela-
of fault diagnosis. The results presented are a tion (3) could be a state equation or a zero-memory
generalization of an earlier work by Saeks, Singhand iu 1] ad Li an Visanahan 7).nonlinear function.
.and Liu [2] and Liu and Visvanathan [7]. Equations (1), (2) and (3) completely describe

I the LSDS. The unmasked subsystem has been included
'This research is supported in part by ONR Grant in the LSDS model to provide us with a greater
No. N00014-78-C-0444. flexibility. Components that are known to be fiult-

free or have been independently diagnosied can be

. -... **-
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included as part of the unmasked subsystem. We mined by (u,y) from its reduced resistive network.
further assume that the LSDS is well-posed, i.e.,
the initial value solution (x(t), c(t), d(t), r(t), IV. ACCESSIBILITY OF FURTHER REDUCED SUBNETWORK
s(t)) exists and is unique for all admissible in-
puts u('). For the purpose of testing the accessibility,

it is possible to further simplify the network.
Definition 1. In order to do this, more notations are needud. In

The masked subsystem of the LSDS is said to be this section, m-terminal masked box is decomposed

accessible from input/output terminals, or simply into m-l 2-terminal X-devices and the set of X-

acesibeif Vte[O,-), (r(t),s(t)) can be unique- devices-branches is denoted by GX. Note that the
accessible, from (U(T), (t )) an by use knowledge of all X-devices completely describesly determined from (u(t), y(t)) for te[O,t] by use tebhvo ttetriaso h rgnlms-

of equations (1) and (2) but not (3), with the in- the behavior at the terminals of the original mask-

Itial state x(O) - 0 of the unmasked subsystem. It ed box. Similarly, the set of all inductor-,

is said to be anticipatively accessible if (r(t), capacitor-branches are denoted by GCL G respective
s(t)) can be uniquely determined from (u(T),y(T)) As for the resistor-branches, since some of them
for -rc[O,t+6] for some 6 > 0 but not for 6 - 0. may be in a particular tree we choose in the net-

work, we denote the set of them in the tree by GR,

Theorem 1 [111 and the rest in the corresponding cotree by GC ,
Now consider a network N satisfying the follow

The masked subsystem of the LSDS is accessible ing assumptions.
if and only if the matrix J (1) The network N is a connected graph.

rR + L D-I R L (2) The sources, including voltmeters and ammeters
cc cd cr cs are considered as a set of branches with

+LD R-I measurable voltages and currents. The symbol.
rc rd rr r s  G is used to denote the set.

R- + LydD R L(3) GxUG contains no loop, otherwise ammeters areyc y r ysj inserted to break the loops.

(4) G UG contains no cut set.
has full column-rank. S L

Note that the accessibility only depends on (5) All resistors have positive resistance.
the memoryless part of LSDS. The application of
Theorem 1 to large-scale networks is considered These five conditions are assumed to be satisfied -

next. the networks considered in this section.
II. AUnder above assumptions, there exists a tree

AC LU R(t) which contains (Gx,Gc,GR ) and does not contain

The above result can be applied to the diagno- (Gs,GL,GG). Let the set of all such t be denoted
by T. Then for each t in T, we have the following'

sis of subnetworks. A given network can be decom-
posed into three parts as shown in Figure 2. Those equations:
R-elements, which are known to be reliable, are KCL:

placed in the resistive-network box. Those L,C- KCL
elements and/or (nonlinear) devices are placed in Ii [F SxF S F SR I
the masked box. The last box contains all the ele- Sx
ments to be diagnosed. IC  F F F I (4a)

Note that (u,y) and (r,s) are the port-volt- -j LC F L
ages and the port-currents of the overall network
and of the subnetworks in the masked box respect- IRF GX FGC FGR IG
ively.

The unmasked part has a state-equation repre-
. .- ", sentation (1), KVL:

" x - Ax+ Bc

d =Cx SX SC SR

I F FC (4b)l -" -1F=F(46
where A - 0, C - I, and B - diag (C1 , Lj), VL FLX LC LR C
C C- (i V),d - (vc, i ).

C, C1  L~ [VJ FF F V= G GX FGC FGRJ VR '
Associate each network in Figure 2, construct C C C R

a LC-reduced network, or simply reduced network,
by replacing each inductor by an open circuit and Ohm's Law:
each capacitor by a short circuit as shown in
Figure 3. Note that the reduced network is a re- VR - R IR
sstive network. (4c)
Theorem 2. [111 1G - G VG

The masked subnetwork in Figure 2 is accessible
if and only if (iCV r,s) can be uniquely deter- where R and G are diagonal matrices with positive
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diagonal elements, finding the tree is still under development, it is
Define quite possible to pick the treein a network of

TGF R-1 T 1 reasonable scale by inspection as shown in Example
W G CX GR CR 1

--------------------------------- Example 1
e "FSX FSR Consider the accessibility of the two tran-

sistors in the two-stage amplifier circuit as
fro• shown in Fig. 4a. It is clear to see that (C1 ,Then from Equation (4) and Theorem 2, the following T C2', T , C) form a loop. From Assumption (2).lemma can be proved. tee loop can ge broken by inserting an ammeter AL in series with C Then, by choosing the tree

LYf8 .. consis ting (X , C X ', , R ) in Fig. 4b, the
The X-devices in network N are accessible if and associated RL -regucea networi is shown in Fig.only if the associated matrix W has full column-rank. 4c. Apparently, the branches (E , E2, E3, A) con-
Although the size of matrix W is smaller than tains a tree in Fig. 4c. Thus, IX2, X 3' X ),the original matrices, that is only superficial be- so that (TI, T,), are accessible after the

cause some of the submatrices cannot be determined insertion of t e ammeter.
without the knowledge of the original matrices. The
following lemmas will provide a better solution.
Lemma 2. V. APPLICATION TO TEARING PROCESS

In a network N, the associated matrix W has full The purpose of diakoptic or tearing processcolumn-rank in the generic sense (12] if the matrix (1] is to find a way of partitioning a large-scalei - ~F X ha s ful l c o lum n -ra n k . [ ] i o f n a f p r i i n n a g - c l
SX network into smaller subnetworks so that the solu-

Lemma 3. tion of the large-scale network can be obtained by
solving the (decoupled) subnetworks. Clearly, thisThe matrix F of a network N has full column- represents a reduction in computation time.rank if (1) there exists a tree tsT such that GRUGS If fault diagnosis is of our interest instead

contains no loop in LC-reduced network of N and of the network solutions, new tearing process(2) the matrix W associated with N has full column- should be developed so that it is compatible to
rank. fault diagnosis problem. The accessibility can

The second condition in Lemma 3 will be referred fulfill such purpose. Let us consider the network
as Assumption (5) in the sequent paragraphs in Figure 2. If each masked subnetwork is diagnos-

Note that not only the size of the matrix F able from its input/output pair (r,s) and is acces-
is smaller than W but also the matrix itself can sible, then the entire network is diagnosable from
'be determined by the subgraph N" constructed by its input/output pair (u,y). This is because (r,s)
shorting all resistor-branches in the particular can be obtained from (u,y) independently from the
tree and opening all resistor-branches in the cot- characteristics of masked subnetworks.
responding cotree in the LC-reduced network N'. We In summary, if accessibility is achieved, one
call the subgraph N" RLC-reduced network. Then can diagnose the entire network by diagnosing eachTheorem 3 follows. of the (smaller and decoupled) masked subnetworks

Theorem 3. individually.

Let N be a network satisfying Assumptions (1)
to (5), then X-devices in N are generically access- REFERENCES
ible if and only if the matrix F in RLC-reduced
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Abs&&dc-1 lm problm of dedpug a feedback system with p ------------------d
*~ pmb deIs attacked vl. a fracdoaal 19 1 Ptala winac to feediback

system mislysis ad sy3hb To this cod wo let H deinace a fte of +Ci)ps y
operatmr with the 1imi1 e psoperetl md moel a g~rim p4mi m do CS

aibof wopeatmratHf.T1W Istin, ato asimlill" UKto
de.ewhether or wt a feedbackt system ba which due pbo Is

Im eme do h prescrbed properties mid a complete c~cebdaof I q(S)
thine cmessst whhwN plae t teedback system in Hf. 1We L-------------------------------
thesey Is formuated &%Womticaly to permit Its appiacdum In a wide F~1 i~IVIt oto ytm

=mluty of .7-e desg Irhle A&- d ba extremely ellumeat s m om Fig 1.Sngatmaecotosytm
- - more thu addiga smikpicla, " Wac o, sad 1 ',iu

fohr lbt amie i the most lpmersi saUW the analysis and synthesis of feedback systems. Here, if
one desires to design a system with prescribed properties

I. INTRODUCTION tht given plant is initially modeled as a quotient of two
operators, each of which has the desired properties. Once

NTUITVELYthe linear feedback system design pro - such a model has been specified a similar model may be
csmay be broken down into three steps: modeling, formulated for the feedback system constructed from that

- analysis, and synthesis; each of which may be carried out plant which, in turn, may be used to determine whether or
via a multiplicity of time and frequency domain tech- not the feedback system has the desired properties. More-

*niques. In engineering practice, however, the three steps over, the set of compensators which will cause the feed-
are loosely matched to one another. The purpose of the back system to have the prescribed properties may be
present paper is to use fractional representation models to completely characterized in terms of such a model. As

such, by choosing a model for the plant which is matched
Manucrit reeivd Apil , 199; ~ 1, ~to the design criteria the analysis and synthesis processes

remede y .ncs, Charuuan of the TUnear Systmcon for a feedback system may be greatly simplified.
SerieEe crnc Thgx A.Dse at spore d b Jint These ideas are illustrated by the following derivation
under s AORConm 76C-010.V 'Ir of RW. Unu was spy of the set of stabilizing compensators for the single variate

ported in part by ONR Contract 78-C404. The work of J1. Murray and controsytmfFi.1
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grant, Texas TecUniversity, under ONR Contract 76-C-i 3,; We say that a transfer function p(s) is exponentally
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,; stable system we prefer to model p(s) as a quotient of exp. form
ebtble rational functions

x(s) _ [k(s)u(s) - r(s)d(s)]
p(s)-n(s)ld(s)-[a(s)lm(s)][b(s)lm(s)]' (1-1) y(s) k(s)v(s) + r(s)n(s)]

*: where r(s) is strictly Hurwitz polynomial of degree equal u [(s)- w(s)d(s)]

*," to the degree of b(s). Moreover, since a(s) and b(s) are

coprime, the rational functions n(s) and d(s) are coprime where w(s)- r(s)/k(s) ranges over the exp. stable rational
in the sense that there exist exp. stable rational functions functions.
u(s) and v(s) such that A comparison of (1.8) with the class of stabilizing

(1.2) compensators derived by Youla, Bongiorno, and Jabr
u()n(s)+ v(s)d(s)-1. 1.2)[241,[25],[29] will reveal that the two results differ only in

Similarly, we assume that our compensator is modeled as that our u(s), v(s), n(s), and d(s) are exp. stable rational

, a quotient of exp. stable rational functions, c(s) - functions while theirs are polynomials.2 Unlike their

x(s)/y(s), which are coprime in the above sense. Now, a analytic derivation, however, the above result was ob-

little algebra will reveal that the closed-loop system trans- tamined via elementary algebraic operations. Indeed, the

fer function from input u to output y is given by a ratio of only properties of the exp. stable rational functions em-
exp. stable rational functions in the form ployed are their closure under addition and multiplication

together with the fact that the identity is an exp. stable

" h,(s)n(s)[y(s)d(s)+x(s)n(s)]-'x(s). (1.3) rational function, i.e., the exp. stable rational functions
form a ring with identity. As such, if the exp. stable

Moreover, it can be shown' that hy.(s) will be stable if and rational functions of the above derivation were to be
only if replaced by any prescribed ring of single-input single-out-

put systems, (1.8) would yield a complete characterization
[y(s)d(s) + x(s)n(s)] - k(s) (1.4) of the compensators which would "place" the feedback

system in that ring. If one works with a ring of rational
has an exp. stable inverse. Since k(s) is, itself, exp. stable functions with poles in a prescribed region a solution of
this implies that the feedback system will be exp. stable if the pole placement problem is obtained [18], whereas, if
and only if k(s) is nonzero for all Res >0, including o. one chooses to work with stable transcendental functions
An exp. stable function with these properties is called a solution to the stabilization problem for distributed
miniphase. As such, the problem of synthesizing an exp. systems is obtained [7],[8] etc. Indeed, with minor modifi-
stable feedback system reduces to the solution of (1.4) for cations the derivation can be extended to noncommuta-
exp. stable rational functions x(s) and y(s) given exp. tive rings thereby including multivariate and time-varying
stable functions n(s) and d(s) and a miniphase function systems. In each case, a simple solution to a fundamental
k(s). problem of feedback system design is obtained by virtue

By direct substitution one may verify that of choosing a model for the given plant which is matched
to the ultimate goal of the design problem. In particular, if

yh(s)-r(s)n(s) and xh(s)--r(s)d(s) (1.5) we desire to design a feedback system which lies in a
satisfy the homogeneous equation prescribed ring of operators we model the plant as a

quotient of operators from that ring.
Consistent with the above philosophy the following

yh()d(s)+xh(j)fl(s)mO (1.6) section of the paper is devoted to the formulation of an

" for all exp. stable rational functions r(s). Moreover, since axiomatic theory of fractional system representation.
n(s) and d(s) are coprime it follows that all exp. stable Here, a given system is modeled as a quotient of two
rational solutions of (1.6) are of this form [151,[181. On the operators lying in a prescribed ring H. The corresponding -

other hand, a particular solution of (1.4) may be obtained feedback system analysis and synthesis problems are then
by multiplying (1.2) by k(j), which yields studied in the succeeding sections. In particular, Section

III is devoted to the problem of determining whether or

yP(s)-k(s)v(s) and xP(s)-k(s)u(s). (1.7) not a feedback system lies in H given that its plant is

represented as a quotient of systems from H while Section

As such, if we let r(s) vary over the set of exp. stable IV is devoted to the problem of characterizing those

rational functions and k(s) vary over the set of nuniphase compensators which will "place" the feedback system in

functions we obtain a complete parameterization of the H. The resultant axiomatic theory of feedback system

stabilizing compensators for our feedback system in the design is applicable to multivariate, time-varying, distrib-

2From a computational point of view, it is more convenient to repre-
'So the amomic derivation of Section III for the details. Mat rational functions as ratos of polynomials. as per Youla et al.
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TABLE I

ExAMPLEs or Tm AXIOuATIC SYSTEM(G, H. 1,J)
G R(s) R.(&) R(s).. R,(s)" hi(o) ...)" L.4R) B(H)

H R(sJ R(00) Risr M~ao)- A.(oo) Aa) 4) CH

me i* M~ N e R(an) N *Aou m e lult)
I R~s] 0 0 R'fas) in .K a.) 5.t. S.A. Cu(H)

1 M(s)I vs0 1 M(s) e~R(os)j I M(sJl f Z(OO) inflI M(je)II>0

m, R{s) M t jr(as) MI t Risr me x ax-s t+ A Me~Aj.)-s.t. eH-Rst
L. SA. nixs) 0 0 1.1. IM(s) I eR(a.) S. m~s#QI I M(5111Ie,1(ae) irdljm(j&;)II>0 CC(H)

m*$) C 00 for s 4cc I MIS)l 0&IA I al00 forSeca I M(S)I VA0 AMis outer
a; for se Coe forse *C,; 0 for s eca

Ref. 19 31 19 15.13 4,31 6,7.8 J 12 11.15

R(s) - rational functions with real cocificients Rio*) - proper rationsal functions with real coficients which are

Rp4s) - proper rational functions with real coefictents atnalytic in C .;
X"* - nby maimnof lemntsin . (ce) = proper rational functions with real coefficients which

* nbnmar~csoflemntsnX.are analytic in Co. and nonzero at=
A -distributionsaof the formiltl+ I A~-vwherestuisan 3(H) - bounded linear operators on a Hilbert Space H.

,ntrable function st. g8lt : 0 for t1<0: & is a
summable sequence and 0-t. <t. < t < C(H) - causal bounded linear operators on a Hilbert space H.

(a .4(* Lapsce transforms ofdstibution & sch tht gt~ 'o Calif) = causal! hounded linear operators with a bounded inverse
isin A for some a <oo on a Hilbert spacet H.

-(. multiplicative subset of Ajo.l consisting of elements CC(H) -causal bounded lima operators witha causes!bounded
bounded away from zero at.. iverse on a Hilbert space H.

i(as1 quotients of elements of the form min where 1(R) *esentialy bouinded Lebesque measurable functions
mn * Ajas( and na iA:(0,). defined on It.

R(s] - polynomials with real coeficients H.(R) - the Hardy space of essentially bounded Lebeaque

C; -complex numbers with real part greater thin or equal to oo measurable functions defiried on It which have an

anltcexeso it .

* uted, and some multidimensional systems and includes elements of H. Note that
the stabilization, pole placement, and feedforward designJ IcHcG(23

*. problems. Several of these applications are illustrated by CIcHcG 23
the examples of Section V. In the final section of the Given the above structure we say that a system g e G
paper a partial generalization of the theory to nonlinear has a right -fractional representation in ( G, H, IJ) if there
systems is described. This follows the algebraic pattern exist n, C- H and d, (=! such that g as n,d-. Furthermore,

*established in the linear case but is formulated in terms of we say that the pair (n, d,) E H x H is right cop rime if
*a left-distributive ring to model the properties of a nonlin- there exist u, and v~, in H such that

ear system 123].
*un, + vd,.ass. (2.4)

*-IL. AxiomATIC THEORY The right fractional representation n,71 in ( G,H, IJ ) is
said to be right coprime if the pair (n,,d,) is right coprime.

* . Table I displays several examples of the axiomatic The relationship between our concept of coprimeness
system developed below. Reference to it will help in and the usual common factor criterion for coprimeness
visualizing the breadth and significance of the theory. [281 is given by the following properties.

- Additional examples also appear in Section V. Property 1: Let the pair (n, , ) E H x H be right
*Let G be a (not necessarily commutative) ring with coprime. Let n, and d, have a common right factor r E= H,

identity and let H be a subring of G which includes the i.e., n, as xr, d, -y~r for some xr6eH and y, EH. Then r
*identity. The feedback system and its subsystems will be has a left inverse in H.

represented by operators which are elements of G. The Proof: Substitute the assumed factorizations of n,
compensator will be chosen so that the overall system will and d, into (2.4) and obtain
be represented by an operator in the subring H. u,+v,-(x ,y)rss1 25We define two multiplicative subsets [21, [271 of H, un+~,(rvy)~1 25

Since H is a ring, ux, + v~y, E= H. From (2.5) it follows
I sii(hE=-H I h E G (2.1) that r ass x, + vy, is a left-inverse of r.N

Property 2: Let g as n,71 be a right coprime fractional
*i.e.,!I is the set of elements of H which have an inverse in representation of g in (G,H,I,J). Let g-xoy7' be a

G; second (not necessarily coprime) right fractionalI repre-
* ~~~- .= J( Hh' H}(2) sentation of g in (G,H,I,J). Then there exists im r in H

such that

i.e., J is the subgroup of H consisting of all invertible x, -nr and Yr -dr. (2.6)
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Proof. Given the two factorizations of g, let r- of g E G which admit i fractional representation in
d,-y,; hence r e G. Then (G,H,I,J) will form a subring of G if and only if the Ore

condition' is satisfied while criteria for coprimeness have
- d,r (2.7) been formulated in various special cases though no gen-

and, performing calculations in the ring G, we obtain eral theory exists [1],[41,[26]. The standard condition for
the existence of fractional representations which are

x-gy, -(n,d-')y, - n,(d,- ,)- nr. (2.8) coprime in the sense of (2.4) is that H be a right principal
o (ideal domain.

From (2.7) and (2.8), r is a common right factor of x, and Reference to Table I shows that in applications it is

.vy,. To show that r S H, onsider important to have conditions under which g will be in H
r- d,- -(un, + vd,)d,- u,n,d,-, + vy, and these conditions should be expressed in terms of its

fractional representation.

- u,gV, + vy, - ux, + v,y, E H (2.9) Property 3: Let g - nd,- with n, E- H and d, G 1.
a) If d, EJ, then gEH.

where we used the equality g - xoy" - nd,- I to derive b) If g - n,d,- is a right coprime fractional representa-
(2.9). tion of g in {G,H,I,J ), then g EH implies that d, E J.

Although G is, in general, a noncommutative ring, the Proof..
entire theory developed above for right fractional repre- a) We have d, SJ; hence by (2.2), d,-' E H and thus
sentations can be replicated for left fractional representa- nd,- - gE H.
tions. In particular, we say that g E G has a left fractional b) We have g e H. Furthermore, n, - gd,., d, - I d, im-
representation in {G,H,I,J) if there exist n, EH and dEI plies that d, is a right common factor of n, and d,; hence
such that g-d - 'n. Furthermore we say that the Pair by Property 1, d, has a left inverse in H. But dE I by -

(n, d)E H x H is left coprime if there exist u, and v, in H assumption, so d,- ' exists and is an element of G; thus
such that d,- d,-LeH; hence, by (2.2), d, EJ. U

ntu,+dv,-1. (2.10) Property 3': Let g-d- n, with nEH and del.
a) If d, e J, then g E H.

The left fractional representation d - n, is said to be left b) If g - d - 'n, is a left coprime fractional representa-
coprime if the pair (n,, d,) is left coprime. With these tion of g in {G, H, 1,J}, then g E H implies that d, E J.
definitions the existence of a common left factor for a left Property 4: Let g - nd - In, where n,, n, E H. and d E I.
fractional representations of g is characterized by the a) If d EJ, then gE H.
following properties. b) Let, in addition, nd be a right coprime frac-

Property 1': Let the pair (n,,d) be left coprime. Let n, tional representation in (G,H,I,J} and d-'n, be a left
and d have a common left factor I in H, i.e., n, - lx, coprime fractional representation in (G,H,I,J); then g .
d, - ly, for some x, e H and y, EH. Then I has a right H implies that d EJ.

. inverse E H. Proof..
Property 2': Let g-d,-1n, be a left coprime fractional a) By assumption, deJ; hence d-eH. So g-

. representation of g in (G,H,I,J). Let g-y''x be a n,d-n, EH.
second (not necessarily coprime) left fractional repre- b) Since d - In, is a left coprime fractional representa-
sentation of g in (G,H,I,J). Then there exists an I in H tion there exist u1,vt SH such that
such that nu + dv- l, (2.12)

x,-In, and y,-ld. (2.11) thus,

The above properties of a coprime fractional repre- n,d-I-n,d-I(nu,+dj)-n,d-'nju +n,v,-gu+n,v,.
sentation have all been derived under the assumption that (2.13)
such a representation exists. Of course, if G denotes the
rational matrices and H denotes the polynomial matrices Now g E H hence (2.13) gives n,d -' H. By Property 3,
the existence rf a coprime representation is implied by n,d- H together with the fact that the pair (n,,d) is
classical analysis [16],[19]. Indeed, the classical analysis right coprime implies d e J. U

. readily extends to the case where H is taken to be the exp.
stable rational matrices or the ring of proper rational

* matrices with poles in a prescribed region [181. On the III. ANALYStS

other hand for multidimensional [26), distributed [41,[8], To start with consider the feedback system Z, of Fig. 2.
and time-varying systems [11], [1] there is no assurance Suppose that the plant is described by a right coprime

that an arbitrary g e G will admit a fractional representa- fractional representation p- n d,-' in (G,H,I,J). Te
tion nor even that the set of g E G which admit such a
representation will be a linear space. Moreover, all g's
which admit a fractional representation may not admit a tion if. whenever S e admits a left fractional repreentation it ao
coprime fractional representation [26]. In general, the set admits a right fractional representation and vice versa.2
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U: v To describe the feedback system 2 we consider the map
- P " "",d h.,: (u1, u2y--(e ,e2). Simple calculations give

U " Fig. 2. Unity gain nepative fee1-ba h2system,1 h, I,, c(l+pc) - , (l+cp) -

U2 (3.7)
-. + -1 V Now let hy.:(u,,u2)--(yy2). Using the summing node

Q XI p,+d, equations it is easy to see thatUI
k.. - K(h, - 1) and h, =I - Khy (3.8)

Fig. 3. Feedback system with plant and compensator. where K is the symplectic matrix

:- closed-loop dynamics of % are described by the maps K-[ 1 1 (3.9)

h.: u--e; h,-(l +p)- d,(d, + n,)- (3.1) It is well known that in the case of multivariable rational
matrices, one has to consider the four submatrices of h,.

,: w--,y; h,.-p(l+p)-'-n,(d,+n,)- '. (3.2) in (3.8) because examples show that any one of the
submatrices may be unstable while the remaining ones are

.. Note that stable. (For detailed examples, see [301.) Let us calculate

h.. + h- 1. (3.3) h", (l +pc)- f I -pc(l +pc) - '

We say that 2- is well defined in G, (H, respectively), if 1I-p(I+cp) - c
h, e G, (H, respectively). -c

Note that the pairs (n,, d, + n,) and (d,, d, + n,) are right
3 coprime; indeed, the right coprimeness of (n,,d,) implies n,(yd,.+ xn,) 1 tx (3.10)

(2.4), hence
i (u, - ,)n, +v,(d, +n,) - 1 (3.4) h. ,..c(l +PC)-I--(I + cp)-,c

while sud,(y d,+xtn,) -x, (3.11)

* (v,- u,)d, + u,(d, + n,) - 1. (3.5)

"" Theorem 1: Consider the feedback system I,, of Fig. 2. h, ,-(1 +cp)- -(1 +y7-xtn,d-) -

a) Let p-n,d,- ' be a fractional representation in -[yi-'(yjd, + xin,)d,-'] -

* (,H.,J ) of the element p e G; then Z, is well defined in
S G if and only if d,+n, E1. -d,(ytd, +xtn,)- y, (3.12)

b) Let p - n,d,- ' be a right coprime fractional repre-
m. sentation in (G,H,I,J) of the element peG; then Z. is h,.,--p(l+cp)'---n,(yd,+xln,)-'y,. (3.13)

well defined in H if and only if d, + n, e J.
Proof.. a) =*. h. E G and d, e I imply We say that I is well defined in G, (H, respectively) if and

only if each entry of h., defined in (3.8) belongs to G, (H,
.. ,he-d,-T'(l +p)-1-d,-d,(d,+n,)--(d,+n,)-'eG. respectively).

" (3.6) Theorem 2: Consider the feedback system I of Fig. 3.
Let nd,- 1 and y- 1x be a right and left fractional repre-

Now d, eIcH and n, eH, so d,+n, eH. This together sentations of p and c in (G,H,I,J}.
with (3.6) implies d, + n, e/. a) If ytd, + xtn, e I, then I is well defined in G.

a) 4-. d,+n, eI implies (d,+n,)- eG; hence h. b) Ifytd,+xtn, EJ, then I is will defined in H.
d,(d,+n,)-J'G. c) If E h3G, then yd, +xtn, I hence if I is well

b) Follows from Property 3, together with (3.4) and defined in G, then ytd, + xtn, E 1.
. (3.5). U d) Assume, in addition, that n,(ytd,)- and (yld,)-'x,

Of course, a similar theorem holds for left factoriza- are right coprime and left coprime fractional representa-
tions. tion, respectively; then h,., e H implies that ytd, + xtn, E

We now consider the feedback system I of Fig. 3 where J, and hence, if 7. is well defined in H, then ytd, + xtn, E J.
the plant p is preceded by a compensator c; p and c Proof. a) and b). If ytd, + xtn, E 1, (J, respectively),
belong to G and are specified by their coprime fractional then by the definition (2.1) of 1, [(2.2) of J, respectively],
rprentation in (GH,I,J) n,d,-' and y7' x, respec- the formulas (3.10)-(3.13), and the closure of the ring G,
tively. (H, respectively), the conclusion follows.
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c) If h, 2 e G, then so is d,-'h,,,,y - since d, - I and coprime and left coprime respectively, then c is given by
y, E 1. Now, expression (4.1).
4-'h h yI-d,-I(1+cp) - Proof:

Step 1: Choose any kEJ, (hence k-'EH), and

- d,-'(1 +y- xtnd,- )- y solve for yv and x E H the equation

.d,-'[ y _.'(yl, + xjn,), _ ] y ,- (y A, + xn,) _ y~d, + x, ,- k. (4.3)

(3.14) Observe that if (yt,x) is any solution in H of (4.3), then

hence the fact that h,,, e G implies that (y, + xn,)-'E- k -'(yld,) + k -'(xtn,) = 1 (4.4)
G and thus (ytd, + xtn,)eJ. and

d) First we prove that the pair (n,,yld, + xln,) is right
coprime. Since (n,,ytd,) is right coprime, there exists a, (yld,)k - '+(xn,)k- 1. (4.5)
and I,SEH such that hence, (n,,yld,) is right coprime and (yjd,,x) is left

,n, +,yd, - 1; (3.15) coprime. Thus, the assumptions of Theorem 2, part d)

hence holds for any solution of (4.3).
Step 2: Obtain all solutions of the homogeneous

(r,- i,x,)n, + i,(yld, + xn,) - 1 (3.16) equation

and the claim is established. Similarly, we show that y'd, + xhn, -0. (4.6)
(ytd, + xn , xj) is left coprime. Now consider Since p - ndj,'- d- In," direct calculation shows that for

he,." I-'n,(ytd,+x n,)-x,. (3.17) any reH,

* By assumption, h,,,, E H; then the special assumption of y i= rn, x' -rd, (4.7)
d) and Property 4 imply that yd, + xn, EJ. This com-
pletes the proof. * are solutions of (4.6).

Note, the special assumptions used in d) to the effect It remains to show that all solutions of (4.6) are of the
that n,(ytd,)-' is right coprime and (ytd,)-Ix, is left form (4.7); so we assume that y,' and xh e H and satisfy
coprime, imply, in some sense, that p and c have no (4.6). Let r-- x,*d, -; hence
common factors. More precisely, since J serves as the
group of units in our theory these conditions imply that x, - rd. (4.8)
any common factors of p and c must lie in J. Now using (4.6)

IV. DESIGN Y, -y d'd- xtn'd- xAp
"-xj'd-'nt" rnt. (4.9) ]]

Consistent with our approach of matching the plant "n n
model to the goal of the given feedback system design Equations (4.8) and (4.9) show that any solution of (4.6)
problem the present section is devoted to the problem of has the form of (4.7); it remains, however, to show that
characterizing the set of compensators which will "place" r E H,
a feedback system in a prescribed ring H given that both r xd,- xd- (dv + nu )
the plant and compensator are modeled by fractional i - --

" representations in (G,H,I,J,}. - -x"c-xtd-'nlu, - - x v1
+ y u EH. (4.10)

Theorem 3: For the feedback system I of Fig. 3, let the
plantp have a right coprime and a left coprime fractional Step 3: Obtain a particular solution of (4.3). From
representatinp-n,d,- .d,-'n, in {G,H,I,J). Let u, and the right coprimeness condition for (n,,d,),
v, both in H be such that (2.4) holds. Then for any wGH kvd,+kun,-k (4.11)
such that wn, + v, e 1, the compensator

(.) hencec -(wn + v,)- (wd + u,) r=G (4.1) hee

results in a feedback system I well defined in H. For such yf - kv,, xf - ku,. (4.12)

a compensator, h. 6 H2 X 2 and Hence any solution of (4.3) is of the form

[-n,(-wt+u,) - n,(wn,+ v,) y r- n, + kv,(4.2
d,( - wd,,(wnt )j (4.2) x,- -rd+ku, for some r E H (4.13)

Convely, if I is well defined in H and if the compensa- and for any such solution (n,.yld,) is right coprime and
tor c y7 1x, is such that (n,,yld,) and (ytd,,x) are right (yjd,,xz) is left coprime.
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Step 4: Consider the condition Note that there is no guarantee that these fractional

r r HandkreJ such that rn, + kv, El (4.14) representations are coprime. These representations are,
however, coprime when the compensator is in H. Indeed,

or equivalently, if we set w- k -'rE H, in that case they satisfy a stronger condition which com-
ij I pletely characterizes those plants which can be placed in

wE H such that wn, + v, E I. (4.15) H by a compensator in H. For an early analogous result,

If (4.15) holds, see [10, pp. 85-87].
Corollary !: For the feedback system I of Fig. 3 therec-(wn,+v,-'(-wd+u,)CG (4.16) exists a c in H which places the feedback system in H if

and only if p admits left and right fractional representa-
I is a compensator in G which can also be written as [see tions p - d - 

1n - n,d,' such that n, is a right factor of
(4.13)] 1- d, and n, is a left factor of 1- di.

- +(7 Proof.- If the feedback system is placed in H by a c in
"(rn, +Hkv,)( it admits the fractional representations of (4.18). By

If we let y, - rn, + kv, and x- -rd, + ku,, then, by (4.17), calculation [see (3.7)]

cmy,- Ix and, by calculation, we verify that (4.3) holds. h 2- ch., = 1 (4.19)
Thus for any such compensator, by Theorem 2, the feed- and
back system X is well defined in H. heu - h,,,c 1 (4.20)

Step 5: Conversely consider a feedback system
well defined in H with a compensator c -y7-x, such that which verifies their coprimeness since c is in H. Moreover,
(n,,yld,) and (yd,,x,) are right coprime and left coprime, upon rearranging the terms in (4.19) and (4.20) the condi-
respectively. By Theorem 2, (4.3) holds for some kG J, tions of the corollary follow. Conversely, if fractional
hence by the analysis above, c is also given by (4.1) for representations exist which satisfy the conditions of the
some w E H such that wn + v, r I. The proof is thus com- corollary there exists u, in H such that

* plete. N * -1 (4.21)
The theorem yields a complete parameterization of all

, possible controllers which will place a plant in H given the (equivalently p = n,d',-' is a right coprime fractional repre-
existence of: sentation with v, - 1). Nowy, by using this right fractional

I) right and left coprime fractional representations of p representation in (4.1) (with any left coprime fractional
and representation) and w -0 we obtain a compensator c -u,

2) a w in H for which (wn, + v,) is in I. in H, which places the feedback system in H. E
In the multivariable case where p is a square matrix

whose elements are proper rational functions it is well V. EXAMPLES
I known that p has left and right coprime fractional repre-

sentations [19]. In order to obtain a proper controller one Example 1: A Single Variate Servomechanism Problem'
has to choose w in (4.1) so that det w(s)n,(s) + v,(s)] 00 at Here G is the ring of proper rational functions and H is

.- • infinity. Methods for obtaining such a proper stabilizing su-." subring of functions analytic in Res > -I1. Consider the
controller have been reported in [321 and [33]. Alterna- ring of funin a inmes - th C nsthe
tively, one can verify the existence of such a w in our problem of designing a compensator for the unstable
algebraic setting by invoking the fact that n, and d, a plant p(s) - (s + 1)1(s2 -4) which will simultaneously~place the poles of the feedback system in the region,
right coprime and applying linear algebraic arguments
thereto. Of course, these arguments apply to distributed Re(s) < - 1, and cause the system to asymptotically track

systems as well as lumped systems using the formulation a step input. Since our transfer functions are commutative
of [71 and [81. we may adopt common right and left fractional repre-

In the most general ring theoretic setting neither right sentation for p(s). In particular,
nor left coprime fractional representations of p, nor a w (s+1) [ (s+1) ir (s-2) '

.: such that (wn + v,) is in !, are assured to exist. At present, P(s)- (s2 4) (s + (2) +2) -(s)d(s)=
the only known counterexample to the latter is, however, (5.1)
in the ring of integers which is of no system theoretic while
interestile

*Conditions 1) and 2) have been conjectured to be both r16 ~[(s+1)1 + (s+2/3) l(s-2)1t necuy and sufficient conditions for the existence of a [ 3 J1(3 +2), +  (s+2) J s2
compensator, c, which places the feedback system in H

(3]. In fact, if c places the feedback system in H, then -u(s)n(s) + v(s)d(s)- 1. (5.2)
from (3.7) we obtain left and right fractional representa-
tions

*Mre purpose of this example is merely to love a simple illustraion ofp- (4.18) the theory. In this situation. a much more bigbly developed theory is.. 4 available in [29).
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Here, each of the four rational functions, n(s), d(s), u(s), Since the previous compensator design was achieved
and v(s), lie in the ring of operators with poles in the with an especially simple w(s) let us add an additional
region Re(s)< -I and hence the set of all compensators constraint to the problem by requiring that hy,,(s) have
which will place the feedback system in this ring is given zeros at ±j (so that the system will be insensitive to a
by Theorem 3 with w(s) also in the ring. Moreover, for an noise source at that frequency). Now, from (5.4) it follows
arbitrary w(s) the input-output mapping for the resultant that the above design is the only compensator which will
feedback system will take the form make hy,,(0)= I with a constant w(s); hence to satisfy this

additional design constraint we will work with the first
(sl)(s-2) 1 [16(s+1)i order w(s) in the form

j (s+2)3 3(s+2)2  
as -4

- - n(s)d(s)w(s) + n(s)u(s). (5.3) w(s) - bs+3(

By the final value theorem the feedback system will Here, by specifying the zeroth-order coefficients of w(s)
asymptotically track a step input if and only if hy2,,(O)- I we assure that w(O) -4/3 while we are left with the

(equivalently c(s) has a pole at zero). As such, to simulta- parameters a and b to create the required zeros. Of course,
neously place the poles of the feedback system in the to achieve our stability condition we must have -3/b <
region, Re(s)< - 1, and cause the feedback system to - 1. Substituting the w(s) of (5.7) into (5.3) yields
asymptotically track a step input we must find a w(s) with (s+ l)[(16b-3a)s2 +(60+6a+32b)s+72]
poles in this region such that hy,,()- 1. Evaluating (5.3) (/3,(s) .,,

hy3(s+2) 3(bs+3at s-0 and setting it equal to one yields 3(s+2) +3)

h, + -, (5.4)

y WTo obtain the desired zeros at s - ±j the equation
implying that w()=-4/3. As such, the simplest w(s) [(16b3a)s2 +(60+6a+32b)s+72]=k[s 2+1]

which will achieve our simultaneous goals is the constant
w(s)- -4/3 whose poles are trivially in the prescribed (5.9)
region. Adopting this w(s), a little algebra with the expre- must be satisfied. Now, this represents three linear equa- *

sions of Theorem 3 wll reveal that the required corn- tions in three unknowns and has the unique solution
-. pensator takes the form

21
(20s+24)(s+2) a--17, b=-, and k=72. (5.10)

C(s)- (5.5)16
(3s+4)s

Moreover, -3/b--16/7<-I; hence this choice of
while the input-output mapping for the feedback system w(s) will also assure the prescribed degree of stabilization.
takes the form As such, we take

(s+1)(20s+2)(.) -(17s+4) - -(272s+64) (5.11)

3(s+2)' (21s/16+3) (21s+48)

" Clearly, c(s) has the required pole at zero (for hy,,1(O) - 1), which yields
although it is by no means obvious that this quasi-stable 128(s+2)(2+ 1)
compensator will transfer the unstable poles of p(s) to the c(s) 72s (5.12)--0)

prescribed region. Indeed, this illustrates the underlying
- power of the proposed design technique in that when one and

designs the system in terms of w(s) rather than c(s) the
pole placement or stabilization process is automatically hy" (s)384(s+l)(2+) (5.13)

• :l resolved by working with a w(s) whose poles lie in the (s+2)3 (21s+48)
prescribed region while the remainder of the design pro-

S ess is simplified by the affine relationship between w(s) satisfying all of our design criteria.

- and the matrices h, and h,,. Finally, we note that c(s) has Example 2: A Multivariate Lumped-Distributed
a zero at s- -2 which may cancel with the pole of p(s) at Example 2rAbl e d
s -- 2. This, however, does not contradict the coprime- Decoung Problem
ness assumptions of Theorem 3 since the common factors Consider the multivariate, lumped-distributed plant
involved lie in J which serves as the group of units in our

* theory. Fortunately, such common factors can never lead e-t/ (s- 1)
to an erroneous design since by assumption the poles and
zeros of the rational functions in lie in the prescribed p(s)- (s+ 1) (s+ I) (5.14)
region. As such, any cancellations which may take place 0 1
are benign. (s-)
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which we desire to stabilize and simultaneously decouple Upon substitution of these matrices into the expression
by feedback. For most lumped-distributed systems one for h,.,,(s) from Theorem 3 one obtains
can take H to be a ring of matrices whose elements lie inI the algebra &_ (o0) of stable transfer functions generated e - "'S (S _ 1)2

by lumped elements and delays while G is a ring of (s+I) (S+1)2

matrices whose elements lie in 6(oo), the algebra of hy2,,()- 
,.. quotients of elements in d_(oo), as per Table I. In our 0 w21(s) w22(s)

- case, however, although e- I/ is L2-stable (since it is (S+1)
*analytic on the right half-plane and bounded on the12

imaginary axis [101) it has a "nasty" singularity at s-0 1 0 0 2(s-

and hence does not lie in &(o0 ) for any 0 4 0. As such, we + (+1)2 (5.19)

" take H to be a ring of 2 x 2 matrices whose elements are (S-I) 0 2
" transfer functions lying in the Hardy space H,.(R) of 0 (() S+)

functions which are (essentially) bounded on the jw axis (s+) 0
and admit an analytic extension into the right half-plane which will be stable if and only if the we(s) are stable.
(thereby making them L2 -stable) [12]. Similarly, we let G Now, to decouple the system we require that
be a ring of 2 x 2 matrices whose entries are transfer
functions lying in the Lebesgue space L.(R) [12]. With (s- -)e - '/'

this setup I becomes the set of H. functions which are ( + 1)2 WI2 (5)

uniformly bounded below on the jw axis while J is the set 3 )
of H., functions whose analytic extension is uniformly + ($-!) w72(5)+ 2(s-1)2 0 (5.20)

- bounded below in the right half-plane [12]. Equivalently, J (S+ 1)
3  (s+ 1)2

is the set of invertible outer functions in H,(R) (12].
S" Using these spaces a little algebra will reveal that p(s) and

* has the right and left coprime fractional representations in I
(G,H,I,J) shown below: ~, (S)- (s+ 1) w21(S)0" (5.21)

e- ' (s- )2 Clearly, w2 1(s)-0 solves (5.21). On the other hand (5.20)
p()+- (S+ 12  has numerous solutions none of which are, however, sta-

" (- ble. As such, the system cannot be decoupled and stabi-
0 s lized simultaneously. Note, since our theory guarantees

. (s+l) J[0 (3+ ) that all stable feedback systems with plant p(s) take the

form of (5.19) if we cannot find stable w's which decouple
-n (s)d(s)-' (5.15) (5.19) we are assured that it is impossible to simultaneously

i •-_13 (5-1) stabilize and decouple p(s) by feedback (using a com-
1 0 ( (s__) pensator as specified in Theorem 3) and we need not

(3+I) (s+I) consider other formulations.
0 _" - 1 Since we cannot simultaneously stablize and decouple

"""k0 (s+) '0 (s+ 1) p(s) by feedback the best we can do is to try to stabilize
p(s) while preserving its triangularity (which will allow us

-" -i(5)- ni(s) (5.16) to sequentially adjust its various outputs). Formally, this
can be achieved by taking w(s) -0 which yields the in-

where put-output mapping

0] (S- 1)2 0 2(s-l)2
(S+ ) (3+1)2 + 10][(5 [ .) (5.22)

0 - 0 (s+1) 0 10 (S+) (+)

Unfortunately, the first input has been rendered useless
"" -u,(s)n,(s)+v,(s)d,(s)-1 (5.17) by this compensator and hence the goal of being able to

and sequentially tune the outputs is not achieved. On the other

e)[ 0 0 1 0 1 -(s-1)

[ - n,(s)u,(s) + d,(s),,()- i. (5.18)

S(+1) [0 2] 0 1) J
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hand, if we take As such, the set of all possible FIR transfer functions
which can be obtained from p(zl,z 2) by feedback takes

w(S), (5.23) the form

ten h=,,(Z1 Z2) - [1+2 zz.+z,z+ 3Z 2]

*- 1i' 2(s- 1 w(z,,z,)-![z1+zz,] (5.28)

) (s+l) (s+ 1) (5.24) where w(z,,z2) is an arbitrary polynomial in two variables.
2 Clearly, w(zl,z 2) should be low order to keep the "point-

(s + !) spread function" of h,.,(z,,z 2 ) as concentrated as possi-
ble. Indeed, if we take w(z 4 z2)- O we obtain

which has the desired property is obtained. In particular,
one can tune the second input to control the second hk,,(z,,z 2 ),=- 1[z +zIz2 ] (5.29)
output and then adjust the first input to simultaneously
cancel out the effects of the second input on the first in which the response from a given pixel effects only two
output and control the first output. Of course, since w(s) adjacent pixels. Note that the fact that these pixels are not
is stable so is hy,,(s), centered around the input point does not cause any diffi-

Finally, we note that as we have formulated our theory culty since one can always shift the origin of the raster to
one can deal only with square matrices (since rectangular compensate. Taking this w(zz2) we obtain the simple
matrices are not closed under multiplication). The exten- compensator c(z ,z2)- - z, which represents a one direc-
sion to rectangular matrices is, however, straightforward tional shift and a 180 ° phase shift.
[191 and yields an identical theory the details of which are An alternative design which also yields a "point-spread
left to the reader. function" which affects only two pixels, although it is

shifted further from the origin, is obtained with w(z,,z2)-
Example 3: A Multidimensional Image Restoration Problem -(l/9)z i. This yields

"-' Let 1 rz;+zzz)- l,.. .Z

p(ZZ 2)u n 2 Z t + Z2  (5.25) 9) . 2 1] (5.30)

Z, +z,z 2 +3 and

denote the discrete two-dimensional transfer function for z (zI + z2)

a device in a digital image processing system. Since this c(z'z:2 )" z 2 (5.31)
represents an IIR (infinite impulse response) transfer (5.31)

function the image processing device will tend to "smear" Since two-thirds of the output energy in this design is
the image with the data observed at any one pixel distort- concentrated at a single point whereas the energy is equ-
ing all other pixels at the output of the device. In an tffort ally divided in the previous design it may be argued that
to reduce this "smearing" effect we would like to place the this represents a superior design. On the other hand, the
device in a feedback system whose input-output transfer shift from the origin is greater and the compensator more
function minimizes the "smearing" effect. In particular, complex in this case. Finally, since all FIR transfer func-
that means that the input-output mapping for the feed- tions are stable (in an appropriate sense) the feedback
back system should have an FIR (finite impulse response) systems obtained via either choice of w(z,,z2) are stable.
transfer function with its "point-spread function" con- Moreover, both compensators are, themselves, stable as is
c centrated about a single point as closely as possible. p(Z1 Z2) [6).

Since the FIR transfer functions are just the polynomi-
als we let H be the ring of polynomials in two variables Example 4: A Time- Varying Differential-Delay
and G be the ring of rational functions in two variables Stochastic Optimal Control Problem

" [16]. Once again employing only a single fractional repre-
sentation since these rings are commutative we obtain the Consider the feedback system of Fig. 4 where the plant
coprime fractional representation represents a cascade of a time-varying function f with an

[-2+ ideal predictor e. The system is driven by a stochastic
P(ZlIZs)= (Z +z2][I z+,z+3]' process a, which is derived from white noise by passing it

"""n(zpz)d(:1,:z- (5.26) through a miniphase filter with transfer function (s + 2)/(s
+ 1). We desire to choose a compensator which will
stabilize the system and minimize the performance

'..i!i [_21 measure

[I][ J EIIb!2 + EIld12  (5.32)

- a(z",z2)n(z",zi) + v(zz2)d(ziz2) 1.
under the constraint of stability. Here, d is the stochastic

(5.27) process observed at the output of the system, b is the
. .. . '. '. .'. ' -'. ' ''7', ' . .. ,; ', :' .' .',, ." - , ; . . . - .''i: ' .' , i ' " • " ' ' " ' " " ' " : " : "
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" "- s2 .. b- d It is significant to note that even though we are inter-
ested in designing an optimal closed-loop system by mini-
mizing over the operator w rather than the compensator
we have transformed the problem into the open-loop

, Fig. 4. Stochastic control system. optimization problem of Fig. 5.
Here we desire to minimize J- EIjejj2 over all causal

operators w, where g,, g2, and g3 are arbitrarily specified
.." ...- ., .- ......•....... 3 bounded operators. In our case we take

. .. (5.38)
I--

92 - - (5.39)
PE I [ ~e-'] [f i

Fig. 5. Open-loop optimization problem.

and

stochastic process observed at the plant input, and E is _ - ]
the expected value operator.. .(

Since we have a time-varying component, a rational g(5
component, and a delay component we formulate our -[e-I]

S'.. theory in an abstract operator theoretic setting [20] with G
.,.. taken to be the bounded operators on the Hibert space in which case the output of the open-loop system is

L2(R) and H taken to be the causal bounded operators e - (d, b) in the product space constructed from two copies

(which correspond to the stable systems in such a setting) of the (Hilbert) space on which the given system is de-
-' [201,[231. Note, in this setting we will denote the time-in- fined. Now, if we take the a in our open-loop problem to

variant operators by their transfer function and the time- coincide with the given a in the closed-loop optimization

varying multiplication operators by their characteristic problem then the Pythogorean law (in Hilbert space)

function. Of course, one must be careful with such nota- implies that
tion since the operational calculus associated with the J-E11e21-E1d+eIlbI2. (5.41)

* time-invariant components is only partially valid in such a
. setting. As such, our two optimization problems coincide.

Since the inverse of a predictor is the ideal delay which Interestingly, an explicit solution has recently been
is causal one immediately obtains the right and left given for the above open-loop optimization problem [9].
coprime fractional representations for p in the form Indeed, the optimal causal w is given by

-" p-[f][e -sJ [e-f 1][l ]-nd,-.d-n, w0 A[ - *-g9gQ.1g*'] C- (5.42)

(5.33)
where where A and 0 are causal, causally invertible operators

-'" such that
[f-'][f]+[0][e']-u,n,+vd,- i (5.34)

" and AA-3'g3 #0*g,1 Q.g1. (5.43)

"[l][I]+[ef--][]-ntu+djou-l. (5.35) Q. is the covariance for the stochastic processes a,[ ]c
denotes the causal part of an operator, and "*" denotes

. Here, we have assumed that f- exists and is bounded the adjoint operator. To apply this general theory to our
(i.e., f is bounded away from zero) while f and f-' are example we represent the adjoint operation when applied

• . both causal since multiplication by a function of time is a to a transfer function by g($)*-g(-s) which coincides
memoryless operation 1201. From Theorem 3 it now with the classical adjoint on the jw axis. Of course, the' " follows that the input-output and input-plant input map- memoryless multiplication operators, [f] and [f- 11, are

pings for our feedback system with compensator defined self adjoint. Finally, since a is the stochastic process
by a causal operator w will take the form generated from white noise by passing it through the filter

." , -[f1w~e -](f']+ 1 (5.36) (s+2)/(s+ 1)

and (5.44) (s+ l)(s- 44)

(5.37) First, we calculate A and 0 via

As such, our optimization problem reduces to choosing
the causal w which minimizes the performance measure of A, ,( -f ! se[]. .] +1  (5.45)

' (5.32) where d- h,,a and b" h,,,a.
[ .-.-.-..... .-.-- . -i. /ii. . -.... ,,......."
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and Taking the inverse Laplace transform we obtain the im-

(s+2)(s-2) pulse response of this system in the form

u [ (s+ 1)(s- 1) 1f g(t) = 8(t + l) + P +l)U(t + l) (5.51)

. e., j'(s+2)(s -2)][ where 8 is the Dirac delta function and U is the unit stepf[f [-] (s+)(s-I) function. Now, the causal part of g(t) is obtained by

-.[-] (s+2)(s-2) setting g() to zero for t less than zero; hence

(s (g(t)] -(t)]U(t). .((t+))U() e-U(t) (5.52)

. Here f- 1(t)-fAt- ) and we have used the properties of
the delay and predictor to obtain the equalities [e-'I[f-'] or equivalently

' [fi4Ie-'] and [f-'le'I-[e'][f21j. Of course, the ex-
ponential transfer functions commute with the rational [g(S)]= e(s+)" (5.53)

K- transfer functions allowing the cancellation of the ex-
ponential terms in (5.46). From (5.45) and (5.46) one may Multiplying through by the memoryless factor from (5.49)
now readily obtain the required causal, causally invertible we then obtain
Aand 0 operators in the form

- *-and X- 'n- 1 (5.47) 2 c(s+I)
(5.54)

while and finally

.,F (+2) 1 . -r(s-2) 1 ]. , - Q. - co

. - [ ], and 0-1[fn-][ (s-l)] 1 [f.] +
( (s-2) y

(5.48) [ l ([+l)][
e .(s+l) I (s+2)

". The next step in evaluating (5.42) is to compute the
term in the bracket, i.e., I (5.5

e (s+[2) (5.55)

a3 n ,which is surprisingly simple given the complexity of the
derivation.

- ' -e] - Substituting the expression of (5.55) into the formula of
.."[- - [e] ][fn] Theorem 3 now yields an expression for our optimal

compensator and the input-output mapping for the re-
(s +2)(s-2) lf[ ]f r(s)] sultant feedback system in the form"-5(s |( - ) f-]['][f,](s-2)] c-e[f:n'](s+2)-1 (5.56)

-I U4~I-1[(s+2)(s-2)] n.-: [+f-' and
(s+l)(s-l) .e

"(s'+2) +1. (5.57)
if - . I I I f] (- [e'l ] + 2

(s2) Note that is stable, as required, even though both p

C (:2)1 and c are unstable.-::'. " f +2£ ( 1~) ell (5.49)

Vl. NoNLiNEAR FEBDBACK SYsTEMs

whose causal part must now be computed. Recalling that From an algebraic point of view the fundamental dif-
the memoryless term factors through the causal part ference between linear and nonlinear systems is the fact
bracket [91 it suffices to compute the causal part of the that nonlinear systems fail to satisfy the right-distributive
time-invariant system with transfer function property, x(y + z) - xy + xz. They do, however, satisfy all

r % (:42).of the other axioms for a ring with identity including the
i(s)- (-2 e . (5.50) left-distributive property (y + z)x -yx + zx. As such, one

(• ) Jcan attempt to extend the preceding development to non-
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linear systems by carrying it out in left-distributive rings, plies to essentially any class of linear systems and by
* G and H [23]. Indeed, if we define a right coprime proper choice of the rings G and H the results are applica-

fractional representation for a system g in a left-distribu- ble to a variety of systems problems.
tive ring G relative to (G,H,I,J} precisely as we did in Although we believe that the present work represents
Section 1I the fundamental properties 1. 2, and 3 go the first attempt at the formulation of an axiomatic frac-

C, through without modification. tional representation theory for systems which may be
Property IN: Let g-n,d-' be a right coprime frac- matched to the feedback system analysis and synthesis

tional representation of g in (G,H.1,J} where G and H problems of interest the work owes much to a number of
are left-distributive rings with identity. Let n, and d, have recent results on the input-output theory of linear sys-

- a common right factor rE H, i.e., n,- x,r, d,-y,r for tems. The use of a fractional representation theory for
some x, E H and y, E H. Then r has a left inverse in H. multivariate systems, though implicit in a number of

. Property 2N: Let g n,d,- ' be a right coprime frac- classical results, was popularized by Rosenbrock's poly-
tional representation of g in {G,H,I,J) where G and H nomial matrix fractions [19]. Interestingly, however,
are left-distributive rings with identity. Let g - x,y- 1 be a Rosenbrock's goal was apparently to permit the powerful
second (not necessarily coprime) right fractional repre- analytic and arithmetic theory available for polynomial
sentation of g in { G, H, I,J }; then there exists r in H such matrices to be applied to rational matrices whereas the
that present fractional representation theory is motivated by

..x,-n,r and y, d,r. (6.1) the desire to formulate a representation theory for systems
which is closed under inversion. Over the years numerous

Property 3N: Let g- n,d,-' with n, E H and d, E I generalizations of the polynomial matrix fraction concept
where G and H are left-distributive rings with identity. have been formulated for distributed systems [4], [5], [13],

.. a) If d, r J, then g E H. [21], and multidimensional systems [9],[24] while partial
b) If g - n,d, is a right coprime fractional representa- extensions to the time-varying and nonlinear cases have

tion of g in {G, H, 1,J), then g e H implies d, E J. appeared in a number of unpublished reports [11], [22].
With the aid of property 3N one can do a complete For any type of fractional representation theory to be

analysis of a nonlinear feedback system h,. -p( +p)-' - meaningful it must be identified with an appropriate
n,d,-' where n,d,-' is a right coprime fractional repre- coprimeness concept. Indeed, the key to the present for-
sentation of hy. Indeed, hy. is well defined in G if and mulation is the use of the algebraic coprimeness concept
only if d, E I and it is well defined in H if and only if of (2.4) in lieu of the more classical common factor
dEJ. Note, however, that we cannot construct our frac- criterion. Such a criterion has previously been applied by
tional representation for hy. from a fractional representa- one of the authors in a study of fractional representations
tion for p since the verification that such a representation for distributed system [4] and was also shown to be the
is coprime appears to require right-distributivity [see (3.4) strongest of several possible coprimeness criteria for mul-
and (3.5)]. tidimensional systems by Youla and Gnavi [26]. Of

The right coprime fractional representation plays a spe- course, it is well known as one of the several equivalent
cial role in the nonlinear case because hy,-(l +p) -' criteria for coprimeness in the polynomial matrix fraction
holds, whereas h,--(l +p)- p does not (even though the theory [16],[19].
latter formula is true for the linear case). As such, those The feedback system analysis theorems of Section III
results on the analysis of feedback systems which assume are motivated by the now classical theorems for determin-
a left coprime fractional representation theory fail as does ing the stability of a multivariate feedback system in terms
the design theorem since it simultaneously employs both of its polynomial matrix fraction representation [101.
left and right coprime fractional representations. We be- Moreover, the system synthesis theorem is an outgrowth
lieve, however, that these results should hold, at least in of the feedback system stabilization theorem of Youla et
part, for nonlinear systems with an appropriate modifica- al. [24],[25]. Indeed, the present work began with an
tion of the theory. In particular, since the rings G and H attempt to give a simple proof of this most powerful
are asymmetric we believe that asymmetric concepts of analytic theorem and developed through several stages of
left and right coprimeness will be required to achieve this generalization and simplification into its present form.
end. Finally, the optimization theory used in Example 4 repre-

sents the generalization [9] to an operator theoretic setting

VII. CONCLUSIONS of a result originally developed by Youla et al. in the
frequency domain for use in conjunction with their stabili-

Although several of our examples are characterized by a zation theorem [24],[25].
Ldeep analytic structure the key to our fractional repre-

braic nature of the main results. Indeed, the entirety of ACKNOWLEDGMENT

our modeling, analysis, and synthesis theory was derived
with no more sophisticated mathematics than addition, The authors wish to thank an anonymous reviewer for
multiplication, subtraction, and inversion. As such, it ap- numerous useful and perceptive comments.



'~412 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-25. Nio. 3. JUNE 1980

REFERENCES [32] L Cheng and J. B. Pearson. "Frequency domain synthesis of
multivariable linear regulators," IEEE Trans. Automart. Cor,., Vol.

111 W. Averson. "Interpolation problems in nest algebras," J. Func- AC-fl, pp. 3-15, 1978.
dhan Aalysis, vol. 20, pp. 208-233, 1975. [331 P. J. Antsaklis and J. B. Pearson, "Stabilization and regulation in

12J Bourbaki, Commuuaiv Algebra. Paris: Hermann. 1972 linear multivariable systems.- IEEE Trans. Automat. Cont,., vol.313I~ C.!1. Dyriws, private communication. AC-23, pp. 928-930, 1978.
[4 F. MI. Callier. and C. A. Desoer. "An algebra of transfer funFtions

for distributed linear timec-invariant systems." IEEE Tranm.
Chruuiu Syst., vol. CAS-25, pp. 651-662. 1978.

(51 -, "Open-loop unstable convolution feedback sytmswt C. A. Deseer (S'S-AK53-SM'57-F64), for a photograph and biography,
dynamical feedback," Automataca, vol. 12, pp. 507-518, 1976. see page 1% of the April 1980 issue of this TRANSACTIONS.

* (61 -, "Dynamic output feedback stabilization of a control sys-
tem" presented at Amer. Math. Soc. 76 1st Meeting. Charleston,
Nov. 1978 (abstract appeared in Notices AMS, vol. 25, p. A-665,
1978). Rucy-Wea Lu. (S'53-M'59) was born in

(V1 -, "Stabilization, tracking and disturbance rejection in linear Kiangsu, China. He received the B.S., M.S., and
multvariable distributed systems," in Proc. 17th IEEE Conf. Deci Ph.D. degrees in 1954, 1955. and 1960. respec-sinadCoturl, San Diego, Jan. 1979, p. 513.

181 -, "Stabilization, tracking and disturbance rejection in multi- tively, from the Department of Electrical En-
variable convolution systems," Tech. Memo. UCB/ERL M78/83, gineering. University of Illinois, Urbana.
Dec 197. Since 1960, he has been with the University of

(91 R. M. DeSantis, Rt. Sacks, and J.3J. Tung, "Basic optimal estizna- Notre Dame, and is currently a Professor in the
tion and control problems in Hilbert space." Math. Syst. Theivy, to Department of Electrical Engineering. He re-
be published. ceved a National Science Foundation Fellow-

11)C. A. Desoer and M. Vidyasagar, Feedback Systems: Input-ouput si tteSafr nvriyi h lme
W.err New , Yo.k Mraye ndmics,19 Ofailz 1%62. He was a Visiting Associate Professor[111 C. A. Desoer, R.WL i.J ury n R ek,"nsaiie from 1%65-1966 (and a Visiting Professor from 1977 to 1978) at thetion of feedback systems," unpublished notes, 1978.

1121 Rt. G. Douglas, Banach Algebra Techniques in Operator Threpy. University of California, Berkeley. He also held visiting professorships at
New York: Academic, 1972. the National Taiwan University, Republic of China, in the Spring of

[131 B. Francis, "The multivariable servomechanism problem from the 19. the Universidad de Chile, Santiago de Chile, in the Summer of
Input-output viewpoint," IEEE Trams. Automat. Contr., vol. AC- 1970, and the Institute of Mathematics, Academia Sinica, Republic of
22, pp. 322-328, 1977. China, in the Summers of 1976 and 1978. His main interest has been in

[141 M. L J. Hautus and M. Heymann, "Linear feedback-An alge- the area of nonlinear circuits and systems. Currently, he is the Chairman
braic approach,- SIAM J. Contr. Op*'imiz., vol. 16. pp. 83-105, of the Technical Committee on Nonlinear Circuits and Systems of the

1978N. THugadBD.0Anesn ranuaiainfrte IEEE Circuits and Systems Society. His other interests include policy
design of multivariable control systems," IEEE Trns AulOm~ar. analysis of socioeconomic system and fault diagnosis of electronic
Cmat,., to be published; also in Prot. 1978 IEEE CDC Con!., pp. circuits. He was the Cochairman of the NSF Workshop on Nonlinear
795-800 Jan. 1973. Circuits and Systems in Januaiy 1980. He is the Co-Guest Editor of the

1161 E. 1. Jury, Inners and Stability of Dynamic System. New York: special issue on Socio-Economic Systems of the Intenationoi JIounal on
Wiley, 1974. Policy Analysis and Information Systems. He is also the Guest Editor of

[171 M. 3. Morf, 3. Levy, and S. Y. Kung. "New results in 2-D syte the special issue on Nonlinear Circuits and Systems of the IEEE TRANS-
theory, rrt I- 2-D polynomial matrices, factorization and copri- ACTONS ON CIRCUITS IN SYSTEM.
menese, Poc. IEEE, vol. 65, pp. 861-872, 1977.

(181 A. S. Morse, "System invariants under feedback an[Cs2 Dr. Lun is a member of Sigma Xi and the New York Academy of
control," in Mathematical System Theoey, Udine, 1975, G. Sciences.
Marcheinim and S. K. Mitter, Eds. Heidelberg: Springr-Verlag.
197&.

1191 H. H. Raeenbrock. State-Space and Multivarlable m..or. Johm Marray was born in Galway, Ireland, on
LonmdOn: Nelson-Wiley, 1970 August 8. 1947. He received the B.Sc. and M.Sc.

12M R. Sasks, Amblti Spae, Opuerators, and System. Heidelberg: degrees from University College, Cork. Ireland.
Spip.Veriag, 1973. in 1969 and 1970, respetively, and the Ph.D.

(211 N kviyasp, "0n the iniput-output stability of multivariable degree from the University of Notre Dame,
S iear time-invariant feedback system containing unstable sys- NteDmIi 94 l nmteais

tern,," IEEE Trams. Circis S5t.. tob ubihd He is currently with the Department of Elec-
rM - unpbilibednotes, 1978.

121J ~ms wlt f Feedback System. Cambridge MA: tricall Enginecering Texas Tech University,
IX Fres, 1971. Lubbock. His principal research interests are in

(24 D. C Youla. J. 3. Donginoro, and H. A. Jabr, "Modern the -areas of several complex variables, multidi--
Wiener-Hopf desig of optimal controllers-Part V, IEEE Tranm. mensional system theory, and time-varying sys-
Aubnat. Cowtr, vol. AC-21, pp. 3-15, 1976. tems.

[21-, "Modern Wiener-Hopf design of optimal controflers-Part
111," IEEE Tramt. Automat. Contr, vol. AC-21. pp. 319-338, 1976.

1261 D. C. Youla and G. Onavi "Notes on n-dimensional system Richard Seeka (S59-M65-SM74-M was
theory,". unpublished notes. 1978. born in Chicago, IL, in 1941. He received theK 0. Zauiski and P. Samuel, Connusatv Algebra, vol 1. Prnetn B.S. degree in 1964, the M.S. degree in 1%65,
NJ: Van Nostrand 1958 p. 46. exp.anthPhDderei1% fomNtws-(21S. MacLAne and 0. Dirkhoff, Algebra. New York: Mac~ilan, n h hD erein1 rmNrhet
1971 P 154. ern University, Evanston, IL, Colorado State

(291 L J. ongiorno and D. C. Youla, "On the deepg of single-loop University, Fort Collins, and Cornell University,
single-input single-output feedback control systemns in the complex Ithaca, NY, respectively, all in electrical en-
frequency domain," I EEE rans. Automa. Coumr., vol. AC-22, pp. gineering.
41C-423, 1977. He is presently Paul Whitfield Horn Professor

[301 C A. Deoer and W. S. Chan, "The feedback interconnection of ofEetiaEnerngndMhmtcst
tipWHa me-invariant systems," J. Franmc/n Inrst., VOL 300 Texa Tech University, Lubbock, where be is

PP31 . NI.351 1975e ad. ADeor"Smiiatoancaiiain ivlved in teaching and research in the areas of fault analysis, circuit -

= = -h ppe An algebra of transfer function for distributed linear theory, and mathematical system theory.
* dne-nvaiat systems,'" IEEE Tram. Circwu Syst., to be pub- Dr. Sacks is a member of the American Mathematical Socicty. the

lished. Society for Industrial and Applied Mathematics, and Sigima XG.

..........................................



I

U

System Diagnosis - A New System Problem

by

R. Liu

C. Lin

A. Deng
3 V. Raman

U

L'

L

.o -. . .~- - - - - - - - . .- ~



7177o" 
7 

7.

SYSTDE4 DIAGNOSIS - A NEW SYSTEM PROBLEM4.

R. Liu
C. Lin
A, Deng
V. Raman

Department of Electrical Engineering

University of Notre Dame

.- Notre Dame, IN 46556

ABSTRACT where x - col(x ) and a and b are similarly
defined, and A - diag (A1) and B, C, and D are

The problem of system diagnosis is presented. similarly defined. For definiteness, let xC 
n
f,

Its applitations and recent results are discussed. ae Rn, and be Rr, and A, B, C, and D be con-
stant real matrices of compatible dimensions.

I. INTRODUCTION The connection of the input and output termi-
nals of these subsystems with the input terminals

A Large-Scale Dynamical System (LSDS) can be u and the output terminals y of the entire
described as one which is either impossible or im- system is assumed to have the form
practical to be represented by a single composite

system equation, and is to be solved as such. F Li
Therefore, it is better for a large-scale system to u
be represented ais an interconnection of components -L 2l L22] L (2b)
or subsystems. One quch representation is present- Here, u e Rp  and y C Rq  and L and R are con-"-" ed in Section II.

Fault diagnosis is a typical problem of large- stant real matrices with compatible dimensions.
scale dynamical systems. It is a problem of sudy- The model of LSDS defined by (2) is a linear

scl'dnmia;yses.I.i rolm"fstd- and time-invariant one and it can be represented

ing the (large) deviations of the overall system in te-forms o c d in Fg 1pste
,- in the forms of block diagr~ams in Fig. 1. Two

caused by the deviations of the subsystems (some- special classes of LSDS are of special interest.
..* time, simply circuit elements). It is not practical Consider a linear integrating circuit. Each of its

yto fomulate thi problem from a single composite n-port subnetworks can be represented by (1) and
system equation the KVL and XCL equations have the form of (2b).

.' The fault diagnosis of analog systems at present As such, ai and bi are the port voltages and the

is an art rather than a science. For example, it is As ch, rei ind Thereore a or ln e andg t he

not clear how the concept of "fault" can be defined, port currents. Therefore, any linear integrating
circuit can be represented by an LSDS model.

On the other hand, the system diagnosis problem, Consider a block-diagram connection of linear
while related to the fault diagnosis problem, can time-invariant subsystems (). Since every block-

be well defined. This is done in Section I1. diagram connection can be represented by (2b),

It turns rut that the application of system the a osystem can also be represented by an

diagnosis probem is not restricted to fault diag- t a sStS mod (2 in
nosis problems. It also has applications, for LSDS model. Therefore, the LSDS model (2) includes
exnosasmpoblem Iothe o halingo oci onsic pro m both network-type and system-type formulations.
example, to the modeling of socio-economic problems. In this paper, we only consider linear time-
A discussion of the applications of system diagnosis invariant LSDS's which can be represented by (2).

" problems Is giveti in Section IV. Finally, a dis- When the composite component equation (2a) is
cussion of the recent results is presented in represented by a transfer function
Section V.

11. A MODEL OF LINEAR TIME- b Z(s)a (3)
INVARIANT LSDS where

Let un LSDS be coimprised by a finite number of Z(s) - C(sl - A) 1 B + D (4)

subsynte.s, each of which l.s a linear time-invariant It becomes the component connection model in the

dynamicaL .tystem of the type frequency domain, considered by Sacks et al 11-4].

Combining (3) with (2b), we have

y -s(Z)u (5)
hi - i 1+ D (1) where

I , 1,2....,k, where ai, b are the input S(Z) - L2 2 + L2 1(1 -ZLl)-1zL12 (6)

vector, the output vector, and te state vector of
V each of the components. They are not necessarily which is used for the purpose of system diagnosis.

04 of the same dLmension. The matrices A1 , B, C1, Trick et al [5] conmidered the special case
and Di  or, compatible to these vectors T~ee- when (2b) represents KVI. and KCL equations. When
components con he put into a single composite com- fundamental cut-set equrtiona and fundamental
ponent equation. loop equations are used, Fq. (2b) becomes,

x Ax + Da (ca ,,

a. n. . .t



whrk. v " .11re I Ile bi anch voltapes .-id hraneh from input/output measurements. Only Markov param-

.uri.nts in tLh1, cotre,, and vt and It at. those ti eters can be uniquely determined.
the iree [61. Cwnparilg (;) with ,2b), w have Assertion i (l11. Two minimal (controllable

and observable) linear time-invariant state equation

I. - (8) representation (FG,H,J) and (PZ,,) with stare
spat-e of the same dimension n are realization ofu. - and ,'nnsequ~entlIv,

ados"n ,the same transfer function matrix H(s) if and

T T Ficti only i
V c I1 t [ t] L 0 (9)

at t t~ut.] J" (
and

The last equality follows from (9) that L is i G
anti-symmetric. Eq. (9) is a-generalization of I FiC = H F 0, 1 = 0,l,...,2n-l. (15)
Tellegen Theorem since it is derived from a more The Markov parameters .
weaker condition (8) instead of (7). T

Navid and Willson, Jr., [7] considered the J(

case of DC-network, i.e., the connection equation a0 
J  (16)

again has the form (7) and furthermore, the com- m i-I i- ,.,2n (17)

posite component equatlon (2a) or (3) has the form

b - Da (10) are well defined functions of p . Therefore, we

can write
with the condition, among others, that each row of

D his one sand only one non-zero element. m, . F (p) 0,1,...,2n (18)
We have presented the mathematical model (2a)

and (2b) and its relation to other models. Next, or

we w;nt to deflne the system diagnosis problem. m = F(p) (19)
11l. SYSTEM DIAGNOSIS PROBLEMS where m - col.(m ) and F - col.(Fi).

Assertion 2. The parameters p of the LSDS
With the model ( t) and (2b), the system are diagnosable if and only if F is injective.

diagnosis problem can be stated: Therefore, the basic problem of svstem diagno--".The System Diagnosis Problem: Given L and sia is to study the invertability of h (the fre-

n (dimension of x), the problem is to determine the quency domain) or that of F (the time domain)."

component parameters (A,B,C,D) from input/output Let us consider an example.

measurements. ex Consider he

Let us now frmalze the problem. Let us Consider the two-stage RC ladder• ' " Lt usnowf~rallz h prblem Le usas shown in Fig. 2. The composite component
assume that there exists a state equation for the equaton in is gie by

component connection model (2a) and (2b)* of the

d- 0 D 0

f Fz + Gu -- - = _

y Hz + Ju (11) I I 0 (20)

where z c R 
n
, <n. The transfer function is given i

by 0, 0 G

H(s) - H(sI - F)_ G + J (12)
where

Let the vector p denote the component parameters
(A,B,C,D) to be determined. Its relation to the vc 

= 
Col.(v , V

transfer function is given by 2

and similarly for iC, V iL, and11(s) - h(s, p) (13)Go '

where h is determined by the system structure G - diag(C1 , G2)

(L, n). D - diag(DI , D
Since by methods of system identification 2

techniques [9,101, the transfer function H(s) where Di . I/C i ,  i - 1,2.
can be obtained frnm proper input/output measure-

ments, the problem of system diagnosis is reduced TIue contoettion equation (2b) is given by

to .the problem of the determination of p from -0 -1 0' 1
U(s). G1"

Definition 1. The parameters p of an LSD. ---.. L--:

are said to be diagnosable is p can be determined 0 -1 1 0 10 V
from H(s), i.e., h is injective. C C (21)

The same problem can be formulated in the --

time-domain. It turns out that the state equation 0 I 000 s
(F,G,H,J) of (11) cannot be uniquely determined L jiL

* The na... condition for the existence of state Equations (20) and (21) h~ive a state equation

equation for (2a) and (2b) is given by Singh and representation

Liu [8].

............--........
.. .......... '.,. .......-.
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F-r.D 1.2 1  G an be e~asily carried out. Ttherc'forc. if a., DS1 is diagnosable, it is also fault diagnosiiblv.

-v +owever, the diagnosability is sometimes too strong
G C for the problem of fault diagnosis, because It LsG2D22 (22) not necessarily to determine the values of p in

order to test whether or not p Q l. Furthermore,
the cost of the evaluation of the values of p is

. is = (-C O~vC + (G 1]v. (23) high, and accuracy is so poor that the calculated
R 1 values of p become useless [see Section V].

Therefore, the art of fault diagnosis is to find
The transfer function of the above state equation ways of testing whether or not pe Ql with little

is given by calculation of the values of p . Nevertheless,
+ G + sG G (D + D the diagnosability does provide the insight for

H(s) 12 1 2~ 1 2  searching such an art and the design of test points.
a- 2 + s(G2D2 + G2D* + G D + G2DID A special issue on Automatic Analog Fault

2D 2  2 1 1D1  ?2D 2  Diagnosis [12], edited by S. D. Bedrosian, contains

much information and many references on this topic.
• h(s, p) (24) 2. Network Synthesis

Given a prescribed transfer function H (s)
The Markov parameter of the above state equation is a network synthesis problem is to find a component
given by connection model, (2a) and (2b), so that its trans-

- fer function H(s) equals the prescribed one
m0 - G H

0 
(s). If the connection L is predetermined,

1 2 then the rest of the synthesis problem is to de-

M -- G2 D termine the parameter values p which yield the
-1 prescribed transfer function H (s). This is

M - -(G3 D 2 + G 2 GD 2) precisely the problem of system diagnosis. Note
1 1 1 21 that the state-of-the-art of network synthesis is

.M = GI2DI3(G1 + G2 2 + G 2G2 2 D1 D2  mainly on single-input single-output systems, while
n3  1D. 1 2 1 2 2 2 the system diagnosis problems are not restricted

which has the form to SISO problems.

m - F(p) (25) 3. Modeling of Nonlinear Circuit Models
The circuit shown in Fig. 3 can be used to

where p - (GI,G2,DI,D 2) for both (24) and (25). model the electrical behaviors of the nerve
Note that m4  is not needed since we only have membrane*. Chua found that the Potassium conduc-

Sotance and the sodium conductance should
four parameters to be determined. - k - Na

The parameter p is diagnosable if and only be modeled as a nqnlinear time-invariant memristive
. The funct r F is invetble in othe 1-ports [13] instead of the linear time-variant|. ."i f t h e f u n c t io n h o r F i s in v e r t ib le . In o t h e rel m n s i th o r g al od . T ey a v t e

words, we want to solve for p from either (24) elements in the original model. They have the
when the transfer function H(s) is measured, or state equation form:

from (25) when the Markov parameter m is measured.
*' .'-" Note that the system diagnosis is an extension n f(n, VK)

of system identification. The purpose of system
identification is to determine either the coeffi- iK = GK(n)vK
cients of a transfer function or the Markov para- for & and
meters from input/output measurements. The purpose o
of system diagnosis is to determine the component
parameters. The latter are usually the ones to be m 1 (m, vNa)

I designed. f(h. v
, Please note that the functions h and F 2  N)
"* are nonlinear. Therefore, the system diagnosis

problem is a nonlinear problem even if the original INa - GNa(m, h)vNa
_ sste islinarfor The state variables are n and (m, h)

". Finally, the above problem can be modified to 9NA•

_ "be more flexible. For example, we may know some of respectively. The explicit expressions of the non-

the component parameters and want to determine the linear functions are given in [13]. One of the

rest of them. The system diagnosis problem can al- problems is to identify the parameter values in the

so be extended to nonlinear systems. circuit model given in Fig. 3. This problem can be
considered as the system diagnosis problem of a

TV. APPLICATIONS nonlinear system.

4. Modeling of Socio-Economical Systems
1. Fault Diagnosis Two forms of models are often used by econo-

Let n be the set of component parameters mists, the structural form and the reduced form
p for which the system is fault-free, i.e., [14]. This can best be illustrated by an example.

1) if p A then the LSDS is fault-free, and Consider the economic model:
2) if pt n-, then the LSDS is at fault.

When the LSDS Is At fault, the fault diagnosis prob-
lem is to determine whi.h componmnts of p causing

c .Clearly, if p can be determined and
is cer y dfne d, thf tet whether or not Pn *Hodgkin and Huxley were awarded the Nobel Prize in
i ., • 1963 fot their development of this circuit model.

'-" -' -, " "i •"' -. ". , ' '- -. .- .. : -. . . , " - . -.



C(t) - 0 + a [y(t) - r(t)j problem of electrical networks, with known nominal
component parameters. By means of Tellegen's

I(t) - a1 Y(t-1) + L2 K(t) (S) Theorem and adjoint networks, the following equation

can be obtained for a linear network:
Y(t) E C(t) + I(t) + G(t)

M.Ap = AQ (27)
where

-' where M and AQ are measurable, and 4p is the
% C - Consumption difference between the nominal values and the

I a Investment actual values of p . Therefore, p is diagnosable
Y - National Income if and only if M is invertible. Note that Eq.
G - Government Expenditure on Goods (26) is in general nonlinear while Equation (27) is

and Services linear. The latter is achieved at the expense of
T - Taxes on Income more test points.

4 R = Government Regulator Navid and Willson, Jr., (71 considered the
diagnosis problem for resistive networks. In this

The last equation is an identity. The above set case Eq. (6) takes the form
of equations can be solved to yield, Lll)_R

a(R) - L2 + L(I - R L R
o alB2  r.L.G (t)-T(t)] where R is the resistive matrix. By taking ad-

1-.1  +Y- 1  1-a Ivantage of the fact that L l1 , L 2 , L21  and L2 2

arrived from a network graph, they were able to
I 1(t) 0 B1Y(t-1) + B2R(t) (R) find an elegant condition for the invertability of

- 0  B1  + 2  1 1+(t) " - t) + (-t(t- 1(t)(t) -

-a 1 1-a IC

g. . This condition depends on only the graph, not
The above equations give the explicit input (T,R,G) the component values.

* and output (C,I,Y) relation. The first set of
equations is called the structural form and the (B) Computational Problems
second set of equations, the reduced form. Clearly, Is it was discussed in Section III, the system
the reduced form is like the transfer function diagnosis problem is in general, nonlinear, even
representation. The structural form is like the when the system is linear. When the dimension of
component-connection model with the third equation p is large, the computational cost will be high
(the identity equation) being the connection and the results will be inaccurate. The following
equation. Consequently, the system identificiation example will illustrate the point.
techniques can be used to identify the coefficients Example 2 (15]. Consider a 4-stage RC-ladder
of the reduced form, while the system diagnosis as shown in Fig. 4. The transfer function of the
technique can be used to identify the coefficients ladder is given by
of the structural form. 4 3 2

V. DISCUSSION OF RECENT RESULTS Y(s) 4 3 2 --
a0 1 2 8+a3 1

The system diagnosis problem can be classified
into three aspects: (A) the problem of diagnos- The component values can be calculated from the
ability, (B) the computational problem, and (C) coefficients ai's and bi's by a continue-
the design of test points, fraction expansion (161 as

___________D D(s)
(A) Diagnosability R 1lim -

Three representative results on the condition Ri s Ni(s)
of diagnosability will be presented.

Sen and Seeks (3) have considered LSDS which C= lim .N.()
cans be represented by (6) i+i(s)

g(.4,p)AS(Z(a,p))-L 2 2 +L2 1 [I-Z(s,p)L 1 F 1 Z(s,p)Ll 2 (6"
where

By measuring g at multiple frequencies s , -s
the above equation can be expressed tn Ni(s) = Ni1 (s) - C_ 1 D (s)

the wtrix farm
Di(s) = Di(s) - N N )

11(t' ) Now, we first arbitrarily cho.e the parameter val-

g(A 2 ' P) ues to be

4 -G(p) (26)
Ln 1 2.2 C l 0.015

S(-1n' p ) R2 ' 47 C 2 a 0.470

R - 8.2 C3 - O.010 (28)

which is a function of p . Clearly, p is ,H- R4 a 1.0 r,,- 0.022
agnonablo tf and only if G is Invertible. 4

4 Trick et al 15) considered the diagnosmis

I

i.. -. *

- = _ '-_ ,:: -- --,-., - .i -. ..-.



rF

. The ox.t val.- ,,f t'-,' ncffhicLcis cia be calcu- tihe tust points. This process at present is
more of an art than a science. There are two
results. Sen and Saeks (31 provide a test point

no - 0.001 1',06188 b = 5.977554E-4 selection algorithm. Visvanachan and Liu (17]

1 0. provide a design procedure so that the diagnosis
= 0.249~',351 b= 0.09526598 equation (25) is sequentially linear.

a 2 = 7.377olo8 b2 d 0.492064 (29)

5a3  5.01, b 3  0.517

"W, nThis paper was supported in part by the
We now :a~cu].rt. tie x mponent values by the con- Office of Navel Research under Grant N00014-78-C-
tinue-fruto,,alI expansion method. If the exact04.

5 values of coefficients (29) are used and if there 0444.

is no coputarional error, the component values V. REFERENCES
S"given in (28) -hould lie completely recovered. Two

cases have been examited. When the exact values
of (29) are used, the calculated component values [1] R. Saeks, S.P. Singh and R.W. Liu, "Fault
aro mp29leely aeeablewtlulat coo n (28).This Isolation Via Components Simulation", IEEE.. re completely agreealble with that of (28). This Trans. Circuit Theory, Vol. CT-19, pp. 634- -

indicates the error de to computation is small.

Now, when signiricant value of (29) is reduced to 640, Nov. 1972.

seven, the calculated component value becomes, (2] M.N. Ransom and R. Saeks, "Fault Isolation

R -. 2 C with Insufficient Measurements", IEEE Trans.
.1 2.0 1- 0.015 Circuit Theory, Vol. CT-20, pp. 416-417, 1973.

- 47.005 C2 " 0.70919
"" .2 -[3] N. Sen and R. Saeks, "Fault Diagnosis forR - 3  Linear Systems via Multifrequency Measurements",

P. - 9.1305 C4 - 0.030482 IEEE Trans. Circuits and Systems, Vol. CAS-26
pp. 457-465, 1979.

which have significant deviation from (28). In
fact, R3 and C3 are negative! In reality, one [4] H.S.M Chen and R. Sacks, "A Search Algorithm
can hardly measure the transfer function coeffici- for the Solution of Multifrequency Fault
ent to 7-digits accuracy. This example shows that Diagnosis Equations", IEEE Trans. Circuits
even p is diagnosable but it may not be computable and Systems, Vol. CAS-26, pp. 589-594, 1979.

in realistic situations.
Let us now re-examine the RC-ladder and di- [5] T.N. Trick, W. Mayeda and A.A. Sakla, "Calcu-

agnose it from another way. Observe the time- lation of Parameter Values from Node Voltage

domain equations for 2-stage RC-ladder (25), i.e., Measurements", IEEE Trans. Circuits and
Systems, Vol. CAS-26, pp. 466-474, 1979.

0 1 2 [61 S. Seshu and M.B. Reed, Linear Graphs and
m1 = I1D I Electrical Networks, Addison Wesley, 1961.

.3 = D 2 + G 2 GD 2  (7] N. Navid and A.N. Willaon, Jr., " A Theory
3 3and an Algorithm for Analog Circuit Fault

3 -1 3(GI + G22 2+ GI2 DI2D2 Diagnosis", IEEE Trans. Circuits and Systems,
3GG DVol. CAS-26, pp. 440-457, 1979.

Note that G can be solved from the first equation. [8] S.'. Singh and R. Liu, "Existence of State
After G1  is obtained, Dl can be solved from the Equation Representation of Linear Large-Scale
second equation. After (GI, D1 ) are obtained, Dynamical Systems", IEEE Trans. Circuit Theory.

- G2 can be solved fr6m the third equation. Finally, Vol. CT-20, pp. 239-246, May 1973.
after (Gl, Dl, G2) are obtained, D2  can be
solved from the fourth equation. Observe further, (9] D. Graupe, Identification of Systems, Krieger
that each time, the equation to be solved is a Publishing Co., 1976.
linear one. Therefore, the above set of nonlinear
equations is called sequentially linear. It can 10] P. Eykhoff, System Identificgtion, John Wiley
be shown that for any n-stage RC-ladder, Eq. (25) & Sons, 1977.

is sequentially linear. As a consequence, both
the computational cost is reduced and accuracy is (11] B.L. Ho and R.E. Kalman, "Effective Construc-
improved tremendously. Liu and Visvanathan [17] tion of Linear State Variable Models from

have provided a sufficient condition for a system Input-Output Data", Proc. 3rd Ann. Allerton
whose diagnosis equation is sequentially linear. Conf. Circuit and System Theory, pp. 449-459,

However, this condition may be too strong because 1965.
it does not include the n-stage RC-ladder, although
the latter motivated the study. [12) S.D. Bedrosian, (editor), Special Issue on

(C) Design of Test Points Automatic Analog Fault Diagnosis, IEEE Trans.
If component parameter p of a LSDS is not on Circuits and Systems, July 1979.

diagnosable, how can one make it diagnosable?
The obvious .inswer is that we need more measurements, [13] L.O. Chua, "Device Modelin Via Basic Non-

or more test poilts. How mafy and what location? linear Circuit Eleme,ts", Special Issue on

These are the q,'stions faced by those who de.tign (To appear).
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I. Introduction

There have been considerable efforts expended in analog fault analysis.

Most of them [1], [2], [3] employ frequency-domain approach, i.e., diagnosing

faulty components from measured transfer function, while few [5] use time-

domain approach to isolate faults by means of Markov parameters. Theoretically,

both approaches are still under development and all seem feasible. It is the

purpose of this report to compare these two approaches numerically by sim-

. ulation on RC ladders. In this example, it is shown that the time-domain

approach is far better than the frequency-domain approach.

to



II. Simulation and Results

Consider an n-stage RC ladder as shown in Figure 1.

ILt) t'l tt) C n- _

The impedance Z(s) of this RC-ladder has the form

":n U-1
-a-s +a + ... +a0: 1. n: - Z(s) - -

sn + bnl + ... +b n

1 n

Since there are only (2n+l) coefficients to be determined, we need only

to measure the impedance Z(si) at (2n+l) different sampling frequencies,

°, si, i - 1,2,...,(2n+i).

i Once Z(s) is obtained, it can be expressed as

.'.. 1

Z(s) - R1 +

.U R +: 1CCis +

RR +
.-. :n C ns

n

_ wand values of components can be calculated as

R, lim N1 (s)

D (s)

D2 (s)
C- lim D(1)

SN(s)

, . i = ira Ni(s)

SDi+(s)

"Cii i1 2, 3,s m Ni(s) i=2 ,..

S..

64' " ° ' " , " " " " ' " ° ' ' " ' °, ° '' " ,' . ." " " : ... .. i:; ,. ',.:.-: .. . .:.. :J . . . :....... . ' .... . .r ... ..



where

N1 - numerator polynomial of Z

D - denominator polynomial of Z
1

N( - _1  Di(s)

D D -D (S) -R Ni-l(S)

On the other hand, the ladder has a state equation expression

x - Ax + Bu.

y - Cx + Du

where x are the capacitor voltages, u the terminal current, y the

terminal voltage and

R2C1  R2C C1S - 1 1

22 C RJO
I • 1 J'"

nn-l (2) .":

R aC Rn Cn

The Markov parameters are given by

o-D

-CB

m2 CAB
2 (3)

k-i -aaCA B
00_
*~ " C __2

I " I A .
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which can be measured by a method developed by Liu and Suen [5].

Once the Markov parameters, mi, i = 0,1,...,2n-l, are obtained, the

circuit parameters R's and C's can be solved from the simultaneous

equations(2) and (3).

p In this simulation, it assumes no measurement error for both Z(s) and

Si's . They are exact. We want to find the numerical error generated by

solving (1) and (3).

Ladders of four and six stages were chosen, transfer functions and A, B,

C, D parameters were calculated using nominal values of components. Then, as

a way of comparison, the significant digits of coefficients of transfer-function and

entries of A, B, C, D were reduced before we performed the manipulation by

these two methods. The results are listed in Tables I and 2.

It is clear from the tables that, as significant digits decrease, the

estimated values of frequency-domain method stray away from nominal values

gradually, then collapse abruptly at a certain point and become unrealizable,

i.e., some of the values become negative. On the contrary, the results of the!
time-domain method remain about the same order of accuracy as parameters of

state equation.

The discrepancies may be due to the following reasons:

1) The frequency-domain approach deals with computations of complex

numbers while the time-domain approach deals with computations of real numbers.

- 2) The given circuit is sequentially-linear for the time-domain approach

S.([5,6]. This can be demonstrated by the 4-stage RC ladder. Solving (2) and

(3), we have

m0  R1
0 1

Ci- C 1

L



m1

m2  +
2 1

Therefore, Rip C1, R 2 9 C2  can be solved sequentially by a set of linear

equations,

C 1

2 - 2

1 2212
C 2 3 2 1
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IV. Conclusion

This simulation strongly suggests that time-domain approach is more

data-tolerant than frequency-domain approach in the sense that no sudden

breakdown occurs and component values can be estimated with reasonable

accuracy when the measurement is not accurate enough or where the noise must

- be taken into consideration. Thus, though it is still too early to have

definite conclusion, time-domain approach seems to be a more promising method

in attacking fault diagnosis problem.

4
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Simulation on 4-stage RC Ladder

Time-Domain Method Frequency-Domain Method

R R R R R R R
1 2  3 4 1 2  3 4

C1  C2  C3  C4  C1  C2  C3  C4

Nominal 2.2 47 8.2 1 2.2 47 8.2 1

Values .015 .47 .01 .022 .015 .47 .01 .022

Significant Digits 2.2 47 8.2 1 2.2 47 8.2 1

10 .015 .47 .01 .022 .015 .47 .01 .022

2.2 47 8.2 1 2.2 47 1.3587 7.7603
8

.015 .47 .01 .022 .015 .46597 .0056867 .030347

2.2 47 8.2 1 2.2 47.005 -.018072 9.1305
7

.015 .47 .01 .022 .015 .70919 -.23768 .030482

2.2 47 8.2 1
6

.015 .47 .01 .022

2.2 47.017 8.2044 1.0003
4

.014999 .46982 .0099962 .021997

2.2 47.857 8.4454 1.0569
2

.014925 .46434 .0096776 .020555

Table 1: In the frequency-domain approach, the calculated values of F. and C. become

negative when the significant digits are reduced to 7. No such discrepancies
in the time-domain approach.
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.Abstract

The problem of designing an optimal state estimator for a
linear, discrete-time system with a singular noise covariance
matrix is considered. In this article, this problem is cast as
a constrained optimization problem and the approach appears to
be more direct. Solution to this optimization problem gives a
reduced-order optimal state estimator.

I. INTRODUCTION:

aIn linear stochastic system, the two parts, one to be estimated by a reduced-
output measurement may be only partially order filter and the other to be recovered
noise corrupted. Although, in practice, exactly from the noise-free measurements.
one may argue that there exist no noise- Then the dynamic equation of the latter
free measurements, it is quite possible part of the state equation is considered a
that some of the mesurements are noise constraint on the optimal estimation of the
corrupted while the others are relatively other part of the states. Hence the state
accurate. Under the Gaussian assumption, estimation problem in this case is cast as

n this implies that the noise covariance a constrained optimization problem, which
matrix has both large and small eigen- leads to a reduced-order optimal state
values, which easily leads to numerical estimator.
difficulties in the implementation of the

.* Kalman filter. It is convenient in this -2. PROBLEM FORMULATION
case to model these more accurate measure-

. ments as noise-free entities. A linear, discrete-time stochastic
The study of this problem dates system can be described by the following

back to the work of Bryson [1). for con- equations
tinuous-time system, and that of Brasmer x(k+l)-A(k) x(k)+3(k) u(k) k-0,l,2, (1)
(2], for discrete-time systems.
" akernaak [3] and Anderson (41 discussed y(k) - C(k) x(k) + v(k) , k-l,2.... (2)
this problem as a singular linear state
estimation problemi however, no explicit where x(-)€ Rn, u(.)€ RP , and y(-)€ Rm .

solutions were given. Te and Athana 15] To further specify the problem, the follow-
derived a rather complicated "observer- ing assumptions are made:
estimetorw which is essentially an exten- (i). x(O), u(O), u(l),...,v(l), v(2),

* sion of the Luenberger observer [6]. .... are independent random vec-
. Later, Yoshikawa [7] gave a simpler deri- torm with the following statistics
• vation for minimum-order optimal state

estimators. More recently, Fairmun [8] B(x(0)j-x 0  [X(O0)x 0-
proposed a *hybrid estimatorn which
features "coordinatization" and achieved Z(u(k)]Z Ik Bt(u(k)uT(k-i)]

LA a reduced-order optimal estimator.
The main feature of the approach MVu(k)6(i) Yki

used in this paper is the followingB
After a proper similarity transformation, 3(v(k) ]*.2 k Z(v(k)vT(k-i)]
the state variables are dtaomposed Lnto---

PAUeta 4td MW u W~ts. po4um opt C.RuLt end
Spateaw, Augutt 1980; to ke pubUha UI the P~oteadipip

L.- ...... ..
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i
i  aNF (k) 6(1) Yrki [v (k) -

T T (5)
tu(k)v (i)JiOpxm Tk,i (u(k)xT(o)] where

- ( k k) -Q(k+l) Ak) 7(k)

Z (v(k)xT (0) = 0 mxn Vk 1(k) - Q(k+l) 2(k)
and

i where uT( • ) and vT( • ) denotes the trans-
pose of vectors u() and v(-), respective- e(k) C (k)

ly. and 6(.) deontes the Kronecker delta. n In '

(ii) For any k, the Vv(k) is a non- a1(.)6 R ,z 2 ('s R , Y.(.)e R Y2 (.) R

negative definite matrix with and n An-m2. -C)a
rank ml, where m2.-. Under n . .) an .- are pe-

this assumption, implementation titioned accordingly. Moreover, since C(k)"" of the standard Kalman filter -ofte tndr--la fle is of full rank, 2(k) is invertible.
involves inversion of a matrix 2 2
which may be singular. Te Hence there exists a one-to-one correspon-
and Athans [5] proposed an ob- dence between the state z 2 (k) and output
serv*r-estimator of order n-m2  

z2-' y2(k), namely
which performs as well as higher

order estimators, where m2 &-m 1 . z 2 (k) = C2 2 (k) y2 (k)

(iii) For any k,the C(k) is of full and thus in the state equation, (4), only
rank, i.e. every element of the zl(-) must be estimated. The dynamic
output measurement is indepen- equations for zl(.) and z 2 (-) are
dent of the others.

* The objective here is to design an + k)+l(k)u(k )
optimal state estimator of order n-m2 . 1'' - +
Without loss of generality, one can assume

that
that rvl(k)llml z 2 (X+l) - 21(k)zl(k) 22(k) z 2 (k)+9 2 (k)u(k)

v(k) - (a)
M. )= J]'2 it is obvious from (7) and (8) that z 1 (k)

where vl(k)c R , and thus the covariance and z2 (k) are mutually dependent; there-

matrix of v(k) can be written as fore the estimation of z 1 (k) does depend

v. (k) 10 ;n the dynamic behavior of z 2 (k). ThusI ISx22
Vv (k) -------------------- the filtering problem becomes that of find-

, l ' , --x-02 ing an optimal * l(k+llk+l) subject to (7)

where V(k) is strictly positive definite, and constrained by (8), where il(k+llk+l)
It is easy to as* that there exists denotes the estimate of z,(k+l) given

a non-singular matrix 0(k), such that thetran ormtionmasurements up to time k+l. Note, from
trnsorato (6) and (7), that the state a2(k) can be

z(k) - 0(k) x(k) (3) regarded as a deterministic input in the "
yields the following state and measurement Kalman filtering problem.
equations

2. ism, EDC-OR DER OPIMAL -
zl(k4l)] -k -Xik z (k) STATE ESTIMATOR

P2 I- 1 ( k )  2 ( k )  
In this section, the optimal estima-

Stor for za(k) is derived where the perfor-

(k)] ) mance measure is the trace of the error
L_2 C k) (4) covariance matrix. Defining the vector'r s(k) as

and

ry1(k)1r 1,k) 'I a l jz1 (k)l s(k) A al(k) - (k) z 2(k) i P(k) C a
1 2

1= 1rkT - - -- i 1k (9)
L2k J xn 1  k) 122 from (5), (7) and (8), one obtains

. 1 2"

-: - - - - - e .



° (k+l) -Fk) (k) +G (k) z 2 (k).M(k)u(k) (10) +K(k+l)V V (k+l)KT(k+l) (16)

and where
y 1 (k)-H(k)s(k) N(k)z 2 (k)+vi(k) (11) r(k+l)A&F(kv (kik)vT(k)+M(k)Vulk)14Tck)

[ where (7

-(k) - (k) - P(k+ l) - (k) Observe that r(k+l) is essentially the
11 '2l (A0.a) one-step prediction error covariance matrix

G(k) - ,(k - P(k+l) 2 2(k) + 7(k) P(k) [91. An optimal estimator is taken to be
2~ an estimator which minimizes the trace of

(10.b) the error covariance matrix. Therefore,it is left to minimize Tr[V--_(k~llk+l|]

M(k) 1 Z1 (k) - P(kI) 12 (k) (10.c) with respect to (K(k+l)!P(k+l)]. Notice
H(K) -) that here K(k+l) plays the role of stand-
-. 1(k) (11.) ard Kalman gain while P(k+l) is the

- and Langrangian of the optimization problem.
g(k) - 2(k) + Z11 (k) P(k) (ll.b) Minimizing Tr[V-(k+lfk+l)] with respect to

Notice that P(k), as defined in the above K(k+l) yields
equations, can be viewed as the Lagrange (k+l) - r(k+1) HT(k+1) I 1 (k+1) (18)

* multiplier in the standard constrained x

optimization problem. Now, the problem where R(.) is the positive-definite symme-
. of estimating z(k) is replaced by that of tric matrix given by

estimating e(k) given the measurements T
aylllyl(2),...Ylk)j and states (z2 (l)0 R(k+l) - H(k+l)r(k+l)H (ki1)+v (kel)

z2(
2 ),...,z 2 (k)). From (9), it is obvious (18.a)

* that Observe that (15)-(18) are identical to

(kIk) ( -the formulation of the standard Kalman
1 -1''' . P(k) z2(k) (12) filter (91. However, in this case, it is

' and further required to optimize the state
V,;(klk) - (klk) (13) estimator with respect to the choice of1i P(k+2)r i.e. minimize Tr[V;(k+llk+l)] with

. where A(klk) denotes the estimate of s(k) respect to P(k+l). Let the optimal P(k+l)
conditioned on input-output measurements which minimizes Tr(V-(k+lik+l)] be denoted

* up to time k, and by P*(k+l). Then it can be shown that

i(kjk) A 1(klk) - s(k) P*(k+l) c Z*(k+l) (19)

1 i(ktk) A 11 (klk) - zs(k) where Z*(k+l) is the set given by

V;(klk) A Z[j(kjk) WT(kjk)J Z*(k+l) - P: P Al(kA(k), P c nRXm2(19.a)

The unbiased linear estimator of s(k)
is given by the following n th-order A (k) - _ _ __(k)V;(kIk)iL(k)+2 (k)Vu(k)If-(k)

filter (19. b)
. (k~l)lk+l)-[x-K(k+l)(k~l)]J(k)h(klk) A2k) - 2 k)V(klk)Z!(k)+(kVulk)K(k)

*K(h4.l (19.0):. ~~+X(k I) (Yllk+ll-Nlk+l) z2ll)191 Notice that, when A Ik) is non-singular,

-H(k+l)G(k)z 2 (k)] (14) p1(k+l) is given by

- Hence the error quantity W(kIk) propagates PI(k+l) - A2 (k) A. l (k) (19.d)

. (kIllk+l)-(Z-X(k+l)H(kel) ]F(k) (klk) The set 2*(k+l) will be discussed in the
+ [-K(k+l)H(k+l) Jx(k) u(k) next section.

Once P*(k+l) is found, the matrices-(k+l)vi(k~l) (15) 1(k), 6(k), and (k) can be specified andX? v." denoted by F*(k), Ge(k), M'(k), respective-

4 and the error covariance matrix V-;( .j.) is ly, by substituting P*(k+l) and PO(k) into
I fL given by (10). Similarly, U*(k+l), T7*(k+l) and

Re(k+l) can be obtained from (ll.b), (17),
% v;(k+llk+l)- (I-(k+l)s(k+l) ]r(k+l) and (18.a).

".IZ-JJ(k+l)H(k+l)J] All in all, the reduced-order optimal-.-'k . . . .. .

I, _
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state estimator is formulated by the foll mation Q(-) of (3) is equivalent to f-1("
lowing equations defined in (14) of (8], and thus the state

A [variable z defined in (3) can be regarded
A(k~llk+l ) - [I-x*(k+1)8(k+l)]Ft(k)§(kik) as equivalent to.C defined in (14) of [I].

Furthermore, the variable a defined in (9)
+ K*(k+l) [yl(k+l) - N*(k+l) can be similarly related to the variableC., in (20) of[(8]".

X (k+l) -H(k+l)Ghlk)x (k)] n(0 o()2 H2 The relations in (19) which govern
(20.a) the choice of P*(k+l) are vital to the

I (k+llk+l) - l(k+llk+l) + P*(k+l) z 2 (k+L) understanding of the optimal state esti-
2 mator, and thus deserves some detailed(20.b) discussion. First, notice that

z2 (k+) 2 2 (k+1) (20-k ) M(A (k)) C h(A2 (k))

.Vk+llk+) - (I-K*(k+l)H(k+l)]lT(k+l) where (A I(k)) and hA 2(k)) denote the null
v k(20.d) spaces of AI(k) and A2 (k), respectively.

-Xka l) -r(k+l)T(k+l) (H(k l)r*(k+l) The following observation is thus made:
Observation The set Z*(k.l) given in (19.a)

-. T(k+l) + Vv (k+l)]J-1 (20.e) is a non-empty set. Moreover, if A1 (k) is
singular, any member P(k+l) e Z*(k+l) yields

() )Vthe same estimator performance.
r.:, *(k+l) - *(k)vZ(klk)F*o(k) + M*(k)Vu(k) w, according to the value of A 1

T the following special cases are of interest:
.M*T(k) - [IsPe(k~l)J (k) Case 1: A1((k) - 0 m . In this case,

2 xm2+fkv(k) 1T (k)JI A (k)-0.+1 u 2 n0:m2 and thus

.I:-IP* (k+l) ]T (20.f) n xm2
where Z*(k+l) - R

rv* (klk) O0 This case is possible if (8) does not con-

Z I 'm1~2 tamn any information pertaining to theVZ'' 0 estimation of zl(k)- for example, if
m2 xm - 2 2

due to the fact that -1(k) is exactly 2 0 Xan d mXp ux-

measurable for every k. Also, the error treme example for this case is that m2 -

covariance matrix Vz(k+llk+l) is given by 0, i.e. all measurements are noise corrupt-
a *d. In this condition, the estimator pre-

Vt(k+l jk+l) - ((*(k+i)) "1 + nT(k+l) ented in Section 3 is identical to the
-.'T standard fulli-order Kalman filter whose

V k)"l performance is independent of the choice
Vv (k+1) B(k+1)] "- 1 (20.g) of P(k+l)..:, ~Case~. 2: A(k) a 0mx 2  i.e. A (k) in a :

and P*(k+l) is specified by Eqs. (19). 1  m2xm2  1

singular non-zero matrix. In this case,
* 4. COM TS 03 1 RDUCZJ-ORDER only some components of z 2 (k) contain in-

ML Aformation about (uk), zI(k)). Thus the

The formulation for the optimal state similarity transformation discussed in
- estimator derived in last section, (19)- Section 2 can be redefined so as to iso-

(20), is identical to that of the "hybrid -late only those elements of a2 (k) which
astmator given in [8, except that in constituteaesiatr gie n() xcp htionstitute a constraint on (u(k)z ,I(k) i.

. (8 a deterministic input is inserted to
the system dynamics. However, the Hence the Lagrange multiplier P(k+l) that

" approach here is more straightforward and should be considered is an element in
it is clearer here that the choice of R(n ' r1xr, where r < n2 . Alternatively,
P(k+l) is crucial to the optimality of the
estimator. It can be seen that the gen- any member in 2e(k+l) can be used in the
eral coordinate transformation discussed filter realization.
in [SJ is split into two coordinate trans- Case 31 Al(k) is positive-definite. This
formtions: one which depends on the eys- condition can be fulfilled when Vu(k) is
tem output matrix H only and one which u

.." depends on the mtrices Pl and P12" zt .positive-definite for any k o 0,1,2#....

can be seen that the similarity transfor- In this case, ?(k+l) contains one and

:,e " ." " " " '- " " " ""' " "" " "" """ " " ' "' ."' .. . ' _¢ - ., - -p".
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. only one element P*(kl), which is given random sequence,* IEEE Trans. Automat.
by (19.d). Contr., vol. Ac-l3, pp.198-199,

When P*(.) is uniquely specified April 1968.
.. (Came 3), one can compare the error

covariance matrix given by (20.g) with (31 H. l0'akernaak and R. Sivan, Linear
that obtained for arbitrary P(.) and ob- Optimal Control Systems. Wiley Inter-

- serve the same expression for Vi(k+llk+l). sciences, 1972.

The difference is that r*(k+l) of (20.f) (4] B.D.O. Anderson and J.5. Moore, Opti
- has the following property ml Filtering. Prentice-Hall, 1979.

* Tr r*(k+l)] < Tr](k+l) ]
i [5] B. Te and M. Athens, "Optimal mini-

where r(-) is obtained from non-optimalml-reobrv-etaorfrml-order observer-estiLmators for
'(')" discrete linear time varying systems,"

Finally, the implementation of this 1113 Trans. Automat. Contr., vol. AC-
estimator should be initiated as follows: 15, pp46-426, Aug. 1970.

4(010) Z[x(0)] - x0  (61 D.G. Luenberger, "Observing the state

i.e. of a linear system," IEEE Trans. Mil.
.(010) - ((0)] Elec., vol. HIL-, pp.74-80, April,

therefore

V (0) 1 0mlxm [7] T. Yoshikawa, "Minimal-order optimal

- v-(l) [ .~jnQ o 1 QT( filters for discrete-time linear sto-* (010) -zm xm2  0 chastic system," Int. J. of Contr.,
i 1 1 M2 vol. 21, pp.1-19, Jan. 1975.

and [81 F.W. Fairman, "Hybrid estimators for
P*(0) - 0 discrete-time stochastic systems,"

,.xm 2  IEEE Trans. Sys. Man., and Cyber.,
vol. SMC-8, pp.849-854, Dec. 1978.

5. CONCLUSION- j ... 9) J.3. Meditch, Stochastic Optimal
A reduced-order optimal state esti- Linear Estimation an Control.

mator for a linear, discrete-time system New York: McGraw-Hill Book Co., Inc.,

" associated with a singular noise covari- 1969.
;, ance matrix has been derived in this paper.

The main idea in this derivation is to ACNOWLDGWNT
cast this singular state estimation problem
as a constrained optimization problem. The authors wish to express their
The estimator derived here is fundamental- appreciation to Dr. R.W. Liu for his val-
ly the same as that derived by Fairman [8). uable comments during the course of this
The major differences are: the approach work. This research is supported in part
here is more straightforward, the optimal- by the U.S. Army Research Office under
ity of the estimator is more explicitly contract DAAG 29-79-C-0024, and in part by
exposed and, furthermore, the possibility the Office of Naval Research under contract

S". of nonuniqueness of P*(-) is discussed 800014-78-C-0444.
*. here.

It is worth mentioning that the esti-
mtor given here requires lower order

V." matrix inversion than the standard full-
order Kalman filter does in the singular
case, thus the computational efficiency
is improved. This estimation procedure

". can be applied similarly to moothing and
• : predicting problems or system with colored

noise.
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In this correspondence we derive the true optimal reduced-order state
estimator for a linear system with singular noise covariance matrix. The
results reported here are by no means new. Fairman [71 has derived the
same estimator using his concept of "optimal coordination." However.
Fairman's procedure is somewhat indirect and. thus, the optimality of
his hybrid estimator is not transparent.

The derivation of the optimal estimator here is based on the observa-
tion that the singular state estimation problem can be reduced to a
simple conistrained optimization, problem which yields a Kalman-type
estimator.

* The correspondence is organized as follows. The problem is formally
formulated and in Section III its solution is presented. In Section IV the
state estimator as presented here, is discussed.

11. PROBLEM FORMULATION

The standard Markov- Gauss model is considered, i.e.. the state equa-
tion is given by

x (k +I)A ( k) x(k) + B( k )u (k k-0,1.2. - (1)

and the measurement equation is

y(k)CQk)x(k)4v(k) k-..1,2. (2)

where x(.)E'i) u') ' and y(.)E= A'. x(0). u(0). u(I), v(l),
v2, .are independent Gaussian random vectors with the following,

statistics:

Elv(i)10 E~v(i)v'(j)J- V,(i)8(i-j) Vi.] (5)

E~u(i)v'(i)J-O E~u(i)x'(0)J..0 E[v(i)x(0)1..0 (6)

where v'(j) denotes the transpose of the vector v( j). It is assumed that-s V,,(i) are nonnegative definite matrices with rank mn-rm , where m1 , in.

In this case, the standard Kalman filter solution involves the inversion of
a matrix which may be singular. Furthermore, as shown in [1]. an

Reduced-Order Optimal State Estimator for Linear observer- estimator of order n - mI may be constructed which performs
Systms wth artillyNois Coruptd ~as well as the higher order state estimators.
Systms ith artallyNoie Crruped easuemetThus, our objective is to construct the optimal n -ml state estimator.

ELI FOGEL AND Y. F. HUANG With no loss of generality [1], we assume that

Absom- -The problem of redjced4.order optimal state esthindom for v(k)[' (5a)
flue.' system with slaplar mos coesila mari Is stubed. It Is donw0
that Mes optimul estimator Is somiewbat difrn fro wher v 1 (k)Ea/i antus h cv ne arx ftk)cnb

'Th s eimr problem In the uingular cot ean be csaa whr ,keA- ndtutecorie matrxo ~)cnb
ewaudoptilitedon Wllm. Solvftg ilsopt imton problem ylelf written as

th b.tUly opimal estimator. 'ls estimator derled here Is of the form of rn-rn I
doe bybrd adtmator of Febahua In1 However, the donatcu here ame V(k)-rI ,(k) 0 o1M (5b)

-~ ~ ~1 INTRODUCTION weeVk ssrcl (o
whrI.() ssrcl positive definite. It is simple to see that there

The problem of state estimation with partially noise corrupted mea. exists a nonsingular matrix Q( k) such that the transformation Z(ki) -
surements is of practical importance since it is often the Case that certain Q(k)x(k) yields the following state and measurement equations

measurements are significantly more accurate than other. Thi intro-Ai~) A,() d~uli.)
(almost singular) nus covtariance matrix (henceforth, referred to as the (. .+ .......... 1' .2(k . ukk) (6)
singular estimation problem.) Furthermore, it is well known that if theZ(klJ1.A () () Z() B()

* ~ measurement noise is colored, the estimation problem can be formulated[ ..-....... 2 ' i ) 1  (k

U attention given to this problem standard text (e.g., [1lj12D and an y2(k) 0 .C,(k)I 02
abundance of papers (eg., [3J-SJ Present a variety of suboptimal rather I *o
than optimal solutions to this classical problem. where

i(k) -Q( k + l)A4(k)Q -'(k)
Maucrp receive March 24. 19M0. This work was Uip@d in pan by th U.S.-Qk~)8k

Office of Naval Rearch maner Orani N00014-78-COdd4. k)-Qk+1)8 )
The authors ane inh the Depatest of Electrical Lagineoedag University of Notre k)-C(k) ' )~' Duct. Notre Dame, IN 46550. ek-~)-~

OMlg.9286/80/lOoo-0994So0.75 01980 IEEE
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and where Z(E 2',Z()' '"y(),y 2()'31A " and error covariance matrix
the matrices A, B, and C are partitioned, accordingly. Furthermore, we
assume with no loss of generality, that C(k) is of full rank and, thus, Vk+Il/k+ I)-f-Kk+ lHk+)Jr(k + 1
Ci,(k) is invertible. This implies that *fJ-K(k+l)H(k+ l)]'+K(k+ l)k,(k+ l)K'(k+ I) (20)

Z2(k)-CLj1 (k)y 2(k) (8) where

and, thus. in the state model (6) and (7) only Z(.) must be estimated. To I(~)FkV(/)'k+~)~kM~) (1
emphasize this point, we rewrite (7) as two equations r )-Fk SkkF(k ~).kM~) (1

- with respect to (K(k + 1), P(k + 1)]. We note that K(k + 1) plays the role
Z1 (k l)11()Zik)+iz~kZ2()+B~k~~k) (9) of the Kalman gain, whereas P(k+ 1) is the Lagrangian of the opumiza-

and tion problem. Furthermore, we note that r(k + 1) is the one-step predict-
ion error covariance matrix Vf(k + I/1k). Minimizing tr VSik + I/k + I)]

Z 2 (k + 1) - 2 l (k)Z 1 (k) + ;(k)Z(k) +i2 (k)(k). (10) Yields t

The filtering problem is, thus, that of finding the optimal i1 (k +Ilk + KO(k+ l) -lr(k+ l)H'(k + l)R (k+ 1)* (22)
1) subject to the dynamic equation (9) and the constraint in (10). Note weeR- stepstv eiiemti
that the unmeasurable quantities in (9) are Z,(k) and ,e(k). These weeR. stepstv eiiemti
quantities are constrained by equality (10). Th~e vector Z2 (k) can b R(k+l1) -H(k +I) r(k +1) H'(k+l1) + V(k+l1). (22a)
handled as a deterministic input in the Kalman filtering problem.

In the next section, we derive the optimal observer for Z,(k), where 'M opia k+1)sdetdbyPk+1)R*-anr(.in2)
the performance measure is the trace of the error covariance matrix. TeotmlPk )i eoe yPk ) ( n ( n(2denote R(-) and r(.) of (22a) and (21), respectively, expressed as

Ill.THE rnmL STTE STIMTORfunctions of the optimal P*(k+ I) Optimiza tion with respect to P(k + 1)
Ill.Tha prau. SATE STIMTORyields

Defining the variable S(k) P-(k +1)(E 6-(k+ 1) (23a)

S(k) - Z(k) -P(k)Z 2 (k); P(k)E(l1J~)X., (11 where 6Y (k+ 1) is the set

we obtain from (7), (9), and (10), '(+I-{Gi"'':P-*1(k)=A 2(k)) (23b)

S(k +1) -F(k)S(k) +G(k)Z 2 (k) +M(k) u(k) (12a)

where A 2 (k) -A, 1 (k) V(k/k)A 1(k) + B(k) V(k) B(k). (23d)

F(k) -A1 1(k) -P(k +)A 2 (k) (12.1) T'he relations in (23) are vital to the understanding of the optimal filter
and, thus, merit some discussion. Since AX(Al(k))Lt((k)). whereG(k)-Al 2( k)-P(k+ 1)Ai2(k)+F(k)P(k) (12.2) A t(A) denotes the null space of A. the following observation is made.

W(k)-i1(k)-P(k+I) 2 (k) (12.3) isObservation: '*(k+l1) is not an empty set. Furthermore, if YO(k+ 1)
inot a singleton (A I(k )-singular), any member P(k+ l)(k +

H(k)'-C 11(k) (12.4) yields the same filter performance.
N(k)-O,i(k)+, 1 (k)P(k). (12.5) The invariance of the performance over the set OY(k + 1) can easily be

checked via consideration of the error covariance matrix as in (25)
%We note that P(k) can be viewed as the Lagrange multiplier in the below.

standard constrained optimization problem'. Now, the problem of esti- According to the value of A,(k), the following special cases are of
mating Z1 (k) is replaced by that of estimating S(k) given the measure- interest
ments (y1(I).y,(2),- -., y,(k)). Obviously, from the definition of S(k) in Caste1: A(k)-O0. Note that in this case A2(k)-0 and, thus, uk+
(11) we have )- ''".This case is possible if (10) does not contain any

-omto petanig to the estimation of Z1 (k). For example, if
i(k/k)-Oi(k/k)-P(k)Zi(k) (13) A2 1(k)-0 and B2 (k)-0, etc.

Case 2: A(k) >0 (A1(k) is a singular nonzero matrix.) In this case,
and only some components of Z2(k) contain information on (u~k), Z,(k)).

V,-(/k)-V2 (/k) 14) In this case, the transformation Q(k) discussed in the previous section
can be defined so as to isolate only those elements in Z2( k) which

where constitute a constraint on (u(k), Z,(k)) and, thus, the Lagrange multi-
plie- P(k) that should be considered is in %(-' where r is the number

i(k/k) i(k/k) -S(k) of such constraints r< mi. Alternatively, any member in 6Y(k+ 1) can
be used in the filter realization.

-4.(k/k) i Z(k/k)-Z,(k) Case 3: A I(k) >0. In this case P*(k + 1) is uniquely given by

P(k9-l)-A 2(k)Ak. (24)

Any unbiased estimator of S(k) is given by the (n-m 1 )th order filter Thsteopiaflerquinsregvnb

S(k+ Ilk+ I)-f I-K-(k+ l)H(k+ l)JP(k)S(k/k)
i(k+Ilk+ I)-I-K(k+ )H(k+ )JF(k)(k/k)+K(k+ 1) Kk1(,k )- klZ 2 k )

.(y1(k+ l)-N(k+ l)Z 2(k+ l)-H(k. l)G(k)Z 2(k)J (19) -~+lGkZ(~ 2a

%S(k'.. 1k~ )-[I-K(k4. )H(k~ l)]F(k)S( k/k)

To obtain the optimal estimator, we have to minimize the trace of the Z2(k + 1)Cj- (k + )y2 (k+I1) (2Sc)
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*v 2 *(k+Il/k+I)-[ 1-KO(k+ I)H(k+li)Jr*(k+ 1) ,k)

- .- r*(k+ i)-r(k*.l)H'(k+l1)[H(k+ i)r*(k+I1)

H4 -(k +)1[AVk1))V+k+k)A'(k
*'~k Z2(k-)1 Z-

(25d) N6

where thek eqaiy smainflolyi h ivreexss

r( + 1)- '(k ) -V; k/k) 01k ~ Mig. I.k Thek) redce-rder .otmL etmtr

I -P-( +1) (k)V2 (kk)6] k

* fncio o rk+I) Te ifernc i(tat'k) 0 ) ofg 1.Se saifeTialyhtsol e re edhatdin ostructigantoptml rdctro

an opimal, smo).ote thet same prnocedures asreseniteredles Sfctione
ref~~~~~~~~~~~~~~~~~i k+)< (k+)whr (k+)oby()wthnnpiaP(.mayhbevuied. Furthsiermore,- th e i detofsolingsthe sinuard state

(See fomplngte. ep rvress (36 of 2d) wtthto aiefran qe iin a or nstaie (p1iato0rblm eted).aih r
arbi2)r ( -). ofwe erese the vaxriesohpedion error I +1)a

Fialy it Stepl be finded thet optma predictorn anEFtialEedctoS
Sun tepn 2:fidn r +1.The difrnei htr( )o 2e aife noptimal filter.esa epocdr a rsetdinScio I

r( + The opia gain + k 1) wher give +1obeys (25l wi. Kuakernack anP(San eo -).ICnto ti,,, e or.Wl

(See, ~ ~ ~ ~ ~2 for exm.e exrsso A(drso ofd .1. may b utlzd Frhe m oore.h ieal ofsolving teng ula CfstNte

warlyto te-H cotiuustiecae
il* +3 Ilk Ts can b. Athsis. proved.l ros7u-ode obeueretmo opioraio dmscret

v[Hwed asI(k two-step opti(mizationie-a:ngsstm. IE ,'s. uoat a, ol CIS90

1tep C. finin thode andma prdctr M.N a FEOpimRCSitoreobresfrdsceeim

systms- 2n:ie theoryng thetsa s optl.a f.l97r.

and ~~ ~ ~ ~ ~ t. th Daininstife 5 . . Aeson and . . Bane. Mor.ta l Fitering .iEnglewood Cliffs. sNg:

K-k '-'k P)H(k+l ~ ~) (26b)e-Hll 1979.

131 E. W.e aran .An. " Opted anmlorder state estismation for discrete tm icatcsses

~:J whrH~k I ks ie i (Euain )H (2S+ ) ( are -intae by6a the-arn 1ytes, IEEE Tram.Asoat ,. o. AC.4 1977na.Coe.vl.A-1190

(41 C. T. Fajrmesan . .pt k -pma iimalore observers for adls fcniuu inea r tea men

S(00)E((0J r ,(00)E(Z1 0) smcase ti ycts." E colrense. " IEE C ra ms-ol AC-fln. Co977. o.A-

(1 F. W. Fairtan. "Onuce sordeastic tbere estimat or dscfrecte time ti ystems.-
,~ P 0)-0IEEE Trans. Aaaoial. Conu.. vol. AC-22. 1977.

relues toam thet stadar Kalman. filter.8 178

exatl F. the Foptimal minimaiorde observers oor a2 asa can betnuu seentnevr

The optma st.t estimator ofn (26)ati isere depictedr inr Fig.nou I.e y

1) sam sa tht deasrents aireanoiThe mortd difeec, are 0 ourle
.- aroauchs dirtecstandr thus, n ith e rt.lt f h siaori urn

2) teed ad 2)easurmants aer aos frlte eiaent tom ours fiste prsented
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time-varying case. An integral expression for the performance is derived
which depends explicitly on the trajectory and the preview length but is
independent of the course of the plant state for a broad class of linear
drivers. This result employs the concept of performance penalty which
was used by Werniersson to solve the related optimal pursuit problem
[10). As an example, this result is used to optimize a driving policy.

In Section III the expected performance in following a stochastic
trajectory of known spectral density is considered. The problem is
restricted to the infinite-duration time-invariant case to allow analysis in

* the frequency domain. The key result is that the expected performance
in following a stochastic trajectory may be calculated by considering a
much simpler deterministic trajectory with the same spectral density.

* Using this result, the performances of the optimal prescient driver, of
Milers driver, and of Tomizuka's driver are calculated in the frequency
domain. It the spectral density can be identified as that of the output of
a linear system driven by white noise, the performance can be related to
the solution of algebraic Riccati equations.

The results in Sections 11 and III are stated for continuous time. The
corresponding discrete time relations are reported in the Appendix. In
Section IV computer simulation results are discussed. These simulations
demonstrate the validity of the theory and provide some insighit into it.

Specul Anlysi ~ ~Section V concludes the paper.

ELI FOGEL A~ND KEYING MCGILL 11. Ta Darvuso PRoBMia ANDo PsaMAM CE EVALUATION

The difference between a controllers actual performance and the
Absecut-Asinytical aexpreia fo the pervsf c of o10111111 slid performance of the optimal prescient controller may be thought of as the

sidoptii ed Ad poecla Is trjetory &alkf prbems @e daried controller's penalty. Thle optimal prescient performance is known from
Special aseloi Is devoted to the fluke pe kw pole, I dhe t111e- the optimal tracking problem, and a remarkably simple, but less well-
hw. aul.t khlhite-itado.l ease conaepoodieee o doth pufoiermo efties known, expression for penalty has been presented by Wernersson 1101. In

- for findw evegy, alted w er m d academUy stehtkl trotoiIl, all this section, these idea are applied to the time-varying driving problem.
wMt dethe- spectral desit, Is asihlh. Using tis conipondumN The plant to be controlled is described by its state equation

* therfeumme of ifferet P o i prlie b sued" In the freiquemiy

dimit. SI ~at demestrae doe facdmy of t ie hry of dd i(t)-A()x(t)-3(t)u(t); x(:0 )-xo (2.1a)
where x(r)ER4 , ui(t)6,R, and A(t) and B(t) are matrices of ap-

1. INRODUrIONpropriate dimensions. The system matrices are assumed to be time
I. Irraovcrceevarying throughout this section although for notational convenience the

, One of Bellman's major contributions to optimal control theory is his time dependence will often be suppressed.
principle of optimality (21, This principle implies thsc to optimally steer a Thet control policy is assumed to be of the form

* system along a trajectory the entire trajectory must be available. Unfor-
tunately, most practical controllers cank only preview the immediate N- 1(.xtY(r:re(+T)

' future of the trajectory and must rely on statistical informatioo to
*characterize the trajectory beyond their preview. A common example of where Yrr (YT(f): tI to, If1h y() EAR) is the trajectory to be fol-

* . a Previewing controller is the driver of an automobile, and we refer to a lowed, and r is the preview length. Linear control polices of the form
prveigcontroller as a drive, and to a driver with complete trajec-£

tory information as a prescient driver. )XI+ 'Y T~)r(rd (2.2)
* While control policies for previewing controlers have been presented 10

__in the ltrature little attention has been paid to evaluating their perfor- ail be denote by thes Pair (KXQ), JI(t, r)). HQ, r) can be considered the
Nmanos. Tomizuka and Whitney [7113[1 have derived the optimal driver iPmpus response matrix of a noncausal "trajectory filter," and the
*, , under the assumptiont that the trajectory is generated by a known liear peiwcntan en htH: )0W s .Tesaetaetr

systm driven by Gauss=a noise. They als pve a rule of thumb for of the plant for a particular u(-), to. xo, and Yr will be denoted by
calculating the preview length which results in good performance. Miller
[41 has presented a simple, well-performing driver with no a pevro-X0 r () Xt o-X, r-N-) -Iti
knowledge of the trajectorys statistics. Fogel [31 has evaluated the
difference betwee the control values of the optimal driver and the The control objective is to minimize the performance index

* ~ optimal prescient driver. However, until now, simulation has been the
only way to evaluate the PerformanceOf any ofthendrivers. J1o.X0, Yr N()) f L(t x(; o, X0.Yr. ()),Yr, u()),*

*- The purpose of this paper is to derive analyical expressions for driver 1
performance. In Section 11 arbitrary trajectories are considered in the (2.3a)

where
MeIlp 111101ed SepMber 14, 19"'. 1eyeV Majeb 25, 19111. Pape reeoinmesde
bA- liMalies, Cbs-m a(&@ Opda Syqiaa COsatin Thi wt weB sppefted L~~~)Y~()-~,r-rr~) + ftu(t,x(t), Yr)J~1in pert bir Me U.S Offlhe of Naval Itegearob tinder Gmat N000W11-C-t44. A
It3. Fog e wi-th ane Depiatment of Uieutai 3aaE&OSS . UWMiUty of NOW*(23b

Dame. No"e Daws. IN 465ft He ia now with se Chart. lSta Draper Lawoy. (.b
Camildp,. MA 02139.

IL MOO WasWith de mfIie Daps.imeftof Rlwf*@gs yp(t)-C(I)x(t); yp(t)E6RC (2.1b)
Dame, Namr Damao, IN 4555. Ho a sow wish the Deporagat ot Eleeukn Esnsaermn
1t1stIr tjme i Y. SmanoKd CA %M0. and QQt);i'O and R(t) >0.

L4 ~0018-9280/lO0M0.9900.75 0198 IEEE
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*The characteistic which disiguishes this driving problem from the This Wdas is illustrated in Figl. 1. The prodf is given after the following
* familiar trackin problem of optimal control theory (see, eLg., [ID is that corollary.

only a subset of Yr is available to the controller. If Tt- to the Coroly 2.1: The penalty paid by the control policy u()-
* problem ane identical and the controlUw will be called prescient. (K*(u), H(1. r)) is indepenident of XQ*o, xo, Yr, u(.)) and is given by
* The optimal prescient control policy is known from the tracking
* problem [Ito be Y".00 X0.P*x()R5E() (.a Yr~()~f~. v)-Ho(t. -)JYr(-r)drj &t

where(2.8c)

Proof. In this proof the notation x(t; to. xo, Vr. u(.)) will be ab-

P(t)- -PA -A'P+PBRR'5'P-CQC; P(gf)-o (2.4b) breviated to x(t; noTh method used as similar to that of Wernesson in
[11. Let

Notice that W~) is independent of XQ0o, xo Yr, i1()) and that P(t) is From (2.6), P('-o)1' xo. Yr. uo()) and p(tj)-O, and so from (2.9a)
independent of both X(o. x,Yru(-)) and Yr. uo(.)is of the form of and (212a)
(2.2) and will he denoted u0 (.)-(K(t),11(4 i). where K(t)
A- IB'PQt) and HO(t,-r) is the impulse response of the trajectory filter J..(to, XO, Yr. u(-))-f I L(t.x(t; -),Yru() (t 4
whose state equation is (2.dc). This filter is purely anticipatory, that is, t

^. r),4. Vtc:t. Thie performance index for this driver is presented in Differentiating p(:), substituting the appropriate expressions from (2.la),
a new way in the following lemma. (2.4b). (2.4c), and (2.6b) and combining with (2.3b), establishes Lemma

Lamma 1: 2. The corollary follows easily from Lemma 2 and (12).
Exaaspf-The OpMWnu Limifted Aeview Driw: To demonstrate the

Ato 0, r, N(.) 11 o- -,0000Apower of Lema 2, the optimal limited preview control policy with no a
VT, e(.)mflx~P~Il.)~,a~j~,.jpim knowledge of the trajctory characteristics will now he derived.

+ f 111.r~f)- C- 1()((tjj2Assuming a control policy of the form (K(tN H(t, r)), the penalty is,
to (,) (2.5) from (2.8b) and (2.2),

Thus the optimal performance index is the sumn of a term which can be 4J(tofo. Yr,(K, H)) f"J ( [X(1) -X(t)Jx(t; to, x. r.(X.,H))

* made to vanish by a proper choice of xo and a term which is inidepen-
*dent of X~to, X0y, .o.

*Proof The proof employs the technique used by Werneinson in+ H -) ot-rJrrd-

1101 The familiar expression for J(:0, X0. Yr, u0(.)) is, from fIL2

Ato, xo, Y,uo())-xP(1o)to-2x~(to)+(to) (.a

*where With no a priwi information on (yr(vr): r > i+T) at time instant t, a

~(:)rBR '5f-~.Q7 ; ~~)-. (26b) "reasonable" choice of the control policy is

Let

* (tm~t ''E~) V.u())m(r-'() 't~Q.(2.7) 011 r >I+T'(.1

Notce lit fom(2.a)In statistia term assuming that the trajecory is a martingale pro.
Notieuan frm (.6acms is compatible with the assumption of no a piWV informnation on the

-f(t)- minJ$. X. Yr. N(.)) " toycharacteristics. Namely, we asm

aud so since from (2.3) J~l, x, Yr, u(.))-O Vx (assuming Yr is wellEy()/. 7 s Vr+T(.2
*behavedat i).it is clear that- yQ)-.O as : wentohP )int whee ~is th ealgebrainduced by themeasurements y(v)-,r :+

defined. Therefore from (2.6) and (27)N F). Now using (2.10) one obtains

Difformhtating (2.7) and substituting the appropriate expressions from
(2.4b), (2.4c), and (2.fb) establish the lemma.+

The above ideas are extended to suboptimal control policies in the
* fllwing lemma which defines the performance penalty paid by a
* contol policy and states the remarkable expression for its evaluation -2 I()x~)x,
%which was rust presented by Wernerson ini (1%.

* Ar n2 + NOIT I) ~ , ) -H Q , )]Y (' r) '

t~JuIx1z~@ ru()V)+E[If Hot 1 11r)diA+F * (2.13)

............................................. YU-) o , . ........................
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*whom the identity El ffQ)dJ-Ef E[f(t)/q,+rJd has been used.
. Revoking the martinale assumption in (2.12) the second terin in (2.13) Sbpia

nullifies to yield

m in. E( E ( p . (. V'f 'I f " of) H O t )Y T UI) r dtC n r l e

where the opuimal control policy is (2.11). Note that the mart p~- eControllerRpe
* assumption amounts to little statistical information of the stochastic

* procmo (y()). Further justification to the choice of the policy (2.10) is F4& 1. mp athe caer out of a xyum driven by the trstoaay.

sivest in the remarks following Example 2 of the following section.
The results obtained above are of academic interest. However, thei Theoem 1: Under the assumptions (Al) through (AS), the perfor-

* generality does not allow their application to the solution of practical mance index of a control policy u(-) following a trajectory Yr whom
problem such as the desig of the preview length. spcrldnit s-~)i

To obtain further insight into the finite preview problem we attach ~ dniYi ,i.)i
some structural properties to the trajectory to be foilowed. Particularly,

- we consider the infinite duration problem with time-invariant plant and 2v f''u.)-.-tjs'~a)~~,(i (3.4)
.- spectral information on the trajectory. -

w!here (j,1/ 2 ())j1/2(W) m (. the gain function f(ai)-
111. SpwcmaA ANALYsIs oF THs PSFoamANcs INDIX G.~)Gg~+.i)G(4and 6J.) and 6.(.m) are defined in the

*Since the actual trajectory is rarely available a prior'i. it is important to proof-
be able to evaluate a driver's expected performance over an ensemble of Proof. Under the assumptions of time invariance and stability made
possible trajectories. This section considers a simple but useful class of in this section. stable transfer functions exist between Yr a~nd u and

ensembles, namely stationary stochastic processes characterized by spec. bewe YT an .rY-Cligteetase ucin .w n
tral density. The problem is restricted to the infinite duration. time G-(w) respectively, it 1s a straightforward exercise in harmonic analysis

invaian cae an isanayzedin he requncydomin. he reult to establish (3.4) for each clasn of trajectory. Notice that assumption
is that the performance depends upon the spectral density in the sam (AS) is necessary to eliminate any c~artribution to J from the initial

* way for stochastic as for deterministic processes. This result is used to condition x0 for trajectories of class I.
-. calculate the expected performance of the optimal prescient driver, ofa emarcz: This theorem is important because it allows the perfor-

driver~ ~ ~ ~ ~ ~ ~ ~ ~~ ~~~o whc igoe-horjcoy' pcrldniy(Mle' rvr, nce of drivers to be examined in the frequency domain. and because
* * anfadriver which usno es kodeo the trajectory's spectral densty(mnesdrve) it allows the performance index of a driver following a trajectory of class

aoal droive hiues riv e fte rjcoy' pcraest II or III to be calculated by evaluating the performance index of the
MwTh following assumptions are made in this section. driver following a trajectory of class 1. In the following examples,
Aaasmyaticu (AlI) A, B, C, Q, and R are constant matrices. trajectories of class III will be modeled, as is common. as the output of

* Asusinyvion (A2) The plant is completely controllable and observable, the following stable time-invariant "trajectory generator" driven by
*A&%wWaox (A3) tose-o and if-+ o. white noise

*- Assauidn (A4) xo'0.
*Assmwtion(AS) The control policy is of the form u(.)-(K, H(t-)), _ir()-sArxr()+ErW(t); XT(- 00)0 (3.5a)
- where KXis constant, A -AXK is stable, and f Tli11H()ll2 d,,< c.
q In this section te and z 0 will be dropped as arguments of J and x. YT(l)-Crxr(t) (3.5b)
* . The following three classe of ftraectory arn considered in this section.

L Finite e=es, iLe. f.STae1 yQ)l 2dJr< cc where 4,,(w) -IL The corresponding class I trajectory of the same
fi. Finite power, L&e. (I Yr 112) <owhr spectral density is the impulse response of the trajectory generator,

< Y>.11 im f Y(I)dl. namely

111. Zme-mean finitevariance wide-sense stationary stochastic pro. '0 <
Sa caM i-e6, E{YTAf))in E(Yr(t+r)j~())sR,(r)< ca. Y~t(s) * 3.c

The performance index J(Yr, u(-)) must be defined differently de- kCE?.r t0(k
* pending on the clas of Y7 as shown in Table 1. Table I also defines the

spectral density of Y? for each clasw Using the appropriate definitions of Exampl 1: The Optimsa Preciem Driver: It is known from [I] that
* performance index and spectral density, the following theorem applies to under assumptions (Al) through (M3), the optimal presiet control
* all three classes of trajectory. policy is u0(.)-s(K 0, He(t-r)), where

TABLE I

Cass 1. Finite Energy 11. Finite Power 111. Stochastic

* Performance
*Index JfL Jr J-(L) J-E(<L>) (3.1)

~, where X(t)...X(w) denotes the Fourier transform pair 0
A'P 1 (.)

Xw ee)- ~ X() .MJ'd i (3.3a) Ao-A R ' P (3.6a)

f~.~. 4. . )e- d.. (33b -A ** Bit r.(.cA 
. .. *.
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Fis the steadly-state solution of (1.4b) and satisfies the Riccati equation Proof. This result follows easily by applying Pmreval's formula to

oin in(3.n) Thus. A is sAble If Y,,, is generated by (3.5) the optimal (2.8c). This lemma will be used in the following examples of suboptimal

90(t x~). A~t) K~~t)+ Jt'B',,x(t)Exanrk 2-Miler's Diver (41: Miller 14] has proposed the time-
a.(IZ~t.YR,))n~KO~t)R'B', 2 x~t)invariant version of the optimal limited prevew driver with no a prion

~inP pit -, P'
1 ti2 knowledge of the trajectory characteristics, namely um(-)-( K". HM(I -

whr P. ;a , satise the Riccati equation r)), where

0- -P*A,-A*P,+PA.B.,P-C.QC. (3.7a) H'(1 -r) - f(~.~ g (3.20)
10ith T

with The performance penalty of Miller's controller as given in the following
lemmna. -

A.-.[ BT .-[:] . [C: -CTIJ. (3.7b)

The performne index of the optimal prescient driver is given in the 2.
*following lemma. .IX- IB.rA'r(.jI.AyCQjs/(, ~ (3.1la)

Furthermore, if Yr is generated by (3.5). then

2sJpm(yr,uN(-))_Bq[p;
2eAT#,eA'pl2i2l2]Br~ (3.11b) -

Il-CPI ( jai- A 1CQI' 2(a) de.(39) where
PnAr+Ari22 _p, 2,Ar~t-',eAP 1 . (.c) _

Furthermore. if Yri generated by (3.5) then r2, (.1c

~,r ~Proof. (3.2 Ia) is obtained by transfoaing (3.6b) and (3. 10) and
J(Yr. u (-))nBAj PU P'2 2 Br (3.8b) substituting into (3.9). (3.2 lb) is obtained by using (3.5c), (3.6b), and

who (3.10) to write (2.8c) as

&,A'+A, it RIr. (3.3c) 4..( Yr, um()).fjfH -(r)y,Re)dr dt

hoofApplingPersevere formula to the integral in (2.5) yields
(3 lk). Nowe that the first term an (2.5) a zer muce (3.6b) guarantees f f ' )0(-)yr) d,12 do

* (ao)-O for afiniteenergy Y. (3.8b)is obtained by considering the IFi

* suboptimal control Policy u(.)-(K,) following Y40-) Clearly and then substituting (3.5c) and (3.6b).
At; Y,,.(K"O))-0 and u(t, z(s; YM4,K*,0)). Ya)-O Vs. MbreT Rirnuwks: In the frequency domain, lack of knowledge about the

*(2.8c) and (2.2) together with (3.5c) and (3.6b) yield trajectory characteristics means that eneqgy must be considered equally

proabl aalfrquencies, i.e., that S,(e)-l. That um(-) minimizes
Jr~J Yr. u(-)) for S,(ee)wI, among all control policies of preview length
T, is clear if Parseval's formula is applied to (3.9) to give

&trJ--II1H() dtr IH1)H(Itd

£xopy*d 3-Toxdruc.', Dricer (71-[91: Tomnizuka and Whlitney (71-
The optimal performance is then given by (2.3a) (91 have derived the optimal driver assuming that the stochastic trelec-

'(Y,. MJ(Y5 .(K0))J,.(YR(X,)).torygeerator s given in (3.5) is known to the controller. Their control
law is

Susttuting expression (3-5c) and (3-6b) into the penalty and subopti.. ut(t. -)- u(t, -) +Ri -Be%'rP 2ir((I+ T) (3.12)
mel performaonce yields (3Jb). Details are givens in (5t.

Note that the performance calculations are made over the entire where -iTQ+ T) is the best estimate of the state of the trajectory
interval (-4o. +ao).although the impulse is not applied to Sea a, generator given (Yr(T): r ;f+ T). ur(.)is the best estimate of u"(.). as
until t-0. The igificance of this result is that it Sime a lower bound on -om by writing the last term of (3.12) as
the performnance index of any driver for the infinto-duration problem
Furthernme. it should be noted that for class III trojectories. theonutrol RIEA rX(t+T)- , 4H(1vbr)r()d?

* (3.6) may not yield J(-) a in (3.8) for a particular realization of the input T
* (w(s)). Howeveor, the performiance of the lem will be observed on the whiee

average. In the cas of second-ordler ergodieity, the actual performance ;(r-r*r 0+T, rt .&
* will be that of (3.5) for almost anl realizations of the white input to the ()C x t T, iiT.L

troJectory generatr. Len,,. 6: If CT -I1. Tomizuka's driver pays the penalty
The performansce penalty of suboptimal policie can be expressed in I

thes freenoscy domain a in the following Wlema 4,.(Yr.u*() -try I(~2 ~~)R l5 'rAT
Law.'. 4: Under (Al) through (AS) the penalty paid by the control

polic .(.)m(Ke, H(t,r)) is . tje, 'f''- ,] 1/2() de. (3.23*)

4.aYr~())fI(~eei~(e)I~i/Iade. 3.9 Furthermore if Xr as generated by (3.5) and xr(t+Tr) is measurable.
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Fig, The a~~ piedeaa Cashralt folawias tse inpul e upiem of she ujector

then regardless Of Cr. Actual driving performances were computed by direct simulation for

J,( 2 . .UT())~BT~7 }A P*~ tl~T* 3.Ib) several relatons of the stochastic trajectory generated via (42). TableP. X.V (-)Bi,,,rj ,Arp, 313) I compares the averages perfomances observe, vrtnrn f10

P~.Snerl )x~+T-rt ) h o a n(.2 stop with the expected pefrmances caclated from (A'3.l ib) and
ma beicue sadlafnto nsd h ovlto nerli (A3.13b) for Miller's driver and Tomizuka's driver, respectively, as a

(2 Thmy e inroude is tan delar fntona onid he conolution in in function of the preview length. The averages agree quite well with the

In .-. Several general trends can be seen in Table 11. Tomizuka's driverRon&*- Appying Prsev.als formula to(3.9) yields outperforms Millers driver at each preview length, and always improves

Jp.(Y, UO)its performance as the preview length is increased. Miller's driver, on the
- V2 . ,aa(.))other hand, sometimes performs more poorly with an increased preview

S length (compare K-6 and K-9) due to its ignoranice of the trajectory

it itisinightful to examine the gin functions r' of the various drivers.
Er! JII0tf~z (7)ff'7 ~f~x . (t~v~d As shown by (3^) r indicates how heavil the ftjectory energy at each

Ceryin this cas the optimal choice for il -,r) is frequency is weighted in the calculation of the overall performance.
as Thus, desiging apreviewing controller may be thought of as specifying

~~ :~. il t Q-r)Hmi(t.-,)+8(1+ T-r, f-)~ .r) t. a r, subject to the preview constraint, which is close to f* in some sense.
is is plotted for several values of the control cost R in Fig. 4. As

might be expected, for a given R the optimal prescient driver is better

IV. 99UATM UMUable to follow the low-frequency components of the trojectory. Notice
* IV MULII5O4 ~that the apper limit on FO is Q, which corresponds to the complete
* . he uepss f ths sctin a to epo th reultsof ompter inability of the driver to trackt a particular frequency. As A increases, the

imulations Whc demonstrate the theory developed earlier, and to ft239 of unrcknble freqluencies pows

povide somes insight into the driving problem in the frequency domain. Ta plotted, for several values ot previw length,6 along with the
The eqations used here wre the discrete ds vesin of th relation trajectory spectral density for two different trajector generators in Pip.

S derived above and are given in the AppenAix The plant which is studiehdtaetoygneao frFg.Si
is described! by the following system matrices:

A- .0. 1 Bn..F O CE(l.0 0.1] (4.1) r0 fi-. C 002(43
AL-0.99 1.9 - .

and~~~~wo unletru oaews noever n R s.y nro. As a consequence, f r is very cloe to fo
od wles oterwse o4@ Q-.1 nd -2.at low frequencies where the trajectorys energy is concentrated, whereas

'I * The correspondence between the stochastic and deterministic prob. it is far from j-0 at the less important higher frequencis. On the other
Isles is illustrafted by Ftp. 2 and 3 for the following trajctory generator. hand, the trjctory generator for Fig. 6.

Is Fig. 2 the trsGICtIY Yr is the impulse respos of the trajectory
geoerator. in Fig. 3 Yr is the response of the tajiectoy generator to a has a fairly wide spectrum which feoe F r to fit fo over awider
white noise sequence. In both figures. y, is the output of the plant under frequency mnap. As the trajectory spectrum becomes fiat (ro

S optimsal prescent control. Notie the similarities betwee the frequency Tomstuka's driver becomes identical to Millet's driver whos rm i
_1 aents of fth two trajectories and betwee the tracking giers, plotted in Fig. 7 for several previewing k$lent.
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quadratia performaen obd s inTbl nte 11 t"=6 d-.K-or the attetio istesuyo sf.aedcnrles(1hc Remr
trecseyS4.I0I the other had i the aesectal spcomoisio aslbe rhealsi oeso h uarvr
stochastic riers al+y improves it(eromnc2it3nres)ah

dieso appoachy fr thiatpr wh uit ac esignd tepef
mime ealutin o cotrl plices.Th dulit o th liearqudraic ndthe naictations k d iscu sp in t the aerasre coate re forthe
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-l Athe above patios an ial drivr dmas yn yt aaees

P~k-AI~k+I)P~k I)~i-B'~k+1)]+C(C; even though for brevity the tim arguntent baa somutms been, omtted.
The spectral analysis of Section III may be carried out using the

* . P(k,,)-CQC (A2 4b) disoeme Foume transform

l(k)m(A'-A'P(k+ l)5A-'B'14(k+ t)+C(?Yr(k); X(k)- j!f~J)f~dwi (eJ-) Xk.

I(kf)nC,12yr (A2.4c) (A3.3)
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WMt the Obvious Modificadomi Theorem I it VAlN for dIOcrete bin. A-A-Di ''P 1 A 3.)
raTh timinnvariant optimal prescient driver uO(.)-(KO, JI(k-i)l ia

pain. ad its perfammance foilowing the trcory ganermor ane~-P 1Ai5 5 (A3.8c)

XK-;'5'P 3  (AiA&) id A., 54. and C aneu defined in (3.7b). *
~5le' driver for preview length K, u"(.)-(K0 . H"(k - ) its pain,

H'k-'- (A~5'Ay~'~ 1 CQ k-i<0 (AS 6b) and its pealty foliowing the trajectry geator are
1.0 k-i>0 fft (A. 0

2 H"ku)- HO(k-i) (A3.l0)
rIw-p~jr-i'aIf-Ai-' 'Q-JIo~ (A3ia) (0 i>k+K

A(yr, u())in1 Pn -Pi2 P,, 3 (A3.8b)1''.) (.)+ -'B(A ( "IA)'CQ

%bore (A3.1It&)

pi Pu~1  .,r3 m- flAI~ ( ''u*))af PI2Ak? 1 ( A')'P 2 +4n] Sr (A3.1 lb)

-P,2 pit I rbl, 1

(A3.7a) in-A',.uA-rmA7P.Ax5R 'I'( A')'P 2 Ar. (All I Ic)

2- 2, . - -. i-
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*Tomazukadriver, itspin wbei C, -I, andts penalywhmn xT(t+ T)
Is a. eau=al are

uT()-(KH A(ki))+I-'B(A)kpArT(k+K) (A3.12)

(A3.13a)

* . Jpm( XT, ,1 ( )) - 8 T'2A'?1 .( A')'?1 2 'T (A3.13b)

II .Aftmn an P. L Falb. Oprkml Coma,.. New York: Mcarew.HilL 2966
1- 2) R. Duilma.. 1bsainws repromuq. Prmea.. NJ: puiaceson Univ. Pren 1957.
131 3. Foaui lTb optimmal dnive-An approach to tracking problems." in Pow. /at

*JF -Hi MANed 1Aficmueaiw, me ConolUi..an Diego. CA. 1979.
141 1L &. Mille. "ON The lmse pusevie- problesm is maua comtroL- lIs.J. Syst. Sad.

vol. 7. Mp 667-672. June 1976
151 K. McOuil "Spectral analysis of the performauce of pheviw a controllers." M. S.

thaw. Usiv. Notre Daum. Notre Det. IN. 1979.
161 T. 3L Sheridan. TbIe sandels of paeiwls omuol IEEE rim. Mammia Farem

lectron-. val. HFE-7. pp. 91 -10:1. Jumm 1966.
(1M. Tominuka. "Optima coatimu finite preview proAle. IEEE Tmra. Asawnew.

C~e~.. vol. AC-20. pp. 362- 365. June 1975.
1111 M. Tomunuka ad . E. Whiteley. "Optimald discrete finute peview problams,-

Lbme.ASE ... Sysa.. Mm Cow, vot. 97. pp. 319-325. Dec. 1975.
( 91 -. Ine human operatr in manual preview tracking." rm.. ASMEJA Zb'm.

*wf My5 eaw.. C..,,.. vol. 96. pp. 407-403. Dec. 1976.
( 101 A. Weameon. -On pursuit and feedback in optimal swchaauic cousral-Explicii

control laws." lrnamm. Sri.. vol. 7. pp. 29-48.,1974.

U

%i



A Fault Directory Approach to Analog Fault Analysis -A Case Study

by

R. Liu
C. Lin

i



b.

5 FAULT DIRECTORY APPROACH A I CASE STUDY*

C. Lin
R. Lu

Department of Electrical Engineering

am University of Notre Dame

Notre Dase, IN 46536

ABSTRACT the methods based on a purely DC or purely AC test.
In the following section, each functional

The perception of the fault directory block of the circuit viii be described In detail.
approach to ato& circuit diagnosets t introduced The perception of the fault directory approach will
by a case studys the diagnosis of a switching be Introduced by the diagnosis of this circuit.
voltage regulator.

A CASE STUDY
I nTDUCTION

In this section we want to show, step by step,
Fault Diagneis of analog circuits has become how a fault directory can be established to isolate

an active research area recently (1-9). A good faulty functional blocks.
survey of this subject can be found In (10,11).
Host of the methods (1-9) considered the circuits 1. The Switching Voltage Regulator Circuit
as interconnections of discrete components even 3 circuit under study is a vitch ing voltage
though there are clearly-defined functional blocks regulator as shown in Fig. 1. In the circuit, the
in the -ircuit. This is because these methods de- node-voltages 1-6 are measureable. V, is the input
pend on the assunption that each component can be voltage, Vo the output voltage, V1 the reference
characterized by some parameters. This assumption voltage and VC the control voltage. The purpose of
may not be valid for functional blocks. Also this circuit is to regulate the output voltage Vo so
these methods require measurements be taken in a that it is close to the reference voltage VR.
purely DC or purely AC test. This restriction may This is a slightly modified circuit from an
hamper th- diagnosis capability to certain cir- actual circuit design. Note that it contains feed-
cults, u.s., a switching circuit, back path, logic circuits, switching circuits, and a

Taking the above problems into account, a new transformer. The purpose of this section is not to
approach, the fault directory approach, which is develop a diagnosis algorithm for this cLrcuit, but
conceptually different from the previous methods, to demonstrate the applicability of our approach.
will be presented. The first step of this method The method presented here can be applied to the
is to divide a circuit Into functional block., original circuit, and will lead to the same answer.
Then a set of fault logic-equations ts set up But more eaplanation would be needed.
based on the descriptions and the operating condi-
tions of these blocks. From the above equations, 2. Functional Blocks and Operating Conditions
the fault directory Is established. Note that the In the first step i circuit is decomposed in-
operating conditions of each functional block are to four functional blocks, as shown by the dashed

-" taken Into consideration In the fault directory line In Fig. 1. The result is a functional block
method. A functional block can werk properly only circuit shown in Fig. 2. These functional blocks
w when Its operating conditions are met. hereforeo, are chosen because of theit specific fuections in

* any practical fault diagnosis method sould take the circuit which will be described in the following
operating conditios Into consideration. paragraphs.

To shy the versatility of this method, we Before specifying the functions of the func-
will present a case study on a practical switching tional blocks, some notations have to be introduced.

-. voltage regulator. Ibis particular circuit is
chosen becoue it is a realistlc circuit and It
has features which are et considered by previous- Notations

. ly mNtioned mthods3 T.7Wdenotes a positive voltage significantly
(1) It is a hybrid circuit, consisting of greater than sera.

both analog and digital subeircults. 2. V" denotes a negative voltage significantly
(2) It contains nonlinear elements whose smaller than zero.

nominal characteristics may not be pre- 3. VO denotes a voltage very close to zere.
ciely described. 4. 1*, I and 10 are similarly specified.

(3) It has switching subcircuits. S. + denotes an Increase In voltage or current.
Li Note that this circuit cannot be fault diagnosed by 6. + de otes a decrease in voltage or current.

_ _ __With the above notations, we will specify the
-Th.8 paper was supported in part by the Office of functions of the functional blocks 31, 52, 33, 34

, Naval Mssearch under Grant 30014-7S-C-0444. as well as L, Ri, and R2.
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Alock 51 ) 0 < V6 < Vi at all times.
1. Operating Conditions b) V, is not stuck at a fixed voltage by
a)V I not tuck-at a fixed voltage by the load.

the load. 2. The Function Table
2. The Function Table

16
<Vg V1 h
OV lt Vl+ 4
>VR  11 Vie If all the operating conditions are satisfied

Rand all functional blocks are connected as shown in
Resistor RI Fig. 2. the sequence of events are given as follows:

1. Conditions 0

A) V2 - V27 at all times. ) VC , VC
' 2. The Function Table

V1  12 Vo  VI 12 V3  13 14 V5  VL 16 Vo

i Vl 12 <V5  Vl+ 12+  V3
0 I3 13+ V5+-V >0 + t

Vb° 52 >VR V0 0 2° V3+ 13°  130 V5
0 -0 <0 + +

'" Block 52
.Or-ting Conditions Concluding fro the first and last column, if Vo <

.) V2 - V2u at all times. VR, then Vo increases and if Vo > VR, then .o de-
b) V3 is not stuck at a fixed voltage by creases. Therefore, V. will be regulated at VR.

the load. +
2. The Function Table 2) VC . -C

_ Thl case, it is easy to see from the func-
VC j12 i 1 3  

tions of 52 that Vo will decrease to zero and the
2 V3o 0 circuit no longer works like a voltage regulator.

VC°  Note that for each functional block we have
12- -O 13P specified oper. ttng conditions as well as a func-

tional table. This stems from the need of specify-
VC " 5:^z "50Ing operating conditions for practicle functional

blocks. Consideration of the operating conditions
2asistor 12 is essential in the fault diagnosis, since a devia-

1. retlng Conditions tion from the functional table may be caused by
6) VV 4 4V" at all times, either the failure of the functional block Itself

2. The function Table or by a change of the operating conditions.

V)3 13 1114 3. Fault Lo ic- nuation
"! 3J S-rault logic-equntlon for each block toj-1b131 ased on the aemptIon that the functional block

is fault-free if and only If its operation condi-
1)3+ 130 114@U130 tions are satiefled and It functions as described

" Block 33 by its funcional table. The set-up of these fault
" h. ratl Conditions logic-equations will now be illustrated.

a) V4 - V4 at all times. Note first that the failure of operating con-
b) V5 Is not stuck at a fixed voltage by ditions my be caused by a fault of other function-

the load. al blocks. Such cases are listed in the following
2. The Function Table observationst

14 V5Observations
I ? V5-VI 1. If RI Is not shorted and V2-V2

o , then V, cannot
"40 V@.O be stuck by load.

2. If R2 is neither opened nor shorted snd V4-V4+,
Inductor L then V3 cannot be stuck by the load.

1. 0pratln Conditions 3. If 0060 1 then L is neither opened or shorted.
a) 0 < V6 

< V1 at all times. 4. If L is not shorted then V5 cannot be stuck by
2. The Function Table the load.

These observations will be used to set up fault
S VL 16  

6logic-equations.
" Vi >0 + The other operating conditions mill not be put

0 1 (0 1 Into the fault losc-equatlons:
A) V2 V2 0

Block 34 3) V4  Vi+
- 1. Operating Conditions C) 0 < V6 < VI
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SD) Vo is not stuck by the load. 5. Conclusion
The first step of fault diagnosis is to verify the "Te fault directory approach for analog cir-

above conditions. If they are satisfied, then the cuits to similar to the fault dictionary approach
fault logic-equations can be set up as follows: for digital circuits. It requires minimum comput-
((El) (BI) - f(BI) x f(RI not shorted) ing for users. This is the major advantage of this
(E2) ?(32) - f(32) x f(RI) x f(R2) method.
(13) f(53) - f(33) x f(RZ) It has demonstrated that it has the capability

".. (FA) f(34) * f(34) x f(L) to diagnose circuits which consist of nonlinear
where x Is a logical AND operator, and r and f have components, switching circuits and analog-digital
the fo loving meaning: hybrid circuits.

(bil) has value 1 if 1 is estimated to be Functional blocks, rather circuit components
P fault-free, or elements, are used as the basis for our method.

0 if 31 is estimated to be This seems to be a natural approach for fault
faulty, diagnosis.

f(Bl) has value I if 31 is actually fault-free,
0 If 11 is acutally faulty. REFERENCES

The others are similarly defined. These equations
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possible fault location once the pattern is ob-
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" *. Once a group is isolated to be at fault, the fault
* directory approach can then be applied to this 7) J. Lee and S.D. Bedrosian, "Fault Isolation
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No. of Faults f(31) f(32) f(33) f(B4) f(Rl) f(t2) f(L) f(Rlnot shorted) r(5l) f(B2) T(53) ?(B4)"

0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 1 0 0 0 1 1
1 1 I I 1 1 0 1 1 1 1 0
1 1 1 I 1 0 1 1 1 0 0 1
I I 1 1 1 0 1 1 1 1 0 1 1

I 1 1 0 1 1 1 1 1 1 1 0
1 1 0 1 1 1 1 1 1 1 0 1
1 0 1 1 1 1 1 1 1 0 1 1
0 1 1 1 I 1 1 1 0 1 1 1

Table 1. Fault Truth-Value Table
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Pattern Faults
I(51) (02) t(33) t(34) Single Double

I I 1 0 54,L (94,L)
1 1 0 1 3

1 0 1 1 52 ,1 CIR1.52)

1 1 0 0 1(39,03,34)
1 0 1 0 CR1,L),(S2sL),C34,R1),(32,B4)

*1 0 0 1 R2 (R1,R2),C32,R2),(53,R2),(B2,33),C53,RI)
* ~0 1 0 1 1(31,33)
J.0 0 1 1 RI (R1,L),CRI.,2),CI1,Rl),C32,RI),C51.52)

1 0 0 0 I CR2*L),CI",32)
*0 1 0 0
*0 0 1 0 9,l

o 0 0 1(1,)
0 0 0 0

Table 2. Fault Directory

8 ) 16 Liu and V. Viawanathan, 'Sequentlally Linear 0 (6)- +(5)
Fault Diagnosis: Part I-Theory, IE Trans.1.I

Irts and System.e, Vol. CAS-26,--P pp..
July 1979.

9) V. Vievanathan and R. Liu, *Sequentially Linear
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July 179.(3
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Fault Diagnosis in Electronic Circuits

R. Saeks* and R. Liu**

During the past quarter century the engineering ures manifest themselves in the form of corn-

community has been witness to tremendous strides ponent outputs which are either "stuck-at-one" or

in the art of electronics design. The graphical "stuck-at-zero" and/or shorts and opens5s . Under
algorithms of the previous generation have given such an assumption a theory for digital system
way to the modern CAD package, the breadboard maintenance has been developed and practical

. has been subsumed by the simulator. Indeed, even fault diagnosis algorithms are in the formative
the universal building block has become a reality, stages of development. Typically, one hypothesizes

To the contrary electronics maintenance has changed some limit on the number of simultaneous faults
S"little since the day of the vacuum tube, remaining and then simulates the responses of the UUT to a
. -the responsibility of the experienced technician family of test vectors for each allowed combination

with scope and multimeter. As such, our ability of faults. The actual responses of the UUT are then
to design a complex electronic circuit is quickly compared with the simulated responses to locate
out-distancing our ability to maintain it. In turn, the failure. Although lacking in sthetic appeal
the price reductions which have accompanied the above approach, termed fault simulation, is

, " modern electronics technology have been paralleled ideally suited for the maintenance environment,

" "-. by increasing maintenance and operations costs. wherein, the actual simulation process r.eed only be
* Indeed, many industries are finding that the life done once at the factory or a maintenance depot

5 cycle maintenance costs for their electronic equip- with the simulated response data being distributed
. ment now exceed their original capitol investment, via magnetic tape to the various field locations

Given the above, it is quickly becoming apparent where the actual test actual test is conducted. As
". that the electronics maintenance process, like the such, with the aid of some sophisticated software

- design process, must be automated. Unfortunately, engineering, this apparently "brute force" approach
the 50 years of progress in circuit theory, on to the fault diagnosis problem has slowly evolved

- which our electronics design automation has been into a workable conceptl. Indeed, at the present

predicated, does not exist in the maintenance time a number of automatic test program gener-
area. As such, the past decade has witnessed the ators which classify faults, choose test vectors, and
inauguration of a basic research program to lay the carry out the appropriate simulation (often in a

_ "foundations for a theory of electronics maintenance parallel processing mode), are commercially availa-
and a parallel effort to develop operational elec- ble and, as such, the automated maintenance of

S.tronic maintenance codes. digital electronic circuits is becoming a reality4 .
. Thus far the greatest success has been achieved Unfortunately, the above described success in the

in the digital electronics area, wherein the finite digital world has not been parallefed by progress
state nature of the UUT (unit under test) may be in the analog world. Indeed, test engineers com-
exploitedsl. Typically, one assumes that all fail- plain that while 80% of the boa-ds are digital, 80%

Texas Tech University of their 'headaches are analog and hybrid. This
• University of Notre Dame difficulty arises from a number of characteristics
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of the analog problem which are not encountered analog fault diagnosis algorithm is an inverse func-

in digital circuits. Indeed, in an analog circuit: tion of the number of test points at which mea-

(i) there is a continuum of possible failures, surements of the UUT may be made. Indeed, if

(ii) a component may be "in tolerance" but not one lets n be a measure of UUT complexity (which

nominal, may loosely be taken to be the total number of

(i) complex feedback structures are encoun- terminals for all of the circuit components), then

tered, if one has access to 0(n)dt') test points the fault

(iv) simulation is slow and costly. diagnosis problem can be resolved using linear

(v) post-fault component characteristics may algorithms7" 0
1°. Moreover, by combining such algo-

not be known. rithms with the above mentioned linear algorithms.

(vi) and a fault in one component may induce acceptable computational efficiency can be obtained

an apparent fault in another with 0(m) test points where m is a measure of the

Items (i) and C j) imply that an extremely large complexity of the "nonlinear subsystem" of the

number of simulations will be required for analog UUT' .7?. Although such algorithms can be effec-

testing. Items (j) and (iv) suggest that these tive on the typical academic example a "real world"

simulations will be far more expensive than similar PC (printed circuit) board does not have terminal

digital simulations. Finally, items (v) and (vi) space for the 20 or 30 test points which are

indicate that the simulation of a post-fault circuit required even for a routine board made up of

by itself may not be a tractable problem. As discrete components and/or SS1 :Small Scale Inte-

such, it is by no means clear that the kind of gration). Although the problem can be partially

"brute force" fault simulation algorithm associated alleviated by making internal measurements with

with the digital problem will be applicable to the the aid of d "bed-of-nails" tester it has been our

analog or hybrid case. experience that such testers cause as many failures

As an alternative to fault simulation, a number as they locate while their applicability co two-

of academic researchers have proposed a variety of sided, multilayer, and coated boards is severely
"post test" fault diagnosis algorithms, wherein, an limited. As such, we would like to limit the
"equation solving like" algorithm is used to locate number of test points to the terminal space

the faulty component given the test data from U available at the edge of a PC board. On the other

4 UT2 ).s'. Although these algorithms are, in some hand, the UUT complexity, n. increases with the

sense, "smarter" than the simulation algorithms, area of the board. As such, the number of test

most of the required computing must be done in points required by an analog fault diagnosis algo-

the field after the UUT has been tested. More- rithm should increase at a rate of no greater than

over, these computational requirements must be 0(n1 2). A further study of the possible tradeoff

replicated each time a unit fails. As such, the between test points and computational cost appears
.'. in references 11) and 12).

success of such "post test" algorithms is contingent

on reducing their computational requirements to Unfortunately. all computationally acceptable

a bare minimum. Although no system is yet "post test" algorithms which have thus far been

operational, with the aid of the powerful linear proposed have test point requirements which grow

circuit theory developed over the past half century, linearly with UUT complexity (assuming that m

a computationally efficient solution to the fault grows linearly with n). As such, many researchers

'I- diagnosis problem for linear analog circuits appears are looking at the classical fault simulation algori-

to be within reach') .". Unfortunately, no such thins with renewed vigor. Indeed, these algorithms

light exists at the end of the nonlinear tunnel, have minimal on-line computational costs, while

wherein progress appears to be limited by a the number of test points employed, can easily be
"computational complexity/test point" bound. ( 1 1) f(n)-O(n) means f increases in the order of

. Not suprisingly. the computational cost of an n; more precisely, jf(n)i5cjn for some c>O.
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kept below 0(n 2 t'). The difficulty lies with the 4) Greenbaum, 3. R.: Computer-Aided Fault Analysis
number of simulations and the develop- -Today, Tomorrow, or Never, in Rational Fault

required Analysis (ed. R. Saeks, and S. R. Liberty), New York,
ment of decision algorithms which will allow us to Marcel Dekkar, 96/111 (1977)

"interpolate" between simulated data points. 5) Hayes. J. P.: Modeling Faults in Digital Circuits.
in Rational Fault Analysis, (ed. R. Saeks, and S. R.

Thus, while the state-of-the-art in digital diagn. Liberty), New York. Marcel Dekker, 78/95 (1977)

nosis is fast maturing, a serious investigation of 6) Hsieh, M.: Ph. D. Dissertation, Texas Tech Univ.

q analog fault diagnosis problems is only just begin- (1980)
7) Ngo, Q.-D.: M. S. Thesis, Texas Tech Univ. (1980)

ling. Indeed, a satisfactory fault diagnosis code for 8) Plice, W. A.: Automatic Generation of Fault Isola-

linear analog circuits has yet to be demonstrated tion Tests for Analog Circuit Boards-A Survey,

while the nonlinear problem has yet to progress Presnted at ATEX EAST 78, Boston, Sept. (1978)
9) Saeks, R., Singh, S. P. and R. W. Liu: Fault Isola-beyond the basic research stage. tion via Components Simulation, IEEE Trans. on
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(1979) Diagnosis: Part II-The Design of Diagnosable
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KTopological Conditions for
*Single-Branch-Fault

* * C. S. LIN, Z. F. HUANG, AND R. LIU

Abstract -The testabilty condition for single branch-Imslt of an anaog
netwok is given. T1hen several necessary and sufficient conditions (or this
tesblt condition we poided ad their proos we shown in detail.
These conditions have gret applcations in the testability design as demon- M

strated in the "examne

I. INTRODUCTION

T ET N (Fig. 1) be a connected, b-branch. (n + 1)-node, Fig. 1. Network N.

J linear time-invariant network. Out of the (n + 1) nodes,
(m + 1) are accessible terminals for both excitation and and
measurement. Let one of the accessible nodes be the refer- r ] 1, 1.

. ence node of the measurements denoted by no.The follow- I " +F i -[-Eli,, (2b)
C ing notations are used for N.

where I is an identity matrix and E and F are submatrices
v., terminal (accessible node) voltage vector with re- of Qj, and Q., respectively, w.r.t. the tree T.

si. ct to n, Now consider that the network N is perturbed to (N +
'- i, terminal current vector, AN) in the way that Y is perturbed to Y+ A Y, and the

Vb branch voltage vector, graph remains the same. In the perturbed network, we
Y t b branch current vector, denote the corresponding voltages, currents, and admit-Sbranch-admittance matrix, tance by v. + Av., i. + Aim, Vb + AVb, and ib + Aib, re-M set of all accessible nodes including 0.  spectively.

Note that v,, and i, do not contain the entries of no and Given Y and the graph, the purpose of the fault diagno-
*- -- each contains m entries. Also note that ib = YV, and Y sis is to estimate AY from the information in, Av,, and

needs not to be symmetrical. Then in N together with the Aim. Note that v,. can be calculated from im and N.
m measurement branches from (M - (no)) to no, we have Without loss of generality, we may assume that
the following KVL and KCL equations: Ai,-0

BbVb - - B.P. (1a) i.e., apply the same i, to the original network N and the

Q bb = - Qi,, (lb) perturbed network N + AN.
Under this condition, it can be shown from (2) that in N

where B's and Q's are the submatrices of the loop and vm -+ E(HYHrfIEi (3)
cut-set matrices, respectively.

Since N is connected, we can choose a tree in N. For a and in N+ AN
given tree T, denote the branch voltage vector and branch
current vector of those in T (its cotree in N) by v, (v,) and v + A,, n + ET(HYHr)-I[Eim - HAy(vb + Avb)I
.ji,), respectively. Label the branches in T ahead of those (4)
in the cotree of T. Then Vb - [vT : V rT and (1) can be where
written as follows:

4.[FT +1IJ - ~oJtv,, (2a) Subtracting (3) from (4)Er • 0 VC I~

:" Av,. - - E r( H YH r) -'HA Y( Vb + Ab)
61 Manuscipt received September 2. 1983. 1982. -- EH,)H, (5)

C. S. Lin was with the University of Notre Dame. Notre Dame. IN. He (5)
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and The proof of the above theorem can be found in [4].

b-A - AY( Vb + Avb). (6) Note that Theorem I translates an abstract definition of
single-fault testability to a familiar property of a matrix

Define that a branch is at fault if and only if the Zmh with the explicit expression which can be further
corresponding row of Ay is nonzero. Then, in (6). the k th studied. An initial step is to investigate the implication of
entry of jb is nonzero only if the k th row of AY is nonzero two column-vectors of Z.b to be linearly independent.
or. equivalently, the kth branch is at fault. And the con- However. not to restrict ourselves to only two column-vec-
verse is true for almost all practical cases. Taking ad- tors. the linear independence of k column-vectors of Zmb is
vantage of this property of jb, (5) suggests that one can studied and the result is shown in Theorem 2.
determine the location of nonzero elements of AY and Theorem 2: Let Q be a set of k branches in N and Z,
therefore the faulty branches provided that the number of be the m x k submatrix of Z.,b whose columns correspond
accessible nodes is large enough. This discovery was made to branches in Q. Then Z, has full column rank, only if
by Biernacki and Bandler [1], [2] and Sakla et al. [31. The there exists a tree T in N such that
advantages of this approach are that: 1) one can rely only (I) T contains Q,
on the parameters of N, i.e., the nominal network, and the (2) (T - Q) is connected when all accessible nodes in N
measurements to diagnose the faulty network and 2) the are shorted together.
computation involved are all linear. The converse is also true for almost all Y.

However, despite all these advantages, systematical stud- Proof. (The necessary part): As a preliminary step, we
. ies on materializing this approach to locate the faulty want to show that Q cannot contain loops. Let R be the

branches have been lacking. In the next section, as a n X k submatrix of H whose columns correspond to the
demonstration, the diagnosis of the single branch-fault will branches of Q. Then Zmq = Er(HYHT) - ft. Evidently.
be discussed in detail and, more importantly, the graphical Zmq has full column-rank only if H has full column-rank.
conditions for placing the test points will also be stated Since t is a submatrix of a cut-set matrix with the same
and proved. number of rows, Rt has full column-rank if and only if Q

contains no loop [10]. Consequently, the branches of Q
II. SINGLE-FAULT TESTABILITY with Z.q full column-rank cannot contain any loop.

In this section, we will study the diagnosis of single Since Q contains no loop, we can choose a tree T in N
branch-fault, or abbreviately single fault, by using (5). For such that T contains Q. Then label the branches in the
the simplicity of demonstration, only the networks without following order: branches in Q, branches in (T - Q), and

* -dependent sources are considered in this paper. Simple the rest. Corresponding to this labeling, the matrix H has
conditions on testability will be obtained by taking ad- the following from:
vantage of a property that network without dependent
sources has diagonal branch-admittance matrix. Similar - . ,A(H 4---. - (7)
results can also be obtained for the general cases. -k)I F2

To study the diagnosis of networks, we will characterize where IA is an k x k identity matrix. F, and F2 are matrices
a network by its capability to be diagnosed by a single test we 0, i an - x k ieni mtx ( and n m i
vector i.. This is given in the following definition, of 0, 1, and - I, with dimensions k (b - n) and (n - k)

Definition 1: A network N is said to be single-fault x(b - n), respectively, and

testable if when N is perturbed to N + A N, by choosing H, A[k 0 F] 112 [ (n-kI) F2 ]
one appropriate test vector i,, one will be able to de-
termine from the measurements on accessible nodes M: and ZM, can be written as

(a) whether or not N + AN has more than one branch
fault, Zmq = Er( HYH )  (8)

(b) if negative, the faulty branch can be uniquely located.
To locate single fault by using (5), each column-vector of From a well-known formula in (71, it can be shown that

Z., is compared to Av, for consistency and the branches Z_ has full column-rank if and only if there exists a k x nwhose corresponding column-vectors are in parallel with mnsubmatrix/E of E such that the matrixAv. are the potential candidates of the fault. In order to umtiEofEscththearx

achieve single-fault testability, it is essential to have any
two column-vectors of Zmb linearly independent. Let us 0 )k
define this condition as single-fault testability condition. (9)
This is a necessary condition for N to be single-fault E. 0.i
testable. In fact, it is also sufficient as shown in thefollwingtheoemis nonsingular. Expanding the determinant of W by k x k

Theorem 1: N is single-fault testable if the single-fault blocks of 9-. we have

testability condition is satisfied. Convcrsely, if a single test det W = det ( ET),. det ( 2 YH), (10)
vector is used then it is also necessary.
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where (P) is a m x m submatrix of Er (H,YHT), is a matrix
(n-k)X(n-k) submatrix f(HYHr)associated with fi F 1
(Pr) in expansion, and the summation is over all (m x m) [H31 = IAI3 submatrices of KT. Moreover, any term det(H.,YH), in E ErI

(10) can be further expanded by Binet-Cauchy Formula has full row-rank or. equivalently, the matrix H3  has
[61 into full column-rank. The latter implies B u B" contains no

det(H2YHT),=-Edet(H,.),'det(Y)j'det((Hr),j loop. Furthermore, since BUB" contains n branches, it
S- can be concluded that B u B" forms a tree in N'. In other

S(II) words. T'- Q + B" is a connected graph. Since B" C B'.
-where T'- Q + B' is also connected. Thus T' - Q is connected

when branches in B' are shorted or. equivalently all the
(Y)j is a (n - k)X(n - k) principal submatrix of Y accessible nodes are shorted together.

and. is diagonal, Therefore, we have shown that Z,,, having full column-
(Hr), is the b x (n - k) submatrix of Hr whose col- rank implies the existence of a tree T' which satisfies the

umns correspond to those of (H2YHT), in conditions in Theorem 2. This proves the necessary part.
(10), (The sufficient part): Suppose that there exists a tree T

((H is the (n-k)x(n-k) submatrix of (Hr), in N satisfying the conditions of Theorem 2. We will prove
whose rows correspond to the branches in that Z,.q has full column-rank for almost all Y. In the first
(Y)j, step, we want to show that this is true for a particular Y.

(H2) j  is the (n - k)x(n - k) submatrix of H, whose We choose a specific set of branch admittances in the
columns correspond to the branches in (Y)j following way: first, set all admittances to I for those
and the summation is over all the (n - k) x branches in (T - Q), then set the rest to zero. We further
(n - k) principal submatrices of Y. label the branches in the same way as in the necessary part.

Note that in the above expansion, the assumption of Y Then it can be shown
being diagonal has been used. (H,yHr) = [O : In ']

From (10) and (11), it can be seen that W is nonsingular
only if there exist a pair of (i. j) such that det( ET ),. Note that [0 : I,,] is also the submatrix of Hr whose
det(Y)j, det((Hr) , ) ,, and det(H,), are all nonzero. Since rows correspond to the branches in T- Q. From Condition
in this theorem only the connection of the branches is (2) of Theorem 2. (T - Q) is connected when nodes in M
concerned, we will examine only the conditions of are shorted. That is equivalent to say that (T- Q + B') is
det(A:r), - 0, det((HT),)j - 0, and det(H,) , 0. connected and contains all nodes in N' from the discussion

First, consider the implication of det(H 2 ) 0. Let B be in the necessary part. We claim that there exists a subset
the set of branches corresponding to the columns of (H,) B" of B' such that (T - Q + B") is a tree in N'. Suppose
Then from the definition of H2 in (7), it can be seen that that such B" exists. Then the matrix
B r) Q- 0 and det(H 2 ), 0 if and only if the column-vec-
tors of H corresponding to the branches of B U Q are ---
linearly independent. Since H is a cut-set matrix, the latter I n k)
condition is equivalent to that B U Q contains no loop in N is nonsingular. where E is the n x k submatrix of E whose
[101. From this condition together with the fact that there columns correspond to B" in V', because its column-vec-
are n branches in B u Q, we can conclude that B U Q must tors correspond to a tree (TN- Q + B"). Therefore

be a tree T' in N.
Next, consider the implication of det(ET),-0 and

det(( Hr),)j * 0 for some i. First, note that the branches HY r

corresponding to the rows of ((HT),), are exactly those in W'= 0 IA l 0
B which together with Q constitute a tree T' in N. Let H3 - --
be the n x (n- k) submatrix of H whose columns corre- ET 1 0.
spond to those branches in B. Without loss of generality, is nonsingular and Z,,,, has full column-rank for this Y. To
we may assume that T'-, T and, therefore. Hr = [0 : prove the claim, note that (T - Q) has no loop. Thus each

S 'I(,kJ]. Then we let N' be a graph constructed from N by loop in (T- Q + B') must contain one branch in B'. Delete
adding m branches from the reference node no to all the this branch from (T - Q + B'). The resultant graph is still
rest of accessible nodes. Denote the set of these m branches connected and may contain loops each of which contains a
by B'. Then E in (2) is the submatrix of the cut-set matrix branch in B'. Hence, the same deleting process may be

- of N' whose columns correspond to the m branches in B'. repeated until there are only n branches left in the final
Let B" be the subset of B' whose k branches correspond to graph which still contains tT - Q) and k branches in B'.
the columns of E. Now, from (10), we can see that det(E), Denote those k branches by B". Then (T- Q + B") is a
'*0 and det((Hr),) 1 *0 for some i if and only if the tree in N' because (T-Q+ B") is a connected spanning
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subgraph of N' with (n + 1) nodes and (T- Q + B") con-
sists of n branches [101.

In the second and final step, we want to show thatZmq PART PART

has full column-rank for almost all Y. From (10) note that M

det W is a polynomial of branch admittances. By a well-
known result 11 I], it can be shown that det W is nonzero
for almost all Y. Therefore, Z., has full column-rank for
almost all Y. This proves the sufficient part. Q.E.D. COPART A

Note that the conditions given in Theorem 2 depend
only on the graph of N but not on the values of Y. This is
quite desirable in testability design since it relieves us of M
the consideration of the values of Y. However, these condi-
tions must be verified for every two branches. It could be
very cumbersome when N is very large. We will study the Fig. 2. Network of Lemma 1.
improvement next.

At this stage, it is essential to introduce some useful (b) There are at least k absolutely disjoint2 g-paths in N
notations before the improvement of Theorem 2 can be between M and any k nodes.
done. First, it is convenient to have a testing graph N. of Proof (a) - (b): It will be proved by contradiction.
N. N. is constructed from N by connecting all accessible Suppose that (b) fails for a set of k nodes. Construct anodes to a new node a. Then, we would like to generalize graph Na, from N. by connecting these k nodes to a new
the definition of a path. A path is conventionally defined node f. Then by Menger's Theorem, there exists a set R of
as a series of nodes and branches incident with each other (k - 1) nodes which separate N,, into two parts: Part A
and contains distinct end-nodes. For our purpose. define a contains a and Part B contains ft. Note that Part B

. single node as a null-path, and a generalized-path (abbrev. contains no accessible node but does contain at least one
g-path) is either a path or a null-path. inaccessible node. The latter is true because if Part B

Now, we are able to have the two lemmas which will be contains no inaccessible node then 8 is the only node in
used in the proof of the next theorem. Part B and all those k nodes connected to P6 must be all

Lemma 1.: Given N and its associated N.. Suppose that accessible nodes which automatically satisfy (b) and thus
there are r nodes which separate N. into two parts; Parts A violate the assvmption. Let v be such a node. Then v is
and B such that Part A contains a and Copart' A contains separated from a by the same R in both N. and N.e. Hence
no less than r branches. Then the submatrix of Zm, defined by Menger's Theorem, there are at most (k - 1) disjoint
in (5) corresponding to those branches in Copart A has paths between v and a in N.. This is a contradiction.

-.- rank less than r. Therefore, (a) must imply (b).
Proof. First, note that Part B contains no accessible (b)- (a): It will also be proved by contradiction. Sup-

node since all accessible nodes are adjacent to node a. Also pose that (a) fails for an inaccessible node v. Then by
notice that the rank of the submatrix of Zb is exactly the Menger's Theorem, there exists a set R of (k - 1) nodes
dimension of space spanned by the column vectors in the which separate N into two parts: Part A contains a and
submatrix. From (5), this is equivalent to the one spanned Part B contains v. For the k nodes in R U(v), we construct

*- by the vectors Av. generated by the current sources each of a graph N.# from N. by connecting all nodes in R u(v) to
which in parallel with a branch is Copart A. By Thevenin a new node P. Then there are only (k - 1) disjoint paths
Equivalent Theorem, Copart A and those current sources between a and P in N.,9. Hence in N, there are only (k - I)
can be represented by a (r - 1)-port, as shown in Fig. 2. absolutely disjoint g-paths between M and R U(v). This is
Each port is driven by a voltage source. Since there are a contradiction. Therefore, (b) must imply (a). Q.E.D.
only (r - )-ports, by superposition theorem, the space Then we can have the following theorem.
spanned by Av, generated from these ports has dimension Theorem 3. Given a network N which has no parallel
no larger than (r - 1). Therefore, the submatrix of Zmb branches and its associated N., the following statements

* corresponding to the branches in Copart A has rank less are equivalent.
thanr. Q.E.D. (a) N satisfies the single-fault testability condition for

Lemma 2: Given N and its associated Na, the following almost all values of Y.
two statements are equivalent: (b) There are at least three disjoint paths between a and

(a) There are at least k disjoint2 paths in N. between a any inaccessible node in Na.
and any inaccessible node. (c) The local connectivity between a and any inaccessi-

ble node is at least 3 in N.

'C art A of a graph G associated with Part A is the subgraph of G Proof (b) *- (c): Directly from Menger's Theorem [7].
fo;ed by removing all the nodes in Part A from G. (a) - (b): We will prove it by contradiction. Let (b)2Two paths are disjoint if they have no common node except the be false. Then there are at most two nodes which separate
end-nodes. And they are absolutely disjoint if they have no common node Na T t pr art A co node a adpartB
at all. N. into two parts: Part A contains node a and Part B

...........................
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contains at least one inaccessible node. Since all accessible The remaining sub-case is that there is a cut-node v0
nodes are adjacent to a, they cannot belong to Part B. If between nodes in P, u P, and (v, vh). From Statement (b).
Part A and Part B are separated by one node, then the there exist two absolutely disjoint g-paths between (va, vb)

p branches in Copart A has no effect on the measurements and M. Let P4 , P5 be two such g-paths. Because v0 is a
S on M and henceforth the faults in Copart A cannot be cut-node, either P4 U P5 doesn't contain any node of P, U P2

determined. Now suppose that there are two nodes, say a or only one of P4 and P contains nodes of P, U P and it
and b, separating Part A and B. Then there are at least two must also contain vo . In the former case, it can be shown
branches in Copart A because N is connected and Copart by arguments similar to those of the preceding cases that a
A contains at least three nodes. Therefore, from Lemma 1. tree obtained by adding enough branches to the union of
the single-fault testability condition cannot be satisfied. In bl, b,, P1, P,. P4, and P satisfies the conditions of Theo-
either case, there is a contradiction. Therefore, Statement rem 2. In the latter case, without loss of generality, assume
(b) must be true. that P4 contains vo , va, and nodes in P, U P,. Let P2 be the

(b) -- (a): Let bI and b2 be any two branches in N. sub-path of P4 which contains va and exactly one node in
Branches b, and b, cannot be in parallel from the assump- P, U P,. Then it can be seen that the union of b1 , b,. PI,
tion, hence there are at least three nodes incident with b, P., P4, and P contains no loop. Therefore, a trec in N can
and b,. From Lemma 2 there are three absolutely disjoint be obtained by adding enough branches to the union. And

-. g-paths in N between M and any three nodes. Thus there this tree satisfies the conditions of Theorem 2.
" - are three g-paths between M and some three nodes incident Summing up, for any two branches, a tree T can be

with b, or b2. The Statement (a) will be shown by con- obtained to meet the conditions in Theorem 2. Thus by
- structing a tree satisfying the two conditions in Theorem 2 Theorem 2, single-fault testability condition is satisfied and

based on these three g-paths. Statement (b) is proved. Hence the proof is completed.
First, consider the case that b, and b, have a common Q.E.D.

node. Then a tree T can be constructed by adding enough Comparing Theorem 3 to Theorem 2. both of them
branches to b,, b., and the three g-paths. Moreover, T- provide graphical conditions. However, the conditions in

.- . (bl, b,) is a subgraph of three components each of which Theorem 3 are much simpler to implement and they only
contains a g-path and therefore an accessible node. Thus have to be verified once for every inaccessible node. TheT -(b 1 , b2) is still connected when the nodes in M are latter advantage becomes more significant when N is large.
shorted together. And hence T satisfies the two conditions The applications of Theorem 3 will be illustrated by two
of Theorem 2. examples in the next section.

Next. for the case that b, and b2 have no common node.
let each of the three g-paths contain only one node incident EXAMPLES

with b, or b. This can be achieved by shortening a path To demonstrate the versatility of the above results, two
which does not satisfy this condition. Denote these g-paths examples will be provided. The first example is to illustrate
by PI, P2 , and P3. Without loss of generality, assume that the usage of Theorem 3 to verify the single-fault testability

. i- b, joins P, and P, and P3 contains one of the two nodes condition while the second one will extend the usage of
(va, vb) incident with b2 and v, in M. We will obtain the Theorem 3 to the choice of test points or. equivalently,
desirable tree by modifying P,, P2 , and P3. additional accessible nodes to satisfy the testability condi-

There are two sub-cases to be considered separately. The tion.
first sub-case is that va, bb and one node of P, U P2 are in a Example 1: Consider a ladder network N as shown in
nonseparable subgraph in N. Then there is a loop that Fig. 3(a) with three accessible nodes a. b, and c. Construct
contains all three nodes. In this loop, there are two abso- the associated N. by connecting these three accessible
lutely disjoint paths each of which contains exactly one nodes to a new node a, as shown in Fig. 3(b). It is easy to
node of b2 and one node in P, u P2. Denote the path that show that every inaccessible node in N. has exactly 3
contains va by La and the other by Lb. Now in P3, there disjoint paths to a: Therefore, by Theorem I and 3, N is
exists a sub-g-graph such that it contains vc and exactly single-fault testable. In fact. stages can be arbitrarily in-
one node, say v0 , in La U Lb. Without loss of generality, we serted into N without destroying the testability.
may assume that v0 G La. Then a new g-path P3' can be Example 2: Consider a more complicated network N. as

" formed by the union of the g-path of P3 and the g-path shown in Fig. 4(a) with three accessible nodes a, b, and c.
between vo and va of La. Note that the other node v. of b2  Its associated N. is shown in Fig. 4(b). It can be shown that
is connected to L I U L2 by the path Lb which is absolutely each of nodes d. e. and f has only two disjoint paths to a.
disjoint from P3. Thus a tree T can be obtained by adding Thus N is not single-fault testable. To achieve testability,
enough branches to the union of b,, b2. Lb, P1, P,, and P3. there are two remedies. The apparent one is to introduce
And T-(b,. b2 ) must be connected when nodes in M are an additional accessible node. Any one of the nodes d and
shorted together because the union of Lb, PI, P,, and P3 e can be the choice. Fig. 4(c) shows N with the additional
which does not contain b, or b 2 consists of exactly three accessible node d which can be shown to achieve testa-
components each of which contains at least one node in M bility. Another remedy is to have new branches inserted in
and the added branches do not alter this fact. Therefore, T the network. This insertion can be either permanent if the
satisfies the conditions of Theorem 2. network performance can be compromised. or introduced
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ABSTRACT i.e., apply same iv to the original network N and
the perturbed netwoek N+AN.

In the fault diagnosis of linear networks, a
method which requires only the solving of linear Denote Zn and partition it in the following
equations has been attracting much attention [I- way:
51. This particular method was initiated inde-
pendently by Biernacki and Bandler (11 and Sakla,
El-Narsy and Trick [21. Since then, numerous use- Zn  Yn 1 (4)
ful and interesting results have been published in
a rather short time. It is the purpose of this
paper to provide a sumary in this area of re- where Zmn C Cmx n, Ztn C Ct x n , and t-n-m. Under
search. Furthermore, an example is given to show this condition, it can be shown that

- how this idea can be "stretched" to apply to those
cases which normally would not be applicable. Zmb Jb - Avi (5)
This is achieved by use of multiple frequency where
testing and fault-logic equations. Zmb - ZmwnA (6)

and
I. A Theory of Fault Diagnosis Jb * -Yb (vb+Avb) (7)

Let N be a connected, b-branch, (n+l)-node, In the above equation, a row of AYb is entirely
(ml)-terminal, linear, time-invariant lumped net- zero if and only if the corresponding branch is
work. Out of the (n+l) nodes, (m+) are accessi- fault-free. Hence, a nonzero entry of Jb indi-
ble terminals for both excitation and measurement. cates that the corresponding branch is faulty.
In this section, the following notations are used The converse is also true if the rare possibility
for N. of cancellation is disregarded. Since in Eq. (5),

both Zmb and Av. are known, we can solve the equa-
vm - terminal (accessible node) voltage vector. tion for Jb and thus obtain the location of the
im - terminal current vector, faulty branches. The usage of Eq. (5) to locate

. vb - branch voltage vector, the branch faults is called branch diagnosis (1,2,
ib - branch current vector. 4).
Yb - branch admittance matrix.

" Yn - node admittance matrix. Alternatively, Eq. (5) to (7) can be
rearranged into the following equations:

Note that Yb and Yn need not be symetrical, and
-- m n" Ava (8)

ib " Yb Vb (1) where

Jn"A Jb. (9)
Yn = A Yb AT 

(2)

In Eq. (9), an entry of in is nonzero only if the
where A is the incident matrix of the graph. corresponding node is incident with at least one

faulty branch. The converse is almost always true
Now consider that the network N is perturbed in practical cases. Define a faulty node as the

- to (N+&N) in the way that Yb is perturbed to one incident with at least one faulty branch.
Yb+AYb, and the graph remains the same. In the Then we can solve Eq. (8) for Jn to locate the

* perturbed network, we denote the corresponding faulty nodes. Once the faulty nodes are located,
voltages, currents, and admittances by v..Av., the faulty branches can be determined from Eq.
im*Ai., Vb+Vb, ib+Aib, and Yn*hYn, respectively. (9). This approach is called node diagnosis

13,51. Branch diagnosis and node diagnosis are
Given Yb and the graph, the purpose of the the two major approaches to locate the faults by

fault diagnosis is to locate the nonzero entries solving linear equations.
of AYb from the information im, Aim, and Avm.
Note that v. can be calculated from im and N. There is a unique problem shared by both
Without loss of generality, we may assume that approaches, i.e., they all depend on solving the

equation with the following form:
Ai 0 (3)
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where the entries of the matrix B and the vector p x (ITs.) 1 (14)
are- kntwn and are in the complex field. Moreover,
Eq. (LO) in the fault diagnosis usually has more where gj 1bjl,bj2. .,bikJ.
unknown variables than equations. Therefore, the
solution is not unique in general. Fortunately, The above result can nov be applied to the
in most practical cases, there are only a small node-fault-equation (8) to locate uniquely the
number of branch faults, thus a different but faulty nodes if the number of faulty nodes is
still small number of faulty nodes, in a faulty strictly less than the global column-rank of Zan.
network. Taking advantage of this fact, we can The application to the branch diagnosis needs more
restrict the set of solutions x to those with only elaboration and can be found in 141. Note that
a smll number of nonzero entries, and then the this result can also be applied to any other fault
solution can be unique. This will be discussed equation having the form of (10).
next.next 

The remaining big question is that whether or
Reconsider Eq. (10), not the theory developed above is robust, i.e.,

whether or not the theory based on the nominal
a x a p (10) circuit is still valid for the actual circuit

whose parameters always differ from those of the
where x c C". p c CO. B € CUXn and n >m. Let nominal circuit. The answer depends on how the

theory is implemented. One such implementation
Xk - (x c C" n mber of non-xero components will be presented next. Note that (11), (12), and

of x not more than than k). (13) are equivalent to the question that whether
or not p is a linear combination of Bi - (bil,bi2 ,

We want to investigate the uniqueness of the ...,bikJ. The question has an answer in the
solution x C Xk. residual number

" Definition. The global column-rank of I is e0 - pT(I-B i Bi*)p
said to be r if every combination of rcolumns of
U is linearly independent, and some combination of where si+ is the pseudoinverse of Si. It is known -

(r*l) columns of 5 is linearly dependent, that e0-0 if and only if p is a linear combination
of column vectors of 5B It can be shown that

Let .0 be the range of B. Then the following this test is robust (71: This implementation was

theorem is given in [31. also suggested in Ill.

Theorem I. Let p c 0. Then Eq. (10) has a An important development should also be noted
unique solution x c Xk for almost all p e 0 if and that the global column-rank of Zb and Zn can be
only if the global column-rank of 5 is at least shown that it depends mainly on the graph of N,
k+l. not on the circuit parameters [3,41.

Note that for fault diagnosis problem, p c 0 So far, we have considered the case with
is guaranteed. When Theorem I is satisfied, the single test signal and with single frequency. In
solution of (10) can be obtained in the following the next section, we will show, by an example, how
way. Let the column vectors of 5 be denoted by the theory can be "stretched" when multiple fre-

quencies are used and how a solving of nonlinear
a - Ibl,b 2 ,...,bn) equations can be avoided by use of fault-logic

equations.
Let the test matrices Ti be constructed in the
following way: 11. Implementation on an Active Filter

T i " Jbilbi2 ,...,bikP], i - l,2,...,s,s . C(n,k) Consider a 3-pole Low-pass active filter as
shovn in Fig. I. We are to locate the single

for every combination of k columns of B. Then, faults (resistors and capacitors) in this network
by using the input and output terminals as the

(A) If only accessible nodes. It can be easily shown
Rank Ti a k * 1, i * 1,2,...,& (11) that the global coleeni-rank of both Zmb and Zan is

one, and therefore according to the theory the
then there is no solution x c Xk. circuit is not one-fault diagnosible. We will

show how to use multiple frequency and fault-logic
(a) Otherwise, there is a unique j such that equations to alleviate the problem.

Rank Tj a k (12) Our algorithm is hierarchical in essence,

and i.e., the fault is first isolated into a subnet-
work from a single test signal and then this

Rank Ti a k * 1 , i 0 j. (13) faulty subnetwork is further diagnosed by the
usage of multiple test frequencies. The algorithm

and the unique solution x t Xk is given by will be described as follows.
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Step A: The circuit is first reformulated The relation between (Vo,V2 ) and circuit parame-
into a block diagram as shown in Fig. 2. The re- ters R's and C's is nonlinear. In order to avotd
lationship between the transfer functions, denoted solving nonlinear equations, we propose to do the
by Ai's and the R's and C's is given as follows: following. To save subscripts, denote Vo by V and

V2 by W.

A2  I)(SC1 ) Assume that Bi * (Si*ABi), i=1,2,3,4.
A3  I/R 2  Exciting the ciruit by k different frequencies,
A4  I/R7  (15) the above equation becomes
A5 * -I/(G3+SC 2 )
A6  R5/( 4R6 SC3 )

U Ii is the input, and Vi and V, are the outputs.
The extra signal sources Ji, i-l,2,... ,6, at the S2 V2 S2 V2 S3V2-W2 32 S2V2 S2 V2 S3 V2 -W2 B2
output of the blocks Ai is the fault compensator 2 2 2 2

of the block Ai. The meaning of the fault compen-
*' sator is given in Fig. 3. Note that if Ai is . £13 . B3

changed to (Ai&AMi) then Ji=Ui&Ai, where Ui is the""input to Ai . Assuming that Ui*O , we have Ji-O if SkYk S2Vk S3Vk -Wk AB4 SkVk SZVk S3Vk -Wk B4

and only if Mi0. Our first step is to locate k k k k
non-zero Ji's from Vi and Vo . (19)

" From Fig. 2, it can be shown that We need to determine non-zero ABi's from (19).1 Since the R.H.S. is known, Eq. (19) has the formr 1 of (10). Therefore, Theorem 1 again can be
AVi  1 0 0 0 0 J2 applied. When the k different frequencies are

()J3 properly chosen, the global column-rank of the L.

J4 (16) H.S. matrix is three. Therefore, we can uniquely
AVol 0 A3A5 A6AG A5A6AG A5A 6 AG A6AC AG J_ determine two non-zero A5i's. From these non-

JI zero A&i's, the faulty circuit parameters can be
located from (18) by a logic argument. This can

where AG-1/(-A 4A5 A6 ). This equation has the form be presented formally as follows.
of (10). Therefore Theorem I can be applied.

* Since the last four column-vectors are linearly From (18), a set of fault-logic equatLon is
dependent, we cannot distinguish among (J3,J4,J5, constructed:
J6). Let the last four column-vectors be grouped
into one. Then the resulting matrix has three F(BI) - F(R7)
columns and whose global column-rank is 2. There- F(B2 ) = F(R3 ) V F(R4) V F(R5 ) V F(R6) V F(C3 )
fore, it is one-fault diagnosable, i.e., we may F(B3) - F(C2 ) V F(R4 ) V F(R5 ) V F(R6 ) V F(C3)

determine whether A1 , A2 or one of (A3 ,A4 ,A5,A6 ) F(B4 ) - F(R2 ) (20)
is at fault. In view of (15), by use of single
signal testing, we can isolate the fault into The first fault-logic equation reads that ASI is
three groups: RI, C1 and the rest. This is non-zero if and only if AR7 is non-zero. The sec-
established in Table Is. ond fault-logic equation reads that AB2 is non-

zero if and only if AR3 ,AR4 ,&ARAR 6 , or AC3 is
Step B: The faulty subnetwork isolated by non-zero. Similarly for the third and the fourth

Step A can be further diagnosed by the usage of fault logic eqationa. We have assumed that no two
multiple test frequencies. First, observe that faults wIl occur in such a way that their effects
the only part that requires further diagnoois is will cancel each other, which is rare in practice.
the group of (A3 ,A4 ,Aj ,A6 ). It can be described
by the transfer function of Vo/V2 where V0 is the Finally, we need to solve the set of fault-
output voltage of the circuit and V2 is the output logic equations (20). This can be done by use of
of A2 and which can be calculated if A2 is fault- a truth value table. The solution, together with
free. This can be determined from Step A. The the solution in Step A, is given in Table 1. An
expression of Vo/V2 is given by entry 0 means that MAi*O in Table Ia and Agi*o in

Table lb. An entry X means MAiO in Table Ia and

Agi-O in Table lb. For example, the second row ofV0 = B4 (17) Table Ia reads that if AA2 *0, and &AI-6A3 -&A4-&A 5
=

V2  BIS+B2S2+B3S3 A6-0 then C1 is faulty. The fifth row of Table
lb reads that if AB2*0, £3350, and AB-A34=0 then

* where S is the complex frequency, and a fault occurs among (14 ,R5 ,36 ,C5 ). The reason
that the last group of circuit parameters cannot

-1 I/R7 be further distinguished can be easily found from
2 (R4R6 C3)/(R3R 5 ) (18) the circuit. They are related as a single product

B3 - (R4R6C2C3 )/RS and therefore, they cannot be further diagnosed
L B4 I/R2 unless additional test points are introduced.
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This implementation has many interesting (61 C. Lin and R. Liu, "Fault Directory Approach
points: - A Case Study", EFF 1981 Int'l! Ravinnna.m

on Circuits and ysteams Prac~edinwu, pp.
1. The fault diagnosis decision is based on 239-242.

matching fault patterns (Table 1). It is like the 171 L.C. Suen and R. Liu, "Determination of the
fault dictionary approach for fault diagnosis of Structure of Multivariable Stochastic Linear
digital systems. It is extremely simple from the Systems", IEEE Transactions on Automatic
user's point of view. Such table is called fault Control, pp. 458-464, 1978.
directory (6 1. 181 C.S- tn and R. Liu, "Fault Diagnosis on a

Navy Candidate Circuit", Notre Dame memoran-
2. The post-fault computation is minimal. dum, March 1982.

The only computation required is the calculation
of residuals. Its complexity depends on the
number of faults, not the size of the network. 1

Al A2  A3  A4  A5  A6  Faulty Components
3. The use of multiple frequency and fault- A1_A 2 _A__A __A5  _____ulty__omponents I

logic equation avoids a complex and non-robust
computation of solving a set of nonlinear equa- 0 X X X X X R!
tions.

4. Our computer simulation study [81 shows X 0 X X X X C1

that this method of implementation is very robust. X X 0 0 0 0 Others
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0. THE BACKGROUND

During the past quarter century, the engineering community has been wit-

ness to tremendous strides in the art of electronics design. On the contrary,

,. electronics maintenance has changed little since the day of the vacuum tube.

As such, our ability to design a complex electronic circuit is quickly out-

distancing our ability to maintain it. In turn, the price reductions which

have accompanied modern electronics technology have been paralleled by in-

creasing maintenance and operation costs. Indeed, many industries are finding

that the life cycle maintenance costs for their electronic equipment now ex-

ceeds their original capitol investment.

Given the above, it is quickly becoming apparent that the electronics

.U maintenance process, like the design process, must be automated. Unfortunate-

ly, the 50 years of progress in circuit theory, on which our electronics de-

sign automation has been predicated, does not exist in the maintenance ares.

- As such, the past decade has witnessed the inauguration of a basic research

program to lay the foundations for a theory of electronics maintenance and a

parallel effort to develop operational electronic maintenance codes.

Thus far the greatest success has been achieved in the digital electron-

ics area to the point that commercialized test programs are now readily avail-

able. On the other hand, the analog testing is still in its infancy. This is

not without reasons.

National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
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For one reason, the analog fault diagnosis had a late start. The re-

search and theory development of digital testing started in the mid 1960's

when the large-scale computers were readily available. Not until a decade

later did a commercialized test program first become available. On the other

hand, it was not until the mid 1970's that the test technology community began

to face up to the analog test problem. Indeed, even in a predominantly digi-

tal world, analog systems were not disappearing. Analog systems were proving

to be among the most unreliable and least readily tested of all electronic

*. systems. Assuming the same speed for the development of digital testing, a

commercially available analog testing program would not have been ready until

* the mid 1980's.

The main reason is that the analog fault diagnosis has inherited certain

difficult problems which are not shared by digital fault diagnosis. These

will be explained later.

I. INTRODUCTION

One can trace as far back as the early 1960's to find that circuit

theorists had an interest in the analog fault diagnosis problem [1,21.

However, there was only sparse interest thereafter [3-9]. It was not until

' 1977 that a collection of papers [101 appeared, and a special issue followed

[11]. In the meantime, the interest among circuit theorists suddenly became

active [12-521. An excellent review paper with extensive references for the

pre-1979 period appeared in the special issue [121.

In this paper, only the post-1979 activities will be discussed. The

Fault/Tolerance Compensator approach will be extensively discussed because it

is probably the most promising approach at the present time, (based on the

authors' prejudiced point of view?)

. ."
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As a start, a simplified analog fault diagnosis problem is presented in

Section II and some major issues are discussed in Section III. The Element-

Value Solvability Problem is discussed in Section IV. A fault/tolerance cow-

" "pensation model is presented in V. The k-Fault Diagnosis Problem is the ideal

case (Section VI) and the tolerance case (Section VII) follows. A conclusion

is given in Section VIII.

II. AN INTRODUCTION TO ANALOG FAULT DIAGNOSIS

Consider a simple system

Ax- u

y - Cx

where A e Rn xn is non-singular, u e Rn the input, y e Rm the output, x e Rn

the internal variable, and C a selector matrix (each row of C has one and only

one entry being 1 and the rest of them 0), which selects certain components of

x for measurement. Therefore, m is the number of test points, and n the size

of the system. In general, m << n.

Suppose that A is perturbed to (A + AA). With the same input u, x and y

will be perturbed accordingly, i.e.,

(A + AA)(x + Ax) = u
(2)

(y + Ay) - C(x + Ax)

We will now pose the first problem.

Problem 1: (Element-Value Solvability Problem)

Can we determine AA from the input/output measurements?

The answer to this problem is relatively simple. If all the internal

variables can be measured, i.e., m - n, then one can determine (A + AA), and

hence AA, with n independent inputs. The condition m = n is also necessary if

no additional information is known about AA.
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Since the constraint m << n is imposed upon us, we have to ask the next

realistic question. Suppose that a perturbation (y + Ay) is observed at the

output and we want to locate which entries of A have been perturbed. In this

case, it is quite realistic to assume that the number of entries of A, say k,

were perturbed at an instant when a perturbation was observed at the output is

small (k << n). In other words, AA is a sparse matrix. Furthermore, we need

only to determine the location of non-zero entries of A, not their values. We

can now pose the second problem.

Problem 2: (k-Fault Diagnosis: The ideal case)

With the constraint m << n, and the assumption that AA is sparse, can we

determine the location of non-zero entries of AA from the input/output

measurements?

It turns out that if certain conditions are met, we can uniquely determine the

non-zero rows of AA. (Fortunately, this information is enough for us to

locata the faulty circuit elements.) This can be seen as follows.

Subtracting (1) from (2), one obtains

CA- 1 AA(x + Ax) -Ay (3)

or4*4
CA.1 Z -Ay (4)

and

Z & AA(x + Ax) (5)

Note that since CA-1 is fat (m < n), the determination of AA from (3) is not

possible. On the other hand, barring cancellations, it can be seen from (5)

that a component of Z is non-zero if and only if the corresponding row of &A

is non-zero. Therefore, the problem is reduced to the location of non-zero

components of Z from (4) when the matrix CA-1 is fat. A satisfactory solution

to this problem can be found in (30], and it will be presented later.
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In the final case, the problem of tolerance will be introduced. In

practice, System (1) can not be built precisely according to the specified A,

i.e., the nominal A. A specified tolerance usually is also given so that an

- actual system (A + AAt) is said to be "good" if AAt is within the tolerance.

In this case, the perturbation AA will have two components,

AA = AAt + AAf (6)

where AAt is the deviation of actual A from nominal A due to the tolerance,

and AAf is due to some large deviation (fault) of some entries of A. It is

*- realistic to assume that AAt is not sparse but the value of each entry is

"small" and that AAf is sparse but the values of non-zero entries are "large".

Now, we can state the third problem.

Problem 3. (k-Fault Diagnosis: The tolerance case)

With the constraint m << n, and the assumption that AAt is small and AAf

g is sparse but non-zero entries are large, can we locate the non-zero

entries of AAf from the input/output measurements?

The above problem can be posed in two different kinds of setting.

1. The Problem of Robustness. We may design a testing program (for

-" k-fault isolation) based on the ideal case, and then put the testing program

into a simulation test to see if this program is robust under the tolerance

case. This is the state-of-the-art at the present time. It turns out that to

design a robust testing program is a very tough problem. For one thing, any

robust testing program should avoid the inversion of a matrix, or keep it at a

minimum.

2. The Fault Decision Problem. This tolerance problem can also be posed

as one of decision/detection problem. This can be seen as follows. Let

Zt - AAt(x + Ax)

Zf - AAf(x + Ax),

K-
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then Eq. (4) can be represented in Fig. 1. In this figure, Zt is generally

small while the non-zero entries of Zf are generally large, but sparse. The

problem is to locate the non-zero entries of Zf from Ay. This is a non-

conventional decision/detection problem. At the present time, it is still an

open problem.

At this point, it is important to notice that when the number of test

points is reduced, the nature of the problem changed completely from Problem 1

to Problem 2; and that when the tolerance problem is introduced, the issue of

computation becomes more complex.

Finally, note that what has been presented is a simplified analog fault

diagnosis problem. In general, the matrix A is a (nonlinear) function of

circuit parameters as well as frequencies.

III. IMPORTANT ISSUES OF ANALOG-FAULT DIAGNOSIS

In this section, we will discuss two major issues of analog fault

diagnosis problems and three important measures of the effectiveness of a

*. testing program.

The two major issues are the tolerance problem and the problem of

modeling and simulation of faulty components:

• Tolerance: Possibly the single greatest unknown in the design of an

* analog testing program is the effect of the tolerances of the "good"

component on the performance of a testing program. This tolerance problem

has absolutely no counterpart in the digital testing problem. The effect

of these tolerances can completely dominate the performance of a testing

program. In an analog circuit, unlike digital circuits, the actual values

of circuit parameters almost always deviates from the nominal values.

Therefore, any analog testing program has to face up to the problem of

tolerance problem.
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. S Modeling and Simulation of-Faulty Components: Unlike the digital testing,

a complete modeling (and thus simulation) of faulty components is not

- available for the development of a testing problem. The modes of faulting

is too many to encounter. For example, a faulty resistor may have an

infinite number of possible resistances (outside of the tolerance). In

fact, it can even be nonlinear. A faulty capacitor may have a model of

parallel RC. A faulty operational amplifier may have a model of 22

• "- transistors 12 resistors and a capacitor! A good transistor may behave

*" like a faulty one if its bias is switched due to a fault which occurred

elsewhere! In fact, in a nonlinear analog environment, we are still in

the process of developing viable CAD models for nominal devices, let alone

for faulty devices. As such, a thorough test of the performance of a

testing program is impossible. Furthermore, each testing program has to

be designed based soley on the nominal values of the circuit.

Besides the two major problems mentioned above, there are three important

measurements of the effectiveness of a testing program.

S Test-Points. Due to the practical restriction that there are usually only

a few nodes accessible for measurement and testing, the number of required

test points has to be as small as possible.

* Post-Fault'Computation. Since the post-fault computation is directly re-

lated to the per unit cost, it is important to keep the post-fault compu-

tation time short and simple.

0 Robustness. This issue has been raised many times; only because it is in-

deed the dominant issue at hand. We want the testing program to be relia-

ble when the fault/tolerance ratio is small.

L. mism
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IV. THE ELEMENT-VALUE" SOLVABILITY- PROBLEM

The element-value solvability problem is initiated by R.S. Berkowitz [I]

in 1962. This problem is presented in Fig. 2. The network N consists of RLC-

elements, possibly with dependent sources. There are m accessible terminals.

*The problem is to determine the circuit parameters, RLC, from the measurements

at the accessible terminals.

It is easy to see that at the terminals one can at most measure the m-

port input impedance matrix H(S) and this can be done, for example, by system

identification methods. The transfer function matrix is a function M of fre-

*. quency S and circuit parameter p, i.e.,

M(S,p) - H(S)

The problem is to solve for p from H(S). In other words, it is a m-port

network synthesis problem when the graph and the element-kind is prescribed.

In general, M is a nonlinear function of p. As a rule of thumb, when the j
number, m, of accessible nodes (test points) increases, M becomes "less non-

linear", and vice versa. This is an important trade-off problem. In this re-

gard, there are two standard results to be quoted constantly as a measuring 44

stick. Trick, Mayeda and Sakla [151 have shown that if all nodes are accessi-

ble then M becomes linear and p can be uniquely determined.

On the other hand, for a one-port RC-ladder, their element values can

always be determined, regardless of the number of stages. This follows from a

well-known RC synthesis theorem. This example shows that there exists a

circuit-type that regardless how large the circuit is, the circuit parameters

can be determined from only two accessible nodes. However, in this case M be-

comes "extremely nonlinear". To see this, a 4-stage RC ladder is studied

[271. The continue-fractional expansion method is used to determine the cir-

cuit values. A striking result has been found. When the significant digits



used for computation is eight, the answer came out correctly. However, when

it is reduced to seven, the answer becomes erroneous. In fact, some values of

R and C become negative! This shows that the RC ladder is solvable in theory,

but it will yield erroneous conclusions even with a slightest computation

error. Therefore, it becomes unreliable.

In between the above two extreme cases of the computation-test point

trade-off, the most elegant result is found by Navid and Willson [131. First,

their solvability condition is on the topology not on the elk-ment values.

Therefore, it can be tested very easily. Second, the number of test points

required is not too large, but roughly the square root of the number of

branches. Finally, it is computationally tractable, although a set of non-

linear equations has to be solved.

A necessary and sufficient condition on local diagnosability of nonlinear

* circuits is elegantly derived by Visvanathan, Sangiovanni-Vincentelli [391 and

Saeks et al. [40]. This is an important contribution because it provides a

theoretical limit. It will be most helpful to see if such a condition can be

made robust in the presence of tolerance.

-% In summary, the advantage of the element value solvability method is that

it avoids the tolerance problem because all parameters are calculated and can

be compared to see if they fall within the tolerance. The method also can be

applied to the case when the number of faulty elements is large. The major

difficulty with this method is that they have to solve, in general, a set of

nonlinear equations every time they are tested. The number of nonlinear

" - equations to be solved is no less than the number of internal parameters,

which in general is large. In order to make this method work, we need a

computational procedure which is robust for a large number of nonlinear

equations.

•..........,.-
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V. A FAULT/TOLERANCE- COhPENSATION MODEL

In this section, a model is intrcduced which can be used effectively for

fault diagnosis problems. This can be simply explained in Fig. 3.

Suppose that the actual admittance (Fig. 3b) of particular branch is

deviated from its nominal admittance y (Fig. 3a) by Ay. The deviation may be

caused by the tolerance (in this case Ay is small), or by a fault (in this

case Ay is large). According to a circuit theory, the deviation can be com-

pensated by a current source j which depends on the deviation Ay and its

branch voltage. This is true whether hy is linear or nonlinear (in this case,

a small signal is assumed). The value of j in general is a complex number

(even when y is real) and it is "large" if the deviation is caused by a fault,

and it is "small" if by a tolerance. Hence, the fault diagnosis problem be-

comes a detection problem of whether j is large or small.

The same is true for a three-terminal device as shown in Fig. 4. Here Y

is a 2x2 admittance matrix. We need two current sources to compensate the

deviations. If the device is a "good" transistor, Y is its linear model and

the compensators represent the errors caused by the linear approximation to

the nonlinear transistor. If the device is a "faulty" operational amplifier,

the compensators may represent the large deviations of the gain, or even the

deviations caused by its internal transistors and capacitors. In fact, this

model can be applied to any three-terminal device or any three-terminal

sub-circuit.

In general, an n-terminal device (chip) needs (n-) current sources to

compensate its deviations. When all actual devices are replaced by their com-

pensation model, we have a Fault/Tolerance Compensation Model for the actual

circuit. In this model, it consists only of the nominal circuit excited by

, . *.K.. .. ,.. : .- .: . * , . . . . . * . .*.
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actual excitations and by fault/tolerance compensators. Therefore, our prob-

U lem is to locate the fault compensators.

Consider the circuit in Fig. 2a, with (m + 1) accessible nodes and b

branches. Its Fault/Tolerance Compensation Model is given in Fig. 2b, where

* b is the F/T compensator vector. When these two circuits are excited by the

same In, and the responses Vm and (Vm + AVm ) are measured respectively, it is

easy to show that

Zmb Jb -Arm (7)

where Zmb is the branch-to-accessible node transfer function matrix, depending

*: only on the nominal circuit.

Equation (7) was first derived by Biernacki and Bandler [371, based on

linear perturbations. By use of the Fault/Tolerance Compensation model, we

have shown that Eq. (7) is also valid for linear nominal circuit with

nonlinear perturbations. In fact, the perturbations can be from R to parallel

RC, or from an operational amplifier to a complex circuit of (nonlinear)

transistors and capacitors. Therefore, the problem of modeling faulty devices

.* can be avoided as long as its nominal model is linear.

.,. Finally, the compensator Jb has two components:

Jb - JbF + JbT (8)

where JbF is the fault compensator and JbT is the tolerance compensator. JbF

is sparse but non-zero entries are large while 3bT is small but unknown to us.

- The problem becomes the determination of the non-zero entries of JbF from (7)

and (8). This will be discussed in the next two sections.

VI. k-FAULT DIAGNOSIS: - -The- Ideal-Case

LIn this section, we assume that the number of accessible nodes m is much

- "smaller than the total number of nodes n, i.e., m << n. We further assume

that the number of faulty branches is much smaller than the total number of

i
. . . . . . .
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branches, i.e., k << b. The nominal circuit is linear and it can be repre-

sented by Eqs. (7) and (8). Finally, we assume that JbF - 0. In other words,

we want to locate the non-zero entries of Jb from (7), where Jb is sparse.

A solution to this problem can be found in (491, which will be presented as

follows.

Consider the following equation:

B x p (9)

where x E Cn, p Cm, B e Cixn and n > m. Let

Xk { (x e Cn I number of non-zero components
of x not exceeding k}.

We want to investigate the uniqueness of the solution x e Xk.

Definition. The global column-rank of B is said to be r if every combi-

nation of r columns of B is linearly independent, and some combination of

(r+l) columns of B is linearly dependent.

Let fl be the range of B. Then the following theorem is given in [491.

Theorem-l. Let p e Q. Then Eq. (9) has a unique solution x e Xk for

almost all p e n if and only if the global column-rank of B is at least k+l.

Note that for fault diagnosis problem, p e n is guaranteed. When Theorem

1 is satisfied, the solution of (9) can be obtained in the following way. Let

the column vectors of B be denoted by

B = (bl,b 2 ,...,bn]

Let the test matrices Ti be constructed in the following way:

Ti - [bil,bi 2,...,bik,p], i = 1,2,...,s;s C(n,k)

for every combination of k columns of B. Then,

(A) If
-j

Rank Ti = k + 1, i 1 l,2,...,s (10)

then there is no solution x c Xk.

. . ..
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(B) Otherwise, there is a unique j such that

a Rank Tj - k (11)

and

Rank Ti - k + I , i * j. (12)

Furthermore, the unique solution x e Xk is given by
p

x - (BjTBj) - 1 BjP (13)

where Bj - [bjl,bj 2,...,bjk].

As a consequence, the k-fault diagnosability depends on the global

column-rank of Zmb. Let us now examine the issue of (1) post-fault computa-

tion and (2) the number of required test points.

= 1. Post-Fault-Computation. The post-fault computation includes only

Eqs. (10-13) It involves the test of the rank of mx(k+l) matrices Ti, and an

inversion of a kxk matrix (BiTBi). This is a very good feature since both m

and k are small. More importantly, the size of these matrices does not depend

on the complexity of the circuit b. The total post-fault computation can be

implemented on a mini-computer with computation time ranging from a fraction

of a second to the order of a few seconds.

2. Number-of-Required-Test-Points. For k-fault diagnosis, it is neces-

sary for the number of required test points m > k + 1. It is important to

note that it again depends mainly on k not on b; the complexity of the

" - circuit.

As an example, assuming the optimal condition m - k + 1, for a single-

fault diagnosis, we need only two test points, testing the rank of 2x2

Smatrices and an inverting an lxl matrix, regardless of how large b is.

Next, we will investigate how the optimal condition m = k + 1 can be

Li achieved. This requires

global column-rank Zmb = m = k + 1 (14)
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This depends on how the circuit is designed and more importantly how the test

points are located. It turns out surprisingly that the global column-rank of

Zmb depends mainly on the topology of the circuit, not its element values.

S.3. Topological-Conditions-for-k-Fault Diagnosibility. First, it can be

shown that if there is any internal loop (loops not incident with test nodes)

consisting of r branches than the global column-rank of Zmb cannot be greater

than (r-1). Therefore, we can diagnose at most (r-2)-faults. Since most

circuits have loops consisting of three branches, we can diagnose up to only

one-fault. This is a serious limitation. Alternatively, we can work on the

node-fault diagnosis equation

Zmn Jn -AVm (15)

where Jn = A Jb is the node compensator vector, Zmb = Zmn A and A the incident

matrix. Theorem I can now be applied to (15). In this case, a topological

condition has been derived independently by Huang, Lin and Liu [49] and Togawa

and Matsumoto [51]. First, construct a testing graph Gt from the given graph

G by (1) deleting all branches which are incident between two accessible nodes

and (2) connecting all accessible nodes, except the reference node, to a new

node t.

Theorem-2. Let the network be passive and G be connected. The following

three statements are equivalent:

(A) The global column-rank of Zmn is k for almost all branch

admittances.

(B) The local connectivity* between the node t and any inaccessible node

in Gt is k.

(C) There are at least k independent paths* in Gt from any inaccessible

r node to the node t.

. . . . . . . .. . .. .,
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The topological conditions for the global column-rank of Zmb equal to 2

is given in [501. A more general topological condition is obtained in [521.

These topological conditions are very useful. (1) They provide a very easy

evaluation of the global column-rank of a transfer function matrix. (2) They
U
* provide a foundation for the design of diagnosable circuits and (3) They

provide the foundation for the design of locations of test points.

VII. k-FAULT DIAGNOSIS: The Tolerance Case

The fault diagnosis equation for the tolerance case is given by (7) and

(8)

Zmb(JbF + JbT) = -AVm (16)

- which can be shown to have the form

(Zmb + &Zmb)JbT = -AVm (17)

" where &Zmb is caused by the tolerance. This can be viewed as the same problem

as the ideal case except that the matrix Zmb is polluted by the noise AZmb.

Therefore, we need robust computational methods for the testing procedures

•* (10-13). A well-known method for the test of the rank of a noisy matrix is

the singular value decomposition method [531. Unfortunately this method is

unreliable for the test of the global column-rank of a noisy matrix. There

exists examples where the singular value decomposition method fails [551. In

order to circumvent this problem, Suen and Liu have developed a method using

residual numbers for the testing of global column-ranks [551. The same method

can also be used for the tests (10-12) [54, 551. For all the cases we have

tried, this method has shown to be very reliable when the ratio fault/toler-

ance is large.

-°
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VIII. CONCLUSION

Two main approaches to analog fault diagnosis has been presented: The

element-value solvability problem and the fault/tolerance compensation

approach.

The element-value solvability problem is the same as the n-port synthesis

problem except that the graph and the element-type have been prescribed.

Therefore, it is very much in the interest of circuit theorists. The major

advantage of this approach is that the tough problem of tolerance is avoided.

The difficulty of this approach is that its performance is limited by a trade-

off between the large number of test points required and the complexity of

post-fault computation.

The fault/tolerance compensation approach requires a very few number of

test points and very simple post-fault computation. However, the number of

faulty devices is limited to be small. More importantly, we have to face up

to the tolerance problem, although some limited success in this direction has

been accomplished.

In summary, in this uncharted area of research we have been struggling in

the past to find out what the real problems are, and we begin to see some

daylight. It still has a long way to go.

For one thing, the result presented is for single-signal and single-

"- frequency. When multiple-signal and/or multiple-frequency are used, the per-

formance should be improved since more information is gathered for analysis.

Some initial studies have been made [14,21,33,36,44, 481. However, how to

choose these signals and frequencies so that the extra information can be used

more efficiently and effectively and what the limitations are, are still un-

known to us.

.. . . . . . . . .
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The diagnosis of nonlinear circuits are barely touched [20,31,39,40,42].

I This important problem is still at large.

The problem of diagnosis of analog/digital hybrid circuit is essentially

untouched [32].

The fault diagnosis techniques have other applications. Since it has the

capability of locating the faulty devices from available test points, it has

the potential to be integrated with manufacture process to do CAM for IC

chips. For another application, the single-frequency single-signal method can

do on line fault diagnosis. Therefore, it provides an important link for the

* - design of self-repairing systems.
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(a) Nominal (b) Actual (c) The Compensation
*.Admittance Admittance Model

Figure 3. A Simple Fault/Tolerance Compensation Model.
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(a) Nominal Circuit (b) Actual Circuit (c) The Compensation
Model

Figure ,-. The Fault/Tolerance Compensation
Model for a Three-Terminal Device.
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*Node-Fault Diagnosis and a Design
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Abstrt -A concept of k -node-fault testability is introduced. A suffi-
S cient and almost necessary condition for testability as well as the test 2
S procedure is presented. This condition is further evolved to a necessary and N

almost sufficient topological condition for testability. A unique feature of
this condition is that it depends only on the graph of the circuit, not on the

'- element values. Based on this condition, a design of testability can be
. established. Fig. 1.

I. INTRODUCTION
AULT DIAGNOSIS of analog networks has become values. The simplicity of the topological condition for

- an increasing active research area recently []-[ 11. A testability allows us to study (1) the design of the location
and the number of test points for a given circuit, and (2)

good survey on this subject can be found in [11, [2]. the numbr of tetin a circuitand(2
Roughly speaking, analog fault diagnosis is the problem of

S dtaoFor the purpose of the application to branch diagnosis,defauteleeng ts oruly paaetersl networks .in t Theorem 5 of Section V provides a method to determinefaulty elements or parameters in those faulty networks. In
the faut rnhsa ela hi eitdamta

". this paper, we are concerned with only the second part of aulty branches as well as their deviated admittance
t l e f o pvalues if the node fault testability condition is satisfied.".. the problem .nam ely, the fault location problem .Ex m l s a e g v ni S ct o V .

Recently, two similar methods on fault location of linear Examples are given in Section VI.
• networks which involve only linear equations have been II. NODE-DIAGNOSiS EQUATIONS

proposed by Biernacki and Bandler [9), [101 and Skala et at. Let N be a b-branch, (n + 1)-node. (m + 1)-terminal.
[11]. These methods are based on checking consistency or,, inconsistency of certain linear equations which are in- linear, time-invariant, lumped nonreciprocal network (Fig.
vinon t y ofcertaint lnar eqatis chae re iwn t 1). Out of the (n + 1) nodes. (m + 1) are accessible termi-

* variant on faulty elements. And they have been shown tobe equivalent in [17). Since only linear equations are in- nals for excitation and measurement. Label the nodes inbe euivlen in117] Sice nlyliner euatonsare the following way. Let one of the accessible nodes be the
volved, they are computationally appealing. However. as referen nod . Let e of the accessible nodes

* far as testability condition is concerned, none is given reference node. T he o ef the accessible nodes

explicitly in tI I], while only a necessary condition is pro- (i = ,..m)ahead of inaccessible nodes (I = m + 1,fr n).

vided in [101. This necessary condition is given in terms of The following notations are used for N:

network functions (impedance function). Hence it is not Vm terminal (accessible node) voltage vector,

easy to apply, especially in the environment of testability ,, terminal current vector,
design. Vb branch voltage vector,

In Section II of this paper, instead of port-voltages in [9], 'b branch current vector.
-. [101 or branch-voltages in [1 11, node-voltages are used as v. node (including accessible node) voltage vector,

the basis for the derivation of the node-diagnosis equation. Yb branch-admittance matrix,
Y, node-admittance matrix.

In Section III, following the procedure given in [11, a no e

* . necessary condition for testability is hence derived. The that Yb, Y, need not be symmetrical and
& major effort is to show that this necessary condition is also Ybb (I )

almost sufficient. Y. - A YbA r  (2)
-. The main contribution of this paper is given in Section where A is the -A ma (2)whic isbasd otaie r om sh incidence matrix of the graph and Y, can be

IV. It is shown that the testability condition whichthe network directly.
on network functions, can be reduced to a condition which owondr the network Nipruet(N

Now consider that the network N is perturbed to (N +
. depends only on the graph of the circuit not the element AN) in the way that Yb is perturbed to Y,, + AY, and the

I graph remains the same. In the perturbed network, we
Manuscript received August 3, 1981: revised April 15. 1982 and De-

cember 8. 1982. This work was suppred in part by the Office of Naval denote the corresponding voltages. currents, and admit-
Research under Contract N00014-78.C-0,4. " tance by vm + Av, i,,, + Ai, Vb + AVA, 'b + "h.'11 + Av,,
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Engineering, University of Notre Dame, Notre Dame. IN 46556 and Y, + AY, respectively.

C-S. Lin was with the University of Notre Dae. Notre Dame. IN. He Given Y and the graph. the purpose of the fault diagno-
is now with the National Tsing Hua University. Taiwan. Republic of sis is to estimate AYb from the information ,,,., and
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2 It is easy to see from (6) that if node i is fault-free, then

the ith component of j. is zero. However. the converse may
not be true. It is possible tha, node i is at fault but the
effect of faulty branches asscciated with node i may cancel

Fig. 2. each other to give zero to the ith component of j. This -

possibility is very very small. Henceforth, we will make the

Aim . Note that vm can be calculated from i,. and N. following assumption.
Assumption 1: If node i is faulty then the ith component

Without loss generality, we may assume that of j, is nonzero. Under this assumption, node i is faulty if
Aim = 0 and only if the ith component of jn is nonzero.

i.e., apply the same i,,, to the original network N and the Next, we want to determine those nonzero components

perturbed network N + AN. of j, from the node-diagnosis equation (8).

Denote Z,, and partition it in the following way: 111. k-NODE-FAULT TESTABILITY

=[ y1 (3) We start with a definition of testability.
[Z1,J Definition 2. A network N is said to be k-node fault

where Z., e C " ×", Z,. E- C", and I = n - m. testable if when N is perturbed to (N + AN), one will be

Under these conditions, the node-voltage equations for able to determine, by choosing appropriate testing signals

N and N + AN are given by i,, from the measurements on accessible nodes:
(a) whether or not N has no more than k node faults,

Yv r = (4) (b) if affirmative, the faulty nodes can be uniquely
01located.= i.] Recall that -

0(5) Zmnn=AV. (8)

A subtraction of (5) by (4) yields and (with Assumption i) that node i is faulty if and only ifthe ith component of j,, is nonzero. Let
Y1Av. = - AY,( v" + Av.) j. (6) Xk = (x - C"I number of nonzero components

where the RHS is denoted by j,. Using (3), (6) becomes of x not more than k)

Z.I = Av. (7) then the perturbed network N + A N has the number of

and, hence. multiple node-faults less than or equal to k if and only if
nj r Xk. Let z,, i = 1,2.. •.n be the columns of Z,,,,,. We

Znj. AVi,. (8) call the condition
rank I ' Z k + 1,The equations (6) and (8) are called the node-diagnosis [z,,,z,,,

equations. V 14 i I < i 2 < ... < ik l< n (9)
Since Z, and Av,, are known, we can first solve for j, the k-node-fault testability condition.

from (8) and then estimate AY. from (6). However, for Let the test matrices be the combinations of k columns of
practical diagnosis problems, n is much larger than m, and, Z and Av,,, i.e.,
therefore, j,, is not unique. Furthermore, A,, is unknown, inn -

which creates difficulties for solving (6). However, if we T, [z, Z,. ,z,,AV] (10) _
take advantage of a structural property of the network, i = 1,2,...,s, where s - C(n, k). Then we have the follow-
which will be discussed later, these difficulties can be

* circumvented. This will be discussed next. ing two theorems.
Theorem 1: Let the k-node-fault testability condition (9)

A crucial property of AY, is that it has the same struc- be satisfied.
ture as Y, i.e., if (i, j)th element of Y. is zero, then the

(i, j)th element of A Y is also zero. The problem of locat- (a) If

ing the faulty branches becomes the problem of locating rankT -k + 1,- 1-,2,- - -,s (11)
the positions of nonzero entries of AY.. then N has more than k-node faults. Conversely. if N has
is Definition 1: Branch k, k - 1,2,. • ,b, is said to be more than k-node faults, then (i1) is satisfied for almost allr.fault-free if the k th row of A Y is zero. Node i, i - 1, 2,. • -, n, Av,."

is said to be fault-free if all branches incident with node i (b) If (11) is not satisfied, i.e.,
are fault-free. Otherwise, they are faulty.

Note that the number of node faults may be smaller than rank T, <k + 1 (12)
the number of branch faults. This is illustrated in Fig. 2. for some i, then N has no more than k-node faults for
There are three branch faults (a, b. c) but only two node almost all Av., Furthermore. all faulty nodes can be
faults (, 2). uniquely isolated by (13).
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Proof: (a) Conditions (9) and (11) imply that Av. Remark 3.3: The number k of multiple faults can be
cannot be represented by any k columns of Z., i.e., (8) tested by (11), not pre-assumed as the case in [9]-[ 11], [241.
has no solution in X.. Therefore, N has more than k-node Since k is usually not known, this feature has practicalr faults. importance.

Conversely, if N has more than k-node faults, then
jE X,, i.e., for almost all Av,,, it cannot be spanned by k IV. TESTABLITY DESIGN
columns of Z-.. Therefore, Condition (11) is satisfied for Partition the matrices Y and Z. in the following way:
almost all Av,,.

(b) Let the test in (a) be failed. Therefore, there are at I- Y.Z .. Y.
most k-node faults, and (12) is satisfied. It follows from (9)
that where m + I - n. Let the row-vectors of Y,, be denoted by

rank [z ,,z 2,•. ,Z, -rank [z g,, z, . ,z,,Av.] - k Yi' i - 1,2,'  ' n, i.e.,

for some (Z,,, Zag,. .,Z,. Consequently, (8) has a solution
in Xk. Furthermore, in view of Theorem Al in the Appen-
dix, the solution is unique for almost all Av,.

Finally, the faulty nodes can be located as follows. From
ar),eno ste d wthe columns of Z.. Andcomponens af ret wh An equivalent testability condition can be stated in terms. are not associated with -z, ,.,z,, ) . As a result, we o o-etr fYI

have of row-vectors of Y,.
Theorem 3: The k-node-fault testability condition (9) is

SZkik - satisfied if and only if

* where Z, ' [z,,, , ,z,, and jk - col(j,,• • •,j,). Then

jk.(Zfi( Z.k)- zkav.. (13) Yj2
The nonzero components of j. indicate the faulty nodes. rank • 1, VI I:<12 .. <j,<n (14)

Q.E.D.
Theorem 2: N is k-node-fault testable if the k-node-fault L

*;, testability condition (9) is satisfied. Conversely, if a single where t = n - k - 1.
test-vector is used then condition (9) is also necessary. The proof of Theoremu 3 is given in the Appendix B.

. Proof.- Let (9) be satisfied. Theorem I implies that N Since usually n - k .- 1 3 k + I and 1 3 m, condition (9)
"- is k-node-fault testable for almost all Am• Consequently, is easier to be tested than (14). However, condition (14) is

. there exists an i, so that N is k-node-fault testable. Con- useful for the design of testability if condition (9) fails. This
versely, if a single test-vector is used, then applying Theo- is because each element of Y,, has a direct interpretation in

,. : rem Al to (8) one can conclude that condition (9) is also the circuit. For example, since Y, concerns only those
necessary for k-node-fault testability. Q.E.D. branches connected with inaccessible nodes, the branches

" Remark 3.1: The idea of setting the fault-diagnosis among accessible nodes have no effect on the testability. We
equation by an algebraic linear equation, and locating the will now present a criterion which depends only on the

S' fault elements by a matrix rank test were presented by graph of the circuit, and thereby provides a means for the

ap Biernacki and Bandler [91 and Sakia, El-Masry and Trick design for testability.
[I I]. Some conditions on the matrix rank test for multiple- We will first consider the network N with no dependent
fault isolation was first presented by Biernacki and Bandler sources. From the graph G of the network N, we construct
[9], [10]; and also by Trick [24J and Trick and Li [25]. The a testing graph G,. First, delete all branches which are

S.- necessary and almost sufficient condition (Theorem 1) is incident between two accessible nodes. Then, connect all
first given by Huang, Lin, and Liu [18], and also appeared accessible nodes, except the reference node, to a new node
in Trick and Li [25].

Remark 3.2: Biernacki and Dand er applied the matrix Theorem 4: Let G be connected and k < m. The follow-
rank test method to the branch-diagnosis equation ing three statements are equivalent.

Z~bib- AU.s (a) The k-node-fault testability condition (14) is satisfied
, *for almost all values of branch admittances.

• and Trick to a sensitivity equation, which can be shown to (b) Any inaccessible node and the node t hae at least
be equivalent to the branch-diagnosis equation [26]. The (k + 1) local connectivity, in G,
difficulty of using the branch-diagnosis equation is, as (c) There are at least (k + I) independent paths' from
pointed out by Trick [25], that multiple branch faults any inaccessible node to the node t in G,
usually cannot be uniquely located. On the other hand,
multiple node fault can be uniquely located. Therefore, weustred the node-diagnosis equation instead of the branch- 'The locai connectivity of two nonadjacent nodes is the minimum

number of nodes separating them. and two paths are independent if they
9 diapmosis equation. do not have any common node, except at the terminal nodes [161.

4',,! , , ,': .? ,-- ,: - ,-'- .. - ..- ;. -,,. -,.,.- -,...... - -.- , . . .... . .. . . - - " . .- . . . ' .. - . :-'..
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Fig. 3. Fig. 4.

Before the theorem is shown, let us prove two lemmas. _l _ _ _ __ _

First, consider any (n - k - I)X I submatrix Y of Y.,. Let
these (n-k- I) rows correspond to the set M2 of m 2

accessible nodes and the set L, of I, inaccessible nodes L

*whereM 2 + 11 - n- k-.Then the node equation Y,,v, =in 
1

can be rearranged to the form

y y y vi1a~
Y., Y.2 Y21, YL IPI 2
Iyn, y~M Ijlj, Y 1 1, V1 , l Fig. .

and Pick a node in L,, follow a path to node t and stop when it

[ ]Y .212 first reaches a node of existing subgraph. Then add all the
Y Y1, Y1.1, (16) new branches to the existing graph and repeat the process

'I,' , " ~ for the next node in L,. A typical Go is shown in Fig. 4.
Hence the set M, of m, accessible nodes and the set L2 of Q.E.D.
12 accessible nodes are those not associated with the rows Proof of Theorem 4:
of Y. (b) - (a) Consider any (n- k- l)x I submatrix Y of

Note that Y,. We want to show that Y has full column-rank for

k + ! - m 1 '2 (17) almost all branch admittances. In the first step. we want to
and if m +m 2-m>k, then show that it is true for a particular set of branch admit-

m 2 ; l. (18) tances. We choose a specific set of branch admittances in

The purpose of the following two lemmas is the con- the following way: first, set all branch admittances to zero
struction of a subgraph G0 of G,, which will be useful in for those branches not in GO; and then, set other branchthe proof of Theorem 4. admittances to positive values. Therefore, this network isLemma 1: If (b) of Theorem 4 is satisfied, then there connected, passive, and resistive. Let it be denoted by N0 .

2 dgthe set and , and We want to show that, for the network N0, Y has full
are 12disjoint paths connecting testL. a 2 iGadcolumn-rank.
no two such paths have any common node. WithmNou a in.

Proof: From hypothesis (b), the local connectivity in With N0, we ground all accessible node and excite all
G, between the node t and any inaccessible node is at least nodes in L and L2 by voltage sources v, and v,, as shown
k + I. Now, remove all branches from M, to the node t.
Then the local connectivity between any inaccessible noderv 1  [a,1
inL 2 tothenodetisatleastk+l-m, which is l 2 by (17). Y[VJ (19)
Finally, connect all the nodes in L 2 to a new common node -,1

q. The local connectivity between q and t is exactly 12" If Y is not full column-rank, then there exists nonzero
Therefore, by Menger's Theorem, there exist 12 indepen- (v,, v, ) such that (i, i,) - 0. We want to show that this
dent paths connecting q and t, as shown in Fig. 3. Conse- is not possible for N0 . Since No is a connected passive
quently the lemma is proved. Q.E.D. network, and (v,,, v,2 ) are the only sources, it concludes

Lemma 2: Let (b) be satisfied. In G,, there exists a that (ill, iI) -0 if(v ,,vl)-0. If i, -0, we already have a
loopless connected subgraph Go which contains the node t, contradiction. It remains to consider the case when i,, - 0
all inaccessible node and all the disjoint paths in Lemma I. and il, , 0. We want to show that in this case in,2 * 0. Since

Proof. First, take all the disjoint paths given in Lemma il, - 0 and No is passive resistive circuit, we may delete all
I and extend the paths to the node t. This subgraph branches except the paths given in Lemma I, as far as
contains all the nodes in L 2 and the node t. For every node KCL equation is concerned. Since all these paths are
in L1, by (b), there exists a path from it to the node t. Now, disjoint, i,2 - 0 implies that i,, - 0, which again is a con-
0 0 can be constructed by repeating the following process. tradiction. Therefore, (v,, v,,) - 0 if and only if (i",) -
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0. It concludes from (19) that Y has full column-rank for condition. Starzyk and Bandler have studied the case when
" N0. the topological condition is partially satisfied [27].
. Now in the second and final step, we want to show that

Y has full column-rank for almost all branch admittances. V. BRANCH-FAULT DIAGNOSIS
Note that Y has full column-rank if and only if det ( yr y) In this section, we will show that branch faults can be
- 0. A key fact is that det(yry) is a polynomial of the isolated if multiple test-signal vectors are used.

branch admittances, and it is not zero for a particular set Theorem 5: Let N and its adjoint circuit N be k-node-
of admittances, namely N0 . By a well-known theorem [20. fault testable. If N + AN and N + AN have no more th4-a k
211, it can be concluded that det(yTY) 0 for almost all faulty nodes, then the faulty branches can be located and

* branch admittances. This proves (b) - (a). their admittances can be determined by a set of m indepen-
(b) - (c): Directly from the Menger's Theorem [161. dent vectors i,,.

m (a) - (b): We will prove it by contradiction. Let (b) be Proof. Since N is k-node-fault testable and N + AN
' 'K false. Then there are k nodes which separate G, into two has no more than k faulty nodes, by Theorem 1, j, can be

parts: Part A contains node t and Part B contains at least uniquely determined for almost every i,. From (7) and (4),
-. one inaccessible node. Since all accessible nodes are adjac-

ent to t, they cannot belong to Part B. Let Part B contain
r(r ; 1) inaccessible nodes. Note that any element y,., of YN = Z . io (4)
is zero if and only if nodes i and j are nonadjacent. Since 0
Part A and Part B are separable, the element of YN which we can calculate Vn + Av. by
associate with any nodes of Part A (except t) and any node w c

. of Part B is zero. Since there are r inaccessible nodes in ([i A. ,1 ) 20
Part B, there are a zero-submatrix Y* of Y., whose di- (0 + .n

- mension is r X(n - r - k). Therefore, from (15], any sub- Hence, AYN can be determined by (6)
matrix of (n- k- l)Xl of Y., which contains Y* cannot
have full column-rank. Henceforth, condition (14) cannot - j, = AY"( V, + Av.) (6)
be satisfied for such submatrix. Q.E.D. using multiple independent test-signal-vectors i, in the

Let us now extend Theorem 4 to include active elements, following way. Take independent i.'s so that
. First, represent all active elements by a set of dependent I .. (21)

current sources each of which is incident to the reference = Lim, in,"
node on one side and to any other node on the other side, is nonsingular. Correspondingly, we can measure

* - .and controlled by node voltages. Note that a dependent AV,. = [A.,, ,AV..] (22)
current source has entry in the submatrix Y,, if and only if
it is controlled by the inaccessible node voltages. In view of Then it can be shown that when i,. is applied to the
the above, we will construct a test graph d from the graph perturbed adjoint circuit

* G by the following steps. (1) Delete all dependent sources
which are controlled by accessible nodes. (2) If a depen- +Ak + (23)

dent source is incident with an accessible node i but the perturbed voltage can be calculated by
". controlled by an inaccessible node voltage v,, then delete

this dependent source and add a new branch incident with (24)(AV.IrI)r.2
nodes i and j. Note that G and G have the same nonzero With this AO,3 and I., we can apply the node-fault diagno-
entries in J,,. It remains to consider these dependent sis procedure to the adjoint circuit. Since by hypothesis the
sources which are incident with inaccessible nodes and adjoint circuit is k-node-fault testable and has no more
controlled by inaccessible node voltages. A complete de- than k faulty nodes, we can identify the nonzero rows of
scription of this would be too involved for this paper. We At; i.e., k' (k'< k) nonzero columns Ay, by (23). Once
will give only necessary and sufficient conditions. Con- the set of nonzero columns of AY, is identified, we go back

.- strulct Gs from 0 by deleting all dependent sources and GN to (6). Let S be a column-selector matrix [221 such that
from 0 by the following step: if there is a dependent source [AYJS is an n X k' matrix with k'4 k and that [AY]S
incident with node i and controlled by node voltage v,, retains all nonzero columns of AY.. Then (6) becomes

- then delete the dependent source and add a new branch
incident with nodes i andj. - ]n [AY.][Vn + AVe] - [AY,]SST[v. + Av.].

, Coroilary 4.1: If Gv does not satisfy (b) or (c) of Theo- Applying the m independent i.'s in (21), we have corre-
rem 4, then N is not k-node-fault testable. If Gs satisfies (b) spondingly the matrix equation
or (c), then N is k-node-fault testable for almost all branch - - (AyJSS7(I + AVJ. (25)
admittances.

The proof is straightforward and is omitted. It remains to show that sr[v + AV] has full row-rank.
Remnark 4.1: The necessary topological condition of From (5) we have

Theorem 4 is first given by [18]. Togawa and Matsumoto V['-1
128] have given an independent proof of the sufficient 0-( +)-(ZnI + iZ .

... .. .. ... .. .. .. ... .. . ~ 2
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test points. By the method described in Corollary 4.1, the
test graph G, and G. are in Fig. 8. Note from Theorem 4

- that the ground branches have no effect on the testability,
" - and hence they are deleted. For this circuit (if we don't

consider the self-loops in node 3 and 7), the G, and G. are
Fig. 7. the same. We can easily conclude by condition (c) of

Theorem 4 that the circuit is one-node fault testable. Now,
S so, suppose that we want it to be 2-node-fault testable. In the

G,, node 5 and 7 are incident with only two branches
S1[ V. + AV.] - ST(Z,. + AZ..) I. respectively, and each of them cannot have three indepen-

Since the adjoint network N is k-node-fault testable, dent paths to other nodes. Therefore, nodes 5 and 7 have
ST(Zm ,, Z,.) has full row-rank for almost all branch to be test points. Under this choice, every inaccessible node
admittance. Consequently, Stv + AV'] has full row-rank has three independent paths to the accessible nodes. Hence

for almost all branch admittance. Therefore, the nonzero by Theorem 4 and Corollary 4.1, the circuit is 2-node fault
columns of AY, can be evaluated by testable for almost all values of the branch admittances.
Il In the previous example we described how to choose the

IS j(V.+ AV.]rS) test points for agiven circuit.
S(sr[V. + AVJ[IV + AVJ,S) . (26) Example 2: (Branch Fault Isolation)

From this, the faulty branches can be located and their Consider the network N as shown in Fig. 9. Nodes 1, 2 3
admittances can be determined. Hence, Theorem 5 is are accessible nodes. Let the nominal values of the circuit
proved. Q.E.D. of Fig. 9 be y,-l, i-1,2,...,6,8 and y7- 2. We can

Remark 5.1: Note that N and AN may not have the calculate Z,,- [ZI, Z2 , Z3, Z4 ]:
same graph. Therefore, a short between two open nodes
can be detected, although in this case an extra branch .0.593220 041
between the two open nodes is inserted in the faulty Z. 0.084746 0.440678 0.152542 0.16

. network. I0.067797 0.152542 0.322034 0.1355931

Remark 5.2: If Y, is symmetrical, then the conditions Now assume branches 3 and 8 are perturbed such that
on the adjoint circuit are automatically satisfied, and only y3 + A y3 -2, and ys + Ays - 2 and other branches remain
k independent test-signal-vectors i,,, are sufficient. the same. Choosing

VI. EXAMJPLES 1 0

Example 1: (Testability Design) 0.- 0 1
.0, 00 oi

For a given circuit, the purpose of testability design is to
decide the number and the location of test points such that we can measure the voltages on accessible nodes:

the circuit is testable. Let's consider a feedback amplifier [0.5625 0.0625 0.0625
(Fig. 6). First we get.the AC small signal equivalent circuit V. + AV. 0.0625 0.4196 0.1339
(Fig. 7). It is reasonable to choose node 1 and 8 to be the 0.0625 0.1339 0.27671

.. . . . . . . . . . . .. ........... .. ,- . .. • .
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and evaluate If the testability condition is not satisfied, then addi-

-0.030720 -0.0222458 -0.00529661 tional test points are needed. The choice of this additional

-- 0.0222458 -0.0210351 -0.0186138 test points can be greatly simplified by the usage of Theo--. o526 -0.0186 138 -0.04524821 rem 4. The most important feature of this theorem is that it-depends only on the graph but not the element values of
From Theorem 4, this circuit is 2-node-fault testable. By the network. It is shown that this graphical condition is
Theorem 1, check the singularities of the test matrices necessary and almost sufficient for the testability condi-

[Z,Z,Av,,] for all l~i<j;4. It is found that only tion.
det[Z 3, Z4, Av.] - 0. Therefore, we can conclude that node
3 and 4 are faulty and calculate the J, by (13) VI. APPENDIX

0 0 0 A. The Uniqueness of Solution of Equation Bx = p

0.0625 -0.008929 -0.151789 Recall that (8) has the form

-0.1875 -0.116071 -0.026786 Bx- p (At)
It is seen that the first two rows of J. are zero and hence where B e Cx with n > m, x r C" and p e C"'. For

the frst two rows of AY are zero. Since AY. is symmetrical, practical problems, n > m, and, therefore, the solution of
the first two columns of Ay. are zero. Now, ST]v,+ £V,] (Al) in general is not unique. However, if we restrict the
can be calculated from (20) and deleting the first two rows, number of nonzero components of x to be less than m,
we obtain then the solution could be made unique. Hence, we want to

T0.0625 0.1339 0.2768 find the solution of (AI) in Xk.
st[ +IAn[ 0.025 0.123 0.26J" Note that a solution x Xk of (8) exists if and only if p

is a linear combination of some k columns of B. Hence-
± Finally, we can calculate the AY. by (26): forth, let the subspaces spanned by the combinations of k

0 01.. column vectors of B be denoted by R,, i - 1,2,..., r, where
0 0 r - C(n, k). Let the intersections of combinations of two[AY]Sffi +1 -I R,'s be denoted by Qs, j -il, 2 ,...,q, where q =C(r,2).

- 1 + 2 Furthermore, let
The diagnosis is two branch faults: r

AYS - 1 AY3 -1. 0- U I R, (A2)

q0' " U Qj. (A3)
VII. CONCLUSION J1

The purpose of node diagnosis is to determine those Evidently, 2, C Q.
nodes which are faulty. A node is faulty if any branch Lemma 1: Equation (AI) has a solution x r Xk if and
incident with it is faulty. Therefore, if faulty nodes are only if p - 0, and the solution is unique in X if and only if
correctly located, all the faulty branches must be incident p r 0- 2,
with these faulty nodes. A network is k-node-fault testable Proof.- A solution x 6 X. of (AI) exists if p 6 R, for

if from some measurements, (1) one can determine whether some i, i.e., p r . Furthermore, (Al) has two distinct
or not there are k or less faulty nodes; and in addition, (2) solutions in Xk if p C R, and p C Rj with i 'j, i.e., p C= .

- if affirmative, the faulty nodes can be uniquely located. Therefore, (Al) has a unique solution in X if p a - 0,.
Note that in the definition of testability it includes the Q.E.D.
determination of the number k. Let b1, b2 ," - -,b, be the column vectors of B.

A necessary and almost sufficient condition of k-node- Lemma 2:
fault testability is given in Theorem 2. It has three features:

1) The minimum value of test points m for which the dim R,-k, i- 1,2,...,r (A4)
k-node-fault testability condition (9) to be satisfied is m -
k - 1. Therefore, it is possible to diagnose k-node fault and
with k + I test points, regardless of number of branches dimQs <k, j-,2,...,q (AS)
and number of nodes.

2) The matrices to be tested in (9) have size only m X (k if and only if
+ ), regardless of how large the circuit is. r

3) The testability condition depends on the nominal rankb ,,b ,... b ]-k+1,

circuit and can be tested before a fault occurs. VI 4i0 < i 2 < ... < ik+ , tfl (A6)
:" If the testability condition is satisfied, procedures to

. locate the faulty nodes and faulty branches are given in i.e., every combination of (k + 1) columns of B is linearly
Theorem I and Theorem 5, respectively, independent.



264 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. cAS-30, NO. 5, MAY 1983

This lemma has an important implication as follows. It Let rank P,1  k. Without loss of generality, let the first
can be shown that k rows of P,, be linearly independent. If inot, apply simul-

[R1 - J taneously row-operations on [Pil P 1] and column opera-

In view of (AM), the measure of the second term in the[ ]
bracket is zero with respect to any k-dimensional measure.
Consequently, the measure of 0, is zero. In other words, then the first k x k principal submatrix of P is nonsingular.
for any bounded distribution of p, the conditional proba- Then the last (n - k) X(n - k) principal submatrix of Q is
bility P(p r= A- 1,Ip r= ) - . The above discussion can nonsingular. Consequently, rankQ22 - I -n - m.
be summarized together with Lemma I in the following. From Lemma B I, the following is self-evident.

77Theorem A]: Let p r= Q. Then (Al1) has a unique solu- Lemma B2: Let Z., Y. F_ C' and Y Z. - 1. Let
tion in Xk for almost alip 4- if and only if condition (A6)
is satisfied.

Since the existence of the solution is guaranteed for fault Zn .= -M f Ym '1,
diagnosis problems, condition (A6) becomes the only con-
dition needed for the uniqueness of solutions in Xk. where Z..~ r C' X, Y..mES C m and m +1I- n. Let r 4 m.

Proof of Lemma 2: Clearly (A6) implies (A4). It also Then every m X r submatrix of Zm. has rank r if and only
implies thatR,R. if i *j. Therefore, if every (n - r) X I submatrix of Y., has rank 1.
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ABSTRACT Note that Yb, Yn need not be symetrical, and:

O The topological conditions for k-node, k-cut lb - Yb Vb (1)
fault, and k-rank branch-set fault testability by
single teat signal vector in analog circuits are Yn - A Yb AT (2)
given. These conditions which are both necessary

~ - and sufficient are essential in the choice of test where A is the inidence matrix of the graph.
points. These conditions also have applications Nov consider the network N is perturbed to
to the design of testable circuits. The outcome (N+N) in the way that Yb is perturbed to T b#dYb ,
of these methods can be further diagnosed by the and the graph remains the same. In the perturbed

- usage of multiple test signal vectors. This is network, we denote the corresponding voltages,
also discussed and the associated problems are currents and admittance by vu+6vu, i+61s, vb+ o,

studied. ib+Aib, vn+hvn and Yn+AYn respectively.
Given T b and the graph, the purpose of the

1. INTRODUCTION fault diagnosis is to estimate &Yb from the infor-
mation it, Avg and aim. v. can be calculated from

Let N (Fig. 1) be a connected b-branches, is and N. Without loss generality, we may assume
(n+l)-nodes, (m+l)-terminals, linear, time inveri- that
ant, lumped non-reciprocal network (Fig. 1). Out
of the (n+l)-nodes, (m+l) are accessible terminals t,- 0 (3)
for exitation and measurement. Label the nodes in
the following way. Let one of the accessible i.e., apply same is to the original network N and
nodes be the reference node. Then label the rest the perturbed network *+AN.
of the accessible nodes (i - 1,...,m) ahead of in- Denote Zn and partition it in the following
accessible nodes (i w m+l,...,n). The following way:
notations are used for N.

- Zm1
ve - terminal (accessible node) voltage vector. Zn - Ta - - , (4)

erm - rminal currant vector. ZEL
vb - branch voltage vector.
ib - branch current vector.
vu - node (including accessible node) voltage where Zon C cxn, Z.n c Clx n , and A - n-s. Under

vector, this condition, It can be shown that

Yb - branch-adittance matrix.
To - node-admittance matrix. Z.n A(AYb)(vb + Avb) - Av. (5)
,o - the set of all accessible nodes.
M - the set of all accessible nodes except the From Eq. (5), aseming the number of nonzero

reference node. elements in AYb is small, it suggests that one can
determine the locations of nonzero elements of AYb
and therefore the location of faulty branches pro-

0" vided that the number of accessible nodes is large

a.- N enough. This discovery was made by biernacki and
Sandler 11,21 and Sakla et at. 131. The advan-

Vb b tages of this approach are that one can rely only
vb 'b on the paramters of N (or the nominal circuit)

and the measurmnts to diagnose the faulty cir-
vn cuit and the computation involved is all linear.

However, there are certain Inevitable struc-
p -. tures, such es a small loop, in the practical cir-

fig., cuits which, If not carefully taken care of, would
mass up the results of this approach. In the next
section, we will discuss the systematical ways of

*This research is supported in part by ORR materializing this approach and, more importantly,
Contract No. N00014-78-C-0444. provide the graphical conditions for placing the

-* test points.
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For the purpose of simplicity, all the A node fault is a way of grouping branches
results presented here are for the case when N incident with the node. An extension Is the group
contains no dependent sources. Fxtensions of of branches by cuts. A cut is a cut-set or a die-
necessary conditions and sufficient conditions to joint union of cut-sets in a graph G (71. For a
include dependent sources are given in [41,[51,[61 given set of t cuts, there is a corresponding cut
and 11O. matrix H c Rtxb whose (i,J)th entry hij - I if

branch J to in cut I and hi - 0 if branch J is
11. NODE-FAULT, CUT-FAULT, AND BRANCH-SET not in cut I. A set of bails cuts 0 in G is the

FAULT DIAGNOSIS set of n cuts whose corresponding cut matrix has
rank n where n is the number of nodes minus one.

in this section, we will present three dif- Then the following definitions can be stated.
ferent methods of systematically isolating the
faults In analog circuits fro, a single test sig- Definition 3: A cut is said to be fault-free if
nal vector. These three methods, node-fault, cut- al b-ranches contained in this cut are fault-free.
fault, and branch-set fault diagnosis, represent Otherwise, it is faulty.
three different ways of grouping the branches.
They will be concisely discussed subsequently and Definition 4: For a given set of basis cuts Q, a
the graphical conditions for placing the test network N i- said to he k-cut-fault testable if
points in each case will be sumarized. when N is perturbed to N+AN, one will be able to

First, let us define a faulty branch and a determine, by choosing one appropriate test signal
faulty node. vector i., from the measurements on Mo:

(A) whether or not N has no more than k cut-
Definition 1: Branch k, k - 1,2,...,b is said to faults in O.
be fault-free it the k-th row of AYb Is zero. (B) if affirmative, the faulty cuts can be
oWe J, J - 1,2,...,n, is said to be fault-free if located uniquely.
"l branches incident with node J are fault-free.
otherwise they are faulty. With a mild condition, it can be shown 151

Then, k-node-fault testability can be defined that, in a circuit N, k-cut-fault testability for
as follows, any given set of basis cuts is equivalent to k-

.'..node-fault testabi1lt, and that the faulty cut

Definition 2: A network N is said to be k-node- can be uniquely determined.
fault testable if when N is perturbed to (N+AN), For a given set F of faulty branches, the
one will he able to determine, by choosing one number of faulty cuts will be different for dif-
appropriate test signal vector in, from the mseas- ferent choices of set of basis cuts. The follow-
ursmant on accessible nodes NO: Ing theorem shows how to choose the set of basis

cuts so that it contains fewest faulty cuts.
(A) whether or not N has no more than k node- First, let F be the set of faulty branches in N

faults, and k' be the number of nodes, excluding the ref-
(s) if affirmative, the faulty nodes can be erence node, incident with F. Since F may not be

uniquely located. connected, let F consist of r separated parts.

The following theorem provides a graphical Theorem 2 15): For a given F in a circuit N there
condition for k-node-fault testability. To state exists a set of basis cuts QF which has only (k'-
the theorem, first let us construct a modified r) faulty cuts. Furthermore, any other set Q has
graph Gn from N by deleting all branches incident at least (k-r) faulty cuts. In other words, (k'-
with the reference node and connecting the rest of r) is the lowest bound of faulty cuts in any Q.
accessible nodes to a new node on. Then the
theorem follows. Remark: Theorem 2 has the following implications.

I -- is k-node-fault testable, then for any fault
Theorem. 10]: The following three statements pattern F for which (k'-r) 4 k, there exists OF
its squivalint: which can uniquely locate the n-(k'-r) fault-free

cuts. F will be contained in the remainder of the
(1) N is k-node-fault testable w.r.t. N for graph. Since there are no more than C(bk) number

almost all values of Yb .  of fault patterns for which tk'-r) 4 k, we need

(2) There are at least (k+l) disjoint paths' only to use no sore than C(b,k) number of Q's to
between any inaccessible node and an in Gn. cover all such fault patterns. The construction

(3) There are at least local (k+l)-connectivIty2  of OF is given in (51.
In G% between any inaccessible node and mn* Finally, let us consider another method of

fault isolation, namely k-rank branch-set diagno-
When N is k-node-fault testable, the proce- sis. A k-rank branch-set is a subgraph of N which

date of locating the faulty nodes is given in (41 consists of (1) k branches containing no loops and
and [101. (2) all of those branches each of which forms a

loop with branches in (1). Since the incident
1 Two paths are said to t, disjoint if there are matrix of a k-rank branch-set has rank k, the name

no comon nodes except the two end nodes (81. follows. Then the following definition can be

2. The local conectivity of two nodes is the given.
ainan umber of the nodes separating them
(91. Definition 5: A k-rank branch-set is said to be
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* fault-free if all branches contained in this condition, then the converse Is also true. This
branch-set are fault-free. Otherwise, it is is stated In the following theorem.
faulty.

Evidently, given a set of faulty branches in Theorem 5 (61: Suppose that there is an accessi-S N+N, there may be many k-rank branch-sets which bfe node s o in No, which is adjacent to every in-
all contain these faulty branches. However, there accessible node. Then k-rank branch-set fault
exists a unique k°-rank branch-set in N+AN such testability is equivalent to the k-node-fault
that if another k-rank branch-set also contains testability if so is used as the reference node.
all the faulty branches then k ) k° . Define this

k-rank branch-set as minimum-rank faulty branch- 1I. MULTIPLE TEST SIGNAL VECTORS
set. The goal of k-rank branch-set diagnosis is

* to locate this minimat-rank faulty branch-set. It From the discussions in the previous section,
" can he accomplished, if the condition given in it is clear that the fault isolation methods with

Theorem 3 is satisfied, by a procedure similar to single test signal vector can only Isolate the
that in [1,2,31. However, because of our grouping faults into a subcircuit but are unable to further

. of branch-sets, the unnecessary repitition of identify the faults. In this section, we will
- conputions resulting from Indistinguishable fault discuss how to take advantage of the multiple test
- patterns is eliminatod. The detail can be found signal vectors In fault diagnosis. In the follow-

in 161. ing discussion, we only state the theorems con-
Next, we will give the definition of k-rank cerned vith k-rank branch-set diagnosis. The re-

branch-set fault testability. sults concerning the other two cases are similar
a~d therefore are omitted.

Definition 6: A network N is said to be k-rank To begin with, let us introduce some more
branch-sot fault testable if when N is perturbed notations. A set of branches is acyclic if it
to *4MN, one will be able to determine, by choos- contains no loops.. An acyclic t-branch in N is
ing one appropriate test signal vector im, from excitable v.r.t. Mo if the branch voltage vectors
the measurements on mo: of these t branches can be generated to span a t-
(A) whether or not there exists a k-rank branch- dimensional space by appropriately applying mil-

set which contains all faulty branches In N, tiple test signal vectors on No. If every &cyclic
(B) If affirmative, the minimum-rank faulty t-branch In N is excitable w.r.t. Mo, then N is

* branch-set can be uniquely determined. The said to be t-acyclic-branch excitable. With these
mLnLmum-rank is no greater than k. definitions, we can state the following theorems

161.
As In the case of k-node-fault testability,

there is a graphical condition for k-rank branch- Theorem 6: Suppose that N is k-rank branch-set
set fault testability. To state the theorem, we fault testable and W+AN is k-acyclic-branch
need to introduce another modified graph Gb of N. excitable. Then all the faulty branches can be
This graph Gb is constructed from N by connecting uniquely determined by k independent multiple test

.. all the nodes in Mo, i.e., all the accessible signals.
nodes Including the reference node, to a new node
Ub. Notice that the difference in dealing with Theorem 7: N is (k-l)-rank branch-set fault
the reference node here and the case of k- testable if and only if N is k-acyclic-branch
node-fault testability, excitable.

Theorem 3 (61: The following three statements are Theorem 8: If N is k-acyclic-branch excitable and
.. equivalent: 1-AN has the same graph as N then N+AN is k-

(1) N is k-rank branch-set fault testable acyclic-branch excitable for almost all ATb.
( w.r.t. No for almost all values of T b. In susary, suppose that N is k-rank branch-
(2) There are at least (k+2) disjoint paths set fault testable. Then we can determine whether

between any inaccessible node and ub in a set of fault branches can be contained in one of

Gb. the k-rank branch-sets by a single test signal
• (3) There are at least local (k+2)- vector (Theorem 3). Furthermore, if affirmative,

connectivity in Gb between any mnacce- we can uniquely determine the minim-rank branch-
sible node and mb .  set which contains the faulty branches by a single

test signal vector (Theorem 3) and we can uniquely
" As a conclusion of this section, lot us in- determine the faulty branches by a k multiple test

vestigate the relationship between k-node-fault signal vectors if the conditions of Theorem 8 are
testability and k-rank branch-set fault testabil- fulfilled.
ity. A relationship for a given NO in N can be Sillar results can be shown for node-fault
summed up in the following two theorems, and cut-fault diagnosis.

Trem 4161: for any given *t N of accessible iv. REFNCS
'modes, if IN r k-rank branch-set fault testable,
then N is k-node-fault testable w.r.t. any refer- [1) R.N. Blernacki and J. W. Handler, "Nultiple-
ence node in mO. Fault Location of Analog Circuits", IEE

The converse of Theorem 4 is not true in Trans. Circuits and Systems, vol. CAS---, pp.
general. Noever, if N satisfies a structural 361-366 y 1981.
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II ucr are WMre branch faults (a, h, c) but only two node almost all av.,. Furthermore. all faulty nodes can be

fauilts (1.2). uniquely isolated by (13).
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