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I. INTRODUCTION

During the period June 1, 1978 to May 13, 1982, the research "Fault
Diagnosis of Large Scale Analog Systems" is sponsored by the Office of Naval
Research under Contract Number N00014-78-C-04444, This research is undertaken
at the University of Notre Dame, Notre Dame, Indiana under the direction of
the Principal Investigator, Dr. Ruey-wen Lia.” The long-term objective of this
research is to develop a practical and reliable Automatic Test Program Gener-
ator (ATPG) which will allow us to locate the faulty component(s) of a large
analog circuit when it is faulty. The short-term objective is to search for

viable and amenable concepts under which long-term objectives can be achieved.

’

During this short period, some significant progress has been made. /. = .. .

N

To be sure, the fault analysis of analog circuit is an uncharted area of
research. There is no precedence with which we can follow. Indeed, this has
been an exciting, enjoyable and satisfying research. We continuously discover
new problems which, usually dictates the requirements of new methods. As
such, new directions of research have been continuously searched and persued.
In the end, we believe we have a very practical and reliable method at hand.
Some highlights of this development will be presented In Sectin IV. ]In the
meantime, twenty-two publications have been published, one Ph.D dissertation
and three Master theses have been completed, and a final report of a Workshop
on Analog Automatic Test Program Generation has been completed.

Recently, Dr. Ruey-wen Liu was invited to give an hour-long tutorial
address to the 1983 IEEE International Symposium on Circuits and Systems in
May, 1983. This was a rare honor for the Principal Investigator. It also
shows that the general academic public has begun to show interest in this

exciting area of research.
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The rest of the Final Report is organized in this way. The background of
the analog analysis is presented in Section II. Some important issues are
given in Section III. Some highlights of our research activities will be dis-
cussed in Section IV. A conclusion is given in Section V. Finally, a record
of publications is in Section VI, and selected reprints are attached in the

Appendix.
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o I1I. THE BACKGROUND

l' During the past quarter century, the engineering community has witnessed
- a tremendous strides in the art of electronics design. On the contrary, elec-
;i tronics maintenance has changed little since the day of the vacuum tube. As

. such, our ability to design a complex electronic circuit is quickly out-

2 !? distancing our ability to maintain it. In turn, the price reductions which

A

i - have accompanied modern electronics technology have been paralleled by in-

ﬁ - creasing maintenance and operation costs. Indeed, many industries are finding

E : that the life cycle maintenance costs for their electronic equipment now ex-

S

- ceeds their original capitol investment.

L.

Given the above, it is quickly becoming apparent that the electronics

E maintenance process, like the design process, must be automated. Unfortunate-
i 5 ly, the 50 years of progress in circuit theory, on which our electronics de-
ii sign automation has been predicated, does not exist in the maintenance area.

As such, the past decade has witnessed the inauguration of a basic research
program to lay the foundations for a theory of electronics maintenance and a

" l' parallel effort to develop operational electronic maintenance codes.

- v Thus far the greatest success has been achieved in the digital electron-

3 ;i ics area to the point that commercialized test programs are now readily avail-

- - able. On the other hand, the analog testing is still in its infancy. This is

; ;5 not without reasons.

? s For one reason, the analog fault diagnosis had a late start. The re-

- search and theory development of digital testing started in the mid 1960's

£ jzz when the large-scale computers were readily available. Not until a decade

A ; later did a commercialized test program first become available. On the other

. :: hand, it was not until the mid 1970's that the test technology community began

. ‘- to face up to the analog test problem. Indeed, even in a predominantly
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digital world, analog systems were not disappearing. Analog systems were

proving to be among the most unreliable and least readily tested of all elec-
tronic systems. Assuming the same speed for the development of digital test-
ing, a commercially available analog testing program would not have been ready
until the mid 1980's.

There are two main reasons for this seemingly slow development of an
effective method for analog fault diagnosis. One reason is that this is an
uncharted area of research., It has no precedence to follow. More time has
been spent to find what the real problems are and where the difficulty is.
Another reason is that analog fault diagnosis has inherited certain difficult
problems which are not shared by digit fault diagnosis. These will be ex-

plained later.
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:::4 ITI. 1IMPORTANT 1ISSUES OF ANALOG FAULT DIAGNOSIS

From many experiences accumulated in the past years, successful ones as
- well as unsuccessful ones, we can determine two major issues for analog fault
diagnosis, not shared by its counter part, the digital fault diagnosis. The

two major issues are the tolerance problem and the problem of modeling and

‘ - simulation of faulty components:
® Tolerance: Possibly the single greatest unknown in the design of an ana-
log testing program is the effect of the tolerances of the "good" compo-
- nent on the performance of a testing program. This tolerance problem has
- absolutely no counterpart in the digital testing problem. The effect of
: éﬁ these tolerances can completely dominate the performance of a testing pro-
~ gram. In an analog circuit, unlike digital circuits, the actual values of
;j circuit parameters almost always deviates from the nominal values. There-
i fore, any analog testing program has to face up to the problem of toler-
ance problenm.
) ii ® Modeling and Simulation of Faulty Components: Unlike the digital testing,
‘ l' a complete modeling (and thus simulation) of faulty components is not
” available for the development of a testing problem. The modes of faulting
Zj is too many to encounter. For example, a faulty resistor may have an
: infinite number of possible resistances (outside of the tolerance). In
-
ﬁ ;: fact, it can even be nonlinear. A faulty capacitor may have a model of
E . parallel RC, A faulty operational amplifier may have a model of 22 tran-
% - sistors 12 resistors and a capacitor! A good transistor may behave like a
§o faulty one if its bias is switched due to a fault which occurred else-
£l
E ) where! 1In fact, in a nonlinear analog environment, we are still in the
; i; process of developing viable CAD models for nominal devices, let alone for
é - faulty devices. As such, a thorough test of the performance of a testing
)y :
;
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program is impossible. Furthermore, each testing program has to be de-

signed based soley on the nominal values of the circuit.

After discussions with potential users, we also find that there are three
important measures for the effectiveness of a testing program.
| - ® Test Points. Due to the practical restriction that there are usually only

a few nodes accessible for measurement and testing, the number g_f_ required

test points has to be as small as possible.

® Post-Fault Computation. Since the post-fault computation is directly re-

lated to the per unit cost, it is important to keep the post-fault compu-

tation time short and simple.

® Robustness. This issue has been raised many times; only because it is in-
deed the dominant issue at hand. We want the testing program to be relia-

ble when the fault/tolerance ratio i_s small.

These two major issues and there effective measures have guided our research

in the past years.
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IV. HIGHLIGHTS OF RESEARCH EFFORTS

The fault analysis of analog circiut, to be sure, is an uncharted area of
research. There is no precedence with which we can follow. Indeed, this has
been an exciting, enjoyable and satisfying research. We continuously discover
new problems which usually dictates the requirements of new methods. As such,
new directions of research have been continuously searched and pursued. 1In
the end, we believe we have a very practical and reliable method at hand.
Some highlights of this development will be presented here.

The initial phase of our research was placed on understanding the prob-
lem. One of the important problems we have learned in the period was the

trade-off problem between the number of text points and the complexity of

fault diagnosis computation. It is known that when all the nodes can be used

as test points, the fault diagnosis equation to be solved is linear and the
computation is relatively simple. However, when the number of test points are
reduced then the fault diagnosis equation becomes more and more nonlinear.
Solving these simultaneous nonlinear equations involves complex computation
and the results are less reliable. Under this constraint, we have attempted
to pick the "best" trade-off point. We have found that if the number of test
points are reduced at particular locations, the fault diagnosis equations be-
come a set of "nice" nonlinear equations, i.e., the sequentially linear equa-
tions. This set of nonlinear equations has a nice property that can be solved
iteratively by a linear equation. Therefore, we can reduce the number of test
points but not increase the complexity of computation. This part of research
was a successful one, see [1] and [2], but the result was not good enough to
have practical use. It still requires more than practically allowed test
points to achieve sequentially-linear diagnosable circuits. As such, we have

to look for new directions.
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In the next phase, many ideas have been tried and tested: the modular

approach [3], the accessibility approach [5], a comparison study of frequency-
domain approach and time-domain approach [8] and the fualt directory approach
[12]. We have also investigated the estimation, theory aspect [9,10,11], the
computational aspect [4] and the feedback system design aspect [6] of the
problem. All these are novel and useful but only for a particular situation.
We are still left with the lack of a central thought or framework under which
all these approach can be applied. This leads to the third and the final
phase of our research,

At this point, we begin to realize that we have been trying to solve an
impossible problem, i.e., the isolation of all possible combinations of faults
with a limited few test points. With limited test points available, we can
isolate all possible faults only in theory, but not in practice. Because it
is theoretically possible, it kept us on the wrong track for a long time. The
difficulty in the implementation of such a theory is that the theory is based
on the ideal case, i.e., no tolerance for non-fault elements. This tolerance
effect forces us to look for new directions again.

ith a limited few test points, our goal is to isolate only a limited
combination of faults. We look for only the cases when numbers of faulty com-

ponents are limited by a few, say k. This is the k-fault diagnosis problem.

By turning our direction in this way, we recognize that we will miss some
situations, such as when the number of fault elements are greater than k.
However, the k-fault diagnosis problem makes a lot of sense. First, a system
is faulty usually because only a few of its components are faulty. A large

aumber of components become faulty at the same time is a rare occurrence.

Therefore, we do not miss too much by considering the k-fault diagnosis prob-

lem. Secondly, the k-fault diagnosis problem was found to be mathematically
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tractable and computationally simple. Finally, by doing so, we do no less
than our counterpart, the fault diagnosis of digital systems. In our counter-
part, most of their successful ones are only for single-fault diagnosis, i.e.,
k=1. In the last two years, our attention has soley been devoted to the k-
fault diagnosis problem. Fortunately, we have been very successful and had
some breakthrough results [14,16,17,18,19,20,21,22].

At this stage, we have only considered the linear circuits. The cases of
nonlinear circuits and analog/digital hybrid circuits are left for future
research, In the case of linear circuits, the following has been achieved:

1. The k-faulty diagnosability problem is completely solved.

2. A method for the design of the location of the test points so that a

circuit becomes k-fault diagnosable is available.

3. A simple and robust computational method is developed to implement

the above theories.

4, The number of test points required is small even for large and

complex circuits.

As a final test to our porogram, we have tested our method on a circuit
jointly supplied by the NAVAIR and the Naval Air Engineering Center. This
circuit is a video amplifier which consisted of 21 nodes and 38 components, 8
of which were transistors. Even for digital circuits, 38 components required
7 test points. We needed only 5 test points for our analog circuit. It is
well known that the diagnosis of analog circuits is a much harder problem than
that of digital circuits., This demonstrates that our method required very few
test points.

In the meantime, for the same NAVY circuit, the computation time for each
fault-isolation test was less than 10 seconds on the IBM37C. This is amazing,

for it translates to less than one dollar per unit cost!
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Finally, our method has been demonstrated to be reliable. The fault
deviation to the tolerance deviation ratio is about 200% to 52. Although the
ratio may be a little high, this is the first method which was shown to have

the capability of taking any tolerance at all.
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V. CONCLUSIONS

In summary, we started with an uncharted area of research. DNuring the

Ei 155 ]
i

four years, the research experiences have sometimes been painful, but always
exciting and rewarding. Many directions have been tried and failed. But each
time we have learned something new. Finally, a practical, robust, and yet ele-
pant method is at hand. This method has heen tested by a circuit supplied by
the NAVAIR and the Naval Air Engineering Center. The result is satisfactory

and successful,

The problem of fault diagnosis began to attract academic interest. It has
always been that the problem of fault diagnosis is considered as a problem be-
longing to repairing shops. This point of view has been changed. There have
been special sessions on analog fault diagnosis in the IEEE International Sym-
posium on Circuits and Systems in the past two years and definitely will also
be in the next two years. The principle investigator has been invited to give
talks on analog fault diagnosis problems at the Allerton Conference on Communi-
cation, Control and Computing [3], the National Electronic Conference [7], the
IEEE Conference on Decision and Control [14], the IEEE International Symposium
on Large Scale Systems [16] and many times at the IEEE International Symposium
on Circuits and Systems [5,12,18,19]. The last talk [19] was an hour-long tu-
torial speech. He was also invited to submit a paper by the Journal of Society

of Instrument and Control Engineers of JAPAN [15].

Up to this point, we have just completed the first phase of our research,

the deterministic model approach. Next, we will take the stochastic model

approach, and finally, the artificial intelligence model approach.

The stochastic model will incorporate the uancertainties, such as the tol-
erance into the model. We have started and nearly completed this part of the
research. Though this part of the research was carried out after the termina-
tion date of the ONR contract, it may bhe relevant to report that some break-
through results have been obtained. Theoretically, we achieved the Cramer-Rao
lower bound, and hence, we have obtained the most efficient algorithm. Practi-
cally, it recovered all the faults that were missed by using the deterministic

model approach before. With these encouraging results, we are very optimistic

that the problem of analog fault diagnosis will be completely understood in the

very near future,

11
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Fault Diagnosis:

Part I—Theory

RUEY-WEN LIU, MEMBER, IEEE, AND V. VISVANATHAN

Abstract—A good solution t0 the tradeolf problem betwees the cost of
computation and the cost of test points is the sequentiaily linearly diagnos-
shble systoms. Conditions under which a system is sequentally lnearly
diagnosabls are developed in Part L. A design procedure for the test poimts
to fuiftll these conditions is given in Part I

I. INTRODUCTION

N fault diagnosis of analog systems we encounter two

classes of faults—catastrophic faults and soft faults
[17]. The former occurs due to an extreme change in the
performance of some component(s) (a fuse blows or a
circuit shorts out) and results in outright failure of system
performance. Diagnosis of such faults [1] is usually based
on the acceptable premise that the system failure is due to
a catastrophic fault in one (or a few) of its compoanents.
On the other hand, when the values of the parameters of
the system drift there is a degradation of system perfor-
mance which is called a soft fault [17). The drift in
parameter values is usually caused by permanent over-
stress (high temperature, continued overload operation,
material stress, etc.) or aging. In such cases one has to
make the decision that the system performance has
sufficiently degraded for the system to be declared faulty,
and the problem of diagnosing the fault is more difficult
than in the catastrophic case. This is because the fauity
condition of the system may be caused by changes in the
values of many parameters. However, if we can determine
all the parameter values, not only can we decide if a soft
fault has occured, but also locate the faulty parameters.
This approach will be used in this paper.

In this paper we consider soft faults in linear large-scale
dynamical systems (LSDS), i.e., an interconnected system
whose components are linear and time invariant. When
we study such systems from the point of view of fault
diagnosis, we consider it to have two parts—the system
parameters and the system structure. The system parame-
ters are real-valued variables. The system structure con-
sists of all the parts of the system that are known (or
assumed) to be invariant. This may include the location of
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the inputs and outputs, the connections between the com-
ponents and the dynamical nature of the components.

Let the vector p denote a subset of the system parame-
ters which is to be diagnosed. [ts relation tc the transfer
function is given by

H(s)=h(s.p) (H
where the function 4 is determined by the system struc-
ture and the nominal values of all the parameters not
included in the subset p, i.e., the parameters which are
assumed to be invariant or fault free. Since from g input
and m outputs of any linear time-invariant system we can
only determine the m X ¢ transfer function matrix H(s),
we have the following definition.

Definition 1

The parameters p of an LSDS are said 10 be qiagnosable
if p can be determined from H{(s), i.e,, % is injective.

Note that given an LSDS the function # may vary
according to which subset of the parameters of the LSDS
are to be diagnosed, and, therefore, one subset of parame-
ters may be diagnosable while some other subset of the
same LSDS may not.

Since the function # maps p into the space of symbolic
transfer function matrices determining conditions under
which it is injective is a difficult problem. We propose
instead an approach based on the time-domain repre-
sentation of the transfer function matrix H(s). This ap-
proach is based on the following assertion.

Assertion [ [2]

Two minimal (controllable and observable) linear time-
invariant state equation representations ® =[4,B,C,D]
and @,-[A B,C, D] with state spaces of the same dimen-
sion n are realizations of the same transfer function
matrix H(s) if and only if

D=D

and
2n—1.

CA'Bm=CA'B, i=m0,i---

The Markov parameters D and CA'B, i=0,1---2n~1
are well-defined functions of p. We can therefore write

vec [ D:CB;+«+ ;CA™ 1B} = F(p). ()

Clearly we have Assertion 2.

0098-4094 /79 /0700-0490800.75 ©1979 IEEE
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Assertion 2

The parameters p of the LSDS are diagnosable if and
only if F is injective.

Note that F unlike A is a real-valued function of real
variables.

Assertion 2 requires that F(-) be injective for the
parameters p to be diagnosable. This is a very strong
requirement. A less strict but equally useful condition is
that F(-) be injective in a generic sense.'

Definition 2
A function f: R"—R™ is injective in a generic sense if

Va{xeR"3Ax €R", x#x and f(x)=f(x')}
is a proper variety.

Definition 3

A set of parameters p is diagnosable in a generic sense if
F(-) is injective in a generic sense.

Since the “probability” that the parameters will take on
the exact values of the points on the proper variety equals
zero, generic diagnosability is an equally good property as
far as fault diagnosis is concerned.

It is aot an easy task to determine a necessary and
sufficient condition under which this property holds for
an arbitrary nonlinear function. At this stage it is perti-
nent io mention that if the Jacobian of the function F(')
has full column rank in a generic sense it is not necessary
that F(-) is injective in a generic sense. We will illustrate
this point with an example.

Example 1: Consider the function

y(x)=x?
whose domain is the set of real numbers. The Jacobian of
the function is

J,(x)=2x.

J,(x)=0 if and only if x =0. Hence, J,(x) has fuil column
rank in a generic sense. However, the set ¥ of Definition 2
is, in this case

V=R~ (0}

which is not a proper variety. Hence, y(x) is not injective
in a generic sense.

Let us consider a tradeoff problem between the cost of
computing and the cost of test points. In general, (1) or (2)
are nonlinear and the dimension of p is large. Therefore,
the computation cost is high and the accuracy is low. This
situation can be alleviated by an increase of the number
of test terminals. For example, if every parameter can be
measured directly, the function f or F becomes linear and
decoupled. On the other hand, every additional test point
is associated with an additional cost, and there is a limit
of numbers of test points to be added to a circuit. This is a
major tradeoff problem for fault diagnosis problems.

"This concept was introduced to the problem of fault diagnosis by Sea
and Sacks [3]. See {10} or the Appendix for the definition of genericity.
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In this paper, we propose a solution to the tradeoff
problem. It is found that under certain conditions, the
nonlinear equation (2) can be made to be sequentially
linear (see (31)), i.e., a set of nonlinear equations which
can be solved by solving a set of linear equations in a
sequential manner. Therefore, an optimal solution to the
tradeoff problem becomes the least number of test points
which makes (2) sequentially linear. Any additional test
points to the optimal solution will not reduce the com-
putation cost appreciably. One less test point will cause
(2) to be “genuinely” nonlinear, and, therefore, an in-
crease of computation cost by an appreciable amount.
The two-part paper gives a partial solution to the tradeoff
problem.

II. THE LSDS MODEL AND PARTITIONING

The LSDS is assumed to be an interconnection of single
input-single output (SISO) components. The ith compo-
nent may be represented as

p;8(s) (3)
where g,(s) is a known transfer function and p; the param-
eter to be diagnosed, and it has a state equation repre-
sentation (4), where x; is the state vector and g, and b, are,
respectively, the scalar input and output of the compo-
nent.

£=@5+ B

b,=C.1,+D;p,a, 4
The LSDS is described by the component-connection
model (5) (5}, [7), {18].

x=Ax+ BPa

b=Cx+ DPa (5a)
a L, L,I|lb

SR sl e

where 4 =diag (&) and B, C, D, and P are similarly
defined. The vector x =vec (z;) and q and b are similarly
defined. Equation (5b) describes the connection between
the components and the input-output terminals « and y
of the system. Without loss of generality it may be
assumed that both the numerator and denominator of
8:(s) are monic polynomials [14).

It has been shown [ 4] that without loss of generality the
LSDS description (5) with each component being a SISO
system applies to LSDS where some of the components
may be MIMO with a transfer function as follows:

Pugu(s) p28i(s) 21,8,,(5)

P:1 8a(s) P;8,(5)

By redefining the connections, each one of the above i

scalar transfer functions becomes an SISO component.
We now introduce a partitioning of the components

and rewrite (5) based on it. The partitioning leads natur-

ally to the fault diagnosis equations developed in the next
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section. Consider the SISO component described by equa-
tions (3) or (4). Let

m, & (degree of the denominator polynomial of
8,(5)) —(degree of the numerator polynomial of
&(s)). (6)

Definition 4

The quantity m, defined in (6) is called the minimum
delay order of the ith component and the component is
called an m,-minimum delay component.

Partition the components of the LSDS into the classes
S Sy, S),- - - S in the following manner. The class S;
consists of all the j-minimum delay components of the
LSDS. The largest minimum delay order of all the compo-
nents in the LSDS is X. On the basis of this partitioning
we can rewrite (5) as in equation (7). The partitioning of
the vectors a. b. and x and the matrices 4, B, C, D, P,
and L is conformable with the partitioning into the classes
So: * * Sx. For example, the matrix P, is a diagonal matrix
whose diagonal entries are the parameters of the compo-
nents that belong to the class S; and L,, consists of the
gains of the connections directed to the components in
class S, from those in class S,.

Let pER”, p,ER™, p,ER™- .- p, ER™ be, respectively,
the diagonal entries of the matrices P, Py, P,- - - Px. Note
that n= ny+n, + - - - n,. Since g,(s) is monic if it is part of
an m-minimum delay component, it can be easily shown

I Y VL YA S Nt W U WY W)

rx,,- FAO .rxoi
0
Xy 4, Xy
- +
0
_xx_ i Ax_ _xx.
-bo- -Co 1 -xo..
0
b, G Xy
R +
. 0
.bKJ L CKJ .xK.
9 Ly Ly
a, Ly
ax Lyo
5 L, "
L J L

KNP INE WOU P A i S S S S P PPN

that for values of s whose magnitude is sufficiently large

g.(S)'—"' 2 G@*TB . (8)
jem

It then follows that for the LSDS description (7)
Do- I,Dl -O,CIB| =]

and
D=0
C,A{B,=0
CA/~'By=1  j=0,---,i-2, i=2,---, K. (9)
Therefore,

DP=diag (DyPy, D\ P, - - Dy Py)=diag (Py,0,---,0).

(10)
As a consequence, det [/~ L ,DP)=det {I~ LyP,] and
by Theorem 1 of Singh and Liu [7] the LSDS (7) has a
state equation representation in the composite state space
of all its components if and only if det [/ — LyyP,]#O.

Assertion 3

Det [I— Ly Py]#0 in a generic sense.
Proof: Det [I— LyP,) is a polynomial in the entries of
the matrix which are themselves polynomials in the varn-

i ByP, ] [- ] ]
0
B,P, a,
0
By Py || ay
[ DoP, e
0
D o (7a)
0
DyPy || ax
Lo ! Lou |[ 4o
Lix1 Ly || &
I - .
b L (70)
|
Lyg 1 Ly, by
_____ e |
Ly Do || ¥ ]
ables p,. Hence, the equation

can be written as

A
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'-‘-

9(PorPoz* " +Pon) =0 (12)
- where g(-, -,,*) is a polynomial and hence, a variety V, in
o R™. Since

C. det [ 110

., the point p =0 does not lie on ¥ and hence, V is a proper
L . variety. The proof is completed.

v

Due to Assertion 3 in what follows, we consider only
those fault conditions for which det [/ — Ly Py]70. Let,

A & Ag+ BoPy(I— LygPy) ™' LeyCy
B.o & BoPo(I-LooPo)-‘
Co & Co+ Po(I— LogPo) ™' LinCy
Py& Py(I-LyPy) ™" (13)
Due to (10) and (13), (7) is equivalent to equation (14).
)E-zfx+§a
b=Cx+ Da (14a)

a [l;,, L, {lé
- 14b
el
adlag ‘AO:Ap o K)
=diag (BO,B Py, ,ByPy)
=diag (CO,C,, +,Cx)
=diag { B,,0,- - - ,0) (15)

where
A
B
C=
b
and

Lyp=| - . (16)

L Lyo Ly -+ Lxx
Note that
DL, D=0. (17)

III. CoNDITIONS FOR GENERIC DIAGNOSABILITY

Let S(s) represent the matrix transfer function of the
LSDS described by (14) and Z(s) the matrix transfer
function of the components described by (14a).

S()= L, Z()[ - LwZ(s)] 'La+L,. (18)

With a power series expansion of Z(s) and {7~ £, Z(s)} "
which are valid for values of s whose magnitude is
sufficiently iarge, we have

S(s)=L, 1?0(04’150 C;:iﬂB)
2 2 CaB\\
(1:,,,,(04-];0-’/——)) +L,. (19)
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Since S(s) has a state equation representation,

R0
S(s)= 3 M/s' (20)
where M,’s are the Markov parameters of S(s). We want
to equate the coefficients of (19) and (20).
It follows from (15) and (9) that

CA’B =diag (mg;,my;,- -+ ,my, P, 1,0, - - ,0)
where
my = C-oj{wio
m, = C,A/B,P, 1<i<}.
Note that m; is a function of only P,. Equating the
coefficients of (19) and (20), we arrive at Lemma 1.
Lemma 1
M,=¢$(Py,---,P) where i=0,1,2,.--

Imposing (17), the explicit expressions of ¢; can be
obtained:

Mo=LoPoLo,+ L, (21a)
M=[L, "'QoPoLoa] [Liu+LlOP0L0u]
+f(Py: -+ Piny),  iml,-- K (21D)

The above equations indicates the sequential nature of the
fault diagnosis equations. Note from (21b) that for each i,
¢, is a linear function with respect to P,

Recall that p,€R™ are the diagonal entrices of P,.
Taking the vec of equation (21) and the appropriate dot
product [8], we have

veo (Mo L] =ves [ oot
vec [M:-f;(Pof ° 'Pl-l)]-Nipb

2 Yo(Po) (22a)
= ],2’. - K
(22b)

where

Ny={ L+ LoPoLy, ] O[ L+ LoPole]  (23)

is a function of P, only.

Note that the existence of the solution to (22) is
guaranteed. If y, is injective, and if N, has full column
rank, the solution is unique. Since the column rank of N,
depends on the value of P,, the post-fault values of system
parameters, it does not shed a light in the design of
diagnosable systems. As such, we will treat the problem in
a generic sense.

Lemma 2

The union of a finite number of proper varieties is a

proper variety.
Proof: Consider the k,+ k&, - +k,, polynomials in n
indeterminates with coefficients in R:

Qi dr " Gk,
Q92" 9x,
A3 9m2 " " " v Imi, -
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The Boolean variable by, i=1,---,m, j=1,---,k, is de-
fined as follows:

b;=0, if g;%0

by=1, if g;=0. (24)

It follows from this definition that the proper varieties

V.CR", i=),--- m described as
G=0,  j=l ek
can be equivalently described by the Boolean equations
b, b,bik’ im]l---.m
while the Boolean equation
by+b,;=1 (25)
is equivalent to the polynomial equation
iy ™ 0. (26)
The union of the proper varieties ¥, i=1,---,m, can now
be described as
by b1abye, + byt by v+ by by =1 (27)

We can now express this sum of products as the product
of sums,

byby -+ -bz=1 (28)
where 5, is a sum of some of the Boolean variables b; of
(27). Since (295) is equivalent to (26) each b, associates with
a polynomial which is a product of some of the polynomi-
als g,. Therefore, (28) represents a variety V. Clearly
V#%R" and therefore it is a proper variety. The proof is
completed. Theorem 1 follows directly from Lemma 2 and

(22).

Theorem 1

The parameters p of the LSDS are diagnosable in a
generic sense if Yqo(py) is injective in a generic sense and
the matrices N, i.e.,

[ L+ LoPoLo,] O L+ LoPoly],
have full column rank in a generic sense.
Definition 5

The parameters p of the LSDS are said to be quasi-
sequentially linearly diagnosable in a generic sense if the
conditions of Theorem | are satisfied.

i=],2---K

Assertion 4
The matrix N, i.c.,

[ Lu+ LoPol 1= LoPo) "' Lau]”
O Ly, + LoPol = LyoPo) ' Lo ]

has fuil column rank in a generic sense if and only if it is
full column rank for some p,=pg.

LAt A -

[EEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-26, NO. 7, JuLY 1979

Proof:
Necessity: The proof follows from the definition of a
generic property.
Sufficiency: By Assertion 3 there exists a proper
variety ¥, CR™ such that Vp, & ¥, the matrix

[Llu+LiOP0(1-LwP0)_|L0n]T
O[ Ly + LoPo(I~ LeoPo) ™' Ly,

exists. When the matrix does exist it does not have full
column rank if and only if all its #, X n; minors (since there
exists a p§ where the matrix is full column rank, it has at
least n, rows) are zero, i.e., if the parameter values p, are
common zeros of the polynomials in the numerator of
each minor. Let ¥, be the variety so defined. Since there
exists a p§ where the matrix is full column rank, V,7R",
hence it is a proper variety. By Lemma 2,

Va&vyuy,

is a proper variety. Since Vp,& V' the matrix is defined
and is full column rank, the proof is completed.

Due to Assertion 4, to check if the parameters p of an
LSDS are quasi-sequentially linearly diagnosable in a
generic sense we need to check the rank of the matrices at
only one set of parameter values (say the nominal values).

Note that if the parameters p of an LSDS is quasi-
sequentially linearly diagnosable then all P’s, i=1,2,-- -,
can be solved from the linear equations (22b), in a sequen-
tial manner. The only exception is p, which has to be
solved from (22a), generally a nonlinear equation. In the
next section we propose a canonical form of the LSDS for
which (22a) becomes a linear equation in p, and as a
consequence the fault diagnosis equations (22) are indeed
sequentially linear.

We have so far assumed that all the parameters of the
LSDS need to be diagnosed. The extension of Theorem 1
to the case where only a subset of the parameters p are to
be diagnosed is straightforward. Let p’=Col (pg,- - ,px)
be a vector which consists of the parameters to be di-
agnosed. Equation (22a) may be rewritten as

o=y5( o) (29)

where v is a vector determined by M, L, and the
nominal values of the parameters which are in p, but not
in pg. We have Corollary 1 immediately.

Corollary 1: The parameters p’ of the LSDS are di-
agnosable in a generic sense if the function () is injec-
tive in a generic sense and for i=1,- -, K the submatrix
of the matrix N, i.e.,

[Lu+ LoPo(1=LgPo) "' Lo]”
O Lyi+ LyoPo( I = LooPo) ' Lo/

consisting only of the columns that correspond to parame-
ters in p; is full column rank in a generic sense.
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“probability” (Lebesgue measure). Therefore, = holds al-
most everywhere in R”.

Definition 6
The parameters p’ of the LSDS are said to be quasi-
sequentially linearly diagnosable in a generic sense if the

conditions of Corollary 1 are satisfied. 1 P&MBPMMAK%M% :
t location " idwest .
-l IV. Tue CaNoNicAL LSDS %ou':m»m “abb ) pp. 567570, 1977. >
N 2] iriable models from tapa-outpas datn Proe s A tlerton
N Definition 7 3 o Circut and Sysiem Theory, pp 449459, 1565, 1
) . . . g .. 1 “ Ji its ication 3
If in an LSDS (7) the matrix Ly, is diagonal it is called & wm‘mms“""_ wg‘humzahu%mkymu
a Canonical LSDS. " ;.‘u P.‘syum a.u‘:‘gog). PP “g-.ilss 1971, .
Let /,, and p,, represent the (ii)th entry of the matrices h;x.'.?mrd Sacks, "’°“"°“M S imlaor o
: Ly and P,, respectively, of a Canonical LSDS. If we now Pitsburgh) Vol 4 pp. D228, 1973 o Smiason, (Univ

0 redefine pog as (5] R Seeks, S, P. Singh,

fo s 2o (30) (6] T.N.Trick and C. J. Aljajian, “Fault diagnosis of analog circuits”
1= lopo Proc. 20tk Michwest Symp. Circuits Sysi. (Lubbock), pp. 576-583,
the fault di i ti 22) for the Canonical LSDS S.P. and R. W. Liu, “Existeace of
o re:u:etommequ ons (22) for the oni m msm v tence mu?srm?*m.
11|eay. R 2 239—246. May 1973.
N (8] C. G. Kha ﬁ mw uuonstoml-‘mcuoa;l
- vec [ M,—L,]=[LLOL,] 7o (31a) eibutones Sankory s Ser. A, vol. 30, pp. 167-180, 1968,
- (9] S. Seshu, “The future of " Proc. Seminar on Automatic
- "°°[M‘ﬁ(’o-Pp"'J’:-l)]'([l-u"'lqo}’olo.]r ctkarxmm Battelle Memorial Institute, Columbus, OH,
. , 1 WM.W Linear Multivariable Control. Berlin: Springer-
-: O[L,+ LoPoLy])ps  i=12,--,K. (31b) W YoM Vorbam. Spriees
N [11] H. Neudecker, “Some theorems on matrix differentiation with
. e e ial reference to kronecker matrix products,” Amer. Stat. Assoc.
AR Note that (31a) and (31b) are sequentially linear., J., pp. 953-963, Sept. | ] ] 1
g The major problem of diagnosis of an LSDS is with the [g F G'gp’,?’mm mwmomwﬂv- 1969
R O-minimum delay components since it requires that a puter Science. ewood Cliffs, N.J: Preatice-Hall, 1974, 3
nonlinear function be injective in a generic sense. On the (14 u.m of Notre “ﬂﬂgmtm dumul.w:ds EE. 1
'_i;_ other hand, for a Canonical LSDS the corresponding (15] R.Liuand V. Visvanathan, “Diagnosability of e dynami- '
; condition reduces to that of the matrix LT O L, being full s ot 1oy, Midwest Symposium on Clrcuis and Sys-
. column rank. Therefore, it would be advantageous if an [16] ——, “Sequentially Linear Fault Diagnosis: Part [I—The design ]
- LSDS can be reduced to a Canonical LSDS. As such, an of Jiagnosable systems,” JEEE Trans. Circuits Syst., this issue, pp. ’
. LSDS can be made sequentially linearly diagnosable. A [17] s.R. l.jbcny. L. Tung, and R. Sacks, “Fault prediction—Towards
_ strategy of test-point location whereby this is achieved is e hematcal theory. 0 [Agtional Foull Anaysis, 4. R. Sasks o
: iven in the second half of this two-part . 18] R. Saeks and R.’ )} . g
% a >-par papet o e York: Maroel Dekier 4 b pupaec ymemicnl Sysems
: V. APPENDIX )
GENERICITY .
A L 2
¥ p=(pup» " .p,)ER
N and consider polynomials YA, - - - ,A,) with coefficients in *
) R. A oariety V CR" is defined to be the set of common
- zeros of a finite number of polynomials vy, « -,y : .
: _ g
Ve {p: (P :Ps)=0,i=12, - ’k}~
. V is proper if Vv R" and nontrivial if V. In this setup, Ruey-wen Liu (5'53-M"59) was born in Kiangsu, ]
: a property « is merely a function #: R"—{0,1), where China, in 1930. He received the B.S., M.S., and
#(p)=1 (or 0) if = holds (or fails) at p. Let ¥ be a proper Ph.D. degrees in 1954, 1955, and 1960, respec-

tively, from the Department of Electrical En- v
gineering at the University of Illinois at Urbana. e
e He was a Research Assistant Professor at the
4 Department of Theoretical and Applied .
" Mechanics at the University of Illinois at !
Urbana from February to June 1960, and re- A
ceived a National Science Foundation Fellow-
ship at the Stanford University in the summer of

- variety. We say that « is generic relative to ¥ provided
#(p)=0 only if p € V; and that = is generic provided such

. " a V exists.

g The usefulness of this concept is based on the following

facts. Let po € V, where V is nontrivial and proper. If 7 is

generic relative to ¥ and if # fails at p,, 7 can be made to
boid if p, is shifted by a suitable perturbation, arbitrarily
small. It can also be shown that such a ¥ has zero

1962, He was a Visiting Associate Professor from 1965 o 1966 (and a
Visiting Professor from 1977 to 1978) at the University of California,
Berkeley. He also held visiting professorships at the National Taiwan




University, Republic of China in the spring of 1969, the Universidad de
Chile, Santiago de Chile in the summer of 1970, and the Institute of
Mathematics, Academia Sinica, Republic of China in the summers of
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electronic circuits, and applications of system identification to medical
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Sequentially Linear Fault Diagnosis:
Part II—The Design of Diagnosable Systems

V. VISVANATHAN anp RUEY-WEN LIU, MEMBER, IEEE

Abstract—Based on the results developed in Part I a strategy of test
point jocation by which the parameters of an LSDS are made diagnosable

in a geseric sense, is developed. By appropriate test point piacernent, an
LSDS is reduced to a cancaical LSDS. Next, aa sigorithm for the
systhesis of the test points required to make the parmmeters of the
canonical LSDS sequentislly linearly diagnossble in s generic sense, is
given.

I. INTRODUCTION

YSTEM designers have so far concentrated on the

performance specifications of the systems they build
and have given little thought to the diagnosability of the
end product. At a seminar nearly two decades ago, the
late Prof. Seshu in a paper about the future of diagnosis
[9] stated that there would be increased concern for di-
agnosability in circuit design-to the extent that “the circuit
designer is going to be required to supply the diagnostic
tests for the circuit he designs.” Recently, studies [3]-(6]
have been made on the tests of diagnosability from a
given set of test points. In this paper, a design procedure
for the test points is given so that a given circuit is linearly
sequentially diagnosable. .

We first present a strategy of test point location which
reduces an LSDS to a canonical LSDS. We then discuss
an algorithm to determine the test point locations required
to make the parameters of the canonical LSDS seque-
tially linearly diagnosable in a generic sense. We approach
the problem from a graph-theoretic point of view. We
view the present work as a preliminary result in a field
that is largely unexplored.

II. PRELIMINARIES
We begin this section with the definition of a test point.

Definition 1

An input or output terminal introduced in a system for
the sole purpose of diagnosis is called a test point.

An important property that must be satisfied by all test
points is that during normal operation we should be able
to put them in a state in which they do not affect the
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Fig 1. Equivalent representations.

system. The test points then come into the picture only
when fault diagnosis needs to be done.

The component-connection model of the LSDS has a
digraph representation, with the components, input sigs.a
generators and output detectors and meters being Seodw
and the connections being directed edges. The equiva-
lence between the block-diagram representation of the
LSDS [16, eq. (5)) and the digraph representation is
illustrated in Fig. 1. In the rest of this Haper the terms
system node, input node, output node, and edge will be
used interchangeably with component, input terminal,
output terminal, and connection, respectively.

1I1. A DECOMPOSITION STRATEGY

A major problem of diagnosis is with the 0-minimum
delay components since it requires that a nonlinear equa-
tion be injective in a generic sense. As we mentioned in
[16] it is not an easy task to determine the necessary and
sufficient conditions under which this property exists. A
simple sufficient condition can be derived by considering
[16, eq. (21a)). It follows from this equation that

vec(Mo—Ly,,)-[Loc®l,o] vec[ﬁo] (1
where ® denotes the Kronecker cross product [11]. From
the definition of P, [16, eq. (13)] it follows that

Po"(I""P.oLoo)_!ﬁo- (P3)]

If the matrix [Lg, ® L o] has full column rank then equa-
tions (1) and (2) can be solved for 2 unique P, However,
for the matrix [L{,® L] to be full column rank it is
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Fig. 2. Decomposition.

necessary that the number of both the input terminals and
output terminals be greater than the number of 0-mini-
mum delay components. We propose instead a strategy of
decomposition which in most cases will require a fewer
anumber of test points.

Consider the subgraph of the LSDS which consists of
the O-minimum delay nodes and all the edges between
them except the seif-loops and find its minimum node
cover (12]. Partition the set S, [16, section I} into Sy and
So- where S consists of the nodes that are not part of the
node cover and S,- consists of those that are. Break the
output edges of the nodes in S,- and introduce an input
and output node in each edge as shown in Fig. 2. The
signals measured at these output nodes will be described
by the vector y, and those introduced at the input nodes
by the vector u,. Under normal operation the correspond-
ing nodes are connected, i.e., ¥, =y,. When fault diagnosis
needs to be done the connection is broken.

The vector u which represents the inputs of the LSDS
other than those introduced by tearing is partitioned as

- [T':_] 3)

where u” consists of the inputs that reach only the compo-
nents in S,-.

Based on this partitioning of u, the partitioning of S,
and the introduction of u, and y,, the LSDS description
[16, egs. (7) and (10)] changes to that in (4) where the
rationale behind the partitioning of some of the vectors
and matrices is made self-evident by the corresponding
subscripts.

X, A, X,
-
0
Xg Ax | Xx
- 3,2, ar o -
By Py 0 ag-
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+ Lt . .1
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Note that the L matrices associated with b, are now
associated with u, and that y, = b,.. Also, Ly, is a diagonal
matrix. We now decompose the LSDS (4) into two subsys-
tems which are defined as follows.

Subsystem | (SS1) is defined by the component-connec-
tion model:
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0
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by Co 0 Xo
b, G Xy
0
by Cx || *x
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0 0 0
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[ ay 17 Lyy Lg, Lox' Loy
a, Ly L, L : Ly,
. |
ax Lyy Lyx L “xw
y 1 0 0 10
d, 0 1 10
I
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dy 0 0 1 : 0
| 4] | Lo Dn Ly Ly
Subsystem 2 ($S2):

bg- = CooXg- + Py-ay-.
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The connections between SS1, SS2, and the inputs and
outputs of the LSDS is given by

Fcl
2
|
e
Lyt
[0 0 -0 o'o! 1 0 0
0 _0 _=:0__0,0,0 0 I _
Lyy Loy = Lex 0101 Loy Lo':' Lo_'o'_
[ Y A M 0
0 0 .0 0,17,0 0 0
[ dy |
dl
dy
7
2 O
by-
e
u”
u,J

It is easy to verify that (5)-(7) are equivalent to the LSDS
description in (4). As a result of the decomposition com-
ponents in the set S,- become a subsystem separate from
the rest. Note that SS1 is a canonical LSDS. The vectors
dyd,,- -+ ,dx are considered outputs of SSI for the con-
sistency of the model (5)-(7) with (4), and it is only
outputs d’ that are connected to output terminals of the
LSDS. The parameters of SS1 are therefore sequentially
linearly diagnosable in a generic sense, by [14, theorem 1],
if

[ Lows Lo ] O Lo

and

[ (L Lig) + Lig Py(Loyys Loo-) ] T
@[ l?-‘ + lﬁYPoLm]’

are full column rank in a generic sense. In other words,
under this condition the parameters of SS1 can be sequen-
tially linearly diagnosed in the generic sense from the
LSDS input-output measurements, without the informa-
tion of SS2. It remains to show that the parameters of $S2
can be linearly diagnosed from the LSDS input-output
measurements if the parameters of SS1 are known. This is
done in two-steps, both with an application of a result in
[15].

Next, we want to show that SS2 is diagnosable from the
component input-output measurements, i.e., the parame-
ter P,. can be determined from (aq-.by-). Note that (6),

i=1,--- K

(6) with the subscript 0” omitted for simplicity, is equivalent
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to The discussion above can be summarized in the next
Xx=4x+ Ba theorem.
b= PCx + Pa. 8)

This is because of the commutative property of single-in-
put single-output components [16, eq. (3)] between p, and
g(s). Equation (8) can be decomposed into a component-
connection model:

0 7 0

The parameters of component (9) are known, while the
parameters of component (10) are to be determined.
Equation (11) is the connection equation. Formulating the
matrix (12) of [15),
=1 0
o=[ 75 7]

which has full column rank. According to Corollary 1 of
{15}, (s,7) can be determined from (a,b), without the
information of P. Since P is a diagonal matrix, it can be
determined from (s5,r) by (10). Therefore, P can be de-
termined from (a,b), the input-output measurement of
§S2. In fact, P can be determined by solving a set of
linear equations because (10) is linear with respect to p,,
and (s,r) can be determined from (a,b), independently
from P.

Finally, from the component-connection model (5)-(7),
we want to show that the input-output measurements
(ag-,by-) of SS2 can be determined from (u,y) with the
assumption that the parameters of SS] are known but the
parameters of SS2 are not. Again, formulating the matrix
(12) of {15},

X=Ax+ Bc

d=Cx+c . 9)
s=Pr (10)
c 0 0 1||d

ri={I 0 O} si (11)
b a

-1 0 o0
A
0 0 1
where
Q=L +LyPyly,
Q1= Lo+ LoPylye (13)

which has full column rank. From Corollary 1 of [15],
(aq-,by-) can be determined from (u,y) without knowing
the parameters of SS2.

Definition 2
For a canonical LSDS [16, definition 7}, the matrices
LLOL, (14)
and
[ L+ LoPolo,] [ L, + LoPoly],  i=1,--+,K
(15)

are called diagnosis matrices.

Theorem 1

If the diagnosis matrices of SS1 are full column rank in
a generic sense, then the LSDS (4) is sequentially linearly
diagnosable in a generic sense.

Note that the diagnosis matrices of SS1 concerns only
with P, which are those memoryless components which
are not part of the node cover.

Before we discuss the design of the diagnosis matrices
in Section V, in the next section we will discuss their
graphical structure since it gives an insight into their
design.

IV. THE STRUCTURE OF THE DIAGNOSIS MATRICES

Consider the n, X ¢ matrix [L, + LPoL,,} and the mx
n, matrix (L, + L4PoL,;). The rows of the matrix [L, +
LoPoLo ) (L, + L,gPyLy,]) correspond to input (output)
nodes and the columns correspond to i-minimum delay
system nodes. The matrix [L, + LoPyLoJ"(L, +
L,4PoLy;]) has a nonzero entry if the input (output) node
and the system node that correspond to that position in
the matrix have an edge or a directed path through a
O-minimum delay node between them. The value of the
entry is the total gain along the above mentioned directed
paths between the two nodes computed by multiplying the
gains of edges in series and adding the gains of edges in
parallel. Thus due to these two matrices we have certain
directed paths from input to output nodes through the
i-minimum delay system nodes.

The matrix [L,, + LoPoLo )" O[L,, + LoPoLy] is a gm X
n, matrix. Each of its columns corresponds to an i-mini-
mum delay system node while each of its rows corre-
sponds to an ordered pair of input and output nodes.
There is a nonzero entry in any position of this matrix if
there exists a directed path between the input and output
nodes of the ordered pair corresponding to the row
through the i-minimum delay node corresponding to the
column and possibly some 0-minimum delay nodes. Such
a directed path is called an i/o path. An i/o path is
identified by the ordered pair of its end nodes. Note that
not all directed paths from an input node to an output
node through an /-minimum deiay node is in i/o path
through that /-minimum delay node. Only those directed
paths that contribute a nonzero entry to the diagnosis
matrix are considered as i/o paths. Fig. 3 considers vari-
ous directed paths between an input and an output node
as candidates for i /o paths through the i-minimum delay
node A. All of them except for Figs. 3(e) and 3(f) are valid
i/ o paths through the node 4. In the case of the 0-mini-
mum delay components the diagnosis matrix reduces to
Lg,-L,o and an i/ o path through a 0-minimum delay node
goes through no other system node. Note that in Fig. 3(d)
we have the same i/ o path through the O-minimum delay
node B, and the 1-minimum delay node A.

If we construct a bipartite graph [13] with X and Y, the
two disjoint subsets of nodes, corresponding to the rows
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X, o8, 4 8, Y, X, By A ty
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By,
Xy a4 1y X é ;
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Xy Xz. XJ. LI Xs. Xg1 Input nodes

Y,.. Yz. YJ. Y“, Yj, Yé' Output nodes

3. 3, 53. B, s O0-min. delay nodes
A,C, 1.1-min. delay nodes
D 1 2-min. delay node

Fig. 3. Candidates for i /o paths.

and columns of the i-minimum delay diagnosis matrix,
and draw an edge between two nodes if the corresponding
entry in the matrix is nonzero, then a complete matching
of Y into X [13], is a necessary and sufficient condition
for the diagnosis matrix to be full column rank in a
generic sense in the space of nonzero entries of the
matrices L, L, Lou, L, Lo Ly, and Py However, since
we require that the diagnosis matrices be full column rank
in a generic sense in the space R™ complete matching is
only a sufficient condition for sequentially linear diagno-
sis in a generic sense.

V. DESIGN OF THE DIAGNOSIS MATRICES

In this section we develop an algorithm for the design
of diagnosis matrices that have full column rank in a
generic sense. Therefore, we assume that all the parame-
ters of the canonical LSDS need to be diagnosed. The
modification of the algorithm to the case where only some
of the parameters of the canonical LSDS need to be
diagnosed is straightforward.

If the canonical LSDS has no existing input and output
terminals then the strategy of adding a minimum number
of test points to make the parameters sequentially linearly
diagnosable in a generic sense is trivial. We first choose
the number of input terminals ¢ and the number of output
terminals m which minimize the quantity (¢ + m) subject
to the constraint

. 16
qm > t-oﬂ;a-,-‘-.l(n' ( )

The matrices L, and L,,, i=0,1,- - -, K are then chosen so
that

(17)

Then by [16, association 4 and theorem 1] the parameters
of the canonical LSDS are diagnosable in a generic sense.

....................
~~~~~~~~~~

UPRE G G0 IV PR G U U YUY A

The procedure for constructing the matrices L, and L,
so that L O L, is as given in (17) is best understood by
using the bipartite graph discussed in the previous section.
We start with the two disjointed subsets of nodes corre-
sponding to the gm possible i/o paths and the n, i-mini-
mum delay system nodes. Each i-minimum delay system
node is matched to a different i /o path. In the digraph of
the canonical LSDS we then create the i/o path corre-
sponding to the system node by introducing a directed
edge of gain 1 to the system node from the corresponding
input node and from the system node to the correspond-
ing output node. This procedure is carried out for /=
0.1,--- K.

However, since all systems have input and output termi-
nals which already exist, and have not been introduced
for the purpose of diagnosis, we should make the best
possible use of the i/o paths created by these inputs
(inputs created in the canonical LSDS due to the decom-
position of the LSDS can also be considered as existing
inputs) and outputs. Stated from a matrix point of view,
some of the rows of L] and L, i=0,1,- - -, K, are already
fixed and what we need to do is add a minimum number
of extra input and/or output nodes (under normal opera-
tion the input signals will equal zero and the output
signals need not be measured) and appropriate rows in the
above mentioned matrices to make the parameters of the
canonical LSDS sequentially linearly diagnosable in a
generic sense. Though this is a conceptually simple prob-
lem it is not an easy task to create an efficient algorithm
which will solve this problem for any given canonical
LSDS.

The algorithm that we present makes the parameters of
the canonical LSDS sequentially linearly diagnosable in a
generic sense but it has not been proved that it will use the
minimum possible number of test points required. Starting
with the first matrix (Lg, ® Lo) the algorithm sequentially
makes each one of them of full column rank in a generic
sense. In the algorithm we start with the minimum num-
ber of test points required, i.e., the minimum number
required to satisfy the inequality (16). Then, when we are
working with the j-minimum delay diagnosis matrix we
first create the possible i/o paths through j-minimum
delay system nodes, which go between the existing i/o
nodes and the test points and the test points themselves
and help increase the rank of the diagnosis matrix. This
operation is done in an efficient manner by considering
the system nodes in the increasing order of the number of
input or output nodes to which they are connected. Note
that we are allowed to create edges only between test
points and system nodes and not between existing i/o
nodes and system nodes since such an edge would change
the normal operation of the system. At this stage extra test
points are added only if they are needed to make the
diagnosis matrix of full column rank. As a result of the
algorithm each diagnosis matrix has the structure shown
in Fig. 4. Clearly the matrix in Fig. 4 is of full column
rank. Notation for the algorithm is as follows.
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e i/0 paths between test points

A1 v
Ay column echelon form (full column rank)

Fig 4. Structure of a diagnosis matnix.

The input and output nodes that are part of the canoni-
cal LSDS before any test points are added are called
existing nodes while the test points (which are added on
by the algorithm) are called test nodes:

number of existing input nodes,

number of existing output nodes,

signal at the @ existing input nodes,

signal at the b existing output nodes,

number of i-min delay system nodes,

nominal value of 0-minimum delay parameters,
maximum delay order of all the system nodes in
the canonical LSDS.

Algorithm

1) Input g, the subgraph of the canonical LSDS which
consists of all the nodes, and the edges between ‘he
i-minimum delay nodes, i=0,1--- K, and the input, out-
put, and 0-minimum delay nodes.

2) Add to g, r input test nodes and s output test nodes
where 7 and s are chosen such that

r+s is a minimum

N;qi"‘ R o

subject to

(@a+r)(b+35)> i-ot.l}?-.xn"'
3) Let ieO0.
4) If i=0, L= Ly, OL,; and else

L[ Ly+ LoPole,) O] L+ LoPolLy .

5) From the columns of L select a basis for its column
space.

6) To each one of the i-minimum delay nodes that do
not correspond to the basis selected in step 5 (these are
called the remaining nodes) assign two numbers called the
U-number and the Y-number, where the U-number is the
number of existing input nodes that are connected to this
system node either via an edge or a directed path through
a O-minimum delay node, and the Y-number is the num-
ber of existing output nodes to which this node is con-
nected either via an edge or a directed path through a
O-minimum delay node.

7,16) Form a stack R, (R)) of the remaining nodes
(nodes in S,) such that nodes with a smaller U-number
(Y-number) are closer to the top of the stack. Arbitrarily
order nodes with the same U-number ( Y-number).

8),17) Arbitrary assign an ordering 1 through s(r) to
the test output (input) nodes. Let the set §,(S,)@.

.............
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9),18) If R,(R)) is empty go to step 16(25).

10),19) Pop the stack R,(R). Let je1.

11),20) Create a directed edge of gain | in g from this
popped node (test input node j) to test output node j (this
popped node).

12),21) If a new i/o path through i-minimum delay
nodes has been created go to step 9(18).

13),22) Delete the directed edge created in step 11(20).

14),23) Let jej+ 1. If j<s(r) go to step 11(20).

15),24) Assign the system node to the set S,(S,) and go
to step 9(18).

25) Let, m«the number of system nodes in the set S,
and, A;«—the number of i/ o paths in g through /-minimum
delay nodes which are between test input nodes and test
output nodes.

26) Add to g F test input nodes and § test output nodes
where 7 and 5 are chosen such that

F+$ is a minimum
subject to
(r+F)(s+5)>r+ A,

27) Let re—r+rF and ses+5.

28) Create i, new i/o paths through the i-minimum
delay system nodes by adding to g appropriately directed
edges of gain 1 between the system nodes in S, and the
test input and output nodes so that one and only one of
these i/ o paths goes through each system node in §,.

29) Let i—i+ 1. If i< K go to step 4.

30) Output g.

31) Stop.

Note that in steps 7-15, we try to create new i /o paths
by creating edges from a system node to a test output
node; and in steps 16—-24 we try to create more i /o paths
by creating edges from test input nodes to system nodes.

The algorithm that we have presented has some short-
comings. In order to minimize the total number of test
points we have introduced both input and output test
points. However, an input test point requires the introduc-
tion of a signal generator and could therefore be called an
active test point while an output test point requires only a
measurement and therefore is a passive test point. In a
practical situation one might wish to use more passive
than active test points. Such a requirement can be incor-
porated into the algorithm by defining a cost function
which assigns a greater cost to an active test point than to
a passive test point and then minimizing this cost function
rather than the total number of test points. Another
drawback is that we have assumed that an input can be
connected to any component and that the outputs of any
set of components can be added to create a system output.
In other words, we have assumed that there are no con-
straints on the connections. This may not always be true.
One type of constraint that is imposed on the connections
is that the inputs or outputs of two components may not
be the same physical quantity. For example if the outputs
of two components are voltage and current they cannot be
added to create a system output. Another kind of con-
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straint imposed on the connections is that they may have
to satisfy certain physical laws. In electrical circuits for
example the connections have to satisfy KVL and KCL.
Physical systems will in some cases have certain con-
straints on the possible connections and, therefore, ap-
propriate constraints have to be introduced into the algo-
rithm for the design of the diagnosis matrices.

In spite of these weaknesses the algorithm is useful
since it provides the basis for a systematic design of
diagnosable systems. In contrast, existing tests of diagnos-
ability can be applied only in a limited way to the design
of diagnosable systems. To amplify the point, these tech-
niques work as follows. The designer makes an “intelli-
gent” choice of test points and checks the condition for
diagnosability. If the condition is not satisfied, he chooses
another set of test points and continues the process until
the condition is satisfied. Such a technique might be
effective for a small system but is inadequate for a system
that a truly large scale.

VL

It is long been recognized that the problem of fault
diagnosis of LSDS is one of exploiting the structure of the
LSDS in a suitable manner. Saeks et al. [5] introduced the
component-connection model of LSDS to the fault diag-
nosis problem since it gave a better insight into the
structure of LSDS. In this two-part paper we have con-
tinued in the same spirit. By writing the fault diagnosis
equations in terms of the Markov parameters of the LSDS
rather than the transfer function evaluated at different
frequencies as in [3]-[5], we are able to use to our advan-
tage the property of the minimum delay order of a com-
ponent to write, in Part I, the sequentially linear fault
diagnosis equations. The condition for diagnosability as a
rank test on a set of matrices follows from these equa-
tions.

In Part 11 we explore the “automatic™ design of di-
agnosable systems. We first present a strategy of test point
location, which reduces the problem of sequentially linear
diagnosis of an LSDS to that of a canonical LSDS. We
then discuss an algorithm to determine the test point
locations required to make the parameters of the canoni-
cal LSDS sequentially linearly diagnosable in a generic
sense. The algorithm is based on the graphical structure of
the diagnosis matrices which is also discussed.

SUMMARY AND CONCLUSIONS
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CHEN-SHANG LIN
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ABSTRACT

A theory for the study of analog circuit single-fault-diagnosis prob-
lem is developed in this paper. First, the concepts of fuzzy, precise,
and source components along with canonical circuits are introduced. A
sufficient condition and an algorithm are then given to determine the di-
agnosibility of a canonical circuit and the identifiability of the faulty
fuzzy-component in the circuit. Finally, an example is included to il-

lustrate the application of the theory.

I. INTRODUCTION

Frequently, a faulty circuit results from very few faulty elements'in
the circuit. This observation has been used in several papers concerning
fault-diagnosis problem of analog circuit. Most of them [1,2,3] employ
the "simulation approach”. In this approach, the various element values
are changed so as to simulate element failures and all the test-point
voltages are computed. These results are used either to prepare a 'fault
dictionary" which would be supplied to diagnosis technicians, or to com-
pare directly with the measured data to determine the faulty elements un-
der some criterion. The computation time and memory size are greatly re-
duced by the use of very-few-fault observation.

In this paper, the single-fault case is studied. By taking advantage
of this information, a sufficient condition based on graph theory is ob-
tained. The process involved a decomposition of a circuit into sub-
circuits to satisfy certain properties.

A novelty of the paper is the way it is treated for those elements

whose nominal characteristics are fuzzily specified, or specified with a

large tolerance.

II. PRELIMINARY DEFINITIONS AND ASSUMPTIONS

A circult component may be a circuit element, a subcircuit or a

functional block. Each component is charactarized by its characteristic,

such as the resistance of a resistor, the gain of an operational amplifier,
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or the characteristic curves of a tramsistor.

Definitions.

1. A nominal characteristic is the designed characteristic of the

compouent.

2. An actual characteristic is the characteristic of the component 1
at the time of testing.

3. A precise component, or p-comp, is one whose nominal character-
istic is precisely specified. It is fault-free if its actual character- -
istic is the same as its nominal one.

4, A fuzzy component, or f-comp, is one whose nominal characteristic
is not precisely specified, but within a specified range. It is fault- ;
free if its actual characteristic is within this range.

5. A source component, or s—comp, is one whose terminal-voltages ‘;
and terminal-currents can be measured at the time of testing. .T

Examples of fuzzy components are transistors, operational amplifiers 3
and electrolytic capacitors. :i

Remarks.

RRRER

1. For fault diagnosis problems, the nominal characteristics are

£ d
s

usually given and the actual characteristics are unknown.

3

2. In a realistic case, the actual characteristic of a precise

. .
.

v,
&5
‘

component may deviate from its nominal one under fault-free case, but the 5

deviation is small, say less than five percent.

v
)'l‘,

; Assumptions. |
:; 1. The actual characteristic of a component can be uniquely de- -
; termined from its terminal-voltages and terminal-currents. 21
e 2. The nominal characteristic of a p-comp is voltage-controlled, ie., e

its terminal-currents is uniquely determined by its terminal-voltages.

Definitions.
6. A circuit is diagnosable w.r.t. a set of measurements if all

faulty components can be located from the measurements.

7. A component of a circuit is identifiable w.r.t. a set of measure-

ments if its actual characteristic can be determined from the measurements.

: III. THE MAIN THEOREM 4
b In this section, a restricted class of circuits will be considered.

N It is a class of circuits crucial to one-component-fault problems. The

X extention to the general circuit will be considered in the later section.
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Definition 6. A circuit is canonical if it satisfies the following:

(Cl) All components are two-terminél.

(C2) 1t contains only p-comp and f-comp.

(C3) 1Its graph is non-separable.

(C4) There is neither f-comp only loops, nor p-comp only cutsets.

(C5) There is at most one component connecting any two nodes.

The canonical circuit may be excited by any number of s-comps, con-
necting across any two nodes, with any waveforms, as long as Assumption 1

is satisfied. With the above condition, the following theoremcan be stated.

Theorem 1. A canonical circuit is diagnosable and its faulty f-comp

is identifiable, if

(Al) at most one component is at fault.

(A2) all node voltages are measurable.

Proof: The proof of Theorem 1 is based on the following algorithm.
Step 1. Calculate the terminal currents for all p-comps, from their
nominal characteristics and measured node voltages. These currents are

called the estimated currents.

Step 2. Calculate the terminal currents for all f-comps, from the
estimated currents obtained in Step 1. This is done by the fundamental
cutset equations [4,5] associated with the tree containing all and only
f-comps. The existence of such a tree is guarenteed by Conditiom (C4).

These obtained currents again are called the estimated currents.

Step 3. Determine the characteristic of f-comps from their estimated

currents and measured node voltages, called the estimated characteristic.

Step 4. Label each f-comp with the letter "T'" or "F", according to
the following rule. If the estimated characteristic is within its spec-
ified range, label it "T", otherwise, "F". There may be zero, one, or
more than one f-comps labeled F. In the last case all f-comps labeled F
have to be in the same fundamental loop.

Step 5. Locate the fault component according to the following rule.

1. If there is no F-labeled f-comp, then there is no faulty com=-
ponent in the circuit.

2. 1If there is one F-labeled f-comp, then this f-comp is at fault.

3. If there 1s more than one F-labeled f-comps, then the p-comp

which defined the fundamental loop containing these f-comps is at fault.

It remains to be shown that the decision made in Step 5 is a correct

one. Since there are at most one faulty components, there are only three
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possibilities.

1) There is no faulty components. Therefore, the estimated currents
of all p-comps are actual currents. As a consequence, all estimated cur-
rents and estimated characteristics of f-comps are actual omes. Therefore,
there will be no F-~labeled f-components.

2) There is one f-comp at fault. In this case, all p-comps are
fault-free. By the same reason as above, all estimated currents and
estimated characteristics of f-comps are actual ones. Therefore, there
will be one F-labeled f-comp. ’

3) There is one p-comp at fault. In this case the estimated current
of this, and only this, p-comp is at error. As a consequence, all the
estimated currents are at error for those, and only those, f-comps in the
fundamental loop defined by this p~comp. Therefore, their estimated
characteristics will also be at error, causing a switch in their labelling
from T to F. Since, in view of Condition (CS5S), there are at least two
f-comps in every fundamental loop, there will be two or more f-comps
labeled by F. This completes the proof that the circuit is diagnosable.

If one f-comp is at fault, from the above discussion, all estimated
characteristics of f-comps are the actual ones. In particular, the
actual characteristic of the faulty f-comp can be obtained. Therefore,
it is identifiable. The theorem is proved.

The definition of canonical circuit and the conditions of Theorem 1
seem to be very restrictive. Actually this is not the case. The only
crucial condition is that there exists no f-comps only loops and that
there is at most one component at fault. The others can be alleviated by
a proper grouping of circuit elements into compoments. This is illus-

trated by the next example.

IV. AN EXAMPLE

An example will be given which apparently does not satisfy Conditions
(C1), (C4) and (A2).

Example 1. Consider a voltage regulator as shown in Figure 1. The
measurable node voltages are at nodes (1), (2), (3) and (4), au. he s-
comps are at the input and output terminals. From these measurements, we
want to locate the one-element-fault.

Note first that node voltages at nodes (A) and (B) are not measurable.
This can be alleviated by grouping elements (Q1,Q2,D2,R5) into a 4-termi-

nal f-comp and (D3,D4) into a two-terminal f-comp. The other f-comps are
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D1 and C. The rest of them are p-comps. Next, the above 4-terminal
f-comp is further represented by three coupled two-terminal f-comps. The
resulting circuit is shown in Figure 2. Note that all node voltages are
now measurable. .

In order to check if the circuit is canonical or not, the s-comps
are first removed. It is seen that there is a cutset of Pl and P3. This
situation can be alleviated in the following way. Calculate the estimated
currents for Pl and P3, and see if the .cutset equation of P1l, P3 and S1
is satisfied or not. If it is not satisfied, then the fault is clearly
at either Pl or P3. No further calculations need to be dome. If the cut
set equation is satisfied, then both Pl and P3 are fault-free. In additionm,
the astimated currents are the actual currents. Therefore, Pl and P3 be-
come s-comps. The remaining circuit no longer has any P-comp, only
cutsets.

Since P3 1is now considered as a s~-comp, when removed the component
F2 is separable from the circuit. A close check, the actual current of F2
can also be found. Therefore, it can also be considered as a s-comp. The
resulting circuit is shown in Figure 3, which is canonical except that
components F2, F3 and F4 are coupled.

By the same reasoning a partial aanswer can be obtained and it is sum-
marized in Table 1. Note that only the partial labels are used for the

decision and the coupling relation between (F2, F3, F4) is not used.

Observed Labels Elements at Fault
F1 FS5 F6
T T T (F2, F3, or F4), or no fault
T T F Fé6 or P4
T F T F5
T F F PS5
F T T F1l
F T F P2
F F T F5
F F F More than one fault

Table 1. Diagnosis Diagram for Example 1.
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THE DETERMINATION OF THE RANK
OF A LARGE NOISY MATRIX*

L. C. Suen
Bell Laboratories
Naperville, IL 60540

and

R. Liu
University of Notre Qame
Notre Dame, IN 46556

ABSTRACT

The conventional methods used for the deter-
mination of the rank of a noisy matrix are based
on singular values. [t is shown that the singu-
lar-value approach will create an inconsistancy
especially when the matrix is large. The residuali-
number approach is presented for this case.

I. [INTRODUCTION
Let the matrices A and A be related by
A=A+ E

where the matrix E is the noise (error) matrix
whose elaments are assumed to be small., A rank
degeneracy problem (1] is the_determination of the
rank of A from the matrix A . We are especial-
ly interested in the case when the rank of A s
full rank but the rank of A is not. Under this
case, a square matrix A is usually said to be a
il1-conditioned or near singuiar (2], (3].

One may conjecture that a nearly singular
matrix must have a near-zero determinant, or a
near-zero eigenvalues. This conjecture turns out
to be false. There exists a matrix which is near
singular but whose determinant and eigenvalues
are equal to unity [4]. The current and conven-
tional methods for the determination of the rank °
and the ill-conditioness of a matrix are based on
its singular values [3], [S].

tet A cR™" | with m>n . There exist
orthogonal matrices U and V such that

T :
VAU:&]

where ¢ = diag. sy, S5, ..., s5,) and sy 25,
2...25,20. The numbers si, sz, ...

are unique and are called the singular values,
The rank of A is r if and only if s. 40

and Seep * 0. When a matrix is corrupted by a

nofse, a characterization of the rank of a matrix
is given by Golub et al (1]. A matrix A fs
safd to have numerical rank (§,c,r) with re-
spect to the norm ||+|| if

r = inf(rank 3|]|A - 8] < ¢}

+ S,

*This research is supported in part by the
ONR Grant NOOQ14-78-(-0444.

and

€ <& <Sup (n[(|A -B|]| <n=srank 8> r}

The numerical rank is related with the singular
values as follows. ‘

Theorem 1 (1]. A matrix A has numerical rank
(5, €, r] with respect to {|-||2, if and only if
S, 28> 2 5.,

Consequently, the numerical rank of a matrix is
completely determined by its singular values.
However, the singular-value approach will result
as an inconsistancy. I[f the rank of an nxn
matrix is (n - 1}, then by delating an aporopri-
ate column of the matrix, the rank of the result-
ing matrix should remain to be (n - 1) . This is
not true as shown in the following example if the
singular-valye approach is used.

Example 1 (1]. Consider the matrix

T
A(n) = [n -Eﬁﬂl:_(_'ll

where In is the nxn identity matrix and

eT(n) = {1, 7, ..., 1. It is easy to show that
the singular values of this matrix are (1, 1, ...,
1, ). when any 1| columns are deleted, the
remaining nx(n - i) matrix has singuiar values

(1, 1, ..., 1, /—,‘?) . Clearly, when n is large,

there is always one and only one singular value
near-zero. [n other words, for any (¢,5) such
that 1 246 > ¢ > 0, the numerical rank of the
nx(n - i) submatrix is always one less than its
full rank, i.e., (n -1 -1), forany i < <n.
This clearly is an inconsistency because if tne
rank of an nxn matrix is r < n, then there
exists a nxr submatrix whose rank is full rankr

[n this paper, we propose to use the residual
numbers to determine the rank of a matrix. Certain
nice properties will be presented.

[1. RESIDUAL NUMBERS

We consider A ¢ R™M et the rank of A
denoted by o(A) and the column-space of A by
R{A). Let a, denote the i-th column-vector
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of A, and A1 the remainder of A with a, de-

leted. Without loss of generality, assume that
m>n.
Definition 1. The n residual numbers r.

of A 1s defined by !
T +
ri(A) &2, (1 - AA)y (1)

for i=1,2, ..., n, where A? is the pseudo-
inverse of Ai [6] and [ the identity matrix.

[t is well known that

ry® min{{{a; - x||2‘x < R(Ai))
Consequently, 3y is a linear combination of the
column-vectors of A, if and only if r.* 0.
Therefore, A has full rank if and only if " £0

for all i . These observations lead to an alter-
nate definition of the rank of a matrix A . It
also orovides a residual-number test for the rank
of A, w~hen not corrupted dy noise.

Definition 2. An mxn matrix A has rank r

if,

(i) there exists an mxr submatrix B
such that

ri(B) >0 , i21,2, ..., r

(i1) there is no mx(r+l) submatrix B8
such that
ri(B) >0 , 1=1,2, ..., (rel).

An important relation between a matrix A
and its residual numbers is given by Theorem 2.

Theorem 2. 'When (ATA)'1 exists,
-1
r® di (2)

where di is the i-th diagonal element of
(ATA)'l; otherwise,

ry s lim d,'l(c) (3)
t‘o#
where d1(c) is the i-th diagonal element of
WA+ e )7l for ¢ 0.

As a consequence, a relation between the
residual numbers and the singular vajues of A
can be established. Let $9s S99 cees § be the
sinqular values of A . n

Coroill 2.1. If A has full column-rank
i.e., ol(AJ] = n, then

L.f 4 (4)
EHES! i1 s,

In view of Theorem 2, it is reasonable to
conjecture that when o,(A) < n,

Aalnflelale a’a s . a’a. 8 ¢ v et ool w

z_l-= 1
where the symmation is over non-zero ri's and

s.'s . [t turns out that this is false, as shown
by the following counter example.

Example 2. Consider
110

a=100 1.]
000

[t is easy to show that rt 0, ro " 9, ry = 1
while s, = 7z, sp * 1, s3= 0.
Clearly, the above conjecture is not satisfied.

The case of noisy matrices will be considered
next.

[II. THE MAIN THEQREM

Let us now consider the case when a matrix
AcR™" with m>n, corrupted by a noise
matrix V¥V, i.e.,

A=A+v (5)

The problem is_to determine the rank of A from
the measured A . Assume that

1) E{vi,]] s 0

2) Elvi.vyq ] 29 if i =k, js=
10 DL LI Q if otherwise

where E(x] {s the expectation of x . Then,

la) Ev] =0 (6)

2a) ENTV] = moll (7)
where m is the number of rows of V . From (5),
ATA = ATA + ATV + VTR + vy (8)

Let the elements of A be bounded, i.e.,
|‘1j| <K for same K . [t can be shown that

when M — = ,

1,7

ey A'YV -0
’%WA»O
1
m

Therefore, (8) reduces to

ATA = ATA + moll (9)

vIv =+ o%1

Consequently, the singular values § of A is
related to the singular values s of A by

3,2 55,7+ mo? (10)

for 1 =1,2, ..., n. This shows tnat if s. =0
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— Theorem 5. If 5(A) = r < n, then there
. exists a; ¢ R(A;) such that
e L
l1afa, 1% < 35
‘o Combining Corollary 3.1 and Theorem 35, we
Lad obtain the main theorem.
Theorem 6. If
ri(i) > mna2
for 1s1,2, ..., n, then o(A) = n .
. Note that mna2 may not be large even if
W m 1s large. For example, if we are interasted
in the effect on the rank of A due to the round-
off error from a computer operation. Typically,
e g s 1075 . Therefore, even {f m = n = 100.
¥
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then §r is near-zero if the ngise is small. We

want to derive a similar relation for the residual
numbers.

Theorem 3.
- - : : T :
ri(R) = (A) + meds § (<13 Hma?)da T(AT AT s,

i=
(11)
In addition, the third term can be estimated by

ST Ty e CncIinc i e Rruc a4 ——r EiE Sy Jhaw e e anuw o

mng? = 10'8. which is a small number.

Based on Theorem 6, we will give a definition
of the numerical rank of A and an algorithm to
compute it.

Definition 3. An mxn matrix A has a
numerical rank (o,r) if

(i) there exists an mxr submatrix B8 such

that
2

ri(8)>mre® , i=1,2, ..., 1.

» i i T +\3 2 At
madiiafa 12 2 § (13 me?yla T AN ey 2 BT 1Ay 112
jal
2
where a_ =+ B~ and s_ is the smallest non-
s
.

zero singular value of A .
As a consequence, we have Corroliary 3.1.

(ii) there is no mx{r+l) submatrix B8 such

that

Corollary 3.1.

. 2
ri(A) + mal + MGZ‘|A;Gi‘|Z 2 ri(A) 2 ri(A) + mo? +f§%;|lA?ai||2

for i=21,2, ..., n.

Note that when g, — 0, both sides of the
bounds are the same, and we have an equality. Next
we need an estimation of IIA: aillz . This is

given by the next two theorems.
Theorem 4.
iat 2 .
a) {A ai“ =1 if aita(Af)
+ 2
‘lAiai‘|

1+]]A%a,]1¢

if a ¢ R(Ai)

b) _g !|A+a1||z s r
i=l

where r is the rank of A .

r(8) > mrel)o? L 0= 1,2, L., (L)

The above definition is an extension of
Definition 2 from the noise-free case to the noisy
case. An algorithm to obtain the numerical rank
of a given matrix will now be presented.

Algorithm.
Step 0. Let B«A , re«n.
Step 1. Compute ri(B) for i =1, 2,...,r.

Step 2. Ch?oie the smallest of ri(B). say
r (8).
s

Step 3. If r.(8) ¢ mna® and r > 1, then
88, r~r-l, go toStep L.

Otherwise, numerical rank = r, stop.

It can be shown that the above algorithm
yields the numerical rank (g, r)

Let us now go back to Example 1. ([t can be
shown that the residual numbers of A(n) are
(0, 9, ..., 0). When any column is deleted, the
residual numbers of the remaining nx(n-1)
matrix are (%, %, ..., %), which are independent
of n . Since

i > n(n-l)a2

it o 1{s small enough, it can be concluded from
Definition 3 that the numerical rank of A(n} fis
(s, n=1). It can be further shown that when i
columns are deieted from A(n), the residual
numbers of the remaining nx(n<i) submatrix are

the same and equal to T%T > % . Therefore,

all such submatrices are of full rank as they
should be.

P e P

of Definition 3.
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The differences between the residual numbers
and the singular values can be seen from (4).

1 ? 1 (8)
A N

1 i=] 51

L e ]

i

Usually, the residual numbers do not differ very
much from each other, i.e.,

On the other hand, when the numerical rank is
n-1, it is usvally that Shel >> Sn -

Therefore, Eq. (4) becomes

1

LR S
. r 2
i Sh
or
2.1
S ATy
i.e., the smallast singular value is much smaller
than the residual numbers when n is large. Put
it into another way, the smailness of the resid-
ual numbers are distributed equally among them-
selves, while the smallness of the singular val-
ues are concentrated on the smallest one. [t
can be unusually small when n is large, and
therefore, it may not be accurately served as
an indicator for the rank of a matrix. In other
words, when 2 singular value is near-zero, there
are at least two possibilities. The matrix may
be near singular, or the matrix may be too large.

In conclusion, the singular-value approach
may work well when the matrix is small, but
fail when the matrix is large, in which case,
the residual-number approach is better.
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ABSTRACT II. ACCESSIBILITY FROM INPUT/OUTPUT TERMINALS

The problem of fault diagnosis of large-scale The LSDS model consists of three parts, the
analog circuit is studied. Any fault diagnesis masked subsystem, the unmasked subsystem and the
procedure is limited by the number of circuit param- connection-box as shown in Figure 1. The vectors
eters to be diagnosed. When such limit is exceeded u and y denote the input and output vectors of
by large-scale circuits, some kind of tearing proc- the LSDS, ¢ and d of the unmasked subsystem and r
ess has to be implemented before a fault diagnosis and s of the masked subsystem. The connection-
procedure can be applied. In this paper, a tear- box consists of the connections between the above
ing process via accessibility of subnetworks is variables. The equations for the three parts are:
presented. The necessary and sufficient condition
for accessibility is obtained. The implementation a) Unmasked Subsystems
of this tearing process is discussed. The tearing
process can be applied to nonlinear circuits. We assume that the unmasked subsystem is a linear

dynamical system described by:

x(t) = Ax (t) + Bec (t)
1. INTRODUCTION (1)
d(t) = Cx (t) + Dec (t)
In the study of Large~Scale Dynamical Systems

(LSDS), 1in order to simplify a problem we often re- where A,B,C, and D are constant matrices and x is
duce it from the level of the overall system to that the state vector for the unmasked subsystem.
of its components or subsystems. Tearing or Dia-
koptics [1] is such an approach for the analysis of b) Connection Box
large-scale networks. For the fault diagnosis of
LSDS there 1is to technique which is equivalent to The connection box is described by [10]:
tearing. Existing methods of fault diagnosis (for
example [3-6]) attack the problem at the LSDS level. c L ,L L d R R R c
cd "cs Tcu cec er cy

The easiest way to transfer the problem of
fault diagnosis from the level of the overall sys-
tem to that of the subsystems is to have direct T Ly Lrs Lr s|+ ch Rrr Rry r (2)
access to the inputs and outputs of each subsystem.

However, such direct access may not be available to

[

us. In such a case if we can determine the inputs y L L L u R R R y
and outputs of the components of interest from the yd ys “yu ye yr ¥y,

3 LSDS inputs and outputs, we have effectively ac-

i cessed them. Intuitively, we can say that this The L's and R's are constant matrices. Note that
would be possible if a mapping existed from the d,s and u are inpd%s to the connection-box and c,r
space of input-output waveforms of the LSDS to the and y are the outputs.
space of input-output waveforms of the components.

Such a map would be the basis of our tearing ap- ¢} Masked Subsystem

proach. In this paper, we explore these concepts

and determine the necessary and sufficient condi- The inputs and outputs of the masked subsys-
tions for the existence of such a map which takes tem are related by some functional form

as much advantage of the known information as pos- swf ot . (3)

sible. We then lay the intuitive basis for a
strategy of tearing which simplifies the problem
of fault diagnosis. The results presented are a
generalization of an earlier work by Saeks, Singh
and Liu [2] and Liu and Visvanathan {7].

which is assumed unknown. For example, the rela-
tion (3) could be a state equation or a zero-memory
nonlinear function.

Equations (1), (2) and (3) completely describe
1 the LSDS. The unmasked subsystem has been included
This research is supported in part by ONR Grant in the LSDS model to provide us with a greater
No. NOOOl4-78-C-0444. flexibility., Components that are known to be fault-
free or have been independently diagnosied can be
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included as part of the unmasked subsystem. We
further assume that the LSDS is well-posed, i.e.,
the initial value solution (x(t), c(t), d(t), r(t),
s(t)) exists and is unique for all admissible in-
puts u(*).

Definition 1.

The masked subsystem of the LSDS is said to be
accessible from input/output terminals, or simply
accessible, if Vie[0,»), (r(t),s(t)) can be unique-
ly determined from (u(t), y(t)) for t£{0,c] by use
of equations (1) and (2) but not (3), with the in-
itial state x(0) = O of the unmasked subsystem. It
is said to be anticipatively accessible if (r(t),
s(t)) can be uniquely determined from (u(t),y(1))
for 1¢{0,t+8] for some § > 0 but not for & = 0.

Theorem 1 [11}]

The masked subsystem of the LSDS is accessible
if and only if the matrix J

R +L D-I R L
cc ¢ cr

d cs

J = |R +L D R_=-I L
Te rd Tr <]

R +L D R L
yc yd yr ys

has full column-rank.

Note that the accessibility only depends on
the memoryless part of LSDS. The application of
Theorem 1 to large-scale networks is considered
next.

IIXI. ACCESSIBILITY OF SUBNETWORKS

The above result can be applied to the diagno-
sis of subnetworks. A given network can be decom-
posed into three parts as shown in Figure 2. Those
R-elements, which are known to be reliable, are
placed in the resistive-network box. Those L,C-
elements and/or (nonlinear) devices are placed in
the masked box. The last box contains all the ele-~
ments to be diagnosed.

Note that (u,y) and (r,s) are the port-volt-
ages and the port-currents of the overall network
and of the subnetworks in the masked box respect-
ively.

The unmasked part has a state-equation repre-
sentation (1),

x = Ax + Be

d = Cx

: 11
where A= 0, C = I, and B = diag (Ci, Lj
Ce= (ic ' vy ), d = (vc R iL ).

1 b ] i b

Associate each network in Figure 2, construct
a LC-reduced network, or simply reduced network,
by replacing each inductor by an open circuit and
each capacitor by a short circuit as shown in
Figure 3. Note that the reduced network is a re-
sistive network.

Theorem 2. [11]

The masked subnetwork in Figure 2 is accessible
if and only if (ic,vu r,s) can be uniquely deter-

),

KCL: o
-r 3
Iy Fex Fsc Fsr| |1s
| = - [Fx Fic Fal |L (4a)
I Fex Foc ch‘ I
B
KVL: }
. ]
Vs Fx Fsc Far| | _
= r ..‘
VL Fix Fuie Fwr| [Y% SLYB
Ve Fox Fec For] ['r
R
Ohm's Law:
Ve =R I ;
(4c) A
1, =6V,

K
K

mined by (u,y) from its reduced resistive network.

IV. ACCESSIBILITY OF FURTHER REDUCED SUBNETWORK

For the purpose of testing the accessibility,
it is possible to further simplify the network.
In order to do this, more notations are needed. Im
this section, m-terminal masked box is decomposed -
into m=-1 2-terminal X-devices and the set of X- ’
devices-branches is denoted by GX‘ Note that the
knowledge of all X-devices completely describes
the behavior at the terminals of the original mask-®
ed box. Similarly, the set of all inductor-, .
capacitor-branches are denoted by G,, G, respective
As for the resistor-branches, since somé of them
may be 1in a particular tree we choose in the net-~
work, we denote the set of them in the tree by GR,'
and the rest in the corresponding cotree by G.. = °

Now consider a network N satisfying the gollow<
ing assumptions. :

(1) The network N is a connected graph. 4

»

(2) The sources, including voltmeters and ammeters
are considered as a set of branches with .
measurable voltages and currents. The symbolii

Gs is used to denote the set.

(3) G_UG. contains no loop, otherwise ammeters are

ifiserted to break the loops. -
(4) GSUGL contains no cut set. .
(5) All resistors have positive resistance.

These five conditions are assumed to be satisfied -
the networks considered in this section.

Under above assumptions, there exists a tree
(t) which contains (GX’GC‘GR) and does not contain
(GS'GL’GG)' Let the set of all such t be denoted 4
by T. Then for each t in T, we have the following 4
equations: 4

.

where R and G are diagonal matrices with positive




T T T N T T T T T N T T T e,

diagonel elements.

Define
- T ' -1 T
“ For G Fgx t R+ Fep G Fgp
T leccccsccmclearsccccncannme
]
Fex ' For

Then from Equation (4) and Theorem 2, the following
lemma can be proved.

Lemma 1.

The X-devices in network N are accessible if and
only if the associated matrix W has full column-rank.

Although the size of matrix W is smaller than
the original matrices, that is only superficial be-
cause some of the submatrices cannot be determined

without the knowledge of the original matrices. The

following lemmas will provide a better solution.

Lemma 2.

In a network N, the associated matrix W has full

column-rank in the generic sense [12] if the matrix
?sx has full column-rank.

Lemma 3.

The matrix F__ of a network N has full column-
rank if (1) thereexists a tree teT such that GRUGS
contains no loop in LC-reduced network of N and
(2) the matrix W associated with N has full column-

rank.

The second condition in Lemma 3 will be referred

as Assumption (5) in the sequent paragraphs.

Note that not only the size of the matrix F..
is smaller than W but also the matrix itself c3h
‘be determined by the subgraph N" constructed by
shorting all resistor-branches in the particular
tree and opening all resistor-branches in the cor-
responding cotree in the LC-reduced network N'. We
call the subgraph N" RLC-reduced network. Then
Theorem 3 follows.

Theoren 3.

Let N be a network satisfying Assumptions (1)
to (5), then X-devices in N are generically access~
ible if and only if the matrix F_., in RLC-reduced
network associated with t has fu§¥ column-rank.

Remarks

1. Theorem 3 enables us to determine the accessi-
bility of X-devices in a network by dealing
with a considerably smaller subnetwork N" with
only sources and X-devices in this subnetwork.

2. From graph theory, F X has full column-rank if
and only if G contaifs a tree in RLC-reduced
network. The?efore, to achieve the accessi-
bility of X-devices, we only need to add some
voltmeter-branches into G_. to make it contain
a8 tree in RLC-reduced network.

3. 1In this theory, in order to access all the X-
devices in a network, the number of sources
must be at least equal to the number of X-
devices as can be seen from the required full
column-rank of F_,.

4. The choice of trée in a network is crucial in
determining the minimalsct of test points to
obtain accessibility. Altough the algorithm of
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finding the tree is still under development, it is
quite possible to pick the tree.in a network of
reasonable scale by inspection as shown in Example
1,

Example 1

Consider the accessibility of the two tran-
sistors in the two-stage amplifier circuit as
shown in Fig. 4a. It is clear to see that (C ,
T, C2, T2, C,) form a loop. From Assumption (2),
t%e 1lgop <an ge broken by inserting an ammeter A
in series with C,. Then, by choosing the tree

, i » X, X,, R.) in Fig. 4b, the
agsociated RL&—regucea neéwor is shown in Fig.
4c. Apparently, the branches (E_, EZ, E,, A) con-
tains a tree in Fig. 4c. Thus, J(X , XZ. XJ, X,),
so that (T,, T,), are accessible a%ter the *
insertion o6f the ammeter.

e V. APPLICATION TO TEARING PROCESS

The purpose of diakoptic or tearing process
[1] is to find a way of partitioning a large-scale
network into smaller subnetworks so that the solu-
tion of the large-scale network can be obtained by
solving the (decoupled) subnetworks. Clearly, this
represents a reduction in computation time.

If fault diagnosis is of our interest instead
of the network solutions, new tearing process
should be developed so that it is compatible to
fault diagnosis problem. The accessibility can
fulfill such purpose. Let us consider the network
in Figure 2. 1If each masked subnetwork is diagnos-
able from its input/output pair (r,s) and is acces-
sible, then the entire network is diagnosable from
its input/output pair (u,y). This is because (r,s)
can be obtained from (u,y) independently from the
characteristics of masked subnetworks.

In summary, if accessibility is achieved, one
can diagnose the entire network by diagnosing each
of the (smaller and decoupled) masked subnetworks
individually.
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Feedback System Design: The Fractional
Representation Approach to Analysis
and Synthesis

C. A. DESOER, fFELLOW, 1EEE, RUEY-WEN LIU, JOHN MURRAY, AND RICHARD SAEKS, FELLOW, [EEE

Abstract—The problem of designing a feedback system with prescoribed
peopertics is attacked via a fractional representation a~groach to feedback
system smalysis and synthesis. To this end we let H desote a ring of
operators with the prescribed propesties and model a given plant as the
ratio of two operstors in ., This, in twrn, leads to s simplified test to
determine whether or not s feedback system fn which that plant s
embedded has the prescribed properties and a complete characterization of
those compensators which will “place” the feedback system im H. The
theory is formuisted axiomstically to permit its sappiication In a wide

for its derivation even in the most general settings.

I. INTRODUCTION

NTUITIVELY, the linear feedback system design pro-

cess may be broken down into three steps: modeling,
analysis, and synthesis; each of which may be carried out
via a multiplicity of time and frequency domain tech-
niques. In engineering practice, however, the three steps
are loosely matched to one another. The purpose of the
present paper is to use fractional representation models to
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Fig. 1. Single-variate coatrol system.

the analysis and syothesis of feedback systems. Here, if
one desires to design a system with prescribed properties
the given plant is initially modeled as a quotient of two
operators, each of which has the desired properties. Once
such a model has been specified a similar model may be
formulated for the feedback system constructed from that
plant which, in turn, may be used to determine whether or
not the feedback system has the desired properties. More-
over, the set of compensators which will cause the feed-
back system to have the prescribed properties may be
completely characterized in terms of such a model. As
such, by choosing a model for the plant which is matched
to the design criteria the analysis and synthesis processes
for a feedback system may be greatly simplified.

These ideas are illustrated by the following derivation
of the set of stabilizing compensators for the single variate
control system of Fig. 1.

We say that a transfer function p(s) is exponentially
stable (exp. stable) if p(s) is a proper rational function with
poles having negative real parts. Although the plant may
naturally be modeled as a quotient of coprime polynomi-
als [16),{19] p(s)=a(s)/ b(s) since our ultimate goal is a

0018-9286/80/0600-0399500.75 ©1980 IEEE
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stable system we prefer to model p(s) as a quotient of exp.
stable rational functions

p(s)=n(s)/d(s)=[a(s)/m(s)][ b(s)/m(s)]~" (L.1)

where m(s) is strictly Hurwitz polynomial of degree equal
to the degree of 5(s). Moreover, since a(s) and b(s) are
coprime, the rational functions n(s) and d(s) are coprime
in the sense that there exist exp. stable rational functions
u(s) and v(s) such that

u(s)n(s)+ o(s)d(s)=1. (1.2)

Similarly, we assume that our compensator is modeled as
a quotient of exp. stable rational functions, c(s)=
x(s)/y(s), which are coprime in the above sense. Now, a
little algebra will reveal that the closed-loop system trans-
fer function from input u to output y is given by a ratio of
exp. stable rational functions in the form

hyu($)= ()] ()d(s) + x(s)n(s)] "' x(s).  (1.3)

Moreover, it can be shown' that h,.(s) will be stable if and
only if

[¥(s)d(s)+ x(s)n(s)] = k(s) (1.4)

has an exp. stable inverse. Since k(s) is, itself, exp. stable
this implies that the feedback system will be exp. stable if
and only if k(s) is nonzero for all Res > 0, including oo.
An exp. stable function with these properties is called
miniphase. As such, the problem of synthesizing an exp.
stable feedback system reduces to the solution of (1.4) for
exp. stable rational functions x(s) and y(s) given exp.
stable functions n(s) and d(s) and a miniphase function
k(s).
By direct substitution one may verify that

yHs)=r(s)n(s) and xMs)m—r(s)d(s) (1.5)

satisfy the homogeneous equation
y(8)d(s)+ x*(s)n(s)=0 (1.6)

for all exp. stable rational functions 7(s). Moreover, since
n(s) and d(s) are coprime it follows that all exp. stable
rational solutions of (1.6) are of this form [15],[18]. On the
other hand, a particular solution of (1.4) may be obtained
by multiplying (1.2) by k(s), which yields

y?(s)=k(s)o(s) and x?(s)=mk(s)u(s). (1.7)

As such, if we let r(s) vary over the set of exp. stable
rational functions and k(s) vary over the set of miniphase
functions we obtain a complete parameterization of the
stabilizing compensators for our feedback system in the

'See the axiomatic derivation of Section I1I for the details.
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form

X9 [k(s)u(s)— r(s)d(s)]
y(s)  [k(s)v(s)+ r(s)n(s)]
- [u(s) = w(s)d(s)]
[o(s)+ w(s)n(s)]

where w(s)= r(s)/ k(s) ranges over the exp. stable rational
functions.

A comparison of (1.8) with the class of stabilizing
compensators derived by Youla, Bongiorno, and Jabr
[24),[25),{29] will reveal that the two results differ only in
that our u(s), v(s), n{s), and d(s) are exp. stable rational
functions while theirs are polynomials.? Unlike their
analytic derivation, however, the above result was ob-
tained via elementary algebraic operations. Indeed, the
only properties of the exp. stable rational functions em-
ployed are their closure under addition and multiplication
together with the fact that the identity is an exp. stable
rational function, i.e., the exp. stable rational functions
form a ring with identity. As such, if the exp. stable
rational functions of the above derivation were to be
replaced by any prescribed ring of single-input single-out-
put systems, (1.8) would yield a complete characterization
of the compensators which would “place” the feedback
system in that ring. If one works with a ring of rational
functions with poles in a prescribed region a solution of
the pole placement problem is obtained [18], whereas, if
one chooses to work with stable transcendental functions
a solution to the stabilization problem for distributed
systems is obtained (7),[8] etc. Indeed, with minor modifi-
cations the derivation can be extended to noncommuta-
tive rings thereby including multivariate and time-varying
systems. In each case, a simple solution to a fundamental
problem of feedback system design is obtained by virtue
of choosing a model for the given plant which is matched
to the uitimate goal of the design problem. In particular, if
we desire to design a feedback system which lies in a
prescribed ring of operators we model the plant as a
quotient of operators from that ring.

Consistent with the above philosophy the following
section of the paper is devoted to the formulation of an
axiomatic theory of fractional system representation.
Here, a given system is modeled as a quotient of two
operators lying in a prescribed ring H. The corresponding
feedback system analysis and synthesis problems are then
studied in the succeeding sections. In particular, Section
II1 is devoted to the problem of determining whether or
not a feedback system lies in M given that its plant is
represented as a quotient of systems from H while Section
IV is devoted to the problem of characterizing those
compensators which will “place” the feedback system in
H. The resultant axiomatic theory of feedback system
design is applicable to multivariate, time-varying, distrib-

c(s)

(1.8)

3From a computational point of view, it is more convenient o repre-
sent rational functions as ratios of polynomials, as per Youla ef a/.
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TABLE |
EXAMPLES OF THE AXIOMATIC SYSTEM( G, H, 1,/ }
G R(s) Ry(s) R(s)™ Ru(9)™ B(oo) Bo™ L(R) B(H)
H R(s) R(oo) REsI™ R(go)™ A_(a0) A (o)™ HuR) C(H)
. M e R[SI™ | M e Rloo)™ . Me A_(oo) | meHIR)
| R{s] =0 R (00) st s.t. A (00) st s.t. Co(H)
IM(s)l 0 | | M(s)|eR™(00) | M(s)| ¢ AC(a0) infl| m(jw)l| >0
m ¢ R{s) me R(0)) | MeRET™ | MeRo)™s.t. | me A%(0.) [MeA_(00)"*s.t. | m ¢ H(R)s.1.
J st st m(s) %0 st IM(s)eR"(a0) | s.t. m(sp0 | | M(s) eA (00} | infl| m(jw){| >0 | CC(H)
mis) =c % 0| forseC,. IM3)| #0 | &[M(s)| %0 | forseC , |IM(s) %0 & m is outer
o forseC,. {forseC,. o |forseC,,
o o I
Ref. 19 31 19 15,18 4,31 6,7.8 12 1,15
R(s) = j fi with real coefici R(os) = proper n_('mul functions with real coficients which are
Ryis) = proper with real coefs snalytic in cd;
aee R%(se) = proper rational functioas with real coefficients which
X = n by nmainces of clements i X. ) are analytw in C, . and nonzero at =
A = dutributons of the fonn.()-f:.‘.;.a(-c)whcnuuum B(H) = bounded linear op:rnlon on a Hilbert Space H.
integrable function s.t. g(t) = 0 for 1<0: g 13 & i .
summable sequence and Omto < 1, < t: < ... C(H) = causal bounded tinear operators on a Hilbert space H.
j_(o.) = Laplace transforms of distnbutions g such that g(t)e o Co(H) = causal bounded linear op with a bounded inverse
13 in A for some 0. <oo on & Hilbert space H.
2:(0.) = multiplicative subset of A_(a.) consisting of elements CC(H) = causai bounded linear operators with a causal bounded
bounded away from zero ata. inverse on a Hilbert space H.
Blon = quonents of clements of the form m/n where L(R) = y bounded Lebesq ble fi
me A_(0e) and n ¢ A-(00). defined on R.
R{s} = poly Is with real coefi H,(R) = the Hardy space of lly bounded Lebesq
= measurable funct defined R which have an
Co; complex numbers with real part greater than or equai to os analytic ex(e:uonwu:o c(: on ic!
uted, and some multidimensional systems and includes elements of H. Note that
the stabilization, pole placement, and feedforward desi
» pOe P ; gn JcIcHCG. 2.3)

problems. Several of these applications are illustrated by
the examples of Section V. In the final section of the
paper a partial generalization of the theory to nonlinear
systems is described. This follows the algebraic pattern
established in the linear case but is formulated in terms of
a left-distributive ring to model the properties of a nonlin-
ear system [23].

II. AXIOMATIC THEORY

Table I displays several examples of the axiomatic
system developed below. Reference to it will help in
visualizing the breadth and significance of the theory.
Additional examples also appear in Section V.

Let G be a (not necessarily commutative) ring with
identity and let H be a subring of G which includes the
identity. The feedback system and its subsystems will be
represented by operators which are elements of G. The
compensator will be chosen so that the overall system will
be represented by an operator in the subring H.

We define two multiplicative subsets [2],[27] of H,

I={heH|h"'€G), (2.1
i.e., I is the set of elements of H which have an inverse in
G;

J={heH|h"'€eH}, (22)

i.e., J is the subgroup of H consisting of all invertible

el alal s aala miaatatal

Given the above structure we say that a system g€G
has a right fractional representation in {G,H,1,J} if there
exist n, € H and 4. €] such that g=nd,~'. Furthermore,
we say that the pair (n,,d,)E H X H is right coprime if
there exist ¥, and v, in H such that

2.9)

The right fractional representation n,d,”! in (G, H,1,J} is
said to be right coprime if the pair (n,,d,) is right coprime.

The relationship between our concept of coprimeness
and the usual common factor criterion for coprimeness
[28] is given by the following properties.

Property 1: Let the pair (n,d)€H X H be right
coprime. Let n, and 4, have a common right factor r€ H,
i, n,mxr, d=yr for some x, EH and y,E H. Then r
has a left inverse in H.

Proof: Substitute the assumed factorizations of n,
and d, into (2.4) and obtain

un+od=1

un,+v,d =(ux+oy)r=1, 2.5)
Since H is a ring, u,x,+v,y,€ H. From (2.5) it follows
that 7~ L=y x, + v,y, is a left-inverse of 7. (]

Property 2: Let gmn d~' be a right coprime fractional
representation of g in (G,H,/,J). Let gmxy ' be a
second (not necessarily coprime) right fractional repre-
sentation of g in {G,H,1,J}. Then there exists an r in H
such that

x,=nr and y,=d,r. (2.6)
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Proof: Given the two factorizations of g, let r=
d"Yy,; hence r€G. Then

Y =dr 2.7)
and, performing calculations in the ring G, we obtain
X, - 87’ - (nrdr- l)yr - nr(dr— Iyr) - n”' (2'8)

From (2.7) and (2.8), r is a common right factor of x, and
»,. To show that r € H, consider

r= 4- &’ - (u’n’ + U’d’)d’- &’ - uf"’d’- &f + U,y,
=ugy,to, ,-u,x,+v,y,EH (29)

where we used the equality g=xy ~'=nd~! to derive
2.9). |

Although G is, in general, a noncommutative ring, the
entire theory developed above for right fractional repre-
sentations can be replicated for left fractional representa-
tions. In particular, we say that g€ G has a left fractional
representation in {G,H,1,J} if there exist ;, EH and 4, €1
such that g=d4,"'n. Furthermore we say that the pair
(n,d)E H X H is left coprime if there exist u, and v, in H
such that

nu+do=1. (2.10)

The left fractional representation d,”'n, is said to be left
coprime if the pair (n,d)) is left coprime. With these
definitions the existence of a common left factor for a left
fractional representations of g is characterized by the
following properties.

Property 1’: Let the pair (n,d)) be left coprime. Let n,
and d, have a common left factor / in H, ie., n=Ix,
dy=ly, for some x,€EH and y,€EH. Then / has a right
inverse € H.

Property 2’: Let g=d,”'n, be a left coprime fractional
representation of g in (G,H,I,J}. Let g=y " 'x, be a
second (not necessarily coprime) left fractional repre-
sentation of g in {G,H,/,J}. Then there exists an / in H
such that

x=In, and y,=ld,. (2.11)

The above properties of a coprime fractional repre-
sentation have all been derived under the assumption that
such a representation exists. Of course, if G denotes the
rational matrices and H denotes the polynomial matrices
the existence [ a coprime representation is implied by
classical analysis [16},{19). Indeed, the classical analysis
readily extends to the case where H is taken to be the exp.
stable rational matrices or the ring of proper rational
matrices with poles in a prescribed region [18]. On the
other hand for multidimensional [26), distributed (4},(8],
and time-varying systems [11),(15] there is no assurance
that an arbitrary g € G will admit a fractional representa-
tion nor even that the set of g€ G which admit such a
representation will be a linear space. Moreover, all g's
which admit a fractional representation may not admit a
coprime fractional representation [26). In general, the set
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of gEG which admit a fractional representation in
{G,H,1,J} will form a subring of G if and only if the Ore
condition® is satisfied while criteria for coprimeness have
been formulated in various special cases though no gen-
eral theory exists [1],[4],[26]). The standard condition for
the existence of fractional representations which are
coprime in the sense of (2.4) is that H be a right principal
ideal domain.

Reference to Table I shows that in applications it is
important to have conditions under which g will be in H
and these conditions should be expressed in terms of its
fractional representation.

Property 3: Let g=nd ' withn €H and d €.

a) Ifd €J, thengE H.

b) If g=nd, "' is a right coprime fractional representa-
tion of g in {G,H,I1,J}, then g€ H implies that 4, €J.

Proof:

a) We have 4, €J; hence by (2.2), 4" '€ H and thus
nd '=geH.

b) We have g€ H. Furthermore, n,=gd,, d, = 1d, im-
plies that d, is a right common factor of n, and 4,; hence
by Property 1, d, has a left inverse in H. But d, €17 by
assumption, so d,”! exists and is an element of G; thus
d~'=d-'e H; hence, by (2.2),d. €J. n

Property 3': Let g=d,"'n, with n, EH and 4, € I.

a) If4€J, thengEH.

b) If g=d,"'n, is a left coprime fractional representa-
tion of g in {G,H,1,J}, then g € H implies that d,€J.

Property 4: Let g=nd~'n, where n, m,€H, and dE€ 1.

a) IfdeJ, then g€ H.

b) Let, in addition, n.d~' be a right coprime frac-
tional representation in {G,H,I,J} and d~'n, be a left
coprime fractional representation in {G,H,1,J}; then g€
H implies that d € J.

Proof:

a) By assumption, d€J; hence d"'€H. So g=
nd 'mEH.

b) Since d ~'n, is a left coprime fractional representa-
tion there exist u,, v, € H such that

nu,+do,=1, (2.12)
thus,
nd='=nd~\(nu+do)=nd " 'nu+ no=gu+no,.
2.13)
Now g€ H hence (2.13) gives n.d ~' € H. By Property 3,

nd~'€ H together with the fact that the pair (n,,d) is
right coprime implies d €J. [

III. ANALYSIS

To start with consider the fecedback system £, of Fig. 2.
Suppose that the plant is described by a right coprime
fractional representation p=nd,~' in {G,H,1,J). The

3(G,H,1,J} satisfies the Ore condition for right fractional representa-
tions if, whenever g€ G admits a left fractional representation it also
admits a right fractional representation and vice versa.
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Fig. 2. Unity gain negative feedback system.
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Fig. 3. Feedback system with plant and compensator.
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closed-loop dynamics of £, are described by the maps

h,: u—e; h,“-(l+p)"--d,(d,+n,)-| 3.1)
h,: u—y; h,, =p(1 +p) '=ma(d+n)"". (32)
.-__-. Note that

ho+h, =1 (3.3)

We say that I, is well defined in G, (H, respectively), if
h, € G, (H, respectively).

Note that the pairs (n,,d, + n,) and (d,.d, +n,) are right
coprime; indeed, the right coprimeness of (n,,d,) implies
(2.4), hence

= (u,—v,)n,+v,(d +n)=1

while

(3.4)

3.5)

Theorem 1: Consider the feedback system Z, of Fig. 2.
a) Let p=nd~" be a fractional representation in
{G,H,1,J} of the element p € G; then I, is well defined in
Gifand only if d +n €1
b) Let p=nd~" be a right coprime fractional repre-
sentation in {G,H,I,J} of the element pEG; then 2, is

(Ur - “r)dr+ “r(dr + nr) =]

.
well defined in H if and only if 4, +n,€J.
Proof: a) =. h,,€G and d €] imply
L a4 ymd ' (14p) ' md ' (d,+n)  =(d,+n) ' €G.
- (3.6)
| Now d €ICH and n,€ H, so d,+n € H. This together
- with (3.6) implies d,+n, € 1.
‘ a) &=, d,+n €/ implies (d,+n,)~'€G; hence h, =
L d(d.+n)"'€G.
b) Follows from Property 3, together with (3.4) and
C e 39) n
Of course, a similar theorem holds for left factoriza-
tions.

We now consider the feedback system Z of Fig. 3 where

the plant p is preceded by a compensator ¢; p and ¢

' belong t0 G and are specified by their coprime fractional

representation in (G,H,I,J} nd~' and y'x, respec-
tively.
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To describe the feedback system Z we consider the map
h,,: (uy, u (e, e,). Simple calculations give

h'l 1 h‘l“:

€4, €204

-p(1+cp)”"
(1 +cp)'l '
(3.7)

(1+pc)™"
c(1+pc)”"

Now let h,:(u;,u))—(y,,y,). Using the summing node
equations it is easy to see that

h,=K(h,—1) and h,=1-Kh, (3.8)
where K is the symplectic matrix
=] 0 1
K [ ! ] (39)

It is well known that in the case of multivariable rational
matrices, one has to consider the four submatrices of A,
in (3.8) because examples show that any one of the
submatrices may be unstable while the remaining ones are
stable. (For detailed examples, see [30].) Let us calculate

he,u.’(l +pc)—l= 1 -pC(l +pc)-l
=1=-p(l+cp)~'c
=] _p[yl-l(yldr+xl"r)dr’l]-lc

=1-n(yd+xn)""x (3.10)
h,#|=c(l+pc)—'=(l +¢p) e

=d(yd+xn)"'x (3.11)
By =(1 +cp)”! =(1+y~ lxlnrdr—l)-l

- [yl— l(yldr+ x,n,)d,‘ : ] -

=d(yd,+xn)"'y, (3.12)

hyuy=—p(1+ )™ = —n(yd +xn)""'y. (3.13)

We say that I is well defined in G, (H, respectively) if and
only if each entry of &, defined in (3.8) belongs to G, (H,
respectively).

Theorem 2: Consider the feedback system Z of Fig. 3.
Let n,d,~" and y,"'x, be a right and left fractional repre-
sentations of p and c in {G,H,1.J}.

a) If yd + x;n, €1, then Z is well defined in G.

b) If y,d + x;n,€J, then Z is will defined in H.

¢) If h,,EG, then yd + x,n, €1 hence if X is well
defined in G, then y,d, + x;n, € 1.

d) Assume, in addition, that n,(y,d,)"' and (y,d,) " 'x,
are right coprime and left coprime fractional representa-
tion, respectively; then h, , € H implies that y,d, + xn, €
J, and hence, if Z is well defined in H, then y,d, + x;n,€J.

Proof: a) and b). If yd,+ x;n, €1, (J, respectively),
then by the definition (2.1) of 7, [(2.2) of J, respectively],
the formulas (3.10)-(3.13), and the closure of the ring G,
(H, respectively), the conclusion follows.
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¢) Ifh,EG, thensoisd ™ 'h,, y "
» €1 Now,

d 'y, y ' =d (14 cp) ™y
=d " \(1+y 'xn,d"")" ‘)’l— !
=d ! [ ¥ '(vd,+ xn)d,"! ]

since d,€/ and

yl.l’(yldr"-xl"r)_l

(3.149)
hence the fact that h,, € G implies that (y,d, + x,n,)"'€
G and thus (y,d, + xn)€E.

d) First we prove that the pair (n,,y,d, + x,n,) is right
coprime. Since (n,.y,d,) is right coprime, there exists @,
and &, € H such that

n+oyd=l; (3.15)
hence
(ﬁr—6rxl)nr+6r(yldr+xlnr)- I (3'16)

and the claim is established. Similarly, we show that
(»d,+ x;n.,x;) is left coprime. Now consider

Bpuy=1- n(yd +xn)” l,\:,. 3.17)

,w, € H; then the special assumption of
d) and Property 4 imply that y,d + x,n,€J. This com-
pletes the proof. ]

Note, the special assumptions used in d) to the effect
that n(yd)"' is right coprime and (y,d,)"'x, is left
coprime, imply, in some sense, that p and ¢ have no
common factors. More precisely, since J serves as the
group of units in our theory these conditions imply that
any common factors of p and ¢ must lie in J.

By assumption, A

IV. Design

Consistent with our approach of matching the plant
model to the goal of the given feedback system design
problem the present section is devoted to the problem of
characterizing the set of compensators which will “place”
a feedback system in a prescribed ring H given that both
the plant and compensator are modeled by fractional
representations in {G,H,1,J,}.

Theorem 3: For the feedback system X of Fig. 3, let the
plant p have a right coprime and a left coprime fractional
representation p=n,d,"'=d,"'n,in (G,H,1,J). Let 4, and
v, both in H be such that (2.4) holds. Then for any we H
such that wn, + v, € I, the compensator

cm(wh+v,) ' (-~wd+u)EG (4.1)
results in a feedback system I well defined in H. For such
a compensator, h,, € H?*? and
1=n(-wdi+u) =—n(wn+v,)

b= (= wd+u) d(wm+v) |

(4.2)

Conversely, if X is well defined in A and if the compensa-
tor cmy,;"'x, is such that (n,,y,d) and (y,d,,x,) are right
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coprime and left coprime respectively, then ¢ is given by
expression (4.1).
Proof:
Step I: Choose any k€ J, (hence k~'€ H), and
solve for y, and x, € H the equation

yd +xn =k, (4.3)
Observe that if (y,,x,) is any solution in H of (4.3), then
k=Y yd)+ k™ (xn)=1 (44)
and
(yd)k ="+ (xn )k~ =1, (4.5)

hence, (n,.y,d,) is right coprime and (yd,.x,) is left
coprime. Thus, the assumptions of Theorem 2, part d)
holds for any solution of (4.3).

Step 2: Obtain all solutions of the homogeneous
equation

yld + x/'n, =0, (4.6)
Since p=n,d~'=d,"'n,, direct calculation shows that for

any re H,

y'=rm,  x'=-rd 4.7

are solutions of (4.6).

It remains to show that all solutions of (4.6) are of the
form (4.7); so we assume that y/' and x| € H and satisfy
(4.6). Let r= — xd,”"; hence

x}' = rd,. (4.8)
Now using (4.6)
yrmyldd ‘= —xind "=~ xMp
= — x*d, " 'n = rn,. 4.9)

Equations (4.8) and (4.9) show that any solution of (4.6)
has the form of (4.7); it remains, however, to show that
r€H,

rm—xtd~'=m — x}d =Y (dv,+ nu)
14y 14 (4 + nyy,

(4.10)

= — xto,— xd, " ‘nu,= — xPo, 4yl €H.
Step 3: Obtain a particular solution of (4.3). From
the right coprimeness condition for (n,,d,),
kv, d, + ku,n, =k (4.11)
hence
yf=kv,, xf=ku,. (4.12)
Hence any solution of (4.3) is of the form
yy=rn+ ko,
x;= — rd,+ ku, forsomere H (4.13)

and for any such solution (n,.y,d) is right coprime and
(/d,,x,) is left coprime.
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Step 4: Consider the condition
r€EHand keJ such that rm,+ kv, €1 (4.14)

or equivalently, if we set w=k~'r€ H,

w&EH  such that wn,+v,EL (4.15)
If (4.15) holds,
c=(wm+0v,)" (—wd+u)EG (4.16)

is a compensator in G which can also be written as [see
“4.13)]

c=(rm+kv,) " \(—rdy+ ku,). (4.17)

If we let y,=rn,+ ko, and x;= — rd, + ku,, then, by (4.17),
c=y,'x and, by calculation, we verify that (4.3) holds.
Thus for any such compensator, by Theorem 2, the feed-
back system Z is well defined in H.

Step 5: Conversely consider a feedback system
well defined in H with a compensator ¢ =y, 'x, such that
(n,,»,d) and (y,d,, x,;) are right coprime and left coprime,
respectively. By Theorem 2, (4.3) holds for some k€J,
hence by the analysis above, ¢ is also given by (4.1) for
some w € H such that wn,+ v, € /. The proof is thus com-
plete. ]

The theorem yields a complete parameterization of all
possible controllers which will place a plant in H given the
existence of: »

1) right and left coprime fractional representations of p
and

2) a w in H for which (wn,+¢,) is in I.

In the multivariable case where p is a square matrix
whose eclements are proper rational functions it is well
known that p has left and right coprime fractional repre-
sentations [19]. In order to obtain a proper controller one
has to choose w in (4.1) so that det{w(s)n,(s) + v,(s)]#0 at
infinity. Methods for obtaining such a proper stabilizing
controller have been reported in (32] and (33]. Alterna-
tively, one can verify the existence of such a w in our
algebraic setting by invoking the fact that n, and d, are
right coprime and applying linear algebraic arguments
thereto. Of course, these arguments apply to distributed
systems as well as lumped systems using the formulation
of {7] and [8].

In the most general ring theoretic setting neither right
nor left coprime fractional representations of p, nor a w
such that (wa+v,) is in /, are assured to exist. At present,
the only known counterexample to the latter is, however,
in the ring of integers which is of no system theoretic
interest.

Conditions 1) and 2) have been conjectured to be both
necessary and sufficient conditions for the existence of a
compensator, ¢, which places the feedback system in H
(3). In fact, if ¢ places the feedback system in H, then
from (3.7) we obtain left and right fractional representa-
tions

Po(=hu)(hen) ' =(hu) (= k) (418)
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Note that there is no guarantee that these fractional
representations are coprime. These representations are,
however, coprime when the compensator is in H. Indeed,
in that case they satisfy a stronger condition which com-
pletely characterizes those plants which can be placed in
H by a compensator in H. For an early analogous result,
see [10, pp. 85-87].

Corollary i: For the feedback system Z of Fig. 3 there
exists a ¢ in H which places the feedback system in H if
and only if p admits left and right fractional representa-
tions p=d,~'n,=nd "' such that n, is a right factor of
1—4d, and n, is a left factor of 1 —d,.

Proof: If the feedback system is placed in H by a ¢ in
H it admits the fractional representations of (4.18). By
calculation [see (3.7)]

Beiy=€h =1 (4.19)
and
B, = heuc=1 (4.20)

which verifies their coprimeness since c is in H. Moreover,
upon rearranging the terms in (4.19) and (4.20) the condi-
tions of the corollary follow. Conversely, if fractional
representations exist which satisfy the conditions of the
corollary there exists u, in A such that

(4.21)

un=d=1

(equivalently p=n.d.~! is a right coprime fractional repre-
sentation with v, =1). Now, by using this right fractional
representation in (4.1) (with any left coprime fractional
representation) and w=0 we obtain a compensator c=u,
in H, which places the feedback system in H. n

V. EXAMPLES

Example I: A Single Variate Servomechanism Problem*

Here G is the ring of proper rational functions and  is
subring of functions analytic in Res > ~ 1. Consider the
problem of designing a compensator for the unstable
plant p(s)=(s+1)/(s*—4) which will simultaneously
place the poles of the feedback system in the region,
Re(s)< —1, and cause the system to asymptotically track
a step input. Since our transfer functions are commutative
we may adopt common right and left fractional repre-
sentation for p(s). In particular,

- -1
Po= (g - ((::zl))’} G| =
(5.1)
while
[Lg] +D ], (s+2/3)”(s—2)]
3 ]| (s+2)? (s+2) [ (s+2)

= u(s)n(s)+v(s)d(s)=1. (5.2)

“The purpose of this example is merely to E‘w a simple illustration of
the theory. In this situation, a much more highly developed theory is
available in [29).
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Here, each of the four rational functions, n(s), d(s), u(s),
and o(s), lie in the ring of operators with poles in the
region Re(s)< —1 and hence the set of all compensators
which will place the feedback system in this ring is given
by Theorem 3 with w(s) also in the ring. Moreover, for an
arbitrary w(s) the input-output mapping for the resultant
feedback system will take the form

- (s+1)(s-2) " 16(s+1)
B (4) [ (s+2) ] s)+{3(s+2)’]

= — n(s)d(s)w(s) + n(s)u(s). (5.3)

By the final value theorem the feedback system will
asymptotically track a step input if and only if A, , (0)=1
(equivalently ¢(s) has a pole at zero). As such, to simulta-
neously place the poles of the feedback system in the
region, Re(s)< —1, and cause the feedback system to
asymptotically track a step input we must find a w(s) with
poles in this region such that A, , (0)=1. Evaluating (5.3)
at s=0 and setting it equal to one yields

K. (0)= % w(0)+ ; =1, (5.4)
implying that w(0)= —4/3. As such, the simplest w(s)
which will achieve our simultaneous goals is the constant
w(s)= —4/3 whose poles are trivially in the prescribed
region. Adopting this w(s), a little algebra with the expres-
sions of Theorem 3 will reveal that the required com-
pensator takes the form

Os +24)(s +2)

2
c()= (3s+4)s (53)

while the input-output mapping for the feedback system
takes the form

o (s+1)(20s +24) -

5.6
3(s+2)° (56)

h)'z"u

Clearly, ¢(s) has the required pole at zere (for 4, , (0)=1),
although it is by no means obvious that this quasi-stable
compensator will transfer the unstable poles of p(s) to the
prescribed region. Indeed, this illustrates the underlying
power of the proposed design technique in that when one
designs the system in terms of w(s) rather than c(s) the
pole placement or stabilization process is automatically
resolved by working with a w(s) whose poles lic in the
prescribed region while the remainder of the design pro-
cess is simplified by the affine relationship between w(s)
and the matrices 4, and A .. Finally, we note that c(s) has
a zero at s= —2 which may cancel with the pole of p(s) at
s= =2, This, however, does not contradict the coprime-
ness assumptions of Theorem 3 since the common factors
involved lie in J which serves as the group of units in our
theory. Fortunately, such common factors can never lead
to an erroneous design since by assumption the poles and
zeros of the rational functions in J lie in the prescribed
region. As such, any cancellations which may take place
are benign.
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Since the previous compensator design was achieved
with an especially simple w(s) let us add an additional
constraint to the problem by requiring that A, , (s) have
zeros at *; (so that the system will be insensitive to a
noise source at that frequency). Now, from (5.4) it follows
that the above design is the only compensator which will
make A, }“1(0)= 1 with a constant w(s); hence to satisfy this
additional design constraint we will work with the first
order w(s) in the form

as—4
bs+3°

Here, by specifying the zeroth-order coefficients of w(s)
we assure that w(0)= —4/3 while we are left with the
parameters ¢ and b to create the required zeros. Of course,
to achieve our stability condition we must have —3/b<
— 1. Substituting the w(s) of (5.7) into (5.3) yields

w(s)= (5.7)

(s+1)[(16b—-3a)s? +(60+6a+32b)s +72]
3(s+2)(bs+3)

h)':“l(s) =
(5.8)

To obtain the desired zeros at s — + the equation
[(16b—3a)s* +(60+6a+32b)s + T2 =k[s*+1)
(5.9)

must be satisfied. Now, this represents three linear equa-
tions in three unknowns and has the unique solution

a=—17, b=%, and k=72. (5.10)

Moreover, ~-3/b=—16/7< —1; hence this choice of
w(s) will also assure the prescribed degree of stabilization.
As such, we take

—(17s+4) _ —(2725+64)

YO = Gis/16+3) - @is+ag) D
which yields
- 128(s +2)(s2+1)
“(5)= 75 " 565 —60)s (>-12)
and
()= 384(s+ 1)(s2+1) (5.13)

(s+2)°(21s +48)

satisfying all of our design criteria.

Example 2: A Multivariate Lumped- Distributed
Decoupling Problem

Consider the multivariate, lumped-distributed plant

e~V (s=1)
p(s)=| C¥D (’Tl) (5.14)
° &

-

ok b
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e~V (s—1) 0
p(s)= (s+1)  (s+1)?
1 (s=1)
] (s+1) (s+1)
=n,(s)d(s)”" (5.15)
- -1
e~V (s-1)
()= ! 0 (s+1) (s+1)
(s-1) 0 1
i (s+1) (s+1)
=ds) ™' n(s) (5.16)
where
-1/s 2
0 e (s=1)
0 (+1)  (s+1)? |, : (0
1 s—1)
=y (s)n,(s)+0,(s)d,(s)=1 (5.17)
and
e”V/*  (s-1)
(s+1) (s+1) 00 + ! 0
1 (s=1)
(s+1) 0 2 0 (s+1)
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which we desire to stabilize and simultaneously decouple
by feedback. For most lumped-distributed systems one
can take H to be a ring of matrices whose elements lie in
the algebra @_(a,) of stable transfer functions generated
by lumped elements and delays while G is a ring of
matrices whose clements lic in $(oy), the algebra of
quotients of elements in @. (o), as per Table I. In our
case, however, although e~'/* is L,-stable (since it is
analytic on the right half-plane and bounded on the
imaginary axis [10]) it has a “nasty” singularity at s=0
and hence does not lie in @(a,) for any o, < 0. As such, we
take H to be a ring of 22 matrices whose elements are
transfer functions lying in the Hardy space H_(R) of
functions which are (essentially) bounded on the jw axis
and admit an analytic extension into the right half-plane
(thereby making them L,-stable) [12). Similarly, we let G
be a ring of 2X2 matrices whose entries are transfer
functions lying in the Lebesgue space L_(R) [12]. With
this setup / becomes the set of H, functions which are
uniformly bounded below on the jw axis while J is the set
of H_ functions whose analytic extension is uniformly
bounded below in the right half-plane [12]). Equivalently, /
is the set of invertible outer functions in H_(R) [12].

Using these spaces a little algebra will reveal that p(s)
has the right and left coprime fractional representations in
{G,H,1,J} shown below:

Upon substitution of these matrices into the expression
for h, , (s) from Theorem 3 one obtains

e=Vr (s-1)?
wi(s)  wya(s)
o ()= = (s+1) (.H;l)z
0 G+1) wy(5)  wy(s)
1 0 _2("!)_2.
ooy | (’;')2 (5.19)
(s+1) (s+1)

which will be stable if and only if the wy(s) are stable.
Now, to decouple the system we require that

(s—De”'/*
() (.H-l) "“’lz()
(s=1)° 2(s—1)
+( TS wy(s)+ D) =0 (5.20)
and
(= 53D +1)W21(5) =0. (521)

Clearly, w,,(s)=0 solves (5.21). On the other hand (5.20)
has numerous solutions none of which are, however, sta-
ble. As such, the system cannot be decoupled and stabi-
lized simultaneously. Note, since our theory guarantees
that all stable feedback systems with plant p(s) take the
form of (5.19) if we cannot find stable w’s which decouple
(5.19) we are assured that it is impossible to simultaneously
stabilize and decouple p(s) by feedback (using a com-
pensator as specified in Theorem 3) and we need not
consider other formulations.

Since we cannot simultaneously stablize and decouple
p(s) by feedback the best we can do is to try to stabilize
p(s) while preserving its triangularity (which will allow us
to sequentially adjust its various outputs). Formally, this
can be achieved by taking w(s)=0 which yields the in-
put—-output mapping

2(s-1)
(s+1)
2
G+1)

By ($)= (5.22)

Unfortunately, the first input has been rendered useless
by this compensator and hence the goal of being able to
sequentially tune the outputs is not achieved. On the other

=2(s—1)

(s+1)

= n(s)u)(s)+ di(s)v(s)= 1. (5.18)

. - -
---------
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band, if we take
w=5 9} (5:23)
then
e~V (s—1)
Ry 0 (5)= (+1) (s ;‘)z (524)
(s+1)

which has the desired property is obtained. In particular,
one can tune the second input to control the second
output and then adjust the first input to simultaneously
cancel out the effects of the second input on the first
output and control the first output. Of course, since w(s)
is stable so is A, , (5)-

Finally, we note that as we have formulated our theory
one can deal only with square matrices (since rectangular
matrices are not closed under multiplication). The exten-
sion to rectangular matrices is, however, straightforward
[19] and yields an identical theory the details of which are
left to the reader.

Example 3: A Multidimensional Image Restoration Problem

Let
Z|+Zz

——— 5.25
224+ 2,2,+43 (5:23)

P(zy,2))=

denote the discrete two-dimensional transfer function for
a device in a digital image processing system. Since this
represents an IIR (infinite impulse response) transfer
function the image processing device will tend to “smear”
the image with the data observed at any one pixel distort-
ing all other pixels at the output of the device. In an ¢ffort
to reduce this “smearing” effect we would like to place the
device in a feedback system whose input-output transfer
function minimizes the “smearing™ effect. In particular,
that means that the input-output mapping for the feed-
back system should have an FIR (finite impulse response)
transfer function with its “point-spread function” con-
centrated about a single point as closely as possible.

Since the FIR transfer functions are just the polynomi-
als we let H be the ring of polynomiais in two variables
and G be the ring of rational functions in two variables
[16). Once again employing only a single fractional repre-
sentation since these rings are commutative we obtain the
coprime fractional representation

P(21,2)= [z,+z,][zf+z,z,+3] -!

- n(z,,2,)d(2,,2,)"" (5.26)

where

[- z,][:, +2,]+ [%][:f-’-z,z,ﬁ!]
= u(2,,2)n(2,,2,) + 0(2,2,)d(2,,2)) = 1.

U'-—

--------------
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As such, the set of all possible FIR transfer functions
which can be obtained from p(z,,z,) by feedback takes
the form

hy o (202 == [ 2]+ 2232, + 2,23 +32,+32, ]
|
w(z,2,)~ 3 [s3+2,2,] (5.28)

where w(z,,z,) is an arbitrary polynomial in two variables.
Clearly, w(z,,z,) should be low order to keep the “point-
spread function” of h,, (z),z;) as concentrated as possi-
ble. Indeed, if we take w(z,,z,)=0 we obtain

By (212) = — % [2342,2,] (5.29)
in which the response from a given pixel effects only two
adjacent pixels. Note that the fact that these pixels are not
centered around the input point does not cause any diffi-
culty since one can always shift the origin of the raster to
compensate. Taking this w(z,,z,) we obtain the simple
compensator ¢(z,,z,)= — z, which represents a one direc-
tional shift and a 180° phase shift.

An alternative design which also yields a “point-spread
function” which affects only two pixels, although it is
shifted further from the origin, is obtained with w(z,2,)=
—(1/9)z,. This yields

I
Ry (2p2))= 3 (2t+22z7,] (5.30)
and
2
2z, +2y)
c(z,,2,) = ————_ 5.31
(21.2)) zf+z,zz+3 ( )

Since two-thirds of the output energy in this design is
concentrated at a single point whereas the energy is equ-
ally divided in the previous design it may be argued that
this represents a superior design. On the other hand, the
shift from the origin is greater and the compensator more
complex in this case. Finally, since all FIR transfer func-
tions are stable (in an appropriate sense) the feedback
systems obtained via either choice of w(z,,z,) are stable.
Moreover, both compensators are, themselves, stable as is
(21,2 [6).

Example 4: A Time-Varying Differential-Delay
Stochastic Optimal Control Problem

Consider the feedback system of Fig. 4 where the plant
represents a cascade of a time-varying function f with an
ideal predictor e*. The system is driven by a stochastic
process a, which is derived from white noise by passing it
through a miniphase filter with transfer function (s +2)/(s
+1). We desire to choose a compensator which will
stabilize the system and minimize the performance
measure

J=E|bj*+E|d|? (3.32)

under the constraint of stability. Here, d is the stochastic
process observed at the output of the system, b is the
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Fig. 4. Stochastic control system.
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%

Fig. 5. Open-loop optimization problem.

stochastic process observed at the plant input, and E is
the expected value operator.

Since we have a time-varying component, a rational
component, and a delay component we formulate our
theory in an abstract operator theoretic setting [20] with G
taken to be the bounded operators on the Hilbert space
Ly(R) and H taken to be the causal bounded operators
(which correspond to the stable systems in such a setting)
[201,(23]. Note, in this setting we will denote the time-in-
variant operators by their transfer function and the time-
varying multiplication operators by their characteristic
function. Of course, one must be careful with such nota-
tion since the operational calculus associated with the
time-invariant components is only partially valid in such a
setting.

Since the inverse of a predictor is the ideal delay which
is causal one immediately obtains the right and left
coprime fractional representations for p in the form

p=[Ale) =[] 1] =nd =
(5.33)
where

[£7' ][]+ [0][e "] =un+od=1 (534)
and
[1][1])+[e ¥ "'][0] =mu,+dio,=1.  (5.35)

Here, we have assumed that f~' exists and is bounded
(i.e., f is bounded away from zero) while f and f~! are
both causal since multiplication by a function of time is a
memoryless operation [20]. From Theorem 3 it now
follows that the input-output and input-plant input map-
pings for our feedback system with compensator defined
by a causal operator w will take the form

By = [fIw[e*] ('] +1 (5.36)

and
B, = = [~ In ][]+ [ ][/ ") (537)

As such, our optimization problem reduces to choosing
the causal w which minimizes the performance measure of
(5.32) where d=h, ,a and b= h, , a.

A T e e i i s e A B i
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It is significant to note that even though we are inter-
ested in designing an optimal closed-loop system by mini-
mizing over the operator w rather than the compensator
we have transformed the problem into the open-loop
optimization problem of Fig. 5.

Here we desire to minimize J = E||e||> over all causal
operators w, where g,, g,, and g, are arbitrarily specified
bounded operators. In our case we take

gi=[e][ ] (5.38)

""""" } (5.39)

and

= |~ (5.40)

in which case the output of the open-loop system is
e=(d,b) in the product space constructed from two copies
of the (Hilbert) space on which the given system is de-
fined. Now, if we take the a in our open-loop problem to
coincide with the given a in the closed-loop optimization
problem then the Pythogorean law (in Hilbert space)
implies that

J=E|e|*= E||d|*+ ]| b (5.41)

As such, our two optimization problems coincide.

Interestingly, an explicit solution has recently been
given for the above open-loop optimization problem [9].
Indeed, the optimal causal w is given by

womA~'[A*"'g38,Q.800% "] 87 (5.42)

where A and @ are causal, causally invertible operators
such that

A*A=glg; 00°=g,0.87 (5.43)

Q, is the covariance for the stochastic processes a,[ ]c
denotes the causal part of an operator, and *“+” denotes
the adjoint operator. To apply this general theory to our
example we represent the adjoint operation when applied
to a transfer function by g(s)*=g(—s) which coincides
with the classical adjoint on the jw axis. Of course, the
memoryless multiplication operators, [f] and [f~'), are
self adjoint. Finally, since a is the stochastic process
generated from white noise by passing it through the filter
(s+2)/(s+1)

- (s+2)
(s+1)

(s+2)
(s+1)

' (s+2)(s-2)
(s+D(s-1)"

Q. (5.44)

First, we calculate A and 4 via

A'A-[ -f: —e’][.-.—;..- -f2+l (5.45)
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Here f_,(t)=f(t—1) and we have used the properties of
the delay and predictor to obtain the equalities [e ~*][f ']
m{f-1fe~*] and [f~'fe')=[e’)f-}]. Of course, the ex-
ponential transfer functions commute with the rational
transfer functions allowing the cancellation of the ex-
ponential terms in (5.46). From (5.45) and (5.46) one may
now readily obtain the required causal, causally invertible
A and 9 operators in the form

A=A*=y/+1 and A"-A"‘-‘/_l_
while

0-[/-':'][%}.%]'0 [E‘Z 3][’-]

s e 3]

(5.48)

The next step in evaluating (5.42) is to compute the
term in the bracket, i.c.,

o= e g UL

(5.46)

AO 38 Qag.o‘ 1

g e

(G = I =

11l (s+2)(s-2)
[f+ '][(s-n)(s-n)

1
Nre
=1

- WP [(ED e

(5.49)

whose causal part must now be computed. Recalling that
the memoryless term factors through the causal part
bracket [9] it suffices to compute the causal part of the
time-invariant system with transfer function

#(5)= [ﬁ"—‘“—22 ]

G+1) (5.50)

............
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Taking the inverse Laplace transform we obtain the im-
pulse response of this system in the form
g()=8(t+1)+e"*PU(t+1) (5.51)

where & is the Dirac delta function and U is the unit step
function. Now, the causal part of g(1) is obtained by
setting g(¢) to zero for ¢ less than zero; hence

[ 8()] =8O U= E*DU() = < e~'U(1) (5:52)

or equivalently

1
e(s+1)°

Multiplying through by the memoryless factor from (5.49)

we then obtain
1
1( 2
] fi+l e(s+1)

[5()] = (5:53)

["' 838,0,810°" l] "[

(5.54)
and finally
wo=A~'[A*"lg32,0,270° "] 8
- U
'%[(sin][gn; [/-1]
'%[f—'](,iz)[f-nl (5.55)

which is surprisingly simple given the complexity of the
derivation.

Substituting the expression of (5.55) into the formula of
Theorem 3 now yields an expression for our optimal
compensator and the input—output mapping for the re-
sultant feedback system in the form

c-e[f:,'](s+2)-l (5.56)
and
By = e(-si—;) +1. (5.57)

Note that &, is stable, as required, even though both p
and ¢ are unstable.

VI. NONLINEAR FEEDBACK SYSTEMS

From an algebraic point of view the fundamental dif-
ference between linear and nonlinear systems is the fact
that nonlinear systems fail to satisfy the right-distributive
property, x(y +z)= xy + xz. They do, however, satisfy all
of the other axioms for a ring with identity including the
left-distributive property (¥ + z)x =yx + 2x. As such, one
can attempt to extend the preceding development to non-
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linear systems by carrying it out in left-distributive rings,
G and H [23]. Indeed, if we define a right coprime
fractional representation for a system g in a left-distribu-
tive ring G relative to (G, H,1,J} precisely as we did in
Section 1I the fundamental properties 1, 2, and 3 go
through without modification.

Property IN: Let g=nd ™' be a right coprime frac-
" tional representation of g in {G,H./,J} where G and H
A > are left-distributive rings with identity. Let n, and d, have
T a common right factor r€H, ie., n=x.r, d =yr for
some x, € H and y, € H. Then r has a left inverse in H.

Property 2N: Let g=nd ' be a right coprime frac-
tional representation of g in {G,H,1,J} where G and H
are left-distributive rings with identity. Let g=x,y,~' be a
second (not necessarily coprime) right fractional repre-
sentation of g in { G, H,1,J }; then there exists r in H such
that

(6.1)

Property 3N: Let g=nd ' with n€H and d4,€17

where G and H are left-distributive rings with identity.
a) IfdeJ, theng€H.

n- b) If g=nd " is a right coprime fractional representa-

tion of g in {G,H,1,J ), then g€ H implies d. €J.

With the aid of property 3N one can do a complete
analysis of a nonlinear feedback system A, =p(1+p)~'=
nd~! where nd ="' is a right coprime fractional repre-
sentation of A,,. Indeed. A, is well defined in G if and
l only if d €/ and it is well defined in H if and only if

d €J. Note, however, that we cannot construct our frac-
tional representation for 4, from a fractional representa-
tion for p since the verification that such a representation

B is coprime appears to require right-distributivity [see (3.4)
. and (3.9)].

‘ ] The right coprime fractional representation plays a spe-

- - cial role in the nonlinear case because h,,=p(l+p)~"
holds, whereas A, =(1+ p)”'p does not (even though the
latter formula is true for the /inear case). As such, those
results on the analysis of feedback systems which assume
a left coprime fractional representation theory fail as does
the design theorem since it simultaneously employs both
left and right coprime fractional representations. We be-
lieve, however, that these results should hold, at least in
part, for nonlinear systems with an appropriate modifica-
tion of the theory. In particular, since the rings G and H
are asymmetric we believe that asymmetric concepts of
left and right coprimeness will be required to achieve this
end.

x,=nr and y,=d,r.

'..I.u- 1 1€~
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VII. CONCLUSIONS

Although several of our examples are characterized by a
deep analytic structure the key to our fractional repre-
sentation approach to feedback system design is the alge-
braic nature of the main results. Indeed, the entirety of
our modeling, analysis, and synthesis theory was derived
with no more sophisticated mathematics than addition,
multiplication, subtraction, and inversion. As such, it ap-
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plies to essentially any class of linear systems and by
proper choice of the rings G and H the results are applica-
ble to a variety of systems problems.

Although we believe that the present work represents
the first attempt at the formulation of an axiomatic frac-
tional representation theory for systems which may be
matched to the feedback system analysis and synthesis
problems of interest the work owes much to a number of
recent results on the input-output theory of linear sys-
tems. The use of a fractional representation theory for
multivariate systems, though implicit in a number of
classical results, was popularized by Rosenbrock’s poly-
nomial matrix fractions [19]. Interestingly, however,
Rosenbrock’s goal was apparently to permit the powerful
analytic and arithmetic theory available for polynomial
matrices to be applied to rational matrices whereas the
present fractional representation theory is motivated by
the desire to formulate a representation theory for systems
which is closed under inversion. Over the years numerous
generalizations of the polynomial matrix fraction concept
have been formulated for distributed systems [4], 5], [13],
[21], and multidimensional systems [9],[24] while partial
extensions to the time-varying and nonlinear cases have
appeared in a number of unpublished reports {11},[22).

For any type of fractional representation theory to be
meaningful it must be identified with an appropriate
coprimeness concept. Indeed, the key to the present for-
mulation is the use of the algebraic coprimeness concept
of (2.4) in lieu of the more classical common factor
criterion. Such a criterion has previously been applied by
one of the authors in a study of fractional representations
for distributed system [4] and was also shown to be the
strongest of several possible coprimeness criteria for mul-
tidimensional systems by Youla and Gnavi [26]. Of
course, it is well known as one of the several equivalent
criteria for coprimeness in the polynomial matrix fraction
theory [16],[19].

The feedback system analysis theorems of Section III
are motivated by the now classical theorems for determin-
ing the stability of a multivariate feedback system in terms
of its polynomial matrix fraction representation ({10}
Moreover, the system synthesis theorem is an outgrowth
of the feedback system stabilization theorem of Youla et
al. [24),[25]. Indeed, the present work began with an
attempt to give a simple proof of this most powerful
analytic theorem and developed through several stages of
generalization and simplification into its present form.
Finally, the optimization theory used in Example 4 repre-
sents the generalization [9] to an operator theoretic setting
of a result originally developed by Youla et a/. in the
frequency domain for use in conjunction with their stabili-
zation theorem [24],[25].
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ABSTRACT

The problem of system diagnosis is presented.
Its applications and recent results are discussed.

I. INTRODUCTION

A Large-Scule Dvnamical System (LSDS) can be
described as one which is either impossible or im-
practical co be represented by a single composite
system equation, and is to be solved as such.
Therefore, it is better for a large-scale system to
be represented as an {nterconnection of components
or subsystems. One such representation is present-
ed in Section II.

Fault diagnnsis is a typical problem of large-
scale dynamical systems, It is a problem of study-
ing the (large) deviations of the overall system
caused by the deviations of the subsystems (some-
time. simply circuit elements). It is not practical
to formulate this problem from a single composite
system equation.

The fault diagnosis of analng systems at present
is an art rather than a science. For example, it is
not clear how the concept of "fault" can be defined.
On the other hand, the system diagnosis problem,
while related tn the fault diagnonsis problem, can
be well defined. This is done in Sectiom III.

It turns cut that the application of system
diagnosis problem is not restricted to fault diag-
nosis problems, It also has applications, for
example, to the modeling of socio-economic problems.
A discussion of the applications of system diagnosis
probleme 1is given in Section IV. Finally, a dis-
cussion of the recent results is presented in
Section V.

vhere x = col(x,) and a and b are similarly

defined, and A = diag (Ai) and B, C, and D are
similarly defined. For definiteness, let x€R® ,
aeR™ and beRF, and A, B, C, and D be con~

stant teal matrices of compatible dimensions.

The connection of the input and output termi-
nals of these subsystems with the input terminals
u and the output terminals y of the entire
system is assumed to have the form

5] B B efl]

Here, weR? and yeRq and L and R are con-
stant real matrices with compatible dimensions.
The model of LSDS defined by (2) is a linear

(2b)

~ and time-invariant one and it can be represented

in the forms of block diagrams in Fig. 1. Twn
special classes of LSDS are of special interest.
Consider a linear integrating circuit. Each of its
n-port subnetworks can be represented by (1) and
the KVL and KCL equations have the form of (2b).
As such, a, and bi are the port voltages and the
port currents. Therefore, any linear integrating
circuit can be represented by an LSDS model.
Consider a block-diagram connection of linear
time-invariant subsystems (l). Since every block-
diagram connection can be represented by (2b),
the above system can alsc be represented by an
LSDS model. Therefore, the LSDS model (2) includes
both network-type and system-type formulatioms.
In this paper, we only consider linear time-
invariant LSDS's which can be represented by (2).
When the composite component equation (2a) is
represented by a transfer function

n I1. A MODEL OF LINEAR TIME- b =2(s)a 3)
N INVARIANT LSDS where
. ) el
Let uan LSDS be comprised by a finite number of 2(s) = C(sI - A) "B +D @
R subsysieme, each of which is a linear time~invariant It becomes the component connection model in the
R dynamical system of the type frequency domain, considered by Saeks et al [1-4].
- . Combining (3) with (2b), we have
x, = A x + B.a
o 1 i y =S(2)u (5)
- h1 - Cix1 + Dla1 (1) where
te1,2,...,k, vhere a,, b, x, are the input S(2) = Ly, + Ly (1 =2L, )7 2Ly, (6)
. vector, the output vector, and tﬁe state vector of
:f each of the compnnents. They are not necessarily which is used for the purpose of system diagnosis.
— of the same dimension. The matrices A, B,, C,, Trick et al [5] considered the special case
and D, ars compatible to these vectors. These when (2b) represents KVI. and KCL equations. When
compoiients can be put into a single composite com~ fundamental cut-set equatfone and fundamental
T ponent equation. lnop equations are used, fq. (2b) becomes,
- . - My T
) X = Ax + Bs Vet - 0 Tt
B b =Cx + Da (2a) L, -F oo l_v: M
L4
SFA PO SRR a SO L .
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whoete Ver® ict are the biranch voltages .nd branch
currents 1o tle cotrer and vy and Ly ar. those in
the tree [6]1. Comparing (°) with '2b), w have
I = -LT (8)
and r-onsequently,
i i
T T el ct
v, 1,1 (i, v )L =0 (9
v v
t t
The last equality follows from (9) cthat L 1is

anti-symmetric. Eq. (9) {s a-generalization of
Tellegen Theorem since it is derived from a more
weaker condition (8) instead of (7).

Navid and Willson, Jr., {7] considered the
case of DC-network, i.e., the connection equation
again has the form (7) and furthermore, the com-
posite component equation (2a) or (3) has the form

b=Da (10)

with the condition, among others, that each row of
D has one and only one non-zero element.

We have presented the mathematical model (2a)
and (2b) and its relation to other mndels. Next,
we want to define the system diagnosis problem.

II1. SYSTEM DIAGNOSIS PROBLEMS

With the model (2a) and (2b), the system
diagnosis problem can be stated:

The System Diagnosis Problem: Given L and
n (dimension of x), the problem is to determine the
component parameters (A,B,C,D} from input/output
measurements.

Let us now formalize the problem. Let us
assume that there exists a state equation for the
compnnent connection model (2a) and (2b)* of the
form:

z = Fz + Gu
y » Hz + Ju (11)

The transfer function is given

ze¢ R".

where n<n.

by

HB(s) = H(sI - /)" Yg + J (12

Let the vector p denote the component parameters
(A,B,C,D) to be determined. 1Izs relation to the
transfer function is given by

H(s) = h(s, p)

h is determined by

(13)

where the system structure
(L, n).

Since by methods of system identification
techniques [9,10], the transfer function H(s)
can be obtained from proper input/output measure~
ments, the problem of system diagnosis 1is reduced
to the nroblem of the determination of p from
H(s).

Definition 1. The parameters p of an LSDS
are said to be diagnosable is p can be determined
from H(s), i.e., h is injective.

The samc problem can be formulated in the
time-domain. It turns out that the state equation
(F,G,H,J) of (11) cannnt be uniquely determined

* The n.a.s. condition for the existence of state
equation for (2a) and (2b) is given by Singh and
Liu [8].
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from input/output measurements. Only Markov param-
eters can be uniquely determined.

Assertion 1 (1l]. 7Two minimal (controllable
and observable) linear time-invariant stace equation
representation (F,G,H,J) and (F,G,H,J) with state
space of the same dimension n are realization of

the same transfer function macrix H(s) 4if and
onlv if

J=3 (14)
and

1, = =iz

HFG=HFG, +=0,1,...,2n-1. (15)
The Markov parameters L%
my & (16)
ni é H Fi-lc i=l,...,2n an

are well defined functions of p . Therefore, we

can write

m = Fi(p) , 1i=20,1,...,2n (18)
or

o = F(p) (19)
where m = col.(m,) and F = col.(F,).

Assertion 2. The parameters p of the LSDS
are diagnosable if and only if F 4is injective.

Therefore, the basic problem of svstem diagno-
sis i{s to study the invertability of h (the fre-
quency domain) or that of F (the time domain).
Let us consider an example.

Example 1. Consider the two-stage RC ladder
as shown in Fig. 2. The composite component
equation (2a) is given by

d 1
o c 04D 0 vc
- 1
1
Ve I | 0 o i (20)
]
iG 0 : 0 G VG
where
v.=Col.(v. , V. )
Cc C1 C2
and similarly for ic. Ve 1c, and
G = diag(cl. Gz)
D= ding(Dl. Dz)
where Di - I/Ci, i= 1,2,
Thre counection equation (2b) is given by
ve o 1-1 o'y (1.7
st
——— ----.L..l..:l-..g ——
. 1 -11 10
i - | , O v
c 0 1! ' | ! c (21)

Equations (20) and (21) have a state equation
representation
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1Py G0 Goby 1%
-&vc = v(‘ + vq
G,P, €40y o1 (@
i, = (-6, Olvg + (G, v, (23)

The transfer function of the above state equation
is given by

2
s G1 + sGIGZ(D1 + Dz)

H(s) =

2 .
8" + 8(G,D, + G,D, + G;D.) + G,G,D;D,

4 h(s, p) (24)

The Markov parameter of the above state equation is
given by

=y = Gy
2
17760

eee 32 a2 2
©,°0,% + 6,%,0, %)
23 2

my = 6,0 %6, + G, + 6

which has the form
m = F(p) (25)

2.2 2
16200

vhere p = (GI’GZ’Dl’D2) for both (24) and (25).
Note that m, 1is not needed since we only have

four parameters to be determined.

The parameter p 1is diagnosable if and only
1f the function h or F {is invertible. In other
words, we want to solve for p from either (24)
when the transfer function H(s) 1is measured, or
from (25) when the Markov parameter m 1is measured.

Note that the system diagnosis is an extension
of system identification. The purpose of system
identification is to determine either the coeffi-
cients of a transfer function or the Markov para-
meters from input/output measurements. The purpose
of system diagnosis is to determine the component
parameters. The latter are usually the ones to be
designed.

Please note that the functions h and F
are nonlinear. Therefore, the system diagnosis
problem is a nonlinear problem even if the original
system is linear,

Finally, the above problem can be modified to
be more flexible. For example, we may know some of
the component parameters and want to determine the
rest of them. The system diagnosis problem can al-
so be extended to nonlinear systems.

IV. APPLICATIONS

1, Fault Diagnosis
Let 2 be the set of component parameters

p for vhich the system is fault-free, i.e.,
1) 1if pe ﬂ& then the LSDS is fault-free, and
2) 1f pc v, then the LSDS is at fault.
When the LSDS is at fault, the fault diagnosis prob-
lem ir to determine which components of p causing
ncC . Clearly, if p can be determined and Q
is clearly defined, the test whether or not pe

O e Mt B inas S e au

can be ecasily carried out. Thercofore, if a LSDS
is diagnosable, it is also fault diagnosable.
However, the diagnosability is sometimes too strong
for the problem of fault diagnosis, because it is
not necessarily to determine the values of p in
order to test whether or not pe Q. Furthermore,
the cost of the evaluation of the values of p is
high, and accuracy is so poor that the calculated
values of p become useless [see Section V],
Therefore, the art of fault diagnosis is to find
ways of testing whether or not peQ with little
calculation of the values of p . Nevertheless,
the diagnosaubility does provide the insight for
searching such an art and the design of test points.
A special issue on Automatic Analog Fault
Diagnosis [12], edited by S. D. Bedrosian, contains
much information and many references on this topic.

2. Network Synthesis

Given a prescribed transfer function Ho(s) ’
a network synthesis problem is to find a component
connection model, (2a) and (2b), so that fts trans-
fer function H(s) equals the prescribed one
H ' (s). 1If the connection L is predetermined,
then the rest of the synthesis problem is to de-
termine the parameter values p_which yield the
prescribed transfer function Ho(s). This is
precisely the problem of system diagnosis. Note
that the state-of-the-art of network synthesis is
mainly on single-input single~output systems, while
the system diagnosis problems are not restricted
to SISO problems.

3. Modeling of Nonlinear Circuit Models

The circuit shown in Fig. 3 can be used to
model the electrical behaviors of the nerve
membrane*. Chua found that the Potassium conduc-
tance g, and the sodium conductance g should
be modeled as a nonlinear time-invariant memristive
l-ports [13] instead of the linear time-variant
elements in the original model. They have the
state equation form:

n f(n, vx)

iK GK(n)vK
for B¢ and

fl(m' vNa)

e
[ ]

fZ(h' an)

1Na
for gy, . The state variables are n and (m, h)
respectively. The explicit expressions of the non-
linear functions are given in [13]. One of the
problems is to identify the parameter values in the
circuit model given in Fig. 3. This problem can be
considered as the system diagnosis problem of a
nonlinear system.

4, Modeling of Socio-Economical Systems

Two forms of models are often used by econo-
mists, the structural form and the reduced form
{14). This can best be illustrated by an example.
Consider the economic model:

GNa(m' h)vN‘

*Hodgkin and Huxley were awarded the Nobel Prize in
1963 tor their development of this circuit mndel.
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C(t) = gy * ullv(:) - T(e))

I(e) = B) ¥(e~1) + 8, K(c) (s)

Y(t) = C(t) + I(r) + G(v)

where

= Consumption

= [nvestment

= National Income

= Government Expenditure on Goods
and Services

T = Taxes on Income

R = Government Regulator

Dd O

The above equations give the explicit input (T,R,G)
and output (C,I,Y) relation. The first set of
equations is called the structural form and the
second set of equations, the reduced form. Clearly,
the reduced form is like the cransfer function
representation. The structural form is like the
component-connection model with the third equation
(the identity equation) being the comnection
equation. Consequently, the system identificiation
techniques can be used to identify the coefficients
of the reduced form, while the system diagnosis
technique can be used to identify the coefficients
of the structura) form.

V. DISCUSSION OF RECENT RESULTS

The system diagnosis problem can be classified
into three aspects: (A) the problem of diagnos~
abiiity, (B) the computational problem, and (C)
the design of test points.

(A) Diagnosability

Three representative results on the condition
of diagnosability will be presented.

Sen and Saeks {3]) have considered LSDS which
can be represented by (6)

-1
g(s,p) ] $(Z(+,p)) = Loy + 1Ly [I-Z(S.p)Lu] z(e.p)l.12
By measuring g at multiple frequencies s,,s,,

.+.e8_, the above equation can be expressed in
the matrix form

‘("ll p)
3('2n ?)
. * G(p) (26)
’(-‘nn p)
which 48 a function of p . Clearly, p {is i~

agnoaable Lf and only 4f G 1is i{nvertible.
Trick et a) [5] considered the diagnusis

_."-‘\._"_.‘.‘_..“r‘_~.‘\'_ TR —

problem of electrical networks, with known unominal
component parameters. By means of Tellegen's
Theorem and adjoint networks, the following equaciun
can be obtained for a linear network:

Meap = 8Q an

where M and 4Q are measurable, and Ap is the
difference bectween the nominal valuyes and the
actual values of p . Therefore, p is diagnosable
if and only if M is invertible. Note that Eq.
(26) 1is in general nonlinear while Equation (27) is
linear. The latter is achieved at the expense of
more test points.

Navid and Willson, Jr., {7] considered the

diagnosis problem for resistive networks. In this
" The last equation is an identity. The above set case Eq. (6) takes the form
of equations can be solved to yield -
eq & yields gR) = L, +L (I-RL.)RL
a a8 a.8 a 22 21 11 12
0 171 172 1 —
c(t) = T 1o, Y(e=D) +735= R(+12 {6(t)-T(t)] where R is the resistive matrix. By taking ad-
1 1 1 1 vancage of the fact that Ljyj, L1z, L2] and Lyg
arrived from a network graph, they were able to
I(t) = 8,¥(z-1) + B,R(t) (R) find an elegant condition for the invertability of
Y(e) = 20 + ! Y(c-1) + -EZ—R(:) + —l—-G(t) -'—a-l—'r(:)
1-a1 1-a1 1-02 l-al 1-01
8 . This condition depends on only the graph, not

the component values.,

(B) Computational Problems

Ag it was discussed in Section III, the system
diagnosis problem is in general, nonlinear, even
when the system is linear. When the dimension of

p 1s large, the computational cost will be high
and che results will be inaccurate, The following
example will illustrate the point.

Example 2 [15]. Consider a 4-stage RC-ladder
as shown in Fig. 4. The transfer function of the
ladder is given by
bos” + by’ + b232 + b,

4 3

aos + als + azsz + a3s+ 1

The component values can be calculated from the

2 Nl(s)
Dl(s)

Y(s) =

coefficients aji's and by's by a continue-
fraction expansion [16] as
Di(s)
o)
c, = lim N, (s)
Dysr(®)
ann——
(6)
R
vhere

Ny(8) = N,_,(s) = C,_, D,(s)
Dy(s) = D,_;(s) =R _, N _ (s)

Now, we first arbitrarily chose¢ the parameter val-

ues to be
Rl = 2,2 Cl = 0.015
R, = 47 C, = 0,470
2 2 (28)
R3 - 8,2 C3 = (1,010
R‘ 1.0 r“ = N,022

Y
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The exact value  of the coefficients can be caleu=-

Tattesds

g = {1,001 11406188 b” = 5.977554E=~4

a, = 0.24943516 b, = 0.09526598

! ! (29)

ay " 7.3770808 bz < 0.492064

ay = 25.01° 4 b3 = 0.517
We now calcul.te the vomponent values by the con-
tinue-fractionnl expansion method. 1If the exact

values of covificients (29) are used and if chere
is no computarional error, the component values
given in (28) should Le completely recovered. Two
cases have becn examined. When the exact values
of (29) are used, the calculated component values
are completelv agreeahle with that of (28). This
indicates the crror due to computation is small.
Now, when significant value of (29) is reduced to
seven, the calculated component value becomes,

%1 - 2.2 §1 - 0.015

R, = 47.005 c, = 0.70919
R, = -0.018072 G, = -0.23768
R, = 9.1305 c, = 0.030482

which have significant deviation from (28). In
fact, R3 and C3 are negative! In reality, one
can hardly measure the transfer function coeffici-
ent to 7~digits accuracy. This example shows that
even p 1is diagnosable but it may not be computable
in realistic situations. .
Let us now re-examine the RC-ladder and di-
agnose it from another way. Observe the time-
domain equations for 2-stage RC-ladder (25), f.e.,

m, = G

0~ "1
o, = -Glznl
W, = -(nl3012 + clzcznlz)

m, = 013013(01 + cz)2 + clzczznlznz

Note that G can be solved from the first equation.

After G is obtained, Dj can be solved from the
second equation. After (Gl’ Dl) are obtained,

G, can be solved from the third equation. Finally,
after (Gy, D, G,) are obtained, Dy can be
solved frow the fourth equation. Observe further,
that each time, the equation to be solved is a
linear one. Therefore, the above set of nonlinear
equations is called sequentialiy linear. It can

be shown that for any n-stage RC-ladder, Eq. (25)
is sequentially linear. As a consequence, both

the computational cost is reduced and accuracy is
improved tremendously. Liu and Visvanathan [17]
have provided a sufficient condition for a system
whose diagnosis equation is sequentially linear.
However, this condition may be too strong because
it does not include the n-stage RC-~ladder, although
the lacter motivated the study.

(C) Design of Test Points :
1f component parameter p of a LSDS is not

diagnosable, how can vne make it diagnosable?

The obvious answer is that we need more messurements,
or more test roints. How marfy and what location?
These are the questions faced by those whe design

. .
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the test points. This process at present is
more of an art than a science. There are two
results. Sen and Saeks (3] provide a test point
selection algorithm. Visvanathan and Liu {17}
provide a design procedure so that the diagnosis
equation (25) is sequentially linear.
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.. I. Introduction

There have been considerable efforts expended in analog fault analysis. 1
Most of them [1], [2], [3] employ frequency-domain approach, i.e., diagnosing
faulty components from measured transfer function, while few [5] use time-
domain approach to isolate faults by means of Markov parameters. Theoretically, A
both approaches are still under development and all seem feasible. It is the
purpose of this report to compare these two approaches numerically by sim- }
ulation on RC ladders. In this example, it is shown that the time-domain j

approach is far better than the frequency-domain approach.
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II. Simulation and Results

Consider an n-stage RC ladder as shown in Figure 1.

R. ?; Rh

N s

dw) (1) win T ¢, Ca

The impedance Z(s) of this RC-ladder has the form

Cn

n n-1
LI 2N ]
a,s + als + + a

n n-1
s + bls + ... + bn

Z(s) =

Since there are only (2n+l) coefficients to be determined, we need only
to measure the impedance Z(si) at (2n+l) different sampling frequencies,
Sys i=1,2,...,(2n+1).

Once Z(s) 4is obtained, it can be expressed as

Z(s) = Rl +

and values of components can be calculated as

Nl(S)
R, = lim D, (&)

S—rm

C, = 1lim

- d

Nl(S) ¢

R, = 1lim

- e

C -lim Nizs) 1-2, 3, ssey Id




N, = numerator polynomial of Z -

1
i
Dl = denominator polynomial of Z
Ny = Nj_(8) = Cyy + Dy(s) i
; Dy =Dy p(8) =Ry g o Ny (o) =
;'- On the other hand, the ladder has a state equation expression
-
ﬁ x = Ax + Bu
'__ y = Cx + Du
¢
: where x are the capacitor voltages, u the terminal current, y the
> K
i terminal voltage and -
g 1 1 0 | 1
RpCp RyG | <,
1 -1 1 1 .
+ 0 >
R,C, (chz R,C,7 RsC, . | 3
. U ‘e 1 l .
A ! B . R C
—teeee| = v v n n-1 | . (2)
c ' » 0 . . . B
Rncn Rncn + 0
1 0 ° ° ™ 0 l Rl
— s
The Markov parameters are given by
mo =D -
ml = CB
m, = CAB
. (3)
* .k
m = ca*l3 ~
. 2w -
. |4
mZRﬁ CA B
e A N L e e e e T L R PN ]
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which can be measured by a method developed by Liu and Suen [5].

Once the Markov parameters, o, i=20,1,...,2n-1, are obtained, the
circuit parameters R's and C's can be solved from the simultaneous
equations(2) and (3).

In this simulation, it assumes no measurement error for both Z(s) and
mi's . They are exact. We want to find the numerical error generated by
solving (1) and (3).

Ladders of four and six stages were chosen, transfer functions and A, B,
C, D parameters were calculated using nominal values of components. Then, as
a way of comparison, the significant digits of coefficients of transfer function and
entries of A, B, C, D were reduced before we performed the manipulation by
these two methods. The results are listed in Tables 1 and 2.

It is clear from the tables that, as significant digits decrease, the
estimated values of frequency-domain method stray away from nominal values
gradually, then collapse abruptly at a certain point and become unrealizable,
i.e., some of the values become negative. On the contrary, the results of the
time-domain method remain about the same order of accuracy as parameters of
state equation.

The discrepancies may be due to the following reasons:

1) The frequency-domain approach deals with computations of complex
numbers while the time-domain approach deals with computations of real numbers.

2) The given circuit is sequentially-linear for the time-domain approach

(5,6], This can be demonstrated by the 4-stage RC ladder. Solving (2) and

(3), we have
mo = Rl
-1
mET

1

R R I - . . . .
2o M. rmlata a2 A [P N —
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My l2 z(cL + ’cl_)
R2 C1 1 2
Therefore, Rl’ Cl’ RZ’ C2 can be solved sequentially by a set of linear
equations, '
Ry =my
1
c:1 2
1
Ry = - —
mzcl
1 2.2 1 T
—~—=a,R,C.” - =— -
C2 372 "1 C1 -
i
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(2]

(3]
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(4]

(5]

(6]
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IV. Conclusion

This simulation strongly suggests that time~domain approach is more
data~tolerant than frequency-domain approach in the sense that no sudden
breakdown occurs and component values can be estimated with reasonable
accuracy when the measurement is not accurate enough or where the noise must
be taken into considé:ation. Thus, though it is still too early to have
definite conclusion, time-domain approach seems to be a more promising method

in attacking fault diagnosis problem.
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1
Ry
-
Simulation on 4-stage RC Ladder )
]
Time-Domain Method Frequency-Domain Method :ﬂ
R R R BooR R3 R 3
1
"
€y Cy Cq s ¢, G Cq Cy
Nominal 2.2 47 8.2 1 2.2 47 8.2 1 ;a
Values .015 .47 .01 .022 015 .47 .01 .022
4
Significant Digits 2.2 47 8.2 1 2.2 47 8.2 1 g
10 .015 47 .01 .022 015 .47 .01 .022 ]
2.2 47 8.2 1 2.2 47 1.3587 7.7603 )
8 © o
.015 A7 .01 .022 .015 .46597 .0056867 .030347 #
2.2 47 8.2 1 2.2 47.005 -.018072 9.1305
7 .
.015 47 .01 022 .015 .70919 ~-.23768 .030482
2.2 47 8.2 1
6
.015 .47 .01 .022
2.2 47.017 8.2044 1.0003
4
.014999 .46982 .0099962 .021997
2.2 47.857 8.4454 1.0569
2
l .014925 .46434 .0096776 .020555

Table 1: 1In the frequency-domain approach, the calculated values of 83 and C., become .
negative when the significant digits are reduced to 7. No siich discrepancies -
in the time-domain approach. *
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. AN ALTERNATIVE CONSIDERATION ON SINGULAR LINEAR

. STATE BSTIMATION

-

- Y.F. Buang B.Pogel J.B. Thomas
Dept. of Elec. Eng. Dept. of Elec. Eng. Dept. of Elec. Eng.
and Computer Sci. Univ. of Notre Dame and Computer Sci.
Princeton Univ. Notre Dame, IN 46556 Princeton Univ.
Princeton, BJ 08544 Princeton, NJ 08544

-Abstract
o The problem of designing an optimal state estimator for a
o linear, discrete-time system with a singular noise covariance

matrix is considered. 1In this article, this problem is cast as
. a constrained optimization problem and the approach appears to

- be more direct. Solution to this optimization problem gives a

A reduced-order optimal state estimator.

I. INTRODUCTION:

In a linear stochastic system, the
output measurement may be only partially
noise corrupted. Although, in practice,
one may argue that there exist no noise-
free measurements, it is quite possible
that some of the meéasurements are noise
corrupted while the others are relatively
accurate. Under the Gaussian assumption,
this implies that the noise covariance
matrix has both large and small eigen-
valueg, which easily leads to numerical
difficulties in the implementation of the
Kalman filter. It is convenient in this

two parts, one to be estimated by a reduced-
order filter and the other to be recovered
exactly from the noise-free measurements.
Then the dynamic equation of the latter
part of the state equation is considered a
constraint on the optimal estimation of the
other part of the states. Hence the state
estimation problem in this case is cast as
a constrained optimization problem, which
leads to a reduced-order optimal state
estimator.

t2. _QPROBLEM FORMULATION

n: case to model these more accurate measure-
. ments as noise-free entities. A linear, discrete-time stochastic
The study of this problem dates system can be described by the following
- b::k to the work of Bryson [l], for con- equations
g tinuous-time systems, and that of Brammer
- [2), for discrete-time systems. x(k+1)=A(k) x(k)+B(k) u(k), *=0,1,2,... (1)
Kwakernaak [3] and Anderson (4] discussed y(k) = (k) x(k) + v(¥) . k=1,2,... (2)
this problem as a singular linear state n
e estimation problem; however, no explicit where x(-)e¢ B, ul-)ec RP, ana y{<)e .
e solutions were given. Tse and Athans (5) To further specify the problem, the follow- 1
s derived s rather complicated "observer- ing assumptions are made:
estimator” which is essentially an exten- (1) x(0), u(o), u(l1),...,v(1), v(2),
) sion of the Luenberger observer (6]. «ss, are independent random vec- ‘
. later, Yoshikaws [7] gave a simpler deri- tors with the following statistics
. vation for minimum-order optimal state by
estimators. More recently, Pairman ([8] I[x(o))-xo E[x(0)x"(0) 1=V, ‘
. :topolcd s 'hy::id :lti:ator“ which *o |
o eatures "coordinatization" and achieved
L, a reduced-order optimal estimator. E(u(k) 120 % B(u(k)u (k'i’l
The main feature of the approach =V,(k)8(1) ¥k, i
. used in this paper is the following: 7
"l After a proper similarity transformation, xlv(k)lﬁg Yk B(v(k) v (k=1)]) ,
the state variables are decomposed into —--  -- - |
- Presented at 23ad Midvest Symposium on Circuits and ‘
Li Systems, August 1980; o be published in the Proceedings :
T of the Conderence ]
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where ur(°) and vT(-) denotes the trans-
pose of vectors u(-) and v(-), respective-
ly, and 3(-) deontes the Kronecker delta.
(ii) Por any k, the V&(k) is a non-

negative definite matrix with
rank my. where my <m. Under

this assumption, implementation
of the standard Kalman filter
involves inversion of a matrix
which may be singular. Tse
and Athans (5] proposed an ob-
server-estimator of order n-m,

which performs as well as higher
order estimators, where mzém-ml.

For any k,the C(k) is of full
rank, i.e. every element of the
output measurement is indepen-
dent of the others.

The objective here is to design an
optimal state estimator of order n-m,.

Without loss of generality, one can assume
that
v, (k) | Im
- [

where vl(k)e R 1, and thus the covariance
matrix of v(k) can be written as

(iii)

v, (k) !
O M
myxmy | myxm,

where Vvl(k) is strictly positive definite.

It is easy to see that there exists
a non-singular matrix Q(k), such that the
transformation

z(x) = Q(k) x(x) - (3)
yields the following state and measurement

equations
F(m)] (%, 00 1 Ky300 [ m]

01T E,:(;)- -.X,;(;)-
i'l(k)
+l===] w0 (4)
B, (x)
and
Y,_(k)] ?.'nm. Tt [zlm]
[YiTiT nQan |E (k) ziTET

" frem (5),
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=V (k) 8(i) ¥k, i vy (k)
T v T + '3- (s)
Elu(k) v (1)]=0,,, V.1 Elu(k)x"(0)] where =
= Opxn ™* A(x) = 0(k+1) A(K) @ 1(x)
T
Elv(X)x"(0) = O, Yk n B(k) = Q(k+1) B(k)

Tx) = e(x) a~t(x)

n
2,(0e R Lz e R 2,y,(-)e R Ly,()e R 2,

and nlén-ni. A(-), ¥(-) and ¥(.) are par-

titioned accordingly. Moreover, since C(k)
is of full rank, a&z(x) is invertible.

Hence there exists a one-to-one correspon-
dence between the state zz(k) and output

¥5(k), namely
IS |
zz(k) czz(k) yz(k) (6)
and thus in the state equation, (4), only
zl(') must be estimated. The dynamic
equations for zl(-) and zz(-) are

zy(k+1) = X),(k)z,(k) + Xlz(k)zz(k)+§‘l()(c)u(k)
7

z,(K+1) = A, (k) 2, (k) +3,, (X) 2, (k) +B, (k) u(k)
(8)

It is obvious from (7) and (8) that zl(k)

and z, (k) are mutually dependent; there-

tore thc estimation of z (k) does depend

on the dynamic behavior of zz(k) Thus

the filtering problem becomes that of find-

ing an optimal 2, (k+1|k+1) subject to (7)

and constrained by (8), where 21(k+1|k+1)
denotes the estimate of zl(k+1) given

measurements up to time k+l. Note, from
(6) and (7), that the state zz(k) can be

regarded as a deterministic input in the
Kalman filtering problem.

3. JTHE REDUCED-ORDER OPTIMAL
ATE ESTIMATOR

In this section, the optimal estima-
tor for zltk) is derived where the perfor-

mance measure is the trace of the error
c?;;rianco matrix. Defining the vector
s as

(k) & 2,(k) - P(K) 2,(x) : P(K)e R
(7) and (B), one obtains
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8(x+1) =P (k) 8 (k) +G (k) 2, (k) +M(k) u(k) (10)
and
¥y (X) =B(k) 8 (k) +8(X) 2, (k) +v, (k) (11)
vhere (x) = X,,(k) (k+1) A, q(Xk)
) 4 = A - P(ke
11 221 100
G(k) = X ,(k) = P(ktl) Ry,(k) + P(X) P(Kk)
(10.b)
M(k) = Sl(k) - P(k+1) 3’2(1:) (10.¢)
B(K) = T, (k) (11.a)
and

N(k) = € (k) + T}, (k) P(k) (11.b)

Notice that P(k), as defined in the above
equations, can be viewed as the Lagrange
multiplier in the standard constrained
optimization problem. Now, the problem
of estimating zl(k) is replaced by that of

estimating s(k) given the measurements
{y1(1).y,(2),...,7,(k) } and states [zz(l),
25(2),...,2z,(k)}. From (9), it is obvious
that

B(xlk) = 2,(xP) - P(k) z,(k) (12)

and

valklx) = Vg (kIK) (13)

where 8(k|k) denotes the estimate of s(k)
conditioned on input-output measurements
up to time k, and

F(xix) 8 B(x|x) - s(k)
Z (x|x) & 2 (x]X) - z,(X)
v(x|X) & E[E(X|R)F (k|X))
The unbiased linear estimator of s(k)

is given by the following nlth-crder
filter

£(x+1) |x+1)= [T~-K(X+1)B(k+1) )P (X) B(X|X)
ox(htl)[yl(k+1)-n(k+1) z5(k+1)
~H(k+1)G(k) 2, (k) ] (14)
E:ncc the error quantity s(k|k) propagates
S(k+1|k+1)= [T-K(%k+1) H(k+1) )P (X) & (X|X)
+ [I=-K(k+1) B(k+1) IM(k) u(k)

=K{k+1) v, (k+1) (15)

and the error covariance matrix V:(-l-) is
given by

V(kel|ke1) = (T~K(k+1) H(k+1) IT(ke 1)
_II-K(x+1)B(X+1) 1T

+K(k+1) Vvl(lu-l) K (k+1) (16)

where
I'(k+1) 87 (k) V(x| k) 2 (k) +M(X) v, (k) T (K) (19

Observe that T'(k+l) is essentially the
one-step prediction error covariance matrix
[9]. An optimal estimator is taken to be
an estimator which minimizes the trace of
the error covariance matrix. Therefore,
it is left to minimize T:IV;(k+1|k+1)]

with respect to (K(k+1)IP(k+1l)]. Notice
that here K(k+1l) plays the role of stand-
ard Kalman gain while P(k+1l) is the
Langrangian of the optimization problem.
Minimizing Tr[V;(k+1 x+1)] with respect to

K(k+1) yields

K'(k+1) = F(k+1) BR(X+1) R-L(kel)  (18)
where R(:) is the positive-definite symme-
tric matrix given by

R(k+1) = n(x+1)r(k+1)n"'(k+1)+vv1(x+n

(18.a)

Observe that (15)-(18) are identical to
the formulation of the standard Kalman
filter {9]. However, in this case, it is
further required to optimize the state
estimator with respect to the choice of
P{x+1);: i.e. minimize Tr[v:(k+1!k+1)] with

respect to P(k+l). Let the optimal P(k+l)
which minimizes Tr[v;(k+1|k+l)] be denoted

by P*(k+1). Then it can be shown that
P*(k+1) ¢ Z*(k+l)
where Z*(k+1l) is the set given by

(19)

nlxmz
Z*(k+l) = {P: P Al(k)-Az(k). PeR }
(19.a)

Ay (x) = 'A'zl(k)V-;(k|k)°€1(k)+82(k)vu:k)B’g(k)
19.b)

Ay (x) = X3 () Vx| KRG, ()48 (K)V, () B (X)

(19.¢)
Notice that, when Al(k) is non-singular,
P*(k+1l) is given by

Pe(kel) = A (%) A7M0 (19.0)

The set 3*(k+l) will be discussed in the
next section.

Once P*(k+l) is found, the matrices
P(x), G(X), and M(X) can be specified and
denoted by P*(k), G*(k), M*(k), respective-
ly, by substituting P*(k+l) and P*(k) into
(10). Similarly, M*(x+l), I'*(k+l) and
R*(k+1) can be obtained from (11.d), (17),
and (18.a).

All in all, the reduced-order optimal
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K*(k+1) = T (k+1) BT (ke 1) [H(k+1) T (k+1)
BT (ke1) + vvl(xu)_]'l (20.e)
T*(kel) = P*(K)Va(k|K)F*T(K) + M*(K)V, (k)

M*T(k) = [T:=P*(k+1)] (X (k)
vz A (X) + B(X)V, ()8 (X))

(T:=P*(k+1)]T (20.f£)
where
v* (klx)1 O
va(klx) = =t ——+ 522
myxmy | myXm,

due to the fact that zl(k) is exactly

measurable for every k. Also, the error
*

covariance matrix V;(k+1lk+1) is given by

Vi(kel |kel) = [(T*(ke2))™L & B (a1
v, (ke1) B(k+1)1™2 (20.9)
1

and P*(k+1) is specified by Bgs. (19).

4. COMMENTS ON THE REDUCED-ORDER
PTIMAL ESTIMATOR

The formulation for the optimal state
estimator derived in last section, (19)-
(20), is identical to that of the “"hybrid
estimator” given in [8], except that in
[8] a deterministic input is inserted to
the system dynamics. However, the
spproach here is more straightforward and
it is clearer here that the choice of
P(k+1) is crucial to the optimality of the
estimator. It can be seen that the gen~
eral coordinate transformation discussed
in [8] is split into two coordinate trans-
formations: one which depends on the sys-
tem output matrix H only and one which
depends on the matrices 911 and 912. It

can be seen that the similarity transfor-

[
A

o T

The following observation is thus made:
Observation The set Z*(k+l) given in (19.a)
8 a non-empty set. Moreover, if Al(k) is

singular, any member P(k+1l) ¢ Z*(k+l) yields
the same estimator performance.
NMow, according to the value of Al(k),

the following special cases are of interest:
Case 1: A,(k) =0 . In this case,

1,. m, Xm,
Ay (k) = °n1xn2 and thus
n,xm
T*(k+el) = R 1 2
This case is possible if (8) does not con-
tain any information pertaining to the
estimation of zl(k): for example, if

izl(k) = Omzxnl and B,(k) = 0 An ex-

mzxp'
treme example for this case is that m, =

0, i.e. all measurements are noise corrupt-
ed. In this condition, the estimator pre-
sented in Section 3 is identical to the
standard fulle-order Kalman filter whose
performance is independent of the choice
of P(k+1).

Case 2: Al(k) a 0m xﬂzz i.e. Al(k) is a

2

singular non-zero matrix. 1In this case,
only some components of zz(k) contain in-
formation about (u(Xkx). zl(k)). Thus the

similarity transformation discussed in
Section 2 can be redefined so as to iso-
.late only those elements of :2(k) which

constitute a constraint on (n(k).zl(k)l.

Hence the lagrange multiplier P(k+1l) that
should be considered is an element in

n(n—:}x:' where r < my. Alternatively,
any member in 2*(k+l) can be used in the

.#ilter realization.

Case 31 Al(k) is positive-detinite. This
condition can be fulfilled when vu(k) is

.positive~definite for any k = 0,2,2,...,.
In this cllc,_;'(k+1)‘containn one and

-4 %
state estimator is formulated by the folx mation Q(-) of (3) is equivalent to i)
lowing equations defined in (14) of (8], and thus the state
A variable z defined in (3) can be regarded
8(k+1lkel) = [I-K*(k+1)B{k+1) JP* (k) B(X]k) as equivalent to.( defined in (14) of [8]. :
Purthermore, the variable s defined in (9)
+ R?(k+1)[y1(k+1) - N*(k+l) can be similarly related to the variable
g, in (20) otj8]. q
zy(k+l) - B(k+1)Getk)zz(k)] The relations in (19) which govern :
(20.a) the choice of P*(k+l) are vital to the
understanding of the optimal state esti-

' Ql(k’1|k+1) = .(k+1lk+1) + Pr(kel) zz(k+L) . mator, and thus deserves some detailed :
. (20.b) discussion. Pirst, notice that .
- P |
- 22(k+1) - sz(k+1) Y2(k+1{20.c) _ h(Al(k)) c h(Az(k))

3: v;(k+l|k+1) = [T-K* (ke 1) B(k+1) ]T* (k+1) where R(A,(k)) and R(A,(k)) denote the null j
I. (20.4) spaces of Al(k) and Az(k), respectively.
\.“:
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only one element P*(k+l), which is given random sequence,” IEEE Trans. Automat.
by (19.4d). Contr., vol. AC~13, pp.l198-199,

When P*(.) is uniquely specified April 1968.
(Case 3), one can compare the error
covariance matrix given by (20.q) with {3] H. Kwakernaak and R. Sivan, Linear
that obtained for arbitrary P(:) and ob- Optimal Control Systems. Wiley Inter-
serve the same expression for v;(k+1|k+1). sciences, 1972.
The difference is that I'*(k+1l) of (20.f) (4] B.D.0. Anderson and J.B. Moore, Opti
has the following property mal Piltering. Prentice-Hall, 1979.

Tr{T*(k+1)] < TriT(kel))
[S] B. Tse and M. Athans, "Optimal nini-

:??fe T(-) is obtained from non-optimal ::1-ordor1:blcrve§;¢ltiﬂ!i:f' for .
Finally, the implementation of this screte near time varylng 'Y'tem';
estimator should be initiated as follows: I!?Bp:fans. Au?°§:;: c°“8f" vol. AC
*(OIO) = E[x(0)) = *o0 (6] D.G. Luenberger, "Observing the state
i.e. of a linear system,® IEEE Trans. Mil.
B 21(0|0) = z[z1(0)1 Elec., vol. MIL-8, pp./4-80, April,
Q thevefore .
L, vz (0) Iom xm [7] T. Yoshikawa, "Minimal-order optimal
RIENS me)__l__li_a_oww aT(o) filters for discrete-time linear sto-
SN z 0 o 10", Xq chastic system," Int. J. of Contr.,
P et e B e T vol. 21, pp.l1-19, Jan. 5.
2 and (8] P.W. Pairman, "Bybrid estimators for
A P*(0) = 0 x discrete-time stochastic systems, "
L e n M IEEE Trans. Sys. Man., and Cyber.,
N vol. SMC-8, pp. 8.
. ] ’ 5. CONCLUSION ’
. [9] J.S8. Meditch, Stochastic Optimal
I' A reduced-order optimal state esti- Linear Estimation and Control.
SR mator for a linear, discrete-time system New York: McGraw-Hill Book Co., Inc.,
o associated with a singular noise covari- 1969.
TS ance matrix has been derived in this paper.
S The main idea in this derivation is to ACKNOWLEDGEMENT
« cast this singular state estimation problem
< a8 a constrained optimization problem. The authors wish to express their
The estimator derived here is fundamental- appreciation to Dr. R.W. Liu for his val-
!- ly the same as that derived by Fairman [8]. uable comments during the course of this
YR The major differences are: the approach work. This research is supported in part
g here is more straightforward, the optimal- by the U.S. Army Resesarch Office under
S ity of the estimator is more explicitly contract DAAG 29-79-C-0024, and in part by
AR exposed and, furthermore, the possibility the Office of Naval Research under contract
e of nonuniqueness of P*(-) is discussed NO0014-78~C-0444.
here.
It is worth mentioning that the esti-
¢ o mator given here requires lower order
O matrix inversion than the standard full-

order Kalman filter does in the singular
& case; thus the computational efficiency
. is improved. This estimation procedure
< A can be applied similarly to smoothing and

s predicting problems or systems with colored !
noise.
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Reduced-Order Optimal State Estimator for Linear
Systems with Partially Noise Corrupted Measurement

ELI FOGEL anp Y. F. HUANG

Abstract—The problem of reduced-order optimal state estimation for
linear systems with singuiar nolse covariance matrix is studied. It is shown
that the optimal estimator is somewbat different from the Kalman fliter.

The state estimator problem in the singuiar case cam be cast as a
comstrained optimization problem. Solving this optimization problem yields
the truly optimal estimator. The estimator derived bere is of the form of
the bybrid estimator of Fairman {7). However, the derivations here are
somewhat more direct.

1. INTRODUCTION

The problem of state estimation with partially noise corrupted mea-
surements is of practical importance since it is often the case that certain
measurements are significantly more accurate than other. This intro-
duces the necessity to construct the state estimator assuming a singular
(almost singular) noise covariance matrix (henceforth, referred to as the
singular estimation problem.) Furthermore, it is well known that if the

— -~ N -"‘.'7.‘7.“---'1
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In this correspondence we derive the rrue optimal reduced-order state
estimator for a linear system with singular noise covariance matnx. The
results reported here are by no means new. Fairman (7] has denived the
same estimator using his concept of “optimal coordination.” However,
Fairman's procedure is somewhat indirect and, thus, the optimality of
his hybrid estimator is not transparent.

The derivation of the optimal estimator here is based on the observa-
tion that the singular state estimation problem can be reduced to a
simple constrained optimization problem which yields a Kalman-type
estimator.

The correspondence is organized as follows. The problem is formally
formulated and in Section III its solution is presented. [n Section 1V the
state estimator, as presented here, is discussed.

II. PROBLEM FORMULATION

The standard Markov-Gauss model is considered, i.c., the state equa-
tion is given by

x(k+1)=A(k)x(k)+B(k)u(k)  k=0,1,2, -- (1)

and the measurement equation is
y(k)=C(k)x(k)+o(k)  k=1,2,--- (2)
where x(-)EA", u(-)ER?, and y(-)ER™. x(0), u(0). u(l),---, v(l),

0(2)',~ --, are independent Gaussian random vectors with the following
statistics:
E[x(0))=x¢ cov{ x(0)] =X 3
Eu(i)}=0 Elu(Du’(NI=V()8(i=j) VYi.j b
E[u(i)]=0 Elo(Do' ()] =VLD8(i—j) Vi.j (5

Efu(i)o'(j)]=0 E[u(ix'(0)]=0 E[v(i)x'(0)]=0  (6)
where v’(j) denotes the transpose of the vector ¢( /). It is assumed that
V, (i) are nonnegative definite matrices with rank m—m,, where m, < m.
In this case, the standard Kalman fiiter solution iavolves the inversion of
a matrix which may be singular. Furthermore, as shown in [l], an
observer—estimator of order n—~m, may be constructed which performs
as well as the higher order state estimators.

Thus, our objective is to construct the optimal n—m, state estimator.
With no loss of generality (1], we assume that

(k)]
0
where v (k)ER™™™ and, thus, the covanance matrix of ¢(k) can be
written as

o(k)=|- (5a)

Cm—my m,
Vik)= [ V,ik) " o] ym—m, (5b)
T8l ym

where V, (k) is strictly positive definite. It is simple to see that there
exists a nonsingular matrix Q(k) such that the transformation Z(k)=
@(k)x(k) yields the following state and measurement equations

[ Z,(k+1) [A‘..(k) s Ano [ 20 [5,(/:)
....... S TR N ey ()
atked | LAuto e | 200 Ao

measurement noise is colored, the estimation problem can be formulated -~ .
as a singular estimation probiem [1}, (2). Surprisingly enough, with all the nk)y | Culk) .C!’.('f ’.] 2 | "f( k) ™
attention given to this problem, standard text (e.g., [1}(2]) and an y,( k) 0 Ca(k) J Zy(k) 0
abundance of papers (e.g., [3]-[5]) present a variety of suboptimal rather
than optimal solutions to this classical problem. where
A(K)Y=Q(k+1)A(K)Q ™" (k)
O TR R T T L e v o 7 S Bkr=Q(k+ 18U
1\. th the of Electrical En U of N -
thors are “IN “”?pu\mﬁn ginesring Univensity otre C(k)-C(k)Q"(k).
0018-9286/80/1000-0994500.75 © 1980 IEEE
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and where Z\(-)ER"™™, Z,(-)ER™, (1) ER™™™, yy(-)ER™ and
the matrices 4, 3, and C are partitioned, accordingly. Furthermore, we
assume with no loss of generality, that C(k) is of full rank and, thus,
Cy(k) is invertible. This implies that

Zy(k)=CR' (k)yy(k) ®)

and, thus, in the state model (6) and (7) only Z,(-) must be estimated. To
emphasize this point, we rewrite (7) as two equations -

Z,(k+1)= Ay (k)Z (k) + A 2(k)Zy( k) + By(k)u(k) )
and
Zy(k+ 1) m Ay (k)Z,(k)+ Az (k) Zo(K)+ By(k)u(k).  (10)
The filtering probiem is, thus, that of finding the optimal Z,(k+1/k +
1) subject to the dynamic equation (9) and the constraint in (10). Note
that the unmeasurable quantities in (5) are Z,(k) and w(k). These
quantities are constrained by equality (10). The vector Z,(k) can be
handled as a deterministic input in the Kalman filtering problem.
In the next section, we derive the optimal observer for Z,(k), where
the performance measure is the trace of the error covariance matrix.

III. THe OPTIMAL STATE ESTIMATOR

Defining the vaniable S(k)
S(k) = Z\(k)Y—P(k)Zy(k); P(k)ER(n—mIxm an

we obtain from (7), (9), and (10),
S(k+1)=F(k)S(k)+G(k)Zy(k)+M(k)u(k) (12a)

k)= H(k)S(k)+N(k)Zy(k)+v,(k) (12b)
where

F(k)m A, (k)= P(k+1)Agy(k) (12.1)

G(k)=Ayy (k)= P(k+1)Ayy(k)+ F(k)P(k) (12.2)

M(k)=B (k)= P(k+1)By(k) (12.3)

H(k)=C\,(k) (12.9)

N(k)=Cyy(k)+Cy (k) P(k). (12.5)

We note that P(k) can be viewed as the Lagrange multiplier in the
standard constrained optimization problem. Now, the problem of esti-
mating Z,(k) is replaced by that of estimating S(k) given the measure-
ments {y;(1).7,(2),- - -, y,{k)}. Obviously, from the definition of S(k) in
(11) we have

S(k/k)=Zy(k/k) = P(k)Zy(k) (13)
and

Vi(k/k)=Va(k/k) (14)
where
S(k/k) = S(k/k)-S(k)

Z\(k/k) = Z,(k/k)=2Z\(k)

Any unbiased estimator of S(k) is given by the (a—m,)th order filter

S(k+1/k+)ym[I=K(k+1)H(k+ )] F(k)S(k/k)+K(k+1)
(k1) = N(k+1)Zy(k+ 1) = H(k+1)G(k) Z,(k)] (19)

S(k+1/k+ )m[I=K(k+ ) H(k+ )] F(k)S(k/k)
~ (1= K(k+ ) H(k+ D] Mk u(k)+ K(k+D)o(k+1). (19)

To obtain the optimal estimator, we have to minimize the trace of the

PP . P S0, ol T AT

efTor covariance matrix
Ve(tk+1/k+1)={1=-K(k+DH(k+ D]IT(k+1)
({I-K(k+DH(k+1)] +K{k+ DV, (k+HK'(k+1) (20)

where

T(k+1)=F(k)Vo(k/k)F (k)+M(k)V (k)M (k) (21)

with respect to [ K(k+ 1), P(k+1)]. We note that K(k + 1) plays the role
of the Kalman gain, whereas P(k+ 1) is the Lagrangian of the opumiza-
tion problem. Furthermore, we note that ['(k + 1) is the one-step predict-
ion error covanance matrix Ve(k+1/k). Minimizing tr [Vs(k+ 1 /k+1)]
yields

K*(k+1)=T*(k+ )H'(k+ R '(k+1)* (22)

where R(-) is the positive definite matrix
R(k+ D)= H(k+DT(k+D)H (k+ 1)+ V (k+1). (22a)

The optimal P(k+ 1) is denoted by P*(k+1). R*(:) and I'*(-) in (22)
denote R(:) and I'(-) of (22a) and (21), respectively, expressed as
functioas of the optimal P*(k + 1). Optimization with respect to P(k+ 1)
yields '

P*k+1)ED*(k+1) (232)

where P*(k+ 1) is the set

P (k+1)= (PERMmI™: Py (k) =Ay(k)) (23b)

A(k)mAqy (k)WVe(k/k) Ay (k)+ By k)V,(k)Bilk) (23¢c)
Ay(k)=A (k)Vs(k/k)Ay (k) + B (k)V,(k)B3(k). (23d)

The relations in (23) are vital to the understanding of the optimal filter
and. thus, merit some discussion. Since J(A(k))cI(A,(k)), where
N (A4) denotes the null space of A4, the following observation is made.

Observation: $*(k+ 1) is not an empty set. Furthermore, if P*(k+1)
is not a singleton (A (k)-singular), any member P(k+1)EP*(k+1)
yields the same filter performance.

The invariance of the performance over the set $*(k + 1) can easily be
checked via consideration of the error covariance matrix as in (25)
below.

According to the value of A(k), the following special cases are of
interest.

Case 1: A (k)=0. Note that in this case A y(k)=0 and, thus, P*(k+
1)=@—mu™  This case is possible if (10) does not contain any
information pertaining to the estimation of Z,(k). For example, if
A3(k)=0 and B,(k)=0, etc.

Case 2: A\(k)>0 (A (k) is a singular nonzero matrix.) In this case,
only some components of Z,(k) contain information on (u(k), Z,(k)).
In this case, the transformation Q(k) discussed in the previous section
can be defined so as to isolate only those elements in Zy(k) which
constitute a constraint on (u(k), Z,(k)) and, thus, the Lagrange muiti-
plier P(k) that should be considered is in R(*~"" where r is the number
of such constraints r < m,. Alternatively, any member in P*(k+1) can
be used in the filter realization.

Case 3: Ay(k)>O0. In this case P*(k+1) is uniquely given by

Po(k+1)m A (k)AT (k). (29)
Thus, the optimal filter equations are given by

S(k+1/k+ )= {I=K*(k+ D) H(k+ 1)) F(k)S(k/k)
+ K (k+ Dy (k+ D=N*(k+NZy(k+1)

- H(k+1)G*(k)Zy( k)] (25a)
Z k+1/k+1ymS(k+1/k+ 1)+ P (k+1)Zy(k+1) (25b)
Zy(k+ 1) =G (k+ Dyy(k+1) (25¢)
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Va*(k+1/k+1)=[1~K*(k+DH(k+1)]T*(k+1)
aT*(k+1)=T*(k+ DH (k+ D[ H(k+ DT*(k+1)
CH(k+ D)+ V,(k+ D))" H(k+1)T*(k+1)

=[(Cok+1) " + H (ke + DV (k+ DH(k+ D]

(25d)
where the equality = is meaningful only if the inverse exists.
To(k+1)=F*(k)V3 (k/k)F*(kY +M(k)V,(k)M*(kY
<[ 11 =prka [ AChovs (k/n) i
g -’ « v o» -l- D
+B(k)V,(k)B (k)][ —P‘(k+l)] (25¢)

where

V3(k/k)= [.V?'.‘f‘/.".’. :.9]
o o

due to the fact that Z, is exactly measurable.

Remarks:

1) Comparing the error covariance in (25d) with that obtained for an
arbitrary P(-), we observe the same expression for V(k+1/k+1) as
function of ['(k+1). The difference is that ['*(k+ 1) of (25¢) satisfies
I*(k+1)<T(k+1) where ['(k+1) obeys (25¢) with nonoptimal P(-).
(See, for example. expression (36) of {3].)

_2) I'*(k+1) of (25¢) represents the covariance of the prediction error
Z,(k+1/k) as can be easily proved. Thus, our optimization may be
viewed as two-step optimization:
Step 1: finding the optimal predictor,
Step 2: finding the optimal filter.
The optimal gain K*(k+ 1) is given by

K*(k+1)=T*(k+D)HT(k+1)
[H(k+ )T (k+ DH (k+D)+V, (k+1)]"" (26a)

and the Lagrangian satisfies
Prk+1)EP*(k+1) (26b)

where #*(k + 1) is given in (23). Equations (25)-(26) are initiated by the
values

S(0/0)=E[S(0)] or Z,(0/0)=E[Z,(0)]
P*(0)=0
Vzl(O/O) = Vz,(0).

Remarks:

i) If all the measurements are noise corrupted, i.c., m, =0, our filter
reduces to the standard Kalman filter.

2) If all measurements are noise free, i.c., m, =m, our filter performs
exactly as the “optimal minimal-order observer™ of (2] as can be seen
from the comparison of our error covariance matrix [(25d)-(25e)] to
theirs {(42) in [4])

The optimal state estimator of (26) is depicted in Fig. 1.

IV. Discussion

As stated earlier, the state estimator derived here is fundamentally the
same as that derived by Fairman. The major differences are: 1) our
approach is direct and, thus, the optimality of the estimator is guaran-
teed; and 2) in Fairman’s paper, a filter equivalent to ours is presented,
but the possibility of nonunique P*(-) is overlooked [cases 1)-2) of the
previous section).

The reader might wonder about the results here as compared to those
found in literature. The difference is in the optimal choice of the matrix

A
X (h/k)
.
+
L 2

Sik-1/k-1]

“"Pl:J Ay [é]

- [1.-R%1A, !LP‘I.“]
7
2501
(2]
Sl Ylk-1}

. The reduced-order
P

P(-), i.e., P*(-). Note that the innovations are white regardless of the
choice of P(-), which led to the erroneous conclusion that the optimality
is achieved by considering Z,(-) to be a deterministic input and subse-
quently ignoring (10).

Finally, it should be noted that in constructing an optimal predictor or
an optimal smoother, the same procedure as presented in Section III
may be utilized. Furthermore, the idea of solving the singular state
estimation as constrained optimization problem extends straightfor-
wardly to the continuous time case.
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Spectral Analysis of Previewing Controllers
ELI FOGEL anp KEVING McGILL

Abstract— Anslytical expressicas for the performance of optimal sad
suboptimal control policies in trajectory tracking problems are derived.
Special stiention is devoted to the finite preview problem. In the timpe-
invariant infinite-duration case correspondence of the performance indices
for finite emergy, fimite power, and stationary stochastic trajectories, all
with the same spectral demsity, is established. Using this correspondence,
the performance of differest control policies is studied in the frequency
domain. Simuistion results demeastrate the facility of the theory of this
pager,

I. INTRODUCTION

One of Bellman’s major contributions to optimal control theory is his
principle of optimality {2]. This principle implies that o optimally steer a
system along a trajectory the entire trajectory must be available. Unfor-
tunately, most practical controllers can only preview the immediate
future of the trajectory and must rely on statistical information to
characterize the trajectory beyond their preview. A common example of
a previewing coatroller is the driver of an automobile, and we refer to a
previewing controller as a driver, and to a driver with complete trajec-
tory information as a prescient driver.

While control policies for previewing controllers have been presented
in the literature, little attention has been paid to evaluating their perfor-
mance. Tomizuka and Whitney (7], {8] have derived the optimal driver
under the assumption that the trajectory is generated by a known linear
system driven by Gaussian noise. They also give a rule of thumb for
calculating the preview length which results in good performance. Miller
(4] bas presented a simple, well-performing driver with no a prioni
knowledge of the trajectory’s statistics. Fogel [3] has evaluated the
difference between the control values of the optimal driver and the
optimal prescient driver. However, until now, simulation has been the
only way 10 evaluate the performance of any of these drivers.

The purpose of this paper is 10 derive analytical expressions for driver
performance. In Section II arbitrary trajectories are considered in the

3 Ugiversity of Notre
Dame, Notre Dame, IN 46356, He is now with (be Charies Stark Draper Laboratory,
Cambridgs, MA 02199,

Dep of Electrioal Enginesring, University of Notre
of Electrical Engineeriog
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time-varying case. An integral expression (or the performance is derived
which depends explicitly on the trajectory and the preview length but is
independent of the course of the plant state for a broad class of linear
drivers. This result employs the concept of performance penalty which
was used by Wemersson 10 solve the related optimal pursuit probiem
{10}. As an example, this result is used to optimize a driving policy.

In Section [II the expected performance in following a stochastic
trajectory of known spectral density is considered. The problem is
restricted to the infinite-duration time-invariant case to allow analysis in
the frequency domain. The key result is that the expected performance
in following a stochastic trajectory may be calculated by considering a
much simpler deterministic trajectory with the same spectral density.

Using this result, the performances of the optimai prescient driver, of
Miller’s driver, and of Tomizuka’s driver are calculated in the frequency
domain. If the spectral density can be identified as that of the output of
2 linear system driven by white noise, the performance can be related to
the solution of algebraic Riccati equations.

The results in Sections II and [IV are stated for continuous time. The
corresponding discrete time relations are reported in the Appendix. In
Section IV computer simulation results are discussed. These simulations
demonstrate the validity of the theory and provide some insight into it.
Section V concludes the paper.

II. THE DRIVING PROBLEM AND PERFORMANCE EVALUATION

The difference between a controller’s actual performance and the
performance of the optimal prescient controller may be thought of as the
controller's penalty. The optimal prescient performance is known from
the optimal tracking problem, and a remarkably simple, but less well-
known, expression for penalty has been presented by Wemersson [10]. In
this section, these ideas are applied to the time-varying driving problem.

The plant to be controlled is described by its state equation

x(£)=A()x(£)+B()u(r); (2.1a)

x(ty)=xq
where x(1)ER”, u(t)ER’, and A(¢) and B(¢) are matrices of ap-
propriate dimensions. The system matrices are assumed to be time
varying throughout this section although for notational convenience the
time dependence will often be suppressed.

The control policy is assumed to be of the form

u(-)=u(t, x(¢),{rr(r): r<(1+T)})
where Yrm(yp(t): t€[tq, 1], yr(t)ERY} is the trajectory to be fol-
lowed, and T is the preview length. Linear control policies of the form

u(t, x(1), Y,)--x(:)x(:)+[“fﬁ(:,f)y,(f)a 2.2

will be denoted by the pair (X(¢), H(t, t)). H(¢, t) can be considered the

impulse response matrix of a noncausal “trajectory filter,” and the

preview constraint means that H(¢, 7)=0 Vr> ¢+ T, The state trajectory

of the plant for a particular u(-), ¢y, xo, and Y will be denoted by
X(to, x0, Yr, u(-)) = { x(: tg, xo, Yr. u(-)): t€[te.,]}.

The control objective is to minimize the performance index

J(tg, %9, Yr, "('))'f"l-(f. x(t:tg, %9, Yrou(-)) Yy, u(-)) dt
fo

(2.3a)
where
L(” X(f), YT' ll('))- "yp(’)_yT(()‘Ié(I)+"u(lv x(’)v YT)“ i(:)
(2.3v)
yel(8)=C(1)x(1);  yp(t)ER? (2.1v)

and Q(¢)>0 and R(1)>0.

0018-9286/80/1000-0959$00.75 © 1980 [EEE
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The characteristic which distinguishes the driving problem from the
familiar tracking problem of optimal control theory (see, e.., [1] is that
only a subset of Yy is available to the comtroller. It T> ¢~y the
problems are identical and the controlier will be called prescieat.

The optimal prescient control policy is known from the tracking
problem [1] to be

u¥(e, x(2), Y,)-—R"B'P(l)x(:)+k"3'€(t) (2.42)
where

P(t)= —PA~A'P+PBR-'B'P-C'QC;  P(1,)=0 (2.4b)

E(e)=[~A'+PBR'BU~C'Qr;  §(1)=0 (2.4c)

Notice that £(¢) is independent of X(to, xo, Yy, 4°(-)), and that P(t) is
independent of both X(Zg, xq, Yr, 4%(-)) and Y. u%(-) is of the form of
(22) and will be denoted u®(-)=(K°(t), H%(s, 7)), where K°(t)=
R-'B’P(1) and HO(s, ) is the impulse response of the trajectory filter
whose state equation is (2.4c). This filter is purely anticipatory, that is,
HO(¢, 1)=0 ¥r<t. The performance index for this driver is presented in
a new way in the following lemma.
Lemma 1.

I(tgs X, Y, 4%()) = 1 5= P~ (1) € (1o ) 3isa) -
*+ [ M) =CEUOE N & (25

Thus the optimal performance index is the sum of a term which can be
made to vanish by a proper choice of x, and a term which is indepen-
dent of X(tg, o, Y7, 4%(").

Proof: The proof employs the technique used by Wernersson in
[10]. The familiar expression for J(t,, X, Yy, u%(+)) is, from [1},

I(tg, %o, Y, u%(-)) = x5 P(20) 59~ 2x58(20) +3(t0)  (2.60)
where
S )= BR™'B'E-y;Qyri  $(1,)=0. (2.6b)
Let
Y1) =I(t, PN E(D), Yr, 60()) =E(6)~€()P-I(1E(D). .7
Notice that from (2.6a)
v(t)= m:'n/(:.x. Yr, 4%-))
and 0 since from (2.3) J(t;. x, Yr, u(-))=0 Vx (assuming Yy is well

behaved at 1), it is clear that y(¢)—0 as 1~»(, even though P~ '(¢,) is not
defined. Therefore, from (2.6) and (2.7),

H(t9: %o, Y7, #°(-)) =l xg= P~ " ()& 10 )N rre) = f""i(c)d:.

Differzatisting (2.7) and substituting the appropriate expressions from
(2.4b), (2.4c), and (2.6b), establish the lemama.

The above ideas are extended to suboptimal control policies in the
following lemms which defines the performance pepalty paid by a
coutrol policy and states the remarkable expression for its evaluation
which was first presented by Wernersson in [10].

Lemma 2:

J—(‘O' X0 yf’ .(')) e J(’On X0, YT' “(')) —J(‘Ov X9 yro "0(,))
(2.80)
= [Nu(s, 2(8: 201 10, Yr. (), Tr)

~u®(e, x(1; X9, tg, Yr, 4(*)), Yp)II 3 d1. (2.8b)

This idea is illustrated in Fig. 1. The proof is given after the following
corollary.

Corollary 2.1: The pepalty paid by the conwol policy w(:-)=
(K1), H(2, 1)) is independent of X(tg, X9, Yr, 4(-)) and is given by

2
J_(to,xo.Y,-.u(-))-f"ﬂf:’[ﬂ(t. )= HO(t, 7)) yp(r) drl| ar.
g 1174 2

(2.8¢)

Proof: In this proof the notation x(¢; tg, X9, Yy, 4(-)) will be ab-
breviated to x(; -). The method used is similar to that of Wernesson in
{10} Let

p(0) 8 J(t, x(¢; ), Yy, u0(-))mx'(e; - YP()x(t; ) =28 (¢)x(8; -) +4(¢)

From (2.6), p(t9)=J(to. %o, Y1, u’(*)) and p(1,)=0, and s0 from (2.8a)
and (2.22)

Sy ter 50, Yro w(- )= [TLCt 2(1:2), Yo, u() +5(0)] .

Differentiating p(¢), substituting the appropriate expressions from (2.1a),
(2.4b), (2.4c), and (2.6b), and combining with (2.3b), establishes Lemma
2. The corollary follows easily from Lemma 2 and (Z.2).

Example—The Optimal Limited Preview Driver: To demonstrate the
power of Lemma 2, the optimal limited preview control policy with no ¢
priori knowledge of the trajectory characteristics will now be derived.
Assuming a control policy of the form (X(¢), H(t, 7)), the penalty is,
from (2.8b) and (2.2),

Joea(tgs X0: Yr { K, ”))'j::’[ H[K(t)-K"(t)]x(t; to, %9, Yr (X, H))

+f-i.(c,,:¢1')[”("f)_ﬂc("f)]yr(-r)df
‘o

2
-f" iy d
ma(t, +T) (. rarr(r)dr n&. @10

With no a priori information on (yy(r): v>¢+T) at time instant ¢, &

“reasonable” choice of the control policy is
K(t)=K%1)

«! H(t7) r<i+T
H(s,1) {0 i+ T 2.11)

In statistical terms, assuming that the trajectory is a martingale pro-
cess is compatibie with the assumption of no a priori information on the
trajectory characteristics. Namely, we assume

E{yr(t)/0e7]=0 Vr>i+T (2.12)
where o, ., 1 is the o-algebra induced by the measurements {y(r)=r<r+
T). Now using (2.10) one obtains

Ell.-(-)l-t[ J "{ Jixo-xowlsn
0
2
+ [T G- Bl do]
&

~2(L &) - k%) x(0)

+ [T B0 - By (r de R

.E[f-‘i,-(u r.v,)”o(" T)rr(r)dr/a, r]

2
Y 0
+E[If-umr.:,)” . f)yr(')d'l /0 r] } ‘] @
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where the identity E[ ff(¢)dt]=E [ E[f(t)/0,,r]dt bas been used.
Revoking the martingale assumption in (2.12) the second term in (2.13)
nullifies to yield

2
i Y- ! K 0
“ﬂ(')sl ol )] Ej“-o/ﬂfmin(w T.l/)” ("')yr(’)dfund‘

where the optimal control policy is (2.11). Note that the martingale-type
assumption amounts to little statistical information of the stochastic
process (yr(-)). Further justification to the choice of the policy (2.10) is
given in the remarks following Exampie 2 of the following section.

The resuits obtained above are of academic interest. However, their
generality does not allow their application to the solution of practical
problems such as the design of the preview length.

To obtain further insight into the finite preview problem, we attach
some structural properties to the trajectory to be followed. Particularly,
we consider the infinite duration problem, with time-invariant plant and
spectral information on the trajectory.

III. SPECTRAL ANALYSIS OF THE PERFORMANCE INDEX

Since the actual trajectory is rarely available a priori, it is important to
be able t0 evaluate a driver’s expected performance over an ensemble of
possible trajectories. This section considers a simple but useful class of
ensembles, namely stationary stochastic processes characterized by spec-
tral density. The problem is restricted to the infinite duration, time
invariant case and is analyzed in the frequency domain. The main result
is that the performance depends upon the spectral density in the same
way for stochastic as for deterministic processes. This result is used to
calculate the expected performance of the optimal prescient driver, of a
driver which ignores the trajectory’s spectral density (Miller's driver),
and of a driver which uses knowledge of the trajectory’s spectral density
optimally (Tomizuka’s driver).

The lollowing assumptions are made in this section.

Assumption (A1) A, B, C, Q, and R are constant matrices.

Assumption (A2) The plant is completely controllable and observable.

Assumption (A3) ty= — o0 and ¢;= + co.

Assumption (A4) xq=0.

Assumption (A5) The control policy is of the form u(-)=( K, H(i-7)),
where X is constant, A - BK is stable, and = _ || H(n)j|* dn< co.

In this section 7, and x,, will be dropped as arguments of J and x.

The following three classes of trajectory are considered in this section.

L Finite energy, i, {2, ||,v,-(t)||2 dt<oo.

II. Finite power, i.e., (|| YrlI?) < oo, where

@8 tm 2 [Ty e

1Il. Zero-mean ﬁnite-vamnee wide-sense stationary stochastic pro-
cons, is, E(yr(1))}=0; E(yr(t+7)y7(1)} =R (7)< 0.

The performance index J(Yr, u(:)) must be defined differently de-
pending on the class of Y as shown in Table 1. Table I also defines the
spectral density of Yy for each class. Using the appropriate definitions of
performance index and spectral density, the following theorem applies to
all three classes of trajectory.

Lol Wit

AN DL ML LI Tl e i S i v i
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Ve Controller

Fig. 1. Jpee 88 the energy out of a system driven by the trajectory.

Theorem 1: Under the assumptions (Al) through (AS), the perfor-
mance index of a control policy u(-) following a trajectory Y, whose
spectral density is S,(w) is

W N=gouf” (§7) TS @)de G4

where (S'/z(u))‘S'/z(w)- ,(w). the gain function F(w)=

(u)RG‘(u)+G (u)QG,‘(w), and G (w) and G,(u) are defined in the
proof.

Proof: Under the assumptions of time invariance and stability made
in this section, stable transfer functions exist between yr and w and
between yr and yr—yp. Calling these transfer functions G(w) and

,(0) respectively, it is a straightforward exercise in harmonic analysis
to establish (3.4) for each class of trajectory. Notice that assumption
(AS) is necessary to eliminate any cdmtribution to J from the initial
condition x, for trajectories of class I.

Remarks: This theorem is important because it allows the perfor-
mance of drivers to be examined in the frequency domain, and because
it allows the performance index of a driver following a trajectory of class
II or 111 to be calculated by evaluating the performance index of the
driver following a trajectory of class [. In the following examples,
trajectories of class III will be modeled, as is common, as the output of
the following stable time-invariant “trajectory generator” driven by
white noise
(3.52)

xp(t)=Arxp(t)+Brw(t);  xr(-)=0

yr(t)=Crxz(1) (3.5b)
where i(u)-l. The corresponding class [ trajectory of the same
spectral density is the impulse response of the trajectory generator,
namely

t<0

1>0° (3-5¢)

ylk(‘). { C cdrln

Example I1: The Optimal Presciemt Driver: It is known from (1] that
under assumptions (Al) through (A3), the optimal prescient comtrol
policy is u%(-)= (K9, H(¢—r)), where

TABLE ]
Class 1. Finite Energy I1. Finite Power I11. Stochastic
Performance -
Index J-f_"Ldt J={L) J=E((L)} 3.))
- - - -
Density f_ .y.,-(t)y}(t+1) dtesS(w) (yr(t+1)yr(1))eS(w) E{(yr(t+t)yr(r)))}eS(w) (3.2)

whers X(#)e+X(w) denotes the Fourier transform pair

()= f_‘:xu)c-/-'w (3.30)
X(0)= 5‘; f_:i(u)./-' de. (3.3b)

K°=R-'8'P, (3.6a)

Hom(t—1)= { R™'Be~ANi=nCQ T (3.6b)
0 r<t

A=A~BR™'B'P,,. (3.6¢)
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P, is the steady-state solution of (2.4b) and satisfies the Riccati equation
given in (3.7). Thus, A is stable. If Y, is generated by (3.5) the optimal
coatrol may be stated

¥0(2. x(1), Y,0(1)) = = K°%(1)+ R™'B’ Py x (1)

where 2,2 | D1 P! pisfies the Riceati equation
-P; Py
Ow ~P,A,—A,P,+P,B,R™'B,P,~C,QC, (3.78)
with
A,-[‘; :r]; a,-[g]; C=[C:=Cf]. (3.7V)
The performance index of the optimal prescient driver is given in the
following lemma.
Lewwng 3:
Krrwt D=y [~ (§7@)°
M- (—jul~A) "' COA S (w) dw. (3.80)

Furthermore, if Yy is generated by (3.5), then

J(Yr, u9(-))= By] Pu—Piy P\ P ] By (3.8b)
where
PyAN'+AP,=-BR"'B". (3.8¢)

Proof: Applying Parseval’s formula to the integral in (2.5) yields
(3.32). Note that the first term in (2.5) is zero since (3.60) guarantees
£(—o0)=0 for a finite energy Y. (3.8b) 18 obtained by considering the
suboptimal control policy u(-)=(X°,0) following y(¢). Clearly
(5 Yia K2, 0)=0 and (s, x(1; Y;0.(K2,0)), ¥,p)=0 V1. Therefore
(2.8¢) and (2.2) together with (3.5¢c) and (3.6b) yield

halYuixem)=[° | L"m(:-f)y,,(f)dflia

+ ];Ilj:.HG(l—f)y,.(r) ‘11‘
K KO0)= [ "W MG .

The optimal performance is then given by (2.82)
(Y1, 4°) =J( Yo ( K°,00) = Jpua( Yin (K °,0)).

Substituting expressions (3.5¢) and (3.6b) into the pensity and subopti-
mal performance yields (3.8b). Details are given in (5).

Nots that the performance caiculations are made over the entire
interval (- 00, + a0), although the impulse is not applied to generate y,,
uatil 1=0, The significance of this result is that it gives a lower dbound on
the performance index of any driver for the infinite-duration problem.
Furthermore, it should be noted that for class I1I trajectories, the coatrol
(3.6) may not yield J(-) as in (3.8) for a particular realization of the input
{w(1)). However, the performance of the lemma will be obeerved on the
average. In the case of second-order ergodicity, the actual performance
will be that of (3.8) for almost all reslizations of the white input to the
trajectory generator.

‘The performancs penalty of suboptimal policies can be expressed in
the frequency domain as in the following lemma.

Lemma 4: Under (Al) through (A5) the penaity paid by the control
policy u(-)=(X®, H(1-1)) is

PG AR f_:'[ﬁ(u)-ﬁ"(u)]f;/’l: do. (39)

Proof: This result follows easily by applying Parseval's formula to
(2.8¢). This lemma will be used in the following examples of suboptimal
dnivers.

Example 2-—Miller’s Driver {4): Miller (4] has proposed the time-
invariant version of the optimal limited preview driver with no g priori
knowledge of the trajectory characteristics, namely u™(-)= (X, H¥(1—
1)), where

T<U+T (3.10)

u"(:-f)-{ H(t=7)
0 r>i+T

The performance penaity of Miller’s controller is given in the following
lemma.
Lemma 5:

SV u (Y mteg; [ 7 ($42(0))"
R 1B eAT(—jol - A CQY S 2 (w) dw. (3.11a)
Furthermore, if Yy is generated by (3.5), then
Joea( Yro u™(-)) = B;{ Pire TP, ,eA TP+ Py | By (3.11b)
where
Py Ar+ Ay Prym — Pl1eATBR-1B'eATP,. (3.11¢)

Proof: (3.11a) is obtained by transformming (3.6b) and (3.10) and
substituting into (3.9). (3.11b) is obtained by using (3.5¢), (3.6b), and
(3.10) to write (2.8¢c) as

Sl Yrs ll"(-))-f_;’nj;nﬂo(l—f)y,k(f)dfnidl

+f_”'M:H“(:-r)y,,(f)a“:d:

and then substituting (3.5c) and (3.6b).

Remarks: In the frequency domain, lack of knowiedge about the
trajectory characteristics means that energy must be considered equally
probable at all frequencies, i.c., that S,(w)=/. That «*(-) minimizes
Jpeal Yy 4(-)) for S,(w)=1, among ail control policies of preview length
T, is clear if Parseval’s formula is applied to (3.9) to give

Syl Yo u( N5 [~ JHi(0) = A0 o
ot I LLOTPE A L OB L O r

Example 3—Tomizuka’s Driver {7]-[9]: Tomizuka and Whitney [7)-
[9] bave derived the optimal driver assuming that the stochastic trajec-
tory generator as given in (3.5) is known to the coatroller. Their control
law is

wT(t, YmuM(s, )+ R™'B'eATPip(1+T) (3.12)

where x,(t1+7T) is the best estimate of the state of the trajectory
generator given (yr(r): r<t+ T}. u7(-) is the best estimate of u%(-), as
seen by writing the last term of (3.12) as

R ATP i1+ TYm [ HO(1=1)57(r)dr
1+T
where

Fr(r)=Cre*rz 1+ T),
Lemwma 6: If Cy =/, Tomizuka's driver pays the penalty

r>(+T.

I Yr: u’(-))-u-zl;f" (813())"|R - BrerT
-
[(=so1-47"'c@- P J[[ SV (@) do. (3.130)

Furthermore, if Xy is generated by (3.5) and xp(7+T) 13 measurabie,
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Fig 2. The optimal presch i

ing the impulse response of the trajectory

geperator.

then regardless of C,.

Jyua( Xr, uT(+)) = B;Pi2e TP eATP, B, (3.13b)
Proof: Since xy(1+ T)mxp(t+T)myp(t+ T), the last term in (3.12)
may be included as s delta function inside the convolution integral in
(2.2). The proof is then similar to that of Lemma 5. Details are given in
15}
Remark: Applying Parseval’s formula to (3.9) yields

"'.( yro "('))
- f_‘:l f' CHO(t-1)xp(7) dr— j: '*'a(e-f)x,(f)drlia.

Clearly in this case the optimal choice for H(1—r) is
HT(t1—v)m=HM(1—1)4+8(1+T—1) £ :TM(:-f)i,(,)h.

IV. SnquLATION RESULTS

The purpose of this section is to report the results of computer
simulations which demonstrate the theory developed earlier, and t0
provide some insight into the driving problem in the frequency domain.
The equations used here are the discrete time versions of the relations
derived above, and are given in the Appendix. The plant which is studied
is described by the following system matrices:

a=[ 0% 1%] 2=[9%

and unless otherwise noted, 0=0.1 and R=2,

lems is illustrated by Figs. 2 and 3 for the following trajectory generator:
00 1.0 ,_[o.o

-085 1.78 ™lt10

Ce=[10 01] (4.1)

Ar= Cr=(10 0.1]. 42)

Ia Fig. 2 the trajectory yr is the impulse response of the trajectory
gooerator; in Fig. 3 y, is the response of the trajectory generator to a
white noise sequence. Ia both figures, y, is the output of the plant under
optimal prescient control. Notice the similarities between the frequency
contents of the two trajectories and between the tracking ervors.

Actual driving performances were computed by direct simulation for
several realizations of the stochastic trajectory generated via (4.2). Table
1 compares the average performances observed over ten runs of 1000
steps with the expected performances caiculated from (A3.11b) and
(A3.13b) for Miller’s driver and Tomizuka's driver, respectively, as a
function of the preview length. The averages agree quite well with the
expected values.

Several general trends can be seen in Table II. Tomizuka's driver
outperforms Miller’s driver at each preview length, and always improves
its performance as the preview length is increased. Miller’s driver, on the
other band, sometimes performs more poorly with an increased preview
length (compare K=8 and K=9) due to its ignorance of the trajectory
spectrum. .

It is insightful to examine the gain functions I of the various drivers.
As shown by (3.4), I' indicates how heavily the trajectory energy at each
frequency is weighted in the caiculation of the overall performance.
Thus, designing 2 previewing controller may be thought of as specifying
a T, subject to the preview constraint, which is close to I'? in some sense.

T is plotted for several values of the control cost R in Fig. 4. As
might be expected, for a given R the optimal prescieat driver is better
able to follow the low-frequency components of the trajectory. Notice
that the upper limit on I'° is O, which corresponds to the complete
inability of the driver to track a particular frequency. As R increases, the
range of uatrackable frequencies grows.

I'T is plotted, for several values of preview length, along with the
trajectory spectral density for two different trajectory generators in Figs.
5 and 6. The trajectory generator for Fig. S is
Cy=0.042 (43)

Ar-O.9 Br- 1.

whose spectrum is very narrow. As a consequencs, I'7 is very close to '
at low frequencies where the trajectory’s energy is concentrated, whereas
it is far from T'° at the less important higher frequencies. On the other
hand, the trajectory generator for Fig. 6,

Ap=0.6 Cr=0.138

'r- 1. (‘.‘)

has a fairly wide spectrum which forces I'7 to fit I over a wider
frequency range. As the trajectory spectrum becomes flat (Ar—0),
Tomizuka's driver becomes identical to Miller’s driver, whose TV iy
plotted in Fig. 7 for several previewing lengths.
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TABLE I
DRIVER PRERFORMANCES AS OBSERVED IN SIMULATIONS AND AS ExracTED
Miller’s Driver Tomizuka's Driver
Preview Length Average Expected Average Expected
| 8.00611 7.91545 1.60977 1.59611
2 5.84367 581273 1.10136 1.09644
3 3.53969 3.53901 0.85766 0.85799
4 1.96089 1.97025 0.76561 0.77052
5 1.16446 1.16121 0.74756 0.74820
6 0.84626 0.84436 0.74619 0.74557
7 0.76057 0.75840 0.74766 0.74553
8 0.75399 0.74926 0.74902 0.74443
9 0.75307 0.7521 0.74296 0.74276
10 0.75576 0.75233 0.74451 0.74135

Nots that if the trajectory energy is concentrated aroufid the frequency
w=12, Miller’s driver performs better with preview length X'=1 than
K=2, a phenomenon observed also in Table II at X=8, X=9 for the

The problem investigated here entails closed form solutions since the
trajectory was parameterized by time. An open issue which deverves
attention is the study of self-paced controllers {6], which are more

trajectory 4.2. On the other hand, if the trajectory spectrum is available, realistic models of the human driver.
Tomizuka's driver always improves its performance with increase in the

preview length. Finally, it should be noted that Tomizuka's driver may APPENDIX
pesform more poorly than Miller’s if the actual trajectory spectrum Tus Discazre Toee Cass

differs significantly from that for which it was designed.

V. ConcLUDING REMARKS
Expressions for driver performance have been presented for both the

The basic relations discussed in the paper are listed here for the
discrete time driving problem, keyed for ease of reference to their
continuous counterparts in Sections II and II1.

The systsm 10 be controlled and the performance indax are

time-varying and the time-invariant preview control probiems. Of partic- x(k+1)ma(k)x(k)+B(k)u(k); x(ky)=xq (A2.12)
ular importance is the result that a driver’s expected performance over
an ensembie of trajectories gsnerated by s linear system driven by white yo(k)=C(k)x(k) (A2.1b)

noise is just the driver’s actual performance following the impulse
respouss of the trajectory generator. This result comes about because the
quadratic performance index is expressible in the frequency domain and
because the impulse response has the same spectral composition as the
stochastic process.

The basic approach of this paper has significance beyond the perfor-
m|ance svaluation of coatrol policies. The duality of the linear quadratic
coatrol problem and least squares estimation indicates that the same
approach can be stilized to evaluate the design of suboptimal estimators.
For example, the evaluation of the “goodness” of a finite AR or MA
model representing an ARMA model can be based on these ideas.

PO Wiy WERE Wy Tty WPl Wy Wi, U DR W G Pt

Ko xo, Yru( D)= & (k) =rr ()Mo + (K )acny}
=&y

+ k) =re (kMo (A23)

and the notation ( K(k), H(k, i)) represents the linsar control policy

&
u(k, x(k),Yr)= - K(k)x(k)+ é H(k,i)ye(i). (A22)

J=ke
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Fig 4 The gaiaf of the optimal p driver.
° K=t
° 2
25
: 3
ES-J 4
zB
] s
&2 =
=S
2 0n 1
e
;_9 Ay = 9
z3
g —
9. 00 0.40 0.80 1.20 1.69 2.00 2.40 2.80 3.20
Fig. 5. The gaia function of Tomizuka’s driver for & trajectory with & »
The optimal prescient driver and its performance are given by R‘(k)-k-o-l'r(k-c-l)n
Wk, 2(K). Fr)= = RIS Pk DAX(k) = BE(k+ D) d(k)=Q+QCIP-CQC) ‘gl ~CP- T
A2.da)
x -1 \ ( ) The penalty paid by a suboptimal driver is
’(*o-’ov”r-l"('))'.z. r(k)=CP~'(k)é(k o) (A2.5) k-1
=Re

where
P(k)=ATP(k+1)~P(k+1)BR~'B'P(k+1)]4+C'QC;

P(k,)=C'QC (A2.4b)
LIV IEY ¢ {24 1)BR- 'B')6(k+1)+C'Qyr(k);
£(k))=CQrr (A2.4c)

Spol ks %g: Yru( )= 3 Bk, ) =40k, Moy (A2.8)
=Ko

All the above relations are valid for time-varying system parameters,
even though for brevity the time argument has sometimes been omitted.

The spectral analysis of Section III may be carried out using the
discrete Fourier transform

X(k)= %f:'x.(c")c"”‘ du e X(e/)m \ f; X(k)e s,

(A3Y)
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w

Fig. 6. The gaia fuaction of Tomizuka's driver for a trajectory with 3 wids spectrum.

g
.00 0.40 0.90 1.20 1.80 2.00 2.%0 2.00  3.20
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Fig. 7. The gain fusction of Miller's driver.
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With the obvious modifications, Theorem 1 is valid for discrete tim-. A=A-BR™'8'P,A (A3.6¢c)
The time-invariant optimal prescient driver «°(-)=(X°, H(k—-i)" its . . R
gain, and its performance following the trajectory generator are Py=AP A'=BR"'S (A3.8¢)

Ce gw gty e M s e

Ko=R-'8'P, (A3.60)
”O(k_‘)- { R.-|"(A')-(‘-‘)-'C'Q k—l<0 (AJ.“)
0 k=i>0
. 2
D)= fi-CPi ' (e~ R1- A C'Qe M, (A3.30)
K7, u*())= 85| Py - Py P\ Py ) By (A3.8)
where
Py =Py S o a4 - =g ’
[_’;’ ’n] P=A[P,-PB,R"'B,2)4,+C0C,

(A3.72)

- - - - . . e Y et e Y AR T
N > MV, . YN
TRV, ST WAL Wk W Wil U W WO, . P e

and 4,, 8,, and C, are as defined in (3.7b).
Miller’s driver for preview length X, u™(-)=(K°, HM(k 1)), its gain,
and its penalty following the trajectory generator are

i<k+K

H™(k-i)= { HO(k~1)
0 i>k+K

(A3.10)

- - " 2
PM(em)=To(e )+ |R-1B'(A) (e~ 1-a)""CQf
(A3.1la)

S Yro w¥(-)) = B5{ P ARE (AYEPy + Py | B, (A3.11b)

where

Po=ApPyApm ApPLASBR-'\B'(AYSP 4. (A3.11¢)
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Tomizuka's driver, its gain when C, =1/, and its penaity when x,(¢+T)
is measurable, are

WT() = (KO HM(k-i))+ R~ 'B'(A) P Arir(k+K) (A3.12)

TT(e)mo(em) + R~ 1B(AY[ (e 1~ A')"C’Q—P,,A,-]l:

(A3.13a)
Jpea( X7, uT()) =B P{; ARP ((A) P\ By (A3.13b)
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. FAULT DIRECTORY APPROACH = A CASE STUDY*

;-.' Ce Lin
..’; Re Uu
Department of Electrical Engineering

University of Notre Dame

- ABSTRACT

The perception of the fault directory
approach to analog circuit disgnosis is introduced
by a case study: the diagnoeis of a switching

. voltage regulator.

.- INTRODUCTION

Fault Diagnosis of snalog circuits has becoae
-, an active research ares recently (1-9). A good
Y— survey of this subject cam bdbe found in (10,11).
- Most of the methods (1-9) comsidered the circuits
as interconnections of discrete components even
though there are clearly~defined functional blocks
3 in the ~ircuit. This is because these methods de-
- pend on the assumption that each component can be
characterized by some parameters. This assumption

MR e A S

o say not be valid for functional blocks. Also
. these methods require ssssurements be taken in a
. purely DC or purely AC test. This restriction may

hamper th~ diagnosis capability to certain cir-
. cults, u.g., & switching circuit,
- Taking the above problems into account, a new
. approach, the fault directory approach, which is

: conceptually different from the previous methods,

vill be presented. Tha first step of this method

! is to divide a circuit into fuactionsl blocks.
“ Then a set of fault logic-equations is set up
based on the descriptions and the operating condi-
. tions of these blocks. From the above equations,

4 the fault directory is established. Jote that the

e operating conditions of sach fumctional bdlock are

o taken into consideration in the fsult directory
sethod, A fuactional block can work properly only

— vhen its operating conditions are met. Thersfors,
- any practical fault diagnosis method should take
s operating conditioms into consideration.

. To shov the versatility of this method, we
will present a case study om s practical ewitching
voltage regulator. This particular circuit is
chosen becauss it is a realistic circuit and it

has features which are not considered dy previous~
1y sentioned sethode:
- (1) 1It is s hydrid circuit, conatsting of
SR both analog and digital subeircuits.
AR (2) It contains nonlinesr elements vhosse

~ nomninal characteristics say not be pre-

o cisely descrided.
V- (3) It has switching subcircuits.
L3 ¥Note that this circuit camnot de fault diagnosed by

“This paper vas supported in part by the Office of

(_‘"- .l- l‘_ -l- »-

- Naval Rasearch under Grant N0014-78-C-04éé.
o 29
.
R
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the methods based on a purely DC or purely AC test.

In the following section, each functional
block of the circuit will be described in detail.
The perception of the fault directory approach will
be introduced by the diagnosis of this circuic,

A CASE STUDY

In this section we want to show, step by step,
how a fault directory can be established to isolate
faulty functional blocks.

l« The Switching Voltage Regulator Circuit
The circuit under study is & switching voltage

regulator as shown in Fig. 1, In the circuit, the
node-voltages 1-6 are measureable. V; {s the input
voltage, V, the output volctage, Vg the reference
voltage and V¢ the control voltage. The purpose of
this circuit {s to regulate the output voltage V, so
that 1t is close to the reference voltage Vp.

This {s a slightly modified circuit from an
actual circuit design., Note that it contains feed-
back path, logic circuits, switching circuita, and a
transformer. The purpose of this section is not to
develop a diagnosis algoritha for this circuit, but
to demonstrate the applicability of our approach.
The method presented here can be applied to the
original circuit, and will lead to the samse answer.
But more explanation would be needed.

2. Functional Blocks and Operating Coaditions

in t irst step, the circuit is decomposed fn-
to four functional bdlocks, as shown by the dashed
1line in Pig. 1. The result {s a functional block
circuit shown ian Fig. 2. These functioval dlocks
sre chosen becauss of their specific functions in
the circuit vhich will be descrided in the following
paragraphs. "

Before specifying the functions of the fuac-
tional blocks, sowe notations have to be introduced.

Notations

1. V¥ denotes & positive voltage significantly

greater than zero.
2. V" denotes a nsgative voltage significantly
smsller than sero.
3. VO denotes a voltage very closs te zero,
4. I*, I" and I° are similarly epecified.
S. ¢+ denotes an increase in voltage or current,
6. ¢ de otes a decrease in voltage or current.
With the sbove notations, we will specify the
functione of the functional blocks Bl, B2, 33, B4
as well as L, R1l, and R2,

CH1635-2/81/0000-0239 $00.7$ © 1981 IEEE
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Block Bl

1. g&_ttgi Conditions
a) V; is not stuck at a fixed voltage by
the 10.‘-

2. The FPunction Tsble

<y
>V

Vl'.'
V‘o

Regsistor _l_l.
1. %ntu\l Conditions
a Vo = vzl’ at all times.

2. The Function Table

Vl xz
7N 1,7 -
1 2
vio | 12°

Block B2

gs»:ntlnl Conditions
a) Vy = Vza at all times.
b) V3 is not stuck at a fixed voltage by
the load.

2, The Punction Table
V¢ Iz L&) I3
27 V3 >0
Vc°
1% |[[ 20 | I3°
v’ >< 20 ><
Resistor _R_g_
1. rating Conditions

a) V4 = V;’ at sll times.
2. The Punction Tadble

V3 13 ) 7Y
v 30 1 3+ 1 ‘4'. 134'

v3+ 130 1‘0.130

Block 33
. zating Conditions
8) Vs = V5Y at oll times.
b) Vs is not stuck at a fixed voltage by
the lm.
1. The Punction Table

14 Vs
17 II VsTavy
1,° 11 vg%=0

Inductor L

1. anune Conditions
a 6 < Vg at all times.

2. The Function Table

A .| I
Vi
0 w0l ¢

Block B4

1. Operating Condicions

8) 0 < Vg < V4 at all times.
b) V, is not stuck at a fixed voltage by
the load.
2. The Function Table

1 Yo

L ] ¢
¢ [}
I1f all the operating conditions are satisfied
and all functional blocks are connected as shown in
Fig. 2, the sequence of events are given as follows:

1D Ve oV

Vo Vi 12 V3 I3 14 Vs Vi 1¢ Vo

Wp 1¥ It V30 I3% I3% vgteyy >0 ¢+ ¢
SR V12 120 Vit 149 19° VeO=0 <O ¢+ ¢

Concluding from the first and last column, {f V4 <
Vp, then V, increases and if V, > Vg, then ., de-
creases. Therefore, V, will be regulated at Vp.

2) Vo a Vc+

Tn this case, it 18 easy to see from the func-
tions of B2 that V, will decrease to zero and the
circuit no longer works like a voltage regulator.

Note that for each functional block we have
specified operating conditions as well as a func-
tional table, This stems from the need of specify-
iag operating conditions for practicle functional
blocks, Consideration of the operating conditions
is essential in the fault diagnosis, since a devia-
tion from the functional table may be caused by
either the faflure of the functional block itself
or by a change of the operating conditions,

3. Fault logic-Equations
The fault logic-equation for each block 1s

based on the assumption that the functional dlock
is fault-free 1if and only if its operation condi-
tions are satisfied and it functions as described
by its funcional table. The set-up of these fault
logic-equations will now be illustrated.

Nots first that the failure of operatiag con-
ditions may be caused dy a fault of other function-
al blocks. Such cases are listed in the following
observations:

Observations

T If K1 1s not shorted and VaoV3%, then V| cannot

be stuck dy load.
2. If R2 is neithar opened nor shorted snd V =V,*,
then V3 cannot be stuck by the load.
3. If 0KVg<Vy then L is neither opened or shorted.
4. 1If L 1is not shorted then Vg cannot be stuck by
the load.
These observations will be used to set up fault
logic-equations.
The othar oparating conditions will not bde put
into the fault logic-equations:
A) V2 = V2°
B) V= V‘*
€) 0< Vg< vy

e e e et
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- D) V, is not stuck by the load.
The first etep of fault diagnosis is to verify the
above conditions., 1f they are satisfied, then the
fault logic-equations can be set up as follows:
(E1) I(B1) = £(B1) x £(Rl not shorted)
(22) 2(B2) = £(B2) x £(Rl) x £(R2)
, (E3) 2(33) = £(B3) x £(R2)
) (24) ¥(B4) « £(B4) x £(L)
vhere x is a logical AND operator, and f and £ have
- the fo'lowing seaning:
f(51) has value 1 if Bl is estimated to be
fault-free,
0 1f Bl is estimated to be
t.“lt,.
: £(B1) has value [ 1f Bl is actually fault-free,
: 0 1f B} is acutally faulty,
s The others are similarly defined. These equations
. described the relationship from the actual fault
status of the subcircuits and the status of the
subcircuits concerning vith the operating condition
to the estimated status of the subcircuits. Tske
(E1) for instance; it means that if Rl is not
shorted and Bl is fault-free, then the test of Bl
vill conclude fault-free. The resson is as fol-
lovs. If Rl is not shorted and V3=V;% by previous
test, then V| is not stuck by the load, i.e., the
operating condition of Bl is satisfied. The test
of Bl by its function tadble, therefore, will yield
. the true state of fault of Bl. Note that if R) is
- shorted, a test of Bl will yield Bl at fault even
though it is fault-free.

.- 4. A Fault Directory
" From these fault logic-equations, the fault

truth-value table (Table 1) can be easily obtained
for the case that at most one of functional block
is at fault. As can be seen in Table 1, there is
PR a pattern of estimated status of Bl, B2, B}, and
S B4 corresponding to each fault case. By reorgsn-
izing Table | in terms of these patterns, we have
the fault directory (Table 2) which indicates the
possible fault location once the pattern is ob-
tained from messurements and simple estimations.
From Table 2, it can be seen that for the
single fault case, the fault can be isolated into
. one of four groups: Bl, (B2,R1), B3, and (B4,L).
. Once a group {s isolated to be at fault, the fault
. directory approach can then be applied to this
group. The process can be repeated so that a
hierarchical system can be set up for diagnosis

LA R AL A i SN Y

S. Conclusion

e fault directory approsch for smalog cir-
cuits is similar to the fault dictionary approach
for digitsl circuits, It requires minimum comput-
ing for users. Thies is the major advantage of this
uethod, .

It has demonstrated that it has the capability
to diagnose circuits which consist of nonlinear
components, switching circuits and analog-digital
hybrid circuits.

Functional blocks, rather circuit components
or elements, are used as the basis for our sethod.
This seems to be a natural approach for fault
diagnosis.
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Fault Diagnosis in Electronic Circuits

During the past quarter century the engineering
community has been witness to tremendous strides
in the art of electronics design. The graphical
algorithms of the previous generation have given
way to the modern CAD package, the breadboard
has been subsumed by the simulator. Indeed, even
the universal building block has become a reality.
To the contrary electronics maintenance has changed
little since the day of the vacuum tube, remaining
the responsibility of the experienced technician
with scope and multimeter. As such, our ability
to design a complex electronic circuit is quickly
out-distancing our ability to maintain it. In turn,
the price reductions which have accompanied
modern electronics technology have been paralleled
by increasing maintenance and operations costs.
Indeed, many industries are finding that the life
cycle maintenance costs for their electronic equip-
ment now exceed their original capitol investment.

Given the above, it is quickly becoming apparent
that the electronics maintenance process, like the
design process, must be automated. Unfortunately,
the 50 years of progress in circuit theory, on
which our electronics design automation has been
predicated, does not exist in the maintenance
area. As such, the past decade has witnessed the
inauguration of a basic research program to lay the
foundations for a theory of electronics maintenance
and a paralle] effort to develop operational elec-
tronic maintenance codes.

Thus far the greatest success has been achieved
in the digital electronics area, wherein the finite
state nature of the UUT (unit under test) may be
exploited®. Typically, one assumes that all fail-

* Texas Tech University
** University of Notre Dame

R. Saeks* and R. Liu**

ures manifest themselves in the form of com-
ponent outputs which are either “stuck-at-one” or
“stuck-at-zero” and/or shorts and opens®. Under
such an assumption a theory for digital system
maintenance has been developed and practical
fault diagnosis algorithms are in the formative
stages of development. Typically, one hypothesizes
some limit on the number of simultaneous faults
and then simulates the responses of the UUT to a
family of test vectors for each allowed combination
of faults. The actual responses of the UUT are then
compared with the simulated responses to locate
the failure. Although lacking in asthetic appeal
the above approach, termed fault simulation, is
ideally suited for the maintenance environment,
wherein, the actual simulation process reed only be
done once at the factory or a maintenance depot
with the simulated response data being distributed
via magnetic tape to the various field locations
where the actual test actual test is conducted. As
such, with the aid of some sophisticated software
engineering, this apparently “brute force” approach
to the fault diagnosis problem has slowly evolved
into a workable concept’. Indeed, at the present
time a number of automatic test program gener-
ators which classify faults, choose test vectors, and
carry out the appropriate simulation {often in a
parallel processing mode), are commercially availa-
ble and, as such, the automated maintenance of
digital electronic circuits is becoming a reality?’.
Unfortunately, the above described success in the
digital world has not been parallefed by progress
in the analog world. Indeed, test engineers com-
plain that while 80% of the boa-ds are digital, 80%
of their headaches are analog and hybrid. This
difficulty arises from a number of characteristics
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of the analog problem which are not encountered
in digital circuits.
(i)

(i) a component may be “in tolerance” but not

Indeed, in an analog circuit:
there is a continuum of possible failures,

nominal,
(i) complex feedback structures are encoun-
tered,
(iv) simulation is slow and costly.
(v) post-fault component cheracteristics may
not be known,
(vi) and a fault in one component may induce
an apparent fault in another
Items (i) and (j) imply that an extremely large
number of simulations will be required for analog
testing. Items (i§) and (iv) suggest that these
simulations will be far more expensive than similar
digital simulations. Finally, items (v) and (vi)
indicate that the simulation of a post-fault circuit
by itself may not be a tractable problem. As
such, it is by no means clear that the kind of
“brute force” fault simulation algorithm associated
with the digital problem will be applicable to the
analog or hybrid case.

As an alternative to fault simulation, a number
of academic researchers have proposed a variety of
“post test” fault diagnosis algorithms, wherein, an
“equation solving like” aigorithm is used to locate
the faulty component given the test data from U
UT2).l)'

sense, “smarter” than the simulation algorithms,

Although these algorithms are, in some

most of the required computing must be done in
the field after the UUT has been tested. More-
over, these computational requirements must be
replicated each time a unit fails. As such, the
success of such “post test” algorithms is contingent
on reducing their computational requirements to
a bare minimum. Although no system is yet
operational, with the aid of the powerful linear
circuit theory developed over the past half century,
a computationally efficient solution to the fault
diagnosis problem for linear sanalog circuits appears
to be within reach?.®, Unfortunately, no such
light exists at the end of the nonlinear tunnel,
wherein progress appears to be limited by a
“computational complexity/test point” bound.

Not suprisingly, the computational cost of an
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analog fault diagnosis algorithm is an inverse func-
tion of the number of test points at which mea-
surements of the UUT may be made. Indeed, if
one lets n be a measure of UUT complexity (which
may loosely be taken to be the total number of
terminals for all of the circuit components), then
if one has access to O(n)(1) test points the fault
diagnosis problem can be resolved using linear
algorithms™-1®. Moreover, by combining such algo-
rithms with the above mentioned linear algorithms,
acceptable computational efficiency can be obtained
with 0(m) test points where m is a measure of the
complexity of the “nonlinear subsystem” of the
UUT®:”. Although such algorithms can be effec-
tive on the typical academic example a “real world”
PC (printed circuit) board does not have terminal
space for the 20 or 30 test points which are
required even for a routine board made up of
discrete components and/or SSI (Small Scale Inte-
gration). Although the problem can be partially
alleviated by making internal measurements with
the aid of a “bed-of-nails” tester it has been our
experience that such testers cause as many failures
as they locate while their applicability to two-
sided, multilayer, and coated boards is severely
limited. As such, we would like to limit the
number of test points to the terminal space
available at the edge of a PC board. On the other
hand, the UUT complexity, n, increases with the
area of the board. As such, the number of test
points required by an analog fault diagnosis algo-
rithm should increase at a rate of no greater than
0(n?). A further study of the possible tradeoff
between test points and computational cost appears
in references 11) and 12).

Unfortunately, all computationally acceptable
“post test” algorithms which have thus far been
proposed have test point requirements which grow
linearly with UUT complexity (assuming that m
grows linearly with n). As such, many researchers
are looking at the classical fault simulation algori-
thms with renewed vigor. Indeed, these algorithms
have minimal on-line computational costs, while
the number of test points employed, can easily be

A Y

(£ 1) f(n)=0(n) means f increases in the order of
n,; more precisely, |f(n)| €c|n] for some ¢>0,
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kept below 0(n?@), The difficulty lies with the
required number of simulations and the develop-
ment of decision algorithms which will allow us to
“interpolate” between simulated data points.

Thus, while the state-of-the-art in digital diagn.
nosis is fast maturing, a serious investigation of
analog fault diagnosis problems is only just begin-
ning. Indeed, a satisfactory fault diagnosis code for
linear analog circuits has yet to be demonstrated
while the nonlinear problem has yet to progress
beyond the basic research stage.
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Topological Conditions for
Single-Branch-Fault

C.S.LIN.Z. F. HUANG, anp R. LIU

ET N (Fig. 1) be a connected, b-branch, (n + 1)-node,

linear time-invariant network. Out of the (n# + 1) nodes,
(m +1) are accessible terminals for both exciiation and
measurement. Let one of the accessible nodes be the refer-
ence node of the measurements denoted by n,. The follow-
ing notations are used for N.

oy

terminal (accessible node) voltage vector with re-
spect to n,,

i, terminal current vector,

branch voltage vector,

i, branch current vector,

Y branch-admittance matrix,

set of all accessible nodes including n,.

O

Note that v,, and i, do not contain the entries of n, and
each contains m entries. Also note that i, =Yy, and Y
needs not to be symmetrical. Then in N together with the
m measurement branches from (M —{n,)) to n,, we have
the following KVL and KCL equations:

Bbob - Bmvm (la)
Qbip="— (1b)

where B’s and Q’s are the submatrices of the loop and
cut-set matrices, respectively.

Since N is connected, we can choose a tree in N. For a
given tree T, denote the branch voltage vector and branch
current vector of those in T (its cotree in N) by v,(v,) and
i,(i_), respectively. Label the branches in T ahead of those
in the cotree of T. Then v, =[v7 : v7]” and (1) can be
written as follows:

[—FTE +I]o,}_[0Jv
-ET. 0)v, I3
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Abstract —The testability condition for single branch-fault of an analog | o=

network is given. Then several necessary and sufficient conditions for this o—
testability condition are provided and their proofs are shown in detail. :

These conditions have grest applications in the testability design as demon- L N

strated in the examples. .

m o=

I. INTRODUCTION i

Fig. |. Network N.

and

[1: +F];']-[—-E]im (2b)
[+

where [ is an identity matrix and E and F are submatrices

of @, and Q,,, respectively, w.r.t. the tree T.

Now consider that the network N is perturbed to (N +
AN) in the way that Y is perturbed to Y + AY, and the
graph remains the same. In the perturbed network, we
denote the corresponding voltages, currents, and admit-
tance by v, + Av,, i, + 4i,, v, + Av,, and i, + Ai,, re-
spectively.

Given Y and the graph, the purpose of the fault diagno-
sis is to estimate AY from the information i, Av,, and
Ai,. Note that v, can be calculated from i, and N.
Without loss of generality, we may assume that

di, =0
i.e., apply the same i,, to the original network N and the

perturbed network N + AN.
Under this condition, it can be shown from (2) that in ¥

v,=+ET(HYHT) 'Ei, (3)
and in N+ AN
U, + Av, =+ ET(HYHT) " '[Ei, — HAY(v, + Av,)]
(4)
where
H&[I:F].
Subtracting (3) from (4)
Av, = - ET(HYHT) 'HAY(v, + Av,)
= ZmbJn (5)

where
Z,,%+ET(HYHT) 'H

0098-4094,/83 /0600-0376801.00 ©1983 IEEE
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and
J'bA -~ AY(v, +Av,). (6)

Define that a branch is at fault if and only if the
corresponding row of AY is nonzero. Then, in (6), the kth
entry of j, is nonzero only if the kth row of AY is nonzero
or, equivalently, the kth branch is at fault. And the con-
verse is true for almost all practical cases. Taking ad-
vantage of this property of j,, (5) suggests that one can
determine the location of nonzero elements of AY and
therefore the faulty branches provided that the number of
accessible nodes is large enough. This discovery was made
by Biernacki and Bandler {1}, [2] and Sakla er al. [3]). The
advantages of this approach are that: 1) one can rely only
on the parameters of N, i.e., the nominal network, and the
measurements to diagnose the faulty network and 2) the
computation involved are all linear.

However, despite all these advantages, systematical stud-
ies on materializing this approach to locate the faulty
branches have been lacking. In the next section, as a
demonstration, the diagnosis of the single branch-fault will
be discussed in detail and, more importantly, the graphical
conditions for placing the test points will also be stated
and proved.

II. SINGLE-FAULT TESTABILITY

In this section, we will study the diagnosis of single
branch-fault, or abbreviately single fault, by using (5). For
the simplicity of demonstration, only the networks without
dependent sources are considered in this paper. Simple
conditions on testability will be obtained by taking ad-
vantage of a property that network without dependent
sources has diagonal branch-admittance matrix. Similar
results can also be obtained for the general cases.

To study the diagnosis of networks, we will characterize
a network by its capability to be diagnosed by a single test
vector i,,. This is given in the following definition.

Definition 1: A network N is said to be single-fault
testable if when N is perturbed to N + AN, by choosing
one appropriate test vector i,, one will be able to de-
termine from the measurements on accessible nodes M:

(a) whether or not N+ AN has more than one branch
fault,

(b) if negative, the faulty branch can be uniquely located.

To locate single fault by using (5), each column-vector of
Z,,, is compared to Av,, for consistency and the branches
whose corresponding column-vectors are in parallel with
Av,, are the potential candidates of the fault. In order to
achieve single-fault testability, it is essential to have any
two column-vectors of Z,, linearly independent. Let us
define this condition as single-fault testability condition.
This is a necessary condition for N to be single-fault
testable, In fact, it is also sufficient as shown in the
following theorem.

Theorem I: N is single-fault testable if the single-fault
testability condition is satisfied. Conversely, if a single test
vector is used then it is also necessary.

3

The proof of the above theorem can be found in [4].

Note that Theorem 1 translates an abstract definition of
single-fault testability to a familiar property of a matrix
Z,, with the explicit expression which can be further
studied. An initial step is to investigate the implication of
two column-vectors of Z,, to be linearly independent.
However, not to restrict ourselves to only two column-vec-
tors, the linear independence of & column-vectors of Z,,,, is
studied and the result is shown in Theorem 2.

Theorem 2: Let Q be a set of k branches in N and Z,,,
be the m X k submatrix of Z,, whose columns correspond
to branches in Q. Then Z,, has full column rank, only if
there exists a tree T in N such that

(1) T contains Q,

(2) (T - Q) is connected when all accessible nodes in N
are shorted together.

The converse is also true for almost all Y.

Proof: (The necessary part): As a preliminary step, we
want to show that Q cannot contain loops. Let A be the
n X k submatrix of H whose columns correspond to the
branches of Q. Then Z, =E"(HYHT) 'H. Evidently.
Z,,, has full column-rank only if 4 has full column-rank.
Since H is a submatrix of a cut-set matrix with the same
number of rows, A has full column-rank if and only if Q
contains no loop [10}. Consequently, the branches of Q
with Z,, . full column-rank cannot contain any loop.

Since Q contains no loop, we can choose a tree T in N
such that T contains Q. Then label the branches in the
following order: branches in Q, branches in (T - Q), and
the rest. Corresponding to this labeling, the matrix H has
the following from:

M

0 | I(H-k)l 1'-2

where /, is an k X k identity matrix, F, and F; are matrices
of 0, 1, and — 1, with dimensions k X(b—n) and (n— k)
X (b — n), respectively, and

HA[L 0 R HE0: Ly B

and Z,, can be written as
4l 1
Z,,=ET(HYHT) [_é‘_]. (8)
From a well-known formula in (7], it can be shown that

Z,,, has full column-rank if and only if there exists a k X n
submatrix E of E such that the matrix

9)

is nonsingular. Expanding the determinant of W by k x k
blocks of £7, we have

detW =Y det(E"),-det( H,YH), (10)

T
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where (ET), is a m X m submatrix of E7, (H,YHT), is a
(n—k)X(n - k) submatrix of (H,YHT) associated with
(ET ); in expanslon. and the summation is over all (m X m)
submatrices of E7. Moreover, any term det(H,YH”), in
(10) can be further expanded by Binet-Cauchy Formula
[6] into

det(H,YHT) =3 det(H,),-det(Y), det((HT),),

/

(11)
where

(Y), is a (n — k)X (n — k) principal submatrix of Y
and. is diagonal,

(HT), is the bx(n~ k) submatrix of H” whose col-
umns correspond to those of (H,YHT), in
(10). =

((HT),-)j is the (n—k)X(n—k) submatrix of (HT),
whose rows correspond to the branches in
( Y) 1]

(H,), 1s t}{e(n—k)x(n—k)submatrix of H, whose

columns correspond to the branches in (Y),,
and the summation is over all the (n— k)><
(n — k) principal submatrices of Y.

Note that in the above expansion, the assumption of Y
being diagonal has been used.

From (10) and (11), it can be seen that W is nonsingular
only if there exist a pair of (i.j) such that det(ET),.
det(Y),, det((HT),),, and det( H,), are all nonzero. Since
in this theorem only the connection of the branches is
concerned, we will examine only the conditions of
det(ET), =0, det((H"),), = 0, and det(H,), =0.

First, consider the implication of det( H,), = 0. Let B be
the set of branches correspondmg to the columns of (H,),.
Then from the definition of H, in (7), it can be seen that
BN Q@=0and det(Hz) = 0 if and only if the column-vec-
tors of H corresponding to the branches of BUQ are
linearly independent. Since H is a cut-set matrix, the latter
condition is equivalent to that B U Q contains no loop in N
[10). From this condition together with the fact that there
are n branches in B U Q, we can conclude that B U Q must
be a tree 7" in N.

Next, consider the implication of det(ET),=0 and
det((HT), ), =0 for some i. First, note that the branches
correspondmg to the rows of (HT), ), are exactly those in
B which together with Q constitute a tree T" in N. Let H,
be the n X(n - k) submatrix of H whose columns corre-
spond to those branches in B. Without loss of generality,
we may assume that T'=T7 and, therefore, H] =10 :
I -1} Then we let N’ be a graph constructed from N by
adding m branches from the reference node n, to all the
rest of accessible nodes. Denote the set of these m branches
by B’. Then E in (2) is the submatrix of the cut-set matrix
of N’ whose columns correspond to the m branches in B’,
Let B” be the subset of B’ whose k branches correspond to
the columns of E. Now. from (10), we can see that det( £ ),
=0 and det((HT),), =0 for some i if and only if the

matrix

has full row-rank. or. equivalently, the matrix {H, : E| has
full column-rank. The latter implies 8 B contains no
loop. Furthermore, since BU B” contains n branches. it
can be concluded that BU B” forms a tree in N'. In other
words, T'— Q + B” is a connected graph. Since B” € B’,

— Q@+ B’ is also connected. Thus 7" — @ is connected
when branches in B’ are shorted or. equivalently all the
accessible nodes are shorted together.

Therefore. we have shown that Z,  having full column-
rank implies the existence of a tree T° which satisfies the
conditions in Theorem 2. This proves the necessary part.

(The sufficient part): Suppose that there exists a tree T
in N satisfying the conditions of Theorem 2. We will prove
that Z,, , has full column-rank for almost all Y. In the first
step, we want to show that this is true for a particular Y.
We choose a specific set of branch admittances in the
following way: first, set all admittances to | for those
branches in (T — Q), then set the rest to zero. We further
label the branches in the same way as in the necessary part.
Then it can be shown

(H.YHT)=[0: 1, ,].

Note that [0 : /,,_,,] is also the submatrix of H7 whose
rows correspond to the branches in T — Q. From Condition
(2) of Theorem 2. (T — Q) is connected when nodes in M
are shorted. That is equivalent to say that (T— Q@ + B’) is
connected and contains all nodes in N’ from the discussion
in the necessary part. We claim that there exists a subset
B” of B" such that (T~ Q+ B”) is a tree in N'. Suppose
that such B” exists. Then the matrix

0 E

—_-——-——1
l(n—k) |

is nonsingular, where E is the n X k submatrix of E whose
columns correspond to B” in V’, because its column-vec-
tors correspond to a tree (7 — Q + B”). Therefore

HYHT I,
W= 0| I(H—A): 0
TUFT T g

is nonsingular and Z, , has full column-rank for this Y. To
prove the claim. note that (T — Q) has no loop. Thus each
loop in (T — Q + B’) must contain one branch in B’. Delete
this branch from (T — Q + B’). The resultant graph is still
connected and may contain loops each of which contains a
branch in B’. Hence, the same deleting process may be
repeated until there are only n branches left in the final
graph which still contains (T — Q) and &k branches in B’
Denote those k& branches by B”. Then (T-Q+ B") is a
tree in V' because (T -~ Q + B”) is a connected spanning

W Y WS WY Gy W)

WP P U P P UG R U
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subgraph of N’ with (n + 1) nodes and (T - Q + B”) con-
sists of n branches [10).

In the second and final step, we want to show that Z,,,
has full column-rank for almost all Y. From (10) note that
detW is a polynomial of branch admittances. By a well-
known result [11}, it can be shown that det W is nonzero
for almost all Y. Therefore, Z,, has full column-rank for
almost all Y. This proves the sufficient part. Q.E.D.

Note that the conditions given in Theorem 2 depend
only on the graph of N but not on the values of Y. This is
quite desirable in testability design since it relieves us of
the consideration of the values of Y. However, these condi-
tions must be verified for every two branches. It could be
very cumbersome when N is very large. We will study the
improvement next.

At this stage, it is essential to introduce some useful
notations before the improvement of Theorem 2 can be
done. First, it is convenient to have a testing graph N, of
N. N, is constructed from N by connecting all accessible
nodes to a new node a. Then, we would like to generalize
the definition of a path. A path is conventionally defined
as a series of nodes and branches incident with each other
and contains distinct end-nodes. For our purpose. define a
~ single node as a null-path, and a generalized-path (abbrev.

g-path) is either a path or a null-path.

Now, we are able to have the two lemmas which will be
used in the proof of the next theorem.

Lemma I: Given N and its associated N,. Suppose that
there are 7 nodes which separate N, into two parts; Parts A
and B such that Part A contains « and Copart' A contains
no less than 7 branches. Then the submatrix of Z,,, defined
in (5) corresponding to those branches in Copart A has
rank less than r.

Proof: First, note that Part B contains no accessible
node since all accessible nodes are adjacent to node a. Also
notice that the rank of the submatrix of Z,,, is exactly the
dimension of space spanned by the column vectors in the
submatrix. From (5), this is equivalent to the one spanned
by the vectors Av,, generated by the current sources each of
which in parallel with a branch is Copart A. By Thevenin
Equivalent Theorem, Copart A and those current sources
can be represented by a (r —1)-port, as shown in Fig. 2.
Each port is driven by a voltage source. Since there are
only (r—1)-ports, by superposition theorem, the space
spanned by Av,, generated from these ports has dimension
no larger than (r —1). Therefore, the submatrix of Z,,
corresponding to the branches in Copart A has rank less
than r. Q.E.D.

Lemma 2: Giver: N and its associated N,, the following
two statements are equivalent:

(a) There are at least k disjoint? paths in N, between a
and any inaccessible node.

"Copart A of a graph G associated with Part A is the subgraph of G
Iormg by removing all the nodes in Part A from G.

iTwo paths are disjoint if they have no common node except the
enc:-“uodu. And they are absolutely disjoint if they have no common node
at all.
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Fig. 2. Network of Lemma 1.

(b) There are at least k absolutely disjoint? g-paths in N
between M and any k nodes.

Proof (a)— (b): It will be proved by contradiction.
Suppose that (b) fails for a set of k nodes. Construct a
graph N, from N, by connecting these k nodes to a new
node B. Then by Menger’s Theorem, there exists a set R of
(k —1) nodes which separate N,4 into two parts: Part A
contains a and Part B contains 8. Note that Part B
contains no accessible node but does contain at least one
inaccessible node. The latter is true because if Part B
contains no inaccessible node then 8 is the only node in
Part B and all those k nodes connected to 8 must be all
accessible nodes which automatically satisfy (b) and thus
violate the assumption. Let v be such a node. Then v is
separated from a by the same R in both N, and N, 4. Hence
by Menger's Theorem, there are at most (k — 1) disjoint
paths between v and a in N,. This is a contradiction.
Therefore, (a) must imply (b).

(b) = (a): It will also be proved by contradiction. Sup-
pose that (a) fails for an inaccessible node v. Then by
Menger’s Theorem, there exists a set R of (k —1) nodes
which separate N, into two parts: Part A contains a and
Part B contains v. For the k nodes in R U{v}, we construct
a graph N,, from N, by connecting all nodes in R U{v} to
a new node B. Then there are only (k — 1) disjoint paths
between « and B in N,4. Hence in N, there are only (k — 1)
absolutely disjoint g-paths between M and R U{v). This is
a contradiction. Therefore, (b) must imply (a). Q.E.D.

Then we can have the following theorem.

Theorem 3. Given a network N which has no parallel
branches and its associated N,, the following statements
are equivalent.

(a) N satisfies the single-fault testability condition for
almost all values of Y.

(b) There are at least three disjoint paths between a and
any inaccessible node in N,.

(c) The local connectivity between a and any inaccessi-
ble node is at least 3 in N,.

Proof (b) & (c): Directly from Menger’s Theorem [7].

(a) = (b): We will prove it by contradiction. Let (b)
be false. Then there are at most two nodes which separate
N, into two parts: Part A contains node a and Part B

N
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contains at least one inaccessible node. Since all accessible
nodes are adjacent to a. they cannot belong to Part B. If
Part A and Part B are separated by one node, then the
branches in Copart A has no effect on the measurements
on M and henceforth the faults in Copart A cannot be
determined. Now suppose that there are two nodes, say a
and b, separating Part A and B. Then there are at least two
branches in Copart A because N is connected and Copart
A contains at least three nodes. Therefore, from Lemma 1,
the single-fault testability condition cannot be satisfied. In

either case, there is a contradiction. Therefore, Statement.

(b) must be true. .

(b) — (a): Let b, and b, be any two branches in N.
Branches b, and b, cannot be in parallel from the assump-
tion, hence there are at least three nodes incident with b,
and b,. From Lemma 2 there are three absolutely disjoint
g-paths in N between M and any three nodes. Thus there
are three g-paths between M and some three nodes incident
with b, or b,. The Statement (a) will be shown by con-
structing a tree satisfying the two conditions in Theorem 2
based on these three g-paths.

First, consider the case that 5, and b, have a common
node. Then a tree T can be constructed by adding enough
branches to b, b., and the three g-paths. Moreover, T -
{b,, b,} is a subgraph of three components each of which
contains a g-path and therefore an accessible node. Thus
T—(b,, by} is still connected when the nodes in M are
shorted together. And hence T satisfies the two conditions
of Theorem 2.

Next. for the case that b, and b, have no common node.
let each of the three g-paths containm only one node incident
with b, or b.. This can be achieved by shortening a path
which does not satisfy this condition. Denote these g-paths
by P,, P,, and P;. Without loss of generality, assume that
b, joins P, and P, and P; contains one of the two nodes
{v,, v,) incident with b, and v, in M. We will obtain-the
desirable tree by modifying P,, P,, and P;.

There are two sub-cases to be considered separately. The
first sub-case is that v,, b, and one node of P, U P, are in a
nonseparable subgraph in N. Then there is a loop that
contains all three nodes. In this loop, there are two abso-
lutely disjoint paths each of which contains exactly one
node of b, and one node in P, U P,. Denote the path that
contains v, by L, and the other by L,. Now in P,, there
exists a sub-g-graph such that it contains v, and exactly
one node, say vy, in L, U L,. Without loss of generality, we
may assume that v, € L,. Then a new g-path P; can be
formed by the union of the g-path of P, and the g-path
between v, and v, of L,. Note that the other node v, of b,
is connected to L, U L, by the path L, which is absolutely
disjoint from P;. Thus a tree T can be obtained by adding
enough branches to the union of b, b,. L,, P,, P,, and P;.
And T<(b,.b,) must be connected when nodes in M are
shorted together because the union of L,, P,, P,, and P
which does not contain b, or b, consists of exactly three
components each of which contains at least one node in M
and the added branches do not alter this fact. Therefore, T
satisfies the conditions of Theorem 2.

The remaining sub-case is that there is a cut-node v,
between nodes in P, U P, and {v,, v,}. From Statement (b).
there exist two absolutely disjoint g-paths between {v,. v,}
and M. Let P,, P; be two such g-paths. Because v, is a
cut-node. either P, U P doesn’t contain any node of P, U P,
or only one of P, and Ps contains nodes of P, U P, and it
must also contain v,. In the former case, it can be shown
by arguments similar to those of the preceding cases that a
tree obtained by adding enough branches to the union of
b\, b,, P, P,, P,, and P; satisfies the conditions of Theo-
rem 2. In the latter case, without loss of generality, assume
that P, contains vy, v,, and nodes in P, U P,. Let P; be the
sub-path of P, which contains v, and exactly one node in
P,V P,. Then it can be seen that the union of b,, b,. P,
P,, P;, and P; contains no loop. Therefore, a trec in NV can
be obtained by adding enough branches to the union. And
this tree satisfies the conditions of Theorem 2.

Summing up, for any two branches, a tree T can be
obtained to meet the conditions in Theorem 2. Thus by
Theorem 2, single-fault testability condition is satisfied and
Statement (b) is proved. Hence the proof is completed.

Q.E.D.

Comparing Theorem 3 to Theorem 2. both of them
provide graphical conditions. However, the conditions in
Theorem 3 are much simpler to implement and they only
have to be verified once for every inaccessible node. The
latter advantage becomes more significant when N is large.
The applications of Theorem 3 will be illustrated by two
examples in the next section.

EXAMPLES

To demonstrate the versatility of the above results, two
examples will be provided. The first example is to illustrate
the usage of Theorem 3 to verify the single-fault testability
condition while the second one will extend the usage of
Theorem 3 to the choice of test points or. equivalently,
additional accessible nodes to satisfy the testability condi-
tion.

Example I: Consider a ladder network N as shown in
Fig. 3(a) with three accessible nodes a. b, and ¢. Construct
the associated N, by connecting these three accessible
nodes to a new node a. as shown in Fig. 3(b). It is easy to
show that every inaccessible node in N, has exactly 3
disjoint paths to a: Therefore, by Theorem 1 and 3, N is
single-fault testable. In fact. stages can be arbitrarily in-
serted into N without destroying the testability.

Example 2: Consider a more complicated network N, as
shown in Fig. 4a) with three accessible nodes a. b, and c.
[ts associated N, is shown in Fig. 4(b). It can be shown that
each of nodes d. e. and f has only two disjoint paths to a.
Thus N is not single-fault testable. To achieve testability.
there are two remedies. The apparent one is to introduce
an additional accessible node. Any one of the nodes d and
e can be the choice. Fig. 4(c) shows N, with the additional
accessible node 4 which can be shown to achieve testa-
bility. Another remedy is to have new branches inserted in
the network. This insertion can be either permanent if the
network performance can be compromised. or introduced
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Fig. 3. Network of Example I.

a
Fig. 4. Network of Example 2.

only during the testing. Fig. 4(d) shows that testability can
be achieved by inserting a new branch p between nodes g
and e.
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ABSTRACT

In the fault diagnosis of linear networks, a
method which requires only the solviang of linear
equations has been attracting much attention [1-
5]. This particular method was initiated inde-
pendently by Biernacki and Bandler [1] and Sakla,
El-Marsy and Trick [2]. Since then, numerous use-
ful and interesting results have been published in
a rather short time. It is the purpose of this
paper to provide a summary in this scea of re-
search. Furthermore, an example is given to show
how this ides can be “"stretched” to apply to those
cases which normally would not be applicable.

This is achieved by use of multiple frequency
testing and fault-logic equations.

1. A Theory of Fault Diagnosis

Let N be a connected, b-branch, (n+l)-node,
(m+1)~terminal, linear, time~invariaat lumped net-~
work. Out of the (n+l) nodes, (m+l) are accessi-
ble terminals for both excitation and measurement.
In this section, the following notations are used
for N,

Vg - terminal (accessible node) voltage vector.
iy = terminal current vector.

vy = branch voltage vector.

ip - branch current vector.

Yy - branch admittance matrix.

Yy - node admittance matrix.

Note that Yy, and Y, need not be symmetrical, and
ip = Yy vp (1)
Yo = A Yy AT (2)

vhere A is the incident matrix of the graph.

Now consider that the network N is perturbed
to (N+AN) in the way that Y, is perturbed to
Yp+4Yy, and the graph remains the sawme. In the
perturbed network, we denote the corresponding
voltages, currents, and admittances by v eavy,,
ig*hiy, vp*avy, ip+tdip, and Y,+aY,, respectively.

Given Y, and the graph, the purpose of the
fault diagnosis is to locate the nonzero entries
of AYy, from the information iy, Aim, and Avg.
Note that v, can be calculated from iy and N,
Without loss of generality, we may assume that

big = 0 »

CH1845-7/83/0000-1090 $1.00 © 1983 IEEE

i.e., apply same i, to the original network N and
the perturbed netwoek N+AN.

Denote Z, and partition it in the following

way:
Zm
2, - Yn‘l L (3)
Zen
where 2, ¢ C™xn, Z, ¢ Ctxn, and ten-m. Under
this condition, it can be shown that
Zpb jb ™ Avg (s)
where
Zob ® Zpp°A (6)
and
jp = -aYy (vptavy) n

In the above equation, a row of AY, is entirely
zeto if and only if the corresponding branch is
fault-free. Hence, & nonzero entry of j, indi-
cates that the corresponding branch is faulty.
The converse is also true if the rare possibility
of cancellation is disregarded. Since in Eq. (5),
both Z,, and 4vy, are known, we can solve the equa-
tion for jp and thus obtain the location of the
faulty branches. The usage of Eq. (S) to locate
the branch faults is called branch diagnosis {1,2,
4].

Alternatively, Eq. (5) to (7) can be
rearranged into the following equations:

Zun in = Avp (8)
Ja = A jp- (9)

vhere

In Eq. (9), an entry of j, is nonzero only if the
corresponding node is incident with at least one
faulty branch, The converse is slmost always true
in practical cases., Define a faulty node as the
one incident with at least one faulty branch.
Then we can solve Eq. (8) for j, to locate the
faulty nodes. Once the faulty nodes are located,
the faulty branches can be determined from Eq.
(9). This approach is called node diagnosis
(3,5]. Brench diagnosis and node diagnosis are
the two major approaches to locate the faults by
solving linear equations.

There is a unique problem shared by both

approaches, i.e., they all depend on solving the
equation with the following form:

1090




wvhere the entries of the matrix B and the vector p
are kavwn and are in the complex field., Moreover,
Eq. (10) in the fault diagnosis usually has more
unknown varisbles than equations. Therefore, the
solution is not unique in general. Fortunately,
in most practical cases, there are only a small
number of braanch faults, thus a different but
still small number of faulty nodes, in a faulty
network. Taking advantsge of this fact, we can
restrict the set of solutions x to those with only
a suall number of aongzero entries, and then the
solution can be unique., This will be discussed
next.

Reconsider Eq. (10),
Bx=p (10)
vhere x ¢ C", p ¢ CR, B ¢ CRXN gnd n > m. Let

X {(x ¢ Cn | number of non-zero components
of x not more than than kl.

We want to investigate the uniqueness of the
solution x ¢ Xy.

Definition. The global column-rank of B is
said to be r i1f every combination of ¢ columns of
B is linearly independent, and some combinastion of
(rel) columns of B is linearly dependent,

Let O be the range of B. Then the following

theorem is given in [3].

Theorem |, Let p ¢ 8. Then Eq. (10) has a
unique solution x ¢ X, for slmost all p ¢ Q if and
only if the global column-rank of B is at least
kel.

Note that for fault diagnosis problem, p ¢ 0
is guaranteed. When Theorem | is satisfied, the

solution of (10) can be obtained in the following
vay. Let the column vectors of B be denoted by

B = [b),by,...,b,]

Let the test matrices T; be constructed in the
following way:

T " lbil.biz,....bik,p]. i=1,2,...,8,8 = C(n,k)
for every combination of k colusns of B,

(a) 1f

Then,

Rank T; =k + 1, i =1,2,...,8 1)
then there is no solution x ¢ X,.
(8) Othervise, there is a unique j such that

Rank 7j L (12)
and

Rank T; =k + 1 , i #j. (13)

and the unique solution x ¢ Xy is given by

- . . l .
x (IJIBJ)' Bip (14)
vhere lj - lbjl'bjz""'bjkl'

The above result can now be applied to the
node=-fault-equation (8) to locate uniquely the
faulty anodes if the number of faulty nodes is
strictly less than the global column-rank of Z,.
The application to the branch diagnosis needs more
elaboration and can be found in {[4]. Note that
this result can also be applied to any other fault
equation having the form of (10).

The remsaining big question is that whether or
not the theory developed above is robust, i.e.,
wvhether or not the theory based on the nominal
circuit is still valid for the actual circuit
whose parameters always differ from those of the
nominal circuit. The answer depends on how the
theory is implemented. One such implementation
will be presented next. Note that (11), (12), and
(13) are equivalent to the question that whether
or not p is a linear combination of Bi = [bj;,bi,,
«+os8{, ], The question has an ansver in the
residual number

el = pT(1-8; B;*)p

vhere B.* is the pseudoinverse of B;. It is known
that e%=0 if and only if p is a linear combination
of column vectors of B:., 1t can be shown that
this test is robust [71. This implementatioa was
also suggested in [1].

An important development should also be noted
that the global column-rank of Zgap and 2o, can be
shown that it depends mainly on the graph of N,
not on the circuit parameters [3,4].

So far, we have considered the case with
single test signal and with single frequency. In
the next section, we will show, by an example, how
the theory can be "stretched" when multiple fre-
quencies are used and hov a solving of nonlinear
equations can be avoided by use of fault-logic
equations.

II1. lmplementation on an Active Filter

Consider a 3-pole low-pass active filter as
showa in Pig. 1. We are to locate the single
fsults (resistors and capacitors) in this network
by using the input end output terminals as the
only accessible nodes. It can be easily shown
that the global column-rank of both Zg, and Zg, is
one, and therefore according to the theory the
circuit is not one-fault diagnosible. We will
show hov to use multiple frequency and fault-logic
equations to alleviate the problenm.

Our algorithm is hierarchical in essence,
i.e., the fault ie first isolated into a subnet-
work from a single test signal and then this
faulty subnetwork is further diagnosed dy the
usage of multiple test frequencies. The algorithm
will be described as follows.
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Step A: The circuit is first reformulated The relation between (VO-VZ) and circuit parame- ;
into a block diagram as shown in Fig. 2. The re- ters R's and C's is nonlinear. In order to avoid !
lationship between the transfer functions, denoted solving nonlinear equations, we propose to do the !
by A;'s and the R‘'s and C's is given as follows: following. To save subscripts, denote Vg by V and
l Vz by w.
- Ap =R
Ay = l)(sc,) Assume that B; + (Bj+aB;), i=1,2,3,4.
- Ay = /Ry Exciting the ciruit by k different frequencies,
- Ay, = 1/Ry (15) the above equation becomes
~7 As - "l/(GJ*SCz) -
Ag = Rsl(RaR.;SC_") r 3 W r y ]
51y s2v; s3vy -wy a8y s1vy s2vy sivy w8
!- 1; is the input, and V; and V, are the outputs.
o The extra signal sources Jis i=1,2,...,6, at the S9Va 522V2 ssz =Wy 148, SyVy SZZV2 SZJVZ ~W2{Bq
output of the blocks A; is the fault compensator . . o .
of the block Aj. The meaning of the fault compen- " . - . R
- sator is given in Fig. 3. Note that if A; is . . |4B) N . |83
}} changed to (Ai’AAi) then J;=U;8A;, where U; is the R . . .
- input to A;. Assuming that U;#0, wve have J;=0 if SeVi Ssz S3Vk Wy 1AB, SVx SV sivy =W |Bs
and only if AA;=0. Our first step is to locate k k J ] L k k J
o non-zero J;'s from V; and V,. (19)
- From Fig. 2, it can be shown that We need to determine non-zero 4B;'s from (19).
Since the R.H.S. is kaown, Eq. (19) has the form
. I of (10). Therefore, Theorem | again can be
e av, 1 1 0 0 0 0 |J, applied. When the k different frequencies are
[ J3 properly chosen, the global column-rank of the L.
= Jo] (16) H.S. matrix is three. Therefore, we can uniquely
av, 0 AjAsAgAg AsAgAg AsAgAg AgAg AglJs determine two non-zero ABj's. From these non-
6 zero AB;'s, the faulty circuit parameters can be ;
located from (18) by a logic argument. This can d
where Ag=1/(1-A4A5Ag). This equation has the form be presented formally as follows, i
of (10). Therefore Theorem | can be applied. i
. Since the last four column-vectors are linearly From (18), a set of fault-logic equation is
l dependent, we cannot distinguish among (J3,J,,Js, constructed: !
Jg)}. Let the last four column-vectors be grouped
into one. Then the resulting matrix has three F(By) = F(R7)
columns and whose global column-rank is 2. There- F(By) = F(R3) V F(Ry) V F(Rg) V F(Rg) V F(C3)
fore, it is one~fault diagnosable, i.e., we may F(B3) = F(C3) V F(Ry) V F(Rg) V F(Rg) V F(C3) X
détermine whether Ay, Ay or one of (Aj,Aq4,As,Ag) F(Bg) = F(Rp) (20) :
is at fault. 1In view of (15), by use of single \
signal testing, we can isolate the fault into The first fault-logic equation reads that B is i
l' three groups: Ry, C) and the rest. This is non-zero if and only if ARy is non-zero. The sec- i
ol established in Table la. ond fault-logic equation reads that 4B, is non-
) zero if and only if AR3,AR,,4R5,ARg, or ACy is
Step B: The faulty subnetwork isolated by non~zero. Similarly for the third and the fourth
o Step A can be further diagnosed by the usage of fault logic eqations. We have assumed that no two
e multiple test frequencies, First, observe that faults wll occur in such a way that their effects
- the only part that requires further diagnosis is will cancel each other, which is rare in practice.
the group of (A3,A4,A5,Ag). It can be described
- by the transfer function of Vo/Vy where Vo is the Finally, we need to solve the set of fault-
- output voltage of the circuit and V3 is the output logic equations (20). This csn be done by use of
== of Ay and which can be calculated if A, is fault- a truth value table. The solution, together with
free. This can be determined from Step A. The the solution in Step A, is given in Table !. An
- expression of Vy/Vy is given by entry 0 means that AAj#0 in Table la and ABj#0 in
o~ Table 1b. An entry X means 3A;=0 in Table la and
iy vo By AB;=0 in Table lb. For example, the second row of
—_— e —— Qa7 Table la reads that if AAg#0, and AA)=8A3=8A4=8A5e
Vy  ByS+B;S24B383 AAg=0 then Cj is faulty. The fifth row of Table
1b reads that if 4B,#0, AB3#0, and AB1=AB4=0 then
vhere S is the complex frequency, and a fault occurs among (R,,Rs,Rg,C5). The reason
that the last group of circuit parameters cannot
By = I/Ry be further distinguished can be easily found from
c By = (R4RgC3)/(R3Rs) (18) the circuit. They are related as a single product
- By = (R4RgC2C3)/Rs and therefore, they cannot be further diagnosed
- B, = 1/Ry unless additional test points are introduced.
1092
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R This implementation has many interesting (6] C. Lin and R. Liu, “"Fault Directory Approach
points: - A Case Study”, LEEE 1981 Int'l, Symposium
- on_Circuits and Syatems Proceedings, pp.
L 1. The fault diagnoeis decision is based oa 239-242.
matching fsult patterns (Table 1), [t is like the [?7) L.C. Suen and R. Liu, "Determination of the
( fault dictionary spproach for fsult diagnosis of Structure of Multivarisble Stochastic Linear
&N digital systems. It is extremely simple from the Systems”, IEEE Transactions on Automatic
1 user's point of view. Such table is called fault Control, pp. 458-464, 1978,
ﬂﬁi directory (6 ). [8] C.S. Lia and R. Liu, "Fault Diagnosis on a
fzk ! Navy Candidate Circuit™, Notre Dame Memuran- i
O 2., The post-fault computation is winimal. dum, March 1982. 3
- The only computation required is the calculation t
of residuals. Its complexity depends on the
number of faults, not the size of the network.
RS Al A3 A3 A, Ag Ag Faulty Components
o 3. The use of multiple frequency and fault-
o0 logic equation avoids a complex and non-robust
s computation of solving a set of nonlinear equa- 0 X X X X X Ry
. tions.
‘. X [¢] X X X X Cl
r 4. Our computer simulation study [8] shows
. that this method of implementation is very robust. X X 0 o o0 o Others
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0. THE BACKGROUND

During the past quarter century, the engineering community has been wit-
ness to tremendous strides in the art of electronics design. On the contrary,
electronics maintenance has changed little since the day of the vacuum tube.
As such, our ability to design a complex electronic circuit is quickly out-

distancing our ability to maintain it. In turn, the price reductions which

have accompanied modern electronics technology have been paralleled by in-
¢reasing maintenance and operation costs. Indeed, many industries are finding
that the life cycle maintenance costs for their electronic equipment now ex-
ceeds their original capitol investment.

Given the above, it is quickly becoming apparent that the electronics
maintenance process, like the design process, must be automated. Unfortunate-
ly, the 50 years of progress in circuit theory, on which our electronics de-
sign automation has been predicated, does not exist in the maintenance area.
As such, the past decade has witnessed the inauguration of a basic research
program to lay the foundations for a theory of electronics maintenance and a
parallel effort to develop operational electronic maintenance codes.

Thus far the greatest success has been achieved in the digital electron-

ics area to the point that commercialized test programs are now readily avail-

[

able., On the other hand, the analog testing is still in its infancy. This is
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not without reasons.
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For one reason, the analog fault diagnosis had a late start. The re-
search and theory development of digital testing started in the mid 1960's
when the large-scale computers were readily available. Not until a decade
later did a commercialized test program first become available. On the other
hand, it was not until the mid 1970's that the test technology community began

to face up to the analog test problem. Indeed, even ig‘s predominantly digi-

tal world, analog systems were not disappearin&. Analog systems were proving

to be among the most unreliable and least readily tested of all electronic
systems, Assuming the same speed for the development of digital testing, a
commercially available analog testing program would not have been ready until
the mid 1980's.

The main reason is that the analog fault diagnosis has inherited certain
difficult problem# which are not shared by digital fault diagnosis. These

will be explained later.

I. INTRODUCTION

One can trace as far back as the early 1960's to find that circuit
theorists had an interest in the analog fault diagnosis problem [1,2].
However, there was only sparse interest thereafter [3-9]. It was not until
1977 that a collection of papers [10] appeared, and a special issue followed
[11]. In the meantime, the interest among circuit theorists suddenly became
active [12-52]. An excellent review paper with extensive references for the
pre-1979 period appeared in the special issue [12].

In this paper, only the post-1979 activities will be discussed. The
Fault/Tolerance Compensator approach will be extensively discussed because it

is probably the most promising approach at the present time, (based on the

authors' prejudiced point of view?)




o As a start, a simplified analog fault diagnosis problem is presented in
Section II and some major issues are discussed in Section III., The Element-
Value Solvability Problem is discussed in Section IV. A fault/tolerance com-
pensation model is presented in V. The k-~Fault Diagnosis Problem is the ideal

case (Section VI) and the tolerance case (Section VII) follows. A conclusion

: !! is given in Section VIII.
1I. AN INTRODUCTION TO ANALOG FAULT DIAGNOSIS
. Consider a simple system
é; Ax = u
(1)
f: y = Cx
" where A ¢ RIXD jg non-singular, u € R® the input, y ¢ R® the output, x ¢ R
j; i_ the internal variable, and C a selector matrix (each row of C has one and only
one entry being 1 and the rest of them 0), which selects certain components of
ll x for measurement. Therefore, m is the number of test points, and n the size
hY of the system. In general, m << n.
: ’ Suppose that A is perturbed to (A + AA). With the same input u, x and y
, !! will be perturbed accordingly, i.e.,
) (A +AA)(x + %) = u
- (2)
. (y + Ay) = C(x + Ax)
X f: We will now pose the first problem.
~i - Problem 1: (Element-Value Solvability Problem)
: :i Can we determine AA from the input/output measurements?
v The answer to this problem is relatively simple. If all the internal
5} {4 variables can be measured, i.e., m = n, then one can determine (A + AA), and
- hence AA, with n independent inputs. The condition m = n is also necessary if

no additional information is known about AA.
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Since the constraint m << n is imposed upon us, we have to ask the next

s
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realistic question. Suppose that a perturbation (y + Ay) is observed at the
output and we want to locate which entries of A have been perturbed. 1In this

case, it is quite realistic to assume that the number of entries of A, say k,

were perturbed at an instant when a perturbation was observed at the output is
small (k << n). In other words, AA is a sparse matrix. Furthermore, we need ;
only to determine the location of non-zero entries of A, not their values. We
can now pose the second problem.

Problem 2: (k~Fault Diagnosis: The ideal case)

With the constraint m << n, and the assumption that AA is sparse, can we
determine the location of non-zero entries of AA from the input/output
measurements?
It turns out that if certain conditions are met, we can uniquely determine the
non-zero rows of AA., (Fortunately, this information is enough for us to
locat: the faulty circuit elements.) This can be seen as follows.

Subtracting (1) from (2), one obtains

CA™l AA(x + Ax) = -Ay (3)

' or
CA™l Z = -y (4)

and
Z = AA(x + Ax) (5)

Note that since CA~™! is fat (m < n), the determination of AA from (3) is not
possible. On the other hand, barring cancellations, it can be seen from (5)

that a component of Z is non-zero if and only if the corresponding row of AA

is non-zero. Therefore, the problem is reduced to the location of non-zero

Dt

components of Z from (4) when the matrix CA~! is fat. A satisfactory solution

to this problem can be found in [30], and it will be presented later, 4
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In the final case, the problem of tolerance will be introduced. In
practice, System (1) can not be built precisely according to the specified A,
i.e., the nominal A. A specified tolerance usually is also given so that an
actual system (A + AAp) is said to be '"good" if AAy is within the tolerance.
In this case, the pettutbat{on AA will have two components,

AA = AAp + AAg (6)
where AA, is the deviation of actual A from nominal A due to the tolerance,
and AAg is due to some large deviation (fault) of some entries of A. It is
realistic to assume that AA; is not sparse but the value of each entry is
"small" and that AAf is sparse but the values of non-zero entries are "large".
Now, we can state the third problem.

Problem 3. (k-Fault Diagnosis: The tolerance case)

With the constraint m << n, and the assumption that AA; is small and AAgf
is sparse but non-zero entries are large, can we locate the non-zero
entries of AAf from the input/output measurements?

The above problem can be posed in two different kinds of setting.

1. The Problem of Robustness. We may design a testing program (for

k-fault isolation) based on the ideal case, and then put the testing program
into a simulation test to see if this program is robust under the tolerance
case. This 1s the state-of-the-art at the present time. It turns out that to
design a robust testing program is a very tough problem. For one thing, any
robust testing program should avoid the inversion of a matrix, or keep it at a
minimum.

2, The Fault Decision Problem. This tolerance problem can alsc be posed

as one of decision/detection problem. This can be seen as follows. Let
Zt = AAc(x + Ax)

Zg = AAg(x + AX),

. . . .o . ’ . - .
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then Eq. (4) can be represented in Fig. 1. In this figure, 2y is generally

small while the non-zero entries of Zg are generally large, but sparse. The

el

problem is to locate the non-zero entries of Zg¢ from Ay. This is a non-
conventional decision/detection problem. At the present time, it is still an
opean problem. _{
At this point, it is important to notice that when the number of test |
points 18 reduced, the nature of the problem changed completely from Problem 1
to Problem 2; and that when the tolerance problem is introduced, the issue of
computation becomes more complex. _}

Finally, note that what has been presented is a simplified analog fault

diagnosis problem. In general, the matrix A is a (nonlinear) functiom of

circuit parameters as well as frequencies.

I1I. TIMPORTANT ISSUES OF ANALOG FAULT DIAGNOSIS

=

In this section, we will discuss two major issues of analog fault 4

diagnosis problems and three important measures of the effectiveness of a !
testing program.

The two major issues are the tolerance problem and the problem of ?ﬂ

modeling and simulation of faulty components: -
® Tolerance: Possibly the single greatest unknown in the design of an
analog testing program is the effect of the tolerances of the "good"
component on the performance of a testing program. This tolerance problem
has absolutely no counterpart in the digital testing problem. The effect
of these tolerances can completely dominate the performance of a testing
program. In an analog circuit, unlike digital circuits, the actual values

of circuit parameters almost always deviates from the nominal values.

L .

Therefore, any analog testing program has to face up to the problem of

tolerance problem,

e o
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°® Modeling and Simulation of Faulty Components: Unlike the digital testing,

a complete modeling (and thus simulation) of faulty components is not
available for the development of a testing problem. The modes of faulting
is too many to encounter, For example, a faulty resistor may have an
infinite number of possible resistances (outside of the tolerance). In
fact, it can even be nonlinear. A faulty capacitor may have a model of
parallel RC. A faulty operational amplifier may have a model of 22
transistors 12 resistors and a capacitor! A good transistor may behave
like a faulty one if its bias is switched due to a fault which occurred
elsevhere! 1In fact, in a nonlinear analog environment, we are still in
the process of developing viable CAD models for nominal devices, let alone
for faulty devices. As such, a thorough test of the performance of a
testing program is impossible. Furthermore, each testing program has to
be designed based soley on the nominal values of the circuit.

Besides the two major problems mentioned above, there are three important

measurements of the effectiveness of a testing program.

® Test Points. Due to the practical restriction that there are usually only

a few nodes accessible for measurement and testing, the number of required

test points has to be as small as possible.

® Post~Fault-Computation. Since the post-fault computation is directly re-

lated to the per unit cost, it is important to keep the post~fauit compu-

tation time short and simple.

© Robustness. This issue has been raised many times; only because it is in-
deed the dominant issue at hand. We want the testing program to be relia-

ble when the fault/tolerance ratio iﬂ small.
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IV, THE ELEMENT-VALUZ SOLVABILITY PROBLEM

The element-value solvability problem is initiated by R.S. Berkowitz [1]
in 1962. This problem is presented in Fig. 2. The network N consists of RLC-
elements, possibly with dependent sources. There are m accessible terminals.
The problem is to determine the circuit parameters, RLC, from the measurements
at the accessible terminals.

It is easy to see that at the terminals one can at most measure the m—
port input impedance matrix H(S) and this can be done, for example, by system
identification methods. The transfer function matrix is a function M of fre-
quency S and circuit parameter p, i.e.,

M(S,p) = H(S)
The problem is to solve for p from H(S). In other words, it is a m-port
network synthesis problem when the graph and the element-kind is prescribed.

In general, M is a nonlinear function of p. As a rule of thumb, when the
number, m, of accessible nodes (test points) increases, M becomes '"less non-
linear", and vice versa. This is an important trade-off problem. In this re-
gard, there are two standard results to be quoted constantly as a measuring
stick. Trick, Mayeda and Sakla [15] have shown that if all nodes are accessi-
ble then M becomes linear and p can be uniquely determined.

On the other hand, for a one-port RC-ladder, their element values can
always be determined, regardless of the number of stages. This follows from a
well-known RC synthesis theorem. This example shows that there exists a
circuit-type that regardless how large the circuit is, the circuit parameters
can be determined from only two accessible nodes. However, in this case M be-
comes "extremely nonlinear". To see this, a 4-stage RC ladder is studied
[27). The continue-fractional expansion method is used to determine the cir-

cuit values. A striking result has been found. When the significant digits
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used for computation is eight, the answer came out correctly. However, when
it is reduced to seven, the answer becomes erroneous. In fact, some values of
R and C become negative! This shows that the RC ladder is solvable in theory,
but it will yield erroneous conclusions even with a slightest computation
error. Therefore, it becomes unreliable.

In between the above two extreme cases of the computation—-test point
trade-off, the most elegant result is found by Navid and Willson [13]. First,
their solvability condition is on the topology not on the elument values.
Therefore, it can be tested very easily. Second, the number of test points
required is not too large, but roughly the square root of the number of
branches. Finally, it is computationally tractable, although a set of non-
linear equations has to be solved.

A necessary and sufficient condition on local diagnosability of nonlinear
circuits is elegantly derived by Visvanathan, Sangiovanni-Vincentelli [39] and
Saeks et al. [40]. This is an important contribution because it provides a
theoretical limit. It will be most helpful to see if such a condition can be
made robust in the presence of tolerance.

In summary, the advantage of the element value solvability method 1is that
it avoids the tolerance problem because all parameters are calculated and can
be compared to see if they fall within the tolerance. The method also can be
applied to the case when the number of faulty elements is large. The major
difficulty with this method is that they have to solve, in general, a set of

nonlinear equations every time they are tested. The number of nonlinear

equations to be solved is no less than the number of internal parameters,
which in general is large. In order to make this method work, we need a
L computational procedure which is robust for a large number of nonlinear

S equations.
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V. A FAULT/TOLERANCE COMPENSATION' MODEL

In this section, a model is intrcduced which can be used effectively for
fault diagnosis problems. This can be simply explained in Fig. 3.

Suppose that the actual admittance (Fig. 3b) of particular branch is
deviated from its nominal admittance y (Fig. 3a) by Ay. The deviation may be
caused by the tolerance (in this case Ay is small), or by a fault (in this
case Ay is large). According to a circuit theory, the deviation can be com-
pensated by a current source j which depends on the deviation Ay and its
branch voltage. This is true whether Ay is linear or nonlinear (in this case,

a small signal is assumed). The value of j in general is a complex number

(even when y is real) and it is "large" if the deviation is caused by a fault,

and it is "small" if by a tolerance. Hence, the fault diagnosis problem be-

LTI Rat it

comes a detection problem of whether j is large or small.
The same is true for a three-terminal device as shown in Fig. 4. Here Y
18 a 2x2 admittance matrix. We need two current sources to compensate the

deviations. If the “evice is a "good" transistor, Y is its linear model and

the compensators represent the errors caused by the linear approximation to
the nonlinear tramnsistor. 1f the device is a "faulty" operational amplifier,

the compensators may represent the large deviations of the gain, or even the

deviations caused by its internal transistors and capacitors. In fact, this
model can be applied to any three-terminal device or any three-terminal
- sub~-circuit.
In general, an n-terminal device (chip) needs (n-1) current sources to
compensate its deviations. When all actual devices are replaced by their com~

pensation model, we have a Fault/Tolerance Compensation Model for the actual

TSI T

circuit. In this model, it consists only of the nominal circuit excited by
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- actual excitations and by fault/tolerance compensators. Therefore, our prob-
I lem is to locate the fault compensators.
- Consider the circuit in Fig. 2a, with (m + 1) accessible nodes and b
: 52 branches. Its Fault/Tolerance Compensation Model is given in Fig. 2b, where
- Jp is the F/T compensator vector. When these two circuits are excited by the
same I,, and the responses Vy and (Vy + AVy) are measured respectively, it is
easy to show that
Znb Jb = -AVp (7)
where Zp) is the branch-to-accessible node transfer function matrix, depending
o only on the nominal circuit.

Equation (7) was first derived by Biernacki and Bandler [37], based on
?:f linear perturbations. By use of the Fault/Tolerance Compensation model, we
have shown that Eq. (7) is also valid for linear nominal circuit with
nonlinear perturbations. In fact, the perturbations can be from R to parallel
RC, or from an operational amplifier to a complex circuit of (nonlinear)
transistors and capacitors. Therefore, the problem of modeling faulty devices
can be avoided as long as its nominal model is linear.

Finally, the compensator Jp has two components:

Jpb = JbF + JbT (8)

;; where Jyp is the fault compensator and JypT is the tolerance compensator. Jyf

l is sparse but non-zero entries are large while Jpp is small but unknown to us.

5 ;: The problem becomes the determination of the non-zero entries of Jyg from (7)
o and (8). This will be discussed in the next two sections.
VI. k~FAULT DIAGNOSIS:--The 1deal-€ase

. o In this section, we assume that the number of accessible nodes m is much

smaller than the total number of nodes n, i.e., m <{ n. We further assume

that the number of faulty branches is much smaller than the total number of
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branches, i.e., k <{ b, The nominal circuit is linear and it can be repre-
sented by Eqs. (7) and (8)., Finally, we assume that Jpp = 0. In other words,
we want to locate the non-zero entries of Jp from (7), where J, is sparse.

A solution to this problem can be found in [49]), which will be presented as
follows.

Consider the following equation:

Bx=p (9)
where xe¢ C0, pe CB, Bg CBXN gnd n > m. Let

X ® {x € C* | number of non-zero components
of x not exceeding k}.

We want to investigate the uniqueness of the solution x & Xg.

Definition. The global column-rank of B is said to be r if every combi-

nation of r columns of B i1s linearly independent, and some combination of
(r+l) columns of B is linearly dependent.

Let Q be the range of B. Then the following theorem is given in [49].

Theorem 1. Let pe Q2. Then Eq. (9) has a unique solution x e Xy for
almost all pe Q if and only if the global columm-rank of B is at least k+l.
~ Note that for fault diagnosis problem, p ¢ @ is guaranteed. When Theorem
1 is satisfied, the solution of (9) can be obtained in the following way. Let
the column vectors of B be denoted by

B = [by,bg,...,bp]
Let the test matrices T; be constructed in the following way:
Ti = [bi)sbigseeesbipsp]l, 1= 1,2,00.,858 & Cln,k)

for every combination of k columns of B, Then,
(A) 1f

Rank T{ = k + 1, i = 1,2,...,s (10)

- then there is no solution x € Xy.
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(B) oOtherwise, there is a unique j such that

Rank T: = k (11)

)
and

Rank T; =k + 1 , i # j. (12)
Furthermore, the unique solution x ¢ Xy is given by
x = (B;TB;)! B3P (13)
where By = [bjl’bjz""’bjk]'
As a consequence, the k-fault diagnosability depends on the global
column~rank of Zyp. Let us now examine the issue of (1) post-fault computa-
tion and (2) the number of required test points.

1. Post-Faunlt-Computation. The post-fault computation includes only

Eqs. (10-13) It involves the test of the rank of mx(k+l) matrices T;, and an

inversion of a kxk matrix (B;TBj). This is a very good feature since both m

and k are small. More importantly, the size of these matrices does not depend

on the complexity of the circuit b. The total post-fault computation can be

implemented on a mini-computer with computation time ranging from a fractionm
of a second to the order of a few seconds.

2. Number-of-Required-Test-Points. For k-fault diagnosis, it is neces-

sary for the number of required test points m » k + 1, It is important to

note that it again depends mainly om k not on b; the compiexity of the

circuait.

As an example, assuming the optimal condition m = k + 1, for a single-
fault diagnosis, we need only two test points, testing the rank of 2x2
matrices and an inverting an lx] matrix, regardless of how large b is.

Next, we will investigate how the optimal condition m = k + 1 can be
achieved. This requires

global column-rank Zmyp = m = k + 1 (14)
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This depends on how the circuit is designed and more importantly how the test
points are located. It turns out surprisingly that the global column-rank of
Zyp depends mainly on the topology of the circuit, not its element values.

3. Topological-€onditions- for-k+Fauit Diagnosibility. First, it can be

shown that if there is any internal loop (loops not incident with test nodes)
consisting of r branches than the global column-rank of Zy, cannot be greater
than (r-1), Therefore, we can diagnose at most (r-2)-faults. Since most
circuits have loops consisting of three branches, we can diagnose up to only
one-fault. This is a serious limitation. Alternatively, we can work on the
node-fault diagnosis equation
Zon Jp = ~AVp (15)

where J, = A Jp is the node compensator vector, Zpy = Zy, A and A the incident
matrix. Theorem 1l can now be applied to (15). In this case, a topological
condition has been derived independently by Huang, Lin and Liu [49) and Togawa
and Matsumoto [51]. First, construct a testing graph Gy from the given graph
G by (1) deleting all branches which are incident between two accessible nodes
and (2) connecting all accessible nodes, except the reference node, to a new
node t.

Theorem*2. Let the network be pasgsive and G be connected. The following
three statements are equivalent:

(A) The global column-rank of Zp, is k for almost all branch
admittances.

(B) The local comnectivity® between the node t and any inaccessible node
in Gy is k.

(C) There are at least k independent paths® in G¢ from any inaccessible

node to the node t.
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The topological conditions for the global column-rank of Zg, equal to 2
is given in [50]. A more general topological condition is obtained in [52].
These topological conditions are very useful. (1) They provide a very easy
evaluation of the global column-rank of a transfer function matrix. (2) They
provide a foundation for the design of diagnosable circuits and (3) They

provide the foundation for the design of locations of test points.

VII. k-FAULT DIAGNOSIS: The Tolerance Case

The fault diagnosis equation for the tolerance case is given by (7) and
(8)

Zab(JbF *+ JbT) = -AVp (16)

which can be shown to have the form

(Zgp + AZpp)IpT = ~AVp (17)

where AZpyp is caused by the tolerance. This can be viewed as the same problem
&s the ideal case except that the matrix Zpyp is polluted by the noise AZpyy,.
Therefore, we need robust computational methods for the testing procedures
(10-13). A well-known method for the test of the rank of a noisy matrix is
the singular value decomposition method [53]. Unfortunately this method is
unreliable for the test of the global column-rank of a noisy matrix. There
exists examples where the singular value decomposition method fails [55]. 1In
order to circumvent this problem, Suen and Liu have developed a method using
residual numbers for the testing of global column-ranks [55]. The same method
can also be used for the tests (10-12) [S54, 55]. For all the cases we have
tried, this method has shown to be very reliable when the ratio fault/toler-

ance is large.
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VIII. CONCLUSION

Two main approaches to analog fault diagnosis has been presented: The 4

;; element-value solvability problem and the fault/tolerance compensation

?; approach.

- The element-value solvability problem is the same as the n-port synthesis i
}; problem except that the graph and the element-type have been prescribed.

; Therefore, it is very much in the interest of circuit theorists. The major
advantage of this approach is that the tough problem of tolerance is avoided.

o The difficulty of this approach is that its performance is limited by a trade-
off between the large number of test points required and the complexity of

post—~fault computation.

.

The fault/tolerance compensation approach requires a very few number of

.

»

e

test points and very simple post-fault computation. However, the number of
faulty devices is limited to be small. More importantly, we have to face up
to the tolerance problem, although some limited success in this direction has
been accomplished.

In summary, in this uncharted area of research we have been struggling in
the past to find out what the real problems are, and we begin to see some
daylight. It still has a long way to go.

For one thing, the result presented is for single-signal and single-
frequency. When multiple-signal and/or multiple-frequency are used, the per-
formance should be improved since more information is gathered for analysis.
Some initial studies have been made [14,21,33,36,44, 48]. However, how to
. choose these signals and frequencies so that the extra information can be used

more efficiently and effectively and what the limitations are, are still un-

known to us.
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The diagnosis of nonlinear circuits are barely touched [20,31,39,40,42].
This important problem is still at large.

The problem of diagnosis of analog/digital hybrid circuit is essentially
untouched [32].

The fault diagnosis techniques have other applications., Since it has the
capability of locating the faulty devices from available test points, it has
the potential to be integrated with manufacture process to do CAM for IC
chips. For another application, the single-frequency single-signal method can
do on line fault diagnosis. Therefore, it provides an important link for the

design of self-repairing systems.
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Node-Fault Diagnosis and a Design
of Testability

ZHENG F. HUANG. CHEN-SHANG LIN, aND RUEY-WEN LIU, FELLOW. IEEE

Abstract — A concept of k-node-fault testability is introduced. A suffi-
cient and almost necessary condition for testability as well as the test
procedure is presented. This condition is further evolved to a necessary and
almost sufficient topological condition for testability. A unique feature of
this condition is that it depends only on the graph of the circuit. not on the
element values. Based on this condition, a design of testability can be
established.

I. INTRODUCTION

AULT DIAGNOSIS of analog networks has become

an increasing active research area recently [1]-[11]. A
good survey on this subject can be found in [1], [2].
Roughly speaking, analog fault diagnosis is the problem of
detecting the faulty analog networks and locating the
faulty elements or parameters in those faulty networks. In
this paper. we are concerned with only the second part of
the problem, namely. the fault location problem.

Recently, two similar methods on fault location of linear
networks which involve only linear equations have been
proposed by Biernacki and Bandler [9], [10] and Skala er al.
{11]. These methods are based on checking consistency or
inconsistency of certain linear equations which are in-
variant on faulty elements. And they have been shown to
be equivalent in [17). Since only linear equations are in-
volved, they are computationally appealing. However, as
far as testability condition is concerned, none is given
explicitly in (11}, while only a necessary condition is pro-
vided in [10]. This necessary condition is given in terms of
network functions (impedance function). Hence it is not
easy to apply, especially in the environment of testability
design.

In Section II of this paper, instead of port-voltages in [9],
[10] or branch-voltages in (11}, node-voltages are used as
the basis for the derivation of the node-diagnosis equation.
In Section III, following the procedure given in [11], a
necessary condition for testability is hence derived. The
major effort is to show that this necessary condition is also
almost sufficient.

The main contribution of this paper is given in Section
IV. It is shown that the testability condition which is based
on network functions, can be reduced to a condition which
depends only on the graph of the circuit not the element
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Fig. 1.

values. The simplicity of the topological condition for
testability allows us to study (1) the design of the location
and the number of test points for a given circuit, and (2)
the design of alternative circuits which are testable.

For the purpose of the application to branch diagnosis,
Theorem 5 of Section V provides a method to determine
the faulty branches as well as their deviated admittance
values if the node fault testability condition is satisfied.

Examples are given in Section VI.

II. NODE-D1AGNOsIS EQUATIONS

Let N be a b-branch, (n + l)-node. {(m + l)-terminal.
linear, time-invariant, lumped nonreciprocal network (Fig.
1). Out of the (n +1) nodes. (m + 1) are accessible termi-
nals for excitation and measurement. Label the nodes in
the following way. Let one of the accessible nodes be the
reference node. Then label the rest of the accessible nodes
(i =1,---,m) ahead of inaccessible nodes (i =m +1,- - -, n).
The following notations are used for N:

v, terminal (accessible node) voltage vector,

i,, terminal current vector,

v, branch voltage vector,

i, branch current vector,

v, node (including accessible node) voltage vector,

Y, branch-admittance matrix,

Y, node-admittance matrix.

Note that Y,, Y, need not be symmetrical and
i, =Y, (1)
Y, =AY, A7 (2)
where A is the incidence matrix of the graph and Y, can be
obtained from the network directly.

Now consider that the network N is perturbed to (N +
AN) in the way that Y, is perturbed to Y, + AY,, and the
graph remains the same. In the perturbed network. we
denote the corresponding voltazes. currents, and admit-
tance by v,, + Ao, i,, + Ai,, v, + v, i, + Ai,. v, + Av,,
and Y, + AY,, respectively.

Given Y, and the graph, the purpose of the fault diagno-
sis is to estimate AY, from the information i,. Av,,, and

0098-4094 /83 /0500-0257801.00 ©1983 IEEE

...........
..............
.............

PO o VY W W WA A DT LI . PN, DR, W




BARARADAY * § fChA) '_:"i"

sl B A S B RN

Al FLRTREy 2 B R ANMRARARA PR S Gty
o
. N .
o
"
.

258 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. VOL. CA$-30. NO. 5, MAY 1983

Fig. 2.

Ai,,. Note that v, can be calculated from i, and N.

Without loss generality, we may assume that
Ai, =0
i.e., apply the same i, to the original network N and the

perturbed network N + AN,
Denote Z, and partition it in the following way:

- 0

where Z,, € C™*", Z,, €C'*", and I =n —
Under these condmons, the node-voltage equations for
N and N + AN are given by

Yo, = [‘g] (4)
(Y, + AY,)(v, + Av,) = [’5]. (5)

A subtraction of (5) by (4) yields

Y"Av’l == AYII( U’l + Avﬂ) é j’l (6)
where the RHS is denoted by j,. Using (3), (6) becomes
Z'I jﬂ = Av’l (7)

and. hence,
Zmnjn = AUM' (8)

The equations (6) and (8) are called the node-diagnosis
equations.

Since Z,,, and Av,, are known, we can first solve for j,
from (8) and then estimate AY, from (6). However, for
practical diagnosis problems, n is much larger than m, and,
therefore, j, is not unique. Furthermore, Av, is unknown,
which creates difficulties for solving (6). However, if we
take advantage of a structural property of the network,
which will be discussed later, these difficulties can be
circumvented. This will be discussed next.

A crucial property of A7, is that it has the same struc-
ture as Y,, i.e., if (i, j)th element of Y, is zero, then the
(i, j)th element of AY, is also zero. The problem of locat-
ing the faulty branches becomes the problem of locating
the positions of nonzero entries of AY,.

Definition I: Branch k, k=1,2,---,b, is said to be
fault-free if the k th row of AY, is zero. Node i, i =1,2,- - -,n
is said 1o be fault-free if all branches incident with node i
are fault-free. Otherwise, they are faulty.

Note that the number of node faults may be smaller than
the number of branch faults. This is illustrated in Fig. 2.
There are three branch faults (a, b, ¢) but only two node
faults (1,2).

It is easy to see from (6) that if node / is fault-free. then
the /th component of j, is zero. However, the converse may
not be true. It is possible tha. node / is at fault but the
effect of faulty branches asscciated with node 1 may cancel
each other to give zero to the ith component of j,. This
possibility is very very small. Henceforth, we will make the
following assumption.

Assumption 1: If node i is faulty then the ith component
of j, is nonzero. Under this assumption, node i is faulty if
and only if the ith component of j, is nonzero.

Next, we want to determine those nonzero components
of j, from the node-diagnosis equation (8).

II. 4-NODE-FAULT TESTABILITY

We start with a definition of testability.

Definition 2: A network N is said to be k-node fault
testable if when N is perturbed to (N + AN), one will be
able to determine, by choosing appropriate testing signals
i,,, from the measurements on accessible nodes:

(a) whether or not N has no more than k& node faults,

(b) if affirmative, the faulty nodes can be uniquely
located.

Recall that

mn./n Av (8)

and (with Assumption 1) that node i is faulty if and only if
the ith component of j, is nonzero. Let

X, = {x € C"| number of nonzero components
of x not more than 4}

then the perturbed network N + AN has the number of
multiple node-faults less than or equal to k if and only if
Jn€ X,. Let z,, i=1,2,--- n be the columns of Z_,. We
call the condition

'kl

rank[z,l,z,z, ] =k +1,

Vigi <iy<: - <i,,,sn (9)

the k-node-fault testability condition.
Let the test matrices be the combinations of k columns of
Z,,and Av,, ie.,

T,= [z,-l,z,z,-'-,z,‘,Avm] (10)

i=1,2,---,5, where s = C(n, k). Then we have the follow-
ing two theorems.

Theorem 1: Let the k-node-fault testability condition (9)
be satisfied.

(a) If

rankT, =k +1, =12, --.s (11)

then N has more than k-node faults. Conversely. if NV has
more than k-node faults, then (11) is satisfied for almost all
Av,.

(b) If (11) is not satisfied, i.e.,

rank T, < k +1 (12)

for some i, then N has no more than k-node faults for
almost all Av,. Furthermore, all faulty nodes can be
uniquely isolated by (13).

................

Lo

Uk

ny

R




r B
fal ity o4 s

Ty
“’ -

.........

HUANG ef al.: NODE-FAULT DIAGNOSIS

Proof: (a) Conditions (9) and (11) imply that Av,
cannot be represented by any k columns of Z,,, i.e., (8)
has no solution in X,. Therefore, N has more than k-node
faults.

Conversely, if N has more than k-node faults, then
Jn € X,, i.e., for almost all Av,,, it cannot be spanned by k
columns of Z,_,. Therefore, Condition (11) is satisfied for
almost all Av,,.

(b) Let the test in (a) be failed. Therefore, there are at
most k-node faults, and (12) is satisfied. It follows from (9)
that

rank(z,, 2, -z, ] = rank [z, , 2 Ao, | =k

for some (z;,z,," - -,2;, ). Consequently, (8) has a solution
in X,. Furthermore, in view of Theorem Al in the Appen-
dix, the solution is unique for almost all Av,,.

Finally, the faulty nodes can be located as follows. From
(8), delete the columns of Z,, and components of j, which
are not associated with (z,,2;,*--,2,). As a result, we
have

AT IR

Z

mkjk = Aom

where Z,, =[z;,2,," - ,2;] and j, = col(jj;," - -.j,)- Then

jk= (Z:kzmk)_lz:)tAvm' (13)

The nonzero components of j, indicate the faulty nodes.
Q.E.D.
Theorem 2: N is k-node-fault testable if the k-node-fault
testability condition (9) is satisfied. Conversely, if a single
test-vector is used then condition (9) is also necessary.
Proof: Let (9) be satisfied. Theorem | implies that N
is k-node-fault testable for almost all Av,,. Consequently,
there exists an i,, so that N is k-node-fault testable. Con-
versely, if a single test-vector is used, then applying Theo-
rem Al to (8) one can conclude that condition (9) is also
necessary for k-node-fault testability. Q.E.D.
Remark 3.1: The idea of setting the fault-diagnosis
equation by an algebraic linear equation, and locating the
fault elements by a matrix rank test were presented by
Biernacki and Bandler [9] and Sakla, El-Masry and Trick
[11]. Some conditions on the matrix rank test for multiple-
fault isolation was first presented by Biernacki and Bandler
[9], [10]; and also by Trick [24) and Trick and Li [25]. The
necessary and almost sufficient condition (Theorem 1) is
first given by Huang, Lin, and Liu [18)], and also appeared
in Trick and Li {25].
Remark 3.2: Biernacki and Bandler applied the matrix
rank test method to the branch-diagnosis equation

Z

mbjb - AO,,,

and Trick to a sensitivity equation, which can be shown to
be equivalent to the branch-diagnosis equation [26]. The
difficulty of using the branch-diagnosis equation is, as
pointed out by Trick {25), that multiple branch faults
usually cannot be uniquely located. On the other hand,
multiple node fault can be uniquely located. Therefore, we
used the node-diagnosis equation instead of the branch-
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Remark 3.3: The number k& of multiple faults can be
tested by (11), not pre-assumed as the case in [9]-[11], [24].
Since & is usually not known, this feature has practical
importance.

IV. TeSTABILITY DESIGN
Partition the matrices Y, and Z, in the following way:

zmn
I= Ynzn = [Yannl][Z ]
in

where m + [/ = n. Let the row-vectors of Y,, be denoted by
yiv i= 1,2,' se,n, i.e.,

) 4
M
Ynl - :
Yn
An equivalent testability condition can be stated in terms
of row-vectors of Y,,.

Theorem 3: The k-node-fault testability condition (9) is
satisfied if and only if

Vi<ii<j-<j<n (14)

wheret=n—~k - 1.

The proof of Theorera 3 is given in the Appendix B.

Since usually n — k -1 k + 1 and / = m, condition (9)
is easier to be tested than (14). However, condition (14) 1s
useful for the design of testability if condition (9) fails. This
is because each clement of Y,, has a direct interpretation in
the circuit. For example, since Y,, concerns only those
branches connected with inaccessible nodes, the branches
among accessible nodes have no effect on the testability. We
will now present a criterion which depends only on the
graph of the circuit, and thereby provides a means for the
design for testability.

We will first consider the network N with no dependent
sources. From the graph G of the network N, we construct
a testing graph G,. First, delete all branches which are
incident between two accessible nodes. Then, connect all
accessible nodes, except the reference node, to a new node
L

Theorem 4: Let G be connected and & < m. The follow-
ing three statements are equivalent.

(a) The k-node-fault testability condition (14) is satisfied
for almost all values of branch admittances.

(b) Any inaccessible node and the node ¢ have at least
(k + 1) local connectivity' in G,.

(c) There are at least (k + 1) independent paths' from
any inaccessible node to the node ¢ in G,.

"The local connectivity of two nonadjacent nodes is the minimum
number of nodes separating them. and two paths are ind ent if they
do not have any common node, except at the terminal nodes [16].
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Before the theorem is shown, let us prove two lemmas.
First, consider any (n — k —1)X/ submatrix Y of Y,,. Let
these (n—k —1) rows correspond to the set M, of m,
accessible nodes and the set L, of /, inaccessible nodes
where m, + I, = n — k — 1. Then the node equation Y,v, =i,
can be rearranged to the form

Ym.m, Ym,m, Ym,l. ym.l, (vm. iml
Ym;m, Ym,mz Ym;l, Ym;l; vm, - imz (lS)

YI|III| YI.mz Yl,l, YI

Yl,m. Yl,m, Yl,l. Yl,l, v;

iz v, b,

2

and
Ym il Ym ]
Y- N 252 . 16
Y, Y, (16)

Hence the set M, of m, accessible nodes and the set L, of
1, accessible nodes are those not associated with the rows
of Y.

Note that
k+l1-m =/, (17)
and if m, + m, = m > k, then
my 21, (18)

The purpose of the following two lemmas is the con-
struction of a subgraph G, of G,, which will be useful in
the proof of Theorem 4.

Lemma [: If (b) of Theorem 4 is satisfied, then there
are /, disjoint paths connecting the set L, and M, in G, and
no two such paths have any common node.

Proof: From hypothesis (b), the local connectivity in
G, between the node ¢ and any inaccessible node is at least
k + 1. Now, remove all branches from M, to the node ¢.
Then the local connectivity between any inaccessible node
in L, to the node ¢ is at least k + 1 — m, which is /, by (17).
Finally, connect all the nodes in L, to a new common node
q. The local connectivity between g and ¢ is exactly /,.
Therefore, by Menger’s Theorem, there exist /, indepen-
dent paths connecting ¢ and ¢, as shown in Fig. 3. Conse-
quently the lemma is proved. Q.E.D.

Lemma 2: Let (b) be satisfied. In G, there exists a
loopless connected subgraph G, which contains the node ¢,
all inaccessible node and all the disjoint paths in Lemma 1.

Proof: First, take all the disjoint paths given in Lemma
1 and extend the paths to the node r. This subgraph
contains all the nodes in L, and the node ¢. For every node
in L, by (b), there exists a path from it to the node 1. Now,
G, can be constructed by repeating the following process.

Fig. 5.

Pick a node in L,, follow a path to node ¢ and stop when it
first reaches a node of existing subgraph. Then add all the
new branches to the existing graph and repeat the process
for the next node in L,. A typical G, is shown in Fig. 4.
Q.E.D.

Proof of Theorem 4:

(b) = (a) Consider any (n — k = 1)X/ submatrix Y of
Y, We want to show that Y has full column-rank for
almost all branch admittances. In the first step. we want to
show that it is true for a particular set of branch admit-
tances. We choose a specific set of branch admittances in
the following way: first, set all branch admittances to zero
for those branches not in G,; and then, set other branch
admittances to positive values. Therefore, this network is
connected, passive, and resistive. Let it be denoted by N,
We want to show that, for the network N, Y has full
column-rank.

With N, we ground all accessible node and excite all
nodes in L, and L, by voltage sources v, and v, , as shown
in Fig. 5. From (15), we have ’

v, i,,,z
Y[vlz]-[‘}, J (19)

If Y is not full column-rank, then there exists nonzero
(v;,, v,,) such that (i, . i, ) = 0. We want to show that this
is not possible for N,. Since N, is a connected passive
network, and (v, v, ) are the only sources, it concludes
that (i, i, )= 0if (v,,v,,)=0. If i, = 0, we already have a
contradiction. It remains ta consider the case when i, =0
and i, = 0. We want to show that in this case i,,, = 0. Since
i;, = 0 and N, is passive resistive circuit, we may delete all
branches except the paths given in Lemma 1, as far as
KCL equation is concerned. Since all these paths are
disjoint, i;, = 0 implies that i, =0, which again is a con-
tradiction. Therefore, (v, , v,)= 0 if and only if (impif)) =




——

M AR At Suh S Sl i dl At Y N S A P e M I e i
LN ot . NN

e

HUANG et al.. NODE-FAULT DIAGNOSIS

0. It concludes from (19) that Y has full column-rank for
N,.

Now in the second and final step, we want to show that
Y has full column-rank for almost all branch admittances.
Note that Y has full column-rank if and only if det(Y7Y)
= 0. A key fact is that det(Y7Y) is a polynomial of the
branch admittances, and it is not zero for a particular set
of admittances, namely N,. By a well-known theorem (20,
21}, it can be concluded that det(Y7Y) =0 for almost all
branch admittances. This proves (b) == (a).

(b) e (c): Directly from the Menger’s Theorem [16].

(a) = (b): We will prove it by contradiction. Let (b) be
false. Then there are k nodes which separate G, into two
parts: Part A contains node ¢ and Part B contains at least
one inaccessible node. Since all accessible nodes are adjac-
ent to ¢, they cannot belong to Part B. Let Part B contain
r(r >1) inaccessible nodes. Note that any element y, of Y,
is zero if and only if nodes i and ; are nonadjacent. Since
Part A and Part B are separable, the element of Y, which
associate with any nodes of Part A (except 1) and any node
of Part B is zero. Since there are r inaccessible nodes in
Part B, there are a zero-submatrix Y* of ¥, whose di-
mension is r x(n — r — k). Therefore, from [15] any sub-
matrix of (n —k —1)x/ of ¥, which contains Y* cannot
have full column-rank. Henceforth, condition (14) cannot
be satisfied for such submatrix. Q.E.D.

Let us now extend Theorem 4 to include active elements.
First, represent all active elements by a set of dependent
current sources each of which is incident to the reference
node on one side and to any other node on the other side,
and controlled by node voltages. Note that a dependent
current source has entry in the submatrix Y, if and only if
it is controlled by the inaccessible node voltages. In view of
the above, we will construct a test graph G from the graph
G by the following steps. (1) Delete all dependent sources
which are controlled by accessible nodes. (2) If a depen-
dent source is incident with an accessible node i but
controlled by an inaccessible node voltage v;, then delete
this dependent source and add a new branch mcxdent with
nodes i and j. Note that G and G have the same nonzero
entries in Y, . It remains to consider these dependent
sources which are incident with inaccessible nodes and
controlled by inaccessible node voltages. A complete de-
scription of this would be too involved for this paper. We
will give only necessary and sufficient conditions. Con-
struct G from G by deleting all dependent sources and G,
from G by the following step: if there is a dependent source
incident with node i and controlled by node voltage v,
then delete the dependent source and add a new branch
incident with nodes i and .

Corollary 4.1: 1f Gy does not satisfy (b) or (c) of Theo-
rem 4, then N is not k-node-fault testable. If Gg satisfies (b)
or (c), then N is k-node-fault mmble for almost all branch
admittances.

The proof is straightforward and is omitted.

Remark 4.1: The necessary topological condition of
Theorem 4 is first given by [18]. Togawa and Matsumoto
[28) have given an independent proof of the sufficient

condition. Starzyk and Bandler have studied the case when
the topological condition is partially satisfied [27].

V. BRANCH-FAULT DIAGNOSIS

In this section, we will show that branch faults can be
isolated if multiple test-signal vectors are used.

Theorem 5: Let N and its adjoint circuit N be k-node-
fault testable. If N + AN and N + AN have no more thaii k
faulty nodes, then the faulty branches can be located and
their admittances can be determined by a set of m indepen-
dent vectors i,,.

Proof: Since N is k-node-fault testable and N + AN
has no more than & faulty nodes, by Theorem 1, j, can be

uniquely determined for almost every i,,. From (7) and (4),
Ao, =Z,j, (7
v, =2, [ ] (4)
we can calculate v, + Ao, by
v,,+Ao,,=z,,([‘6']+j,,). (20)
Hence, AY, can be determined by (6)
= jn=4Y,(v,+4v,) (6)
using multiple independent test-signal-vectors i, in the
following way. Take independent {,’s so that
I,= [im.'imz»""im.] (21
is nonsingular. Correspondingly, we can measure
AV, = [4v,,. b0, - -, A0, ] (22)

Then it can be shown that when i, is applied to the

perturbed adjoint circuit

(F,+a%,)=(7,+4r,)" (23)
the perturbed voltage can be calculated by
Aé, = (av, 1;1)7i . (24)

With this Ad,, and i,,, we can apply the node-fault diagno-
sis procedure to the adjoint circuit. Since by hypothesis the
adjoint circuit is k-node-fault testable and has no more
than k faulty nodes, we can identify the nonzero rows of
AY,; ie., k’ (k' < k) nonzero columns AY, by (23). Once
the set of nonzero columns of AY, is identified, we go back
to (6). Let S be a column-selector matrix {22] such that
[AY,)S is an n X k' matrix with k’< k and that [AY,])S
retains all nonzero columns of AY,. Then (6) becomes

— = [AY,,][!J,, + AD,,] - [AY,,]SST[O,, + AO,,].

Applying the m independent i,,’s in (21), we have corre-
spondingly the matrix equation

- J,=[AY, ]SSV, + av,]. (25)

It remains to show that ST[V, + AV,] has full row-rank.
From (5) we have

by o= (2,4 82| o] = (20 v 82,01,




e TR

IR T

LIS

FiCdr i ~—

...........

262 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, VOL. CAS-30, NO. 5, MAY 1983

AAAA.
A/
AAAA.

AAAA
AN
»

AAAA—
VW

=

e AAA A

i

PP L)
ro{ O
K O

B AAAA T A AA AcrgdAAA,
Pt AAAA

W

Fig. 7.

So,
STV, + AV, ] =S(Z,, + AZ, )1 .

Since the adjoint network N is k-node-fault testable,
s’(z,,+AZ,,) has full row-rank for almost all branch
admittance. Consequently, S7(V, + AV,] has full row-rank
for almost all branch admittance. Therefore, the nonzero
columns of AY, can be evaluated by

[aY,]s=-J([v, +ar,]"s)

(STIV, + 8K, )V, + A%, ]7S) ™. (26)

From this, the faulty branches can be located and their
admittances can be determined. Hence, Theorem § is
proved. Q.E.D.

Remark 5.1: Note that N and AN may not have the
same graph. Therefore, a short between two open nodes
can be detected, although in this case an extra branch
between the two open nodes is inserted in the faulty
network.

Remark 5.2: If Y, is symmetrical, then the conditions
on the adjoint circuit are automatically satisfied, and only
k independent test-signal-vectors /,, are sufficient.

VI. EXAMPLES
Example 1: (Testability Design)

For a given circuit, the purpose of testability design is to
decide the number and the location of test points such that
the circuit is testable. Let’s consider a feedback amplifier
(Fig. 6). First we get the AC small signal equivalent circuit
(Fig. 7). It is reasonable to choose node 1 and 8 to be the

LA 2 AN TN S i DA P A

Fig. 9.

test points. By the method described in Corollary 4.1, the
test graph G, and G, are in Fig. 8. Note from Theorem 4
that the ground branches have no effect on the testability,
and hence they are deleted. For this circuit (if we don’t
consider the self-loops in node 3 and 7), the G, and G, are
the same. We can easily conclude by condition (c) of
Theorem 4 that the circuit is one-node fault testable. Now,
suppose that we want it to be 2-node-fault testable. In the
G,, node 5 and 7 are incident with only two branches
respectively, and each of them cannot have three indepen-
dent paths to other nodes. Therefore, nodes 5 and 7 have
to be test points. Under this choice, every inaccessible node
has three independent paths to the accessible nodes. Hence
by Theorem 4 and Corollary 4.1, the circuit is 2-node fault
testable for almost all values of the branch admittances.

In the previous example we described how to choose the
test points for a given circuit.

Example 2: (Branch Fault Isolation)

Consider the network N as shown in Fig. 9. Nodes 1,2,3
are accessible nodes. Let the nominal values of the circuit
of Fig. 9 be y,=1, i=1,2,---,6,8 and y,=2. We can
calculate Z_,, = (2|, Z,, Z,, Z,]:

0.593220 0.084746
0.084746 0.440678 0.152542 0.169491
0.067797 0.152542 0.322034 0.135593

Now assume branches 3 and 8 are perturbed such that
y3+4y,;=2, and yy + Ay; = 2 and other branches remain

the same. Choosing
1 0 0
I,=10 1 0

0 0 1

we can measure the voltages on accessible nodes:
0.5625 0.0625 o.oozs]

Zmn -

0.067797 0.186441]

Vo +AaV, =|0.0625 0419 0.1339

0.0625 0.1339 0.2767

(e

it
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and evaluate
-0.030720 -0.0222458 —0.0052966
AV, =1 —-0.0222458 -0.0210351 -0.0186138].
—0.0052966 -—0.0186138 —0.0452482

From Theorem 4, this circuit is 2-node-fault testable. By
Theorem 1, check the singularities of the test matrices
{Z,2Z;,A0,] for all 1€i<j<4. It is found that only
det{Z,, Z,, Av, ] = 0. Therefore, we can conclude that node
3 and 4 are faulty and calculate the J, by (13)

0 0 0
s 0 0 0
"“| 00625 -0008929 -0.151789 |
-0.1875 ~0.116071 —0.026786

It is seen that the first two rows of J, are zero and hence
the first two rows of AY, are zero. Since AY, is symmetrical,
the first two columns of AY, are zero. Now, ST{V, + AV, ]
can be calculated from (20) and deleting the first two rows,
we obtain

0625 0.1339 0.2768
125 0.125 0.125 |

Finally, we can calculate the AY, by (26):
0 0
(ar,]s= +(l) -(I) '
-1 +2
The diagnosis is two branch faults:
Ayy=1

STV, +av, =[S

Ay, =1.

VII. ConcLusioN

The purpose of node diagnosis is to determine those
nodes which are fauity. A node is faulty if any branch
incident with it is faulty. Therefore, if faulty nodes are
correctly located, all the faulty branches must be incident
with these faulty nodes. A network is k-node-fault testable
if from some measurements, (1) one can determine whether
or not there are k or less faulty nodes; and in addition, (2)
if affirmative, the faulty nodes can be uniquely located.
Note that in the definition of testability it includes the
determination of the number k.

A necessary and almost sufficient condition of k-node-
fault testability is given in Theorem 2. It has three features:

1) The minimum value of test points m for which the
k-node-fault testability condition (9) to be satisfied is m =
k + 1. Therefore, it is possible to diagnose k-node fault
with k +1 test points, regardless of number of branches
and number of nodes.

2) The matrices to be tested in (9) have size only m X (k
+ 1), regardless of how large the circuit is.

3) The testability condition depends on the nominal
circuit and can be tested before a fault occurs.

If the testability condition is satisfied, procedures to
locate the faulty nodes and faulty branches are given in
Theorem 1 and Theorem 5, respectively.
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If the testability condition is not satisfied, then addi-
tional test points are needed. The choice of this additional
test points can be greatly simplified by the usage of Theo-
rem 4. The most important feature of this theorem is that it
depends only on the graph but not the element values of
the network. It is shown that this graphical condition is
necessary and almost sufficient for the testability condi-
tion.

V1. APPENDIX

A. The Uniqueness of Solution of Equation Bx = p
Recall that (8) has the form
Bx=p (A1)

where BEC™*" with n>m, x€C" and p€C™. For
practical problems, n > m, and, therefore, the solution of
(Al) in general is not unique. However, if we restrict the
number of nonzero components of x to be less than m,
then the solution could be made unique. Hence, we want to
find the solution of (Al) in X,.

Note that a solution x € X, of (8) exists if and only if p
is a linear combination of some k columns of B. Hence-
forth, let the subspaces spanned by the combinations of k
column vectors of B be denoted by R, i=1,2,---,r, where
r=C(n, k). Let the intersections of combinations of two
R.s be denoted by Q,, j=1,2,---,q9, where ¢=C(r,2).
Furthermore, let

Q= U R,

i

(A2)

q
2,=UoQ, (A3)

j=1
Evidently, Q, c Q.

Lemma I: Equation (Al) has a solution x € X, if and
only if p € 2, and the solution is unique in X, if and only if
PEN-Q,.

Proof: A solution x € X, of (Al) exists if p € R, for
some i, i.e., p €. Furthermore, (Al) has two distinct
solutions in X, if pE R, andpER; withi= j, ie,p€q,.
Therefore, (A1) has a unique solution in X, if p€Q - Q,.

Q.E.D.
Let b,, b,,- - -, b, be the column vectors of B.
Lemma 2:
dmR, =k, i=12,---r (A4)
and
dimQ, <k, j=12,---.¢q (AS)
if and only if

cank [b,,b,, b, | =k+1,
VIgi <iy<--- <i ., <n (A6)

i.e., every combination of (k + 1) columns of B is linearly
independent.
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This lemma has an important implication as follows. It
can be shown that

2-2,= U |R,~ U(RNR))|.
i=l j=1
j=i

In view of (AS), the measure of the second term in the
bracket is zero with respect to any k-dimensional measure.
Consequently, the measure of @, is zero. In other words,
for any bounded distribution of p, the conditional proba-
bility P(p€ Q- Q,|p €Q)=1. The above discussion can
be summarized together with Lemma 1 in the following.

Theorem Al: Let p € Q. Then (Al) has a unique solu-
tion in X, for almost all p € Q if and only if condition (A6)
is satisfied.

Since the existence of the solution is guaranteed for fault
diagnosis problems, condition (A6) becomes the only con-
dition needed for the uniqueness of solutions in X.

Proof of Lemma 2: Clearly (A6) implies (A4). It also
implies that R, = R, if i = j. Therefore,

dim(R,NR,) <dim R, =k
which is (A5).

Conversely, let (A4) be satisfied but (A6) be not satis-
fied; w.l.g., let

k+1
b, = Z a;b; (A7)
im2
where a, € C and not all a;’s are zero. Let
P=Sp[by, by, i)
R, =Sp[by,b,, - .b]
R, =Sp[by, by, -, bysy]

where Sp{x,,---,x,] is the notation for the subspace
spanned by (x, x,, --,x,). It follows from (A7) that
dim P < k, and from (A4) that dim R, = k = dim R,. Since
PO R, and PDR,,
R,=R,=P.
Therefore, dim R, N R, = k, which contradicts (AS).
QE.D.

B. The Proof of Theorem 3

The proof of Theorem 3 follows immediately from
Lemma B2 and Theorem 2. Let P,Q € C"*”; let P and Q

be partitioned in the following way:
P= [PH PlZ]
Py Py
u Qn
0 [an sz] (B1)

where P, €C™**, Q,,€C**™ kgsmand m+[=n.

Lemma Bl: Let PQ = I. Then, rank P,, = k if and only
ifrank Qyy = /= n—-m.
Proof: First, consider m = k. See [23].
Next, consider the case m > k.

Let rank P,, = k. Without loss of generality, let the first
k rows of P,, be linearly independent. If not, apply simul-
taneously row-operations on [P,, P,,} and column opera-
tions on

an]
On

then the first & X k principal submatrix of P is nonsingular.
Then the last (n — k)X(n — k) principal submatrix of Q is
nonsingular. Consequently, rank @, ={=n—m.

From Lemma B1, the following is seif-evident.

Lemma B2: Let Z,,Y,€C" " and Y,Z, = I. Let

S R

where Z,, , €C™*", Y, ,€C"*™and m+!=n. Letr <m.
Then every m X r submatrix of Z,,, has rank r if and only
if every (n — r)x/ submatrix of Y,, has rank /.
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ABSTRACT .

The topological conditions for k-node, k-cut
fault, and k-rank branch-set fault testability by
single test signal vector in analog circuits are
given. These conditions which are both necessary
and sufficient are essential in the choice of test
points. These conditions also have applications
to the design of testable circuits. The outcome
of these mathods can be further diagnosed by the
usage of multiple test signal vectors. This is
also discussed and the associated problems are
studied,

I. INTRODUCTION

Let N (Fig. 1) be a connected b-branches,
(n+1)-nodes, (m+1)-terminals, linear, time invari-
ant, lumped non-reciprocal network (Fig. 1). Out
of the (n+l1)-nodes, (m+1) are accessible terminals
for exitation and measurement. Label the nodes in
the following way. let one of the accessible
nodes be the reference node. Then label the rest
of the accessible nodes (1 = {,...,m) ahead of in-
accessible nodes (1 = a+l,...,n). The following
notations are used for N.

terminal (accessible node) voltage wector.
terminal current vector.

branch voltage vector.

branch current vector.

node (including accessible node) voltage
vector.

Yp ~ branch—admittance matrix.

Yy ~ node-admittance matrix,

My ~ the set of all accessidle nodes.

M <~ the set of all accessible nodes except the
reference node.

<
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Note that Yy, Y, need not be symmetrical, snd:
1p = Y v (n
Yo = A Yp AT )

where A is the in~idence matrix of the graph.

Now consider the network N is perturbed to
(M-AN) in the way that Yy is perturbed to Yu+AYp,
and the graph remains the ssme. 1In the perturbed
network, we denote the corresponding voltages,
currents and admittance by vgtivy, igtily, vp+ivy,
iy+aiy, voidvy and Yo +AY, respectively.

Given Yp and the graph, the purpose of the
fault diagnosis is to estimate 4Yy from the fnfor-
mation iy, Avy and 8iy. vy can be calculated from
iy and N, Without loss generality, we may assume
that

Mg = 0 (3

i.e., apply same {5 to the original network N and
the perturbed network N+4N.
Denote Z, and partition it in the following

way :

Zan
Zn =Yyl - . %)
Zan

vhere Zgn € (P, 2, ¢ CY™ 40d £ « n-m. Under
this condition, it can be shown that

2an A(ATYI(vy + Avy) = Avy (5)

Prom Eq. (5), assuming the number of nonzero
elements in AYp is small, it suggests that one can
determine the locations of nonzero elements of 4Yy
and therefore the location of faulty branches pro-
vided that the number of sccessible nodes 1is large
anough. This discovery was made by Biernacki and
Bandler [1,2] and Sakla et al. [3]. The advan-
tages of this approach are that one can rely only
on the parassters of N (or the nominal circuit)
and the seasurements to diagnose the faulty cir-
cuit and the computation favolved is all linear.

However, there are certain inevitable struc-
tures, such as a small loop, in the practical cir-
cuits wvhich, i{f not carefully taken care of, would
mess up the results of this approach. In the next
section, we will discuss the systematical ways of
materializing this approach and, more importantly,
provide the graphical conditious for placing the
test pointe.
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Por the purpose of simplicity, all the
results presented here are for the case when N
contains no dependent sources, Extensions of
necessary conditions and sufficient conditions to
include dependent sources are given in [4],[5],[6]
and {10].

I1. NODE-FAULTY, CUT-FAULT, AND BRANCH-SET
FAULT DIAGNOSIS

In this section, we will present three dif-
ferent methods of systematically isolating the
fasults in analog circuits from a single test sig-
nsl vector. These three methods, node-fault, cut~
fault, and braach~set fault diagnosis, represent
three different veys of grouping the branches.
they will be concisely discussed subsequently and
the graphical conditions for placing the test
points in each case vill be summarized.

Pirsc, let us define a faulty branch and a
faulty node.

pefinition 1: Branch k, k = 1,2,,..,b is said to
be fault-free 1f the k-th row of AYy is zero.
Node J, J = 1,2,...,n, is said to be fault-free if
all branches {ncident with node j are fault-free.
otherwise they are faulty.

Then, k-node=fault testability can be defined
as follows. '

pefinition 2: A network N is said to be k-node-
fault testable if when N is perturbed to (N+AN),
one will he able to determine, by choosing one
sppropriate test signal vector i,, from the meas-
uresent on accessible nodes My:

(A) vhether or not N has no more than k node-
faults,

if affirmative, the faulty nodes can be
uniquely located.

(8)

The following theorem provides a graphical
condition for k-node-fault testsbility. To state
the theores, first let us construct a modified
graph G, from N by deleting all branches incident
vith the reference node and connecting the rest of
accessible nodes to a new node a,. Then the
theorem follows.

Theores 1 llol:

ars equivalent:

(1) N {is k-node-fault testable w.r.t. M for
slmost all values of Y.

(2) There are at least (k+1) disjoint pathse!
between any inaccessible node and a, in Gy.

(3) There are at least local (k+l)-connectivity?
in Gp between any inaccessible node and a,.

The following three statements

When ¥ is k-node-fault taestable, the proce-
dure of locating the faulty nodes is given in (4]
and (10].

1. 1wo paths are said to be disjoint if there are
no common nodas except the two end nodes (8].
2. The local connectivity of two nodes is the
Ti?llll aumber of the nodes separatiag thea
9.
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A node fault is a way of grouping branches
incident with the node. An extension is the group
of branches by cuts. A cut is a cut-set or a dis~
joint union of cut-sets in a graph G (7]. For a
given get of t cuts, there is a corresponding cut
matrix H € REXD uhose (1,§)th entry hgy = 1 1f
branch jJ {s in cut 1 and hys = 0 1if branch j is
not in cut 1. A set of bssis cuts Q in G is the
set of n cuts whose corresponding cut matrix has
rank n wvhere n is the number of nodes minus one.
Then the following definitions can be stated.

Definition 3: A cut is said to be fauylt-free {f
21l branches coatained in this cut are fsult-free.
Otherwise, it is faulty.

Definition 4: For a given set of basis cuts Q, a

neiwoik N {3 z22id ro be k-cut-fault testable 1if

when N is perturbed to N+AN, one will be able to

determine, by choosing one appropriate test signal

vector iy, from the measurements oo M,:

(A) whether or not N has no more than k cut=~
faults in Q.

(B) 1if affirmative, the faulty cuts can be
located uniquely.

With a mild condition, it can be showm [S)
that, in a circuit N, k-cut-fault testability for
any given set of basis cuts {s equivalent to k~
node-fault testability, snd that the faulty cut
can be uniquely determined.

For a given set F of faulty branches, the
nuaber of faulty cuts will be differeat for dif-
ferent choices of set of basis cuts. The follow—-
ing theorem shows how to choose the set of basis
cuts so that it contains fewest faulty cuts.
First, let F be the get of faulty branches in N
and k’ be the number of nodes, excluding the ref-
erence node, incident with P. Since F may not be
connected, let F conslst of r separated parts,

Theorem 2 [5): For a given P in a circuit N there
exists a set of basis cuts Qp which has only (k“-
r) faulty cuts. Furthermore, any other set Q has
at least (k’~-r) fsulty cuts. In other words, (k°-
r) is the lowest bound of faulty cuts in any Q.

Remark: Theorem 2 has the following implications.
1f N 1a k-node-fault testable, then for any fault
pattern F for which (k“-r) < k, there exists Qp
which can uniquely locate the n-(k“~r) fault-free
cuts., P will be contained in the remainder of the
graph. Since there are no more than C(b,k) number
of fault patterns for which (k°-r) < k, we need
only to use no more than C(b,k) number of Q's to
cover all such fault pacterns. The construction
of Qp is given in [5].

Finally, let us consider another method of
fault isolation, namely k-rank branch-get diagno-
sis. A k-rank branch-gset is a subgraph of N which
consists of (1) k branches containing no loops and
(2) all of those branches esch of which forms a
loop with branches in (1). Since the incident
satrix of a k-rank branch-set has rank k, the name
follows, Then the following definition can be
given,

Definition 5: A Y%~rank dranch-get is said to be
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fault-free if all bdranches contained in this
branch-set are fault-free. Otherwise, it is
f.“lq .

Evidently, given a set of faulty branches in
N+AN, there may be many k-rank branch-sets which
all contain these faulty branches. However, there
exists a unique k%-rank branch-set in N+AN such
that if another k-rank branch-set also contains
all the faulty branches then k > k®, Define this
kO-rank branch-set as minimum-rank faulty branch-
set. The goal of k-rank branch-set diagnosis is
to locate this minisum—-rank faulty bdranch-set. It
can be accomplished, if the condition given in
Theorem 3 1is satisfied, by a procedure similar to
thae in {1,2,3]. However, because of our grouping
of branch-sets, the unnecessary repitition of
computions resulting from indistinguishable fault
patterns is eliminated. The detail can be found
ia (6].

Next, we will give the definition of k-rank
branch-set fault testability.

Definition 6: A network N is said to be k-rank
ranch-set fault testable {f when N is perturbed
to N+AN, one will be able to determine, by choos-

ing one appropriate test signal vector i,, from

the measurements on My:

(A) whether or not there exists a k-rank branch-
set which contains all faulty branches in N,

(B) 1f affirmative, the minimum-rank faulty
branch-set can be uniquely deterained. The
ainiaus-rank is no greater than k.

As in the case of k-node-fault testability,
there is & graphical condition for k-rank branch-
set fault testability. To state the theorem, we
need to introduce another modified graph Gy of N.
Thie graph Gy is constructed from N by connecting
all the nodes in My, 1.e., all the accessible
nodes including the reference node, to a new node
ap. Notice that the difference in dealing with
the reference node here and the case of k-
node-fault testability.

Theorem 3 [6]: The following three statements are
equivalent:
(1) N is k-rank branch-set fault testable

V.r.t. My for almost all values of Y.
(2) There are st least (k+2) disjoint paths
between any inaccessible node and ayp in
Gp.
(3) T:cgc are at lesst local (k+2)-
connectivity in Gp between any inacces-
sible node and ay.

As 8 conclusion of this eection, let us in-
vestigate the relationship between k-node-fault
testability and k-rank branch-set fault testabil-
ity. A relationship for a given My in N can be
summed up in the following two theorems.

Theorem 4 !6': For any given set My of accessible
nodes, 8 k-rank dbranch-set fault testable,
then N is k-node~fsult testable w.r.t. any refer-
ence node in M,.

The converse of Theorem 4 is not true in

general. However, 1if N eatisfies a structural
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condition, then the converse is also true. This
is stated in the following theorem.

Theorea 5 |6|: Suppose that there is an accessi-
ble node my in My, which is adjacent to every in-
accessible node. Then k-rank branch-set fault
testability is equivalent to the k-node-fault

testability if m, is used as the reference node.
111. MULTIPLE TEST SIGNAL VECTORS

From the discussions in the previous section,
it i{s clear that the fault isolation methods with
single test signal vector can only isolate the
faults into a subcircuit but are unsble to further
identify the faults. In this section, we will
discuss how to take sdvantage of the multiple test
signal vectors in fault diagnosis. In the follow~
ing discussion, we only state the theorems con-
cerned with k-rank branch-set diagnosis. The re-
sults concerning the other two cases are similar
aad thervefore are omitted.

To begin with, leét ues introduce some more
notations. A set of branches is acyciic if it
contains no loops. L An acyclic t-branch in N {s
excitable w.r.t. !g if the bdranch voltage vectors
of these t branches can be generated to span a t-
dimensional space by appropriately applying sul-
tiple test signal vectors on My. If every acyelic
t-branch in N is excitable w.r.t. My, then N is
said to be t-acyclic~-branch excitable. With these
definitions, we can state the following theorens
[6' .

Theorem 6: Suppose that N is k-rank branch-set
fault testable and M+AN is k-acyclic-branch
excitable. Then all the faulty branches can be
uniquely determined by k independent multiple test
signals.

Theorem 7: N 18 (k-!)-rank branch-set fault
testable if snd only 1f N {s k-acyclic=bdbranch
excitable.

Theorem 8: 1If N is k-acyclic-branch excitable and
N*AN has the same graph as N then N+AN s k-
acyclic~branch excitable for slmost all AYy.

In summary, suppose that N {s k-rank braanch~
set fault testable. Then we can determine whether
a set of fault branches can be contained in one of
the k-rank branch-sets by a single test signal
vector (Theorem 3). Furthermore, if affirmative,
ve can uniquely determine the sinimum-rank branch-
set vhich contains the faulty branches by a single
test signal vector (Theorem 3) and we can unigquely
determine the faulty branches by 2 k multiple test
signal vectors if the conditions of Theorem 8 are
fulfilled.

Similar results can be shown for node-fault
and cut-fault diagnosis.
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nere are three branch fauits (a, b, c) but only two node almost all Av,,. Furthermore, all faulty nodes can be
faults (1,2). uniquely isolated by (13).




