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CHAPTER 1

MATHEMATICAL OVERVIEW

• 1.1 Introduction

* -Program AGAUS treats electromagnetic scattering and absorption of spherical
particles by Mie theory. The rigorous formulation of the problem of the
interaction of a sphere and a plane wave can be found in a number of books on
advanced electromagnetic theory1 2 3 and will not be repeated here. In the

* interest of clarity and uniformity of notation, however, a brief summary of
" the needed results of the theory is included. The primary objective of this

section is to provide descriptions of ways in which AGAUS handles integrations
over distributions of particle sizes and mixtures of different particle size-
distributions.
In analytic notation, a "size-distribution" (or, a "model") is described by a
"distribution function" f(r) with the property that f(r)dr is the relative
number of particles (within a unit volume of space) having radii between r and
r + dr. (In a strict mathematical sense, f(r) is a "probability density
function," but the present usage is common.) The total number of particles
per unit volume (N) Is found by integrating f(r)dr between minimum and maximum
values of r appropriate to a given physical situation. Within AGAUS, f(r) has
the units "particles per cubic centimeter per micrometer radius."*

• 1.2 Notations for Individual Particles

Common lfe theory assumes that the interactinq sphere is homogeneous and
characterized by a radius and a complex index of refraction n = m - ik. The
overall interaction is usually characterized by quantities called "efficiency
factors" represented by the letter Q. Four such quantities are used in AGAUS
and are given subscripts e, a, s, and r representing extinction, absorption,
scattering, and backscattering, respectively. When multiplied by the
geometric area of the sphere, the efficiency factors give cross sections for
the above processes. Cross sections are often represented by the letter C,
with an appropriate subscript. The Q's and C's are functions of the complex
index of refraction (itself a function of wavelength) and of the radius of the
sphere and the wavelength of incident radiation. Except for the implicit

'Van de Hulst, 1957, Light Scattering by Spherical Particles, John Wiley and
Sons, Inc., New York

2W. K. H. Panofsky and M. Phillips, 1962, Classical Electromagnetic Theory,
second edition, Addison-Wesley Publishing Co., Cambridge, MA, pp 233

3M. Born and E. Wolf, 1959, Principles of Optics, Pergamon Press, Oxford,
England, pp 630

*With the exception of type 0, within the actual computer code, f(r) is
Internally normalized In such a way that N = 1, and the absolute number of
particles per unit volume is determined from data that must be supplied by a
user. For this reason, f(r) is called a "relative" number density in chapter
2.

L'
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dependence of m and k on the wavelength, the particle radius and wavelength
affect the efficiency factors only in ratio form, giving rise to a
dimensionless "size parameter" a--the circumference of the sphere divided by
the wavelength.

The detailed angular distribution of scattered radiation is described by a
"phase function" p(n), which gives the scattered energy per unit solid angle
per unit incident radiation. The phase function, like the Q's, is a function
of radius, the wavelength, and the index of refraction. Since problems
treated by AGAUS are azimuthally symmetric, p is often written as p(e) even
though it is properly a function of both e and *.

1.3 Notations for a Single Size-Distribution Model

In dealing with an aerosol model consisting of many particles of identical
composition but varying radii, the efficiency factors (and the phase function)
must be weighted by the distribution function f(r) to secure an overall cross
section. Thus, for example, the total scattering cross section for all
particles in a unit volume of space is given by

rmax

Cs (A) = r ir2Qs(r,m,k,x) f(r)dr , (1.1)
rmi n

with similar formulae for extinction, etc.

In the same vein, one can define an average cross section per particle (or a
cross section per average particle) via

s Cs(A)/N (1.2)

.4

where N is the number of particles per unit volume. The average phase
function p(e) is found from

1,•rmax
= ~ f p(e) f(r)dr . (1.3)

rml n

1.4 Mixtures of Size-Distribution Models

To indicate how AGAUS combines mixtures of two or more aerosol models, a
subscript I will be added to f(r) and to the Qs and p. Thus fi(r) will

represent the distribution function for the ith component of a mixture, etc.

6.. . . . .
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Then

N-: i fi(r)dr , (1.4)1r ml n

C S( = f r 2 Q (r,m,k)f 1 (r)dr, (1.5)

T C (X)/NI, etc. (1.6)a..

The total cross sections for a mixture are then found from formulae such as

Cs = Ni fs (1.7)

The combined phase function is calculated from

N N W1(e) I
. ,"

PM8 NC (1.8)

so that

X2

f p (SI) z M 7(1.9)

Note that the FINAL phase functions printed by AGAUS are normalized such that
the above integral is unity.

The detailed relationships between the Q's, p(e), and the parameters m, k, and
are summarized in section 1.8.

1.5 Extinction, Scattering, and Radar Coefficients

Readers may note that the "cross sections" discussed above do not really have
the usual dimension of area, but rather the dimensions of area per unit

7



volume, or of inverse length. Thus, for example, Ce represents the extinction

cross section for all those particles located in a unit volume of space.
Multiplication of Ce by the volume of an optical path is required to get the

true extinction cross section for the path. If one assumes a unit cross

section for such a path, then Ce can be regarded as an extinction

* "coefficient" Ke. AGAUS calculates and prints several such "coefficients"

.: having the final unit "per kilometer." As an example, consider a homogeneous
path of L kilometers. The optical depth of the path is given by

T= Ke L (1.10)

and the radiation intensity I(L) would be found from

I(L) = 1(0) exp(-r) . (1.11)

1.6 Treatment of Ifgroscopic Particles

Hygroscopic particles absorb water from an ambient atmosphere and may undergo
growth to sizes that differ from their initial values. The easiest type of
growth to formulate is that in which the absorbed liquid water and the initial
material form a solution droplet. Even this simple type of situation is quite

. complicated, but certain useful approximations do exist and are used in
AGAUS. The best known survey of the growth of hygroscopic particles and

' attendant changes in optical properties is that of G. Hanel, 4 whose reading is
-highly recomm.nded for anyone wishing to utilize these features of AGAUS.

The starting point for size adjustments is the equation4

3 ,)"+ PsP(aw) awr' 1w a ( 1.12)
0 w

4G. Hanel, 1976, "The Propertiee of Atmos,eric Aerosol Particles as Functions
of the Relative Humidity at ermodyr .c Equilibrium with the Surrounding
Moist Air," Advances in Geophys, 4e o 19, Academic Press, New York

8
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which is essentially a combined form of equations (2.31) and (2.22) of

reference 4. The quantities appearing here are ps , the mass density of the

original aerosol material (the solute); P., the mass density of pure liquid

water; P, Hanel's "growth factor"; and aw, the "water activity" of the system.

"" The water activity aw is related to the equilibrium particle radius r, the

fractional humidity f (percent per 100), and the temperature T through the

equation

aw = /ec/r(1.13)

2ov
where

-" in which a is the molecular weight, v is the surface tension, R is the
universal gas constant, T is the kelvin temperature.

Equations (1.12) and (1.13) are coupled by r and aw and are solved
simultaneously by means of an iterative procedure.

From equation (1.13)

aw f

a Tr_ f (1.14)

Substitution of equation (1.14) into (1.12) yields

_ 1 + e/rf (1.15)

Equation (1.15) is then used as follows: an initial estimate of r is taken to
be the dry radius r and is used to calculate the right-hand side of the
equation. This procedure provides a new value of r via the equality. The new
value is then used to recalculate the right-hand side of equation (1.15) to
get a second estimate of r. This procedure is continued until a new estimate
differs from the previous one by no more than 0.01 percent.

"G. Hanel, 1976, "The Properties of Atmospheric Aerosol Particles as Functions
of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding
Moist Air," Advances in Geophysics, Vol 19, Academic Press, New York

9
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After exit from the iteration procedure, equation (1.13) is then used to
calculate a value for aw . The net droplet density is then found from

!~
u a

(1 + -- )/A (1.161

where

Ps f

A = 1 +-•::". P W c / r -  ( 1 .1 7 )

Equations (1.16) and (1.17) are essentially equation (2.46) of reference 4.

The complex index of refraction n = m - ik is then obtained from

m =m w + (ms - mw)/A (1.18)

and

k = kw + (ks - kw)/A . (1.19)

Since the growth factor u is generally a function of aw, the procedure
outlined above is not truly complete. A user must still supply a value for 11
in some fashion. As a matter of fact, u may even be an indirect function of
radius, but Hanel states that it is reasonable to use an average value iT and
to ignore that complexity.

Perhaps the easiest way to enter a value of u into AGAUS is via the input
parameter EMUA (j--assumed to represent an averaged value as noted above) and
to ignore the dependence of u on r. EMUA must still be regarded as a function
of aw  (or the fractional humidity), however. The only reliable way to
determine the appropriate values of 7 for a given material is by experimental
measurements. Reference 4 provides some guidance in the matter as well as
some examples of 7 - f dependencies for several aerosol models.

4G. Hanel, 1976, "The Properties of Atmospheric Aerosol Particles as Functions
of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding
Moist Air," Advances in Geophysics, Vol 19, Academic Press, New York

10



1.7 Validation of AGAUS

The continued fraction subroutine (MIEGX), which does the actual Mie
calculations in AGAUS, was evaluated by Burlbaw and Miller 5  through
comparisons with J. V. Dave's routine DAi4IE. 6  In all cases for which the
latter routine was considered to be reliable (size parameters to 400 for
nonabsorbing spheres, and smaller size parameters for absorbing spheres), the
agreements were to five digits or better. MIEGX was also tested against a
code MIE2, developed by Radiation Research Associates, and again showed
equally good agreement. Unlike most other known codes, MIEGX does not fail at
the machine level (that is, does not produce underflows or overflows arising
from finite precision "roundoffs," etc) even at size parameters of 1000 or
greater (see also section 2.2.3).

The halving method of integration employed in AGAUS has been validated by
conparing the results of complete runs for several different aerosol models
with results published by others, including Shettle and Fenn 7  and
Deirmendjian. b  Some of these evaluations have been reproduced in reference

. 5. Any users who wish to make similar evaluations should remember principles
of the halving method* and should be sure to make the convergence criterion
(delta) small enough to insure that the minimum interval in radius is
comparable to that used by others.

1.8 Su=ary of ie Theory Used in AGAUS

Mie theory predicts the scattering by and the absorption in an isolated,
discrete, homogeneous, isotropic sphere of radius r with a known complex
refractive index n = m - ik relative to the surrounding medium and illuminated
by monochromatic radiant energy with wavelength X in the surrounding medium.
The theory is given in detail in standard texts and need not be repeated
here. Instead, those elements of theory needed for an understanding of the
numerical algorithms used are included. The information in this section is
partially based on material from Burlbaw and Miller5 and Shirkey et al. 9

5 E. Burlbaw and A. Miller, 1981, Modification of Single Scattering Model
AGAUSX, ASL-CR-0780-1, US Army Atmospheric Sciences Laboratory, White Sands
Missile Range, NM

6J. V. Dave, 1972, Development of Programs for Computing Characteristics of
Ultraviolet Radiation, Technical Report for Contract NAS5-Z1860 (NASA), IBM
Corporation

7 E. P. Shettle and R. W. Fenn, 1979, Models for the Aerosols of the Lower
Atmosphere and Effects of Humidity Variations on their Optical Properties,
AFGL-TR-79-0214, Air Force Geophysics Laboratory, Hanscomb Field, MA

bD. Dei rmendjian, 1969, Electromagnetic Scattering on Spherical
Polydispersions, American Elsevier Publishing Company, Inc, New York

*See section 1.10.

9 R. C. Shirkey et al, 1980, Single Scattering Code AGAUSX: Theory,
Applications, and Listing, ASL-TK-uuOZ, uZJ Army Atmospheric Sciences
Laboratory, White Sands Missile Range, NM

is II



All scattering properties of spheres are Computed from m and k, and throughthe use of the induced electric and magnetic multipole moments of the sphere
a, and b,, respectively. The moments are given by*

Vj'(nax) Yt(ca) n ft(nac) 4Y'(ci)
a Y~na) &,a n £) a (1.20)

and

n 'r'(nc) 'Y (c) -Y(fla) T'(cz)

n Tj(na) %a) -Y(na) Yjc) (.1

The prime denotes differentiation with respect to the argument. The T' (z) and
~(z) functions are Ricatti-Bessel functions of the first and third kinds,

respectively, and are related to spherical Bessel functions j (z) and n. (z by

'YL(z) Z Iz (1.22)

and

& =z zi (z) -Izn~ (z) = (z) + ix (z) (.3

where

I (z) = lt x2 +1/2(z) (1.24)

*a is the Mie size parameter and is equal to 2wr/x, where r is the radius of a
sphere.

12



'- and

rw1/2

n9 (z) = 12 N9.+I/2 (z) (1.25)

The function Jt+1/2(z) is the half integral order Bessel function; the

function N (z) is the half integral order Neuman function.
t.1/2

The extinction cross section is computed from

°a

C A . (21 + 1) Re(a + bCext 1 9=9 ' (1.26)

and the scattering cross section from

sca 2" £ (21 + 1) [la,1 2 + Ib,12]scI 77 (1.27)

The various cross sections are the basic quantities used in scattering
problems, but tney are not the quantities usually computed directly from Mie
algorithms. Instead, it is more convenient to compute dimensionless
efficiency factors Qext and Qsca, which depend on in, k, and a, and which are

multiplied by the geometrical sphere cross section to obtain the true cross
section C i = ir 2Qi . Thus,

Qext L (21 + 1) Re(a + b) (1.28)ext 2  9.=1 '(.

and

Qsca = (21 + 1) [la,1 2 + 1b912] (1.29)Q . (1.29

13
.4
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Although the cross sections account for the energy removed from the forward
beam, they do not give any information about where the scattered photons go.
This information is contained in scattering amplitudes and intensity factors
that relate the flux density scattered through an anqle relative to the
incident flux density. There are two amplitudes, S (-) and S2 (0), and

intensity factors i i(e) and i2(6), which correspond to light, resDectively,

polarized perpendicular and parallel to the plane of scattering defined by the
direction of incidence and the direction of scattering.

The intensity factors are related to the scatterinq amplitudes by

il(e) = ISI(e)1 2  (1.30)

i 2(e) = Is2()12 (1.31)

The amplitudes come from the multipole moments through

S ") -IF TT (a () + ' (1.32)

and

S2(6) 2t + 1 [b it (e) + a T (e)]
S =9. +()- + .£9 I£ ' (1.33)

and angular factors I(0) and T (6) defined in terms of associated Legendre
functions:

(e) = P1 (cos 8)/sin o• .- '(1.34)

dP'(cos e)

,(e) - e(1.35)

14
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Alternative expressions frequently used are

*dP~ (Cos 0)
X d(cos e) (1.36)

and

dir (e)
(e)o cos e'0 Sn (1.37)

where

P ~(os e = cos~-1)(1.38)
2 L! d(cost e)

These functions satisfy the following recurrence relations:

(0) =Cos e 16 (e) - T ( (.39

K: and

e)=Cos e [w(e) -w ())-(21 1)sin2e (rti ) + t(6)

(1.40)

The scattering cross section measures the ability of a particle to scatter
light; consequently, Csca is expected to be obtained from an integral over the

scattering intensity factors. Equation (1.27) follows from

Csc = (ilie) + 2(8)) d(cos 6) (.1

sca (1.15
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Although the Intensity factors themselves may be used in scatteringcalculations, they are primarily suited for computing flux densities, and
frequently scattered light can be more conveniently measured and computed interms of radiances. Radiances do not have an inverse square distance
dependence; therefore, the distance from the scatterer to the detector need
not be known if the detector field of view is small and is filled by the
scattering cloud. The phase function p(e) gives a radiance I scattered into

S.the 9 direction in terms of the radiance 10 incident on the particle.

.* The phase function is dimensionless and is defined in AGAUS as

%A2

p() - [l(e) + i2  ] (1.42)
812 Csca

The integral of the final normalized phase function printed by AGAUS is unity.

For the special case of e = 1800, backscatter, the efficiency is expressed bythe radar cross section a. The radar cross section may be defined as 4w times
the backscattered power per steradlan divided by the incident power per unit
area or

o = 4w r2 1(r,180*)/Io (1.43)

This expression can be reduced by the relations

1(t,e) 0 ) + 12 (e)}

2k2 r2  (1.44)

and

i"(18 0°) = 12(1800) = 1S1(ZBO°)1 2  1.)• (1 .45)

Thus

l411

o = - ISI(1800)12
(1.46)

16
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and when divided by the geometrical cross section, G = wr 2 ,

41 S, (1800)12

Oradar a ' (1.47)

where a = 2wr/X . Using

-7 (1800) = r (180°) = (1)) • t (L + 1) (1.48)

one obtains

-S1(180 0) = S2(1800) = Y (t + (-1) (a2 - b2 ) • 149)

1.9 NImerical Techniques for Mie Theory in AGAUS

Most of the numerical calculations performed by AGAUS are those associated
with calculating the coefficients a and b. These calculations are performed

by a subroutine (MIEGX) that is based on a "continued-fraction" method for
finding the Ricatti-Bessel functions. The method employed is that of W. J.
Lentz. This method was chosen because it provides very good accuracy using
only single-precision arithmetic and because of the ease with which it handles
large size-parameters and imaginary parts of the complex index of
refraction. Since the method is not widely employed, it is reviewed in some
detail here.

Subroutine MIEGX used in AGAUS is a modified version of a routine (DAMIE)
originally developed by J. V. Dave.6  The major modification, made by Lentz,'0

was the use of a continued-fraction method rather than ordinary backward
recursion techniques for evaluating some of the quantities appearing in
equations (1.20) and (1.21). The continued-fraction method will be discussed
in more detail below. It is noted, at this point, however, that the angular
functions w and T are evaluated in MIEGX using forward recursion and

10W. J. Lentz, 1976, "Generating Bessel Functions in Mie Scattering

Calculations using Continued Fractions," Appl Opt, 15(3):668

6 J. V. Dave, 1972, Development of Programs for Computing Characteristics of

Ultraviolet Radiation, Technical Report for Contract NAS-eItbU (NAbA), IBM

Corporation

17
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equations (1.39) and (1.40) and starting values r 0, ,r(e) = 1,
To(a) - 0, and TI(B) = COS 1 0

For computational purposes of MIEGX, equations (1.20) and (1.21) may be
rewritten in the following forms:

6

b [n.n+ - Re[EF(a)] - Re[tF _(a)]

a, 'A ---- (-it-- (1.51)

.,

• -A(a) - Re( - Re[,.(a)]

b£

and z -n is complex.

SSeveral methods have been used for evaluating the quantities 1.and A The

principal difference between MIEGX and Dave's Mie routines is the way in which
*the ratios A~ are found. Lentz's continued-fraction method evaluates the

quantities A A brief summary of the latter methodwis given below, but

* interested readers should refer to Lentz's article for detailed information.

* To simplify notation, the common form for a continued fraction:

6j. V. Dave, 1972, Development of Programs for Computing Characteristics of
Ultraviolet Radiation, Technical Report for Contract NAS5-?1B60 (NASA), IBM
Corporation

18
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f g~+

g+ 1

931

g4 +1
g5 + "'" (1.54)

will be written as

1 2 9 3 g4 1.5

With the first of those notations, Lentz showed that

'" Jt-I z  21 1 D 1 - 1- (z) - TO (1.56)
1(I + 1)z- 2(1 + 2)z- 2(1 + 3)z(

To clarify the procedure used in MIEGX, it is most convenient to use a second
compacted notation for the continued fraction (1.54):

f = I g2' 93' "'') (1.57)

Then, defining the "kth convergent" to be

k= [g' 2' g39 ' ] ' (1.58)

Lentz showed that

fk19,[g -  g 2  (1.59)
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The order of the terms appearing in equation (1.59) has been reversed to
emphasize that the evaluation begins with g, rather than with an unknown value

The ratio J (z)/J (z can now be expressed in the form of equation (1.59) if
one takes

g= (-1) i+1 2(1 + i + 1) z (1.60)

Subroutine MIEGX utilizes the foregoing procedures for calculation of the

ratios J._ /J, needed to evaluate the Mie coefficients a, and b,. In

practice, MIEGX initially determines the value of At and some value of X, say

x = N, such that N is the largest value of L whose use is expected in a

particular run. The required Ji /Jr ratio is evaluated by calculating the

relevant value of fk [equation (1.59)] for a sequence of k values up to the k
for which

k- 1] < (1.61)

where c is a tolerance value corresponding to the precision available within a

particular computer. E is given the value of 10-6 for 32-bit precision
calculations.

Once AN has been found,* the values of At for x < N are found by backward

recursion and are stored in an array for recall as needed in evaluating the

Mie summations of

Re[S ()], Im(S (e)], Re[S (e)] and Im[S (e)]
1 1 2 2

The sum is terminated when

*If N exceeds the dimension NDIM of the complex array A( ) MIEGX, then

A2xNDIM (or A3xNDIM, etc.) is calculated and backward recursion is used to

find the needed Aits.
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,aJI
2 + IbJI2 < E (1.62)

and when the fractional change in the radar efficiency is also less than c,
that is, when

"Qrad I - Orad 1-1<E
* "ad < £ *(1.63)

,.':rad,

-, This is more stringent than the first test alone and is a test on the phase
functions as well.

-* For size parameters smaller than 0.01, the cumbersome Mie apparatus is
bypassed and Van de Hulst's1 analytic approximations are used for finding the

" efficiency factors and phase function.

•MIEGX returns the following quantities as required by AGAUS: Qext Q Qsca,

Qrad, and P(J). The P(J) as returned by MIEGX are average intensities and

must be further normalized to become the actual phase functions [equation
(1.42)]. Some limitations associated with numerical implementation of the
above procedures are discussed in section 2.2.3.

*- 1.10 Other Iumerical Procedures Used in AGAUS

AGAUS handles numerical integrations of the type indicated in equations (1.3)
and (1.5) using the "trapezoidal rule" and a process called "halving." The

- latter process is described next.

A general idea of how program AGAUS performs integrations over sizes can be
obtained by considering a numerical method for determining the area under a
curve g(r) versus r such as that sketched in figure 1. The objective is to

*evaluate numerically an integral

max

W G = f g(r)dr (1.64)
rmin

'Van de Hulst, 1957, Light Scattering by Spherical Particles, John Wiley and
Sons, Inc., New York
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to some desired degree of accuracy using the smallest number of values of r
for the numerical calculations. The procedure adopted in ASAUS is as follows
(reference to figure 1 may be helpful):

a. An initial estimate Gi of the value of the integral is made with three

values of r labeled by Roman numeral I and the "trapezoidal rule."

b. A second estimate G is then made with increments Ar, which are half

as large as those used in getting G . In getting G the two additional r-
values labeled 11 are utilized.

c. The values of G and G are compared to each other by calculating a
quantity

G2 - Gil

and comparing it to a preset quantity A.

If 6 < A, then it is assumed that G is a "sufficiently" accurate

representation of G, and the computations are terminated. If on the other
hand, 6 > A, one proceeds.

g(r)

rrIllI II III 2 I! III I

Figure 1. Sketch of how values of particle radii are selected in the halving
procedure of AGAUS.
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d. A third estimate G3 of G is then made by again cutting the increment

ar to half its previous value. This results in the addition of computations
at the three new r-values labeled III in figure 1. A new value of 6 is then
calculated from

"G3 -G21
,6 = (1.66)

and 6 is again compared to A. If 6 is still greater than A, the spacing
between r-values is cut in half once more, and the "estimation-comparison"
process is repeated until either 6 < A or some maximum number of r-values has
been reached.

In AGAUS, the quantity used in the testing process is the total volume of the
aerosol particles, namely,

-- V = f r3 f(r)drF,..': "(1. 67)

Volume was chosen as the quantity to be tested because its r3 dependence might
make it converge more slowly than the extinction or scattering cross sections
while maintaining a reasonable convergence for phase functions. The code may
be easily modified to test on any desired quantity; however, the maximum
• number of radii allowed by AGAUS depends on the number of size groups defined
in'a run and may be changed by revision of the source code (see section 2.3.2
f6r additional discussion of this matter).
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CHAPTER 2

USER HANBOCK FOR AGAUS 82

2.1 Introduction

AGAUS is a ifie scattering code for calculation of the single-scattering
properties of polydisperse spherical particles. The primary quantities
calculated Dy AGAUS are the extinction, scattering, absorption, and
backscatter coefficients plus the angular intensity distribution produced by
various forms of particle size-distributions. The code contains seven
different size-distribution models and also permits a user to provide an

, arbitrary size model as a set of discrete numerical input data. There is, in
addition, a special subcode that may be used to tabulate the Mie efficiency
factors (extinction, scattering, absorption, and backscatter) as a function of
particle radius. An important feature of this version of AGAUS is the ability
to treat and combine the scattering properties of a mixture of up to five
different size-distributions in a single run and to repeat the process for an

%- arbitrarily large number of wavelengths. A method for handling the effect of
relative humidity on the equilibrium sizes of hygroscopic particles is also
included.

2.2 Suary of Output Quantities

This section presents a summary of the quantities produced and printed in a
run of AGAUS. iore detailed descriptions may be found in subsequent sections.

2.2.1 Definitions

a. "Size-distribution model" refers to a particular functional
relationship between the relative number of particles per unit radius and the
values of the radius.

b. "Distribution-type" refers to a number that identifies the various
"size-distribution models" that are recognized by AGAUS as valid.

c. "Size-group" or "size-bin" refers to particular ranges of values of
particle radii for which certain optical properties are calculated and printed
by the program. To clarify what is meant, consider a situation in which one
wants to examine particles with radii between 0.0om and lOum, but would like
to see the properties of particles whose radii lie in the ranges 0.Oum to
2.0gm, 2.um to 5.Oum, and 5.0um to 10.Oum. This would be handled by dividing
the overall range (0.0 to 10.0) into three "size-groups," with "group 1"
belonging to radii between 0.Oum and 2.OWm, etc.

* . 2.2.2 Iaor Outputs

With those definitions the major outputs can now be described:

a. Particles per Gram. The number of particles in a 1-g sample of
material if all the particles in the sample had radii belonging to a size-
group.
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b. lmber Fraction. The ratio of the number of particles that would
belong to a size-group to the sum of the numbers of particles in all size-
groups being used in a run. As an example, supoose that three size-groups are
being used and that a 1-g sample contains 10 particles with sizes belonging to
group 1, 100 particles in group 2, and 5 particles in group 3. Then the
number fraction for group 1 would be 10/(10 + 100 + 5). For group 2 it would
be 100/(10 + 100 + 5), and so forth.

c. Mass Fraction. The fraction of the mass contained by particles in ALL
size-groups that would belong to particles whose radii place them in a
selected size-group. Continuing the above example, suppose that the 10
particles in group 1 has a mass of 0.0005 g, those in group 2 a mass of 0.80
g, and those in group 3 a mass of 0.1995 g. Then the mass fraction for group
1 would be 0.0005; for group 2, 0.8; and for group 3, 0.1995.

d. Cumlative Mass Fraction. The sum of the mass fractions of all size-
groups up to and including the group for which this quantity is generated.
The cumulative mass fractions for the examples above would then be 0.0005,
0.8005, and 1.0000.

e. Group Cross Sections in Square Centimeters per Graim. Extinction,
absorption, scattering cross sections that would exist if 1 g of material
existed among particles whose radii fell inside a size-group.

f. Group Cross Sections in Square Centimeters per Particle. The
quantities of the preceding form divided by the number of particles per gram
(item 1 above).

g. Weighted Averages. (Extinction, absorption, etc.) cross sections as
integrated against the relative number of particles per unit radius described
by the size-distribution model in use. These results have the units of square

-] centimeters per particle.

h. Extinction, Scattering, and Backscattering Coefficients. The weighted
averages (item 7, above) multiplied by the total number of particles per cubic
centimeter associated with a particular size-model after summation over all
size-distribution models being treated in a particular run of AGAUS. The unit
of these quantities is "per kilometer," so that the "optical depth" of a
transmission path is the product of these "coefficients" and the length of the
path in kilometers.

i. Phase Functions. The relative intensity per unit solid angle of
scattered radiation as a function of angle as averaged over all pertinent
size-groups and size-distribution models. The phase functions are normalized
so that their integrals over all solid angles are unity.

j. Attenuation Coefficient. This quantity gives the total extinction
coefficient with units of square meters per milligram of aerosol material to
be found in an optical path. The attenuation coefficient may appear with two
"suffixes" referring to "dry" and "wet" aerosols. In that context, "dry"
means the number of milligrams of aerosol present before any adjustment of
particle radii caused by accretion of liquid water arising from the
hygroscopic properties of the material. "Wet" means the number of milligrams
of the aerosol that would exist after taking hygroscopic properties into
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account. In other words, the "wet" attenuation is that which would be
expected after the dispersal of I mg of a hygroscopic material into an
environment whose relative humidity will lead to the accretion of liquid water
and an increase in the sizes and masses of the original aerosol particles
(that is, when Hanel's growth formulae are invoked).

In addition to the above quantities, AGAUS also provides a printed
recapitulation of most of the input data and several other derived results
that may be of interest to at least some users. If warranted, certain
diagnostic and warning messages are also printed.

2.3 Input data Requirements

Input data for AGAUS are formulated as a set of standard 80-column punched
cards or card-images. At least four types of data cards are required for a
run. If a user selects certain program options, as many as three additional
types of data cards may be needed. Those optional data cards are identified
below as card types 3A, 3B, and 3C. Again depending on options selected, some

* types of cards may need to be repeated to provide additional data such as a
new wavelength value.

* 2.3.1 Card Type 1

This card is required (although it may be blank) and may contain up to 80
alphanumeric characters identifying the run. The format is 40A2.

2.3.2 Card Type 2

This card contains a set of 11 program control parameters entered as integers
with the format (1115). The symbolic names of these parameters and their
meanings are described next and must appear on the data card from left to
right in the order in which they are given below.

NWAVE NWAVE is nominally the number of wavelengths to be treated within a
single run of the program, but may also be used to define the number
of times one wishes to loop over any variable found on cards of tyDe
5 (below). NWAVE must be I or greater. A minimum of NWAVE cards of
type 5 is necessary.

NIDSTP NIDSTP is the number of different size-distribution types to be
combined at each wavelength. The maximum value of NIDSTP is 5.

IW IW is a parameter that may be used to indicate that the particles of
all size-distribution models are to be treated as though they were
composed of liquid water. To select that option, IW should be set to
zero. If IW = 0 any values of the complex refractive index and the
mass density (specific gravity) found on card type 5 will be ignored
and replaced by those of liquid water at the temperature (C) that is
taken from card type 5. To avoid these features, set IW = 1. If IW
- 0, the wavelength on data card(s) type 5 must be between O.2um and
200.Oum.

27
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IDELT IDELT is used to signal the presence or absence of card 3A from the
input data deck. If card type 3A is not to be present, set IDELT to
zero. Use IDELT = 1 if card type 3A will be present. If IDELT = 0,
default values of the data that may appear on card 3A are defined by
the program.

NANG Parameter NANG specifies the number of angles at which the phase
function is to be calculated. The value of NANG must be between 1
and 65. If phase functions are of no particular interest, set NANG =
1 or 0. The values of the angles used in the calculation will depend
on the parameter IANG (next). The value of NANG has a significant
effect on running time, so one should use as small a value as is
consistent with other needs.

IANG IANG is used to choose from among three ways of selecting the angles
at which phase functions are calculated. Note, however, that the
phase functions are printed only if parameter NANG is 3 or greater.

IANG = 0 will override the input value of NANG (setting it to 65) and
will result in the use of 65 equally spaced angles between 0 and 180
degrees.

IANG = I will recognize the value of NANG as entered and result in
the use of NANG equally spaced angles between 0 and 180 degrees.

IANG = 2 informs the program that cards of type 3B carrying values
for the angles to be used will be found in the data deck. This
option allows a user to specify whatever set of values for the angles
may be desired.

NBINS NBINS is, in general, the number of size-groups into which the run is
to be subdivided. (NBINS = 0 is an exception discussed later.) The
maximum permissible value of NBINS is 50. If NBINS is not zero, a
user must supply cards of type 3C in the input data deck. Those
cards carry the user's definitions of the radii to be associated with
each size-group. An input value of zero for NBINS will provide the
use of just one size-group, with the minimum and maximum radii
determined either from data entered on cards of type 4 or by the
program itself. If NBINS = 0, there must be no data cards of type 3C
in the input data deck. Note also that NBINS must be set to zero if
use of size-distribution type number zero is selected on a card of
type 4 below. (See also section 2.3.2.)

IEO Parameter IEO controls the generation of an output data disc or tape
file containing several run parameters (below) and the values of the
phase functions. If no such file is wanted, be sure to set IEO =
0. There are two other legal choices for the value of IEO:

IEO = 1 overrides the users values of NANG and IANG and results
in the use of 65 predetermined angles for phase function
calculations. This option will result in a file compatible with
EOSAEL usage.
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IEO =2 also overrides the value IANG on card 2 and sets IANG =
2. The latter means that the user must supply a set of data
cards of type 3B carrying NANG values for the angles to be used
in the phase function calculations.

In both cases the output file is written on logical unit number
NEOU (next parameter). The file will contain the following
quantities:

1. The angles, with format (11(F6.2,1X)).

2. The number of angles, a phase function identifier (set
to zero by AGAUS, which implies user supplied data for
subsequent use as EOSAEL input), the wavelength
(micrometers), the albedo for single scattering, and the
extinction and scattering coefficients (per kilometer).
These items are written with the format (2(12,1X),
F5.2,1X,FB.6,1X,2(E12.6,1X)).

3. The phase functions, written with a format of
(6(E12.6,1X)), at the angles noted immediately above. The
phase functions are normalized so that their integrals over
all solid angles are unity.

NEOU NEOU is the logical unit number to be used to identify the file
controlled by IEO. If in doubt, use zero for both IEO and NEOU.

NUNIT If NUNIT is nonzero, the following quantities are written on logical
unit number NUNIT for each radius at which Mie calculations are made
during a run: dry radius, radius after any increase related to
relative humidity, the relative particle number at the dry radius,
and the Mie efficiency factors for extinction, scattering and
back scatter.

MQRTE Normally zero, but if MQRTE = 12345, the quantities listed under
NUNIT will be directed to whatever logical unit has been assigned to
the listing device for the run. (That assignment is logical unit
number 6 unless altered by changing the value of the parameter lOUT
in the COMMON BLOCK subroutine of AGAUS).

2.3.3 Card Types 3A, 38 and 3

These cards are more or less optional but their presence or absence in a data
deck must be properly correlated with the values of the parameters IDELT,
IANG, IEO, and NBINS, which appear on card 2.

Card 3A contains two variables: DELTA and ATOP with the format (2E10.4).

DELTA DELTA is the value of the "convergence criterion" used to decide when
to terminate the integration over particle sizes within each size-
group. The running time of AGAUS is intimately connected to the
value of DELTA used in a run. The default value of DELTA (used if
IDELT - 0 and card 3A is therefore absent) is 0.001. A value of 0.01
will probably meet most needs if great accuracy is not needed. A
value of 0.1 is often adequate for sample or test runs.
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ATOP This parameter sets an upper limit to the Mie size-parameter for
which complete Mie calculations are done. Its default value is
400. The function of ATOP is the following: whenever a particle
radius has a value that corresponds to a size-paraneter that is
larger than ATOP, the actual value of the size-parameter is ignored
and a size-paramneter equal to ATOP is used instead. The first time
that happens, the results of the Mie calculation are saved and
substituted when any subsequent particle's size-parameter exceeds
ATOP. This procedure can save computation time and usually does not
introduce a significant amount of error in the values of the
efficiency factors (and cross sections) because they approach
constant values at large size-parameter values. The effect of the
approximation is more severe on the phase functions, however, but are
not likely to be devastating since the relative number of very large
particles is ordinarily small. If ATOP is made larger than 400,
inherent numerical behavior of the Mie subroutine may lead to
unreliable values of the backscattering efficiency factor and
possibly of the phase functions associated with large size-
parameters.

The actual value of ATOP at which the above-mentioned instabilities
begin to appear is linked to the size of a complex array A( ) in
subroutine MIEGX rather than to a more intrinsic property such as use
of single precision arithmetic. Those instabilities first seem to
appear when the size parameter being treated reaches a value that is
approximately equal to the dimension of the array A. In the standard
version of MIEGX, A is defined to contain 400 complex elements or 800
single precision floating point numbers. The choice of 400 rather
than 200 or 1000 was made as a compromise between program core
requirements and anticipated Mie size parameters found in normal
usage. If sufficient memory is available, the dimension of A( ) may
be increased substantially, thereby moving the size parameter at
which instabilities might occur to values larger than 400. Test runs
have been made with the dimension of Aas large as 3000 without the
appearance of obvious instabilities of the type under discussion.
Users who contemplate increasing the dimension of A( ) must note that
one other parameter (NDIM) would also require a change. This is
discussed explicitly in paragraph e of section 2.4.3.

Card(s) 3B carry the angles to be used in the phase function calculations if a
. user chooses to supply them. These cards carry up to 16 values per card with
• the format (16F5.1). The symbolic quantity read from these cards is an array

labeled AN4GL in the source code. The nuber of entries should be equal to the
- value of NANG placed on card 2. There must be no extra cards: for NANG

between I and 16, use one card; for NANG between 17 and 32, use two cards,
etc.

Card(s) 3C are used to supply the upper radius limit for the size-groups,
which are read under the format (8E0.4). The symbolic quantities on this
type of card are labeled RR (a 51-element array) in the FORTRAN source code.
The values of the RR's must be in ascending order, and the first entry should
be the upper limit in radius for the first size-group. (The lower limit on
radius for the first size group is normally zero if these cards are used at

*Z all, that is, if NBINS is nonzero). There must be at least NBINS entries, and
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no extra cards are permitted. There must of course be enough cards to make
the number of data values equal to NBINS. Remember that NBINS must not be
greater than 50.

2.3.4 Card Type 4

Type 4 cards carry the data that select the size-distribution model (or
models) to be assumed for a run and certain parameters associated with the
different models. Up to five cards of this type are permitted for most runs

* (exception is type 0; see below). The number of cards of this type that are
required is specified by the value of NIDSTP on card 2.

All cards (except some cards for model IDSTP 0 0; see below) have the qeneral

form:

IDSTP, Qi, Q2, Q3, Q4, Q4, Q6

The format is (13,7X,6E10.4) and In all cases IDSTP is an integer that
identifies a "distribution-type." It must be placed in column 3. The Q's
have different interpretations for different distribution-types and will be
given symbolic names in the ensuing lines.

2.3.4.1 Type 0. Arbitrary User-Supplied Discrete Model. This distribution-
type allows a user to enter from 1 to 513 pairs of data (one pair per card)
for the value of a particle radius and an absolute number of particles having
that radius. This model is selected by using a type 4 data card containinq a
zero in column 3 and the number of data pairs as a floating point number in
columns 11-20. In other words, QI (above) on the first type 4 card should be
the number of data pairs to be expected by the program. Note that this
particular distribution type requires an absolute number density.

A user must then insert NRADI data cards each carrying a value of radius (in
micrometers) and an absolute number density (in particles per cubic centimeter
per micrometer), where NRADI is the number of radius values to be used. The
format is (2E10.4).

* Users should probably not try to mix a type 0 model with some other type under
*the NIDSTP greater than I option. Such mixtures have not been tested.

2.3.4.2 Tpe 1. Lognormal Distribution

IDSTP, RLO, RHI, RBAR, SIGMA, DENS

Q1 is RLO - The minimum radius at which the model is to be cutoff.

Q2 is RHI - The maximum radius at which the model is to be cutoff.

Q3 is RBAR - The radius at which the relative number density peaks.

Q4 is SIGMA - The standard deviation to be used (Not LN(SIGMA)).

Q5 is DENS - The number of particles per cubic centimeter.
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This distribution has the mathematical form:

f(r) C exp - rrP 1L2(

where f(r) dr is the relative number of particles with radii between
r and r + dr, and C is a normalization constant.

RLO and RHI are, in a sense, optional: if RLO = RHI, then the code
will itself assign cutoff values (that is, will redefine both) that
insure that most of the particle radii will be included in the
calculation. To select that option just make the values of QI and Q2
equal to zero. Note, however, that they must not be omitted: RBAR,
SIGMA, and DENS must still be in positions Q3, Q4, and Q5. This
option relative to RLO and RHI is not valid for the other
distribution types (below).

DENS is also optional but only in a sense. If a user does not want
to specify the number density, entering a value of 0.0 will tell the
program to calculate the number density from the mass density (RHOA,
card 5), the mass concentration (CONC, card 5) and the (computed)
average volume per particle. If both DENS and CONC are zero, the
program assigns a default value DENS = 1.0. This behavior of DENS is
also applicable to the other distribution types (listed below) that
also use DENS as an input parameter.

2.3.4.3 Type 2. Double Exponential Nodel

IDSTP, RLO, RHI, Q, A, B, DENS

RLO, RHI, and DENS have the same meaning as listed under type 1.

The meanings of A, B, and Q are best described by the mathematical
form for the distribution:

f(r) = Qe"A/r + R - Q)e"B/r
e ((2.2)

(In the FORTRAN source code Q has the symbolic name CUE.)

2.3.4.4 Type 3. Power Law Nodel

IDSTP, RLO, RHI, Q, A, DENS

The form of the distribution is

f(r) = QrA (2.3)
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RHO, RHI, and DENS are again (in fact, are always) defined as in type
1 above.

2.3.4.5 Type 4. Hoidale Dust Model

IDSTP, VIS

VIS is the visibility in kilometers.

This is a model of type 3 in which RLO is 0.1, RHI = 15.0, Q = 30.0,
and A = 4.0. For this particular model, the value of DENS is found
from the relationship

DENS = 11.0 ** [5.0-ALOGIO (VIS)] (2.4)

2.3.4.6 Type S. Modified 6 Distribution

IDSTP, RLO, RHI, RC, ALF, GAM, DENS

The form of the distribution is

f(r)dr = rcr exp{-F )" (2.5)

cc
.qi" rc (that is, RC) is the mode radius (at which fir) peaks); ALF and

GAM are user-supplied parameters. Note that parameters for this
distribution found in the literature may provide a parameter "b"
rather than rc. The relationship between b and rc is

b = a/(yr cY) (2.6)

2.3.4.7 Type 6. Mdified G Fog Model

IDSTP, RLO, RHI, RC, ALF, GAM, ELWC

The form of this model is the same as in type 5. This model always
assumes that the aerosol material will be liquid water droplets and
finds the value of DENS from the value of ELWC. ELWC itself is the
"liquid water content" in units of grams per cubic meter. Use of
this model relieves a user from the need to specify the optical
constants (EMA and CAYA, card 5) and the mass density (RHOA, card 5)
and an internal table lookup procedure provides those data for
water. The tables of Hale and Querry (Applied Optics, 12:555, ff)
are used in this procedure.
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2.3.4.8 Type 7. Special Table Generation Mode. This is not actually a
distribution nodel at all, Dut is an operating model used for calculating and
printing taoles of Mie efficiency factors as a function of radius. The input
data are as follows:

IDSTP, RLO, RHI, DELR

RLO is the minimum particle radius to be used.

RHI is the maximum particle radius to be used.

UELR is the increment in radius to be used.

This "distribution-model," like all the others, will expect the user
to provide the wavelength and the optical constants at each
wavelength on data card type 5.

The quantities that are printed are the adjusted (per Hanel) radius,
the dry radius, the corresponding Mie size-parameter, the efficiency
factors for extinction, scattering, absorption and backscatter, and
the adjusted (again per Hanel) index of refraction. The program
formats 50 sets of results per page.

This "mode" may be used to generate several sets of tables in a
single run, but doing so requires a nonstandard way of arranging the
input data cards of types 4 and 5. NWAVE on card type 2 should be 1;
NIDSTP (card 1) should be equal to the number of "sets" for the run
(but no greater than 5); NIDSTP pairs of data cards of types 4 and 5
must be "interleaved" rather than collected together as distinct
groups of NIDSTP type 4 cards followed by NWAVE type 5 cards.

2.3.4.9 Type 8. Marshall-Palmer Rain Iodel

IUSTP, RAIN

RAIN is the rainrate in millimeters per hour.

The forn for f(r) is

"~ : e Br

f(r) (2.7)

with A = 1.6E-5 and B = 8.2E-4 * (RAIN ** (-0.21)). The value of
DENS is found from DENS = A/B, which is theoretically valid only if
RLO = 0 and RHI = infinity. In practice the distribution is cutoff
at RLO = 0.0001 and RHI = 2500.0 (micrometers), but this should
induce no appreciable error in DENS since few rain drops will exceed
2.5 mm in radius.

A few words of caution may be helpful in connection with use of this
model. The maximum Mie size-parameter used is roughly 13,000 divided
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by the wavelength. Since the Mie subroutine used in AGAUS becomes
unreliable at size-parameters of the order of 400 to 1000 (depending
on which quantities are of most interest), the model is only useful
at fairly large wavelengths and is intended for use at wavelengths of
the order of 1 mm or so. Because the data tables for optical
constants for water do not extend beyond 200pm, use of the Marshall-
Palmer model is generally inconsistent with setting IW = 0 on data
card 2, and users must provide the appropriate optical constants on
cards of type 5 (below).

2.3.4.10 Type 9. Hybrid Lognomal and Power-Lav Model

IDSTP, RBAR, SIGMA, RMIN, RMAX, PWR

This model consists of the lognormal model (type 1) for radii between
zero and RMIN and a power-law (type 3) model for radii between RMIN
and RMAX. The number density functions f(r) are made equal at the
radius defined by the value of RMIN.

RBAR and SIGMA have the same definitions as in type 1.

PWR is the same quantity as A in type 3.

If either RBAR or SIGMA is zero, this model becomes the same as type
3, with RLO = RMIN and RHI = RMAX. If RMIN and RMAX are equal, then
the model is the same as type 1.

One restriction imposed by computer exponent limits is known to exist
for the hybrid model, namely that RMIN, RBAR, and SIGMA must be such
that the quantity

.n(RMIN/RBAR)i < 13I '" 'n(SIGMA) "

2.3.5 Card(s) Type 5

Cards of this type carry data describing the wavelength to be used and the
general physical properties of the aerosol materials whose relative number
distributions are specified by cards of type 4. At least one of the type 5
cards is required for each run of AGAUS. More generally the number of type 5
cards needed is given by the product of NWAVE and NIDSTP. The format of type
5 cards is (8E10.4). The symbolic names for the data are:

WAVE, EMA, CAYA, RHOA, CONC, RELHUM, TEMP, EMUA

WAVE - the wavelength in micrometers

EMA - the real part of the index of refraction of the aerosol

CAYA - the absolute value of the imaginary part of the index of
refracti on
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RHOA - the mass density (specific gravity) of the aerosol in grams
per cubic centimeter

CONC - the mass concentration (grams of aerosol material per cubic

centimeter of space)

RELHUM - the relative humidity in percent

TEMP - the environmental temperature in Celsius degrees

EMUA - Hanel's growth factor "mu-bar"

. One card of this type must be supplied for each value of NWAVE and for each
* value of IDSTP at each wavelength, regardless of the value of IW on card 2.

2.4 Additional Program Information

2.4.1 Choosing Values for DELTA

As was stated under the description for data card type 3, DELTA controls the
exit from the numerical integration routine in which the efficiency factors
are converted to cross sections and weighted by the relative number density,
etc. The integration is done using the trapezoidal rule in a series of steps
called "halvings." Each size-group is treated separately. On the first pass
across a size-group, computations are done at the endpoints and midpoint of
the range of radii belonging to the group. In addition to the cross sections,
weighted sums of the phase functions and the total volume of the particles are
computed. The program then calculates new estimates of all the above
quantities by performing the computations at radii that lie halfway between
the radii used in the first pass and combines the newest results to form new
cstimates of the integrals. After the first two passes, five values of radius
will have been used. The proqram then proceeds through a series of loops in
which the spacing of the radii is made half those used in the most recent
pass. At the end of each pass (after the second)-, the most recent value for
the integrated particle volume is compared to the one that existed at the end
of the previous pass. Exit from this procedure occurs as soon as the
difference between the "new" and "old" values for volume divided by the "new"
value is less than DELTA. If this criterion is not satisfied after some
preset number of "halvings" have occurred, the program exits anyway and prints
a message to the effect that convergence was not achieved in treating that
particular interval. The number of radii used before automatic exit is
determined by an internal program variable NHALV (accessible in the source
code but not as a normal input parameter), and its value is dependent on the
number of size-groups being treated in a given run.

The maximum number of radii used for each size-group is as follows:

If NBINS is O, 1, or 2, 513 radii may be used before exit.

If NBINS is 3 or 4, only 257 radii per group are allowed.

If NBINS is 5 or larger, 129 radii are allowed per size-group.

36



These assignments can be changed in the source code's main program if more or
fewer radii are desired, except for the type zero model. Models other than
type zero calculate the new radius values as needed, out type zero sets a
maximum of 513 radii and places those values in an array for recall. This
procedure is used because the user supplied type zero data are unlikely to be
spaced at the correct values of radius required by the halding process and an
interpolation is made from the user supplied values of the radii to those
needed for the halving procedure. Users who have ample memory available could
increase the value of 513 to 1025, 2049, etc., by redefining the dimensions of
the arrays R( ), F( ), and FFF( ) in the source code and recoding a portion of
the interpolation procedure. If this process is contemplated, pay particular
attention to the paraneter NHALV: the maximum number of radii must be equal
to 1 + (2 raised to the power NHALV).

The running time of the program is mainly set by the number of times the Mie
subroutine is called and the values of the size-parameters in use; therefore,
the use of a very small value of DELTA will force the program to utilize the
maximum allowed number of radii for each size-group. The number of radii used
might well be far greater than that needed for acceptable precision in the
results and hence make the run require an excessive amount of time. The
situation is most critical when the number of size-groups is fairly large. In
many cases the overall contributions of the particles in some size-groups to
the total extinction may be negligible because of the small relative number of
particles in those groups, and use of a very small value of DELTA can result
in a considerable amount of computation time for large particles that often do
not really affect the results very much. The program does not (with one type
of exception) make any judgments: the same value of DELTA is used for all
size-groups. The exception is as follows: in runs with NBINS greater than
zero, the program finds a quantity called VMAX for each size-distribution
model in use. This parameter consists of the total particle volume (weighted
by occurrence frequency) of particles for whatever size-group makes that
quantity a maximum for the whole range of groups in use. VMAX is used in the
integration loops discussed above in such a way that an automatic exit from
computations for a size group will occur if the volume estimated for the first
33 choices of radius is less than VMAX*1.E-6. This procedure can easily be
disabled, if a user so desires, by removing a single line from the source code
for subroutine AGXP2. The line in question is one that reads
IF(N.GT.5.AND.VOLHHT.LT.Vf4AX)GOTO ...

Suggested values for DELTA are in the range 0.01 to 0.001. If after choosing
values of DELTA in this range, the program outputs look "strange" or appear to
be questionable, then a rerun with a smaller value of DELTA may be
advisable. Users who have not previously used AGAUS should, perhaps, do a
little experimenting with a few different values of DELTA to see how its value
affects their results.

For distribution type zero (arbitrary, user-supplied model), the ,gested
value of DELTA is 0.001 or smaller because the interpolations used ,t that
model can present problems if DELTA is not fairly small.
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2.4.2 Selecting Values for 1SINS and the
Size-Group Radius Limits

In many instances, users will not really care to subdivide the range of radii
to be used in a run into more than one size-group. In such cases, it will
probably be sufficient to set the parameter NBINS = 0, and to control the
maximum and miniinum cutoff radii via the parameters RLO and RHI on data cards
of type 4 (or, for IDSTP = 9, via RMAX). Some situations have arisen,
however, in which choosing NBINS greater than zero is advisable even though
the breakdown of outputs by size-groups is not particularly wanted. An
example of such a situation is one in which the NIDSTP > 0 option is being
invoked to treat a bimodal (NIDSTP = 2) or multimodal model in which the
distributions that are being combined peak at different values of radius. In
that kind of situation, it is advisable to break the computation range into
intervals that are roughly centered on the radii at which the various modes
have their peaks. Doing that will help the user in being assured that enough
points are treated for each mode to make the convergence checks meaningful.

To clarify this state of affairs, consider an aerosol model being described by
the lognormal distribution IDSTP = 1, with the first mode being peaked at r
O.05im and a standard deviation of about 1.5. Suppose the other mode peaks at
5.Osm and has a standard deviation of 2.0. To assure coverage of the major
part of the second mode, one would probably choose RLO to be something of the

" order of 0.001 and RHI to be of the order of 100. Now, a run with NBINS = 0
permits a maximum of 513 radii to be used in the Mie calculations and
integrations over sizes. The increment between adjacent radii (if all allowed
radii are used in the halving process) is (RHI-RLO)/513, or about O.20m. This
increment Is far too large to give adequate attention to the mode centered at
U.05um. Hence, the first mode might well be virtually ignored in the run.
What one needs to do is to make sure that quite a few radii will be chosen to
,pan each peak, and the simplest way to do that is to use the technique
suggested above. A more complicated way would be to go into the source code
and change the value of the variable NHALV to a larger value. The number of
radii chosen between RLO and RHI if NBINS = 0 is I + 2**NHALV. Making such a
change is feasible if the kind of situation discussed is common for a
particular user, but it can exact a heavy time penalty by causing the program
to utilize an unnecessarily large number of very large Mie size-parameters.

2.4.3 Subsidary Program Outputs

a. For all distribution types, the program prints a quantity
labelled "AVERAGE NUMERICAL DRY VOLUME PER PARTICLE." This quantity is used,
when appropriate, to calculate the particle number density DENS.

b. For a few distribution types the program also prints a quantity
labelled "AVERAGE ANALYTIC DRY VOLUME PER PARTICLE." This quantity can be
determined through formal integration for some of the distribution types and
represents the result of an analytic integration over the radii between 0 and
infinity. Its value may be meaningful in some situations: if, for example,
RLO and RHI were intended to span virtually all particles, a comparison of the
"analytic" and "numerical" average volumes per particle give at least a useful
Indicator of how well that was accomplished. If the two results, when
available, differ appreciably it might be advisable to think about whether the
values of RLO and RHI are really appropriate for that model.

38

-. ,''', '', ;..-'';' *.* -.. '- ',-. -. . '. ,-'-.'.. . . % "-', -r '.- ". .- " - " - .- . " ." . .- .- -"--'. '. "- .



c. Near the end of the program, the "TOTAL NIMBER OF RADII USED WAS"
is printed. The number printed represents the sum of the nunbers of radii at
which Mie calculations were done, with all size-groups included. Its value
may be helpful in selecting a value for DELTA, but it is printed mainly for
general interest.

d. After printing the values of the phase functions (which is
omitted if parameter NANG is less than 3), the phrase "TEST INTEGRAL OF PHASE-
FUNCTION" followed by a number is printed. If the phase functions produced by
the run are to be used as input to some subsequent program that will perform
numerical integrations involving the phase functions, that number should
always be compared to unity. If its value is appreciably different from
unity, it is inadvisable to attempt to use the phase functions in later
integrations. The discrepancy is a good measure of whether or not enough
angles were used in the run to provide adequate accuracy for numerical
integrations. Whenever such subsequent integrations are intended, set NANG to
the maximu possible value (65 in the standard AGAUS code). If 65 angles
still do not produce good agreement between the result printed by the program
(that is, a number very near 1.0), a user may be forced to resort to use of a
more sophisticated numerical procedure than the trapezoidal method used in
AGAUS for this test integration.

e. On occasion, one may find the message "UPPER MIE SIZE LIMIT
EXCEEDED IN INTERVAL NO." ... This message indicates that at least one value
of particle radius being used for the indicated size-group was so large that
the corresponding Mie size-parameter was larger than ATOP. This message is in
the nature of a warning, but there may be no action one can take to alleviate
the limitation unless ATOP was set below 400. On the other hand, if
sufficient addressable memory is available, the array A(400) and the parameter
NDIM in subroutine MIEGX can be increased substantially. Experience with
MiIEGX has generally indicated that "numerical instabilities" (which were
mentioned in the discussion of input data card type 3A) occur when the value
of a size-parameter exceeds the size of the array A and the parameter NDIM of
i41EGX. (The code attempts to compensate for such an occurrence, so the
program will not ordinarily abort as one might suspect.) Values of NDIM as
large as several thousand have proved usable on systems that can provide the
needed array space. The principal "problem" that has been found with MIEGX
for size-parameters larger than NDIM has been unreliable values for the
backscatter efficiency factor (and by inference, the phase functions at large
angles). If those quantities are of no interest, ATOP can be set to almost
any (large) value and the extinction and scattering cross sections may be
quite reasonable. Users can test this for themselves by exercising the MQRTE
= 12345 option (or by running model 7) and examining the behavior of the
efficiency factors as a function of radius or size-parameter. The extinction
and scattering efficiency factors should behave smoothly and approach the
value of 2.0 for very large size-parameters. The smooth behavior is also
expected for the backscatter (radar) efficiency factors for large size-
parameters. A look at the values of the latter may demonstrate the "problem"
under discussion here.

f. Certain anticipated error conditions also generate output
statements aimed at making the source of error reasonably visible to the
user. In most cases these errors are deemed "fatal" and the run is
terminated.
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2.5 The WAVE Looping Options

AGAUS permits looping over any parameter that appears on data card type 5 (see
section 2.3.5) if an appropriate input data set is prepared. This section
discusses one possible application of this option. Suppose that one wishes to
examine the way in which the extinction coefficient of a particular
hygroscopic aerosol model changes with relative humidity, and that data for
EMUA (-(f)) are available for five values of the relative humidity. One would
then set parameter NWAVE = 5 on data card number 2 and prepare cards of types
3 and 4 in the usual way. The choice NWAVE = 5 means that at least five of
the type 5 data cards are needed--one for each value of the relative humidity
(RELHUM). These five cards would ordinarily carry identical data for
parameters WAVE, EMA, CAYA, RHOA, CONC, and TEMP, but different values of
RELHUM and EMUA. The value of EMUA on a given card should, of course,
correspond to the value of RELHUM on that card.

The use of five type 5 cards to handle five values of RELHUM assumes that only
one size-distribution is in use (that is, that NIDSTP = 1). If NIDSTP is
greater than 1, the required number of type 5 cards is given by the product of
NWAVE and NIDSTP. As an example, suppose that NWAVE = 5 and NIDSTP = 2.

. _There must then be ten of the type 5 data cards arranged as follows:

WAVE, EMA1 , CAYA I , RHOA1 , CONC1 , RELHUMI1 , TEMP, EMUA 11

WAVE, EMA 2 , CAYA 2, RHOA 2 , CONC 2 , RELHUM 1, TEMP, EMUA 12

WAVE, EMAi, CAYAj, RH0A1, CONC1, RELHUM2, TEMP, EMUA21

WAVE, EMA2, CAYA2, RHOA2 , CONC2 , RELHUM 2, TEMP, EMUA22

WAVE, EMA", CAYAj, RHOA1, CONC1, RELHUM5, TEMP, EMUA51

WAVE, EMA2, CAYA 2 , RHOA2  CONC 2 , RELHU 5, TEMP, EMUA 2

where

EMAi, CAYA i  are the optical constants for (dry) aerosol component
i at wavc'ength WAVE and temperature TEMP,

RHOAi, CONCi are the mass density and mass concentration for
component i,

RELHUMj is the jth value of relative humidity,

and

EMUAjj is the value of T(f) for aerosol component i at
relative humidity value RELHUMj.

40
4.



In this example, parameters WAVE, EMA i , CAYAi, RHOA i , CONC i and TEMP are held

constant, with only RELHUMj and EMUAii changing from card to card. One could

set up a data deck for looping over any other parameter on the type 5 cards in
a similar fashion if desired: use (NWAVE) x (NIDSTP) type 5 cards with all
parameters fixed except the one over which looping is to occur. Note,
however, that AGAUS does not "remember" any of the parameters, so valid values
of WAVE, EMA, etc., must appear on every individual card. There is only one
exception to this rule: If IW = 0 (water only case), then the values of EMA
and CAYA will be found from the internal tables; any input value, including
blanks, will be ignored.

2.6 Differences between AGAUS 82 and Previous Versions

The structure of AGAUS 82 differs in several ways from that of the version
listed in reference 9. The principal differences are summarized here for the
possible benefit of users of the previous version.

a. The ability to "loop" over a mixture of size-distribution models
has replaced the loop over several components (of varying optical properties)
having a fixed size-distribution model. Each component now requires

*m definition of a separate size-distribution model even if several components
are to be given the same size-distribution model. This option is not
available for the "arbitrary" (IDSTP = 0) model.

b. Several new output quantities have been added with breakdowns
into particle size groups. These include quantities such as the number of
particles per gram and cross sections in square centimeters per gram.

c. The normalization of the phase functions has been changed so that
• .their integral over all solid angle should yield unity.

d. The algorithms for handling the growth and variations in optical
properties of hygroscopic aerosols as functions of relative humidity have been
replaced by somewhat more sophisticated ones.

e. The original Mie subroutine MIEGX has been replaced by one using
different numerical methods and is valid for larger size-parameters than the
previous version.

f. Unweighted integrations of extinction coefficients, phase
functions, etc., over wavelength have been deleted, and the limit of 10
wavelengths per run has also been deleted.

g. Some of the IEO options have been omitted.

h. All intrinsic "bimodal" size-distribution models have been
deleted, as has the one labelled "Deirmendjlan's Model." Bimodal cases can
now be treated by using the looping option mentioned as item a above. A new

9 D. Delrmendjian, 1969, El ectromagnetI c Scattering on Spherical
"-" Polydispersions, American Elsevier Publishing Company, Inc., New York
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hybrid lognormal/power-law size-distribution mdel has been added, and a

special "nodeI" (IUSTP = 7) has been added to print tabulations of ,rlie
efficiency factors.

i. Tne option for generating Gauss-Legendre expansion coefficients
for the phase function has been removed as has the use of special angles
associated with that option.

j. A new input paraneter (ATOP) allows users to set an upper limit
on the -lie size-parameters to De used in a run.

k. The ordering of the input data cards and the data belonging to
eacn "type" of card have been changed substantially.

1. A new subroutine (DISTR) handles the calculation of the
distribution functions f(r) for all cases except the arbitrary (IDSTP = 0)
cdse. Use of tnis routine makes possible removal of the upper limit of 513
rddii per wavelength (except for ILSTP 0 cases).
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