fiD-A133 431 THE AXIS TEST BOX SOFTHBRE REPORT(U) RDYRL SIGNHLS RND
’ RADAR _ESTABLISHMENT MALYERN (ENGLAND) A L SIMCOCK
APR 83 RSRE-MEM0-3585 DRIC-RR-89152
UNCLASSIFIED F/7G 1472 .

o anc, |
ceeod

” L2
1
2 e
4
A !
P

™Y
.

0

2 R
p.
W.,v i
2 K
-h > --L
w.. ...L
2 K

-‘. ‘s
s R

! ‘)
¢ g
' :

P
hN
b

1 ot
B g N@ O L] £«
_ B I B B 23 :
L] <l ~§ o mm b
i Y ol - X o
SEEFE < 3 _.
EEFFEITTE - S :
- EF] == .4
== 2z K
x & .
0- — 5 z w ..
—— l-lo o 2 *d
2.—=__ m m .-A
= == = g2 "y

Y N T A Y i £ 28 .
AENEREIT AT et 2ia ST AT)

R R F T BREIT DY

w v - - - . - :
. Yoan o S LR 1A
w - PR EIER R 1) |
Wl -, 3 Rl
S ™ v
A g K WY AT '
" . M 4 - {
¥ :) few e T
A A ¥ N AR TSN
« . e ' Lk
ol) T T
3 ; -
at
A BN

RSRE
MEMORANDUM No. 3585

ROYAL SIGNALS & RADAR
i ESTABLISHMENT

THE AXIS TEST BOX SOFTWARE REPORT

Author: A L Simcock

PROCUREMENT EXECUTIVE,
MINISTRY OF DEFENCE,
RSRE MALVERN,

WORCS. a

y. i

Sy

3
E
-
r
e

- v - vm A a A Ba uVVﬂ*'i‘_m'|'l"i' LI)
° . . LI ‘..I P T «

=

?;a a_\q
&f |

FILE COPY

Rits

. RSRE MEMORANDUM No. 3585

: p— 23 005 (5%

PPN B P S Ry A B i, PYPREIPE WAL AP PR W APy I TR TNy Sy

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3585

THE AXIS TEST BOX SOFIWARE REPORT

Author: A L Simcock
Date: April 1983
SUMMARY
(
A

This memorandum describes in detail the software program which the M68¢9
microprocessor obeys to perform the functions of the AXIS Test Box.

Extensive use is made of FlowDiagrams where these either enhance or replace
wordy descriptions.

=

This memorandum is for advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive, Ministry

of Defence

Copyright
Cc
Controller HMSO London

1983

-~

-~

L e g aon op]

-

RSS2
W

D
LRCATRYR L
I

:'-.‘,.".‘. e

T Ryt
[
Vet afatatal

X

AR

A sk

2L T T e

RSRE MEMORANDUM No 3585

THE AXIS TEST BOX SOFTWARE REPORT

A L Simcock

CONTENTS

1 INTRODUCTION

2 INITIALISATION

3 BASIC COMMAND MODE

4 ASSEMBLE MESSAGE

5 DISPAY ON REQUEST

6 AUTO DISPLAY

7 REPEAT

8 DISPLAY CURRENT MENU

9 PREPARE DATA FOR TRANSMISSION
10 DATA MANIPULATION SUBROUTINES
11 BASIC INPUT SUBROUTINES

12 BASIC OUTPUT SUBROUTINES

13 DATA ENTRY SUBROUTINES

14 DISPLAY ON REQUEST SUBROUTINES
15 THE HARDWARE INTERFACES

16 HARDWARE HANDLERS

17 THE DATA STRUCTURES

18 TRANSMIT DATA FLOW

19 RECEIVE DATA FLOW

ANNEXES

A INTERNAL IDENTIFIER CROSS REFERENCE
B DRAWING SYMBOLS USED

c CROSS REFERENCE BY INTERNAL LABEL NAME

ST TA TR T e T a T T T - e L R I v i

Accession For

NTIS GRA&I

DTIC TAB g
Unannounced]
Justification_
By

_“Di stritutiang

mAya 11abizity éodes

Avail <nd/or
Dist | cr-cial

Al

LIST

0 O NN W

NN DN N e e e e e e e e
S» W N = ™V O N N8> Wy =2 e

OUTPUT BOARD HARDWARE REGISTER ADDRESSES
INPUT BOARD HARDWARE REGISTER ADDRESSES

OF FIGURES
Basic Command Mode Routine Flow Diagram
Assemble Message Routine Flow Diagram

Display on Request Routine Flow Diagram

Auto Display Routine Flow Diagram
Repeat Routine Flow Diagram
Menu Display Routine Flow Diagram

Prepare Data for Transmission Flow Diagram
Prepare for Hardware Handlers Flow Diagram
Basic Input/Output Subroutines

Input Message Type Subroutine Flow Disgram
Input Check Code Subroutine Flow Diagram
Input Register Address Subroutine Flow Diagram
Input Data Subroutines Flow Diagram

GCet Parity Subroutine Flow Diagram

Input Format/Structure Subroutine Flow Diagram
Get Transmission Option Subroutine Flow Diagram
Get Wait Conditions Subroutine Flow Diagram

Get Display Option Subroutine Flow Diagram
Input Segmentation Subroutine Flow Diagram
Print Block Subroutine Flow Diagram

Print Message Subroutine Flow Diagram

PPI Port and Bit Allocations

Polling Routines Flow Diagram

Interrogation Routines Flow Diagram

T) PSR- S

IS = % SRR

R e B B A it S T2 o WTTW * ¥
SR R S BT 4 s i e Tt Bl *hi Gl ol el Sl Vo R £l Rt A aron S0 o o e

CEC NS

AR S A At et ma a0]

25 Internal Message Structure

26 TX Message Structure

27 Display Structure

28 Segmentation for Display Structure
29 Transmit Data Flow

39 Receive Data Flow

§ I TR R T

LIST OF TABLES

1 PPI 1 Notations
2 PP1 2 Notations
3 PPYI 3 Notations
4

PPI1 4 |Notations

LIST OF ABBREVIATIONS

MMI Man Machine Interface
PPI Programmable Peripheral Interface
VDU Visual Display Unit
GTU Group Terminating Unit
4 o/p Output
‘ i/p Input
;f o The symbol @ is used to distinguish zero from the letter O.
s HEX Hexadecimal
?2 X Transmit
g * RX Receive
g . EOT End of Text
g cc Check Code
' RA Register Address

[h -

".."".'
e Ta %ty

r
(A

L]
-
¢

B

.l.‘.,'

et e
PSR A A

Y

L

res
]

CIRRLNLMSNY

L3

|

1 INTRODUCTION

This is the third in a series of 4 reports on the AXIS Test Box. The first
report (Ref 1) is the Introduction to the Test Box and describes the role of the
Test Box within the Axis experimental project. The second report (Ref 2) is the
Operating Guide, and details the rationale for the nature of some of the
commands/functions provided. The third report (Ref 3) is the Hardware report,

This software report describes briefly the program which controls the
hardware and provides the MMI described in Ref 2,

This report is brief since it is felt that the commented program listing
is almost self explanatory. The report mainly details program flow and struc-
ture and uses Jdiagrams, wherever possible, so that program construction may
easily be followed. Data and data flow are also described in Sections 17 to 19.
Annex B is a list of the drawing symbols used,

The program listing is held in a file called FINALTB on floppy disc for
the FUTUREDATA Microprocessor Development System in use in T24 (Ref 4).

It can be seen from the diagrams illustrating program flow that the body
of each of the major routines consists mainly of a series of subroutine calls,

The body of each of the major routine will be described very briefly using
the illustrations as a guide to the subroutines being used,.

The subroutines themselves will be described in greater detail, since this
is where the majority of the work of the program is carried out. The preparation
of data for tramsmission, and the hardware handlers are also described separately.

The report is written in this way in order that the ‘'casual' reader should
be able to obtain a superficial understanding of the program and the 'determined'
reader should find the detail necessary for a full understanding. Ref 2 des-
scribes fully the functions provided by the Test Box, this report describes how
those functions are provided.

2 INITIALISATION

The initialisation routine sets the Programmable Peripheral Interface
devices (PPIs) to their initial state and programs them for input or output;
some internal flags are also initialised.

3 BASIC COMMAND MODE

The Basic Command Mode routine allows the user to select any one of the
5 functional routines (see Fig 1).

4 ASSEMBLE MESSAGE

The Assemble Message routine takes the user step by step through the input
of the parameters necessary to assemble a message ready for transmission (see
Fig 2). 1Individual parameter entry is controlled by subroutines and the
Assemble Message routine calls these subroutines in the correct order to enable
a complete message to be assembled,

SRR ALY

j

s T
M P)
NN

255
P R R O

€7 .. g
< ey

LRy 4.0

,-'.0'. P DN N

LAOTRER: |

-

’
Y

5 DISPLAY ON REQUEST

The Display on Request routine allows the user to display input messages
which have been stored. The user should enter the segmentation format required
for the display, then the user should enter the number of the block to be
displayed. Fig 3 illustrates the flow of the program.

6 AUTO DISPLAY

The Automatic Input Display routine is very simple. The user is allowed to
select the display options required for display of the input messages and is
then able to jump to the hardware handlers to receive the input messages (see
Fig 4).

7 REPEAT

The Repeat routine firstly causes the current Menu to be displayed on the
VDU and then allows the user to select parts of the message to change, the
user also has the option to display the Menu, Quit the routine or Go to the
hardware handlers (see Fig 5).

8 DISPLAY CURRENT MENU

This routine is itself written as a subroutine which may be called from
the Repeat routine. The program flow is illustrated in Fig 6.

9 PREPARE DATA FOR TRANSMISSION

The entry to this routine is either from the Assemble Message or Repeat
routines.

Firstly, the hardware interfaces (PPIs) are set to the transmit mode. The
Message Type is then checked. If the Type indicates an A message or T (for
both Messages) then a pointer to the A message is passed to the FMFORP (Format
for Parity) subroutine. If the Type is B then the pointer is set to the B
message before calling the FMFORP subroutine. The Format of the message is
then determined in order that the correct number of parity bits may be
generated. The CALCP (Calculate Parity) subroutine is then called:-

a Once for a GTU message

b Twice for a MATRIX Command message

¢ Three times for a MATRIX Connection message

When the necessary parity bits have been generated the whole message with
its newly generated parity bit(s) is transformed by the TFTOTX (Transfor to

Transmit Format) subroutine into a format directly applicable to loading into the
hardware output registers.

The type is checked again and if TYPE = T (for both messages) the whole
procedure is repeated using a pointer to the B message. Figure 7 illustrates
this flow in diagrammatical form.

9.1 Prepare for Hardware Handlers
This is a continuation of the above routine but is also the entry

point from the Auto Receive Mode. Figure 8 illustrates the program flow
in diagrammatical form.

T TR A SRR R LELYL Y L M L LR LY, hd bt ¥ R ¢ -
R I R A Y Bl At Vi i s it Al S TS

Firstly the last valid input stores (for A and B message responses)
are preset and then the start address of the input message store is initia-
lised. At this point if this routine was entered from the Auto Receive Mode
the Programmable Peripheral Interface (PP1) devices, which interface directly
to the hardware input and output boards, are set to receive inputs and the

- program control transfers to the hardware handling routines. If entry was
not via Auto Receive the output message(s) must be loaded into the hardware
output register (S).

If the message Type is A or B then O/P register 1 is loaded with the
A or B message and if more than one message is to be sent (ie Transmit
Options Continuous or Multiple have been chosen) then O/P Register 2 is also
loaded with the A or B message. If the Type is T (for both messages Together)
then O/P register 1 is loaded with the A message and O/P register 2 is
loaded with the B message.

LR 2 _mmmua

k!
D
«

The time interval between O/P transfers, from the hardware output
transfer board, is determined either by a fixed hardware delay or by soft-
ware. The hardware delay will only be activated if the input message
response to each output is not to be interrogated, ie delay is only acti-
vated if:-~

a No Wait condications are set
b Display Option chosen is NONE

under these circumstances the number of output transfers is loaded into the
hardware counters and program control transfers to the hardware handlers.

If the above conditions are not met a single output will be sent and
the input response will be interrogated by the hardware handlers, corres-
ponding action will be taken, and control returned to this routine in order
that the next output may be sent, In this way the time interval between
output transfers is determined by the software.

If the Transmigsion Option selected is Multiple the number of outputs
required is copied from MOPTNUM into OPTXNUM and this decremented at each
output in order to call the hardware handlers to send the correct number
of output transfers.

1¢ DATA MANIPULATION SUBROUTINES

,.
)

14.1 FMFORP ie Format for Parity Generation

This generation takes the dats identified as Message 1 or Message 2
in the internal message structure (Fig 25) and re-organises the data in
order into a 42 byte block of data, so that it is in a suitable format for
parity generation., (Fig 26A).

This routine should be called as a subroutine and given the address
of the check code of the message (ie 1 or 2) for transformation. This
address parameter should be stored in TEMP.

patat CRURTRPATRICING ¥ P AR AR =Y S al wtn

P e S

e e Ty e

- -

Bt R S i P A A NI A L I S R S IR

1.2 CALCP ie Calculate Parity

Three types of message each requiring different parity calculations
have been identified in the User guide.

These are:
G = GTU
Ml = Matrix Command
M2 = Matrix Connection

The identification of the type of message is stored in AFORMAT for
the A Message and BFORMAT for the B Message.

¢ = GIU
1 = M
2 = M2

The parity generating routine requires 3 parameters:

a Start bit number for parity generation in STAP

b End bit number for parity generation in ENDP

¢ Bit number to store the generated parity in PUTP

The routine should be called as a subroutine with the above 3 para-
meters defined. Setting these parameters allows the CALCP routine to be
used to calculate parity bits over any data area within a message. (See
also Fig 26 A).
1¢.3 TFTOTX ie Transform to Transmit Format

This routine takes the information from the 42 byte data area used
for parity generation and transforms this into a format which will make it
immediately usable by the Tx hardware handlers, ie the format illustrated
in the Tx message structure, Fig 26B.

This routine should be called as a subroutine and requires the
address of the first byte of the first or second (whichever is required)
Tx Message Structure (see Fig 26B). The address parameter should be
stored in TEMP 2 before the routine is called.
1¢.4 LOAD HARDWARE REGISTERS

There are 5 subroutines under this heading:

OPAMS1 Loads A message into O/P Register 1

OPAMS?2 Loads B message into O/P Register 2

DUy FOTu

s

*VA

SR e oty te et
'-'n'.‘;i-', PRt)

11

OPBMS1 LoadsB message into O/P Register 1
OPPMS2 Loads B message into O/P Register 2

PUTBYOU Generates the parallel load pulse and selects the shift
register to be loaded.

The A or B message stored in the Transmit Message (Fig 26B) is loaded
byte by byte into successive 8 bit shift registers which form the O/P regis-
ters. Six load sequences are necessary to complete the loading of each 0/P
register,

BASIC INPUT SUBROUTINES (See also Fig 9)
11.1 GETIP Get Input

This subroutine gets characters from the VDU, checks the character
is not a back space and counts the number of input characters, It also
checks that the number of input characters does not exceed the maximum
required by the calling routine,

The calling routine should set the maximum number of characters
required in the variable called MAXNUM and call GETIP as a subroutine.

The GETIP subroutine will return to the calling routine upon the
entry of a Carriage Return on the VDU, The actual number of characters
entered will be in the variable COUNT and the characters will be stored on
the U stack. The PULU A instruction used by the calling routine will
extract input character from the stack and put it in the A register. The
first character available at the top of the stack is the first character
enetred on the VDU.

eg If the User entered A B C D, these characters would be stored
on the U stack and successive PULU A instructions would
retrieve A, B, C and D respectively.

11.2 GETHEXIP Get Hex Input

This subroutine gets Hex input from the VDU. 1t uses the GETIP
subroutine previously defined. The GETHEXIP subroutine checks the validity
of the input characters (to ensure hex input) and also counts the number of
input characters and checks algo that the number of input characters does
not exceed the maximum required by the calling routine,

The calling routine should set the maximum number of characters
required in the variable MAXNUM and call GETHEXIP as a subroutine.

The GETHEXIP subroutine will transform the input characters into HEX
bytes, ie 2 input characters constitute one HEX byte. GETHEXIP assumes
leading zeroes, ie if the calling routine set a maximum number of input
characters as 4 requiring an input between ¢¢¢9 and FFFF, and the User
:nterfl 123 carr age return the GETHEXIP subroutine would transform this

nto ~e

This function as defined as NORMALISING the hex input since a normal
hex byte contains 2 input characters,

L L POV LR

»

L A L

LU A A

§ TR IRDr O

PR Sl)

4

L}

DI . § e Sl

-4

¢
V
.
L]
R ¢

EESEWAFIACH A iy e S AN SO M il i By O a4 . . - - AR NN Rl O A e v

Normalising is only carried out in the event of an odd number of
characters being entered on the VDU,

ie if the User was to enter 23 or this would remain as 23,

The GETHEXIP subroutine returns to the calling routine when a carriage
return is entered on the VDU. The actual number of input characters is
returned in COUNT, The number of Hex bytes is in REVCO and the hex bytes
are stored on the U stack,

Examples 1 and 2 below illustrate more precisely the values returned
by GETHEXIP. 1In both examples the maximum number of allowable input
characters set by the calling routine is 6.

Example 1
User enters 1 2 3 4 5 cr
GETHEXIP returns with COUNT = 5
REVCO = 3
USTACK = @1, 23, 45
Example 2
User enters 1 2 3 4 cr
GETHEXIP returns with COUNT = 4
REVCO = 2

USTACK = 12, 34
11,3 INDECNU Input Decimal Number

This subroutine gets decimal characters from the VDU and transforms
them into a hex value. The calling routine should set the maximum number
of input characters in MAXNUM. The absolute maximum allowed is 5 decimal
characters representing FFFF Hex or 65,535 decimal, INDECNU checks the
validity of the input characters, also checks that the count does not
exceed the maximum number set by the calling routine and also checks that
the input does not exceed 65,535.

The calling routine should set the maximum character count accept-
able in MAXNUM and call INDECNU as a subroutine, INDECNU will return to
the calling routine when a carriage return is entered on the VDU. The hex
representation of the decimal input is in the D register.

11.4 INASC

This subroutine in the ALS M68¢9 Monitor program is used by GETIP
and INDECNU (see Fig 9) to obtain characters from the VDU, It interacts
directly with the VDU interface devices and returns the input character
in the A register.

| IOy

;

.
e
i
N
o

)
.

L"""'--------~

I B A N I PR N e I vl s o g o o o

Ml L g
------ B e e & B an e as

12 BASIC OUTPUT SUBROUTINES

12.1 OUTASC

This subroutine takes as its parameter the start address of an ASCII
string and prints the string on the VDU. The string should be terminated by

the End of Text (EOT) character (Hex @4).
12.2 OUTHEX

This subroutine takes as its parameter the address of an 8 bit byte
which is printed on the VDU as a pair of Hex digits.

12,3 OUTDEC

This subroutine takes the address of a 16 bit number to be printed
on the VDU as a decimal number.

The INASC, OUTASC, OUTHEX and OUTDEC subroutines are all part of the

ALS M68(9 Monitor program, For a full description of these subroutines
see Ref 5.

13 DATA ENTRY SUBROUTINES

Data entry subroutines 13,2 to 13.6 require the address of either the A or
B internal message structure (CCIMS or CC2MS in Fig 25) to be stored in a para-
meter passing location TEMP4,

13.1 Input Message Type GETTYPE (See also Fig 1¢)

Firstly the request to enter message type is output to the VDU. The
type is entered via the GETIP subroutine, The input is validated and if
invalid an error message is sent and the routine restarted. The internal
identifier MSTYPE (See Fig 25) is loaded with ¢, 1 or 2 corresponding
respectively to A, B or T input, If T is input the Transmigsion Option
field is interrogated and if a single transmission has been selected the
number of transmission in MOPTINUM is increased from 1 to 2, in order that
a single A plus B Message may be output. Program control is then returned
to the calling routine.

13,2 Input Check Code INPCC (See also Fig 11)

This subroutine firstly prints a request to enter the check code on
the VDU, The check code input is then collected via the GETHEXIP routine
and then validated. ie @ < CC K< F, If the check code is invalid the
'Invalid Input' error message is printed and the input request repeated.
If the check code is valid the input is stored in the check code field of
the correct message (See Fig 25).

13,3 Input Register Address INPRA (See also Fig 12)

Firstly this subroutine prints a request to enter the register
address. The register address is entered via the GETHEXIP subroutine and
then validated ie § S RAS 7, If invalid the 'Invalid Input' error
message is printed and the subroutine restarted, If the RA is valid it is
stored in the RA field of the correct message (See Fig 25).

10

AR e ————

- " v - e d A i i e e R N A N A A R A P a I S
» - Eonts e e A s T e o e Y T Y e T e Y Y s e et a0 PR PN PR R S N A L R N S SN

8 1
¥ 5
-

|
& 13.4 Input Data GETDAT (See also Fig 13)

‘&7 The enter data prompt is output to the VDU. Up to 9 hex digits of J
\ data may be input (via the GETHEXIP subroutine), this corresponds to up to |
~ 5 bytes of data. The number of bytes of data input is in the counter :
x scratchpad REVCO. Data is removed from the U stack and stored in the y
5 correct data structure with the least significant byte being stored in j
= either D1IMS or D2IMS (See Fig 25) (depending on whether data is for an)
=

stack, the data structure up to and including the last byte of the data
field D15MS or D25MS is filled with zeroes. Program control is then
returned to the calling routire.

A or B message respectively). When all the data has been pulled from the i

K
-t

13,5 Input Parity GETPART (See also Fig 14)

I Firstly the Enter Parity prompt is issued. The user respounse to
P the prompt "Parity True Y or N?" should be N to ensure false parity, any
other character entered gives true parity. True parity is therefore the
default value. The subroutine checks the response obtained via GETIP

: and sets the A or B message parity field (see Fig 25) to be either true
B or false.

PRI TR e v

13.6 Input Message Format/Structure MSSTR (See also Fig 15)

The request for Format prompt is first output to the VDU. The
input is then obtained via the GETIP subroutine. The response is checked
and if G the Message Structure field (see Fig 25) (of the correct message)
is set to @ ie GTU., If the input is neither G nor M an error message is
printed and the subroutine re-started. If the input is M a check is made
to see if a second parameter has been entered. If no second parameter has
been entered it is requested and obtained via GETIP. This second parameter
is checked and if neither 1 or 2 an error message is printed and the)
subroutine re-started. If the second parameter is 1 (ie Matrix Command) *
the Message Structure field is set to 1. If the second parameter is 2
R (ie Matrix Connection) the Message Structure field is set to 2.

LA IAATY

PP

-

CRESESY - ¥ Y

-
-

After the setting of the Message Structure field, program control
is returned to the calling routine.

oA a o .

13.7 Get Transmission Option GETTXOPT (See also Fig 16)

-

i The prompt for input is displayed on the VDU. The input obtained

”j via GETIP is validated. If not S, C or M an error message is printed and
the subroutine re-started. If the input is S for single, TXOPT is loaded

- with @ and the message type checked., If the type is A ox B then the

number of outputs (MOPTINUM) is loaded with 1, If type is T then MOPTNUM

is loaded with 2,

If the input is C (for continuous) then TXOPT is loaded with 1 and

5 MOPINUM is loaded with 1, Then the ON/OFF line variable ONOFFLI is]
- interrogated. If ON line then Comfort Display information is requested

: (see Section 13,9) - control is returned to the calling routine after q
IS this information has been input - if OFF line control is returned to the .

YA calling routine, If the input is M for Multiple TXOPT is loaded with 2
‘ﬁ and then the number of output transfers (in Decimal) must be input via
\,
*-

-

INDECNU. This number if not zero is stored in MOPTNUM. If the number

11

e
L-
K

- _.
AN 9 LALA

RS - YAALAR AR

M

14

T A e Sl G S S AT Mo M A e e o

A T L E TN TN TR T e, e—"

is greater than 10@¢¢ then ONOFFLI is interrogated and, if ON line, comfort
display information requested as above, If the number is less than 10¢¢ or
the display is OFF line then control is returned to the calling routine.

13.8 Get Wait Conditions GETWAIT (See also Fig 17)

The request for input is displayed on the VDU, The input is collected
via the GETIP subroutine. If the input is neither Y or N then an error
message is printed and the subroutine re-started. If the input is N for NO
then WAITY is set to zero and program control is immediately returned to the
calling routine.

If the input is Y for YES then WAITY is set to 1 and the Wait
Register address is collected via the GETHEXIP subroutine. The input is
validated ie it should be greater than or equal to zero and less than 8,

If invalid an error message is printed and the Wait Register Address should
be re-entered, If valid the wait register address is stored in WAITRA (see
Figure 25) and program control returned to the calling routine. -

13.9 Get Display Option GETDISOP (See also Fig 18)

The Display Option prompt is issued. The input is collected via the
GETIP subroutine. If the input is not N, A or C then an error message is
printed and the subroutine re-started.

If the input is N for None then DISOPT is set to zero and control
returned to the calling routine.

If the input is A for All or C for Changes DISOPT is set to either
1 or 2 respectively. ON/OFF line selection is then required. If Off line
display is selected ONOFFLI is set to zero and control returned to the
calling routine. If ON line display is selected Segmentation entry is
required (see Section 14,1) then DISOPT is again inspected and if ALL
display has been selected control will return to the calling routine. If
the user has selected to display Changes of Message TXOPT is inspected and
if Single transmission has been selected control will immediately return to
the calling program. If Multiple outputs have been selected the number of
outputs (stored in MOPTNUM) must be greater than 1¢¢@ or the calling routine
will be re-entered. At this point the user has the option of displaying
'comfort' messages every 10@fth input. Selecting to display 'comfort'
messages will cause COMFSTOR to be set to 1 (otherwise it will be cleared)
and program control will then return to the calling routine.

DISPLAY ON REQUEST SUBROUTINES
14,1 Input Segmentation SEGMENT (See also Fig 19 and Para 17.2)

The prompt requesting Segmentation information is printed on the
VDU, (For full description of Segmentation see Ref 2). The input,
obtained via GETIP, is then checked. If the segmentation chosen is 1, 2 or
3 (corresponding to GTU, MATRIX Command and MATRIX Status respectively) then
the correct pre-set segmentation values are copied into the segmentation
working stack and control returned to the calling routine.

.

I1f the segmentation requested is 4, ie Input Dependent, a flag is
set (vhich will be used in the Print Message Subroutine see para 14,3) and
control is immediately returned to the calling program, If the Segmentation
is not 4 the flag is cleared.

12

Nailen'y av A T Y

4 o

-

-

......

If the segmentation selected is @(SEGP) ie User Defined then a second
segmentation prompt is displayed on the VDU, The user should then decide
whether or not to change the existing segmentation @ specification, If
not the existing specification is copied into the segmentation working
stack and control returned to the calling program. If the user elects
to change the previously defined segmentation @ specification then segmen-
tation specification input information is displayed on the VDU and user
input enabled. (Up to 7 user defined segmentation spaces may be entered,
input should be terminated by entering the letter 'E').

As each input is entered it is validated to ensure thatit is
either the letter 'E' or a decimal number (parts of INDECNU, see section
11.3, are used to validate the decimal number). If the input is a valid
decimal number it is stored in the User Segmentation stack and the next
input requested. If the input is invalide the whole Segmentation @
section is restarted, this also happens if the user tries too many segmenta-
tion spaces. If the input is the termination character 'E' the segmentation
specification built up in that part of memory allocated to user defined
segmentation is copied in the segmentation working stack and program con-
trol returned to the calling routine.

14,2 Print Block PRINBLK (See also Fig 2¢ and Para 17.2)

The Print Block subroutine calculates the start address of each
message (the datum being the start address of the Block) and calls the
Print Message (PRINMES) subroutine (with the message start as the para-
meter) to print the message. It then calculates the start address of the
next message and continues printing messages until every message in the
block has been printed. Control is then returned to the calling routine.

14.3 Print Message PRINMES (See also Fig 21).

The automatic segmentation flag is checked and if set the Message
Type (MSTYPE) is checked, if the Type is T (for both) then the input
message number is checked. An odd input number will correspond to a
response from an A message, similarly an even input number to a B message.
The Format field of the structure (See Fig 25)of the correct message is
then interrogated. If the format field is set to @ then segmentation 1
is used, otherwise the Register Address parameters are extracted from the
input message. If the input Register Address is equal to 2 (ie a MATRIX
Status input) then segmentation 2 is selected otherwise segmentation 3 is
selected. The selected segmentation specification is then copied into
the segmentation working stack. At this point either the automatic seg-
mentation flag was clear, and the segmentation @, 1, 2 or 3 identified or
the automatic segmentation has been determined as above.

The message start address parameter passed by the calling routine is
then collected. The first two bytes contain the message number. This is
printed on the VDU in decimal format using OUTDEC.

The remaining 6 bytes of the message contain the 42 bits of the
input message. Each bit is collected in turn and stored in ASCII format
(ASCII @ being used for a bit equal to @ and ASCII being used for bit equal
to 1) in a vertical stack ASMSST. As each bit is stored the bit number is
checked against the segmentation specification and if the bit number
corresponds to a segmentation space an ASCII space character is inserted
into ASMSST before the actual bit.

13

WA,

ry

g
i~
fug
-
>
~
i
! -
4
>
4
-
d
<
P
]
]
-
q‘

8

15

When all 42 bits of the message have been processed ASMSST contains
a series of ASCII @s, 1ls and spaces. This whole stack is printed on the
VDU using the OUTSAC subroutine, Control is then returned to the calling

routine.
THE HARDWARE INTERFACES

15.1 Programming the PPIs

The Hardware Handlers control the input and output peripheral cir-
cuits via four Programmable Peripheral Interface devices (PPIs). The input/
output functions to these devices are programmed initially in the Initialisa-
tion routine which is entered after the system is reset.

Tables 1 to 4 list the PPI addresses and their internal identifiers
and Figure 22 illustrates the nature (ie input or output) of their indivi-
dual programming and details the function of the bits of each of the PPI

ports.

HEX ADDRESS PORT FUNCTION| IDENTIFIER

8089 A OUTPUT POPDAT
8¢81 B OOUTPUT | POPADD
8083 CONTROL | CONTROL | POPCONL

CONTROL BYTE HEX 89

Table 1 PPI 1 Notations

Loading the Control byte (Hex 89) into the control port POPCONl programs
Ports A and B to be outputs.

HEX ADDRESS | PORT FUNCTION| IDENTIFIER
8984 A OUTPUT | POPCOM
8085 B INPUT POPSTA
8987 CONTROL | CONTROL | POPCON2

CONTROL BYTE HEX 8B

Table 2 PPI 2 Notations

Loading the control byte (Hex 8B) into the control port POPCON2 programs
Port A to be an output and Port B to be an input.

PPIs 1 and 2 are used to interface to the Axis Test Box peripheral
card controlling OUTPUT TRANSFERS.

14

XA,

»
-

2R

.
PR A

)

CRrChRRa - -~
CATORT A
L L YL Y S)

AP

8
»

. »
-.1., Lfl_'.

LAY

K ela O .0
i AL

L AES
AR

L] " ’I
OeORTEENTRIR

ol

v

"
VA

'.
ASS oA

.

AR

T

Seeed
Sl lasanal

>~

(O g N i/ i i s RSt it e A a A iy ghins S A AARCY AR A i it it B I I A LI CEN IR I

HEX ADDRESS PORT FUNCTION| IDENTIFIER

8¢88 A INPUT PIPDAT
8¢89 B OUTPUT PIPADD
8¢8B CONTROL | CONTROL | PIPCON1

CONTROL BYTE HEX 99

Table 3 PPI 3 Notations

Loading the control byte (Hex 99) into the control port PIPCONl programs
Port A to be an input and Port B to be an output.

HEX ADDRESS PORT FUNCTION| IDENTIFIER

8¢8C A OUTPUT PIPCOM
8¢8D B INPUT PIPSTA
8¢8F CONTROL | CONTROL | PIPCON2

CONTROL BYTE HEX 8B

Table 4 PPI 4 Notations

Loading the control byte (Hex 8B) into the control port PIPCON 2 programs
Port A to be an output and Port B to be an input.

PPIs 3 and 4 are used to interface to the peripheral card con-
trolling INPUT TRANSFERS,

15.2 Hardware/Software Boundary

When considering the boundary between the hardware and software in
the AXIS Test Box it is important to consider the functions to be performed
by the hardware., In the most basic terms these functions are:

b

To accept data from the microprocessor.,

To transmit this data in the form of an output transfer
to the system under test,

To receive input transfers from the gystem under test.

To present the received data to the microprocessor for
investigation.

15

>
S
Y
.
.
N
"
!
‘
‘
¢
‘¢
‘
v

16

.........

Since the AXIS Test Box is used in place of the System 25¢ (see Ref 1)
it is necessary that the interface btween the Test Box and the system under
test should be identical to that which the $S25¢ would present. Of the 4
functions listed above items c) and d) must, therefore, be performed in real
time, ie using the same transmissin rate as the S25¢. Reference 5 gives full
details of the interface requirements.

The time interval between transfers is not defined therefore the
processing necessary to perform functions a) and d) above may be preformed
in non-real time, ie at a rate determined only by the ingtruction speed of
the M68¢9 microprocessor controlling the Test Box.

15.3 Outputting Data to the Hardware Registers

Once data has been prepared for transmission, as described in
Sections 9 and 1¢, and is in the format shown in Figure 26B it must be
loaded into the hardware registers. There are two hardware registers A and
B. Each is 42 bits long and each is made up of five shift registers of 8
bits and one shift register of 2 bits. Each of the individual shift
registers has been allocated a specific address (see Annex D). When a
hardware register address is output via POPADD (Fig 22) the hardware
decodes the address and generates a parallel load pulse for the selected
shift register. Each byte of the data is output to the hardware via POPDAT
(see Fig 22). The hardware register address is then output via POPADD
this then causes a hardware parallel load pulse to be generated for the
correct hardware register and the POPDAT data is latched into the hardware
register (see para 1¢.4).

When all the hardware data registers have been loaded the number of
transmissions is loaded into the hardware counter in a similar manner.

Bit Ay in POPCOM is set to Transmit, (ie logic @) and bit A; set to
logic 1 if the Continuous option was selected., Bit A; is cleared if not
in Auto Receive Mode, and finally a GO pulse sent on bit A@. Once the GO
pulse has been sent the hardward assumes control and the data is transmitted
in real time to the system under test.

15.4 Reading Data from the Hardware Registers

The hardware input buffer is 42 bits in length, and is made up of
five shift registers of 8 bits and one of 2 bits. Data is accessed via six
tri-state buffers. (one for each shift register of the input buffer). Annex
E lists the addresses of these tri-state buffers. When an input transfer
has been received in real time from the system under test the polling
routines described in para 16.1.2 inspect the input board status inputs
(PIPSTA in Fig 22). If the Ready to Read bit (bit BP) is set then the
address of each byte of the hardware input buffer is loaded into PIPADD and
that data byte read into the microprocessor via PIPDAT. This process is
repeated until each byte of the hardware input buffer has beem read into
micro-processor store. The interrogation routines (see para 16.2) then
assume control. The transfer of data from the hardware to the micro-
processor is not carried out in real time,

HARDWARE HANDLERS

The Hardware Handling code can be divided into two sections:

16

Y . X Y

-4

N ¢ 9 NN

~
T

Taletet

et

*a
LD 3

_o‘

fegres.

F ¥ ol

a_¢

2
2re

1 000

S

FX

X F Ay

~iL
-

4
-

4
’

€

a Handling hardware go/stop, and polling for hardware or VDU responses.

These are the POLLING routines.

b Interrogation of inputs, storing, displaying etc. These are the

INTERROGATION routines.
16.1 Polling Routines (See also Figs 22 and 23)
16.1.1 Starting Transfers

For an output transfer the hardware counter is loaded with
the numbers of transfers to be sent. RX/TX is set to TX and a logic
pulse generated on the GO line commands the output board to proceed
with the transfer.

For an input, transfer circuitry on the output transfer
board generates the timing necessary for inputs to be received.
RX/TX is set to RX and a GO pulse generated.

16,1.,2 Polling for Responses

Responses may arise from any of the following three
areas:

a User response from VDU ie Stop command,
b Output transfers.
¢ Input requests, received etc.

Responses from a,above obviously come via the VDU interface, the
Stop command has been get to be a specific sequence of the letter S
followed by carriage return. Upon receipt of the letter S half the
stop command has been received and the HALFSTOP flag set. A user
input of carriage return will then cause a FULL-STOP, one more
output and input sequence will then be accepted in order to synchro-
nise the transmissions. An informtion message informing of user
intervention will be printed on the VDU and control returned to the
Basic Command Mode. (In the case of Automatic Input Display the
next input will synchronise the termination).

If the character entered after the letter § is not a
Carriage Return the HALFSTOP flag will be cleared and the whole
Stop sequence must be re-entered before it will be accepted. This
is done in order that the act of Stopping transfers should be a
deliberate action and the recognition erroneous Stop commands
minimised. Termination may also be caused by filling the input
message store.

Once an output transfer has started it will continue until
completed. Whenever the number of output transfers programmed into
the hardware counter has been sent the Transmitting/Stopped bit in
POPSTA will be raised to indicate compietion of output sequence.
When this has happened one more input will be accepted in order to
synchronise with the system under test. If the Transmit Option
selected is Continuous then the Continuous bit (see Figure 22) will
be set thus disabling the hardware counters. In this case the user
must intervene to stop outputs, or the message store must be filled.

17

Rk Tl A a e ek L L i et P R et abdh IRl bl i adt)

et P O W 0 0 o i i i Al Al e e et ~——
U R A N A A S e we Ty

"

- -
I Y I Y v

When an output has been activated inputs should be expected
and the polling routine will interrogate the status responses from
the Peripheral Input Transfer card. These status responses (see
Figure 22) are:

a Ready to read - this indicates that data has been
received and is in the input buffer shift register
awaiting interrogation. (See also para 15.,4)

b Request i/p Transfer (TFR) - this indicates that the
system under test has requested an input transfer.
This request is granted by putting the RX/TX bit to
RX and generating a GO pulse,

¢ End i/p transfer ~ this indicates the end of the input :
transfer. If this bit is set and the Ready to Read bit .
is clear it indicates that the system under test has
failed to return the standard 42 bits of data. (The
Matrix returns only 36 bits of data). A circuit on the
Input peripheral card which generates 6 extra pulses,
for the input buffer, is then activated. This is done 8
so that standard interrogation routines described in
section 16.2 may be used for both GIU and Matrix
messages.

d Input timeout ~ this indicates that an output has been
sent but the system under test has failed to respond
within a specified period. After each Output transfer
(or, in the case of Auto Display Mode, Input transfer)
the timeout counter is reset. In order to avoid a
possible 'Lock up' situation arising, if the system
under test fails to respond, a timeout on Inputs is
enabled. When the timeout status bit is set the peri~

3 pheral hardware cards are re-set to Transmit mode and
? another Output sent,

"

E 16.2 Interrogation Routines (See algo Fig 24)

! The Interrogation Routines are entered when the Ready to Read Status
y bit is set, If the Display Option chosen is N for None and no Wait Condi~

tions have been specified (ie the hardware delay is enabled) HALFSTOP is
interrogated to check if this message should terminate the transfer sequence. -;
If termination is indicated (ie HALFSTOP = 2) then the termination message -
is printed and control returned to the Basic Command Mode. If termination
is not indicated (ie HALFSTOP ¢ 2) the hardward is re-set to Transmit, and N
the Polling Routines re-entered.

L
2"y

PEAT Y LT

.t e

If the above conditions are not met the data in the input buffer is
: read and the message together with its message number is stored in a
' temporary storage area THISIP,

POV R
g e g’ "

If a Wait Condition has been set the input Message Register Address
is extracted and compared with the Wait Register Address. If a match is
not achieved the termination check described is carried out and if no
termination is indicated the hardware is re-set to Transmit and the Polling
Routines re-entered.

18

LN

]
WL

oy ey
XP

"‘
s -

g 1 SRS

x
‘A

i)
ety
¢ “o..'..'o

Kt dd. P

hh{'.‘.i’ ;

T

-

Q
B S

ool
. &

ral Y4280

17

.....................

If the Wait Register Address match is found, or no Wait conditions
have been set, the Display Option chosen is inspected.

If All inputs are to be stored for display then the input message
with its internally generated message number is copied from THISIP to the
next message space available in the input message store. If ON Line dis-
play has been selected the message will then be displayed on the VDU using
the Print Message subroutine.

The total number of input messages will then be checked and if the
input message store is now full the input/output sequence will be terminated,
otherwise the hardware will be re-set to Transmit and the polling routines
re—-entered.

If Changes of message are to be stored for display then this input
message must be checked against the last message of the same type. If
the Type is A then against the last A message preserved in LASTAIP, If
the Type is B then the check is made against the last B message to be
received and preserved in LASTBIP, If the type is T (for Both) then the
input message number is inspected. If the input message number is ODD
then the check is made against LASTAIP and if EVEN the check is made against
LASTBIP.

If differences were found then the message in THISIP together with
its message number is copied into the next space in the input message
store and the relevant LAST A or B IP is overwritten with the new data
only (excluding message number)., If ON line display has been selected
the message and message number will be printed on the VDU using the
PRINMES subroutine; the termination checks will then be carried out and
if no termination is indicated the hardware is re-set to Transmit and the
Polling Routines re-entered.

If no differences were found then the 'comfort' message flag COMFSTOR
is checked and if set the message number inspected. If this is the 1¢¢@dth
message received since the last display it will be displayed on the VDU using
the PRINMES subroutine.

The termination checks are then carried out and in the absence of
termination indication the hardware is again re-set to Transmit and the
Polling Routines re-entered.

THE DATA STRUCTURES
17.1 Message Assembly

When the Message Assembly has been completed the INTERNAL MESSAGE
STRUCTURE (Figure 25) will be filled with the correct information.

Information is stored in this structure in a form which makes
changing individual parameters relatively simple since each parameter is
stored independently. This structure is not, however, the ideal for
operations asuch as parity calculations and therefore, when it becomes
necessary to calculate parity bits, the message information stored in
the A or B Message Fields is transformed by the FMFORP (Format for Parity)
subroutine into the structure shown in Figure 26A., In this structure each
bit of the 42 bit message occupies a whole byte with @) representing a bit
@ and @1 representing a bit 1. With the information stored in this format

19

PN

et oSO Sl o ofnlh o fnf A

.
4
®
[}
.

the CALCP subroutine may be called to generate parity over any data area
within the 42 bit message and store the parity bit in whichever bit position
is selected. -

Once the parity bit(s) has been generated the information stored
in the structure in Figure 26A is transformed by the TFTOTX subroutine
into a format ideal for interfacing to the hardware by the hardware handlers.
This format is illustrated in Figure 26B.

This is done in order that the user may select to transmit A, B or
both when using the Repeat Command, and may also change individual elements
of each message independently when using the Repeat Command,

17.2 Message Display
When input messages are received they are stored (in accordance with

the display option selected) in the form illustrated in Figure 27A., Each
input message is given a message number which is stored with the message.

&
N

Messages are stored in blocks of 16 with space available for up to
4@ blocks. When the Display on request is selected the total number of
messages stored is displayed and the user allowed to select the segmenta-
tion format required. This segmentation allows fields within the 42 bit
message to be isolated for easier inspection. Three pre-set segmentations
are available plus one which is user programmable. Figure 28 illustrates
the segmentation storage area. The example shown in Figure 28 for segment
1 means that a space will be inserted in the bit pattern displayed after
the 4th, 7th and 9th and 41st bits, This could isolate for example the
check code, register address, data and parity fields of each message
displayed.

In order to prepare each message for display and to include the
spaces for segmentation the message is transformed from the format illus-
trated in Figure 27A to that illustrated in Figure 27B. In Figure 27B
each bit of the 42 bit message occupies a byte, a bit @ being represented
by Hex 3¢ (ie ASCII @) and a bit 1 being represented by HEX 31 (ie ASCII 1),
The segmentation spaces (Hex 2@) are inserted in the correct bit position
thus when the megsage is output the message will appear as a series of
@#s and 1s with spaces providing the segmentation isolation.

18 TRANSMIT DATA FLOW (See also Fig 29)

All input information is collected via the Data Entry Subroutines described
in Section 13. At this point the information is stored in the internal message
structure Fig 25. The Format for Parity subroutine (para 1@.1) translates the
Data, Check Code and Register Address into a format which makes parity calculation
eagier (Fig 26A). When the parity bit(s) have been inserted the information is ;
then transformed (see para 1¢.3) into a format suitable for transmission (Fig 26B).--
{gi; information is then loaded into the hardware registers as described in para]

19 RECEIVE DATA FLOW (See also Fig 3¢)

The hardware input buffer register is read (see para 15.4) and the informa-
tion stored in the format shown in Fig 27A. If the input transfer is to be dis-
played on the VDU, using the Print Message subroutine (see para 14.3) it is :
firstly transformed into the format illustrated in Fig 27B., Segmentation spaces
are inserted and each data bit translated into its ASCII representation ready for
output to the VDU. Reference 2 describes and illustrates quite clearly the type

xpected using different segmentation specifications.

INTERNAL IDENTIFIER CROSS REFERENCE

IDENTIFIER INTERNAL LABEL EXTERNAL VALUE INTERNAL VALUE
MESSAGE TYPE MSTYPE A - A MESSAGE (]
B - B MESSAGE 1
T - BOTH 2
A PARITY APARTRU TRUE Y - YES 9 J
N - NO 1
B PARITY BPARTRU TRUE Y - YES ¢
N - NO 1
A FORMAT AFORMAT G - GIU) :
M1l - MATRIX COMMAND 1 :
M2 - MATRIX CONNECTION 2 .
B FORMAT BFORMAT G - GTU]
Ml - MATRIX COMMAND 1
M2 - MATRIX CONNECTION 2
TRANSMISSION TXOPT S - SINGLE]
OPTION C - CONTINUOUS 1
M - MULTIPLE 2
WAIT WAITY Y - YES (]
CONDITION N -NO 1
DISPLAY OPTION | DISOPT N - NONE]
A - ALL 1
C - CHANGES 2
—T
ON OR OFF LINE | ONOFFLI ON LINE Y ~ YES @
DISPLAY N - NO 1
RECEIVE OR RXTX TRANSMIT ¢
TRANSMIT RECEIVE 1
COMFORT COMFSTOR COMFORT
. MESSAGES MESSAGES Y - YES 1
5 N - NO ¢
|
; ANNEX A
|
\
\ -
]
|
A-1

X L LS L2 . T T~ " & "o vy % g
:Q - R MSE aNe Y, LECWLSL fLw_w s a. e - P T AT R A R A A i SR L N <
', -------
hS
e
Sy
3%
35
]
3
- K3
« ANNEX B
& e

DRAWING SYMBOLS USED

INCREMENT . s . .
POINTER Activity ie Code performs this task

| RERIACMERE AR
x

N PLR

(s
SN

s :.

GETIP Subroutine

s

o]
N

bs 'L

FS-2 Y

) i‘i(-‘;* ¢

— YES Decision Box

.

XK i;\f,xs el i

@ — GOTO eg GOTO A

® Entry point ie GOTO A would arrive at this point

WA

A Ly

e

AFLALL M N

A ¥ CO!;';'(I;NISIED Continuation ie Flow Diagram continuing at Fig 8.
k2

Data Structure

¥
o B-1


~~~~~~ —p -
. R R e At e s

ANNEX C

CROSS REFERENCE BY INTERNAL LABEL NAME

LABEL CODE FUNCTION PARAGRAPH g;g:gi
’ ASMMES Message Assembly Routine 4 2

AUTODIS Auto Display Routine 6 4
CALCP Calculate Parity Subroutine 19.2 -
COMMODE Basic Command Mode Routine 3 1
DISOREQ Display on Request Routine 5 3
ENDOFSUB | Prepare for Hardware Handlers Routine 9.1 8
FMFDRP Format for Parity Generation Subroutine 1.1 -
GETDAT Input Data Subroutine 13.4 13
GETDISOP | Get Display Options Subroutine 13.9 18
GETHEXIP | Get Hexadecimal Input Subroutine 11.2 9
GETIP Get Input Character Subroutine 11.1 9
GETPART Get Parity Subroutine 13.5 14
GETTXOPT | Input Transmission Options Subroutine 13.7 16
GETTYPE Input Message Type Subroutine 13.1 19
GETWAIT Input Wait Conditions Subroutine 13.8 17
GOANDTX Prepare Data for Transmission Routine 9 7

Y INASC Get ASCII Character from Keyboard Subroutine 11.4 9

E; INDECNU Input Decimal Number Subroutine 11.3 9

Ez INITIAL Initialisation Routine 2 -

gg INPCC Input Check Code Subroutine 13,2 11

Eﬁ INPRA Input Register Address Subroutine 13.3 12

g

g

b

E c-1




HPRTOTRd L LA AT )

LABEL CODE FUNCTION PARAGRAPH ;]?S(BUERI!‘:{
‘ MENUDIS Display Current Menu Subroutine 8 6
'f MSSTR Input Message Format/Structure Subroutine 13.6 15
, OUTASC Output ASCII character to keyboard Subroutine 12.1 9
t OUTDEC Output Decimal Subroutine 12,3 9
OUTHEX Output Hexadecimal Subroutine 12,2 9
; POLLING | Polling Routines 16.1.2 23
"?’ PRINBLK Print Block Subroutine 14,2 29
: PRIMS Print Message Subroutine 14.3 21
: REAIPDAT | Interrogation Routines 16,2 24
: REPEATX Repeat Routine 7 5
4 SEGMENT Input Segmentation Subroutine 14,1 19
TFTOTX Transform to Transmit Format Subroutine 19.3 -

T XET T

|
N




10 Yt

..-’;..-

ST

e

; iy Gy

‘:
AL DL,

.lj N

o
i

'~ i

LA EAA

N

!

NS L

Lo

ANNEX D

~ -

OUTPUT BOARD HARDWARE REGISTER ADDRESSES

............

...................

ADDRESS (IN HEXADECIMAL)

REGISTER SELECTED

m o

NONE - THIS 1S THE QUIESCENT STATE

Register
Register
Register
Register
Register
Register
Register
Register
Register
Register
Register

Register

Hardware Counter Shift Register 1

Hardware Counter Shift Register 2

UNUSED

A

A
A
A
A
A

B
B
B
B
B

B

Shift Register
Shift Register
Shift Register
Shift Register
Shift Register
Shift Register
Shift Register
Shift Register
Shift Register
Shift Register
Shift Register

Shift Register

1
2

3

5
6

D-1




R AN R s e e g
_____________

ANNEX E

INPUT BOARD HARDWARE REGISTER ADDRESSES

ADDRESS (IN HEXADECIMAL) REGISTER SELECTED

0 NONE - THIS IS THE QUIESCENT STATE
1 Input Buffer Register 1
2 Input Buffer Register 2
3 Input Buffer Register 3
4 Input Buffer Register &
5 Input Buffer Register 5
6 Input Buffer Register 6
7+F UNUSED

R

:3

<

b

M

3

4]

v';

:., E-1




| ssimiavisation §

@._4

AUTO DISPLAY

]

-2

RESET
ASSEMBLE
MESSAGE
e

] DISPLAY ON

REQUEST

REPEAT

DISPLAY MENU

[

2

.
0
)

e ot adn B
AP

d

ety ¥

,,;5._

y_J ol

SR

0

A

~
A

.“I ‘. '.

IF NONE
REPORT ERROR

PREPARE
FOR H/W
HANDLERS

PREPARE DATA
POR TRANSMISSION

EE AR

Cal

|

HARDWARE
HANDLERS




T A i ot - v Lt Tl s v oy —y
o = LA S S i it e S S st e ¢ gt Tl A CRACICIMA AT A it i gt ORI A OO RIS A o
P T I T P R
-
.
ENTER FROM BASIC COMMAND MODE -
[

i

GET

A=A ’ ~
B=3 t W
T = BOTH ‘

SET ADDRESS POINTER FOR

r—'——‘1 INFORMATION STORAGE
I| INPUT CHECK CODE " ] .
]

" IKPUT REGISTER ADDRESS || ]

~

(=)
2

S

g
i

l 1s YES &{\SST
TYPE '
e HE.SSAG!: NO
NO YES
il
! ]
R, GET TX OPTION '
-, s, CORM :
]
NO )
1S ITH s - 1
]
YES | —— CoT WAIT RA

II GET DISPLAY OPTION N, A

READY GO TO BASIC
TO TX COMMAND MODE
YES .
PLAY|

l- e e v emmem % oE o § GBS (R ALALCISERES S SIS TR K

g
-
4
PREPARE DATA FOR 9
r ON /OFF LINE D18 TRANSMISSION '__4
l '..'j
*
MARDWARE -i
-
.7
XlJ ARSEMMLE MESSAGE BOVLINE FLOW DLAGRAM L 4




ENTER FROM BASIC COMMAND MODE

y

PRINT No. OF MESSAGES ;

!

r GET SEGMENTATION ]

s s o= o > o
o =

GET BLOCK NO.J

4
K
]
td

CALCULATE BLOCK
START ADDRESS AND
NUMBER OF MESSAGES

IN BLOCK

- ws Es O an E e S %

HAS LAST
MESSAGE BEEN
PRINTED? YES

NO
'l PRINT MESSAGE I'

GO TO BASIC
COMMAND MODE

ow 4
¥ J‘I:l:

FIG 3 DISPLAY ON REQUEST ROUTINE FLOW DIAGRAM

I/ ST WM A % Y WL e L




R T Tty

ol

I

.

C COMMAND MODE

ENTER FROM BASI

rrl \“ > -\..-,.\.-{.- n.n N -.-..w”-!*-.v .\-wcnr.o

N e wrrmmE . . e e, .
VFe Be PSS T IR S R ) oy .
'

GO TO BASIC
COMMAND MODE

NO

N, A, C etc.

GET DISPLAY OPTION

R NI

READY TO

czy
YES
y
GO TO HARDWARE
HANDLERS

..,?..q‘-....... . .
e, NG [ SN R
S RO R AK AL T )] o e i

« s v e s e -

|

L8
(X1

. g .
TR e

FI1G 4 AUTO DISPLAY ROUTINE FLOW DIAGRAM

Cl ST

. EYCYCARSERTAEY




ENTER FROM BASIC COMMAND MODE

v o | -

PRINT OPTIONS

GET INPUT

GET 2ND
PARAMETER

SET
POINTER
TO B

ISPUT MESSAGE

CHECK CODE

| cer v |

INPUT
REGISTER
] ADDRESS

GET DISPLAY

OPTIONS
NO
01 S GET TRANSM1SSION
OPTIONS
NoO
INPUT FORMAT/

STRUCTURE

GET WAIT

CONDLT ,ONS :
PRINT '
—— ERROR 3
| cer seantaTION j}-—" : }
~
- 1 4
GO TO BASIC

COMMAND MODE r

PREPARE T
:::g:::: e DATA FOR
TRANSMISS [ON

o’

[N §

.

.

PRINT ERROR

M B «




DISPLAY CONTENT
OF A MESSAGE

I et
P

LAYl

AV

ENTER FROM BASIC COMMAND OR REPEAT MODES

DISPLAY TYPE

YES

NO

NO

DISPLAY CONTENT
OF B MESSAGE

TYPE MUST BE T FOR BOTH

\

DISPLAY CONTENT
OF A AND B
MESSAGES

1

l

DISPLAY
TRANSMISSION
OPTIONS

DISPLAY WAIT
CONDITIONS

DISPLAY
DISPLAY
OPTIONS

RETURN TO
CALLING ROUTINE

PIG 6 MENU DISPLAY ROUTINE FLOMW DIAGRAM




Sy ‘;' %
. a'f..f.f-.‘_d'

SRR

N

PO

‘r

P

L R L ‘ad
B RN S PN Sl ol i net g g o
AR N A . e

ENTER FROM MESSAGE ASSEMBLY OR REPEAT

l

SET
HANDLERS TO
TRANSMIT
N{)
YES
FORMAT MESSAGE FORMAT MESSAGE
FOR PARITY SET POINTER TO SET POINTER TO - FOR PARITY
GENERATION A MESSAGE B MESSAGE GENERATION
PREPARE POINTERS PREPARE POINTERS
FOR PARITY FOR PARITY
CALCULATION CALCULATION
|
CALCULATE
PARITY
|
TRANSFER TO TRANSFER TO
TX FORMAT TX FORMAT
o y e

NO

CONTINUED FIG 8
PREPARE FOR HANDLERS

FIG 7 PREPARE DATA POR TRANSMISSION FLOW DIAGRAM




m S SR T AT TN T

S S T Iy T Y T

ENTER FROM FIG 7 OR FROM AUTO RECEIVE MODE

l

PRESET LAST INPUT MESSAGE STRUCTURES -

SET START OF INPUT MESSAGE STORE 1

- SET HARDWARE (PPls)
FOR RECEIVE

LOAD O/P REG 1

WITH A '
) GO TO HARDWARE
HANDLERS
':_\‘
$ O LOAD O/P REG 1
P LOAD O/P REG 2 WITH A
".\. WITH B
™~
Y
>
LOAD 0/P REG 1
SITH B
NO
LOAD O/P REG 2
X YES VITH A
OPT
SINGLE
NO —
LOAD O/P REG 2 Lo L
WITH B
. e
()
LOAD H/W COUNTER YES
VITH NUMBER b e e——
S— PREPARE FOR MULTIPLE

COUNTDOWN

HARDWARE HANDLERS

F1G 8 PREPARE POR HARDWARE MANDLERS FLOW DIAGRAM




11.1 GETIP
11.2 GETHEXIP
11.3 INDECNU

11.4 INASC

o'

TR
a

1o
-.‘-

SNTEINTEIN

CALLING
ROUTINE

=

OUTPUT

12.1 OUTASC
12.2 OUTHEX

12.3 OUTDEC

CALLING
ROLTINE

i GETIP

ﬁ
’
!
'
L
'
!
'
!

g
B
$

USSR

a3

r------

s

r------q-. -1.------1

INDECHL

!
‘ OUTDEC ‘ OUTHEX

]

\

|

)

|

]

i

]

:

RXK, |
DUTASC ]
[}

]

]

[}

L]

]

(]

o |

FLOW

l
]
‘
'
----------------J

A L S M68@9 MONITOR SUBROUTINES

FIG 9 BASIC INPUT/OUTPUT SUBROUTINES




ENTER

Y
OUTPUT TYPE
REQUEST

4
PRINT
ERROR

MESSAGE

R

INPUT MESSAGE TYPE SUBROUTINE FLOW DIAGRAM

F1C 10

GET IP
LOAD MSTYPE
WITH &
LOAD MSTYPE
WITH 1
LOAD MSTYPE
WITH 2
YES
LING ROUTINE

LOAD MOPT NUM
VITH 2
RETURN TO

-
e BT

NO

“aTe% s mb n. Y |J|-\mF¢ o A0 e S T ) PN ou«- AR o AR R - v /ﬂ)’ﬁcu . . @ n-ﬂl e e e - g
-%-‘tv -wo \..Vm o-.;.,-h...‘ O #) .- -....-.. ...... ﬁ ..-..w- .-o -. ..ur-¢ f- qu.-P o, fm;w...-..l -.. ..-.. . \ \- ”. 'y IA-JW n\-- v -Jﬂvn-l. Rl o,




e G IO AT N A R e
IR AN A R ite Br et i A f - JHACI S St DAL I B iV SancRatn M R A
A - I ] A —
k . ERE Al N

ENTER

{

PRINT INPUT CC REQUEST

PRINT ERROR

GETHEXIP

I

!

1S INPUT
VALID
0gCCsF

e

P

e eniad

LR

STORE CC IN cC FIELD OF
CORRECT MESSAGE

(R Y

£ e e e m - s casmmea S T e« 2 v AR

RETURN TO CALLING ROUTINE

FIG 11 INPUT CHECK CODE SUBROUTINE FLOW DIAGRAM

S




W e m e N N M T a . % TR
W e e e DG

R I A A A

.
o

At it las v Nk g

gl

o

ALY

XSS

ENTER

A

PRINT INPUT RA REQUEST

PRINT ERROR

STORE RA IN RA FIELD OF
CORRECT MESSAGE

HETHEXIP

RETURN TO CALLING ROUTINE

FIC 12 INPUT REGISTER ADDRESS SUBROUTINE FLOW DIAGRAM

-13 NNW \tﬁ .ﬁ -1- -.. .-. -- " .- - df- nu-a...- - -vm nlﬂn.\fq..-nvu-ﬂ-q a AURRRT Y ¥ -.. ........ - u.. .-. .“nnu”-

R - NSV . AVENEREXM

- hee P T LRI c-\\«-‘\.‘-
\\”\v\'\w Albq.o-.-d.‘- v -obt.\o. -...-v-- -A .-dJu. -. .'J

. X , -

.‘.--II.-. &




REF

O g
‘."a.‘

te

77

”

2

.?;\:_:;:

W TTIRPINVESVEL R

.
A

azumws
ra

F

v

SN BN ST Y Y T

ENTER

PRINT DATA
REQUEST

GETHEXIP

y

GET POINTER
TO DATA
STRUCTURE

|

PULL BYTE
OFF STACK

|

PUT BYTE INTO
DATA STRUCTURE

i

INCREMENT POINTER

1]

DECREMENT REVCO

IS NO

REVCO
[

YES ’
PUT ZERO INTO
DATA BYTE

INCREMENT
POINTER

RETURN TO
CALLING ROUTINE

FIG 13 INPUT DATA SUBROUTINE FLOW DIAGRAM

N WY S

s

i R

Kaio s % 'y ¢ "




ORI, B i N R R e i e M e S I S At s it e e v S S

e
e

.
D

St

4

ENTER

ISSUE PARITY
PROMPT

1s NO
IT

SET MESSAGE SET MESSAGE
PARITY TALSE PARITY TRUE

RETURN TO
CALLING ROUTINE

F1G 14 GET PARITY SUBROUTINE FLOV DIAGRAM




- - - .- I 4 Tl st i iR Sl S ot vl SR sl e Su SR s St
.. - i AL SRS B O Pl e SR A A e A

ENTER ;.

1SSUE STRUCTURE/ -

FORMAT PROMPT

] B

) g

I [] .

'

' 2

’ -

:

1s YES | SET STRUCTURE o

T FIELD TO &

G ;E.‘
NO _;3

NO 1s ..

PRINT — 1T By

ERROR "

} YES
'.

~4

e

1S
THERE A
CETIP 2nd PARAM

T r
s ol
> »

.

YES

AN AN

v,
Al 4

—— - 4+ @& 4 & ATEEEETR R
3 4,
L VP W RIS

‘ IS Yes SET STRUCTURE e :
‘ ‘1’ FIELD TO 1 .
NO <
I X 1s YES SET STRUCTURE | :

T FIELD TO 2 -

2 ~ 5

Y

.\_\

:‘:i

AR

:;

RETURN TO [ aem—— :

CALLING ROUTINE ="

-« Y

.-:‘

-4

S

=

4

FIC 1S INPUT MESSAGE FORMAT/STRUCTURE SUBROUTINE FLOW DIAGRAM 1




-.'- P
RS

fk

Y

ENTER

o |
|

.
L ERY)
s 3" e

f y

::"‘ ISSUE TRANSMISSION

A OPTION PROMPT
b0,

)N

e §

;.\

_cere | :

|
] LOAD TXOPT
WITH @
No
15 YES
LOAD TXOPT |fegn JES i TYPE
WITH 1 c T
NO
NO
> LOAD 1 INTO LOAD 2 INTO
LOAD 1 INTO MOPTNUM MOPTNLM
MOPTNUM
g X0 — PRINT
M ERROR
NO YES L ->
y \ LOAD TXOPT
YES WITH 2
OBTAIN ﬁ INDECNU
COMFORT
DISPLAY
i) INFORMAT 10N
)
j."':' See Sect. 13.9
o) 1s
p. s PRINT
" ERROR NSER
%
, NO
*
N
.. — STORE NUMBER
o IN MOPTNUM
o
<
APy
kS
e
7 &
;
e
A RETURN 10
” . CALLING
., ROUTINE
"f. ‘"

F1G 16 GET TRANSMISSION OPTION SUBROUTINE FLOW DIAGRAM




o

radi i g

b.

b,

b,

v-. o

Q

3 ag
[

g

P.

il

3

.

.

b

3

b’

Pt

ST

ISSUE WAIT

YES
PRINT
ERROR

- ® & T Y

T
ENTER
PROMPT
Is
IT
Y
NO
Is
IT
N
TS
SET WAIT ¥
106
FIG 17 GET WAIT CONDITIONS SUBROUTINE FLOW DIAGRAM

., W
vh-

£

: : a®\ € 3 2ou

r, [ - =% ““ wmm |
-- “ n Mo m“ “ |
; 8

‘-

\.

wt N

v. n

..H m

-nh ... ..- ,-. ..4. .--.-u., I-.. ..-iu‘..ﬁo-r\..hc.u\-t\..tvﬂ”..-. .ih ..-o.»- RN, AR S ST ‘H

a2 2 R &




R I L N DIPA R  Ta¥ gt B i AL N e R A S Ol et e R S AL PO BRI R o o et i S v ey - ——— T —y

ENTER

]
R

SEND DISPLAY
OPTION PROMPT

J

| cerie

SET D1SOPT
T0 &
PRINT fq.
ERROR
SEND ON/OFF LINE PROMPT GETIP
GET SEGMENTATION OFF JES -
- LINE P ——
See Section 14.1

L

TN

'}
P

r.'

P 18 SET v
. SET DISOPT MOPTNLM COMFSTOR R
E- T0 2 21008 0 ¢ 1 o
£ T

1

Is
- b INPUT SET DISOPT
. c TO 1

SET
COMFSTOR e e

TO 1

RETURN TO CALLING ROUTINE pagiumm

e eSS e S & e A LS BRIV C F U Y T




N BIPEIEALI  Slr AC Ai ed aa v v
- - "N A Ty e
ACRAR Aa i i A AL A i e et Ml S
~re . e T TeTwrTetw
. A A e ey Tty -
- At/ Ak " ]

way L
s
$o e,

-1
SRR
.
A /
. A

I.‘
2.
1.%.4

ENTER FROM DISPLAY ON REQUEST OR REPEAT MODES

PRINT SEGMENTATION PROMPT

L o |

COPY SEGMENTATION 2
et INTO WORKING STACK

COPY SEGMENTATION 3
INTO WORKING STACK

PRINT USER
SEGMENTATION
PROMPT

YES

NSRS | SET INPUT
DEPENDENT FLAG

2
&

Q"’\‘f'

)
I

COPY SEGMENTATION 1
INTO WORKING STACK

X

o 1
Lo —;—J
W COPY ' SOMCAR L
w20 SEGMENTATION ¢ PART OF
) e ) INDECNU

INTO "

WORKING STACK

’ ]
Ny [ _]
l~ H
3 4

i
o
b4 ’
< - RETURN TO YES NO
ﬁ CALLING ROUTINE i
by )
>,
4,
o PRINT STORE IN USER
Y ERROR SEGMENTATION ™
AREA

e

AN ]

r

. SACGMENRATICN SUAROUTINE FLON DIAGRAM




LAdE ol e Aut Gul Sl ek ‘ A AN AN S A en 8- B A C RS S peiah it bl dat oy |

ENTER FROM DISPLAY ON REQUEST

i

RO

KX

.

’

GET BLOCK
START
ADDRESS

"

__7..,”7..,..
D‘ -
- & -

GET NUMBER
OF MESSAGES
IN BLOCK

GET THIS
MESSAGE'S
NUMBER

.

CALCULATE

MESSAGE

START

ADDRESS i
! !
' e
' PRINMES E
1 1
¢ 1
]
3
[
INCREMENT !
MESSACGE s
NUMBER 1
h
{

RETURN TO
CALLING ROUTINE

FIC 20 PRINT BLOCK SUBROUTINE FLOW DIAGRAM




g
[RS

AARAN

i

's 44
Iy

WV, AR
AR NN

-8
-

eSS
'.\_'uf,'.r'-‘-_’v\,'-"

-~

2R Adx ]!

ENTER FROM PRINT BLQCI

GET MESSAGE

ADDRESS

OR H/W HANDLERS

GET
A FORMAT

GET
B FORMAT

SET

o]  SEQENTATION

1

SET
SEGMENTATION
3

SET
SEGMENTATION

COPY INTO SECMENT
WORKING STACK

PRINT MESSAGE
NUMBER
]
|
| ovroec ] '
f
|
P S nf
1S
STORE ASCII BIT
T sm?:s T NUMBER =
ASMSST SEGMENTATION
SPACE
STORE ASCLI
REPRESENTATION
OF BIT IN
ASMSST
INCREMENT
ot 2 ar
NUMBER b
YES
PRINT MESSAGR
RETURN TO

CALLING ROUTINE




POPDAT

POPADD

POPCOM

NI R T LYITNETE

OUTPUT BOARD
i1 f > 8 DATA
A
8689
B¢
L > & avoress
B
8981
PP1 2 go
LAL _J».  CONTINUOUS
A2
A — TX/RX
ﬁ—. AUTO i/p
8084
PP1 2 [ulluges TRANSMITTING/
STOPPED
A Rlg=ccormn
8985

PIPDAT

PIPADD

PIPCOM

PIPSTA

FIC 22 PPI PORT AND BIT ALLOCATIONS

INPUT BOARD
Ad
P1
13 | 8 DATA
A
8@88
R ¥
PPI 3 83 >4 ADDRESS
B
8¢89
pp1 4 Pl SEXD 6 PULSES
Al i/p TIMEOUT CONTROL
A Al o RESET (AUTO DISPLAY)
A gy RESET i/p TFR REQUEST
848C
PPl 4 |l READY TO READ
B! @ REQUEST i/p TFR
 } B2 g END i/p TFR
53 @ INPUT TDMED-OUT
848D

e % \' LSl Sl W |




AR TR LR NN RIS i S 4 BN B R
= by TN TRy Y Yy v o R T T T T T T T T or v (S R e v e |

SRR

WYY TR T LRI

ENTER .
SET HARDWARE
TO TX
‘0
A Y
3 o0

XN

!

SET HALFSTOP
To 1

PRINT
INTERVENTION
MESSAGE

RESET
HARDWARE
TO

TRANSMIT .

INTERROGATION
‘ ROUTINES
SET
HALFSTOP SEND 6 [
10 2 PULSES
PRINT
TERMINATION SET HARDWARE
MESSAGE TO RECEIVE
RESET HARDWARE -

TO TRAMSMIT

716 23 POLLING ROUTINES FLOW DIAGRAM




O

"I‘;’:"

.

READ i/p

INTO THISIP Jr=i- WITH i/p RA

COMPARE WAIT RA

READ i/p
INTO THISIP
IDENTIFY o~
LAST i/p £
OF THIS N0 SOMTORT,
NO TYPE REQUIRED
YES vES
COPY THISIP
COPY THISIP TO i/p STORE
10 i/p STORE *

OVERWRITE CORRECT

LAST_IP
PRINMES
YES _”DISPLAY ™\ NO
PRINMES ON LINE
-
- e
PERFORM
TERMINATION
CHECKS
e
+ S PRINT TERMINATION
MESSAGE
No ;
RE-SET H/W BASIC COMMAND
TO TRANSMIT MODE

{

POLLING ROUTINES

FIC 24 INTERROGATION ROUTINES FLOW DIAGRAM

PR P TS




!
'
)
i
!

Mr

ARt o
PIREREIN A S At el 2t

R RSN N i s

ON LINE/OFF LINE

DISPLAY OPTION

WAIT REGISTER ADDRESS

WAIT YOR D

NUMBER

NUMBER

NUMBER

NUMBER

TRANSMISSION OPTION

'B'

MESSAGE FORMAT/STRUCTURE

'B'

PARITY

IBI

DATA

'B'

DATA

'B'

DATA

IBI

DATA

'Bv

DATA

'BO

REGISTER ADDRESS

lB'

CHECK CODE

'A'

MESSAGE FORMAT/STRUCTURE

'A!

PARITY

'A'

DATA

'A'

DATA

'A'

DATA

'A'

DATA

'A'

DATA

'A'

REGISTER ADDRESS

'A'

CHECK CODE

MESSAGE TYPE

FIGURE 25 INTERNAL MESSAGE STRUCTURE

ONOFFLI
DISOPT
WAITRA
WAITY
OPTXNUML
OPTXNUM
MOPTNUM1
MOPTNUM
TXOPT

B FORMAT
BPARTRU
D25Ms
D24MS
D23MS
D22Ms
D21MS
RA2MS
CC2Ms

A FORMAT
APARTRU
D15MS
D14MS
D13Ms
D12Ms
D11MS
RAIMS
CClMs

MSTYPE




T Ao Sy RACERI R A S it P A i '_:“'_.‘:."_h‘:"_. AN .“_- ARSI I A L 7_.. O R I A U R i)

Y

WYH 1

w-»
(]
)'.

N
ety

o-

..
*e” %
)

v,
+ a2 2

'Q

T
Y

e 3 BYTES - PO, P1, P2 M1
b FARITY 3 Byres  po, P4 w2
.-' DATA LSB 1 BYIE PO GTU
N
d
DATA 32 BYTES M1 1
31 BYTES M2 ']
30 BYTES GTU ’
B MESSAGE K
TXMS2ST =P
DATA MSB '
P foL 6 BYTES
ey PER
MESSAGE
RA=3 BYTES - !
A MESSAGE 1
iffnn 5
CCe4 BYTES 3
1
-
VRISTK = | — rossr - Pl n ] nf e fefelc ‘.J
Y K
Ml = MATRIX CONNECTION 5
M2 @ MATRIX COMMAND :
PIGURE 26A FORMED FOR PARITY FIGURE 268 READY FOR TRANSMISSION .
PIC 26 TX MESSAGE STRUCTURE K




T R AR et T T R S et A il maty
R AN AR Ny
- s, L
<
<L
> : ,
ERRORS ce | e : .
. cc jec DATA 16 MESS/ 49 BLOCKS '
o " BLOCK! ;
a 8 BYTES " "
s PER
i MESSAGE "
: INPUT MESSAGE
” P
M5 NUM
NS NUM
STRST =~ > e -
(START OF
MESSAGE STORE) .
FIC 27A INPUT MESSAGE STORE FORMAT 1
A
% .
},:J' R
‘A;'. .
% .
[ ™ .
e P
,.J
'3 20 = SPACE

g2 Th

BITS FROM MESSAGE
TRANSLATED INTO ASCII

# OR 1 AND STORED FOR .
. TX TO DISPLAY .
cc )
=1
L X )
31 =1 ~~ ASMSST

F1G 278 READY TO DISPLAY

e e AR Y R N

/




,J.J:l-;; J‘.;J

RUMUNCIL AR

3
N
-

NSUMBER OF DISPLAY
BIT AFTER WHICH,
SPACE INSERTED IN
DISPLAY

ﬁ

NUMBER <42

-+
SEG 1
SEG 1
@9
97
¢ ~=~ FIRSCG
-
SEG 2
~=§— SECSEG
SEG 3
~af— THISEG
USER SEGMENTATION
DEFINED NUMBERS IN
SEGMENT ASCENDING ORDER
8 SEGMENTS
ALLOWED IN
DISPLAY

Y B

vy

37 g A

S B Y POV

P




- T e weTe e Pama g™

DATA ENTRY

RIS L 0 et iRt BaiC Sl C i

SUBROUTINES
(Section 13)

FORMAT FOR

PARITY
(Pars.19.1)

l

TRANSFORM TO

TRANSMIT
FORMAT
(Para.14.3)

3
rﬁ
;

BT

SRR TN, T0OA ¢
a
’

LOAD INTO

BARDVARE
REGCISTERS
(Pare.15.3)

—

L-—---———_———liﬁ-il--'llllﬂl-lli-‘L"-"“

T T R T T TR e e
:
N
K
INTERNAL .
MESSAGE 8
STRUCTURE "
(Fig.25) .
FORMED FOR
PARITY
(Fig.26A)
READY FOR
TRANSMISSION
(Fig.268)
HARDWARE
RECISTERS




C T L T T N e e N T A T T e T T T T T T o N o I e T

M B e T R A AT i i e e

TIBN L e

A
:
:

INPUT BUFFER N

l REGISTERS 3
b

]

't

-

b

~

]

.

READ INPUT

BUFFER INPUT MESSAGE
REGISTERS STOR'E FORMAT
(Para. 15.4) (Fig.27a)

PRINT ) READY TO

MESSAGE DISPLAY
(Para. 14,3) (Fig.27B)
H OUTPUT

g MESSAGE ‘.
E ms%gz 10 DISPLAYED ON h
Vi VDU SCREEN R
i (Sas Befa2) X
b :
5: .
Z'.f )
Y .

: o)
xY 4
P

FaE, 5 -5

FIG 3 RECEIVE DATA FLOW




s’y o
e a'a

.
z.
Lt
7

'«
.
-
d
.

. "
() N

PNy
Ny

- K

IR LY,

Overall security classification

(As far as possible this sheet should contain only unclassified inforsation.

Ty
vos G Nt

i A 1l 2
DRI M \“_“_.'-‘.‘;‘L‘;"--.

DOCUMENT CONTROL SHEET

of sheet ........ UNCLASSIFIED

----------------

------------------------------------------------------------

If it is necessary to enter

classified inforsation, the box concerned sust be marked to indicate the classification eg (R) (C) or (S) )

1. DRIC Reference (if known)

2. Originator's Reference

MEMORANDUM 3585

3. Agency Reference

4. Report Security
Unc lassiflne!?s' fication

5. Originator's Code (if
knoun)

6. Originator (Corporate Author) Name and Location
Royal Signals and Radar Establishment

5a. Sponsoring Agency's
Code (if known)

6a. Sponsoring Agency (Contract Authority) Name and Location

7. Title

The Axis Test Box Software Report

7a. Title in Foreign Language (in the case of translations)

7b. Prasented at (for conference napers)

Titie, place and date of conference

8. Author 1 Surname, initials

Simcock, A L

9(a) Author 2

9(b) Authors 3,4...

10. Date vo. ref.

11. Contract Number

12, Period

13. Project

14, Other Reference

15. Distribution statesent

Unlimited

Descriptors (or keywords)

continue on separate piece of paper

Abstract

This memorandum describes in detail the software program which the M6809
microprocessor obeys to perform the functions of the AXIS Test Box.

Extensive use is made of Flow Diagram where these either enhance or
replace wordy descriptions.




BRETURN TO CALLING ROUTINE

FIG 18 GET DISPLAY OPTION SUBROUTINE YLOW DIAGRAM




