
f~-i3431 THE AXIS TEST BOX SOFTWdARE REPORT(U) ROYAL SIGNALS AND i/i
RADAR ESTABLISHMENT MALVERN (ENGLAND) A L SIMCOC(
APR 83 RSRE-HEMO-3585 DRIC RR-89i52

I UNCLASSIFIED F/G 14/2 NEE7hE~i

MINERSE~hE

1.5 11.oQ _

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDAROS-1963-A

Pt

- ~~~~~~~~~. ;. -. ,.,... -.......-

- ;-.----r-* '. -;,. -. -

I

RSRE
MEMORANDUM No. 3585

ROYAL SIGNALS & RADAR
ESTABLISHMENT

THE AXIS TEST BOX SOFTWARE REPORT

Author: A L Simcock

go
L U)

C",
PROCUREMENT EXECUTIVE,

MINISTRY OF DEFENCE,

- RSRE MALVERN,
0 WORCS.

2.

oo U

* * ** - * * * .*. *...

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3585

Title: THE AXIS TEST BOX SOFTWARE REPORT

Author: A L Simcock

Date: April 1983

SUMMARY

This memorandum describes in detail the software program which the M6809
microprocessor obeys to perform the functions of the AXIS Test Box.

Extensive use is made of Flow Diagrams where these either enhance or replace
wordy descriptions.

'N

"4

This memorandum is for advance information. It is not necessarily to be
regarded as a final or official statement by Procurement Executive, Ministry
of Defence

Copyright
re. C

Controller HMSO London

1983
N %

RSRE MEMORANDUM No 3585

THE AXIS TEST BOX SOFTWARE REPORT

A L Simcock

CONTENTS

1 INTRODUCTION

2 INITIALISATION

3 BASIC COMMAND MODE

4 ASSEMBLE MESSAGE

5 DISPAY ON REQUEST

6 AUTO DISPLAY

7 REPEAT

8 DISPLAY CURRENT MENU

9 PREPARE DATA FOR TRANSMISSION

. 10 DATA MANIPULATION SUBROUTINES

11 BASIC INPUT SUBROUTINES

12 BASIC OUTPUT SUBROUTINES

13 DATA ENTRY SUBROUTINES

14 DISPLAY ON REQUEST SUBROUTINES
Accession For

15 THE HARDWARE INTERFACES NTIS-GRA&I
1DTIC TAB

16 HARDWARE HANDLERS Unannounced El
17 THE DATA STRUCTURES Justificatio

18 TRANSMIT DATA FLOW Bi

D t .i j- ,.t /

19 RECEIVE DATA FLOW A-vitli-'bijt 7 Codes

ANNEXES i,

A INTERNAL IDENTIFIER CROSS REFERENCE

. DRAWING SYMBOLS USED

C CROSS REFERENCE BY INTERNAL LABEL NAME

1

4 D UT BOARD HARDWARE REGISTER ADDRESSES

I UTPUT BOARD HARDWAE REGISTER ADDRESSES

LIST OF FIGURES

I Basic r;aand Mode Routine Flow Diagram

2 Assemble Message Routine Flow Diagram

3 Display on Request Routine Flow Diagram

4 Auto Display Routine Flow Diagram

5 Repeat Routine Flow Diagram

6 Menu Display Routine Flow Diagram

7 Prepare Data for Transmission Flow Diagram

8 Prepare for Hardware Handlers Flow Diagram

* 9 Basic Input/Output Subroutines

10 Input Message Type Subroutine Flow Diagram

11 Input Check Code Subroutine Flow Diagram

12 Input Register Address Subroutine Flow Diagram

13 Input Data Subroutines Flow Diagram

14 Get Parity Subroutine Flow Diagram

15 Input Format/Structure Subroutine Flow Diagram

16 Get Transmission Option Subroutine Flow Diagram

17 Get Wait Conditions Subroutine Flow Diagram

18 Get Display Option Subroutine Flow Diagram

19 Input Segmentation Subroutine Flow Diagram

20 Print Block Subroutine Flow Diagram

21 Print Message Subroutine Flow Diagram

22 PPI Port and Bit Allocations

23 Polling Routines Flow Diagram

24 Interrogation Routines Flow Diagram

2

25 Internal Message Structure

26 TX Message Structure

27 Display Structure

28 Segmentation for Display Structure

29 Transmit Data Flow

3p Receive Data Flow

LIST OF TABLES

1 PPI 1 Notations

2 PPI 2 Notations

3 PPI 3 Notations

4 PPI 4 Notations

LIST OF ABBREVIATIONS

MKI Man Machine Interface

PPI Programmable Peripheral Interface

VDU Visual Display Unit

GTU Group Terminating Unit

o/p Output

i/p Input

0 The symbol 0 is used to distinguish zero from the letter 0.

HEX Hexadecimal

TX Transmit

RX Receive

ROT End of Text

CC Check Code

RA Register Address

1 INTRODUCTION

This is the third in a series of 4 reports on the AXIS Test Box. The first
report (Ref 1) is the Introduction to the Test Box and describes the role of the
Test Box within the Axis experimental project. The second report (Ref 2) is the
Operating Guide, and details the rationale for the nature of some of the
commands/functions provided. The third report (Ref 3) is the Hardware report.

This software report describes briefly the program which controls the
hardware and provides the MKI described in Ref 2.

This report is brief since it is felt that the commented program listing
is almost self explanatory. The report mainly details program flow and struc-
ture and uses diagrams, wherever possible, so that program construction may
easily be followed. Data and data flow are also described in Sections 17 to 19.
Annex B is a list of the drawing symbols used.

The program listing is held in a file called FINALTB on floppy disc for
- the FUTUREDATA Microprocessor Development System in use in T24 (Ref 4).

It can be seen from the diagrams illustrating program flow that the body
of each of the major routines consists mainly of a series of subroutine calls.

The body of each of the major routine will be described very briefly using
the illustrations as a guide to the subroutines being used.

The subroutines themselves will be described in greater detail, since this
is where the majority of the work of the program is carried out. The preparation
of data for tramsmission, and the hardware handlers are also described separately.

The report is written in this way in order that the 'casual' reader should
be able to obtain a superficial understanding of the program and the 'determined'
reader should find the detail necessary for a full understanding. Ref 2 des-
scribes fully the functions provided by the Test Box, this report describes how
those functions are provided.

2 INITIALISATION

The initialisation routine sets the Programmable Peripheral Interface
devices (PPIs) to their initial state and programs them for input or output;

some internal flags are also initialised.

3 BASIC COMMAND MODE

The Basic Command Mode routine allows the user to select any one of the
5 functional routines (see Fig 1).

4 ASSEMBLE MESSAGE

The Assemble Message routine takes the user step by step through the input
of the parameters necessary to assemble a message ready for transmission (seeI Fig 2). Individual parameter entry is controlled by subroutines and the

Assemble Message routine calls these subroutines in the correct order to enable
a complete message to be assembled.

4

5 DISPLAY ON REQUEST

The Display on Request routine allows the user to display input messages
which have been stored. The user should enter the segmentation format required
for the display, then the user should enter the number of the block to be
displayed. Fig 3 illustrates the flow of the program.

6 AUTO DISPLAY

The Automatic Input Display routine is very simple. The user is allowed to
select the display options required for display of the input messages and is
then able to jump to the hardware handlers to receive the input messages (see
Fig 4).

7 REPEAT

The Repeat routine firstly causes the current Menu to be displayed on the
VDU and then allows the user to select parts of the message to change, the
user also has the option to display the Menu, Quit the routine or Go to the

hardware handlers (see Fig 5).

8 DISPLAY CURRENT MENU

This routine is itself written as a subroutine which may be called from
the Repeat routine. The program flow is illustrated in Fig 6.

9 PREPARE DATA FOR TRANSMISSION

The entry to this routine is either from the Assemble Message or Repeat
routines.

Firstly, the hardware interfaces (PPIs) are set to the transmit mode. The
Message Type is then checked. If the Type indicates an A message or T (for
both Messages) then a pointer to the A message is passed to the FMFORP (Format
for Parity) subroutine. If the Type is B then the pointer is set to the B
message before calling the FMFORP subroutine. The Format of the message is
then determined in order that the correct number of parity bits may be
generated. The CALCP (Calculate Parity) subroutine is then called:-

a Once for a CTU message

b Twice for a MATRIX Comnand message

c Three times for a MATRIX Connection message

When the necessary parity bits have been generated the whole message with
its newly generated parity bit(s) is transformed by the TFTOTX (Transfor to
Transmit Format) subroutine into a format directly applicable to loading into the

hardware output registers.

The type is checked again and if TYPE - T (for both messages) the whole
procedure is repeated using a pointer to the B message. Figure 7 illustrates
this flow in diagramatical form.

9.1 Prepare for Hardware Handlers

This is a continuation of the above routine but is also the entry
point from the Auto Receive Mode. Figure 8 illustrates the program flow

in diagraatical form.

5

Firstly the last valid input stores (for A and B message responses)
are preset and then the start address of the input message store is initia-
lised. At this point if this routine was entered from the Auto Receive Mode
the Programnable Peripheral Interface (PPI) devices, which interface directly
to the hardware input and output boards, are set to receive inputs and the
program control transfers to the hardware handling routines. If entry was

*: not via Auto Receive the output message(s) must be loaded into the hardware
output register (S).

If the message Type is A or B then O/P register 1 is loaded with the
A or B message and if more than one message is to be sent (ie Transmit
Options Continuous or Multiple have been chosen) then O/P Register 2 is also
loaded with the A or B message. If the Type is T (for both messages Together)
then O/P register I is loaded with the A message and O/P register 2 is
loaded with the B message.

The time interval between O/P transfers, from the hardware output
transfer board, is determined either by a fixed hardware delay or by soft-
ware. The hardware delay will only be activated if the input message
response to each output is not to be interrogated, ie delay is only acti-

vated if:-

a No Wait condications are set

b Display Option chosen is NONE

under these circumstances the number of output transfers is loaded into the
hardware counters and program control transfers to the hardware handlers.

If the above conditions are not met a single output will be sent and
the input response will be interrogated by the hardware handlers, corres-
ponding action will be taken, and control returned to this routine in order
that the next output may be sent. In this way the time interval between
output transfers is determined by the software.

If the Transmission Option selected is Multiple the number of outputs
required is copied from MOPTNUM into OPTXNUM and this decremented at each
output in order to call the hardware handlers to send the correct number
of output transfers.

14 DATA MANIPULATION SUBROUTINES

14.1 FMFORP ie Format for Parity Generation

This generation takes the data identified as Message 1 or Message 2
in the internal message structure (Fig 25) and re-organises the data in
order into a 42 byte block of data, so that it is in a suitable format for
parity generation. (Fig 26A).

This routine should be called as a subroutine and given the address
of the check code of the message (ie 1 or 2) for transformation. This
address parameter should be stored in TEMP.

6 1

4''

10.2 CALCP ie Calculate Parity

Three types of message each requiring different parity calculations
have been identified in the User guide.

These are:

G - GTU

M1 - Matrix Command

M2 a Matrix Connection

The identification of the type of message is stored in AFORMAT for
the A Message and BFORMAT for the B Message.

0 - GTU

1 - M1

2 - M2

The parity generating routine requires 3 parameters:

a Start bit number for parity generation in STAP

b End bit number for parity generation in ENDP

c Bit number to store the generated parity in PUTP

The routine should be called as a subroutine with the above 3 para-
meters defined. Setting these parameters allows the CALCP routine to be
used to calculate parity bits over any data area within a message. (See
also Fig 26 A).

16.3 TFTOTX ie Transform to Transmit Format

This routine takes the information from the 42 byte data area used
for parity generation and transforms this into a format which will make it
immediately usable by the Tx hardware handlers, ie the format illustrated
in the Tx message structure, Fig 26B.

This routine should be called as a subroutine and requires the
address of the first byte of the first or second (whichever is required)
Tx Message Structure (see Fig 26B). The address parameter should be
stored in TEMP 2 before the routine is called.

10.4 LOAD HARDWARE REGISTERS

There are 5 subroutines under this heading:

OPAMS1 Loads A message into O/P Register 1

OPAhS2 Loads B message into O/P Register 2

7

OPBMS1 Loads B message into O/P Register 1

OPPMS2 Loads B message into O/P Register 2

PUTBYOU Generates the parallel load pulse and selects the shift
register to be loaded.

The A or B message stored in the Transmit Message (Fig 26B) is loaded
byte by byte into successive 8 bit shift registers which form the O/P regis-
ters. Six load sequences are necessary to complete the loading of each O/P
register.

* 11 BASIC INPUT SUBROUTINES (See also Fig 9)

11.1 GETIP Get Input

This subroutine gets characters from the VDU, checks the character
is not a back space and counts the number of input characters. It also
checks that the number of input characters does not exceed the maximum
required by the calling routine.

The calling routine should set the maximum number of characters
required in the variable called MAXNUM and call GETIP as a subroutine.

-The CETIP subroutine will return to the calling routine upon the
entry of a Carriage Return on the VDU. The actual number of characters
entered will be in the variable COUNT and the characters will be stored on
the U stack. The PULU A instruction used by the calling routine will
extract input character from the stack and put it in the A register. The
first character available at the top of the stack is the first character
enetred on the VDU.

eg If the User entered A B C D, these characters would be stored
on the U stack and successive PULU A instructions would
retrieve A, B, C and D respectively.

11.2 (ETHEXIP Get Hex Input

This subroutine gets Hex input from the VDU. It uses the CETIP
subroutine previously defined. The GETHEXIP subroutine checks the validity
of the input characters (to ensure hex input) and also counts the number of
input characters and checks also that the number of input characters does
not exceed the maximum required by the calling routine.

The calling routine should set the maximum number of characters
required in the variable MAXNUM and call CETHEXIP as a subroutine.

The GETHEXIP subroutine will transform the input characters into HEX
bytes, ie 2 input characters constitute one HEX byte. GETHEXIP assumes
leading zeroes, ie if the calling routine set a maximum number of input
characters as 4 requiring an input between O00 and FFFF, and the User
enter,' 123 cary age return the GETHEXIP subroutine would transform this
into .

This function as defined as NORMALISING the hex input since a normal
hex byte contains 2 input characters.

8

Normalising is only carried out in the event of an odd number of
characters being entered on the VDU,

ie if the User was to enter 23 or this would remain as 23.

The GTHEXIP subroutine returns to the calling routine when a carriage
" return is entered on the VDU. The actual number of input characters is

returned in COUNT. The number of Hex bytes is in REVCO and the hex bytes
*1 are stored on the U stack.

Examples 1 and 2 below illustrate more precisely the values returned
by GETHEXIP. In both examples the maximum number of allowable input
characters set by the calling routine is 6.

Example 1

AUser enters 1 2 3 4 5 cr

GETHEXIP returns with COUNT - 5

REVCO - 3

USTACK - 01, 23, 45

Example 2

User enters 1 2 3 4 cr

GETHEXIP returns with COUNT - 4

REVCO - 2

USTACK - 12, 34

11.3 INDECNU Input Decimal Number

This subroutine gets decimal characters from the VDU and transforms
them into a hex value. The calling routine should set the maximum number
of input characters in MAXNUM. The absolute maximum allowed is 5 decimal
characters representing FFFF Hex or 65,535 decimal. INDECNU checks the
validity of the input characters, also checks that the count does not
exceed the maximum number set by the calling routine and also checks that
the input does not exceed 65,535.

The calling routine should set the maximum character count accept-
able in MAXNUM and call INDECNU as a subroutine. INDECNU will return to
the calling routine when a carriage return is entered on the VDU. The hex
representation of the decimal input is in the D register.

11.4 INASC

This subroutine in the ALS M6809 Monitor program is used by GETIP
and INDECNU (see Fig 9) to obtain characters from the VDU. It interacts
directly with the VDU interface devices and returns the input character
in the A register.

9

12 BASIC OUTPUT SUBROUTINES

12.1 OUTASC

This subroutine takes as its parameter the start address of an ASCII
string and prints the string on the VDU. The string should be terminated by
the End of Text (EOT) character (Hex 04).

12.2 OUTHEX

This subroutine takes as its parameter the address of an 8 bit byte
which is printed on the VDU as a pair of Hex digits.

12.3 OUTDEC

This subroutine takes the address of a 16 bit number to be printed
* on the VDU as a decimal number.

The INASC, OUTASC, OUTHEX and OUTDEC subroutines are all part of the
ALS M6809 Monitor program. For a full description of these subroutines
see Ref 5.

13 DATA ENTRY SUBROUTINES

Data entry subroutines 13.2 to 13.6 require the address of either the A or
B internal message structure (CCIMS or CC2MS in Fig 25) to be stored in a para-
meter passing location TEMP4.

13.1 Input Message Type GETTYPE (See also Fig 10)

Firstly the request to enter message type is output to the VDU. The
type is entered via the GETIP subroutine. The input is validated and if
invalid an error message is sent and the routine restarted. The internal
identifier MSTYPE (See Fig 25) is loaded with 0, 1 or 2 corresponding
respectively to A, B or T input. If T is input the Transmission Option
field is interrogated and if a single transmission has been selected the
number of transmission in MOPTNUM is increased from 1 to 2, in order that
a single A plus B Message may be output. Program control is then returned
to the calling routine.

13.2 Input Check Code INPCC (See also Fig 11)

This subroutine firstly prints a request to enter the check code on
the VDU. The check code input is then collected via the GETHEXIP routine
and then validated. ie 0 4 CC < F. If the check code is invalid the
'Invalid Input' error message is printed and the input request repeated.
If the check code is valid the input is stored in the check code field of
the correct message (See Fig 25).

13.3 Input Register Address INPRA (See also Fig 12)

Firstly this subroutine prints a request to enter the register
address. The register address is entered via the GETHEXIP subroutine and
then validated ie 0< RA 7. If invalid the 'Invalid Input' error
message is printed and the subroutine restarted. If the RA is valid it is
stored in the RA field of the correct message (See Fig 25).

10

- ~ ~ ~ 7 -- .-- rr- .- r

13.4 Input Data GTDAT (See also Fig 13)

The enter data prompt is output to the VDU. Up to 9 hex digits of
data may be input (via the GT1{EXIP subroutine), this corresponds to up to
5 bytes of data. The number of bytes of data input is in the counter
scratchpad REVCO. Data is removed from the U stack and stored in the
correct data structure with the least significant byte being stored in
either DllMS or D21MS (See Fig 25) (depending on whether data is for an
A or B message respectively). When all the data has been pulled from the
stack, the data structure up to and including the last byte of the data
field D15MS or D25MS is filled with zeroes. Program control is then
returned to the calling routine.

13.5 Input Parity GETPART (See also Fig 14)

Firstly the Enter Parity prompt is issued. The user response to
the prompt "Parity True Y or N?" should be N to ensure false parity, any
other character entered gives true parity. True parity is therefore the
default value. The subroutine checks the response obtained via GETIP

,* and sets the A or B message parity field (see Fig 25) to be either true
or false.

13.6 Input Message Format/Structure MSSTR (See also Fig 15)

The request for Format prompt is first output to the VDU. The
input is then obtained via the GETIP subroutine. The response is checked
and if G the Message Structure field (see Fig 25) (of the correct message)
is set to 0 ie GTU. If the input is neither C nor M an error message is
printed and the subroutine re-started. If the input is M a check is made
to see if a second parameter has been entered. If no second parameter has
been entered it is requested and obtained via GTIP. This second parameter
is checked and if neither 1 or 2 an error message is printed and the
subroutine re-started. If the second parameter is 1 (ie Matrix Command)
the Message Structure field is set to 1. If the second parameter is 2
(ie Matrix Connection) the Message Structure field is set to 2.

After the setting of the Message Structure field, program control
is returned to the calling routine.

13.7 Get Transmission Option GETTXOPT (See also Fig 16)

The prompt for input is displayed on the VDU. The input obtained
via GETIP is validated. If not S, C or M an error message is printed and
the subroutine re-started. If the input is S for single, TXOPT is loaded
with 0 and the message type checked. If the type is A or B then the
number of outputs (MOPTNUM) is loaded with 1. If type is T then MOPTNUM
is loaded with 2.

If the input is C (for continuous) then TXOPT is loaded with 1 and
MOPTNUM is loaded with 1. Then the ON/OFF line variable ONOFFLI is
interrogated. If ON line then Comfort Display information is requested
(see Section 13.9) - control is returned to the calling routine after
this information has been input - if OFF line control is returned to the
calling routine. If the input is M for Multiple TXOPT is loaded with 2
and then the number of output transfers (in Decimal) must be input via
INDECNU. This number if not zero is stored in MOPTNUM. If the number

11

is greater than 100 then ONOFFLI is interrogated and, if ON line, comfort
display information requested as above. If the number is less than 1000 or
the display is OFF line then control is returned to the calling routine.

13.8 Get Wait Conditions GETWAIT (See also Fig 17)

The request for input is displayed on the VDU. The input is collected
via the GETIP subroutine. If the input is neither Y or N then an error

message is printed and the subroutine re-started. If the input is N for NO
then WAITY is set to zero and program control is immediately returned to the
calling routine.

If the input is Y for YES then WAITY is set to 1 and the Wait
Register address is collected via the GET 1EXIP subroutine. The input is
validated ie it should be greater than or equal to zero and less than 8.
If invalid an error message is printed and the Wait Register Address should
be re-entered. If valid the wait register address is stored in WAITRA (see
Figure 25) and program control returned to the calling routine.

13.9 Get Display Option GETDISOP (See also Fig 18)

The Display Option prompt is issued. The input is collected via the
GETIP subroutine. If the input is not N, A or C then an error message is
printed and the subroutine re-started.

If the input is N for None then DISOPT is set to zero and control
returned to the calling routine.

If the input is A for All or C for Changes DISOPT is set to either
1 or 2 respectively. ON/OFF line selection is then required. If Off line
display is selected ONOFFLI is set to zero and control returned to the
calling routine. If ON line display is selected Segmentation entry is
required (see Section 14.1) then DISOPT is again inspected and if ALL
display has been selected control will return to the calling routine. If

the user has selected to display Changes of Message TXOPT is inspected and
if Single transmission has been selected control will imnediately return to
the calling program. If Multiple outputs have been selected the number of
outputs (stored in MDPTNUM) must be greater than 1000 or the calling routine
will be re-entered. At this point the user has the option of displaying
comfort' messages every 1000th input. Selecting to display 'comfort'

messages will cause COMFSTOR to be set to 1 (otherwise it will be cleared)
and program control will then return to the calling routine.

14 DISPLAY ON REQUEST SUBROUTINES

14.1 Input Segmentation SEGMENT (See also Fig 19 and Para 17.2)

The prompt requesting Segmentation information is printed on the
* VDU. (For full description of Segmentation see Ref 2). The input#

obtained via GETIP, is then checked. If the segmentation chosen is 1, 2 or
3 (corresponding to GTU, MATRIX Command and MATRIX Status respectively) then
the correct pre-set segmentation values are copied into the segmentation
working stack and control returned to the calling routine.

If the segmentation requested is 4, ie Input Dependent, a flag is
set (which will be used in the Print Message Subroutine see para 14.3) and
control is immediately returned to the calling program. If the Segmentation
is not 4 the flag is cleared.

12

If the segmentation selected is 0(SEGO) ie User Defined then a second
segmentation prompt is displayed on the VDU. The user should then decide
whether or not to change the existing segmentation 0 specification. If
not the existing specification is copied into the segmentation working
stack and control returned to the calling program. If the user elects
to change the previously defined segmentation 0 specification then segmen-
tation specification input information is displayed on the VDU and user
input enabled. (Up to 7 user defined segmentation spaces may be entered,
input should be terminated by entering the letter 'E').

As each input is entered it is validated to ensure that it is
either the letter 'E' or a decimal number (parts of INDECNU, see section
11.3, are used to validate the decimal number). If the input is a valid
decimal number it is stored in the User Segmentation stack and the next
input requested. If the input is invalide the whole Segmentation 0
section is restarted, this also happens if the user tries too many segmenta-
tion spaces. If the input is the termination character tE' the segmentation
specification built up in that part of memory allocated to user defined
segmentation is copied in the segmentation working stack and program con-
trol returned to the calling routine.

14.2 Print Block PRINBLK (See also Fig 20 and Para 17.2)

The Print Block subroutine calculates the start address of each
message (the datum being the start address of the Block) and calls the
Print Message (PRINMES) subroutine (with the message start as the para-
meter) to print the message. It then calculates the start address of the
next message and continues printing messages until every message in the
block has been printed. Control is then returned to the calling routine.

14.3 Print Message PRINMES (See also Fig 21).

The automatic segmentation flag is checked and if set the Message
Type (MSTYPE) is checked, if the Type is T (for both) then the input
message number is checked. An odd input number will correspond to a
response from an A message, similarly an even input number to a B message.
The Format field of the structure (See Fig 25)of the correct message is
then interrogated. If the format field is set to 0 then segmentation 1
is used, otherwise the Register Address parameters are extracted from the
input message. If the input Register Address is equal to 2 (ie a MATRIX
Status input) then segmentation 2 is selected otherwise segmentation 3 is
selected. The selected segmentation specification is then copied into
the segmentation working stack. At this point either the automatic seg-
mentation flag was clear, and the segmentation 0, 1, 2 or 3 identified or
the automatic segmentation has been determined as above.

The message start address parameter passed by the calling routine is
then collected. The first two bytes contain the message number. This is
printed on the VDU in decimal format using OUTDEC.

The remaining 6 bytes of the message contain the 42 bits of the
input message. Each bit is collected in turn and stored in ASCII format
(ASCII 0 being used for a bit equal to 0 and ASCII being used for bit equal
to 1) in a vertical stack ASMSST. As each bit is stored the bit number is

checked against the segmentation specification and if the bit number
corresponds to a segmentation space an ASCII space character is inserted
into ASMSST before the actual bit.

13

When all 42 bits of the message have been processed ASMSST contains
a series of ASCII Os, Is and spaces. This whole stack is printed on the
VDU using the OUTSAC subroutine. Control is then returned to the calling

,1 routine.

15 THE HARDWARE INTERFACES

15.1 Programming the PPIs

The Hardware Handlers control the input and output peripheral cir-cuits via four Programmable Peripheral Interface devices (PPIs). The input/

output functions to these devices are programmed initially in the Initialisa-
tion routine which is entered after the system is reset.

Tables 1 to 4 list the PPI addresses and their internal identifiers
and Figure 22 illustrates the nature (ie input or output) of their indivi-

* dual programming and details the function of the bits of each of the PPI
*, ports.

HEX ADDRESS PORT FUNCTION IDENTIFIER

8080 A OUTPUT POPDAT

8081 B OOUTPUT POPADD

j 8083 CONTROL CONTROL POPCON1

CONTROL BYTE HEX 89

Table 1 PPI 1 Notations

% Loading the Control byte (Hex 89) into the control port POPCONl programs
Ports A and B to be outputs.

HEX ADDRESS PORT FUNCTION IDENTIFIER

8084 A OUTPUT POPCOM

8085 B INPUT POPSTA

8087 CONTROL CONTROL POPCON2

CONTROL BYTE HEX 8B

Table 2 PPI 2 Notations
.4m

Loading the control byte (Hex 8B) into the control port POPCON2 programs
Port A to be an output and Port B to be an input.

PPIs 1 and 2 are used to interface to the Axis Test Box peripheral
card controlling OUTPUT TRANSFERS.

14

X- ~ % ,.* C. W.- 7 .*.*. *.-

HEX ADDRESS PORT FUNCTION IDENTIFIER

8088 A INPUT PIPDAT

8089 B OUTPUT PIPADD

-4 808B CONTROL CONTROL PIPCONl

CONTROL BYTE HEX 99

Table 3 PPI 3 Notations

Loading the control byte (Hex 99) into the control port PIPCONl programs
Port A to be an input and Port B to be an output.

,%

HEX ADDRESS PORT FUNCTION IDENTIFIER

808C A OUTPUT PIPCOM

808D B INPUT PIPSTA

808F CONTROL CONTROL PIPCON2

CONTROL BYTE HEX 8B

Table 4 PPI 4 Notations

Loading the control byte (Hex 8B) into the control port PIPCON 2 programs
Port A to be an output and Port B to be an input.

PPIs 3 and 4 are used to interface to the peripheral card con-
trolling INPUT TRANSFERS.

15.2 Hardware/Software Boundary

When considering the boundary between the hardware and software in
the AXIS Test Box it is important to consider the functions to be performed
by the hardware. In the most basic terms these functions are:

a To accept data from the microprocessor.

b To transmit this data in the form of an output transfer
to the system under test.

c To receive input transfers from the system under test.

d To present the received data to the microprocessor for

investigation.

15

Since the AXIS Test Box is used in place of the System 250 (see Ref 1)
it is necessary that the interface btween the Test Box and the system under
test should be identical to that which the S250 would present. Of the 4
functions listed above items c) and d) must, therefore, be performed in real
time, ie using the same transmissin rate as the S250. Reference 5 gives full
details of the interface requirements.

The time interval between transfers is not defined therefore the
processing necessary to perform functions a) and d) above may be preformed
in non-real time, is at a rate determined only by the instruction speed of

*, the M6809 microprocessor controlling the Test Box.

15.3 Outputting Data to the Hardware Registers

Once data has been prepared for transmission, as described in
Sections 9 and 10, and is in the format shown in Figure 26B it must be
loaded into the hardware registers. There are two hardware registers A and
B. Each is 42 bits long and each is made up of five shift registers of 8
bits and one shift register of 2 bits. Each of the individual shift
registers has been allocated a specific address (see Annex D). When a
hardware register address is output via POPADD (Fig 22) the hardware
decodes the address and generates a parallel load pulse for the selected

shift register. Each byte of thedatais output to the hardware via POPDAT
(see Fig 22). The hardware register address is then output via POPADD
this then causes a hardware parallel load pulse to be generated for the
correct hardware register and the POPDAT data is latched into the hardware
register (see para 10.4).

When all the hardware data registers have been loaded the number of
transmissions is loaded into the hardware counter in a similar manner.

Bit A2 in POPCOM is set to Transmit, (is logic 0) and bit A, set to
logic 1 if the Continuous option was selected. Bit A3 is cleared if not
in Auto Receive Mode, and finally a GO pulse sent on bit AO. Once the GO
pulse has been sent the hardward assumes control and the data is transmitted

in real time to the system under test.

15.4 Reading Data from the Hardware Registers

The hardware input buffer is 42 bits in length, and is made up of
five shift registers of 8 bits and one of 2 bits. Data is accessed via six

tri-state buffers. (one for each shift register of the input buffer). Annex
E lists the addresses of these tri-state buffers. When an input transfer

has been received in real time from the system under test the polling

routines described in par& 16.1.2 inspect the input board status inputs

(PIPSTA in Fig 22). If the Ready to Read bit (bit BO) is set then the

address of each byte of the hardware input buffer is loaded into PIPADD and

that data byte read into the microprocessor via PIPDAT. This process is

repeated until each byte of the hardware input buffer has been read into
micro-processor store. The interrogation routines (see pars 16.2) then
assume control. The transfer of data from the hardware to the micro-
processor is not carried out in real time.

16 HARDWARE HANDLERS

The Hardware Handling code can be divided into two sections:

16

a Handling hardware go/stop, and polling for hardware or VDU responses.
These are the POLLING routines.

b Interrogation of inputs, storing, displaying etc. These are the
INTERROGATION routines.

16.1 Polling Routines (See also Figs 22 and 23)

16.1.1 Starting Transfers

For an output transfer the hardware counter is loaded with
the numbers of transfers to be sent. RX/TX is set to TX and a logic
pulse generated on the GO line commands the output board to proceed
with the transfer.

For an input, transfer circuitry on the output transfer
board generates the timing necessary for inputs to be received.
RX/TX is set to RX and a GO pulse generated.

16.1.2 Polling for Responses

*Responses may arise from any of the following three
areas:

a User response from VDU ie Stop command.

b Output transfers.

c Input requests, received etc.

Responses from a.above obviously come via the VDU interface, the
Stop command has been set to be a specific sequence of the letter S
followed by carriage return. Upon receipt of the letter S half the
stop command has been received and the HALFSTOP flag set. A user
input of carriage return will then cause a FULL-STOP, one more
output and input sequence will then be accepted in order to synchro-
nise the transmissions. An informtion message informing of user
intervention will be printed on the VDU and control returned to the
Basic Comnand Mode. (In the case of Automatic Input Display the
next input will synchronise the termination).

If the character entered after the letter S is not a
Carriage Return the HALFSTOP flag will be cleared and the whole
Stop sequence must be re-entered before it will be accepted. This
is done in order that the act of Stopping transfers should be a
deliberate action and the recognition erroneous Stop commands
minimised. Termination may also be caused by filling the input
message store.

Once an output transfer has started it will continue until
completed. Whenever the number of output transfers programmed into
the hardware counter has been sent the Transmicting/Stopped bit in
POPSTA will be raised to indicate completion of output sequence.
When this has happened one more input will be accepted in order to
synchronise with the system under test. If the Transmit Option
selected is Continuous then the Continuous bit (see Figure 22) will
be set thus disabling the hardware counters. In this case the user
ust intervene to stop outputs, or the message store must be filled.

17

When an output has been activated inputs should be expected
and the polling routine will intprrogate the status responses from
the Peripheral Input Transfer card. These status responses (see
Figure 22) are:

a Ready to read - this indicates that data has been
* received and is in the input buffer shift register

awaiting interrogation. (See also par& 15.4)

b Request i/p Transfer (TFR) - this indicates that the
system under test has requested an input transfer.
This request is granted by putting the RX/TX bit to
RX and generating a GO pulse.

c End i/p transfer - Lthis indicates the end of the input
transfer. If this bit is set and the Ready to Read bit
is clear it indicates that the system under test has
failed to return the standard 42 bits of data. (The
Matrix returns only 36 bits of data). A circuit on the
Input peripheral card which generates 6 extra pulses,
for the input buffer, is then activated. This is done

'so that standard interrogation routines described in
section 16.2 may be used for both GTU and Matrix

messages.

d Input timeout - this indicates that an output has been
sent but the system under test has failed to respond
within a specified period. After each Output transfer
(or, in the case of Auto Display Mode, Input transfer)
the timeout counter is reset. In order to avoid a
possible 'Lock up' situation arising, if the system
under test fails to respond, a timeout on Inputs is
enabled. When the timeout status bit is set the peri-
pheral hardware cards are re-set to Transmit mode and
another Output sent.

16.2 Interrogation Routines (See also Fig 24)

The Interrogation Routines are entered when the Ready to Read Status
bit is set. If the Display Option chosen is N for None and no Wait Condi-
tions have been specified (ie the hardware delay is enabled) HALFSTOP is
interrogated to check if this message should terminate the transfer sequence.
If termination is indicated (ie HALFSTOP - 2) then the termination message
is printed and control returned to the Basic Command Mode. If termination

is not indicated (is HALFSTOP # 2) the hardward is re-set to Transmit, and
the Polling Routines re-entered.

If the above conditions are not met the data in the input buffer is
read and the message together with its message number is stored in a
temporary storage area THISIP.

If a Wait Condition has been set the input Message Register Address
is extracted and compared with the Wait Register Address. If a match is
not achieved the termination check described is carried out and if no
termination is indicated the hardware is re-set to Transmit and the Polling
Routines re-entered.

18

If the Wait Register Address match is found, or no Wait conditions
have been set, the Display Option chosen is inspected.

If All inputs are to be stored for display then the input message

with its internally generated message number is copied from THISIP to the
next message space available in the input message store. If ON Line dis-
play has been selected the message will then be displayed on the VDU using
the Print Message subroutine.

The total number of input messages will then be checked and if the
input message store is now full the input/output sequence will be terminated,
otherwise the hardware will be re-set to Transmit and the polling routines
re-entered.

If Changes of message are to be stored for display then this input
message must be checked against the last message of the same type. If
the Type is A then against the last A message preserved in LASTAIP. If
the Type is B then the check is made against the last B message to be
received and preserved in LASTBIP. If the type is T (for Both) then the
input message number is inspected. If the input message number is ODD
then the check is made against LASTAIP and if EVEN the check is made against
LASTBIP.

If differences were found then the message in THISIP together with
its message number is copied into the next space in the input message
store and the relevant LAST A or B IP is overwritten with the new data
only (excluding message number). If ON line display has been selected
the message and message number will be printed on the VDU using the
PRINMES subroutine; the termination checks will then be carried out and
if no termination is indicated the hardware is re-set to Transmit and the
Polling Routines re-entered.

If no differences were found then the 'comfort' message flag COMFSTOR
is checked and if set the message number inspected. If this is the lO0th
message received since the last display it will be displayed on the VDU using
the PRINMES subroutine.

The termination checks are then carried out and in the absence of
termination indication the hardware is again re-set to Transmit and the
Polling Routines re-entered.

17 THE DATA STRUCTURES

17.1 Message Assembly

When the Message Assembly has been completed the I NTE RNAL MESSAGE
STRUCTURE (Figure 25) will be filled with the correct information.

Information is stored in this structure in a form which makes
changing individual parameters relatively simple since each parameter is
stored independently. This structure is not, however, the ideal for
operations such as parity calculations and therefore, when it becomes
necessary to calculate parity bits, the message information stored in
the A or B Message Fields is transformed by the FMFORP (Format for Parity)
subroutine into the structure shown in Figure 26A. In this structure each
bit of the 42 bit message occupies a whole byte with 00 representing a bit
O and 01 representing a bit 1. With the information stored in this format

19

the CALCP subroutine may be called to generate parity over any data area
within the 42 bit message and store the parity bit in whichever bit position
is selected.

Once the parity bit(s) has been generated the information stored
* in the structure in Figure 26A is transformed by the TFTOTX subroutine

into a format ideal for interfacing to the hardware by the hardware handlers.
This format is illustrated in Figure 26B.

This is done in order that the user may select to transmit A, B or
both when using the Repeat Command, and may also change individual elements
of each message independently when using the Repeat Command.

17.2 Message Display

When input messages are received they are stored (in accordance with
the display option selected) in the form illustrated in Figure 27A. Each
input message is given a message number which is stored with the message.

Messages are stored in blocks of 16 with space available for up to
40 blocks. When the Display on request is selected the total number of
messages stored is displayed and the user allowed to select the segmenta-
tion format required. This segmentation allows fields within the 42 bit
message to be isolated for easier inspection. Three pre-set segmentations
are available plus one which is user programnable. Figure 28 illustrates
the segmentation storage area. The example shown in Figure 28 for segment
1 means that a space will be inserted in the bit pattern displayed after
the 4th, 7th and 9th and 41st bits. This could isolate for example the
check code, register address, data and parity fields of each message
displayed.

In order to prepare each message for display and to include the
spaces for segmentation the message is transformed from the format illus-
trated in Figure 27A to that illustrated in Figure 27B. In Figure 27B
each bit of the 42 bit message occupies a byte, a bit 0 being represented
by Hex 30 (ie ASCII 0) and a bit 1 being represented by HEX 31 (is ASCII 1).
The segmentation spaces (Hex 20) are inserted in the correct bit position
thus when the message is output the message will appear as a series of
Os and ls with spaces providing the segmentation isolation.

18 TRANSMIT DATA FLOW (See also Fig 29)

All input information is collected via the Data Entry Subroutines described
in Section 13. At this point the information is stored in the internal message
structure Fig 25. The Format for Parity subroutine (pare 10.1) translates the
Data, Check Code and Register Address into a format which makes parity calculation
easier (Fig 26A). When the parity bit(s) have been inserted the information is
then transformed (see pars 10.3) into a format suitable for transmission (Fig 26B)..
This information is then loaded into the hardware registers as described in pars
15.3.

19 RECEIVE DATA FLOW (See also Fig 30)

The hardware input buffer register is read (see pars 15.4) and the informa-
tion stored in the format shown in Fig 27A. If the input transfer is to be dis-
played on the VDU, using the Print Message subroutine (see para 14.3) it is
firstly transformed into the format illustrated in Fig 27B. Segmentation spaces
are inserted and each data bit translated into its ASCII representation ready for
output to the VDU. Reference 2 describes and illustrates quite clearly the type
Of --.--. to bo. _xpected using different segmentation specifications.

. - -- • .- _ .- -_, _---. , .,-..

INTERNAL IDENTIFIER CROSS REFERENCE

IDENTIFIER INTERNAL LABEL EXTERNAL VALUE INTERNAL VALUE

MESSAGE TYPE MSTYPE A - A MESSAGE 0
B - B MESSAGE 1
T - BOTH 2

A PARITY APARTRU TRUE Y - YES 0
N - NO 1

B PARITY BPARTRU TRUE Y - YES 0
N - NO 1

A FORMAT AFORMAT G - GTU 0
Ml - MATRIX COMMAND 1
M2 - MATRIX CONNECTION 2

" B FORMAT BFORMAT G - GTU 0
Ml - MATRIX COMMAND 1
M2 - MATRIX CONNECTION 2

TRANSMISSION TXOPT S - SINGLE 0
OPTION C - CONTINUOUS I

M - MULTIPLE 2

WAIT WAITY Y - YES 0
' CONDITION N - NO 1

DISPLAY OPTION DISOPT N - NONE 0
A - ALL 1
C - CHANGES 2

ON OR OFF LINE ONOFFLI ON LINE Y - YES 0
DISPLAY N - NO 1

RECEIVE OR RXTX TRANSMIT 0
TRANSMIT RECEIVE 3.

COMFORT COMFSTOR COMFORT
MESSAGES MESSAGES Y - YES 1

N - NO 0

ANNEX A

A-1

ANNEX B

DRAWING SYMBOLS USED

INCREMENT Activity 1. Code performs this task
POINTER

I~11 Subroutine

YIT ... YES Decision Box

NO

GOTO eg GOTO A

Entry point ie GOTO A would arrive at this point

CONTINUED 1 Continuation ie Flow Diagram continuing at Fig 8.
F G 8

FORMED
FOR Data Structure

PARITY
FIG 26A

B-i

ANNEX C

CROSS REFERENCE BY INTERNAL LABEL NAME

LABEL CODE FUNCTION PARAGRAPH NUGER

ASHMES Message Assembly Routine 4 2

AUTODIS Auto Display Routine 6 4

CALCP Calculate Parity Subroutine 19.2

COMMODE Basic Command Mode Routine 3 1

DISOREQ Display on Request Routine 5 3

ENDOFSUB Prepare for Hardware Handlers Routine 9.1 8

FMFDRP Format for Parity Generation Subroutine 1.0.1

GETDAT Input Data Subroutine 13.4 13

GETDISOP Get Display Options Subroutine 13.9 18

GETHEXIP Get Hexadecimal Input Subroutine 11.2 9

GETIP Get Input Character Subroutine 11.1 9

GETPART Get Parity Subroutine 13.5 14

GETTXOPT Input Transmission Options Subroutine 13.7 16

GETTYPE Input Message Type Subroutine 13.1 10

GETWAIT Input Wait Conditions Subroutine 13.8 17

GOANDTX Prepare Data for Transmission Routine 9 7

INASC Get ASCII Character from Keyboard Subroutine 11.4 9

INDECNU Input Decimal Number Subroutine 11.3 9

INITIAL Initialisation Routine 2

INPCC Input Check Code Subroutine 13.2 11

INPRA Input Register Address Subroutine 13.3 12

C-I

FIGURE

LABEL CODE FUNCTION PARAGRAPH
NUMER :

MENUDIS Display Current Menu Subroutine 8 6

MSSTR Input Message Format/Structure Subroutine 13.6 15

OUTASC Output ASCII character to keyboard Subroutine 12.1 9

OUTDEC Output Decimal Subroutine 12.3 9

OUTHEX Output Hexadecimal Subroutine 12.2 9

POLLING Polling Routines 16.1.2 23

* PRINBLK Print Block Subroutine 14.2 20

PRINMES Print Message Subroutine 14.3 21

REAIPDAT Interrogation Routines 16.2 24

REPEATX Repeat Routine 7 5

SEGMENT Input Segmentation Subroutine 14.1 19

TFTOTX Transform to Transmit Format Subroutine 10.3

C2

ANNEX D

OUTPUT BOARD HARDWARE REGISTER ADDRESSES

ADDRESS (IN HEXADECIMAL) REGISTER SELECTED

, NONE - THIS IS THE QUIESCENT STATE

1 Register A Shift Register 1

2 Register A Shift Register 2

3 Register A Shift Register 3

4 Register A Shift Register 4

5 Register A Shift Register 5

6 Register A Shift Register 6

7 Register B Shift Register 6

8 Register B Shift Register 2

9 Register B Shift Register 3

A Register B Shift Register 3

B Register B Shift Register 5

C Register B Shift Register 6

D Hardware Counter Shift Register 1

E Hardware Counter Shift Register 2

F UNUSED

-D-

Si

, D-I

.. - . - > ., . . - - .- •.- - -o .- .. q-

ANEX E

INPUT BOARD HARDWARE REGISTER ADDRESSES

ADDRESS (IN HEXADECIMAL) REGISTER SELECTED

0NONE - THIS IS THE QUIESCENT STATE

I Input Buffer Register 1

2 Input Buffer Register 2

3 Input Buffer Register 3

4 Input Buffer Register 4

5 Input Buffer Register 5

6 Input Buffer Register 6

7 - F UNUSED

-. 1

* RESET

INTLISAIN

BASIC COMMAND

YES
IS IT A

ASSEMBLE NO
MESSAGE

IS IT B DISPLAY ON
YES REQUEST

SDISPLAYREPEAT

IITD YES RP

YES
IS IT E

A

DISPLAY MENU NO

IF NONE
REPORT ERROR

%I

APRPI£

F'OR TRANM SSO

.-- 7- 7 z- -. - --

ENTER FROMI BASIC COWNARD MO)DEL

INOMTO STORAGDAE

S.-U C ORE2H

F77l DISTAY OPTIO NA,

INO DATAW

EWTR FlRO BASIC COftWD MODE

PRINT No. Of SSAG9S

GE'T SEGMENTATION

S, .

,% STAR ADDRE£SS An)
.qNMBE OF MESSAGES

,:]I BLOCK

, PRINT BLOCK

-' I

ME SSAG
PRNTD YES

-No

.4- Co 0

-YES

.- PRINTED

i NO

F

44

.1 -

PIrG 3 DriSlAr (Ng REQUSt iO~f'ZTE FLO' flIAGRAN i

ENTER FROM BASIC COMffiAND MODE

.,

< A NO TO BSIC

CLIVE COMA . ND MOKDE

YES

00G TO HARDWARE

FIG 4 AUTO DISPLAY ROUTINE F DIAGRAM

ENTER FROM ILASIC COMMAN4D MOVE

OO TO YASS

No

-

ENTER FROM BASIC COMMAND OR REPEAT MODES

'

DISPLAY TYPE

U''

44

T IRDISPLAY J YES is
,-pOF A MESSAG TE

is P DISPLAY CONTENTT Y PE, O F B M E S S A G E

OF A AnK s
MESSAGES

DISPLAY
TIANSISSION

OPTIONS

S DISPLAY W4AIT

CONDITIONIS

DISPLAY
OPTIONS

: ,RTURN
To

CALLING iOU ME

*, FIG 6 MENU DISPLAY ROUTINE FLOwl DIAGRAiM

ENTER FROM MtSSAGE ASSEMBLT OR REPEAT

,".%. FOP. P, ITY SET PO1ZHANDLERS$T O~ qE OFRPRT
.-.

J~ is
ORR PARTY ET PPO.NTER

L~ F

A C CLF.AOO
CACULTON

-4

CALCULATE CALCULATE
PARITY PARITY

TRP.AN SFERlFTO m TRAN4SFER TO
FORMAT TX FOR.MAT

ism

, FIG 7 PREPARE DATA FOR TRANSMISSION FLW DIAGRAM

)*'I

'pt m

*4

ENTER FROM FIG 7 OR FROM AUTO RECEIVE MODE

r PRESET LAST INPUT MESSAGE STRUCTURES-I
SET START OF INPUT MESSAGE STORE

AUTO RXSET HARDWARE (PPIs)
*1.1:

.

D FOR RECE IVE

o NO

F. LAW O P RE G 1
YES is

H ATP T GO TO HRWR

NO HNLR

is S LOAD O/P REG I

NO

, LOAD O/P REG I2
-IHBTYEBOT

TX YE LOA O/PREGS

LOAD O/P REG 2 is'YE

WITH PRPR THER AUTPE

WAIT

4NO

VE T YE

DISLA

.4.is
NOp/

MULIPL

LOD4WCONE E
WIH UME

PRPR ORMLIL

FIG IRPR FORAR FOMULTAEIPLE LO DAGA

INPUT
OUTPUT

11. czrip
12.1 OUTASC

11.2 GETHEXIP
12.2 OUTHEX

11.3 INDECNU
12.3 OL'TDEC

11.4 LZIASC

CALLING
CALLLNG

ROUTINE
ROUTINE

GETHEXIF
-

GE, IF1IDCI

0VrUDEC OLTHEX

CHAR~fff

FLOW FLO

L

A L M6W MONTOR UIROTINE

16I

FI- AI 4PTO~UTS&OIE

ENTER

GET IP

LOAD MSTYPE
WITH 0 TYPE A

LOAD MSTYPE YES s

WITH 1 TYPE

. --, LOAD MSTYPE YES IS
-- WITH 2 E.T o ME SSAGE

is
710?!

NO INGLE

YES

LODMOPT U

WIT 2

_.t - o i

31?!R2 TOj
CALLING ROUTINE

FIG 1 INPUT ISSAGE TYPE SUBROUTINE FLOW DIAGRAM

-- - -_. _n-r

PRI1T INPUT CC REQUEST

GETIXp

PTW'T ERROR

+ I INUTN
,STO

E cc IN cc FIELD 01

TCO
RRCT MSASE

'

RETUR TO CALL ING RO 'T.I

FIG II INPUT ClICl CODE SUIROUTINE FLOd DIAGRAM

.' .-

ENTER

i is
,-rHXIPIITVLD N

STORE RA IN RA FIELD OF

FIG 12 impuT REGiSTER ADDRESS SUsitouTin FLOW DIAGRAM

ETER

PRINT DATA
REQUEST

GET POINTER
To DATA

STRUCTURE

PUT BYTE INTO
DATA STRUCTURE

INCREMENT POINTER

DECRE%%NT REVCO

is N

REVC

FIGDAT BYI~ f AT U R~ T E
INCREMENTRA

* - - ~--V %6 -6 - J lj -.-,w - ..

ENTER

PROMPT

GETIP

is NO
IT
N
Y E

SETI MESGIE ESG
A IrPAIYTU

E REUNT

CLINROTE

*l 4CTPRT SURUIEFO IGA

ENTER

ISSUE STRUCTURE/

popisAT PROMPT
ssu

E
GETIP

E

is YES SET STRUCTURE
IT FIELD TO 0

G

NO

NO is
PRINT IT
ERROR Ml

YES

Is
THERE A

GETIP 2nd PARAM

YES

is SET STRUCTLIE
IT FIELD TO I

No

is YES SET STRUCTURE
IT FIELD TO 2

RETURN TO
CALLING ROUTINE

FIG 15 INPUT MESSAGE FORMAT /STRUCTURE SUBROUTINE FLOW DIAGRAM

4,..-

ENTER

I ISSUE TRANSMISSION
I OPTION PROMPT

•~~i LOAD TXOPT YS .TP

. NO

SLOAD TXPTYE rs soE

*. -. T

LOWITH INT ITA 7 TNO -NOI' UNO

NO I

LOAD ToT

YES WIT

OBTAL ; , b CALLINGI

ON

CFOOSTRN L D

%So* Sect. 13.9 ,
~iR

NO

ASTORE I1ER
,,:-,IN OPTNUM

RETUR.N TO
%' CALLING
e lROUTIE

' ., FIG 16 GET TRUASMISSION OPTION SUBROUTINE FLOW DIAGRAM4

..- . . . +. S , .* *:. .- , ,., . , .- - - - - - -" - - -+ _ . ". - ' - "-"-.' -. .

/ENTER

E.R

LO "ft

r +'"YESSSET WAIT

T

0

.: I

:," I

til CALUMN

STOII

SS

FIG 17 GET WAIT CONDITIONS StUhROUTINE FLOW DIAGRAM

Ia

EIITR

SEND DISPLAY
OPTION PROMPT

Sis SES SETSOP!P

I.N

NO I
A OR C

lEG 15 T DIUPL! OftI~SIOfUK7~ IC

ENTER FROMi DISLAY ON 9E&..j Otu RPEA YM

is YESPRINT

IT CHANCE PROMTfr

GEI

COPY SEGMENTATION 2 YS I
INTO WORKING STACK2

No so CHN-

CO EGMNENTATO 3 IT

-- col oWRIG *1
PITUE

NOSGENAIl

FLOW PROMPA

7 .2.

DTER PROn DISPLAY O1 REQUEST

GET BLOCK
START

ADDRESS

GET NUMBER
OF MESSAGES

IN BLOCK

GET THIS
S*' MESSAGE' S

NUMBER

CALCULATE
SSAGE

START
ADDRESS

! RI.-ES
' p

L% CRE.NT

I~"K YElS~i 1S MESSAGES

II

IN BLOC

FIG 20 FUIl BLOCK SualOU FLOW DIAGRAM

EN4TER FROM PRINT BL ORt HIW HANIDLERS

4.is

AUOSEi YSt

K..ti/ U

T EE

No N

-YES

is N

-wYP

SEGMENATIONFORMA

1 GT

.9NO

OUTPUT BOARD INPUT BOARD

At A

PPI 1 8 DATA PPI 3 8 DATA

POPDAT A PIPDAT A

808

Ppl 1 = 4 ADDRESS PPI 3 4 ADDRESS

POPADD B PIPADD

8081 8089

"12G PI4 Af SEND) 6 PLLSES

COwNIUOUS " .01 i/p TIDEOUT CONTROL

POPCOM A TX/RX PIPCOM A A RESET (AUTO DISPLAY)

A3 AUTO ip A3 RESET i/p TFR REQUEST

8084 808c

Piz 2 TRANSMITTING/ "1 4 READY TO READ

PD B- STOPPED al REQUEST i/p TFR
ISTA A CC OK/FAIL PIPSTA B 3 END i/p TFR

B3 INPUT TrMED-OUT

8085 808D

FIG 22 PPI PORT AND BIT ALLOCATIONS

ENTER

SE HRDAR

TO T

4.GO

SE4AFTPUE

TOIU

& 01- HAlSO RELDG TU I NOW ICU

ENTER FROM POLLING ROUTITES (READY TO READ SIT SET)

WA

NN

PRINT ~ I THEIATO

DIPLY A

INTO 24ITEICAIH OTNE LOJDGA

ON LINE/OFF LINE ONOFFLI

DISPLAY OPTION DISOPT

WAIT REGISTER ADDRESS WAITRA

WAIT Y OR D WAITY

NUMBER OPTXNUM1

NUMBER OPTXNUM

NUMBER MOPTN I

NUMBER MOPTNUM-

TRANSMISSION OPTION TXOPT

'B' MESSAGE FORMAT/STRUCTURE B FORMAT

'B' PARITY BPARTRU

'B' DATA D25MS

'B' DATA D24MS

'B' DATA D23MS

'B' DATA D22MS

'B' DATA D21MS

'B' REGISTER ADDRESS RA2MS

'B' CHECK CODE CC2MS

'A' MESSAGE FORMAT/STRUCTURE A FORMAT ,I

'A' PARITY APARTRU

'A' DATA D15MS

'A' DATA D14MS

'A t DATA D13MS

'A' DATA D12MS

'A' DATA D11MS

'A' REGISTER ADDRESS RAlMS

'A' CHECK CODE CC1MS

MESSAGE TYPE MSTYPE

FIGURE 25 INTERNAL MESSAGE STRUCTURE

%4

'a7.

PARIT 3 BYTES - PO, P1. P2 41
2 BYTES PO, P1, H2

DATA LSB 1 BYTE PO GTU

DATA 32 BYTES M41

31 BYTES 12
30 BYTES GTU

MB ESSAGE

VRTST TXMSIST -0-r t R i

HDATA IISI .' N
"al PEP.

, .. .qMES SAGE£

4. RA-3 BYTES

FIG 26 T A ESSAGE

*. CC.L. 3flES

-IVRTSTKC TI ST '.D R Rt f C C C C

1 m
Ml -, HATUit C0t ECNOI

IFZGI 6A t'Oll DFORPA~£'YFIGURE 26B READY FOR ?RANSMISS1iO

~PlC 26 T](N6SSAGIE STRUCTURE

- *6 - - -

.4m

ERRORS cc c

cc [cc DATA 16 MESS/ 40 BLOCKS
BLOCK

8 BYTES
PER

MESSAGE
VIPUT MESSAGE

MS NUMh

MS NUM

STRST -

(START OF
MESSAGE STORE)

FIG 27A INPUT MESSAGE STORE FORMAT

20 - SPACE

SITS FROI 'IESSAGE
TRANSLATED INTO ASCII
0 OR I AND STORED FOR
TX TO DISPLAY

31,,1I

31. a I - ASMSST

FIG 275 READY TO DISPLAY

I.rz.... ...wfr .Lr-. . ., . : .- --.- ,-% .-.. . ., ,* * * . . -. . . -.. - -. .. -

NL.MER OF DISPLAY
BIT AFTER WHICH,
SPACE INSERTED IN
DISPLAY

SEG I
SEG 1

09

07

NUMBER c42
04I-4- FIRSCG

SEG 2

'4,q

SECSEG

SEG 3

=, ______-4(- THISEG

USER SEGMENTATION
DEFLNED NUMBERS IN

* SEGENT ASCENDING ORDER

'5

8 SEGMENTS
kLL.OWED IN ,'

DISPLAY .-

U

I.

N4

aiR3OUT114ES -:TUT

(Section 13)
(i.5

11

AAD FLO

-77

.. 7

-AA

RE D I P TIN
U E S G

(Pra 154
I RS

Er..& 14.3)

OUPT SG

FIG~M II *cEVIDAA L

DOCUMENT CONTROL SHEET

Overall security classification of sheet W,.C I. D

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. ORIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
. . .. lisi fi cation,, MMORANDUM 3585 unclassifiea

0 5. Originator's Code (if 6. Originator (Corporate Author) Name and Location
"." known)known) Royal Signals and Radar Establishment

5a. Sponsoring Agency's 6.. Sponsoring Agency (Contract Authority) Name and Location
Code (if known)

% 7. Title

The Axis Test Box Software Report

7a. Title in Foreign Language (In the case of translations)

lb. Presented at (for conference napers) Title, place and date of conference

.4

8. Author 1 Surname, initials 9(a) Author 2 9(b) Authors 3.4... 10. Date P. ref.
Simcock, A L

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descriptors (or keywords)

Acontinue on separate piece of paper

Abairact

lThis memorandum describes in detail the software program which the M6809
,u microprocessor obeys to perform the functions of the AXIS Test Box.

Extensive use is made of Flow Diagram where these either enhance or
replace wordy descriptions.

W-

4A.,iv V

N J W-

WA NINI,

W

-44
47

4 7

i4
4r. -t

