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AMBIGUITY AND UNCERTAINTY IN PROBABILISTIC INFERENCE

The literature on how people make judgments under uncertainty is large,

complex, and rife with controversy (see e.g., Edwards, 1954, 1968; Peterson &

Beach, 1967; Slovic & Lichtenstein, 1971; Rappoport & Wallsten, 1972; Slovic,

Lichtenstein, & Fischhoff, 1977; Einhorn & Hogarth, 1981; Kahneman, Slovic, 8

Tversky, 1982; Cohen, 1982; Kyburg, 1983). One reason for the controversy is

that while there is agreement that "uncertainty" is a crucial factor in

inference, there is much less agreement about its meaning and measurement (cf.

Tversky 8 Kahneman, 1982). In particular, while most psychological work on

inference has been guided by a Bayesian or subjectivist view of probability,

increasing concerns have been expressed about this position (e.g., Cohen,

1977; Shafer, 1978). Central to the Bayesian view is the idea that prob-

ability, which is a measure of one's degree of belief, can be operationalized

via choices amongst gambles (Savage, 1954). Thus, if two gambles have

identical payoffs but one is preferred to the other, it follows that the

probability of winning is greater for the chosen alternative.

The subjectivist view of probability gains much of its force by making

expressions of uncertainty operational via choices amongst gambles. However,

whereas probability is thereby defined precisely, does this procedure capture

the essential psychological aspects of uncertainty? In particular, how valid

is the assumption that expressions of uncertainty can be captured through

choices amongst gambles? An important and direct attack on this assumption

was put forward by Daniel Ellsberg (1961) and we examine his arguments below.

In doing so, however, we stress that our intent is to understand the psycho-

logical bases of uncertainty rather than to critique the normative status of

the Bayesian position.
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Ellsberg (1961) used the following example to show that the uncertainty

people experience has several aspects, one of which is not captured in the

usual betting paradigm: Imagine two urns, each containing red and black

balls. In urn 1, there are 100 balls but the proportions of red and black are

unknown; urn 2 contains 50 red and 50 black balls. Now consider the payoff

matrix shown in Table 1. Note that if one bets on red and it is drawn from

Insert Table 1 about here

the urn, one gets $100; similarly for black. However, if one bets on the

wrong color, the payoff is $0. Imagine you are faced with having to decide

which color to bet on if a ball is to be drawn from urn 1; i.e., the choices

are red (R1), black (BI), or indifference (I). What about the same choices in

urn 2; (R2 ), (B2), or (I)? Most people are indifferent in both cases, sug-

gesting that the subjective probability of red in urn I is the same as the

known proportion in urn 2--namely .5. However, would you be indifferent to

betting on red if urn I were to be used vs. betting on red using urn 2 (R1 Vs.

*. R2 )? Similarly, what about BI vs. B2? Many people find that they prefer R2

over RI even though their indifference judgments within both urns imply

that, p(RI ) - p(R2) - .5. Furthermore, the same person who prefers R2 over

RI may also prefer B2 over 91 . This pattern of responses is inconsistent

with the idea that even a rank order of probabilities can be inferred from

choices. Thus, if R2 is preferred over Ri, this implies that p(R2 )

> p(RI ). Moreover, since red and black are complementary events, this means

that p(B2 ) < p(B1 ). However, if 92 is preferred over B1, then pCB2 1

> p(BI), which contradicts the preceding inequality. It is also important

to note that if p(R 2 ) > p(R1) and p(B2) > P(81), then either urn 2 has

complementary probabilities summing to more than I (super-additivity), or,

urn I has complementary probabilities summing to less than I (sub-additivity).

'
'' S.;,;, N :,," "i-a '- . .'' *" '.~ ,"" . .. ."" -, . "'• - . .
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TABLE 1

Payoff Matrix for Gamble Based on

Drawing from Urns 1 and 2

Outcome

Red Black

.et Red $100 $ 0
Bet

Black $ 0 $100

-1
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.a Although Ellsberg did not specifically discuss the non-additivity of comple-
"I.•

"t mentary probabilities (cf. Fellner, 1961), we shall show that it is intimately

related to the effects of different types of uncertainty on probabilistic

judgments.

From our perspective, the importance of Ellsberg's paradox lies in the

difference in the nature of the uncertainty between urns 1 and 2. In urn 1,

whereas one's best estimate of the proportion may be .5, confidence in that

estimate is low. In urn 2, on the other hand, one is at least certain about

the uncertainty in the urn. While it may seem strange, and even awkward, to

speak of uncertainty as being more or less certain itself, such a concept

captures an important aspect of how people make inferences from unknown, or

only partially known, generating processes. Indeed, the idea of uncertainty

about uncertainty has been considered from time-to-time under the rubrics,

'second-order" uncertainty and probabilities for probabilities (e.g.,

Marschak, 1975). However, whereas this concept has received little support

amongst subjectivist statisticians (see e.g., de Finetti, 1977), its status as

a psychological factor of importance for understanding choice and inference

has been demonstrated experimentally (Becker & Brownson, 1964; Yates &

Zukowski, 1976). On the other hand, the process by which such second-order

uncertainty is used in inference and the factors that affect its use, have not

been systematically studied. To be sure, Ellsberg suggested a number of vari-

ables that should affect the "ambiguity" of a situation, including the amount,

type, reliability, and degree of conflict in the available information.

Indeed, he stated that,

Ambiguity is a subjective variable, but it should be possible
to identify 'objectively' some situations likely to present
high ambiguity, by noting situations where available informa-
tion is scanty or obviously unreliable or highly conflicting;
or where expressed expectations of different individuals differ
widely; or where expressed confidence in estimates tends to be

.4. :e " . ,.r , ,,. ,.,. u $ . ,, I ,. . . . . . - " . . . . . .. - . . - . " . . . ' . . - -
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low. Thus, as compared with the effects of familiar production
decisions or well-known random processes (like coin-flipping or
roulette), the results of Research and Development, or the per-
formance of a new President, or the tactics of an unfamiliar
opponent are all likely to appear ambiguous. (1961, pp. 660-
661).

To specify the concept of ambiguity more precisely, reconsider the urn

where the proportion of red and black balls is unknown. From a Bayesian

perspective, this situation can be thought of as one in which the judge has a

diffuse prior over all possible values of the proportion, p(R). However,

imagine that one sampled four balls (without replacement) and got 3 red and 1

black. Note that this result rules out certain values of p(R) and could

change one's assessment of other values of p(R). Furthermore, as the sample

size increases, one should become more sure as to the actual value of p(R).

Therefore, as information increases, ignorance (a uniform distribution), gives

way to ambiguity (a non-uniform distribution over all outcomes), which then

reduces to a known p(R). However, while it is tempting to equate ambiguity

with some statistical measure of the dispersion of the subjective

distribution, this is unsatisfactory for the following reason: consider an

urn that contains either all red or all black balls but you don't know

which. in such a case we can characterize the distribution over p(R) as

having half its mass at zero and half at one. Note that the variance or range

of this distribution is high, yet, ambiguity is low. The reason is that such

a distribution rules out all values of p(R) other than 0 or I and is thus

close to the case where ambiguity doesn't exist (as in urn II). Therefore, in

accord with its dictionary definition, "having two or more possible meanings,"

ambiguity is a function of the number of alternative parameter values that are

not ruled out (or made implausible) by one's knowledge of the situation. Note

that this definition is similar to, but not identical with, statistical

measures such as variance, range, and the like.
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It is important to note that sample size is only one factor that

influences ambiguity since other information can affect the probability

distribution over the parameter of a stochastic process. Thus, imagine an urn

factory where employees color balls by throwing them at two adjacent cans of

black and red paint from a distance of 20 feet. Given our knowledge of this

process, it seems fair to expect that an urn of 100 balls would not contain

extreme proportions of red or black. A second example, due to Gardenfors and

Sahlin (1982), is particularly illuminating on this issue:

* . . consider Miss Julie who is invited to bet on the outcome
of three different tennis matches. As regards match A, she is
very well-informed about the two players . . . . Miss Julie

predicts that it will be a very even match and a mere chance
will determine the winner. In match B, she knows nothing what-
soever about the relative strength of the contestants . . . and

has no other information that is relevant for predicting the
winner of the match. Match C is similar to match B except that
Miss Julie has happened to hear that one of the contestants is
an excellent tennis player, although she does not know anything
about which player it is, and that the second player is indeed
an amateur so that everybody considers the outcome of the match
a foregone conclusion. (pp. 361-362).

Note that the amount and type of information in the three situations is quite

different, as is the amount of ambiguity (we would argue that match A has the

least ambiguity and match B the most). From our perspective, how does the

amount and type of ambiguity affect judgments of the probability of winning or

losing the match? Would Miss Julie, for example, judge that each player in

the three matches has a .50 chance of winning (or losing)?

Our discussion so far has strongly implied that ambiguity is generally

avoided since it adds to the total uncertainty of a situation. Indeed, this

is explicitly mentioned by Ellsberg (1961, p. 666) in discussing why new

technologies will be resisted more than one would expect on the basis of their

first-order probabilities. However, this picture is not completely accurate,

as is made clear by another example provided by Ellsberg (as quoted in Becker

44 . . ° % o - . - - = . . . - . .. . ° .. . .... . .
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G Brownson, 1964, pp. 63-4, footnote 4): consider two urns with 1000 balls

each. In urn I, each ball is numbered from 1 to 1000 and the probability of

drawing any number is .001. In urn II, there are an unknown number of balls

bearing any single number. Thus, there may be 1000 balls with number 687, no

balls with this number, or anything in between. If there is a prize for

drawing number 687 from the urn, would you prefer to draw from urn I or urn

II? Note that urn I has no ambiguity and each numbered ball has the same .001

chance of being drawn. Urn II, on the other hand, can be characterized as

inducing extreme ambiguity (i.e., ignorance). However, for many people, the

drawing from urn II seems considerably more attractive than from urn I,

thereby implying that there are situations in which ambiguity is preferred

rather than avoided. This is considered in detail later, but we note here

that accounting for such shifts is an important criterion for judging the

adequacy of any theory of inference under ambiguity.

Finally, the concepts of ambiguity, second-order uncertainty, and the

like, have been of concern in theories of inference quite apart from their

role in affecting choice. For example, work on fuzzy sets (Zadeh, 1978),

Shafer's theory of evidence (1976), Cohen's (1977) attempt to formalize

uncertainty in legal settings, and the elicitation of probability ranges

(Wallsten, Forsyth, & Budescu, 1983), all contain ideas concerning the

vagueness that can underly probabilities. Indeeld, statisticians have provided

axiomatic systems for trying to formalize probability ranges and rank orders

rather than specific values (e.g., Koopman, 1940). Moreover, early work by

Keynes (1921) also addressed the notion of ambiguity by distinguishing between

probability and what he called the "weight of evidence." He stated:

* The magnitude of the probability. . .depends upon a balance
between what may be termed the favourable and the unfavourable
evidence; a new piece of evidence which leaves this balance
unchanged, also leaves the probability of the argument unchanged.

- .-. *... .. . .... ..-. .
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But it seems that there may be another respect in which some kind
of quantitative comparison between arguments is possible. This
comparison turns upon a balance, not between the favourable and
unfavourable evidence, but between the absolute amounts of
relevant knowledge and of relevant ignorance respectively.
(Keynes, 1921, p. 71, original emphasis).

Plan of the Paper

We first examine the underlying structure of a set of problems in

which ambiguity is a major factor and note how this structure differs from

unambiguous situations. We then devote the major part of the paper to the

development and testing of a descriptive model of how people make probability

N judgments and choices under varying amounts of ambiguity. The model is tested

in four experiments at both the aggregate and individual subject levels. The

implications of the theory and empirical work are then discussed in relation

to: (a) the importance of ambiguity in assessing perceived uncertainty;

(b) the use of cognitive strategies in understanding probabilistic judgments

under ambiguity; (c) the role of ambiguity in risky choice; and (d) extensions

of the model to multiple sources and time periods.

a Model for Studying Ambiguity in Inference

The prototypical inference that we consider involves a judge assessing

the likelihood of the occurrence of an event based on reports received from

a source of limited reliability. The task can be thought of as having the

elements schematically represented in Figure 1. (1) An event occurs;

(2) The event is "sensed" by observers (e.g., witnesses to an accident) who,

Insert Figure 1 about here

in principle, can be characterized by levels of sensitivity and bias. How-

ever, it is important to emphasize that these levels are unknown to the judge

(see 5 below); (3) The observers report what they saw. We denote A* as the
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report of event A, and B* as the report of event B, where the decision rule

is to report A* if the observation is above some critical value Xc, and

B* otherwise. The reports can therefore be conceptualized as coming from a

signal-detection task; (4) Since there are n observers, n reports are

collected. Thus, the n reports can be thought of as the outcomes of n

observers reporting on a single trial of a signal detection task. Further-

more, since we do not differentiate between the n observers, we refer to

them as coming from a single source; (5) The judge receives the information in

the form of f reports for a hypothesis (i.e., f reports of A*) and c

reports of an alternative (i.e., c reports of B*), where f+c - n, and p =

f/n. The content of the scenario, however, is assumed to give the judge some

information as to what values of p to expect in a sample of size n.

Specifically, we argue that expectations concerning p will be influenced by,

(a) the dissimilarity between events A and B; and (b) the credibility of the

source. By "credibility" we mean the sensitivity and response bias of the

observers in judging the particular events of interest. For example, imagine

that you are a detective investigating a bank robbery where two witnesses

claim that the robber has blond hair and one witness claims it is brown. How

likely does the robber have blond hair? While the detective knows neither the

hit and false alarm rates of the witnesses, nor their response bias for saying

"blond" vs. "brown," he may know something about the quality of eye-witnesses

in a robbery, the confusability of blond and brown in the circumstances, and

perhaps something about the motivation of the witnesses. Now contrast this

situation where the source is two color television cameras that were filming

the robbery at the bank. Whereas in the former case the detective would

expect the reports to conflict (i.e., 0 < p < 1), in the latter it would be

surprising if p were not equal to either 0 or 1.

I,.
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Note that in Figure I, we have represented the judge's expectations by

three different distributions. In distribution (1), the information about the

credibility of the source, the dissimilarity of the signals, and the size of

the sample, does not rule out many values of p. This is a highly ambiguous

situation and would, for example, characterize the detective trying to judge

evidence from witnesses. Distribution (2) characterizes expectations based on

a highly credible source that discriminates between dissimilar signals; e.g.,

evidence from cameras filming the robbery. We believe that ambiguity is low

here since our knowledge of the process that generates evidence rules out most

values of p. Distribution (3) also represents a situation of low ambiguity,

but it is quite different from (2). Indeed, (3) is likely to result when the

credibility of the source is particularl3 'ow and/or the signals are very

similar, in direct opposition to the conditions that produce (2). For

example, imagine a taste-test between Pepsi vs. Coke for randomly chosen

shoppers. If we believe that the two drinks have a very similar taste and

tnat most shoppers are not able to tell the difference, we would expect the

proportion of reports for either product to be around .5. Thus, results from

such a test might be seen as most closely resembling the drawing of balls from

an urn with known p - .5. It is interesting to note that whereas some

authors have equated increased reliability of evidence with less ambiguity (as

suggested by Ellsberg, for example), distribution (3) shows that decreased

reliability can also lead to low ambiguity. Another way to express this is to

note that high reliability implies low ambiguity (distribution (2)), but low

ambiguity does not imply high reliability (since distribution (3) could be

involved). As we will show later, both the amount and type of ambiguity

(distributions (1), (2), or (3)) affect how probabilistic judgments are made;

(6) The judge combines the information from the reports with expectations

|.. . . . . . . . .

• , - ,- o- , . • o, •o ° .• ° , ° • o ° • . • . • . , o . . . . • • . ,.... . . . .
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about p to reach an assessment of the likelihood of A.

The structure of this task is both similar to and different from several

probabilistic models of the inference process. First, it is similar to

cascaded inference in that the judge is making inferences about an event

on the basis of unreliable reports (cf. Schum & Kelley, 1973; Schum, 1980).

However, in contrast to studies of cascaded inference, the judge does not know

the precise value of the source's reliability; rather, there is ambiguity

concerning what this is.

Second, since each observer can be thought of as participating in the

same signal detection task, the reports not only reflect their sensitivity to

competing signals, but also their bias due to differential payoffs. However,

as recently emphasized by Birnbaum (in press), the manner in which the judge

treats the observer reports depends on some theory about the observers. For

example, the observer reports could be responsive to the prior probabilities

of A and B as well as to differential payoffs. We emphasize that in our task

the judge is not given precise information about these matters. Furthermore,

since the judge only receives information on a single trial, the observers'

hit-rate and false-alarm rate are not known. Instead, the observed p, and

the judge's expectations about p, become cues to the likelihood that the

event occurred.

Third, one might consider our situation as a conventional Bayesian

revision task (cf. Edwards, 1968). However, the explicit probabilities

necessary to assess the likelihood functions are not provided; and, no base-

rate data or prior probabilities are stated. It would, of course, be possible

to provide the judge with explicit prior probabilities. This would, however,

be extending our paradigm to one where multiple sources of information need to

be combined, i.e., base-rates and individuating information. For the sake of
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simplicity, we only consider the effects of ambiguity on inferences from a

single source and thus do not discuss the effects of explicit base rates

(extensions of our model to multiple sources is considered in the Discussion

section).

Our intent above has been to show how our task is both similar to, and

different from, formal models of probabilistic inference. In addition, we

note that that although the inference task we consider is quite common, it

is difficult to describe it formally when uncertainty cannot be represented

by known probabilities. Be that as it may, our purpose is to develop a

descriptive model of how inferences under ambiguity are made, and it is to

this that we now turn.

A Descriptive Model

We propose that in making judgments under ambiguity, people use an

anchoring and adjustment strategy in which the data (reports) serve as the

anchor, and adjustments reflect both the amount and type of ambiguity in the

situation. We begin by assuming that one has received n reports from some

source, with f reports *for" a particular hypothesis and c reports "con"

(n - f+c). When the judge is asked how likely it is that event A occurred

(or, hypothesis A is true), it is assumed that the proportion of reports for A

is used as the anchor (i.e., f/n). Note that if the question were reversed,

i.e., how likely is it that B occurred, the anchor would be c/n. To model

the adjustment process, we posit that people engage in a mental simulation or

subjective sensitivity analysis (cf. Fischhoff, et al., 1980; Kahneman &

Tversky, 1982) in which outcomes that might have happened are imagined and

used for adjusting the anchor.

We model this process in the following way: let S(f:c) be the judged

likelihood that some event occurred (or some hypothesis is true) on the basis

,.U
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of f reports for and c reports against. Furthermore, let k be the

adjustment factor, which results as a net effect of simulating both greater

and smaller values of the observed p. Thus,

S(f:c) - p + k (1)

To illustrate the adjustment process, imagine 3 reports from witnesses in

which 2 claim that A occurred and I claims it was B. The judged likelihood of

A is equal to 2/3 plus an adjustment that reflects the unreliability of the

reports and the type of ambiguity in the situation. The simulation process is

assumed to involve the values of p that might have occurred, but didn't:

3/3, 1/3, 0/3. Clearly, the more unreliable the reports, the more credence is

given to the simulation values as opposed to the observed data. Moreover, the

simulation is "constrained" by one's prior expectations as to the plausible

values of p that are likely in this situation (recall box 5 in Figure 1).

Therefore, we conceive of the simulation as reflecting the reliability of the

data, which is due to the credibility of the source and the dissimilarity of

the signals, and the type of ambiguity in the situation.

2he Simlation Process

Since S(f:c) varies between 0 and 1, equation (1) implies that k must

be constrained as follows:

-p4 X4 1 - p (2)

From a psychological viewpoint, this means that the direction of the

adjustment must be due, in part, to the value of p. Indeed, when p - 0,

k ) 0, and the adjustment (if there is one) must be upwards; when p - 1,

k 4 0, so that the adjustment must be downwards. When p * 0, 1, one can

-') imagine greater and smaller p's, but the numbers of each are constrained by

the particular value of the observed p. In order to model the simulation

4'4

.4 ' " . . " " - " " " - - .----. t;,',% n,,.,,, .,; ' .' ,,,- ,, .,- '..,,.
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process, we consider k to be the net effect of the difference between the

number of greater and smaller p's; specifically,

k - (kg - ks)/n (3)

where, kg - number of greater p's used in the simulation

ks - number of smaller p's used in the simulation

n - total number of reports

The difference, kg - ks, is divided by n since kg and ks are numbers

of cases, while k must satisfy equation (2). To illustrate how (3) works,

reconsider the example of evaluating S(2:1). Note that there is one case of

greater p, (3/3), and two of smaller, (1/3, 0/3). If the judge "uses" all

three cases and weights greater and smaller cases equally (both of these

issues will be discussed below), k - - 1/3 and the anchor of 2/3 would be

adjusted downwards to 1/3.

In equation (3), kg and ks are defined as the number of cases used in

the simulation rather than the maximum number that could be used. These

latter values set an upper limit on the simulation and we consider them

first. Thereafter, we discuss: (a) how the unreliability of the data affects

the simulation; and, (b) the incorporation of differential weighting for

smaller vs. greater values of p. First, consider the constraints imposed

on kg and 'ks by the observed p. Specifically, as p increases, the

maximum value of kg decreases and the maximum value of k s increases. In

fact, these values can be written as,

k (max) - n(1-p)
9 (4)

k (max) - np
s

For example, if one had evidence of (7:3), kg(max) - 3 (consisting of 8/10,

9/10, 10/10) and ka(max) - 7. However, as pointed out earlier, the amount

9.
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that one simulates will be related to the perceived reliability of the data.

To incorporate this into the simulation process, let the parameter 0

represent the unreliability of the reports received from the source (larger

values of e indicating greater unreliability). However, since increasing

the amount of evidence (n) decreases unreliability, the overall effect of

unreliability of the reports can be expressed by,

UR = e/n (e 4 n) (5)

where, UR - overall unreliability of the data (0 4 UR 4 1)

0 - parameter reflecting the lack of credibility of the source and

dissimilarity of the signals

n - number of reports

We can now consider the kg and ks used in the simulation as reflect-

ing the maximum values of each as weighted by the overall unreliability of the

data; specifically,

k A-n(0-p) - 0 (l-p) (5a)
g

k --- n p - e p (5b)
s n

Thus, if the source were perfectly reliable, 0 0 and there would be no

effect for the simulation. Clearly, as 9 increases, the range of values

used in the simulation also increases.

Up to this point, we have treated greater and smaller values of p as

having equal weight or importance in the simulation. This is now rectified by

introducing our second parameter, 0, which we call one's "attitude toward

ambiguity in the circumstances." Since k is the net effect of both k
9

and ks , 9 only needs to affect one of these components for there to be a
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differential weighting effect on k. Thus, we redefine ks  as,

k aep (()oo) (6)5

We now substitute (6) and (5a) into (3) to get,

k = G(1-p-po) (7)
n

To see the implications of (7), the relations between k, p, and 0 are

illustrated in Figure 2. (In Appendix A, we consider alternative models that

result from different weighting assumptions.) First note that k reaches its

maximum value of G/n when p - 0 (i.e., where all "might have

nsertFigure 2 about here

beens" must be positive), and its minimum of -G/n when p - I (all "might

have beens" must be negative). Moreover, 0 plays no role when p - 0, 1,

since differential weight for imagined values of p is not an issue. Second,

the figure shows the effects of different levels of B on k; B > 1 (more

weight for kg than ks ) ; 0 - I (equal weight for kg and ks); and

B < I (more weight for ks  than kg). An important implication of

different values of B is that they affect the value of p for which there

is no adjustment (i.e., k - 0). Thus, for - 1, k > 0 when p < .5,

and k < 0 when p > .5. In other words, a person with B - 1 will have

upward adjustments for p < .5, downward adjustments for p > .5, and no

adjustment for p - .5. When B < 1, the point of no adjustment, called the

-. "cross-over point" and denoted pc, occurs below p - .51 for B > 1, the

cross-over point is above p - .5. In the presence of ambiguity, we expect

people to be generally conservative and to give more weight to the possible

values below p than to those above it. Thus, we consider B < 1 to be

typical of assessments made under high ambiguity. Conversely, as ambiguity

4°

I
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Figure 2. k as a function of p and
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decreases we would also expect people to weight possible values below and

above p more symmetrically.

Given the specification of k in (7), the full model is obtained by sub-

stituting (7) into (1). This is,

s(f:c) - p + - ( 1 _pp) (8)n

The model in equation (8) has several implications: (1) Consider the effect

of the amount of information (n) on judged likelihood. Note that S + p

as n + 0. This means that as the amount of information increases, one

becomes more certain as to the diagnosticity of the data. It is important to

realize that as n + -, S does not go to 0 or I as would be implied by a

standard Bayesian revision model. Instead, the fact that S asymptotes at

p parallels an analogous result in cascaded inference where, under certain

symmetry assumptions, the maximum probability of a hypothesis is bounded by

the reliability of the reporting source (Schum & DuChorme, 1971).

(2) Conditional on a given value of 0, the model implies that there

will be trade-offs between p and n in determining judged likelihood. For

example, one might find the evidence in favor of some hypothesis to be more

convincing on the basis of (9:1) than (2:0). However, because S asymptotes

'. at p, trade-offs of p and n will only occur at small values of n. More

generally, the model involves trade-offs between four factors: p, n, 0, and

,. This is illustrated in Figure 3 which shows how S is "regressive" with

SInsert Figure 3 about here

respect to p. First, consider the left-hand panel where pc is below .5.

For given 0, the line aa' is determined by 0/n. However, the line aa'

becomes bb' if either 0 is made smaller or n is increased. That is, G

and n trade-off. Second, consider the right-hand panel in which only one
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parameter has been changed; Pc is now above .5. At the extremes (p = 0, 1),

S is unaffected by 0. However, for 0 < p < 1, 8 has a direct impact on

S in that S increases with 8. Furthermore, note that the effect of 0

and n on judged likelihood is considerably reduced for values of p close

to PC.

(3) What happens when someone judges the likelihood of two complementary

events? The sum of these judgments is given by,

S(f:c) + S(c:f) - [p +n (-P-po)} + 01-p) +2 (p - (l-p)n n

1 +- (1-p- (-p) (9)

Equation (9) specifies precisely when judgments of complementary probabilities

are additive (i.e., sum to 1). Specifically, this occurs when either ( = 0,

p - 0, 1, or 0 - 1. Moreover, as n + m, the sum of judgments of comple-

mentary events approaches 1.. If the preceding conditions do not hold, the

amount of non-additivity is directly related to 0, and the type of non-

additivity depends on 0 and its implied Pc" Specifically, if 0 < 1,

complementary judgments will be sub-additive (i.e., sum to less than 1) since

(1-po - (O-p) ] < 0. However, 0 > 1 implies super-additivity since

[1-pO - (O-p)01 > 0. The importance of equation (9) is that it makes strong

predictions as to when sub- or super-additivity will occur, as well as the

extent of these effects. Moreover, these phenomena depend on the reliability

of the data as captured via e and individual attitudes toward ambiguity in

the circumstances, i.e., 0. Indeed, as Ellsberg's (1961) work demonstrated,

ambiguity can lead to probabilities of complementary events that are non-

additive.

.4
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The above implications deal directly with inference. However, it is

difficult (and may not be desirable) to discuss probability judgments without

considering their relation to choices under uncertainty. Indeed, we began

this paper by discussing Ellsberg's paradox and stated that any theory of

inference under ambiguity must explain Ellsberg's original result and his

later example demonstrating ambiguity preference. In order to do so, we

derive a similar expression to equation (8) for capturing the effects of

ambiguous probability assessments on choice. We begin by defining S(pA)

as an assessed probability made in an ambiguous situation (e.g., probabilities

assessed on red and black in Ellsberg's urn I). Furthermore, we assume that,

S(p) pA + k (10)

where PA is a value on which the judge anchors (this could be self-generated

or given by another; e.g., in a gambling task), and k is the net effect of

the adjustment for ambiguity. Thus, S(pA) is the result of an anchor, PA'

and an adjustment process that reflects the ambiguity in the situation. As

discussed previously, k can be decomposed into kg and ks;

k-k !R- k s0k m(11)
M

where, m - total number of values of p that could be considered

in the simulation.

Denote ( as the amount of ambiguity in the situation and,

k -e e(1-p)

k 8 - mp, (12)
" S

Equation (12) simply recapitulates the inclusion of an ambiguity weight 0,

and the parameter 0, which reflects the differential weight for greater and

smaller pas. When (12) is substituted into (11) and (10), we obtain,



7&677.77 :A 05 25

s(PA) p PA + 8(1-p- p (13)

Equation (13) parallels equation (8), except that n no longer plays any

role.

To show how (13) can explain the Ellsberg results, consider Figure 4,

which shows S(pA) as a function of PA for three separate pairs of values

of e and B. Consider (4a), where 9 > 0 and 0 < 1. Note that a person

Insert Figure 4 about here

with parameter values in these ranges will "underweight" all PA above Pc,

and "overweight" PA < Pc- This particular pattern explains why most people

in Ellsberg's urn example choose the unambiguous urn II; that is, S(pA = .5)

< .50. However, note that if PA is less than Pc, S(pA) > PA and one

would expect the same person who avoided the ambiguous urn when PA = .5, to

prefer the ambiguous urn when PA is sufficiently low. The pattern of over-

weighting small PA and underweighting moderate-to-large PA also accounts

for some otherwise puzzling results of Goldsmith and Sahlin (as reportel

Gardenfors & Sahlin, 1982). They presented subjects with descriptions r

either well-known events (e.g., drawing cards from a standard deck), or events

about which the subjects had little knowledge (e.g., the likelihood of a bus

strike in Verona, Italy next week). Subjects estimated the probabilities of

the events and the perceived reliability of their probability estimates.

Events with equal probabilities but unequal reliabilities were then used in a

lottery set-up. The authors report that,

for probabilities other than fairly low ones, lottery
tickets involving more reliable probability estimates tend to be
preferred. (Gardenfors & Sahlin, 1982, p. 363, our emphasis.)

While the pattern shown in Figure 4a accounts for ouch data, it does not

explain why some people in the Ellsberg task prefer to bet on drawing from the

1 '.



26

(a) (b) (c)

E)>0 E)>0 G00

< >

V A

0 4. 4
0 PC 0 PC 1 0 PC .5
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ambiguous urn when PA - .5. However, consider a person with an S(PA )

function as shown in Figure 4b. When 0 > 0 and $ > 1, we get "ambiguity

preference" over most of the range of PA. Thus, when PA < Pc, S(pA) > PA

and over-weighting occurs; when pA > Pc, S(pA) < PA and underweighting

occurs. Since individual differences are rarely accounted for in research on

decisions under uncertainty, our model has the distinct advantage of positing

a general psychological process while allowing for individual differences via

particular parameter values. Indeed, this is nicely illustrated by consider-

ing people who are indifferent between gambles from ambiguous and unambiguous

urns when pA " .5 (as in the Ellsberg case). Our model suggests two

distinct types: those for whom e - 0, and thus, S(PA) = PA; and those for

whom 0 > 0 and 0 - 1 (shown in Figure 4c). This latter group does not

adjust at pA . .5, but does adjust at all other values. Therefore, people

characterized by these parameter values will only be indifferent between

lotteries at .5.

Finally, the model in (13) is relevant to the major psychological theory

that examines risk; namely, "prospect theory" (Kahneman & Tversky, 1979).

From our perspective, the treatment of uncertainty in prospect theory is

consistent with our approach since a decision-weight function is posited that

is remarkably similar to the S(pA) function shown in Figure 4a. This is not

a coincidence since, as Kahneman and Tversky specifically point out, decision

weights can be affected by ambiguity. Indeed, they state,

The decision weight associated with an event will depend
primarily on the perceived likelihood of that event, which
could be subject to major biases. In addition, decision
weights may be affected by other considerations, such as
ambiguity or vagueness. Indeed, the work of Ellsberg and
Fellner implies that vagueness reduces decision weights. (p.
289)

While our equation (13) could be made fully compatible with the decision-

r.
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weight function of prospect theory (by restricting its applicability to

0 < p < 1 and thereby not defining the end points),1 we wish to emphasize

that (13) expresses a class of functions. Therefore, while the decision-

weight function of prospect theory expresses a general tendency to treat

uncertainty in a particular way, (13) allows for individual differences in the

handling of uncertainty.

EXPERIMENTAL TESTS OF THE MODEL

To test our model empirically, we employed a direct inference task

(experiments 1-3) and one task dealing with choice (experiment 4). In the

direct task, people were asked to make probability judgments on the basis of

numbers of reports from a source. In experiment 1, we examined the various

implications of equation (8) by considering whether S(f:c) asymptotes at

p; whether the various parameter values are consistent with the additivity/

non-additivity of complementary events, and so on. In experiment 2, the model

was tested in different content scenarios, in order to generalize the results

from experiment 1. In experiment 3, scenarios that varied in the credibility

of the source and the dissimilarity of the signals were used. These allowed

us to investigate the effects of the overall reliability of the source on the

parameter values of the model. In addition, the consistency of individual

differences in strategy (as measured by a person's e and 8 parameters)

was also considered. The choice experiment involved an attempt to answer the

question: Can an individual's choices between gambles be predicted from

knowledge of his or her 8 and B parameters obtained from a separate

inference task? We now turn to experiment 1.
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Experiment 1

Subjects. Thirty-two subjects were recruited through an ad in the

University newspaper which offered $5 an hour for participation in an

experiment on judgment. The median age of the subjects was 24, their

educational level was high (mean of 4.4 years of formal post-high school

education), and there were 16 males and 16 females.

Stimuli. The stimuli consisted of a set of scenarios that involved a

hit-and-run accident seen by varying numbers of witnesses. Moreover, of the

n witnesses to the accident, f claimed that it was a green car while c

claimed it was a blue car. A typical scenario was phrased as follows:

An automobile accident occurred at a street corner in down-
town Chicago. The car that caused the accident did not stop
but sped away from the scene. Of the n witnesses to the
accident, f reported that the color of the offending car
was green, whereas c reported it was blue. On the basis of
this evidence, how likely is it that the car was green?

Each scenario was printed on a separate page and contained a 0-100 point

rating scale that was used by the subject to judge how likely the accident was

caused by a particular colored car. Each stimulus contained the same basic

story but varied in the total number of witnesses (n), the number saying it

was a green (f) or a blue car (c), and whether one was to judge the like-

lihood that the majority or minority position was true. In order to sample a

wide range of values of n and p, 40 combinations were chosen as follows:

for p - 1, n - 2, 6, 12, 20; p - .89, n - 9, 18, 27; p - .80, n - 5, 10, 15,

20, 25; p - .75, n - 4; p - .67, n - 3, 6, 9, 12, 15, 18, 24; p - .60, n - 5,

10; p - .50, n - 2, 8, 12, 20; p = .40, n - 5, 10; p = .33, n - 6, 9, 18; p

- .25, n - 4; p - .20, n - 5, 10; p - .11, n - 9, 18; p - 0, n = 2, 6, 12, 20.

In addition, 8 stimuli were given twice to ascertain test-retest reliability.

Thus, the total number of stimuli was 48, and they were arranged in booklet

-. form.

* .. . . . .
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Procedure

When the subjects entered the laboratory, they were told that the

experiment involved making inferential judgments. Furthermore, it was stated

that if they did well in the experiment (without specifying what this meant),

it was likely that they would be called for further experiments. Given the

relatively high hourly wage, this was thought to provide some incentive to

take the task seriously. In order to avoid boredom and to reduce the trans-

parency that judgments of complementary events were sometimes required,

subjects were given 4 sets of 12 stimuli and, after completing each set, they

performed a different task. All stimuli were randomly ordered within the four

sets. Subjects could take as much time as they needed and they were free to

make as many (or as few) calculations as they wished. After completing the

task, all subjects filled out a questionnaire regarding various demographic

variables.

Estimating the Model

To estimate the model from the experimental data, we need to re-write

equation (8) and include a random error term to represent judgmental incon-

sistency; therefore,

S(f:c) - p + &(-p-pB) + C (14)

Equation (14) requires a non-linear estimation technique which was developed

in the following way: let S(f:c) be the actual response of the subject

and ;(f:c) be the predicted response from the model. We wish to minimize

some loss function (we chose the mean absolute deviation, MAD), by finding

values of e and 0 such that,

IS(f:c) - S(f:c) minimum(15)

lq . .. . . .. .. .
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This was done by setting up a grid of values of 0 and 8 and writing a

computer program to first compute the MAD for pairs of "coarse" values of 0

and 0. Since certain ranges of 0 and 8 can thus be excluded, the program

then considers "finer-grained" values until MAD is minimized. 2 The output

from this analysis is a unique set of values for 0 and 8 that minimizes

the desired loss function.

Since the sampling distributions of 0 and 8 are not known, testing

the statistical significance of the model's fit to the data is problematic.

We therefore adopted the strategy of comparing the accuracy of S(f:c) with

that of a model based solely on p. Moreover, since p is the anchor of the

assumed process, any difference between the accuracy of p and S(f:c) can

be attributed to the adjustment process, and thus to 1 and 8. We emphasize

that this procedure is biased against finding differences between p and

S(f:c) for two reasons: (a) the model predicts that S(f:c) * p as n

increases. Thus, since we have included some large values of n to test this

prediction, if S(f:c) - p, this counts against, rather than for, the model;

(b) the model further predicts that S(f:c) - p at the cross-over point,

Pc, and will be close to p in the region of Pc. Again, if this occurs, it

counts against the model. We take this highly conservative approach to guard

against attributing random error in the data to an adjustment process.

Results

Before discussing the major results, recall that for each subject, 8

stimuli were given twice so that test-retest reliability could be assessed.

This was done in two ways: (1) the correlation between judgments of the same

stimuli, within each subject (N - 8), was computed. The mean of these cor-

relations was .93, with 26 of the 32 coefficients greater than .90; (2) each

subject was considered a replication with 8 responses and the correlation

.
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between judgments for identical stimuli, over subjects (N = 256 = 32 subjects

x 8 responses), was .91. Clearly, the reliability of the judgments was high,

regardless of the computational method.

For a general impression of how well the model fits the data, we first

consider an aggregate analysis (individual differences will be considered in

detail below). For each of the 48 stimuli, the judgments from the 32 subjects

were averaged to form the mean judged likelihood, S(f:c). This was then used

as the dependent variable to be fit by the model. The parameter values

obtained from the estimation program were, e - .35, B = .10 (implying

PC - .16). In addition, the mean absolute deviation of model and data was

.020, which is significantly lower than that of the baseline p-model (MAD -

.041; p < .001 using a Wilcoxon matched-pairs signed-ranks test).

To see whether the implications of the model hold, consider Table 2,

which shows S(f:c) and S(f:c) for the 48 stimuli. First, does

Insert Table 2 about here

S(f:c) p as n increases? The data strongly support this when p = 1,

.67, .60, .50, .40, and 0. At the values of .75 and .25, n was not varied

although the large adjustments do suggest that the expected effect would

occur. However, the effect of n is less clear at p - .89, .80, and .33

since there is little initial adjustment at small n. Taken together, these

results suggest moderate support for the hypothesis. Second, do p and

n trade-off in affecting judged likelihood? The evidence here is quite

convincing: e.g., note that S(8:1) - .88 > S(2:0) - .85, S(10:5) - .65 >

S(3:1) - .63, S(1:4) - .21 > S(1:3) - .20. Of particular interest is the

result that S(0:2) - .16 > S(1:8) - .12. This means that when there is

limited evidence, no data in favor of a hypothesis can be judged as stronger

evidence for that hypothesis than when more evidence is available with mixed

. . . . .
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TABLE 2

Fit of the Model for Aggregate Data

n p S S

2 1 .85 .84
6 1 .92 .95
12 1 .96 .97
20 1 .95 .98

9 .89 .88 .86
18 .89 .87 .87

(18) (.89) (.85) .87
27 .89 .87 .88

5 .80 .80 .75
(5) (.80) (.73) .75
10 .80 .79 .78
15 .80 .81 .78
20 .80 .80 .79
25 .80 .82 .79
(25) (.80) (.80) .79

.1:

4 .75 .63 .69

3 .67 .61 .60
( 3) (.67) (.59) .60
6 .67 .62 .64

( 6) (.67) (.63) .64
9 .67 .61 .65
12 .67 .64 .65
15 .67 .65 .66
18 .67 .63 .66
24 .67 .66 .66

5 .60 .53 .57
10 .60 .58 .58

2 .50 .45 .43
8 .50 .44 .48
8) (.50) (.47) .48
12 .50 .47 .49
20 .50 .47 .49

5 .40 .36 .38
10 .40 .39 .39

6 .33 .31 .32
6) (.33) (.29) .32
9 .33 .27 .32
1 .33 .29 .32

4 .25 .20 .24

5 .20 .21 .20
10 .20 .19 .20

(10) (.20) (.18) .20

9 .11 .12 .12
is .11 .13 .11

2 0 .16 .16
6 0 .07 .05
12 0 .06 .03
20 0 .04 .02

Notes Wumbers in parentheses are for the repeat Judgments.

.....................................-.-.............. ............. ,..... ............ .
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support. Third, an important implication of the model concerns the relation

between 0, B, and the additivity of complementary probabilities. Recall

from equation (9) that when 6 > 0 and B 1 1, S(f:c) + S(c:f) < 1, for

0 < p < 1. To see if sub-additivity exists in the data and is predictable

from the model, consider Table 3, which shows both S(f:c) + S(c:f) and

S(f:c) + S(c:f). Note that there is substantial sub-additivity and the

Insert Table 3 about here

model does a reasonably good job of capturing it. In judging the performance

of the model in this regard, it is useful to remember that we have gone beyond

the qualitative prediction that sub-additivity will be present in the data, to

specifying both the amount of the effect and the conditions under which it

will not be present. Given these goals, we view the results as supporting our

model.

Individual Analyses

Since each subject rated all stimuli, we can fit the model for each

person. These results are shown in Table 4. It is clear from the table that

, Insert Table 4 about here

there are substantial individual differences in the parameter values and the

degree to which the model fits the data (as indicated by the MAD's). When

compared with the aggregate analysis, note that the individual models contain

considerably more noise (recall that the MAD for the aggregate data is .020).

Furthermore, in comparing each subject's model against the baseline p-model,

14 of the 32 subjects showed no significant adjustment process, as specified

by our model, while 18 did. The reason for the emphasis is that no subject,

even those for whom 6 0, used a strict p-strategy (i.e., S(f:c) - p for

all p and n). Instead, some used p most of the time but occasionally
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TABLE 3

Sub-additivity for the Aggregate Data

Actual Predicted

( ) S (f:c) + S (c:f) S (f:c) + S (c:f)
.. (-p nn n nn

1 0 2 1.01 1.00

1 0 6 .99 1.00

1 0 12 1.01 1.00

1 0 20 .99 1.00

.89 .11 9 1.00 .97

.89 .11 18 1.00 .98

(.89) (.11) (18) (.98) .98

.80 .20 5 1.01 .95

(.80) (.20) (5) .94 .95

.80 .20 10 .98 .97

.75 .25 4 .83 .93

.67 .33 6 .92 .95

(.67) (.33) (6) (.92) .95

.67 .33 9 .88 .97

.67 .33 18 .92 .99

.60 .40 5 .89 .94

.60 .40 10 .97 .97

.50 .50 2 .90 .84

050 .50 8 .88 .96
(.50) (.50) (8) (.94) .96

.50 .50 12 .95 .98

.50 .50 20 .94 .98

N tes Numbers in parentheses are for the repeat judgments.
-*1

. . . . . . . . . . . .
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TABLE 4

Fit of the Model for Individual Subjects

Ss G B Pc MAD

1 .00 - - .051 ns
2 .00 - - .062 ns
3 .02 .01 .03 .002 ns
4 .02 .14 .20 .025 ns
5 .02 .20 .24 .040 ns
6 .02 .23 .27 .113 ns
7 .05 .00 .00 .007 ns
8 .10 1.00 .50 .052 ns
9 .11 .11 .17 .025 **
10 .13 .02 .06 .037 *
11 .15 .00 .00 .081 *
12 .17 .04 .09 .069 **
13 .24 .01 .03 .051 ns
14 .24 .21 .25 .031 ns
15 .28 10.90 .84 .051 ***
16 .30 60.00 .95 .052 ns
17 .36 .01 .03 .052 **
18 .36 1.00 .50 .030 **
19 .37 .02 .06 .077 **
20 .37 .08 .14 .033 ***
21 .37 .12 .18 .010 ns
22 .42 .04 .09 .079 ns
23 .42 .14 .20 .057 ns
24 .44 .06 .12 .027 *

25 .48 .02 .06 .088 **
26 .50 .01 .03 .023 ***

27 .55 .02 .06 .046 ***
28 .64 .11 .17 .053 ***

29 .84 1.50 .57 .070 *
30 .93 .89 .48 .069 ***
31 1.34 .01 .03 .089 *
32 1.83 .03 .08 .106 *

Sp< .05 (Wilcoxon test)
•* p < .01
• *a p < .001

ns not significant

7.
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adjusted for n at p 0 and 1, while others had no clearly discernible

strategy. This helps to explain why the MAD for subjects with 0 4 .10 is

not close to zero, as would be expected if they simply used p for making

their judgments. Indeed, subject 6 (e - .02) had the highest MAD of the 32

subjects. Thus, there seem to be idiosyncratic ways of making probability

judgments that are not captured by equation (8).

* The above should not detract from the fact that a majority of subjects

did show a significant adjustment in accord with the theory. We illustrate

this by the results of five subjects, each of which represents a different

combination of e and 8 parameters. This is shown in Table 5. Subject

Insert Table 5 about here

26 illustrates the use of a highly consistent strategy in which downward

adjustments are made over almost the entire range of p. Subject 18 also has

a consistent strategy involving adjustments, but p - .50, implying that

adjustments will be down when p > .5, up when p < .5, and no adjustments

at p - .50. The data conform quite closely to this pattern. Subject 15 has

a somewhat less consistent strategy of making small upward adjustments over

most of the range of p (p - .84). Again, the data are generally consistent

with this interpretation. Subject 3 is included for contrast since, as can

be seen, there was almost total reliance on p (as would be predicted by the

parameter values and low MAD). Subject 32 is shown to illustrate the most

extreme and least consistent adjustment process (which was generally

downward). As is evident from the data, this subject had difficulty in

"controlling" the adjustment process (cf. Hammond & Summers, 1972, on

"cognitive control"). This lack of consistency manifested itself in widely

different adjustments for the same stimuli as well as illogical judgments. An

example of the latter was that evidence of (0:2) was evaluated as stronger

Z - - -- - - - -
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TABLE 5

rit of the model for Selected Subjects

Subject Subject Subject Subject Subject
#26 #18 ps 03 #32

n p 8 $ S S S S S S S S

2 1 .80 .75 .70 .82 .92 .86 .99 .99 .30 .09
6 1 .89 .92 .89 .94 .46 .95 .99 1.00 .80 .70

12 1 .97 o96 .90 .97 .95 o98 .99 1.00 .80 .85

20 1 .98 .98 .88 .98 .88 .99 .99 1.00 .70 .91

9 .89 .83 .94 .84 .86 .84 .89 .88 .89 .90 .71
18 .89 .84 .87 .85 .87 .87 .89 .89 .89 .80 .80

(18) .89 .87 .87 .85 .87 .87 .89 .89 .89 .70 .80

27 .89 .85 .89 .82 .88 .82 .89 .89 .89 .60 .83

5 .80 .77 .72 .80 .76 .85 .81 .80 .80 .60 .51
(10) .80 .72 .76 .80 .78 .83 .80 .80 .80 .90 .65

10 .80 .76 .76 .80 .78 .84 .80 .80 .80 .60 .65
15 .80 .79 .77 .79 .79 .74 .80 .80 .80 .70 .70

20 .80 .76 .78 .79 .79 .72 .80 .80 .80 .60 .73

25 .80 .76 .78 .80 .79 .85 .80 .80 .80 .90 .74
(25) o80 .76 .78 .80 .79 .74 .80 .80 .80 .70 .74

4 .75 .57 .66 .65 .70 .72 .76 .66 .75 .30 .41

3 .67 .57 .56 .64 .63 .74 .70 .66 .67 .20 .27
(3) .67 .61 .56 .65 .63 .75 .70 .66 .67 .20 .27

6 .67 .59 .61 .65 .65 .72 .69 .67 .67 .60 .47
(6) .67 .57 .61 .65 .65 .72 .69 .66 .67 .30 .47

9 .67 ,59 .63 .65 .66 .65 .68 .66 .67 .30 .54
12 .67 .60 .61 .64 .66 .72 .68 .66 .67 .40 .57

1s .67 .62 .65 .65 .66 .73 .68 .66 .67 .70 .59
18 .67 .63 .65 .65 .66 .65 .68 .67 .67 .70 .60

24 .67 .62 .66 .65 .66 .63 .67 .66 .67 .50 .62

5 .60 52 .54 .60 .59 .67 .62 .60 .60 .60 .39
10 .60 .57 .57 .60 .59 .66 .61 .60 .60 .40 .49

2 .50 .38 .38 .50 .50 .S7 .S7 .50 .50 .20 .06

8 .50 .42 .47 .49 .50 .53 .52 .50 .50 .30 .39

(8) .50 .50 .47 .50 .50 .S2 .52 .50 .50 .30 .39

12 .50 .47 .48 .50 .50 .S4 .51 .50 .50 .30 .43

20 .50 .48 .49 .51 .50 .55 .51 .50 .50 .30 .46

5 .40 .36 .36 .40 .41 .42 .43 .40 .40 .20 .26

10 .40 .40 .38 .40 .41 .34 .42 .39 .40 .50 .33

4 6 .33 .27 .30 .31 .35 .25 .36 .34 .33 .40 .24
(6) .33 .30 .30 .34 .35 .38 .36 .34 .33 .20 .24

9 .33 .26 .31 .34 .34 .35 .35 .33 .33 .20 .27

16 .33 .30 .32 .34 .34 .33 .34 .33 .33 .30 .30

4 .25 .25 .22 .25 .30 .24 .30 .25 .25 .10 .15

5 .20 .18 18 .21 .24 .23 .25 .20 .20 .20 .14

10 .20 .18 .19 .21 .22 .22 .22 .20 .20 .10 .17

(10) .20 .20 .19 .40 .22 .26 .22 .20 .20 .20 .17

9 .11 .08 .11 .17 .14 .12 .12 .11 .11 .10 .10

18 .11 .08 .11 .15 .13 .12 12 .12 .11 .10 .10

2 0 .05 .25 .10 .18 .14 .14 .00 ,01 .40 .92

6 0 .03 .08 .10 .06 .13 .05 .00 .00 .30 .31
12 0 .02 .04 .10 .03 .14 .02 .00 .00 .20 .15

20 0 .02 .03 .11 .02 .12 .01 .00 .00 .10 .09

6 so5 0 .36 0-.28 0 .02 61.83

*.- .01 . 1.00 S - 10.90 .01 .03

PC - .03 PC - .50 P, - .4 PC .03 Pc -. 08

MAD - .023 MAD - .030 MAD - .051 ?W - .002 SW - .106

....................................... , . . . .
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than (2:0) (i.e., .40 vs. .30). The lack of consistency anml large amount of

adjusting that characterize subject 32 suggested that there might be a

positive relation between the size of 0 and MAD, over subjects. When we

investigated this, the correlation was r = .46 (p < .001). Thus, there seems

to be a connection between the amount of one's adjustment and the ability to

execute it consistently.

Our final results concern the additivity/non-additivity of complementary

probabilities for individual subjects. To illustrate this, we use the

subjects discussed above whose data are displayed in Table 6. The important

Insert Table 6 about here

thing to note is that subject 26 is consistently sub-additive (and this is

predicted quite well by the model); subject 18 is generally additive, as

implied by Pc - .50; subject 15 is super-additive, but not consistently so;

subject 3 is additive; subject 32 is both highly sub-additive and inconsis-

tent. From our perspective, these results strengthen our interpretation of

the e and 0 parameters, as well as the general form of the model.

Experiment 2

The purpose of this experiment was to test the model using different

scenarios. However, it is not clear that changing the content of a scenario

would leave the credibility of the source unchanged. Therefore, rather than

trying to match the ,%rceived accuracy of the sources in the new scenarios to

the source in the car accident story, we tried to vary the credibility of the

reporting source and the dissimilarity of the competing signals. The follow-

ing scenarios were used: (1) A taste test where people had to identify a soft

drink (Coke vs. Pepsi); (2) A bank robbery where witnesses said the robbers

spoke to each other in a foreign language (German vs. Italian); (3) An experi-

. . . . . .
* . . . . . . . . . . .. . . . . .
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TABLE 6

Additivity/Non-addi ti vi ty of Complementary Probabilities

Subject Subject Subject Subject Subject

#26 #18 #IS #3 #32

p 01-p) n X _ __ _

1 0 2 .85 1.00 .80 1.00 1.06 1.00 .99 1.00 .70 1.00

1 0 6 .92 1.00 .99 1.00 .59 1.00 .99 1.00 1.10 1.00

1 0 12 .99 1.00 1.00 1.00 1.09 1.00 .99 1.00 1.00 1.00

1 0 20 1.00 1.00 .99 1.00 1.00 1.00 .99 1.00 .80 1.00

.89 .11 9 .91 .95 1.01 1.00 .96 1.02 .99 1.00 .80 .81

.89 .11 18 .92 .97 1.00 1.00 .99 1.01 1.01 1.00 .90 .91

.89 .11 18 .95 .97 1.00 1.00 .96 1.01 1.01 1.00 .80 .91

-----.80 .20 5 .95 .90 1.01 1.00 1.08 1.05 1.00 1.00 .80 .65
.80 .80 10 .94 .95 1.01 1.00 1.06 1.03 1.00 1.00 .70 .83

.80 .20 10 .96 .95 1.20 1.00 1.10 1.03 1.00 1.00 .80 .83

.75 .25 4 .82 .88 .90 1.00 .96 1.07 .91 1.00 .40 .57

.67 .33 6 .86 .92 .99 1.00 .97 1.05 1.01 1.00 1.00 .71

.67 .33 6 .87 .92 .96 1.00 1.10 1.05 1.00 1.00 .50 .71

.67 .33 9 .85 .95 .99 1.00 1.00 1.03 .99 1.00 .50 .81

.67 .33 18 .93 .97 .99 1.00 .98 1.02 1.00 1.00 1.00 .90

.60 .40 5 .88 .90 1.00 1.00 1.09 1.06 .99 1.00 .80 .65

.60 .40 10 .97 .95 1.00 1.00 1.00 1.03 1.00 1.00 .90 .82

.50 .50 2 .76 .75 1.00 1.00 1.14 1.14 1.00 .99 .40 .12

.50 .50 8 1.00 .94 .98 1.00 1.06 1.03 1.00 1.00 .60 .78

.50 .50 8 .84 .94 1.00 1.00 1.04 1.03 1.00 1.00 .60 .78

.50 .50 12 .94 .96 1.00 1.00 1.08 1.02 1.00 1.00 .60 .85

.50 .50 20 .96 .98 1.02 1.00 1.10 1.01 1.00 1.00 .60 .91

e -.50 e M .36 0 -.28 0 - .02 0 - 1.83

1 -.01 0 -1.00 0 - 10.90 1 - .01 8 - .03
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ment where 6 year old children had to identify words flashed on a screen (ROT

'vs. BED); and, (4) Experts investigating the cause of a fire (arson vs. short-

circuit). The scenarios vary in the degree to which one expects the reporting

source to be accurate--the least accuracy occurring in scenario (1) and the

most in (4). Scenarios (2) and (3) are intermediate in this regard since the

sensitivity of the source in the circumstances is questionable although the

competing signals are dissimilar. While the above manipulation is useful for

exploring the generality of the model across different content, a more

systematic experimental manipulation of credibility and dissimilarity will be

discussed in experiment 3.

Subjects and Procedures

Thirty-two additional subjects participated in this experiment. Eight

subjects were randomly assigned to each scenario condition and they judged the

likelihood that one or other position was true. There were 48 stimuli as in

experiment 1, and all other procedures were identical.

Results

We consider the fit of the model to the aggregate data in each scenario

(i.e., the dependent variable is S(f:c)). These results are shown in Table

7. The basic finding is that the model fits these data quite well. Moreover,

:" Insert Table 7 about here

the results for additivity are exactly what one would expect on the basis of

the e and ; parameters. The most interesting finding (and one that we

explore in the next experiment), concerns the differences in e and

across scenarios. Consider the "taste-test" scenario first and note that e

is high and the cross-over point is .51. This means that subjects were

adjusting their responses toward .50, which makes sense in this situation.

..
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TABLE 7

Pit of the Model in Four Scenarios

Taste-test Bank Robbery Word Recognition Fire

e .75 .35 .35 .25

8 1.10 .00 .30 1.40

PC .51 .00 .30 .55

MAD .026 .036 .026 .025

."

I'
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That is, when the stimuli are highly similar and the source non-expert, one

expects data that do not discriminate between hypotheses. Thus, when subjects

¢. see results that are discrepant from .50, they "regress" their judgments

* toward .50. Now consider the "bank robbery" and "word recognition" scenarios.

Here, the values are lower and the cross-over points imply that the data tend

to be adjusted downward over most of the range of p. Therefore, these

scenarios seem to engender a more "conservative" strategy than the taste-

test. Finally, the results for the "fire" scenario show the lowest value of

e. This is consistent with the view that the source in this scenario consists

of experts and should therefore be adjusted least.

Experiment 3

. We had two goals in conducting experiment 3. First, we wished to test

*i systematically for the effects of source credibility and signal dissimilarity

on the parameters of the model. In accordance with our theory, e should

decrease as source credibility and signal dissimilarity increase. In addi-

tion, we hypothesized that 0 (and thus pc) would decrease as ambiguity

increased; that is, we expected attitudes toward ambiguity to become more

conservative with increases in ambiguity. Second, we wished to investigate

the importance of individual differences in the way people cope with the

ambiguity inherent in our judgment task.

METHOD

Design. Two levels (high/low) of source credibility and dissimilarity of

signals were crossed in a 2 x 2 factorial design. In addition, four different

content scenarios were constructed that varied on all four experimental

combinations (resulting in 16 different stories). Subjects were asked to

judge 21 stimuli that varied in p and n (see below) for each of the four

1
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content-distinct scenarios. Thus, each subject initially made 84 probability

judgments. However, in order to reduce boredom in the task, subjects made

judgments in all four scenarios, with each scenario representing one of the

four experiment conditions. For example, subject 1 received scenario A in the

high/high condition, scenario B in the high/low condition, and so on. A four-

person latin-square was set up so that every scenario appeared an equal number

of times in each experimental condition. Finally, since subjects made

judgments in one scenario under the high/high condition, the same scenario was

also given in the low/low condition (and the order was counter-balanced). In

this way, we were able to examine each subject's judgments holding the content

of the scenario constant. This part of the experiment required 21 additional

judgments, making the total number of responses for each subject equal to 105.

Stimuli. The four content scenarios used involved the car accident from

experiment 1, the word-recognition task from experiment 2 and two new stories.

These latter scenarios involved determining the name of a play from an excerpt

and, the diagnosis of a medical condition. Four versions of each scenario

were constructed to reflect different levels of credibility and dissimilarity

(e.g., in the word-recognition task, we had 15 vs. 6 year olds and BED vs. ROT

as opposed to BED vs. BID). Within each scenario, subjects were given 21

stimuli that reflected the amount of evidence for each hypothesis. The values

of the stimuli were different from those used in experiments 1 and 2 in that

smaller values of n were used in order to provide more sensitive tests of

the model. The stimuli used were: for p - 0, 1, n - 1, 2, 6; for p = .125,

.875, n - 8; for p - .2, .8, n - 5; for p = .25, .75, n - 4; for p - .33, .67,

n - 6, 9; for p - .67, n 3; for p - .4, .6, n - 5; for p - .5, n - 2, 8.

-°'X'
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Subjects and Procedures. Thirty-two subjects participated ;n this

experiment (comprising 8, 4-person latin-squares). Subjects were paid $5 per

hour and the task took about one hour to complete. The tasks were presented

in booklets and after each series of 21 judgments, subjects were either given

a break or another task. At the end of the experiment, a manipulation check

was performed on the credibility and dissimilarity induction. Specifically,

each subject was asked to rate (using a 0-100 scale) the credibility of the

source and the confusability of the signals in all four scenarios. Since each

scenario had high and low levels of each factor, the subjects rated

%: credibility and dissimilarity under both conditions. Therefore, subjects made

4 judgments on each of the 4 scenarios.

Results

Before presenting the main results, we note that the manipulation check

showed that subjects did, on average, see the "high" credibility versions of

the same scenarios as greater than the low (80 vs. 47); and the high dis-

similarity signals as less confusable than the low (30 vs. 62). However, it

should be noted that, in absolute terms, the low credibility/low dissimilarity

conditions were not extreme. Therefore, contrary to our intentions, we failed

to induce a situation of low ambiguity in the low/low manipulation similar to

the taste-test scenario of experiment 2. (Recall that the latter could be

considered low in ambiguity since subjects essentially treated the reports as

emanating from a random process with p - .5.)

(1) General fit of the model: For each subject in each experimental

condition, the model was fit to yield estimates of e and 0 (this resulted

in 160 models - 32 subjects x 5 models). The fit of the individual models

was comparable to that of experiments 1 and 2 (median MAD - .042 over all

conditions).

%.
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(2) Manipulation of 9 and 8: We first consider the effects of the

experimental manipulation on the estimated 0 parameters. The appropriate

analysis-of-variance (2 x 2 x latin-square) was performed using 0 as the

dependent variable and the results showed a significant main effect for

"credibility" (p < .001), no main effect for "dissimilarity," and a three-way

interaction of scenario x credibility x dissimilarity (p < .02). The results

for the main effects are shown in Table 8. The table shows that 0 does

Insert Table 8 about here

increase as the credibility of the source decreases, thereby confirming our

prediction. However, there was no effect for dissimilarity, contrary to our

prediction. The three-way interaction showed that in two scenarios, the

effect of dissimilarity of the signals had a large effect on 0 when

credibility was low, while in the other two scenarios, dissimilarity had a

large effect when credibility was high. However, it is not clear why this

occurred and we do not consider it further.

In addition to the above analysis, recall that each subject also received

the same scenario in the high/high and low/low conditions. A comparison of

the means of the estimated O's in these two conditions also showed a

significant difference in the hypothesized direction; i.e., - .17 in the

high/high condition, e - .29 in the low/low (p < .004 by a paired t-test).

Thus, with the exception of an effect for the dissimilarity of the signals,

our hypotheses concerning 0 are supported by the experimental data.

We now turn to the results for the B parameter. However, since 8 is

highly skewed, we substitute its corresponding Pc value in the analyses.

First, the analysis-of-variance using Pc as the dependent variable only

showed a significant main effect for credibility; i.e., PC W .23 for low

credibility, PC .32 for high (p < .002). In addition, when subjects

.%
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TABLE 8

Experiment 3 - Mean G Parameters
by Experimental Conditions

Dissimilarity

High Low

Credibility High 17 20 .19

LOW .31 .29 .30

.24 .25

4,

4,

4%
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judged the same story in the high/high and low/low conditions, the analysis

showed the same effect; viz., c - .36 in the high/high condition,

Pc - .25 in the low/low (p < .05, paired t-test). Therefore, as the

credibility of the source increased, the cross-over point in the model also

increased.

(3) Individual differences: We now consider the following: (a) can

subjects be characterized as having a general strategy, as measured by the

consistency of their 0 and B values, in different scenarios?; (b) is the

amount of one's adjustment, as measured by e, systematically related to the

consistency of executing one's strategy?; (c) can individual perceptions of

the credibility of the source and the dissimilarity of the signals account for

variance in 9 and 0 within each of the experimental conditions?

(a) Recall that for each subject, four different scenarios were given and

a model fit to the data in each. Therefore, each subject can be characterized

by four e's, B's, and MAD's. To determine if the parameter values were

more alike within a subject than between subjects (this is measured by the

intra-class correlation), a one-way repeated analysis-of-variance was per-

formed (32 x 4) for e, PC, and MAD (Winer, 1963, chap. 3). The results

showed that for 9, r - .73 (p < .001); for p. r - .68 (p < .001); and

for MAD, r - .86 (p < .001). These results are particularly striking when it

is realized that the four scenarios varied over the four experimental

conditions. In spite of this, the results show strong and stable individual

strategies in the amount that is adjusted (e), the direction of the adjust-

ments (p or 0), and the consistency of executing one's strategy (MAD).

(b) In both experiments I and 2, we found a significant positive cor-

relation between 9 and MAD. We examined this in experiment 3 and found the

same positive relation in three of the four scenarios (r - .67, .48, .40,

"4
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.10). Thus, our interpretation of 0 as reflecting a cognitive simulation

process is strengthened by the generality of this finding.

(c) Since each subject made independent judgments of the credibility and

confusability of the experimental stimuli, we were also able to investigate

how these judgments related to the 0 and 8 parameters within experimental

conditions. To do so, we first re-analyzed our data with a regression model

*where e was the dependent variable, and the individual ratings of

credibility and confusability, together with dummy variables representing the

different scenarios, were the independent variables. More precisely, there is

a regression equation of this type for each of the four experimental

conditions. However, these four equations can be estimated more efficiently

as a single model using Zellner's (1962) procedure for "seemingly unrelated"

regressions. The multiple R estimated by this procedure was .44 (with an

adjusted R of .35). Of the independent variables, there was no effect for

either scenarios or confusability. However, all four coefficients for

credibility in the different experimental conditions were significant

(p < .02) and of the hypothesized sign (i.e., a negative relation between

0 and ratings of credibility). When the same regression technique was used

with PC as the dependent variable, similar results were obtained. We

interpret these results as strengthening the conclusions drawn from the more

standard ANOVA of our study; that is, e and Pc are not only affected by

different levels of credibility across all subjects, they also covary

significantly with individual perceptions of credibility within each of these

levels.

Experiment 4

The purpose of this experiment was to answer the following question: Can

individuals' choices between gambles be predicted from knowledge of their G

* %~. ~ -~ikfif
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and 8 parameters obtained from a separate inference task? To examine this,

subjects were first asked to make judgments as in experiments 1-3 and both

0 and 8 were estimated as before. The subjects were then asked to choose

(or express indifference) between 9 pairs of gambles involving the outcome

from an urn with known p, versus the occurrence of an event on the basis of

unreliable reports. If G and 0 are capturing aspects of ambiguity that

affect choice, knowledge of these parameters should allow one to predict

individual choices in addition to inferences.

Subjects. Twenty subjects, recruited from the University of Chicago

community, participated in this study. They were paid $5/hour.

Stimuli. For the inference task, two different scenarios were used:

the car-accident story from experiment 1, and, the taste-test story from

experiment 2. These were chosen because the 0 and 0 values were quite

different in the two cases. In both scenarios, subjects received 40 combina-

tions of p and n that were identical to those used in the previous

experiments. The stimuli for the choice task involved one of the following:

(a) For those in the car-accident task, a gambling situation was set-up

involving the choice between betting that a ball drawn from an urn with known

p was green, versus, betting that the car that caused the accident was green

based on witnesses' reports of the car color; (b) For those in the taste-test

scenario, the choice was similarly between betting that the outcome from an urn

was a certain color, versus, betting that the drink was Pepsi-Cola. In both

scenarios, subjects were told to imagine that their payoff for being correct

would be $10. Thus, the payoffs for the urn gamble and the bet involving the

report of some event were equal. Within scenarios, each subject saw 9 pairs of

gambles that varied in the proportion of colored balls in the urn and the

proportion of reports favoring the particular hypothesis. These proportions
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were always the same in the two bets. The exact values of p used in the 9

pairs were: 1, .875, .75, .625, .50, .375, .25, .125, and 0. The number of

balls in the urn and the number of reports were held constant at 8.

Procedure. The twenty subjects were randomly assigned to one of the two

scenarios. The procedure for the inference task was identical to the previous

experiments. After subjects finished the inference task, they were presented

with the appropriate choice task. The nature of the two gambles was

explained, and subjects were then asked to choose, or indicate indifference,

between the gambles. If they were not indifferent, they were also asked to

indicate their strength of preference on a 4-point scale (from "little" to

* "great deal"). After doing this for one value of p, they turned the page

and made another choice (and strength of preference rating, if appropriate) at

the next level of p. This continued until all 9 pairs had been considered.

Therefore, for each subject, there were 9 choices between an unambiguous bet

from an urn with known p, versus an ambiguous bet that an event occurred, on

the basis of the proportion of favorable reports from an unreliable source.

Results. Since each subject first participated in the inference task, we

briefly consider these results before discussing the choice data. As

expected, there were marked differences in the 0 and 8 parameters in the

two scenarios. The medians for 0 and Pc (implied by 8) were .13 and

.11, respectively, in the car-accident scenario. For the taste-test, the

median 0 was 1.35 and median Pc - .45. Thus, the taste-test scenario

induced much adjustment, with a cross-over point near .50, while the car-

accident story induced less adjustment but a lower cross-over point.

To compare each subject's choices with predictions from the inference

model, the following procedure was used: any combination of 0 and Pc

implies when and where S(PA) is greater, less than, or equal to, PA (see

%. .. .
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equation (13)). Thus, for each subject, when PA > S(PA)' we predicted the

urn would be chosen over the bet based on unreliable reports; when S(PA) >

PA, the opposite prediction was made; when S(PA) = PA , we predicted

indifference between the two gambles. Note that when 9 = 0, we always

predicted indifference between the gambles since S(PA) = PA for all PA"

In Table 9, we show the 9 and PC values for each subject (grouped by

Insert Table 9 about here

A scenario), and the number of correct choice predictions by subject.

To evaluate how well the choices were predicted from knowledge of

and PC, we used a random baseline for comparison; i.e., for each of the 9

choices made by a subject, there were three possible outcomes; urn, report, or

indifference. Since the probability of randomly predicting the correct

response is 1/3, we computed the probability of getting at least r hits in 9

trials on the basis qf chance (using the binomial distribution). This prob-

ability is shown in the last column of Table 9. For example, subject 1 was

correctly predicted in 8 of the 9 choices; the probability of getting at least

this many hits by chance is .001. Thus, we rejected the hypothesis that our

predictions for this subject were no better than chance. Using this method

C for all subjects, it can be seen that 5 of the 10 subjects in the car-accident

scenario, and 4 of 10 in the taste-test, are well predicted using a type I

error level of .05. If this error level were increased to .15, a majority of

subjects (12/20) would be accurately predicted from their inference para-

meters. In any event, at the aggregate level (over subjects and scenarios),

there were 103 hits out of 179 predictions (one response was missing). The

probability of getting at least this many hits by chance is miniscule.

Our final results concern the strength of preference ratings. Recall

that in addition to choosing between gambles, subjects were asked to rate
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TABLE 9

Choice Predictions from Knowledge of 0 and PC

a * No. of Prob.
Ss PC hits (r > hits)

1 .00 - 8 .001

2 .00 - 2 .849

3 .00 - 3 .612

4 .00 - 4 .341

Car-Accident Scenario 5 .05 .07 7 .008

6 .10 .74 5 .140

7 .16 .15 6 .040

8 .19 .20 6 .040

9 .63 .02 5 .140

10 .75 .50 6 .040

11 .20 .21 .7 .008

12 .24 .07 4 .341

13 .66 .50 4 .341

14 .80 .50 1 .970

Taste-Test Scenario 15 .96 .50 5 .140

16 1.50 .50 7 .008

17 1.71 .40 7 .008

18 1.99 .50 5 .140

19 2.01 .06 9 .000

20 3.20 .02 3 .612

.4
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their strength of preference on a 4-point scale. These ratings supplement our

analysis of the choice data in the following way: in each scenario, the

number of prediction errors was 38. However, in the taste-test, 0 is much

larger than in the car-accident scenario. Since G is directly related to

the amount of adjustment to PA, the differences between S(P A ) and PA

should be larger in the taste-test than in the accident story. Furthermore,

the larger the differences, the stronger one's preterences should be since

they are further away from indifference (where PA = S(P A)). We tested this

by comparing the mean strength-of-preference ratings in the two stories across

the nine levels of p. These results are shown in Table 10. First, note that

Insert Table 10 about here

the means for the taste-test are larger than the car-accident at every level

of p. Second, the pattern of means is consistent with the general form of

the model in that preferences are strongest at p 1 1, decrease as p

approaches Pc' and then increase again at p = 0. Therefore, the strength-

of-preference data are consistent with both the difference in the sizes of 9

for the two scenarios, as well as the general form of the model.

DISCUSS ION

We now discuss the implications of our theory and results with respect to

the following issues: (1) the importance of ambiguity in assessing perceived

uncertainty; (2) the use of cognitive strategies in probabilistic judgments

under ambiguity; (3) the role of ambiguity in risky choice; and, (4) exten-

sions of the model to multiple sources and time periods.

5%

.4
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TABLE 10

Means of Strength-of-Preference
for Two Scenarios

Both
pCar-Accident Taste-test Scenarios

1 3.1 3.7 3.40

.875 2.5 3.1 2.80

.750 2.0 2.5 2.25

.62S 1.6 2.1 1.85

.500 .9 1.7 1.30

.375 1.4 2.1 1.75

.250 1.3 2.1 1.70

.125 .9 2.0 1.45

0 1.8 2.2 2.00

1.72 2.39 2.05

41



S'

56

Ambiguity and the Assessment of Uncertainty

The concept of ambiguity highlights the distinction between one's lack of

knowledge of the process that generates outcomes and the uncertainty of

outcomes conditional on some model of the process. The fact that there are at

least two sources of uncertainty in most situations leads to the irony that

one needs a well-defined model to give precise estimates of how much one

doesn't know. Indeed, the usefulness of formulating well-defined stochastic

processes is in eliminating ambiguity so that outcome uncertainty can be

quantified. Thus, when coins are "fair" or random drawings are taken from

urns with known p, there is no second-order uncertainty. Furthermore, the

conditional nature of uncertainty is implicitly recognized in various attempts

to quantify and improve inferential judgments. For example, consider how

uncertainty is defined in the "lens model" (Hammond, et al., 1964). In this

case, the uncertainty in the environment is measured as the residual variance

not accounted for by a well-formulated ecological model. Thus, unexplained

variance or uncertainty is conditional on the model of how particular cues

combine to form the criterion of interest. Now consider the work of Nisbett

and colleagues on trying to improve probabilistic judgments through training

(Nisbett, et al., undated; Jepson, et al., in press). They argue that

training and experience can allow one to see the underlying structure of real-

world problems so that the appropriate model can be used for making better

judgments. Thus, the focus of their training is on making various statistical

principles (e.g., regression-to-the-mean, law of large numbers, use of base

rates, etc.) more obvious in everyday inferences.

While the conditional nature of uncertainty has been implicitly

recognized, ambiguity results from its explicit recognition; i.e., by

realizing that the "model" is itself subject to uncertainty. Indeed, one

.4e
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could argue that the cost of urn models, coin-flipping analogies, and the

like, is that they can obscure the fact that most real world generating

processes are not precisely known. Furthermore, even if a process is well-

defined at one point in time, the parameter(s) of the process can change over

time, resulting in ambiguity as well as uncertainty. For example, imagine

that you have been asked to evaluate the research output of a younger

colleague being considered for promotion. Your colleague has produced 11

papers; of these the first 9 (in chronological order) represent competent,

albeit unexciting scholarly work. On the other hand, the latter 2 papers are

quite different; they are innovative and suggest a creativity and depth of

thought absent from the earlier work. What should you do? As someone who is

aware of regression fallacies, you might consider the two outstanding papers

as outliers from a stable generating process and thus predict regression-to-

the-mean. -Alternatively, you might consider the outstanding papers as

"extreme" responses that signal a change in the generating process; i.e., a

new and higher mean. If this were the case, the same general regression model

would predict future papers of high quality (regression to a higher mean). If

one asks what is the nature of the signaling in this case, it is obvious that

the chronological order of the papers is crucial. Indeed, imagine that the

outsta:-ding papers were the first two that were written; or consider that they

were the second and sixth. Each of these cases suggests a different under-

lying model and perhaps a different prediction. In any event, the uncertainty

associated with any prediction is obviously complicated by the ambiguity

regarding the appropriate mean of the regression process.
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Cognitive Strategies in Inferences Under Ambiguity

We have assumed that people use an anchoring-and-adjustment strategy in

making inferences under ambiguity. However, whereas the term, "anchoring-and-

adjustment" is quite general and could encompass a wide range of models (cf.

Lopes, 1981; Einhorn & Hogarth, in press), we have been quite specific as

to the nature of this process in our tasks. Of greatest interest in this

regard is the idea that adjustments are based on a mental simulation in which

"what might have been" is combined with "what is" (the anchor). The rationale

for this comes from the fact that the evaluation of evidence often involves an

implicit comparison process (similar to the perception of figure against

ground). Thus, when evaluating the strength of evidence for a particular

hypothesis, the evidence that might have been can serve as a convenient

contrast case for comparison. Furthermore, s.Loce ambiguity implies that

multiple models could have produced the observed results, it seems natural to

consider that different results could have occurred on the basis of different

underlying processes.

The support for the hypothesized anchoring-and-adjustment strategy comes

from several sources. First, recall that in our model, the largest adjust-

ments to the anchor occur at small amounts of evidence. Moreover, as n

increases, S(f:c) asymptotes at p. The results of experiments 1-3 support

this prediction. Thus, the weight of evidence (to use Keynes' term) for "what

is," dominates "what might have been" as the absolute amount of evidence

increases. Furthermore, the effect of increasing n is to reduce the amount

of non-additivity of complementary strengths. Since most of our subjects were

sub-additive, our model provides a psychological link to concerns expressed by

others regarding the appropriateness of the complementarity of probabilities

based on small amounts of evidence (Shafer, 1976; Cohen, 1977). In

• '%e' °. .. .. °.. ." •w . . . . . " . -o . -.. . . -. . * j-, .-. - " .. ... *.,,



= .. . . . o • ,

59

particular, Cohen (1977, chap. 3) points out that when one considers an

incomplete system, the lower benchmark on provability is not necessarily

disprovability, but non-provability. For example, if one has a meager amount

of circumstantial evidence supporting a particular theory such that the

probability of the theory's truth is .2, does that imply that the theory is

false with p - .8? One might rather say that the theory is not proven (in a

probabilistic sense) as opposed to saying that there is a .80 chance it is

wrong. Furthermore, the idea that the complement of statements can lead to

"not-proved" rather than "disproved," seems to be deeply imbedded in the

Anglo-American legal system. Indeed, in Scottish law, defendants are either

found guilty, not-guilty, or "not proven." The last category is reserved for

those cases where the evidence is too meager to allow for a judgment of guilt

or innocence.

Second, the fact that non-additivity results from a shift in the

direction of the adjustment process is consistent with other "order effects"

due to the ase of anchoring-and-adjustment strategies. For example, in a

traditional Bayesian revision task, Lopes (1981) found that a change in the ,

order in which sample information was presented affected overall judgments by

changing the anchor. Thus, consider having to judge whether samples come from

an urn containing predominantly red or blue balls (70/30 in both cases). You

first draw a sample of 8 that shows (5R, 3B). Thereafter, you draw another

sample of 8 with the result (MR:1B). After each sample, you are asked how

likely it is that you have drawn from the predominantly red urn. When the

sample evidence is in the order given here, people seem to anchor on the first

sample (5:3) and then adjust up for the second (stronger) sample. However,

when the order of the samples is reversed, people anchor on (7:1) and adjust

down for the weaker, second sample. This effect cannot be accounted for by
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assuming that people are using a Bayesian procedure (which treats the two

situations as equal), but it does follow from an anchoring and adjustment

process in which the anchor is weighted more heavily than the adjustment.

Third, the results of experiment 3 provide important evidence regarding

the process assumed to underlie the model. In addition to the fact that the

experimental manipulation of source credibility affected G and B as

predicted, two other results were found; a positive correlation between 0

and MAD and, the stability of individual differences in parameter values

across scenarios. The first result bears directly on the nature of the

adjustment process since it suggests that there is a "cost" of engaging in a

mental simulation; namely, a concomitant lack of control over one's strategy

(Hammond & Summers, 1972). The second result suggests that there may be

strong personal propensities in evaluating evidence that transcend the

particular content of scenarios. While it is too early to explicate the

nature of these individual differences, their existence lends support to the

idea that ( and B are capturing important aspects of the process that

determines judgments under ambiguity.

While our model accounts for the rather simple inferences we have

studied, it also relates to an important class of inferences that result from

"surprise." Consider Figure 5, which shows one's expectations for p as a

Insert Figure 5 about here

function of the credibility of the source and the dissimilarity of the signals.

First, note that when credibility and dissimilarity are high, one expects p to

be very high or low (recall our earlier example of cameras taking pictures of a

bank robber). However, imagine that one camera showed the bank robber to be

white, and the other showed him to be black. Such a result, where p = .5, would

be surprising given the credibility of cameras and the dissimilarity of white and

S'u
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black robbers. Indeed, the data "are not good enough," which is represented by

the range of p indicated by the two-headed arrow. Second, consider the low

credibility-low dissimilarity situation; e.g., the taste-test scenario. Imagine

that you were told that of the 20 people in the Pepsi vs. Coke taste-test, all

correctly identified the drink as Pepsi. Such a result, where p = 1, would

be surprising. However, this type of surprise is one where the "data are too

good" rather than not good enough. Thus, there are two types of surprise and

both occur when ambiguity is low. \ Indeed, when ambiguity is high, expecta-

tions are weak and surprise (which results from a violation of expectations)

is unlikely. This situation characterizes the off-diagonal cells in the

figure and accounts for our labeling of these cells, "little surprise."

Although our conceptual scheme makes clear when surprise is likely to

occur, it can not handle the variety of possible reactions it can engender.

For example, when data are not good enough, it is possible to reduce the

credibility of the source (e.g., the cameras were broken), synthesize the

hypotheses (there were two bank robbers, one white and the other black), or

otherwise make sense of the data by changing the story (e.g., there were two

bank robberies on successive days). On the other hand, when data are too

good, inferences of fraud, collusion, and the like, are possible (see, e.g.,

Kamin, 1974 on Burt's twin data; Bishop, Fienberg, & Holland, 1975, on

Mendel's pea experiments). An interesting aspect of such inferences is that

the surface meaning of the data can suggest the opposite conclusion; e.g.,

consider someone who "protesteth too much," or a suspect who was "framed" for

a crime. indeed, this is implied by our model. Specifically, consider the

case of totally unreliable data, which occurs when UR - I or 9 = n (see

equation (5)). In this case,

S(f:c) - 1 -p (16)
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Thus, as p increases, S(f:c) decreases. More generally, as UR

increases, it will reach a point, conditional on p and a, where the

evidence for a hypothesis will be counted against it.

Ambiguity and Risk

Although the importance of ambiguity for understanding risk has been

evident since Ellsberg's original article, its omission from the voluminous

literature on risk is puzzling. One reason for this omission may be the

reliance on the explicit lottery, with stated payoffs and probabilities,

* .for representing risky choice. Indeed, as Lopes (1983) has noted,

The simple, static lottery or gamble is as indispensable to
research on risk as is the fruitfly to genetics. The reason
is obvious; lotteri(J, like fruitflies, provide a simplified
laboratory model of the real world, one that displays its
essential characteristics while allowing for the manipulation
and control of important experimental variables. (1983, p. 137)

It should be further noted that the explicit lottery has been of equal

importance to those interested in axiom systems and formal models of risk.

While explicit lotteries have been, and continue to be, useful for studying

risk, the ambiguities surrounding real world processes in domains such as nuclear

power, environmental safety, and the like, accentuate the incomplete nature of

such representations. Indeed, Ellsberg pointed out the particular importance of

aibiguity in understanding people's reactions to new technologies (also see,

Edwards a von Winterfeldt, 1982, for a historical look at reactions to earlier

technological innovations). In any event, the neglect of ambiguity in theories

of risk is slowly giving way to interest at both the formal-axiomatic level

(e.g., Fishburn, in press, 1983; Gardenfors & Sahlin, 1982; in press; Morris,

1983) as well as the psychological level (Lopes, 1983).
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From the perspective of this paper, the link between inference and choice

via ambiguity, provides a unified treatment of uncertainty that has been

*;- largely missing from current theories of risk. Moreover, our experimental
."

V. results, in which choices were predicted from knowledge of the parameters

obtained in the inference task, suggest that the process that affects

inferential judgments is also present in choices between ambiguous and non-

ambiguous options. We should emphasize, however, that we have not provided a

theory of risk. In particular, we have not treated the payoff or utility side

of the issue. However, we expect that ambiguity will interact with factors

such as, whether payoffs are gains or losses (Kahneman & Tversky, 1979), the

absolute size of payoffs, and the type of conflict in the gamble. These

issues await further research.

Extensions to Multiple Sources and Time Periods

In order to examine inferences under ambiguity in depth, we have

restricted ourselves to how evidence from a single source is evaluated at one

point in time. However, consider the more realistic situation where decision

makers receive information from multiple source-types (including base rates)

over multiple time periods. The aggregation of information over source-types

and time can be conceptualized by an "evidence matrix" that has source-types

for rows and time periods for columns. Such a matrix is shown in Figure 6.

Insert Fiure 6 about here

The entries in each cell of the matrix reflect the conflicting evidence

received from a source-type in that period. The matrix provides a simple yet

powerful way to look at a wide variety of inference problems. In particular,

by focusing on source-types (rows) or time periods (columns), one can look at

the combining of information either longitudinally, cross-sectionally, or
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both. Furthermore, the issues of reliability and ambiguity become quite

complex here since there can be differential source reliability, varying

numbers of reports per source, and the sources may not be "independent."

While the challenge of understanding how people incorporate such factors into

their judgments is formidable, the complexity of inferences in real world

settings requires that attention be paid to these issues.

CONCLUSION

In considering the role of ambiguity and uncertainty in inferential

judgments, we have developed a quantitative model that accounts for much

existing data as well as our own experimental findings. Furthermore, we have

shown how this model relates to Keynes' idea of the weight of evidence, the

non-additivity of complementary probabilities, risky choice, and current work

on cognitive heuristics. Moreover, since inference involves "going beyond the

information given" (Bruner, 1957), an important way do this is to construct, via

imagination, "what might have been" or "what might be." Such constructions,

whether the result of a cognitive simulation process as proposed here, or more

p elaborate processes (as in resolving surprise), pose an interesting and important

trade-off for the organism. On the one hand, there are costs of investing in

imagination; increased mental effort and the discomfort that results from greater

uncertainty. On the other hand, the benefits of considering the world as it

isn't, protects one from overconfidence and its nonadaptive consequences. Thus,

finding the appropriate compromise between "what is" and "what might have been"

(or, "what might be"), is central to inferences under ambiguity and uncertainty.

S. . . . . . . . . . . . . .. . . . ..
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"At pA - 0, 1 there is no ambiguity. Hence, the relation between pA

and S(pA) should be discontinuous. Indeed, the lack of ambiguity at the end

points provides a rationale for the discontinuity of the decision-weight function

and this implies the "certainty effect" of prospect theory (i.e., the value of

sure gambles is heightened either positively or negatively).

2A listing of the program is available from the authors.
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APPENDIX A

This appendix considers the effects of different assumptions concerning the

weights given to greater and smaller values than that observed. In equation (5),

differential weighting is achieved by the 0 parameter; i.e., k = e(l-p) and
g

k - p . However, one could also consider linear weighting schemes where thes

weights given to ep and 0(0-p) sum to one (i.e., a weighted averaging

process), or where the weights do not sum to one. For the former, let

k - k - ew(1-p) - 0(1-w)p
g -e(w-p) (A.1)

where 0 4 w e I is the relative weight given to greater values. Substituting

(A.1) into equation (8), we obtain,

S1 (f:c) - p + 1 (w-p) (A.2)

where, S (f-c) is used to denote alternative model 1. Note tiat in this model,

S (f:c) is regressive with respect to p. Although this model has appealing

features, it is easy to show that it does not capture some aspects of our model

and data. Specifically, it always predicts additivity of judgments of comple-

mentary events, i.e.,

e (w.) lp
SlM€) + S (c:f) -p +- (w-p) + (1-p) +2 1(-w) - (l-p)1

1- 1 nn(A.3)

However, non-additivity will occur if the weights accorded to 0(1-p) and Op

do not sum to one. A special case of this model, which we denote S (f:c), and
2

which is similar to the S(f:c) model used in the paper, is one where,

k - G - (1-p) - Gmp (M > 0) (A.4)
g U

This yields,
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S (f:c) p +n (1-p- mp] (A.5)

V. 2 -n

such that the additivity conditions are,

S 2 (f:c) + S 2 (c:f) - p +2 [1-p - mp] + (l-p) + ; [p - m(1-p)]

- 1 +- (1-M) (A.6)n

Thus, for m > 0, the model predicts sub-additivity; for m = 1, additivity;

and for m < 0, super-additivity. The difference between S 2(f:c) and S(f:c)

is that the former predicts a constant amount of non-additivity irrespective of

the value of p. In the S(f:c) model, the level of p affects the amount of

additivity. This is shown in equation (9), which is reproduced here for

convenience,

S(f:c) + S(c:f) - 1 +-- (1-p _ (1-pS)1 (A.7)

n

-p1
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