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Exploiting Temporal Knowledge
to Organize Constraints

Stephen F. Smith.
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Abstract: This paper examin the role of temporal knowledge in regard to e representation and
utilization of constraints withi time dependent problem domains. first considers, the
representation of constraints ose interpretations may vary in different temporal regions of the
solution space. A representat n that organizes constraint variants via the temporal relationships
among them is presented and seen to supp rt a simple mechanism for determining the applicable
variant at any point in time. then turn attention to the management of temporal constraints
that are dynamically imposed as various commitments are made by the reasoning system (e.g. as
resources are allocated to activities in a plan). Constraint propagation techniques which collectively
insure consistency in the hypotheses under development are presented and discussed. These
techniques are driven by the temporal relationships present in the domain model. This work is
motivated by ongoing research with ISIS, an intelligent scheduling and information system currently
being applied to the problem of scheduling job shops, and examples throughout the paper are drawn

-, from this domain.
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1. Introduction
The use of constraints to direct problem solving activity is common within Al (e.g. [Goldstein

75, Kornfeld 81, Stefik 81, Sussman 80, Steels 81, Waltz 75]) but the manner in which they are

employed can vary. Typically, they are utilized in a generative capacity, with constraint propagation
serving to restrict the number of hypotheses generated. This strategy often yields a unique solution in
domains where the satisfaction of constraints can be assumed. However, in complex domains, it is

often not possible to satisfy all of the constraints present. Constraints must be selectively relaxed, and
the strategy becomes one of identifying the hypothesis that best satisfies the constraints. In this case,
constraints must additionally serve as a basis for discriminating among the alternative hypotheses

generated. The dual role played by constraints in these latter domains raises some interesting issues
with respect to the underlying constraint representation and organization.

The research reported here is concerned with these issues in problem domains where matters are
further complicated by a need to reason about time. Specifically, we will consider a methodology for
organizing and managing constraints based on the temporal relationships that are present between
them. The work is motivated by research underway at the CMU Robotics Institute on an intelligent
scheduling and information system (ISIS), currently being applied to the problem of scheduling job
shops [Fox 82, Fox 83a]. Briefly, the problem is one of generating a schedule to govern the
manufacture of products for which orders have been received. The schedule must carry each
product order through an appropriate sequence of operations such that a set of organizational goals
(e.g. meeting due dates, minimizing work in process time, maintaining production levels) are met. The
operations associated with the manufacture of different items share a common set of resources (e.g.
machines, tools, etc.), whose allocation is the essence of the scheduling problem. Casting this as a
complex constraint satisfaction problem, our approach in ISIS has focused on the expression and
utilization of the large variety of constraints that influence job shop schedules.

Two broad issues relating to constraint representation and organization arise in time dependent
problem domains. First, many of the constraints maintained by the reasoning system are likely to be
time varying. That is, distinct variants of the constraints may be applicable when the reasoning
system is focusing on distinct intervals of time in the solution space. Such constraints may be
imposed at the outset or result from the relaxation of an unsatisfiable variant. A constraint
representation is required that promotes efficient resolution of the applicable variant at any point in
time. A second issue involves the management of temporal constraints that are dynamically imposed

as various commitments are made during the search process. These constraints must be propagated
through the domain model to ensure consistency of the hypotheses under development. This paper
examines the role of temporal knowledge in both of these contexts.

The remainder of the paper is organized as follows, Section 2 considers previous work in temporal
representations. In Section 3, a set of modeling primitives are introduced to provide a basis for
representing temporal knowledge. Sections 4 and 5 then consider the processes of constraint
resolution and constraint propagation, respectively. In Section 6 the main ideas of the paper are
summarized. Because of our experience with job shop scheduling, much of the discussion will center
around this domain. The techniques under consideration, however, appear relevant to any time
dependent problem domain.

- . , . * . . . .
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2

2. Background
*: Traditionally, temporal considerations have not played a major role in the reasoning processes of

problem solving and planning systems. Systems that operate in the blocks world, for example, focus
on planning and executing solutions to problems without concern to the intervals of time
encompassed by these solutions. Only an implicit notion of time, as-embodied in the relationships
between states in a given problem space, is present. In attempting to solve problems that place time
restrictions on the completion of activities and achievement of goals, however, the inadequacy of this
instantaneous time slices approach to modeling time becomes apparent. The ability to reason about
time requires an explicit representation.

Despite a recognition of this need, the explicit treatment of time in problem solving/planning
systems is fairly uncommon. The AUTOPILOT system [Thorndike 81], a special purpose, distributed
planning system for guiding multiple aircraft through a common airspace, utilizes a specific notion of
time in representing aircraft flight plans although this technique appears to have limited applicability.
The NUDGE system [Goldstein 77] also takes a domain specific approach, utilizing a rich set of
knowledge about the time requirements of various activities and the time preferences of specific
individuals to produce a schedule of an individual's weekly activities and appointments. Vere has
described a more general technique for planning within imposed time spans [Vere 81] that associates
start time windows and durations with the various activities under consideration. This temporal
information is refined and propagated to other activities in the plan as the plan crystalizes. A similar
approach is taken in (Fukumori 801 in developing train schedules.

The general issue of representing and reasoning with temporal knowledge has also been
considered [Bruce 72, Kahn 77, Allen 81a, Vilain 82], although primarily in the context of natural
language comprehension and generation. These efforts focused on providing schemes for efficiently
organizing a body of temporal knowledge and deductive methods that exploit these representations
in responding to queries. Some recent proposals [Allen 81 b, McDermott 82] have attempted to place
these temporal models within a larger framework in which plans and actions can be expressed. Many
of the ideas that have emerged from these studies are directly applicable to the problems associated
with representing and manipulating constraints in time constrained domains, and we will draw freely
on this work below.

3. A representational framework for modeling time
Before proceeding with the issue of reasoning with a time varying set of constraints, it is necessary

to define an underlying framework for modeling time. In this section, we present a set of application
independent primitives that will provide us with a basis for representing temporal knowledge within
particular problem domains. The primitives are expressed in SRL, a schema (or frame) based
knowledge representation language [Fox 79]. Lack of space prohibits an in depth discussion of the
language itself and the reader is referred to [Wright 83] for a complete description. An overview of the
SRL schema construct is contained in Appendix I.

Generally speaking, there are two forms of temporal knowledge to which the underlying primitives
must attend:

o absolute temporal knowledge, knowledge that is explicitly linked with a particular period

V
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of time along some time coordinate system (e.g. machine x has been reserved for the
milling operation from June 1, 1982 through June 15, 1982)

* relative temporal knowledge knowledge that relates temporal objects without
referencing any specific periods of time (e.g. the milling operation precedes the drilling

operation)

The representation of both forms is addressed, in turn, in the following two subsections.

3.1. Primitive temporal objects
Defining an underlying temporal representation establishes a specific perspective through which

the problem solver may view and reason about time. Problem solving systems that have explicitly

dealt with time have typically employed a single representation, and, hence, a single perspective of
time. However, for the applications we have in mind, such a single perspective is inadequate. In the

job-shop scheduling domain, for example, resources are allocated along a calendar, work weeks are
defined in terms of days of the week, and work shifts are expressed as occurring over hours in the
day. Each of these perspectives requires a distinct underlying representation. Thus, rather than

restricting ourselves to a single representation, we have chosen a representational framework that

allows the creation of multiple temporal representations.

A particular temporal representation is specified by instantiating the time-line schema shown in

Figure 3-1. As can be seen, this schema packages the complete specifications of a given time

coordinate system. More specifically, this information defines a fully ordered set of time points, the
granularity of the time line, and a set of operations for manipulating temporal knowledge bound to this

time line. The operations include arithmetic functions, conversion functions, and functions for testing

.-4 and deriving the relationships between temporal objects.

({tlme-line
POINT- FORM:

,* START POINT:
END- POINT:
GRANULARITY:
ADD:
DIFF:
BEFOREP:

AFTERP:

Figure 3-1: time-line schema

The role played by time-line schemata will become clear as the remainder of the representational
framework is presented. For now, consider the calendar schema in Figure 3-2 which defines a

temporal representation utilized in the job shop scheduling domain. A time point consists of an

ordered triple (week day hour) where weeks are indexed from some base week.

a.
i.;-.f% . ..,. .,..• , ... .. . . . . . .. . . . . ..
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{(calendar
{INSTANCE time-line

POINT-FORM: (LIST (sexp (lambda (x) (and (fixp(x)) (not (lessp x 0)))))
(sexp (lambda (x) (and (fixp(x)) (not (lessp x 0)) (not (greaterp (x 6))))))
(sexp (lambda (x) (and (fixp(x)) (not (lessp x 0)) (not (greaterp (x 23)))))))

START-POINT: (0 0 0)
END-POINT: (99999 0 0)

GRANULARITY: (0 0 1)

ADD:

Figure 3-2: calendar schema

Given that most activities/events are best described as occurring over an interval of time, the basic
temporal object provided in the representational framework is the interval schema. This is defined in
Figure 3-3.

-~ ~ {(Interval
-START-TIME:

END-TIME:

DURATION:

DATED-BY: )
Figure 3-3: intervalschema

By associating a specific time-line schema we can differentiate between sub-classes of intervals,
as, for example, in Figure 3-4.

((calendar-Interval
-IS-A Interval

DATED-BY: calendar) ))
Figure 3-4: calendar-interval schema

Specific instances of the Interval schema may be expressed in different ways, depending on the
type of temporal information that is available. An interval may be associated with a particular period
of time, in which case the START-TIME and END-TIME Slots contain time-points delineating the
endpoints of the interval. Alternatively, the DURATION slot may be used to indicate the span of an
interval witl" ut necessa; 'y binding it to a particular period of time. Note that, in either case, an
Interval is L ' to articular time-line (i.e. it is defined with respect to a particular temporal

perspective).

*, ; . , , -. . .. .. .- . .. .... -,.. . . . .



5

As suggested above, the association of a specific time line to a class of points and/or intervals
establishes a specific perspective of time, and is meant to govern the representation and
manipulation of temporal objects bound to this perspective. This is accomplished by the dated-by
relation which allows for the passage of information from the time line to the time points and/or
intervals to which it is associated. To invoke a particular temporal function, for example, the value of
the slot corresponding to the function name is inherited and applied to the arguments. The dated-by

*, schema is depicted in Figure 3.5.1

((dated-by
(IS-A relation

DOMAIN: (TYPE INSTANCE interval)
* RANGE: (TYPE INSTANCE time-line)

INCLUSIONS: [{INSTANCE inclusion-spec
DOMAIN: all
RANGE: all
TYPE: value
SLOT: all
VALUE: all
CONDITION: t))

INVERSE:dates ) }}
Figure 3-5: dated-by schema

3.2. Primitive temporal relations
Much of the temporal knowledge required by a reasoning system is relative in nature, indicating

temporal relationships between activities or events without designating specific intervals on an
underlying time line. Such knowledge is characterized through the use of a predefined set of
temporal relations. We will see in Section 4 that these relations can also be useful in situations where
absolute temporal information is available. The following relations,taken from [Allen 81 a], have been

- incorporated as basic primitives:

se before e2 -- event e occurs before event e2 with some intervening interval of time

"e aftere2 -- e1 occurs after e2 with some intervening interval of time (inverse of before)

9 e1 during e2 -- e, occurs during e 2

e e contains e2 *e occurs during e1

* e, meets e2-- e1 and e2 occur consecutively in time with e, preceding e2

* el met-by e2 -- etand e2 occur consecutively in time with e2 preceding e1

1WIthin SRL, all stole are viewed as relations. Most relations (slots) do not allow inheritance (as this is the default) but the
modl builder dos have the ability toe ociete inheritance specifications with a relation. In this case, the w NcI.USt4s slot Is
used to specify that all slots and values of the PANGE schema may be inherited through the dated-by relation by the OOMAm
schma. 3e (Wight 831 for de tp

' N,-,-
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* e1 overlaps e2*- e2 begins prior to the termination of e,

* e, overlapped-by e2 -. e1 begins prior to the termination of e2

* e1 equal e2 -- e and e2 occupy the same interval of time

The during schema shown in Figure 3-6 typifies the form of the above relations. The class name
event appearing in the DOMAIN slot of the schema is used loosely to represent any entity that occurs
within or occupies a specific interval of time (i.e. it has an interval schema associated with it). The

" restriction imposed on the RANGE of the relation specifies that the intervals associated with the two
schemata being related must be bound to the same time line.

{{(during
. (IS-A relation

DOMAIN: (TYPE INSTANCE event)
RANGE: (EO DOMAIN)
INVERSE: contains ) ))

Figure 3-6: during schema

Note that the issue of inheritance is not addressed in specifying the primitive temporal relations.
Such properties depend on the context in which a given relation is employed. Inheritance may be
desirable, for example. in situations where the relation is used as a knowledge structuring mechanism
(see Section 4). On the other hand, inheritance is unnecessary (in fact undesirable) if the relation is
used to express a partial ordering among activities in a plan (see Section 5). Thus, the inheritance
properties associated with a given temporal relation are left to be specified when it is specialized for a
particular application.

4. Temporal knowledge as a basis for constraint resolution
As indicated at the outset, an integral step in the constraint-directed reasoning control cycle is

constraint resolution, the process of identifying the set of constraints relevant to the current situation.
If the overall set of constraints maintained by the system is large and varied, an organizational
framework in which to embed the constraints becomes increasingly important to the ease with which
this resolution process can be carried out. Given an object oriented knowledge representation such
as SRL, constraint residency is a useful and simple basis for determining relevancy. Constraints
(represented as schemata) are directly attached to the objects they constrain, and the relevant
constraints at any point are collected by examining the objects associated with the current state.
Constraint resolution is complicated, however, in the case of time varying constraints. There might be
several variants of a given constraint associated with a particular object, each applicable during a
different interval of time. In these situations it is necessary to impose further organizational structure
on the constraint representation.

The following subsections focus on the expression of time varying constraints. We will examine a
representational technique that exploits the use of temporal relations to provide an organization
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whereby the relevant variant at any point in time can be easily identified.2

4.1. Time varying constraints
Within the job shop scheduling domain, there are many constraints that vary over time with respect

to the value that the constrained attribute must satisfy. Consider the manpower levels that are set in

various work areas of the shop. At any point in time these levels are fixed, and any schedule that is

generated for the shop must adhere to the specified levels. Nonetheless, particular settings for

manpower levels are only applicable for a limited period of time. They are adjusted over time as the

production requirements in the shop change. Furthermore, the possible adjustments that may be

made to manpower levels are bounded by the maximum and minimum number of workers that can be

assigned to a given work area, and each individual setting within this range carries its own degree of

desirability.

This example illustrates the kinds of information that must be captured in a representation of time

varying constraints. However, given that such constraints may be altered periodically, a primary

requirement of the representation is a means of structuring the set of alterations currently in force.
Temporal relations provide a natural basis for this organization and lead to the definition of the

time-varying-constraint schema depicted in Figure 4.1.

({time-va rying-const raint
(IS-A constraint

TEMPORAL- SCOPE:
range: (TYPE INSTANCE interval)

VALUE:
UTILITY:
ALTERNATIVES:

range: (TYPE INSTANCE relaxation-spec)
CURRENT- ALTERATIONS:

range: (SET (TYPE INSTANCE time-varying-constraint))
comment: list of alterations currently in force for this constraint.

ALTERATION-OF:
range: (TYPE INSTANCE time-varying-constraint)
comment: the constraint for which this constraint is a alteration } }}

Figure 4-1: time-varying-constraint schema

Each instance of a time varying constraint has associated with it a specific TEMPORAL-SCOPE (i.e. an

interval of time) which delineates its period of applicability. Assuming no alterations have been made

to the constraint, it is applicable at any point in time within this temporal scope. In this case, VALUE

2The fundamental Issue of categorizing and representing the large variety of constraints that may be found in complex
domains has been investigated extensively in JFox 83a), resulting in a taxonomy of constraint types and associated
representations. To simplify matters, we will limit our discussion to constraints that specify a single value to be satisfied, and
develop the notion of a time varying constraint type for this class of constraints. Within ISIS, the temporal organization to be
detailed below is instead Integrated into the specification of each constraint type identified In (Fox 83a).

* . . . . i .nlini -.a iab~ ill d~b , E Im I . . - " " ", '
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contains the current value of the constraint and UTILITY its associated utility. The constraint also
possesses a set of ALTERNATIVES, specified by means of an attached relaxation spec. These
alternatives enumerate the possible alterations that can be made to the constraint, and are

% instantiated (i.e. a temporal scope is associated) to produce specific alterations.3

If a decision is made to alter a time varying constraint, the temporal scope associated with the
alteration will necessarily encompass a subinterval of the original constraint's temporal scope. As
such, there is an inherent temporal relationship linking a constraint to its alterations (contains), and,

* likewise, an inverse relationship (during) in the other direction. These relationships are exploited for
organizational purposes in defining the CURRENT-ALTERATIONs and ALTERATION-OF relations found in
the time-varying-constraint schema. To make this explicit, consider the complete definition of the

-- ALTERATION-OF relation in Figure 4-2.

{(alteration-of
(IS-A during

DOMAIN: (SET (TYPE INSTANCE time-varying-constraint))
RANGE: (TYPE INSTANCE time-varying-constraint)
INCLUSIONS: f(INSTANCE inclusion-spec

DOMAIN: all
RANGE: all
TYPE: value

SLOT: all
VALUE: all

CONDITION: t }}
INVERSE: current-alterations I }}

Figure 4-2: alteration-of schema

We are now in a position to examine the dynamics of the representation. Ignoring the issue of when
to relax or strengthen a time varying constraint, suppose that at some point a decision is made to alter
the constraint along the lines of one of its specified alternatives, and an appropriate temporal scope
for the alteration has been determined. Since an alteration is itself a time varying constraint, it is
instantiated as such and attached to the original constraint's CURRENT-ALTERATIONS slot. This newly
attached constraint now takes precedence over the original constraint at points in time within its
temporal scope, while the original constraint is still applicable at points in time within its temporal
scope but outside that of its alterations. Note that an alteration may be subsequently altered itself in
the same manner. Thus, each instance of a time varying constraint instance sits at the root of a tree
structure containing its current alterations. The resolution process defined over a given alteration

3 We can approach the specification of alternatives from different perspectives. If the constraint directed reasoning process
proceeds in a one way direction, attempting to satisfy the relevant constraints and relaxing those that cannot be satisfied, then
the set of alternatives associated with a given constraint need only include the subset of possible values whose associated
utilities are less than the constraint's utility (i.e. the possible relaxations of the constraint), On the other hand, if the reasoning
process is also capable of strengthening a constraint (necessitated, perhaps, by the inappropriateness of a previous relaxation
that was made) then it Is necessary to include all possible alternatives. We have adopted this more general .view and take the
alternatives of a given time varying constraint to include means for both relaxing and strengthening the constraint. The name
raelation pe is retained to mqintain consistency with the terminology in [Fox 83as].

, - . .o , .. . " , - . ., • . .

- .. . , . ' ., . ., . , ,. .' .. , ,, . -,. ' . .. . ' . : . . .. *. - -
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tree is straightforward. To locate the currently applicable constraint at time I, we find the lowest
constraint in the tree whose temporal scope contains t. 4

As is the case with all constraints, time varying constraints can be associated with the objects they
constrain through attachment to the appropriate schemata. Time varying constraints specifying a
priori determined work shifts, for example, might be placed in the schemata representing the specific
machines in a job shop. More generally, it is useful to place constraints at various levels within the
hierarchical model of the environment, and rely on inheritance relations to import the constraints
relevant to objects at lower levels. This allows the association of a default constraint with a class of
objects which can be overridden by the attachment of more specific constraints to individual
members of the class, However, this technique falls short in the case of time varying constraints.
Because of their distinct periods of applicability, it may be necessary to inherit a constraint from a
higher level even though constraints reside at the current level.

Given the inadequacy of inheritance relations in this context, it is necessary to extend the

representation to explicitly identify the potentially applicable constraints residing at higher levels in
the hierarchy. This is accomplished through . introduction of the time-varying-constraint-root
schema depicted in Figure 4-3.

((time-varying-const raint- root
(IS-A time-varying-constraint

TEMPORAL-SCOPE: always)
SPECIALIZATION- OF:

range: (TYPE INSTANCE time-varying-constraint-root) }}
Figure 4-3: time-varying-constraint- root schema

Within the extended representation, an instance of the time-varying-constraint-root schema is
attached to the object being constrained in lieu of the actual set of associated time varying
constraints. The actual constraints, in turn, are placed in the CURRENT-ALTERATIONS slot of the root,
combining the constraints and their associated alterations into an alteration tree. 5 The resolution
process proceeds by first examining the alteration tree designated by the constraint root in the

4 A second temporal organization we might have adopted here is that of maintaining a strict relaxation tree where in each
node is a relaxation of its parent. In this case, a decision to strengthen a given constraint would be accommodated by
restructuring the relaxation tree to which it belongs (e.g. pruning one or more constraints from the tree or reducing their
temporal scope so that the desired stronger constraint residing at a higher level in the tree becomes applicable, or splitting the
constraint into two and inserting the desired constraint between the two resulting temporal scopes at the same level in the
tree). This would likely result in a more compact representation, as the height of each tree would be bounded by the number of
alternatives at its root. However, the adopted strategy of growing a new leaf in the tree for each alteration (be it a relaxation or
a strengthening of the constraint) provides a complete record of the sequences of alterations made to each time varying
constraint in the system. This provides te meta-level reasoning system with a basis for incorporating knowledge of its past
decisions when contemplating sub~swiat Mteralees Moreover, the tree can be augmented with dependency information to
enable explanations of the meta-level actions taken. These Issues are beyond the scope of this paper and will not be
discussed further.

Gn this s the constraint root bears a strong resemblance to Allen's reference Interval [Allen 61a].

,' _ ' ~~ .2,.,,.. .. +
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manner described above. It an applicable constraint is not located the process is recursively applied
to the alteration tree designated by the SPECIALIZATION-OF relation in the root.

The constraint root may also serve a dual role as a repository for information related to the

constraint that is invariant across all possible alterations. Such information is made available to all
constraints currently residing in the alteration tree through the ALTERATION-OF inheritance relation
defined in Figure 4.2.

4.2. An example: representing shift constraints
To amplify the ideas of the last section, let us examine the representational framework in a specific

context drawn from the job shop scheduling domain. One type of time varying constraint that needs
to be expressed in this domain is the number of work shifts associated with a machine, work area, or
facility. Figure 4-4 defines this class of constraints as a type of. time varying constraint. In this case,

* the value of the constraint consists of a specification of the work shifts involved.

((shift-constraint
(IS-A time-varying-constraint

[elaborate VALUE --> SHIFT:

range: (LIST (TYPE INSTANCE hours-of-day-interval)) 1)1
Figure 4-4: shift-constraint schema

The definition of the shift-constraint schema presumes the existence of an additional
hours-of-day time line for representing work shifts. This leads to the definition of the shift schema

* depicted in Figure 4-5. Within this definition, a shift's WORK-WEEK is itself represented as a temporal

interval, in this case with respect to a days-of-week time line.

((shift
(IS-A hours-of-day-interval)

- FOREMAN:

WORK-WEEK:

range: (TYPE INSTANCE days-of-week-interval)]) 1)
Figure 4-5: shift schema

An instance of the shift schema representing the first shift associated with machine machi and its

corresponding work week specification are contained in Figure 4-6.

• _. '_.-, - . • "-- -. ,. -. .- ,- .-. . .--.- - - .
N.- . ' : ,- -- - , . .
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((machi 1-5day-I1st-shift
(INSTANCE Shift

START-TIME: (7 30)
END-TIME: (15 30)
FOREMAN: Jones
WORK-WEEK: Scfay-workwk ))

f{5day-workwk
{INSTANCE days-ot-week-interval

START-TIME: monday
* END-TIME: friday )

Figure.4-6: machi-Sday-lst-shift schema

With these basic primitives in hand, let us examine the representation of a specific configuration of
shift constraints for the machi machine identified above. Assuming that a shift-constraint- root
schema has been defined as a subtype of the time -va rying- constraint -root, first consider the
specific constraint root that is attached to the mach I machine description. This is displayed in Figure
4-..

((mach I -shift-const raint- root
(INSTANCE shift-const raint- root

SPECIALIZATION- OF: milling- a rea- shift- const raint- root
ALTERNATIVES: mach I -shifts
CURRENT- ALTERATIONS: mach I -Shift- constraint 1 machi -shlft-const raint2 3

Figure 4-7: machi1 -shif t- const raint- root schema

p The root indicates that the encompassed collection of shift constraints is a specialization of those
* associated with the milling work area. It also identifies machi-shifts as the relaxation Spec which

contains the possible values that the shift constraint can assume. The machi -shifts schema is
depicted in Figure 4-.6

afeaxatlon specs awe dfined in (Fox 83a) and the reader Is referred there for a complete discussion of their structure and
InterpretatIon. For our purposes here, it is sufficient to note that the shift -const raint- relaxation-sepe. schema of which
machfI -shifts Is an instance is defined assa particular type of relaxation spec called a discrete choice. As the name Implies, a
discrete choice specifies a disc"et set of alternative values.
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((machi -shifts
(INSTANCE shift-constraint- relaxation-spec

RELAXATION: (machi -alt 1 machi -alt2 machi -alt3
machi -alt4 machi -alt5 machi -alt6)) 1

Figure 4-8: machi -shifts schema

The alternatives listed in machi -shifts, which vary the number of shifts and the length of the work
week, are enumerated in Figure 4-.*7

f(machi-alti
(INSTANCE shift-constraint- relaxation

SHIFT: machi1-5day- 1 st-shift
UTILITY: 2.0 )

ffmachi-alt2
* (INSTANCE shift-const raint- relaxation

SHIFT: machi -7day- I st-shift
UTILITY: 1.6))

((machl-alt3
(INSTANCE shift-const raint- relaxation

SHIFT: (machi -5day- I1st-shift machi1 -5day- 2nd- shift)
UTILITY: 1.4))

{{machl-alt4
(INSTANCE shift -const raint- relaxation

- - SHIFT: (machi -lday- 1 st-shift machi1 - 7day- 2nd-shift)
UTILITY:' 1.211

{(machl-alt5i
(INSTANCE shift-constraint- relaxation

SHIFT: (machi -5day- 1st-shift machi -5day-2nd-shift machi -5day-3rd-shlft)
UTILITY: 0.9))

((machi- alt6I (INSTANCE shift-constraint- relaxation
SHIFT: (machi -7cfay- 1st-shift machi -7day-2nd-shift mnachi -7day-3 rd-shift)
UTILITY: 0.7 )

Figure 4-9: shift constraint alternatives for machine machi

7BY historical convention, the utilities aociated with constraints range from 0.0 to 2.0.

j7---------- ------ .7-- * . .-
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The constraints currently bound to mach I are contained in the CURRENT-ALTERATIONS slot of the
machI-shift-constraint-root schema (see Figure 4-7). These constraints are defined in Figure
4-10. machl-shift-constraintl is seen to be applicable from the beginning of week 0 to the
beginning of week 20 and specifies a single 8 hour shift operating over a five day work week. Its
associated utility of 2.0 indicates the desirability of satisfying this constraint. Alternatively,
machl-shift-constraint2 is relevant from the beginning of week 50 to the beginning of week 80
and specifies two 8 hour shifts operating over a five day work week. It possesses a reduced utility of
1.4 to reflect the cost of adding a second shift. There are no constraints directly associated with
machi during the temporal intervals not covered by machl-shift-constraintl and
mach I-shift-constraint2. At points in time during those intervals the applicable constraint will be
found at a higher level in the SPECIALIZATION-OF hierarchy.

((mach i -shift-constraint 1
{INSTANCE shift-const raint

TEMPORAL-SCOPE: ((INSTANCE calendar- interval
START-TIME: (0 0 0)

END-TIME: (20 0 0)))
SHIFT: mach 1 -5da.y- 1 st-shift
UTILITY: 2
ALTERATION-OF: machl-shift-constraint-root))}

((machi -shift- const raint2
(INSTANCE shift-constraint

TEMPORAL-SCOPE: ((INSTANCE calendar-interval
START-TIME: (50 0 0)
END-TIME: (80 0 0)))

SHIFT: (machi -5day-1 st-shift machi -5day-2nd-shift)
UTILITY: 1.4
ALTERATION-OF: machi -shift-constraint-root })}

Figure 4-10: the actual constraints associated with machine machi

Having now completely specified mach I's configuration of shift constraints, let us conclude the
example by providing a flavor of how the representation will evolve as alterations are made. It will be
helpful at this point to move to a graphical notation, and the above described representation is recast
in these terms in Figure 4-11 (along with the addition of a default constraint residing in the milling
work area description). Let us assume that this configuration of constraints is the result of a priori
made decisions, motivated perhaps by forecasted load levels in the job shop.

As the search for a constraint satisfying job shop schedule proceeds, we would expect a more
accurate assessment of the load levels in the shop to emerge. For our purposes here, suppose that
the following sequence of alterations is made by the meta level reasoning system as this knowledge
about the search space accumulates:

1. shift-constraint1 Is relaxed to include a second ihift during the temporal interval

". o- - - - - - - - - - - - - --.
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mnilling
shift constraint

root

specialization-of

milling
shift constraint 1
"'value:3 shifts

machlscope:0-Y

4( alteration-of

Figure 4-1 1: Initial configuration of shift constraints for machine machi

ranging from the beginning of week 5 to the beginning of week 12.

2. This relaxation is subsequently relaxed to include a third shift from the beginning of week

10 to the beginning of week 12.

3. The default constraint residing with the milling work area is strengthened to specify only
two shifts from the beginning of week 25 to the beginning of week 35.

Each decision to alter a shift constraint results in the attachment of a new shift constraint (embodying
the desired alteration) to the CURRENT.ALTERATIONS slot of the constraint found to be unsatisfactory.
Thus, given the above sequence of alterations, the configuration of shift constraints associated with

machl would now appear as in Figure 4-12. According to the resolution mechanism defined in

Section 4.1, each new constraint now takes precedence over the original (i.e. the constraint of which

it is an alteration) at points within its temporal scope.

5. Temporal knowledge as a basis for constraint propagation
In contrast to constraints which provide a basis for discriminating among alternative decisions

proposed by the reasoning system, there are constraints that are applied in a generative fashion.

These constraints determine the admissibility of decisions, delineating boundaries within which the
exploration of alternative decisions may proceed. In many cases, these constraints are embedded In

the model of the domain (e.g. operation x can only be performed on machine y) and are invariant over

time. An important exception, however, is the collection of constraints characterizing the
nonavailability of resources. The majority of these constraints evolve dynamically as explorations in
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shif I constraint

root

specialization-of

milling
shift constraint t"value:3 shifts

rach I shifts
hfshift constraintroot

+.., " -"-' - .alteration-of

machh I machl

shift constraint f ostanSsit osrit

!. value: I shiftsvle2sit au:2sit
-scop:0-20 12p:5 5 cpe5-0

:! shift constraint4l

"value:3 shifts

Figure 4-12: Resulting configuration of shift constraints for machine machi

various temporal regions of the space culminate in the establishment of resource reservations.

Within the job shop scheduling domain, resource reservations may be established or removed by
either the system or the user. These scheduling decisions are made in an opportunistic
fashion [Erman 801 and may be expressed at various levels of abstraction. Given these
characteristics, the issue of maintaining the consistency of a dynamically changing collection of
reservations must be addressed. Specifically, the temporal constraints imposed by particular

scheduling decisions must be propagated through the rest of the partially developed schedule so as
to influence the scheduling decisions that remain to be made. This, in turn, requires an appropriate
organizational framework in which to embed these constraints.

Once again, temporal relations provide the necessary structure, in this case as provided in the
representation of the plan knowledge from which the schedules of individual orders are derived.
Such a representation and an associated set of constraint propagation techniques are examined in
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p.

the following subsections.

5.1. Multiple descriptions of activities and resources
Each product producible in the job shop has associated with it an operations graph which defines

the alternative process routings that may be employed to produce the product. An operations graph
is a network of activities, partially ordered with respect to time. Any path through the network
constitutes a viable plan and a complete assignment of resources along a given path constitutes a
schedule. The operations graph also exhibits a hierarchical structure in that activities are modeled at
various levels of abstraction. Thus, an operations graph is not unlike a procedural net formulation of

* plan knowledge [Sacerdoti 77]. Its distinguishing characteristics include

* flexibility in the types of abstractions that are representable,

* an explicit representation of the temporal structure inherent in the plans, and

. * the existence of schedulable resources at all levels of abstraction.

There appear to be two forms of abstraction relevant to the expression of process routings:
abstraction by aggregation of sequences of activities into composite activities (the form typically
found in plan expressions) and abstraction by omission of activities. The latter form emphasizes an
approach whereby critical facilities (i.e. bottleneck resources) are scheduled before an attempt is
made to develop a complete schedule, and is particularly useful in supporting the interactive
development of portions of the schedule by the user. A given operations graph will generally
incorporate both forms of abstraction, distinguishing between the two by the specific temporal
relationships linking various activities.

Within the the job shop scheduling domain, an activity is refined into an operation. The prototypical
operation schema is displayed below in Figure 5.1

{6operation
S!. {IS-A activity

RESOURCE:

OPERATION-TIME:
range: (TYPE INSTANCE calendar-interval)

SCHEDULING-CONSTRAINTS:
AFTER:
MET-BY:
BEFORE:
MEETS:
DURING:

CONTAINS:) }
Figure 5-1: operation schema

in O schema and those to be presented subsequently, only the slots relevant to the discussion will be listed.

* - - ,..

, . ,,. , .... - . :.. . - . .- ,- .,C - .- . .-. -. ,- .
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Operations are organized into operations graphs via the temporal relations contained in the
operation schema definition. The AFTER and MET-BY relations associate an operation with alternative
previous operations in the set of process routings, with MET-BY indicating that the alternative previous

4 operations and the current operation occur consecutively in the production of the product and AFTER

signaling the omission of one or more intervening operations at this level of abstraction. MET-BY is
always in use if previous operations exist. AFTER is utilized only by the user interface to shield
nonbottleneck operations from the user. Similarly, the BEFORE and MEETS relations associate an
operation with alternative next operations in the set of process routings. In this case, MEETS indicates
the consecutive occurrence of operations and is always in force if following operations exist, while
BEFORE indicates the omission of one or more intervening operations and is utilized in the same
manner as AFTER. Thus, the MEETS and MET-BY relations of operations collectively define the set of
process routings at each level of abstraction.9 The remaining temporal relations are used to define
the operation abstraction hierarchy. The DURING relation links an operation with its superoperation
(i.e. the abstract operation of which this operation is a suboperation). The CONTAINS relation
associates an operation with alternative sequences of more detailed operations. A portion of a
specific operations graph, illustrating the temporal framework, is contained in Figure 5-2.

meets
before

producemet-by

during Ic..ontans

'A,,

millingfis

milling milling grinding post-miling drilling drilling
stepi step2 inspection

Figure 5-2: a portion of the operations graph for product x

The remaining slots listed in the operation schema are attributes relevant to the scheduling of
operations. OPERATION-TIME contains an estimate of the duration of the operation,
SCHEDULING-CONSTRAINTS contains a set of temporal constraints that must be satisfied when
scheduling the operation (see Section 5.2), and RESOURCE contains the resource that must be
reserved. Resources are associated with operations at all levels in the operation abstraction

9It should be noted that OwfLtAfS and ove"LAmuo.mv are also viable relations for associating alternative next and previous
operations respectively. However, the need to distinguish between these relations and MEETs/MET-aY arises only when
remong about the specific bounds of resource reservations (e.g. detecting conflicts). We will assume such an ability In the

MWicuson below and omit furth consideration of the oVEALAPS and ovERtAPPto-ey relations.

"C ".. ". .. ..** -- ;. . 2 ~ * - :: ":": - - - - '- *.-- - , . .. .•



"- 18

hierarchy, with the resources residing at a given level embodying abstractions of the resources
required by lower level suboperations. The taxonomy of resource types depicted in Figure 5-3 forms
the basis for describing resources within the job shop scheduling domain.

resourceW64

machine work station work area

physical conceptual
work area work area

homogeneous heterogeneous
work area work area

Figure 5-3: taxonomy of resource descriptions

At the lowest level in the operation abstraction hierarchy, the resource required by an operation is
assumed to be a specific machine or work station. We can restrict our attention to machines only
without loss of generality. There may be one such machine in the shop or several identical machines
from which to choose. The first case is represented by the machire schema in Figure 5-4 while the
homogeneous-work-area schema in Figure 5-5 describes the second case.

{{{machine
(IS-A resource

RESERVATIONS:
PHYSICAL-WORK-AREA:
CONCEPTUAL-WORK-AREA: 111

Figure 5-4: machine schema

{{homogeneous-work-area
(IS-A physical-work-area

RESERVATIONS:
PARt-OF:
PHYSICAL-WORK-AREA:
CONCEPTUAL.WORK-AREA:))}

Figure 5-5: homogeneous-work-area schema

/.>...-:...-........,.-................-
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Both the machine and homogeneous-work-area schemata possess a RESERVATION slot which
contains the reservations currently established for the resource. The PHYSICAL-WORK-AREA and
CONCEPTUAL-WORK-AREA relations are links to the physical work area and various conceptual work
areas (see below) to which the resource belongs. The homogeneous-work-area schema
possesses an additional PART-OF relation that associates the resource with the specific machines that
comprise it.

The resource associated with a given abstract operation is characterized by the
.- conceptual-work-area schema (Figure 5-6), the PARTS-OF which are the resources required by
2 each of the constituent lower level operations embodied by the abstract operation. The need for

distinguishing between physical and conceptual work areas arises from the fact that the two are
derived along different organizational dimensions. Physical work areas imply a physical proximity of
their constituent resources and are useful in organizing constraints pertaining to work shifts,
manpower levels, etc. at higher levels. To map operation abstractions to physical work areas would
severely restrict the range of possible abstractions. Conceptual work areas, alternatively, permit a
grouping of resources that parallels the operation abstraction hierarchy.

{(conceptual-work-area
{IS-A work-area

.. RESERVATIONS:

PART-OF:

CONCEPTUAL-WORK-AREA: )}
Figure 5-6: conceptual-work-area schema

Resource reservations at all levels in the abstraction hierarchy are represented by the reservation

schema shown in Figure 5-7.

{{reservation

(IS-A constraint
RESERVER:

OPERATION:

RESOURCE:

TEMPORAL-SCOPE:

range: (TYPE INSTANCE calendar- interval)
STATUS:

range: (OR valid invalid incomplete)
ORIGIN:

range: (OR imposed generated))))
Figure 5-7: reservation schema

Instantiations of the reservation schema are attached directly to the resources involved as
commitments are made to particular reservations. As we will see in the next section, however, a
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commitment to a reservation does not necessarily imply its validity in the job shop schedule under
development. Reservations residing at a given level of abstraction are supported by reservations
residing at lower levels and a reservation is valid if and only if all of its supporting reservations are
valid. Reservations may also lead to conflicts with subsequent commitments and become invalidated.
The STATUS of a reservation reflects its current relationship to other-reservations and may assume
one of the following values:

e valid - the reservation is valid (i.e all of its supporting reservations have been established
and validated)

* incomplete - at least one of the reservation's supporting reservations remain to be
established and/or validated

*invalid -the reservation has been invalidated due to the validation a of conflicting
reservation or an inability to validate the reservation's supporting reservations.

A reservation's ORIGIN indicates whether the reservation was externally imposed by either the
reasoning system or the user, or generated during the propagation process. Its significance will
become clear below.

5.2. Maintaining the consistency of resource reservations through the posting of
constraints

A commitment to a particular scheduling decision (i.e. the establishment of a resource reservation
in a specific order's name for a specific operation during a specific time interval) imposes constraints
which must be satisfied by the scheduling decisions that remain to be made. Preceding operations
for the order, for example, are now constrained to end by a certain point in time. Likewise, following
operations are now constrained to start on or after a certain point in time. Ensuring the consistency
of the dynamically evolving set of resource reservations requires an ability to bring the constraints
imposed by previous scheduling decisions to bear when contemplating the scheduling decisions that
remain to be made. The strategy adopted below is one of explicitly representing these constraints
and posting them with the operation(s) for which they are relevant. The temporal framework of the
operations graph provides the basis for identifying the operation(s) with which a particular constraint
should be posted.

The constraints to be posted are specializations of a general class of constraints referred to as
predicate constraints in [Fox 83a]. The defining schema is depicted in Figure 5-8. It includes a
PREDICATE which is applied to its ARGUMENTS and the value being constrained to yield either the
SATISFIED.UTILITY (if the predicate evaluates true) or the RELAXED-UTILITY (if the predicate evaluates
false). In the current context, where the constraints of interest are nonrelaxable, we will assume a
SATISFIED.UTLITY of t, and a RELAXED-UTILITY of nil.

i
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((predicate-constraint
(IS.A constraint

ARGUMENTS:

PREDICATE:

SATISFIED-UTILITY:
- RELAXED-UTILITY: )))

Figure 5-8: predicate-constraint schema

5.2.1. Potential inconsistencies and associated constraint types
We can partition the inconsistencies that can potentially arise as a result of the imposition of a new

resource reservation into two types:

e those involving conflicts between reservations belonging to the same order, and

* those involving conflicts between reservations belonging to different orders.

Conflicts of the former type constitute violations of the temporal relationships embodied in the

operations graph associated with the product ordered, and it is these conflicts that will be avoided
through the posting of constraints. Conflicts of the latter type, alternatively, involve contention for the
same resources. Since the priority of an order can often dictate the preemption of another order,

*: these conflicts will not be prevented but will be resolved upon detection. Fc, , presc-u 'et us
confine our attention only to the conflicts that can arise within a given order't. schedule akid identify
the types of constraints needed to ensure their avoidance.

Conflicts between the reservations of temporally related operation" residing at different levels in the
operations graph (i.e. those related via DURING and CONTAINS) constitute one form of inconsistency
that might arise as the set of reservations evolves. Avoidance of these conflicts requires propagation
of the consecluences of each new scheduling decision in both directions. Reservations residing at
higher levels can be immediately adjusted (and created if necessary) to reflect the more detailed
estimate provided by the new imposition. In the other direction, the subsequent scheduling of

supporting lower level operations must be constrained to occur within the temporal scope of the
newly imposed decision. This is accomplished by posting operation time bound constraints with each

of these operations.

-The operation time bound constraint schema is defined in Figure 5-9. It is a predicate constraint in
which the ARGUMENTS are elaborated into a set of TIME-BOUNDS. The predicate op-time-boundp, when
applied to a perspective scheduling decision for ORDER, returns t if the temporal scope of the decision
falls within the specified TIME-BOUNDS and nit otherwise. The POSTED-BY relation designates the
originator of the constraint and its STATUS indicates whether the constraint is currently active or has
been rendered inactive by the posting of a more accurate instance of the constraint. The generation
and maintenance of these- constraints (and those to be described below) will be addressed in the
following subsections.

"- ," " * . "a '" " . . ." -"" ' - .. . . . -
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(Coperation-time- bound-constraint
{IS.A predicate-constraint

[ laborate ARGUMENTS --> TIME-BOUNDS:
" range: (TYPE INSTANCE calendar-interval)]

PREDICATE: op.time-boundp
ORDER:
POSTED-BY:

range: (TYPE INSTANCE operation)
STATUS:

range: (OR active inactive) 1))
Figure 5-9: operation-time- bound-constraint schema

A second form of inconsistency that might arise involves conflicts among the reservations of
operations that are related temporally at the same level in the operations graph (i.e. via MEETS and

* MET-BY). These conflicts are avoided by propagating the start and end times associated with a newly
imposed scheduling decision laterally in the graph. Specifically, either start time constraints or end
time constraints (whichever is appropriate) are posted with the other operations at this level. The
schemata defining these constraints are contained in Figures 5-10 and 5-11 respectively, and have
their obvious interpretation.

((sta rt-time-const raint
(IS-A predicate-constrainta [elaborate ARGUMENTS --> START-TIME

range: (TYPE INSTANCE calendar-time-point)]
PREDICATE: start-timep

ORDER:
POSTED-BY:

range: (TYPE INSTANCE ope ration)
STATUS:

range: (OR active inactive) })
Figure 5-10: start-time-constraint schema

"*--" , - ".". . . . - = * " "" " ' "'""" = : ' :' ""' '" "-• ," " . .. .. ." "_ .-. ... '- .. -. .. .. .
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f(end-time-constraint
(IS-A predicate-constraint

[eiaborate ARGUMENTS -- > END-TIME
range: (TYPE INSTANCE calendar-time-point)]

PREDICATE: end-timep
ORDER:
POSTED-BY:

range: (TYPE INSTANCE operation)
STATUS:

range: (OR active inactive))))

Figure 5-11: end-time-constraint schema

A final form of inconsistency will arise if mutually exclusive operations in the operations graph are
scheduled. These conflicts are prevented by posting operation restriction constraints with any
operation that should be eliminated from consideration as a result of the imposition of a particular
scheduling decision.

f{operation- rest riction-constraint
{IS-A predicate-constraint

[elaborate ARGUMENTS --> OPERATION]
PREDICATE: op-restrictionp
ORDER:
POSTED-BY:

range: (TYPE INSTANCE operation) } })

Figure 5-12: operation- restriction-constraint schema

Given the above constraint posting approach to consistency maintenance, let us consider the
techniques responsible for generating and propagating constraints as the set of resource
reservations evolves. First, we will examine the propagation of a new scheduling commitment
through the existing set of resource reservations. We will then examine the inverse operation of
propagating a decision to remove a particular reservation. These considerations will lead to a
subsequent discussion of techniques for propagating decisions to invalidate and restore particular
reservations.

5.2.2. Propagating a commitment to a new resource reservation
For purposes of discussion, let us assume that a scheduling decision with the parameters order op

resource stime and etime has been imposed, and it has been verified that the imposition satisfies all of
the constraints that have been posted with operation op for order. This results in the creation of a
reservation schema instance that represents the decision and the ORIGIN is designated as imposed.
The status of this newly imposed reservation depends on the level of abstraction embodied by op. If
op resides at the lowest level In the operations graph (i.e. it CONTAINS nb suboperations) then the

, .- ,,. ...---. : ,... ..-. . ... ,.,.,,., .. ,. , .,.......o..., •,.... . ...
. . . . .............. ='" ""' "" '"" *.* .. " " '- --. """ . " . -,..,.."" ' -. '''i, " .,..
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newly imposed reservation is considered valid. If op resides at an abstract level in the operations
graph, the reservation is necessarily incomplete as its validity is contingent on the validity of

., supporting lower level reservations that have yet to be imposed.

In the former case, the reservation has been imposed at a level where physical resources (e.g.
specific machines) are involved. As such, it is necessary to detect and resolve any resource
contention conflicts that have been introduced. In the latter case, it is necessary to propagate the

* imposition to the supporting suboperations at lower levels in the operations graph. As indicated
, above, this is accomplished by posting appropriate operation time bound constraints with these
*, operations.

The resolution of resource contention conflicts requires the invalidation of one of the offending
reservations, and there are several candidate strategies for deciding which to invalidate (e.g. a
comparison of order priority, a comparison of the authority of each reservation's creator, an appeal to
the user). For simplicity, we will assume in what follows that all conflicts are resolved in favor of the
newly imposed reservation. The use of more complex strategies is a straightforward substitution.
The choice to. invalidate rather than remove the selected reservation allows its restoration if
subsequent scheduling actions eliminate the conflict (see Section 5.2.4).

Downward propagation

The operation time bound constraints are derived by applying a critical path method (CPM) analysis
to the operations related to op by the contains relation. Estimates of the durations of these operations
drive this analysis and existing reservations are taken into account. The CPM analysis is first applied
in a forward direction through the sequence(s) of lower level operations abstracted by op to
determine the earliest start time (the first bound) of each operation. It is then applied in a backward
direction to determine the latest end time (the second bound) for each operation. The analysis is
recursively applied to any lower level operation which is itself an abstraction of more detailed
operations. Upon completion of the CPM analysis, the posted constraints dictate acceptable intervals
within which the associated operations may be scheduled (see Figure 5-13). Any operation time
bound constraints previously posted with these operations (i.e. constraints that originated from

reservations residing higher that op in the operations graph) are rendered inactive. 0

Lateral propagation

The imposition is also propagated to the operations preceding and following op at the same level in
the operations graph. An end time constraint of stime is created and propagated to each operation
encountered while moving through the MET-sY relations of op and its predecessors. Upon each
posting of the constraint, its value is reduced by the duration of the associated operation. Similarly, a
start time constraint with an initial value of etime :s created and propagated to each operation

encountered while moving through the MEETS relation of op and its successors,

As various scheduling decisions are imposed, distinct start time/end time constraints may
accumulate with the same operation. At any point in time, however, only the start time/end time

10It shoul be naotd that the CPM analysis can also be used to verity that the temporal scope of the impoaition (delineated
by lime and efim*) dow s ufficient time for performing op.

4 4 - . .. . . .- . - . .... 4• -. . . .
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slime etime stime etime
op's reservation op's reservation

origin imposed. status: incomplete

suboi suop2 ubop s9Qpl u2 ubop3.

s2 e2

a. before downward propagation b. after downward propagation

Figure 5-13: Downward propagation of operation time bound constraints

constraint originating from the "closest" operation in the operation graph is active. Thus, the
imposition of op's reservation may result in the posting of inactive start time/end time constraints with
the operations some distance away from op in the operations graph. This is necessary to insure the
existence of an appropriate start time/end time constraint if the reservations associated with
intervening operations are subsequently removed (see Section 5.2.3).

Upward propagation

Finally, the imposition of op's reservation for order is propagated to the super operation DURING
which op occurs. If the super operation does not possess a reservation belonging to order, a new
reservation is created, its ORIGIN is marked generated, and the temporal scope of op's reservation is
assigned. if such a reservation does exist, its temporal scope is adjusted to reflect the inclusion of
op's newly imposed reservation. Propagation. of the appropriate status change is accomplished by
examining the sequence of operations aggregated by op's super operation that includes op."' If all
operations in the sequence now possess valid reservations, the super operation's reservation is
marked valid. Otherwise, it is marked incomplete.

The specific nature of the adjustment to the temporal scope of the super operation's reservation
depends on the ORIGIN of the reservation. The scope can only decrease if this reservation was
previously imposed by the reasoning system or the user. This will occur only if op is the initial (final)
operation in the sequence of suboperations including op and stime (etime) falls within the operation
time bound previously posted with op. Figure 5.14 illustrates this case. Alternatively, the temporal
scope of the super operation's reservation can only increase if it was initially generated during the

T11here wl be more than one sequence If the super operation COTAINS mutuaily exclusive altOrnaive,

:- : :,:,, : ,- , , ,-: ,,',:.,, - .. ,..,...... .. .'.-. ,... ,....-...
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super op's reservation super op's reservation
origin: imposed; status: incomplete origin: imposed; status: incomplete

slime etime '

I lop's reservation IItIo p's r  na °i'
Jorinin: imposed I. "I I .

I I -Sel

s2 e2 s2 e2

a. before upward propagation b. after upward propagation

Figure 5-14: Adjusting the scope of a previously imposed parent reservation to
reflect the imposition of op's reservation

*upward propagation of a previous imposition. A change will occur in this case only if there are no

operations preceding (following) op in the sequence of suboperations that possess a valid or

incomplete reservation for order (see Figure 5-15).

sup e =. oer op's ea.ion
origin: generanedgm esa:lStatus~°''

* em sime tri im
op's reservation ntop's re.svaif
origin: imposed origin: im
status: valid status; valid

a. before upward propagation b. after upward propagation

Figure 5-15: Adjusting the scope of a previously generated parent reservation to

reflect the imposition of op's reservation

I * , , o o, ., .. -o .. .." ... . . . .
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If a change is made to the temporal scope of the super operation's reservation, it is necessary to
propagate new start time and/or end time constraints to the operations residing at the same level in
the operations graph. This is handled in the same manner as above, with the new constraints
replacing those that previously originated from this operation. The new temporal scope may also
introduce inconsistencies with respect to the start time and end time constraints posted with the
super operation. Such a situation is depicted in Figure 5-16. This does not indicate an actual conflict,
however, as the originator of the constraint is necessarily an operation possessing an incomplete
reservation for order. If the operation did possess avalid reservation, then the start time/end time

': constraint originating from its supporting lower level reservations would have prevented the
imposition of op's reservation for order at the outset. The start time/end time constraints posted by

" op will insure the eventual consistency of the reservations.12

otpl's reservationorigin: imposed; status: incompete

L oriin: generated; status: valid

I I

s1-1 01-1 •
sl.1I

*1-2 ol-2

Figure 5-16: Inconsistency among reservations residing at an abstract level

By reflecting the imposition of op's reservation for order, the super operation's reservation now
constitutes a commitment to the sequence of suboperations that includes op. As such, further
consideration of any alternative sequences of operations CONTAINED by the super operation should be
prohibited. This is enforced by generating and posting operation restriction constraints with each

Col adjust te temporal scope of the reservation belonging to the operation from which the start time/end tme
contriant oriiad to Iknwedlaly remove the inconsistency. If this aprOach is taken, it is also necessary to readjust the
teporal wAp the supe operation's reservation is subsequently removed. For simplicity, we will tolerate the temponry
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operation in the alternative sequences if the imposition of op's reservation for order represents the
initial commitment to the sequence of operations including op.

If any of the above actions result in a change to the super operation's reservation, the process is
recursively applied to the operation appearing in the range of its DURING relation.

5.2.3. Propagating the removal a resource reservation
The removal of a resource reservation with the parameters order op and resource has an inverse

effect on the existing collection of resource reservations. op's reservation for order is removed, and,
if the reservation's status was not invalid, any posted start time, end time, operation time bound, and

. operation restriction constraints that originated from op are retracted (if op's reservation was
previously invalidated, these constraints have already been eliminated - see Section 5.2.4). It op
resides at a level in the operations graph where physical resources are involved, resource's other
reservations are examined to determine whether any reservations that were previously invalidated
due to resource contention conflicts may now be restored. Otherwise, the above actions are
recursively applied to any reservation for order associated with a suboperation CONTAINED by op.

The removal of op's reservation for order is also propagated upward in the operations graph to the
super operation appearing in the range of op's DURING relation. Adjustments may be necessary to the
status and temporal scope of this super operation's reservation for order as well as the posted
constraints that originally resulted from this reservation. In considering these adjustments below, it is
once again necessary to distinguish whether the reservation was originally imposed or generated
during the propagation of a previous imposition.

If the ORIGIN the super operation's reservation is marked generated, then its existence is a
consequence of the impositions of its supporting reservations, and its resulting status must reflect the
current status of the reservations associated with the sequence of suboperations CONTAINED by the
super operation that includes op. Specifically, the super operation's reservation is removed if no
reservations in order's name remain for any of the suboperations in the sequence, invalidated if no
valid or incomplete reservations remain, or marked as incomplete if neither of the above conditions
are met. In either of the first two cases, any previously posted start time, end time, or operation
restriction constraints originating from the super operation are retracted as well.

If, alternatively, the super operation's reservation was originally imposed then its existence does not
depend on the existence of supporting lower level reservations. Its resulting status is necessarily
incomplete since there is now at least one supporting reservation (i.e. op's) that is no longer valid.
Nonetheless, it is necessary to retract any previously propagated operation restriction constraints if
no valid or incomplete reservations for order remain in the sequence of suboperations that includes
op.

Adjustments to the temporal scope of the super operation's reservation need be considered only if
the status of op's reservation was valid or incomplete, due to the similar nature of the invalidation
process. Assuming this to be the case, the action taken again depends on the ORIGIN of the super
operation's reservation. If the reservation was imposed, an adjustment is necessary only if op is the
Initial and/or final operation In the sequence of suboperatons CONTAINED by the super operation. In
this case the initial Imposition of op's reservation might have reduced the temporal scope of super

,% To ;% %" 9. - -. .9 . .-. 9 .9. .. . .
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operation's reservation (see Section 5.2.2), and the endpoint(s) delineating the scope of the original
imposition must be restored. The appropriate endpoint(s) can be obtained from the operation time
bound constraint previously posted with op (see Figure 5-17).

super op's reservation super ops reservation
origin: imposed,; status: valid origin: imosea; Status: incomplete

*op next OPnx

stfe elk"

o'mfe tmsI~~ f n.,os
reev reerato

I I.
al eelSi I-.--.-.-.---.-I s, I

2 2 s2 e2

a. before upward propagation b. after upward propagation

Figure 5-17: Adjusting the scope of a previously imposed parent reservation to
reflect the removal of op's reservation

It the super operation's reservation was generated, then its temporal scope is adjusted to reflect the
removal of op's reservation. This will result in either a reduction in the scope (if op was the first/last
operation in the sequence of suboperations CONTAINED by the super operation possessing a valid or
incomplete reservation for order) or no change (see Figure 5-18). Any adjustments made to the scope
of the super operation's reservation necessitate the propagation of new start time and/or end time
constraints to the other operations residing at this level in the operations graph.

If any of the above actions result in a change to the super operation's reservation, the upward
propagation process is recursively applied to the operation appearing in the range of its DURING

relation.

5.2.4. Invalidating and restoring resource reservations
The invalidation of a resource reservation can only occur at the lowest level in the operations graph

since this is the level at which resource contention conflicts are detected. Consequently, after setting
the reservation's status to invalid and retracting the start time and end time constraints that were
propagated as a result of the original imposition of the reservation, upward propagation of the
Invalidation is all that remains. This Is handled in precisely the same manner as that of propagating
the removal of a reservation upward.

;;_-, --,.: , ".:......-.....-.... ..
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"!'::,uper. op's resrvatoni Is.prop's re.
" !~oriain: nenerated status: va . origin:[tt s generatedin o pe

, stime eime

e~ime

opsformer Inext op's I next op's
U,"an rese rvation

a. before upward propagation b. after upward propagation

Figure 5-18: Adjusting the scope of a previously generated parent reservation to
reflect the removal of op's reservation

The restoration of a previously invalidated reservation can also only occur at the lowest level in the
operations graph. In this case, the reservation's status reverts back to valid, and appropriate start
time and end time constraints are posted with the other operations residing at this level. The
restoration is propagated upward in precisely the same manner as a newly imposed reservation.

. 6. Summary

In the preceding sections we have addressed some issues surrounding the organization and

utilization of constraints in time dependent problem domains. In doing so, we have attempted to
demonstrate the utility of an explicit representation of temporal knowledge. Let us reiterate the main
ideas of the paper.

We first considered the issue of constraint resolution in the context of constraints that may vary over
time with respect to the value(s) to be satisfied. In this case a constraint organization is required that
promotes efficient extraction of the relevant variant at any point in time from the collection of
constraints associated with the object being constrained. This was accomplished by associating a
temporal scope with each such constraint and relating the collection of alterations that have been
made to the constraint temporally. A constraint root was introduced to collapse the oryanization into
a single tree structure, and provide a common access point. The resulting organization afforded
simple mechanisms for constraint resolution (including the ability to import constraints, if necessary,
from higher levels in the model) and constraint alteration (both relaxation and strengthening).

We then turned our attention to the allocation of resources to activities, and considered the problem
of utilizing the temporal constraints imposed as this process proceeds so as to maintain the

.-. - A .. .,, . . ., . *, . , •. , . -. . . .



consistency of the hypotheses under development. A constraint posting approach was proposed as a
means of ensuring consistency, and techniques for propagating the constraints imposed by the
establishment, removal, invalidation and restoration of resource reservations to temporally related
activities were defined. These techniques were driven by the temporal relationships embedded in the
system's plan knowledge. This approach to resource allocation has been used to provide an
interactive scheduling capability within the ISIS-I job shop scheduling system [Fox 83b].
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I. The SRL schema construct
The basic representational unit within SRL is the schema. The schema provides a means for

constructing symbolic descriptions of concepts and is similar in spirit to the constructs found in other
declarative knowledge representations (e.g. frames [Minsky 75], concepts (Lenet 76], units [Bobrow
77]). This appendix provides a brief overview of its structure.

Syntactically, a schema is composed of a schema name (printed in bold font) and a set of slots
(printed in small caps). The slots collectively define the attributive, structural and relational properties
of a concept, and each may assume an arbitrary lisp expression as its value. A schema is always
enclosed in double braces with the schema name appearing at the top. Figure 1-1 illustrates these
basic conventions in defining an operation schema

((operation
OPERATION-TIME:
RESOURCE: ))

Figure I-1: A schema definition

Additional descriptive capabilities are made possible through the association of meta-information
with a schema. Meta-Information Is itself represented as a schema (referred to as a meta-schema),
and may be attached to any component of a schema (i.e. the entire schema, a particular slot in the

* .. . .. ./
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schema, or a particular value in a slot). The slots of an attached meta-schema (printed in italics)
provide information about the schema, slot or value. These slots are referred to as facets if the

,: meta-schema is attached to a slot. Figure 1-2 illustrates the attachment of a meta-schema to the
RESOURCE slot in the operation schema. The range facet specifies restrictions on the values

*~ RESOURCE may assume, and the delault facet specifies its default value.

((operation
OPERATION-TIME:
RESOURCE:

range:
default: })

Figure I-2: The attachment of meta-information

Schemata can be organized into relational networks through which information (i.e. slots and
values) may be inherited. Relations are represented as slots, as illustrated in Figure 1-3.

{milling-operation
IS-A: operation )}

Figure -3: Slots as relations

The relation associated with a slot is enclosed in single braces, with the relation type and target

schema (e.g. IS-A operation) appearing at its head. Opening a relation within a schema establishes a
particular view of that schema, and allows slots and values to be inherited from the target schema.
This information, which is unique to the view defined by the relation, is stored with the relation itself
and not directly in the inheriting schema.13 This is illustrated in the milling-operation schema
contained in Figure 1.4. In this case, the slots OPERATION-TIME and RESOURCE are inherited through the
"milling-operation is an operation" relation.

{{milling-operation

(IS-A operation
OPERATION-TIME:
RESOURCE: milling-machine 11}

Figure -4: Opening a relation

SRL provides two standard inheritance relations for purposes of constructing taxonomic
descriptions of concepts: IS-A (for relating prototypes hierarchically) and INSTANCE (for relating

1"Th is the re.lden y problem in situations where equivalently named attributes can be Inherited along different

relodoan
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*" instances to their prototypes). Mechanisms are also provided for defining specialized inheritance
relations that reflect the idiosyncrasies of the domain being modeled. The reader is referred
to [Wright 831 for an in depth discussion of these and other facilities provided by SRL.
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