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REFRACTION EQUATIONS FOR HYDRONS CONSIDERING
BOTTOM TOPOGRAPHY AND CURRENTS

by J. Ernest Breeding, Jr.
Department of Oceanography and Ocean Engineering
Florida Institute of Technology
Melbourne, Florida 32901

ABSTRACT

i
K;fraction equations are derived for hydrons (wave packets) in which the
water depth and current are both variable. A comparison is made of the re-

fraction equations obtained by different 1nvestigatorsk\

1. Introduction

The main purpose in this paper is to derive the refraction equations for
surface water waves which are moving in a variable current over a variable
bottom topography. A second purpose in the paper is to compare the refrac-
tion equations obtained by various investigators. Although the results are
presented for the example of water waves, the refraction expressions obtained
are applicable to all kinds of waves.

The waves are presumed to propagate in the form of wave packets. A
wave packet is obtained by the summation of all sine waves over a narrow
range of both frequencies and directions. Synge (1962) has suggested the
name hydron for wave packets associated with water waves. It is assumed that
wave properties such as the wave speed, direction, and wavelength do not

change much over distances of one wavelength. Ray curvature expressions are




derived following the procedure outlined by Laudau and Lifshitz (1959). The
water wave velocities are assumed to be much greater in magnitude than the
currents, and terms higher than first order in the current velocity are

ignored.
2. Hydrons in currents

An unprimed ccordinate system xy is fixed in space on the water surface.
A primed coordinate system x'y' is considered to be stationary with respect
to a water current and is moving with velocity U relative to the xy coordinate
system. The position vector T in the xy coordinate system and the position

->
vector r' in the x'y' coordinate system are related by

-
® = ut + )
where t is time.

For an observer moving with the current a hydron is expressed by

(Breeding, 1978) N +é T .
s ) J et - G't)
WAL S AW 8w (3)
f[Q-¢

where ﬂ is the displacement, A is the amplitude, -1: is the wave number, and
W 1is the radian frequency of the wavelets. The wave number @ and the radian
frequency O of the wave packet are defined by
. = Al (3)
C = AW . (l-l-)
The average radian frequency of the wave packet is denoted by fl and the band-
width is 2€.

It is important to note the distinction between 8k and Ak.

sa = |&+ okl - & =)
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The differential 8k depends only on the difference in the magnitudes of the
component wave numbers. The differential Ak depends on both the difference
in the magnitudes of the component wave numbers and their directions. The
directions of botht and sk with respect to the positive x-axis is Y. The
direction of A.l: with respect to the positive x-axis is denoted by 8. It can
be shown (Breeding, 1978) that

4 = MR we b (o)
where
éb=0-Y (1)
The velocities of the wavelets and packets relative to the current are
determined by hoiding the phases constant, respectively, in (2). The wave-
let (phase) velocity is defined by
v = % 3‘_ )
where ;k is a unit vector in the direction of 'l: The velocity of the wave
packets is called the geometric group velocity (Breeding, 1978), and it is
given by -, aw' A
G = EY W oo ¢ em 1)
where 3m is a unit vector in the direction of A'l:.

->»
When (1) is solved for r' and the result is substituted into (2) the

displacement is expressed Ij.y n4+e e a2
e‘u[i-a -(u'a-i-u)t] S AG) et[/w\o?t -(T 4+m u)t]m (10)
- fn-¢

From (10) it is seen that the frequencies in the fixed coordinate system are

defined by - -
Ws=w+hw (11)
T =9 4+ M 1)

Despite the difference in frequencies, the wavelengths A= 2Wk and L = 27/m
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are the same in both the xy and x'y' coordinate systems. The velocities of
the wavelets and wave packets in the xy coordinate system are found by taking

the time derivative of (1) and substituting, respectively, (8) and (9) to

obtain - - -
v =T +w
-~ ->
G = G +w

where v'-w'lk and G'= (WJok) cos ¢. If the current vanishes (13) and (14)
with definitions (8) and (9) are the same as obtained by Breeding (1978) for

the velocities of the wavelets and wave packets, respectively.

3. Snell's laws for hydrons for refraction due to bottom topography

and currents

Wave refraction is considered for the idealized case where a current is
directed parallel to a parallel set of water depth contours. Both the water
depth and the magnitude of the current vary in the lateral direction. The
refraction of the wavelets is {llustrated in Figure 1. A discontinuity in
both the water depth and current magnitude are indicated. The subscript i
denotes the incident wave while the subscript t depicts the transmitted (re-
fracted) wave.

The wavelet crest must be continuous across the boundary. Therefore,
as the incident wave crest advances one wavelength the refracted wave crest
also advances one wavelength. With respect to the fixed coordinate system
the time taken for a crest to advance one wavelength is the same as the
incident wave period on both sides of the boundary. However, relative to the
currents the wave period changes as the waves cross the boundary.

The angle of refraction is determined from the condition that the com-

(13)

(1%)
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Figure 1. Continuity of wave crest across a discontinuity in water depth

and current speed.
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ponent of the wave number parallel to the boundary is the same on both sides
of the boundary. The result is Snell's law
L AmY = W (15)
The angle Y is the angle the crest makes with the boundary or alternatively
the angle between the orthogonal to the crest and the normal to the boundary.
Since W remains constant in the fixed coordinate system (15) can be divided
b'y @ to obtain .
and = cowfent (16)
where with appropriate subscripts |
= 4wy a7
The phase speed v' is defined relative to the current, and w is the com-
ponent of the current in the direction of -l: The component U is given by
Ug = W A Y (18)

The refraction law can be stated

A o A (%)
v, + W A Y, V! o+ upAmY
Ifu i " 0 this result reduces to the one obtained by Johnson (1947).
The refraction law for hydrons is obtained in the same manner as is the
wavelet refraction law. A crest determined by the interference maximum of
the hydron (alternatively, the nodal line between wave packets can be con-
sidered) must be continuous across a boundary. Snell's law for the hydron is
M AN D = tavademk (20)
where © is the direction of W with respect to the normal to the boundary.
In the fixed coordinate system ¥ is constant on both sides of the boundary.

When (20) is divided through by O the result is
A ©

where the differential forms of (4) and (6) have been used. Further
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G*z G‘ + W (339
where G' is the speed of the hydron relative to the current and u =u sin @
is the component of the current in the direction of ®. The hydron refraccion
law, which is the counterpart of (19), can be stated
A;W"et - A 01
Gy + UphimB G +UyAim g

@3)

vhere G' is defined by (9).

In the absence of any curremts (23) reduces to the results obtained by
Stoneley (1935) and Breeding (1978). Stoneley used the result to determine
the direction of amplitude (group) fronts along monochromatic trajectories,

whereas Breeding used the result to define wave packet trajectories.
4. Ray theory and Hamilton's equations

There is a very useful analogy.between ray theory and particle mechanics.
Synge (1962) has used the dispersioﬁ relation for water waves to derive an
equation which is an analogue of the Hamilton-Jacobi equation used to solve
mechanical problems. Goldstein (1950), Landau and Lifshitz (1959), and
Lindsay (1960) discuss the similgrity between the eikonal equation for rays
and the Hamilton-Jacobi equation. In what follows the ray theory treatment
presented in articles 66 and 67 of Landau and Lifshitz (1959) for nondisper-
sive waves will be extended to dispersive waves.

A wave packet has two phases. The phase ¥ of the wavelets can be
stated

Y= haX Ay - wt (a4)
The wave mumber K and frequency W can be defined in terms of V.

1 =VVY (&5)

....................
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By definition k° = kxz + kyz -@5. Thus, substitutions for k., k, and G
v

yield

@ @ - L (&) - (a1
Additionally, the wave packet has the phase Y where
T = Mgkt gy -Tt (34)
Further -
= VT (3-9)
7 =-2 | (30)
Since m’ = mxz + myz - (0'2/G2) it is seen that
@)+ @ - L&) =0 1)

Equations (27) and (31) are first order partial differential equations
which are similar to the Hamilton-Jacobi equation. In mechanics S is the
action of a particle. The momentum 'B = YS. Hamilton's function H is the
energy of a particle and H = -3S/3t. The solution of the Hamilton-Jacobi

equation is equivalent to solving Hamilton's equations

i - ) )

> - - 9

Vo= 5% = Ve = 3% (33)
where in (33) V is the particle velocity. In ray theory the phases Y and Y
are analogous to S. The wave numbers Xand & are analogous to B, and Wand T

are analogous to H. Hamilton's ray equations can be expressed as

-.-.-sz-%% (34)

%:-Vv=-%§ (38)

-
* A W _ Jw A
=g=dg-itde, 3e)
-
In (34) k and T are independent variables whereas in (35) ™ and ¥ are
independent variables. In the absence of currents W is constant along a ray

(Landau and Lifshitz, 1959). Equation (36) is the velocity of the moving

..............................
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interference pattern which constitutes the wave packet. If there are
currents (36) becomes the same as (9).

Equation (34) can be derived on the assumption that there is conserva-
tion of the wave crests (Phillips, 1977). The partial derivative of (25) is
taken with respect to time and (26) is used. Since i and T are independent
variables dk/dt = ?k/at. The result is (34). The one-dimensional form of
this equation was derived by Rossby (1945). In a similar fashion (29) and

(30) can be combined to obtain (35).

5. Ray curvature formulas for wavelets, packets, and rays

i
-_ Ray curvature expressions will be developed based on the method pre-
sented in articles 66 and 67 by Landau and Lifshitz (1959). It is assumed

that v, G, and u are functions of x,y. In addition u << v, u <« G, and

! - terms higher than first order in ¢ are neglected.

:

g 5.1 Ray curvature for wavelets. Equation (11) is substituted into (34)

. to obtain

’ % = - AVV -V (XX (37)

where v' = ' /k. It is convenient to employ the vector identity

vR-E) = L.v&% +Rx(vxd) + L. 9R & Ux(oxd) (38)
The last two terms on the right hand side of (38) are zero since E and ¥ are

independent variables. Therefore

¥ ST 98 15 SR 240 (39)

FY
An alternative expression can be derived for dk/dt. Let the unit

A >
vector e, = k/k. Then » A
Mo 4% L5 Ak

8
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when (39) and (40) are combined and the result simplified it is found that

a'e"- A - A &L
T = - Vv - g vl - n (VALY -~ T & (4+1)
Since ek-ek = ] it follows that
I
N
Co g%é;" =0 ¢+

Thus 'e\k and dgk/dt are perpendicular. The unit vector ?"k is taken tangent to

the wavelet crest, :I. e., perpendicular to Iék. Then

A A A >
_& M & e [ovt £ & v + &g x (vxl)] (4+3)
where Y denotes the direction of ‘l: with respect to the positive x-axis.

Equation (43) simplifies to
L] t
L P R L AL

% o (44)
£ AMY oY (%‘i‘- %‘—;"’) -t e aau;

If v' is constant (44) reduces to Zermelo's result reported by Arthur (1950).

The component of the current in the direction of 'l:, denoted by uk, is

given by A -
I s S C+5)
It can be shown that (44) is equivalent to
&Y

IT c A.W\.Y-g—('\: + Ul -~y 2 S (vt uy) (%6)

%

This result was obtained by Arthur (1950).
The arc length along the trajectory of an orthogonal to a wavelet crest

is defined by dsk = (v' + uk) dt &~ v' dt. As a result (46) becomes

= L [y I (W) - oY (e )] +7)

This expression defines the ray curvature of the wavelets, and is a differ-

ential form of Snell's law (19). If there are no currents (47) reduces to

the expression derived by Munk and Arthur (1952) and Arthur et al. (1952).
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5.2 Ray curvature for wave packets. The ray curvature expression for the

hydrons is derived in the same manner as is the ray curvature expression for

the wavelets. It is found that

0 _ - (48)
%’T_A»W\e (G"‘u/w\) cod-© *(G". )

where ©, the direction of the hydron, is in the direction of ™ with respect
to the positive x-axis, and um is the component of the current in the di-

rection of m. The ray curvature of the hydron is defined by

%.—. L[ame g (c+un -me%,(e'+um)] (4+9)

where dsm is an arc length along the trajectory of an orthogonal to a hydron
crest (interference maximum of wave packet). This result is comparable to

Snell's law (23). In the absence of currents (49) reduces to the result

presented by Breeding (1981).

5.3 Ray curvature for rays. Equation (14) can be written

s
R Y (50)
Consider the derivative d(ﬁa)/dt where (50) is used.
-5 1 *
%’;(N&a)=6'% +fv:\-§ +m%‘ +'&§-f,‘_" (51)
For a wave packet, in place of (39) it follows that
<
:I”'t-': = = mT6 - V3 = X (TXY) (53)
For steady state 3G'/3t = 0 and 9u/ot = 0. Therefore, along a ray
&6 _ 2 o (53)
3t - G+.V6
- -
W _ .o
§E=6-v& (&%)

When (50) is substituted into (54), and only the first order term in O is

retained, it is found that

10
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o % _ 6 . VR (s5)
o N

xt
(t. The substitution of (52), (53), and (55) into (51) yields
~ >
) %(M?,) = _o'mVe — GAX(TXX) + M (.V6') + u%”‘ (S6)
E: Since u << G, and by neglecting terms higher than first order in u, an

approximation to (56) is obtained

% (B = -6 mMYE - mEe X (TxW) + me (E-V6') + U %’“—t" (87)

A >
where the unit vector e = G/G.

N Also

T & (m)=0 & ACn

a MG - e

N y Ty ) &t —(M.B) + MG 2t (58)
where gr and d@r/dt are perpendicular. A unit vector normal to Qt will be

-5; denoted by %r. Equations (57) and (58) can be combined to obtain

o A

: den

I= =-V6' - x(yxi) +~«G'E' + eﬂ[— G -ve) - doime)]  (39)

Lﬁ The third term on the right hand side of the equation can be neglected since

éﬂ u €< G and since the wave properties are assumed to change little over dis-
i tances of one wavelength,

iﬁ The direction of the ray, i.e., the direction of Qr with respect to the
o)
=
15} positive x-axis is denoted by £. Then

at h

&P _ A §n A 1A A >

-
e For surface water waves only the vertical component % of the vorticity affects

the ray trajectory. The z-component of (V¥ X ) is given by
I\ : > A (18 u
i L=4h (%‘xx - %T;) (o1)

Simplification of (60) leads to

..‘ & _ ) 6 . v _ Juy
2 = - A Pz = Cotp 5 + aL:* E T (63)

11




Further, since dsrzs G' dt, where dsr is an element of arc length along the

ray, it is found that

& _ ) /. ' 1Y 3
T = e i -onp By + B3 - 52) (62)

This is the ray curvature expression for the rays. If the currents vanish

(63) reduces to the result obtained by Breeding (1981).

6. Discussion

Equation (63) defines the trajectories of rays, and yields the paths of
constructive interference of waves (wave packets) accounting for the refrac-
tion effect of bottom topography and currents. At each point along a ray
the packet direction @ is determined by (49) and the wavelet direction Y is
determined by (47). The behavior of the waves is more complicated if there
is dispersion than if there is not.

The phase speed v and conventional group speed U = JW/3k of a surface

gravity water wave for water of arbitrary depth h are given by (Lamb, 1932)

v= (& b H\)”' (6%)

T FLEN
u=%(+ =) (65)
If there are no currents the velocities 3 and 3’are in the same direction
(Phillips, 1977; Breeding, 1978). If the waves are carried by a current then
> -» b 4 -
U' and v' are in the same direction but U and v are not.

Under certain conditions (64) and (65) can be simplified. 1If

tanh kh = 1, a condition which defines deep water, then
L
-~
v = (5*:)
L'}

U

(6b)

> (67)




Shallow water can be defined by the condition tanh kh = kh. In this event
U= = (3h)> (68)

?' In shallow water the waves are not dispersive. For all other water depths

- the waves are dispersive.

6.1 No dispersion. Without dispersion (14) becomes

G = ‘\I'é_k + & ®)
- The ray curvature expressions (47) and (49) are equivalent, i.e., ©=Y,
However, the rays are not normal to the wave fronts, i.e., P#Y. Arthur

(1950) considered the refraction of shallow water waves moving in a current

over a topography with variable water depth. In the event there are no

currents the ray curvature expressions (47), (49), and (63) are identical.

e Then P = © =Y, If in addition v is constant Y does not change.

6.2 Dispersion. When there is dispersion and refraction occurs due to both

- bottom topography and currents the directiomns P, 0, and Y are all different.

There have been several investigations in which refraction is considered due

to only bottom topography or only currents. If there aren't any currents
:3 the ray curvature expressions (49) and (63) are equivalent.

Johnson (1947) used (19) to determine the angle of refraction for deep
water waves arriving at an angle to a linear current. In deep water there is
no refraction due to bottom topography. Only the change in the direction of
the wavelets was considered.

Kenyon (1971) considered the refraction of wave packets by currents in
> deep water. He used Johnson's (1947) refraction result to obtain the di-

rection of the wavelets. Ray trajectories were determined using the ray

curvature equation

13
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_— = (70)

This result follows from (63) if only the current refraction terms are re-
tained and G' = U'. Kenyon's method was also used by Teague (1974).
Independently of Kenyon (1971), Breeding (1972) used what is essentially
the same method to determine the refraction of wave packets by bottom topog-
raphy. The wavelet direction was determined using Snell's law with phase

velocity. The ray trajectories were determined using the ray curvature

equation
). | . 1

where 8=P. As does (70), this equation follows from (63) if G = U, except
that the refraction terms involving bottom topography are retained instead
of the terms in U.

The refraction method used by Kenyon (1971) leads to a prediction of
different directions for ‘l}' = '\.J - 0 and ;', whereas Breeding (1972) obtains
different directions for [} and V. These results are inconsistent with the
definitions of the conventional group velocity and phase velocity for sur-
f.ace water waves. However, the trajectories obtained in this fashion can be
a good approximation to those determined using (63). This is the case for
refraction due to bottom topography if $= @ -Y has small or moderate val-
ues. It is also the case for refraction due to currents if additionally
P2 © where @ is determined by (49).

When refraction occurs due only to bottom topography (47) reduces to
the result obtained by Munk and Arthur (1952) and Arthur et al. (1952) for
wvaves moving with phase velocity. This ray curvature expression has been
widely used to determine the trajectories of hydrons on the assumption that

the hydrons follow the same paths as monochromatic waves. However, these
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=) trajectories do not coincide with the paths of constructive interference

L which are obtained by the superposition of individually refracted sine waves
{ to construct wave packets.

& Considering refraction due to bottom topography, Breeding (1978) used
(63) to determine wave packet trajectories. The wavelet directions were de-

termined using Snell's law with phase velocity.
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