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1. Introduction The following procedure, which is used in certain clini-

cal studies, may serve as a motivation for the considerations in this paper.

Suppose that k new treatments have been developed with the purpose of

replacing the standard treatment with the best new one, provided that it is

actually an improvement on the standard treatment. In a pilot study,

each new treatment is applied several times and screened out if it is not

considered to be significatly better than the standard treatment. Hereby,

judgement is gained through suitable statistical tests at a fixed level of

"o" If all k new treatments are eliminated the standard treatment will

not be replaced. If exactly one new treatment is not eliminated this will

be taken as a replacement. In all other cases, the remaining treatments

are further examined in a follow up study through additional applications,

and finally that one which appears to be the best will be used as a replace-

ment of the standard treatment. The natural questions of how to choose the

tests in the first stage and the terminal decision in the second stage are

the topic of this paper.

Let nl'* k be k populations associated with unknown parameters

I. l k  _Esl : IR. Let eO(o be a control value which may be known or unknown.

In the latter case, assume that there is also a control population "0. A

population -i is considered to be better than no if ei > 0, i=l,...,k. The

goal is to determine, in two stages, whether there is any population better

than the control and, in the affirmative, which one is associated with the

largest parameter. Assume that samples X = {Xij}j=1,... ,ni, i=O,l,...,k,

and Y. {Y. ... ,m ,  = l,...,k, can be drawn from 0,yfit,... 97tk at
-J 13
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the first and at the second stage, respectively, which are mutually inde-

pendent. Let {f01e I be a given family of densities with respect to p,

the Lebesgue measure on IR or the counting measure on any lattice in m,

and assume that for every ie {0,l,...,k} all observations from fi have a

common distribution with density f i. Later on, after Theorem 1 has been

proved, we will make the additional assumption that for every sample Z of

size n from one population there exists a sufficient statistic T n(Z) such

that the family of joint densities has nondecreasing likelihood ratios

in Tn' For notational convenience let them be in the following denoted by

U. = T (Xi), i = O,1,...,k,.V= T (Yi), and Wi 
= T i=l,...,k.

Sni 1 mi 1i' ni+mi(iYi il..k

To simplify the presentation the case of a known control value e will

be considered first. Before we define a natural class of two-stage pro-

cedures in a concise way, let us briefly describe how these procedures will

be typically applied. For every testing problem H.: i < 0 versus K.: e i >0
1 1-

the experimenter chooses a test based on Xi with a fixed level a and another

test based on (Xi,Yi) with a variable level a .. At Stage 1 he discards all

populations which are not significant at level a under the first set of

tests. If none(exactly one) is left, he decides that none (this one) is

better than the control and is the best population. If more than one popu-

lation survives he proceeds to Stage 2. At Stage 2, he draws additional

samples Yi from those populations which have been selected at Stage 1 and

makes a final decision in favor of that population among the selected ones

which has the smallest p-value (i.e. is most significant) under the asso-

ciated second test.
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If these tests are upper level tests, which for simplicity may be non-

randomized for a moment to fix ideas, based on some real-valued statistics

Ui and Wi, say, i = l,...,k, then the procedure considered above can be
io I s

equivalently described as follows: At Stage 1 all s are selected with

Ui > ci (where ci is the 0o-fractile of Ui under ei =o) , and a final

decision is made in terms of the largest Wi among the selected s.'s. The

truncated versions of such procedures (i.e. which perform Stage 1 only)

have been studied by several authors, see, for example, Gupta and Sobel (1958)

- and Lehmann (1961). For further references see Gupta and Panchapakesan

- (1979) Chapter 20. Some preliminary results concerning two-stage procedures

of the type described above in the case of nI = ... =n and m ... = mk

can be found in Gupta and Miescke (1982), which include a comparison with

the one-stage analog by Bechhofer and Turnbull (1978).

To begin with, let us point out that several definitions given in Miescke

(1979) will be relevant in the sequel but for brevity are not repeated here.

Especially, tests may be randomized ones taking values in [0,I]. This typi-

cally occurs in discrete cases or in continuous type cases where nonparametric

(rank) tests are under concern. Thus significance statements as well as p-

values are understood to be based on additional randomization schemes as are

used in Miescke (1979). To be more specific, let A = (Al,...,Ak) and

B = (Bl,...,Bk) be the randomization schemes for the first and the second

stage, respectively. Note that the X.'s, Yj's, A and B altogether are

assumed to be mutually independent.

The class k of two-stage procedures. For i = l,...,k, let yi = {rpia}a[Ol]
be a right continuous and monotone (in a) unbiased test for Hi versus K. which

1 1
vesu K hc

.7
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is standardized at ei = eO. Assume that oi ,l  1 outside of the support of

the distribution of X i at ei = 0. Let ! y°  ) where

0 < < 1 is fixed. Analogously, let 1 = [',1ia[O'l] be such a test for

H versus K based on(X,Y). Let _ = (*1..,k)  Let h be the class

of all procedures of the following type (T. 13L ):

0

Stage 1: Select 7i if p ((X.i,Ai), the p-value of X.i under pi , is

smaller than a , i = 1,...,k. If none (exactly one) of the

populations is selected, stop and decide none (this one) is

better than r and is the best population. Otherwise pro-

ceed to Stage 2.

Stage 2: Among the selected populations decide finally in favor of

that nj which has the smallest p-value X.,Y.,Bj) under

.°°.
0j.

The following result will prove to be useful in various aspects, except

for the important question of how to optimize the component j in (o' ,k).

0:-]iTheorem 1. Let ( p ,p)E&. For notational convenience, le E = E0i('oi1  (X1i))

0 k 1

and F.(a) = E (y. (Xi)ia(Xi,Y.i)), af[O,l], i - l,...k, oE k . Then for
ei1a I~ 0 1 -1

every non-empty D c {l,...,k} and eEsk,

(1) P0  {final decision falls into D)

= 0 ii [1-Fj(a)] d(l- II [l-Fi(C)]),
O. jD iED

(2) P {final decision is in favor of i.2: e

.- 1k
f [l -(ot)) dF.(a), i =l,... ,k,
0 j=l

j#i
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(3) P0  {final decision is made at Stage 1 in favor of 7i)

k
.,- I ( - E.] Ei, i =k,
"- j=l

joi

(4) Pe {final decision is in favor of the control)

k
-I [l - E..

j=l

Proof: It has been shown in Miescke (1979) [cf. (2.3) - (2.5) loc. cit.]

that the distribution function of each p-value appearing in (q_ ,_)

equals to the power function of the corresponding test, which is a contin-

uous function of aE[O,l] at every fixed parameter point, and which at

= 1 assumes the value one.

Let now D be a non-empty subset of {1,...,kl. For j 1,...,k, let

p* (X.,Y.,B.) be equal to p (X.,Y.,B.) if p (X.,A.) <a and let it be
_j _jJ *j j _j 'Pi J -0

equal to 1 otherwise. Then it is easy to see that the l.h.s. of (1) is

equal to

P I min p* (X.,YI,Bi)} < min p* (X.,Y.,B.))}- iED Pi (i  j9D {P j _

Since for iE{l,...,k} and ei C, Poi {p* (X.i,Yi,Bi) < a} is equal to

Fi() if 0 < < 1, and is equal to 1 if = 1, (1) follows by standard

arguments. (2) is a special case of (1) which was stated only because of

its relevance in later applications. The verification of (3) and (4) is

straightforward and therefore the proof is omitted.

4. ' ' . ' ' ' " " - - - - . .. . . .... L .. " , . -
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Remark 1. It will be shown in Section 2 that under the assumption of mono-

tone likelihood ratios (MLR), every ( o,_)E& is dominated by (o *
0 0

if nI + mI  ... nk + Mk, where ip* consists of the uniformly most power-

ful (UMP) tests. Hereby the results of Theorem 1 will not be of great help.

There is, however, a particular situation where (1) and (2) can be used

for a similar purpose. Suppose that the data of Stage 1 are not available

but the information which populations have been significant is a hand. Then

one has to use tests at Stage 2 which depend only on the Yi's from the

selected populations. In this case every Fi(a) factorizes into the product

of the two power functions of cpi and i , respectively, and therefore

(1) and (2) are completely determined through these power functions. For

example, if D+(2.)= {i l ei > 00, iE {l,...,k} is not empty, then (1)

for D = D+(e) is maximized by the procedure which uses the UMP-tests at

* . both stages. This is true even if the n. + m.'s are not assumed to be all

equal. Since these and related results in such a special case, however, are

considered to be of less statistical importance they will not be discussed

in further detail.

In the case of an unknown control parameter 00 some obvious changes

have to be made. First of all the tests qpi , o depend now on (X.,X

i=l,...,k, whereas * remains the same as before. Let V denote the class

of two-stage procedures of the type (o ,. ) in this case. The analog of
0

Theorem 1 for ' can be attained by replacing the right hand sides of

(1) - (4) by their integrals with respect to the distribution of X0" If not

• explicitly stated otherwise, the results to be derived in the sequel for O

have analogous counterparts for ' which will not be formulated or proved

for brevity because of the close similarities.

°4,

. ..-
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2. Optimality Results For MLR-Families. In the following let D+(e) =

f{ile i > 60, iE{1,...,k)} be the "good" populations and D_(_) = {1,...,k)

\D+(6) be the "bad" ones, o EQk Also let us partition the parameter space
-' k ino k  k  k sya-into f2- = {e 18 i < O i = 1,...,k} and its complement Q+, say. A

procedure is said to make a correct selection (CS) at eEz k if all populations

are eliminated at Stage 1, and it is said to makea correct selection at eEazk

if a final decision is made in favor of a population with the largest 8-

value. Let the goal be now to find a procedure in 8 which has a large proba-
Ik

bility of a correct selection (PCS)on ok. From now on we assume that the

family {fe oEz has the MLR-property as specified in Section 1. Then the

following partial solution to our problem can be given.

Theorem 2. Let (o' - j) E. If nI + mI = ... nk + mk and 1 = =k

k
then for all _E Q

(5) ! P()_ {CS under (Tao)} < P(o) {CS under (T aos*)}

where ;* consists of the UMP-tests for Hi versus Ki, i = 1,...,k,

which in this case are all identical, and where the summation is

with respect to all k! permutations of (1,... ,k). a(e) = ,.(l)..e(k)).

Proof: Only an outline of the proof will be given since it follows by similar

decision theoretic arguments as have been used previously in Gupta and Miescke

(1983).

Under the assumptions stated above, the associated decision function of

( p ,P) which determines final selections at Stage 2 is permutation invariant.
0

The loss function which is implicitly employed is zero if a correct selection
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is made, and is one, otherwise. Its component which is associated with

final selections at Stage 2 is permutation invariant and favors selections

of populations with large parameters.

Let now _ k be fixed and, in a Bayes approach, assume that the unknown

parameter vector is random and has a prior distribution which gives equal

* mass I/k! to all permutations a(O) of e. Then the posterior distribution

of the parameter vector, given Wi = wi , i = 1,...,k, has the decreasing in

transposition (DT) property. From this fact and the properties of the loss

function stated above it follows that the optimal final decision at Stage 2

is the natural one which is made with respect to the non-eliminated popula-

tion with the largest Wi , where ties are broken at random. Clearly this is

equivalent to selecting the non-eliminated population with the smallest p-

value under test p*. The proof is now completed by noting that (5) gives

a comparison of the corresponding Bayes risks, where of course at all

O o k the probabilities of a correct selection are the same for both proce-

dures.

Corollary 1. If, under the assumptions of Theorem 2, additionally

n= ... = nk and coI l is given then for all eEslk

(6) P_ {CS under ( 0, )} <_P{CS under (% ,i*)}
0-

Proof: Since both procedures considered here are completely permutation

invariant, and since also the 0-1 loss function employed is permutation

invariant, their risk functions are symmetric functions of _ . Therefore

.. . ... ° .. ,.o . ..... .. . . . . . . ..
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all summands on the l.h.s. of (5) coincide and the same holds for the sum-

mands on the r.h.s. of (5).

Remark 2. The proof of Theorem 2 actually applies more generally to the

following situation. No matter of how the populations are eliminated at

Stage 1, if nI + m1 = ... = nk + Mk, and if only permutation invariant

final decision functions are admitted at Stage 2, then every Bayes procedure

w.r.t. any symmetric prior employs the natural rule at State 2. Of course,

also from a non-Bayesian point of view, (5) is an intuitively appealing

criterion. It simply reflects the lack of knowledge of how the sample

sizes are associated with the k ordered populations parameters. Since

there is not even an approximately similar result available in the case of

unequal n i + mi's, it is strongly recommended to "repair" the design of

every experiment with unequal ni's by choosing the mi's appropriately to

get equal overall sample sizes. Let us assume from now on that nI + m

n k + mk = N, say, holds.

Actually, in various selection problems authors have chosen their

designs such that the statistics on which the natural final decision rule

is based have joi-nt distributions with the DT property. To mention a

few relevant examples, Bechhofer (1954), Bechhofer, Dunnett and Sobel (1954),

and Dudewicz and Dalal (1975) have done so to be able to implement their pro-

cedures at certain specified performance requirements. It may now be added

that exactly in these designs the employed natural final decisions are optimal

in terms of the risk or the PCS, respectively, uniformly on all parameter

configurations.

Lack of the DT property in distributions of statistics used for final

4
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decisions, in cases where this property could be attained in principle,

should be considered as pathological designs. Even in the simplest case of

a one-stage selection procedure serious difficulties arise, as may be illu-

strated by the following problem which was emphasized by Bechhofer (1982).

Example. Let" . be independent sample means with unknown expectations

l and with known but different variance ql,...,qk generated from k

normal populations. For the problem of selecting a population with the

largest e-value no procedure exists which has a largest PCS, uniformly in

eE IR k If k = 2 the natural rule is Bayes w.r.t. independent priors N(O,ql)

and N(O,q2 ), respectively, and it can be seen to be admissible under the 0-1

loss function. However, if k > 3 the natural rule cannot be Bayes with

respect to any (multivariate) normal prior. The question of whether it is

admissible is still open. On the other hand, for every normal prior with

expectation (0,...,0), for which the posterior distribution has

the DT -property (which leads to a simple solution) the Bayes rule selects

in terms of the largest Xi/qi, i = 1,...,k.

In the remainder of this paper only procedures of the type (.,*)E
0

will be considered. This is justified in view of the assumption n1 + m1 =

. nk + m = N and of Theorem 2. The following resulti, which generalizes
kk

Theorem 3 of Gupta and Miescke (1982), can be used to find least favorable

parameter configurations (LFC) of such procedures on suitable subspaces of
• k

Theorem 3. Let (a ,j*)E* where for every i E{l,...,kl the power function

of Ti is nondecreasing in ei. Then the performance characteristics con-
0

-°

. . . . . . . . .

.
.° ..............



sidered in Theorem 1 have the following monotonicity properties. (1) is

nondecreasing in e, liED and nonincreasing in ej, itD. (2) and (3) are

nondecreasing in e. and nonincreasing in ej, j $ i. (4) is nonincreasing
in 3l ,...,o

, Proof: The assertions concerning (3) and (4) are obviously true. To

k
prove those concerning (1) and (2) note that for iE {l,...,k) , o k

and aE [0,1],

(7) F.(a) EEi{,p, (x.,Y f)I P (X.,A.) < ao

1 8. (ci -100'- ~ p 11 0 -

The first factor on the r.h.s. of (7) is nondecreasing in oi according to

the assumptions made above. The second factor can be seen to have the same

property by applying Theorem 1 of Simons (1980) which guarantees that for

- every sample from a MLR-family, conditionally on any proportion of the

information in the sample which one might choose to extract, likelihood

' ratios are still stochastically nondecreasing. Since *ti (X.,Y.) is a non-

decreasing function of W, the proof is completed by noting that A. could

be ignored since the arguments apply to every situation A. = ai , where

a E [0,1] is held fixed.
1

Corollary 2. Under the assumptions of Theorem 3,"let n1 = ... = nk and

.,. Then for every_ 2.E 2 k with' 1 < <k , the proba-=t .. =Yk,a 1 < _ k

bility of a final decision in favor of population i is nondecreasing in

i E {l,... ,k}

Proof: Given the assumptions above it can be seen from the proof of Theorem 3

that for e <.. <ek

. . . . . .. . .. .. ., . _. .. .. : .. . . - . . . . , .- . . '.. . . . .
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(8) F( F) < F k(a), aE [Ol)

Therefore the assertion follows from (2) by the same technique which was

used in (IV) of Miescke (1979).

Theorem 4. Let (T., _*)E8 where consists of consistent tests. Then
o 0

for increasing sample sizes ni and mi = N- ni , i = l,...,k, the probability
kk

of a correct selection tends to one at all E and at all eEa k with

e< i = ...,k.

Proof: If e k with exactly one coordinate greater than eO, or if 61E 92

with e. < 0O, i = 1,. ..,k, the assertion follows immediately from (3) and

(4), respectively. For all other E k the probability that all populations

7 i with oi > e0 will not be eliminated at Stage 1 tends to one. Moreover,

Pa {Wi > W. for all j i} also tends to one if ei is the unique maximum

of 61i... ,6k.  This can be seen as follows. Selecting in terms of the

largest W. is equivalent to selecting in terms of the smallest p-value under

tests j which are essentially the same tests as *t but now standardized at

ei. By Theorem 2 of tiescke (1979) it follows that

(9) P_ {Wi > Wj for all i i = i [l-E(j,(X,Y))da,

which now can be seen to tend to one if N tends to infinity. If, however,

all the good populations are not eliminated at Stage 1 and Wi > Wi, for all

j 0 i, then a correct selection is made. This completes the proof in the

given parameter configuration. The case of more than one best population

can be treated similarly.

,%.
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Focussing now on the first component o in the procedures (E ip *) E, the
Ta0 .0

natural choice is of course sC which consists of the corresponding UMP-
0

tests for H. versus K. based on Xi, or more precisely, based on Ui ,i =,...,k.

Even though such a choice cannot be justified (not even in the case of

n= .. = nk) by an overall improvement on the PCS, several strong reasons

can be quoted in support of choosing (S ,tP_). First, of course, all
0

results derived hitherto hold for this procedure. Second, the following

can be stated.

Theorem 5. Among all procedures in ig, (o* , *) maximizes
a0

(10) P {CS} at every e ca k ,

kk

(11) Po { CS at Stagel} at every eE p+ with exactly one oi > 00,

(12) Ee (number of good populations selected at Stage 1) at every E k

(13) Ee (number of bad populations eliminated at Stage 1) at every -ECk .

Proof: (10) follows from (4) and (11) follows from (3). All arguments are

standard and are based on the well known properties of the power functions

of the UMP-tests * ,i = ...,k. Therefore, no further details will be

given.

Third, all permutation invariant procedures (o o' except
0 0

ifself, can be modified, without changing the sizes of the selected subsets

of populations at Stage 1, in a specific way which leads to an improvement

on the PCS, provided that the family {fo } B E l is a strongly unimodal

exponential family. It should be noted that the modified procedure is also

based on tests but is no longer a member of the class 6. More precisely,

from Corollary 2 in Gupta and Miescke (1983) the following result can be derived.

- - s .. .
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Theorem 6. Let {f6}0 E be a strongly unimodal (i.e. log-concave) expo-

nential family. Then every (T , *)E with nI  = k= n ad Ia 0  .="--

can be improved by simply replacing the selected populations at Stage I by

the same number of populations, but now by those which are associated with the

I klargest Ui s, where ties are broken at random. Then for all eE ,

(14) P {CS under (- ' *)} < P0 {CS under the modified procedure .
0u-

3. Applications With Illustrations In The Normal Case. In applications the

procedure ( o, *) usually will be implemented as to meet certain perfor-
0

mance requirements. This will be described in this section and will be illu-

strated by the example of k normal populations N(ei, 2) i = 1,...,k, where

Ui and Wi are the corresponding sample means, i = 1,...,k. Here the procedure

can be considered to be the two-stage analog of the one-stage procedure by

Bechhofer and Turnbull (1978). At first consider the basic requirement

(15) inf{ P {CS under (E i k
0o

where P* is a predetermined constant. In view of (4) this can be accomplished

by choosing a to satisfy
0

(16) (1 - ) =

Then in the normal case the procedure is of the following form. At Stage 1,

population Ti is selected if n " 2 (Ui 0) / ai > tl(1  - i = i,... ,k,

where t denotes the c.d.f. of N(O,l). And at Stage 2, a final decision is

made in terms of the largest W. from the selected populations.

Since (15) actually involves only the properties of the procedure at the

.4
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first stage, the P - condition can be attained by employing techniques

used for one-stage procedures. Thus (15) can be solved by taking recourse

to relevant papers in this area. For further details see Gupta and

Panchapakesan (1979).

A second requirement will typically employ the indifference zone

approach which is due to Bechhofer (1954). Let A > 0 be fixed and let

e k + A > 0, 61k for some i}. Now

consider the requirement

(16) inf [P_ CS under (e o k I e*
0

where PT is a second predetermined constant. Even though Theorem 3 can

be used to find the LFC, it is technically too difficult to attain (16)

exactly. Therefore, the following conservative approach, which over-

protects the experimenter with respect to (16), is recommended and is easy

to perform. Let eek with ei = max {el,..., )k} , say. If population

" i is selected at Stage 1 and Wi is the unique maximum of WI,...,Wk then a

correct selection is made. Therefore if the following two conditions are

fulfilled, and 81 and 82 are chosen to meet 81 + 82 - 1 = then

by Bonferroni's inequality it follows that the l.h.s. of (16) is not

smaller than Pt. The conditions are
Eeo+  (X )) > 1  j 1 ,..,k, and

(17) E) a( (
0 Jc 0  - 1 j,.,~n

(18) inf P {Wl > W2"'"Wk) E Q I > 82

In the normal case it is well known (cf. Tamhane and Bechhofer (1979))

that Slepian's inequality leads to better results than Bonferroni's inequality.
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Use of the former allows to choose al and 8 2 according to the condition

812 Pt which is preferable since 81+ 82a 1 8182a for 0 81al82 < 1.

To meet (17), standard techniques from the theory of testing hypotheses

*-can be used. And (18) can be attained by using results of single-stage

selection procedures in the indifference zone approach due to Bechhofer (1954).



- 17 -

REFERENCES

[1) Bechhofer, R. E. (1954): A single sample multiple decision procedure
for ranking means of normal populations with known variances.
Ann. Math. Statist. 25, 16-39.

[2] Bechhofer, R. E. (1982): Private communication.

[3) Bechhofer, R. E., Dunnett, C. W., and Sobel, M. (1954): A two-sample
multiple-decision procedure for ranking means of normal populations
with a common unknown variance. Biometrika 41, 170-176.

[4) Bechhofer, R. E. and Turnbull, B. W. (1978): Two (k+l) - decision
selection procedures for comparing k normal means with a specified
standard. J. Amer. Statist. Assoc. 73, 385-392.

[5] Dudewicz, E. J. and Dalal, S. R. (1975): Allocation of observations
in ranking and selection with unequal variances. Sankhya Ser. B 37,
28-78.

[6) Gupta, S. S. and Miescke, K. J. (1982): On the problem of finding a
best population with respect to a control in two stages. In
Statistical Decision Theory and Related Topics III (Ed. Gupta, S. S.
and Berger, J. 0.), Vol. 1, 473-496. Academic Press, New York.

[7) Gupta, S. S. and Miescke, K. J. (1983): Sequential selection procedures -
A decision theoretic approach. Mimeo. Ser. #82-6, revised July 1983,
Dept. of-Statistics, Purdue Univ., W. Lafayette.

[8) Gupta, S. S. and Panchapakesan, S. (1979): Multiple Decision Procedures:
Theory and Methodology of Selecting and Ranking Populations.
J. Wiley, New York.

[9) Gupta, S. S. and Sobel, M (1958): On selecting a subset which contains
all populations better than a standard. Ann. Math. Statist. 29,
235-244.

[10] Lehmann, E. L. (1961): Some model I problems of selection. Ann. Math.

Statist. 32, 990-1012.

[11] Miescke, K. J. (1979). Identification and selection procedures based

on tests. Ann. Statist. 7, 207-219.

[12) Simons, G. (1980): Extensions of the stochastic ordering property of
likelihood ratios. Ann. Statist. 8, 833-839.

[13) Tamhane, A. C. and Bechhofer, R. E. (1979): A two-stage minimize pro-
cedure with screening for selecting the largest normal mean (I1):
An improved PCS lower bound and associated tables. Commun. Statist. -
Theor. Meth. A8, 337-358.

.. . . . . . . .."



3S9CUNIIy CLA0&ICATtON Ot 141S PA03i 5,.i.m Il* Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMAPLETING FORM

0. A T NNUMBER .. 'OVT ACCeSSION NO. 3. RECIPIENT'S CATALOG NUMBER

Technical Report #83-39... .

.1 TITLC (ad Sse Wd.) .ITYPZ OF REPORT & PERiOD COVERED

TWO-STAGE SELECTION PROCEDURES BASED ON TESTS* Technical

4. PERFORMimG ORG. REPORT NUMBER

Technical Report #83-39
U. T NOR(s) 4. CONTRACT OR GRANT NUMBR(e)

Klaus J. Miescke N00014-75-C-0455

g. PERAFORMING ORGANIZATION NAMS ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA* III OKUNIT NUMBERS

Purdue University
Department of Statistics
Wpet Iafavett.- IN .47907

1111- CONTROLLING OFPICE NAMIE AND ADDRESS 12. REPORT DATE

Office of Naval Research September 1983
1 .MHBER or PAGESWashington, DC 18

14. MONITORING AGENCY MAMIE & ADORESS(tt dliernt rm Contrlltnit0f fic e ) IS. SECURITY CLASS. (at this report)

Unclassified
IS. DECLASSIFICATION. DOWNGRAOING

SCHSOULE

1. DISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited.

I?. OISTRIUUTION STA' SAIKNT (of Ac Shortest aterd In Block 20. II dIII.erent hem Repot)

Of. SUPPLEM-NTARY NCES

19. 9EY WORDS (Continu. an ,e.,s. aide 1 necessary d identify b block n mber)

Multiple comparisons with a control; 2-stage procedures; screening procedures.

0. ANrSTRACT (Cninu. n revfse de It nReGoeey SId identify by &leek number)

Suppose that k new treatments have been developed with the purpose of
replacing the standard treatment with the best new one, prov-ided that it is
actually an improvement on the standard treatment. In a parame.tric approach,
mainly under the assumption of MLR, procedures are considered which, at a
common level of significancea O . If none (exactly one)"is not eliminated,
none (this one) will be used as a replacement. Otherwise, if more than one
treatment overcomes this screening process, that one of the non-eliminated

DO) ,oom 1473
UNCLASSI FIED

inCUII TY CLASSIFICATION OF THIS PAGE (N*%n Dae Enteed,

- .2.



treatments will be chosen as the replacemen.t which is judged to be the
-best, after additional data have been observed from the selected
treatments. Topics of this paper are the questions of how to choose
the terminal decision at the second stage and the tests at the first
stage, respectively,. and. how to... implement. the appropriate procedures at
certain pre-specified performance criteria.

* UNCLASSIFIED
SICURITY CLASSIACAIGH Opp Twes PAGIrU"O Do 0fe~£d..)

o.5

. ..



. .... .4


