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APERTURE EFFICIENCY CONSIDERATIONS IN THE CONVOLUTION
SYNTHESIS OF SYMMETRICAL HEXAGONAL ARRAYS

INTRODUCTION

Synthesis of regular hexagonal arrays has been described by several authors during the past
decade. Recently, the authors of this report have investigated hexagonal array synthesis in which small
arrays are convolved to synthesize large arrays. Such a technique is well suited to synthesize a set of
prescribed nulls of a large array. This is a report on the status of the ongoing work by the authors.

Aside from the use of separable illumination for a planar array, which thereby utilizes well known
synthesis procedures for linear arrays, a synthesis technique that has been studied extensively is based
on a transformation technique that maps a linear array into a planar array. The technique was presented
by Baklanov [1] and by Tseng and Cheng [2] for square arrays and was later adapted for rectangular
arrays by Goto [3,4]. Since the transformation maps a 2-dimensional (6,¢) pattern of a planar array
into a 1-dimensional (9) pattern of a linear array, the resultant pattern has ring sidelobes (whose
heights are independent of @) with noncircular contours. Furthermore, the technique fundamentally
synthesizes a linear array; thus, it enables one to use any of the optimal or nonoptimal synthesis tech-
niques for linear arrays. Elliott [5] extended the technique to synthesize arbitrary sidelobe topography.
Goto [3,6] has discussed the application of this transformation technique to hexagonal arrays, whereas
Goto [7] and Cheng and Chen [8] have treated optimal synthesis of regular hexagonal arrays. In order
to synthesize a k-ring hexagonal array, synthesis of a (2k + 1) element linear array is needed. Thus, in
the synthesis procedure there are at most k degrees of freedom; i.e., up to k different parameters may
be specified to control the hexagonal array pattern.

Although the transformation synthesis procedure is straightforward, it is rather cumbersome; the
voltage excitations of the planar array are obtained from those of the corresponding linear array after
extensive numerical computation which is reminiscent of the computation of coefficients » Chebyshev
synthesis. Furthermore, it is difficult to provide any intuitive understanding of the null loci as well as
illumination (voltage) tapers. The examples discussed by the researchers would indicate no simple rela-
tionship to the voltage tapers of the corresponding linear array. This is contrary to what one would
have expected from the technique. To be specific, if a Taylor type illumination and sidelobe structure
is used as a linear array design, then although the sidelobes of the hexagonal array will have similar
structure in all azimuth planes, the aperture illumination will not exhibit the behavior of the
corresponding linear array illumination. The synthesis procedure yields a twelvefold symmetry in the
aperture plane, a feature that is analogous to the rotational symmetry of 1-dimensional circular Taylor
illumination. Thus, the synthesis of a hexagonal array may be thought of as an extension of the 1-
dimensional circular aperture synthesis to two dimensions.

The synthesis procedure for hexagonal arrays described by Einarsson [9] retains the symmetry
requirements. The procedure is numerical and is capable of providing optimal patterns (i.e., optimizes
aperture illumination efficiency (AIE) for a fixed sidelobe level). The problem is formulated as a qua-
dratic programming problem and requires a number of iterations and a large computer to obtain the
solution.

Shelton [10] studied regular hexagonal arrays in depth and considered a synthesis procedure in
which small hexagonal arrays are convolved to synthesize large hexagonal arrays but was confined to

Manuscript approved January 20, 1983,




SHELTON AND LAXPATI

one degree of freedom which leads to hexagonal arrays with binomial voltage excitations and twelvefold
symmetry. Laxapti [11,12] introduced a null synthesis technique for planar arrays, which is based on
the convolution process and is a generalization of the previous synthesis procedure. This procedure,
which utilized a canonical 4-element diamond array, can be utilized to synthesize prescribed arbitrary
nulls and/or sidelobe topography. For a k-ring hexagonal array, the procedure has no more than 1.5 k
degrees of freedom.

~N S —eakaa. Y BB b

An important characteristic of this null synthesis procedure is that it is noniterative and can be
readily implemented on a small computer. It also provides a larger number of degrees of freedom than
the transformation synthesis procedure. In an attempt to evaluate the potential of the null synthesis
procedure, the present authors presented a study (13,14] which introduces the canonical arrays and
discusses their role in the synthesis of various planar arrays including regular hexagonal arrays. The
results indicated that AIE is dependent on the canonical arrays employed to synthesize the large array;
it is also dependent on the number of degrees of freedom. Since AIE is the ratio of the directivity of
the designed antenna excitation to the directivity of uniform excitation, it would be an important cri-
terion in the selection of canonical arrays, if not constrained by the symmetry requirements.

The primary objective of this report is to consider the null synthesis procedure for hexagonal
arrays with twelvefold symmetry (thus employing smaller hexagonal arrays as canonical arrays) and
optimize the AIE. Syntheses of hexagonal arrays with 2, 3, 4 and § rings are considered. In the next
section, after reviewing the convolution (null) synthesis technique, symmetry and other characteristics
of hexagonal arrays are introduced. More detailed objectives are also put forth. Thermr we analyze the
1- and 2-ring (7- or 19-element) hexagonal arrays which are used as canonical arrays in the synthesized
examples presented. Also discussed is the simple technique used to achieve the near optimum value of
AIE as well as the impact on it of using H, (7-element, 1-ring hexagonal array) and H,9 (19-element,
2-ring hexagonal array) as building blocks. Then we show the plots of patterns of the synthesized
arrays and compare them with those of uniform arrays. Finally, some concluding remarks are offered.

OBJECTIVES OF CONVOLUTION SYNTHESIS
Background

This investigation of a convolution synthesis procedure for planar arrays was initiated because
there were no zero-locus synthesis procedures analogous to those which are commonly used for linear
arrays. In contrast with the polynomial representation of linear arrays which allows the pattern function
to be expressed in terms of its roots, there is no mathematical formalism which allows the pattern func-
tion of a planar array to be expressed in terms of its zero loci. This situation is not surprising because,
whereas a linear array has a finite set of zeros which can be related to the coefficients of the polynomial
describing the pattern function, the symmetrical planar arrays being considered here have continuous
zero loci with an infinite number of locations, and their pattern functions are not expressible as polyno-
mials. On the other hand, the concept of array convolution and pattern multiplication still holds.

This concept of array convolution and pattern multiplication has been proposed by these authors
in previous papers. It is in effect what such procedures as Taylor’s do, without relating the zero loca-
tions to the pattern function expressions. For example, an alternative approach to the Taylor synthesis
would relat€ the pattern zeros to small 2- or 3-element arrays and then convolve them to determine the
overall array excitation directly without being concerned about the polynomial expression.

The oibjective of this convolution synthesis is to select appropriate small arrays, which we will
refer to as canonical, determine their zero loci from a number of small arrays to give a desired multi-
plied pattern from a large array, and finally convolve the small arrays to determine the array distribution
of the large array.
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This procedure is not without drawbacks. Whereas the linear-array zero locus procedures such as
Taylor’s tend to produce array excitations with good aperture efficiency, this is not necessarily the case
with planar arrays. One of the primary objectives of the analysis of this technique is to evaluate the
aperture efficiency with which patterns of given sidelobe levels can be synthesized. Furthermore, there
is not a readily available procedure for relating the zero loci to a given specified sidelobe level, as is the
case for Taylor’s and Dolph’s techniques.

Therefore, the present status of this investigation is to seek answers to the questions of exactly
how well will the convolution procedure work and what is a specific technique for selecting the required
zero loci.

Specific Objectives of this Report

One specific objective of this report is to analyze and present the pattern characteristics of uniform
symmetrical hexagonal arrays as large as 91 elements. A disadvantage of dealing with planar arrays with
nonseparable pattern functions is that the characteristics of those patterns are not generally familiar to
workers in the field. Essentially anyone reading this report will know what a sin Nx/sin x pattern func-
tion looks like and that it is the pattern of a uniform N-element linear array. How many of us know
how to describe even qualitatively the characteristics of a uniform hexagonal array? Locations and lev-
els of sidelobes will be presented, and zero loci will be plotted.

Characteristics of two canonical arrays will be considered. The 7-element array with one degree of
freedom has been analyzed previously. The 19-element array with three degrees of freedom is
analyzed, and procedures for determining the array coeflicients in terms of specified zero locations or
vice versa will be discussed.

Using these canonical arrays, arrays as large as 91 elements will be synthesized for maximum
aperture efficiency (AIE), and the radiation patterns, aperture distributions, and zero loci of these
arrays will be presented and compared with those of the uniform arrays.

ANALYSIS OF CANONICAL ARRAYS
The zero-locus characteristics of two canonical arrays are analyzed in this section. The first is the

1-parameter 7-element array (H,) and the second is the 3-parameter 19-element array (H;9). The 7-
element array geometry is shown in Fig. 1.

Yy
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Fig. | — Smallest symmetric hexagonal array
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SHELTON AND LAXPATI

The coordinate system used for representing radiation pattern functions is shown in Fig. 2. The
pattern function coordinate corresponding to the x coordinate of the array is u, and the coordinate
corresponding to the y coordinate of the array is v. The coordinate system is defined so that the angular
distance from the mainlobe to the nearest grating lobe is 2. Specifically, ¥ = (27/A)(cos 8,) and
v = (2m/2)(cos 8,), where s is the minimum spacing between rows of elements and 8, and 9, are the
angles from x and y axes respectively. A grating-lobe pattern is also shown, which results from a
"stable” triangular array lattice, that is, a lattice for which the triangles have one horizontal side.

Uy

BOUNDARY OF VISIBLE SPACE

Fig. 2 — Pattern-function representation in the u-v plane

The grating-lobe pattern of Fig. 2 has the spatial periodicity of the reciprocal lattice® of the
antenna-array lattice. The coordinates of the grating lobes are

u(m) = maJ3
and

vimn) = Zw'n - %‘

The general pattern function for arbitrary excitation has the periodicity of the grating lobes in the
u—v plane, and the cell defined by the hexagon C,C,C;C,CsCs completely describes the function.
Furthermore, with the symmetry constraints which we have placed on the array, 1/12 of the cell,
defined by the triangle 0C, D, is sufficient to completely describe the pattern functions with which we
are concerned. Also shown in Fig. 2 is a circle defined by u? = v = (2s/A)?, which represents the
boundary of visible space. The radius of this circle is directly proportional to s. The synthesis
procedures considered here address the hexagonal cell without regard to any limitations imposed by s
That is. pattern functions are synthesized over the entire cell even though part of the cell could be
excluded from visible space by appropriate selection of s

*For the antenna array lattice defined by a; and a;,, the smallest pair of basis vectors greater than zero. the reciprocal lattice has
the basis vectors b, and b; such that the inner oroducts (5, a,,) =3y, fori=1 2and k=1, 2 Here 8, is the Kronecker del-
1a.
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We first consider the pattern characteristics of 7-element arrays for which the center element has
unit excitation and the outer elements are excited with amplitude a. The pattern function is given by

E(uva)=1+a

u 2u
4 cos 7 cos v + 2 cos ﬁl 1)

and for values of @ < 1 the main lobe broadens and the locus of zeros moves away from the main
lobe. The zeros for the x-axis cut are given by

u 1 1
cos ™3 [ 1+ 3 . )
and the zeros for the jy-axis cut are given by
1+ 24
COS Vv = — 42

Equations (1) and (2) can be examined to establish some limits on the ranges of a which we will inves-
tigate. Zeros for real values of v are found on the »axis cuts for a 2 1/2 and @ € —1/6. Zeros are
found on the w-axis for a 2 1/3 and a € —1/6. For —1/6 < a < 1/3 the pattern function has no
zeros' for real u or v. These restrictions on « and v are simply due to the pattern function and are unre-
lated to restrictions on ¥ and v which result from the boundary of the visible region.

Figure 3 illustrates how the locus of zeros moves with variation in the parameter a. The locus
approaches 0 as a — —1/6 from below, and it approaches C| as @ — 1/3 from above. It can be shown
that for a near ~1/6, (a = —(1/6) — ¢€),

u = v = 3 /2¢ (in radians), 3)
and that for a near 1/3, (@ = 1/3 + 8)
Au = £33, @)

where u = 2%/J/3 + Au. Equations (3) and (4) indicate that the locus of zeros becomes circular in the
neighborhoods of 0 and C,.

12
s/6 0
o
-1 11/24
-1/3
9/24
C
0 |
a=-1/8 -1/2 -2 21 13/24 512 49/144 1/3

Fig. 3 — Locus of zeros for various values of a

Other characteristics of the pattern function that are of interest and easily determined are the pat-
tern values at C, and D. The pattern values at 0, C; and D are

Ey=1+ 6a,
Ecl-l—3a,

Ep=1-2a
5
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SHELTON AND LAXPATI

We next consider the pattern characteristics of 19-element arrays for which the center element
has unit excitation and the outer elements are excited with amplitudes a, b, and ¢, as indicated in Fig.
4. The pattern function is given by

E(uv,abc) =1+ 2a cos % +2b cos %—

u 3u 2u
A +4eosv‘aoos +ccoc—-—l+eos2v 2c + 4b cos . Q)
i Breey N
8 Unlike the 7-element array, for which the zero locus is determined by the value of @ and the entire
) family is easily plotted in Fig. 3, the 19-element array has a much more complex family of loci which
o cannot be easily plotted. An idea of the possible loci can be obtained by considering the behavior of
vy E(u,v.a,b.c) on the uand v axes.

. , OO
: OO
20,0

.:j Fig. 4 — Assignment of coefficients for

X 19-element canonical array

On the » axis, Eq. (5) yields, for v = 0,

: 2u

~ ,0,8,5,c) = 14+ 2c-+ 4 L +Qa+4 =L

E(4,0,a,b,c) ¢+ 4a cos — (2a + 4b) cos 7

" +4cos%+2beos%. (6)
*{’ Equation {6) can be expanded into a quartic polynomial in cos «/+/3, implying that there can be
.27,; four zeros in u for appropriate values of g, b, and ¢

%

_‘: On the vaxis, Eq. (5) yields, for u = 0,

: E©,v.abc) =1+ 2a+2b+4(a + c) cos v + (45 + 2¢) cos 2v. )
f}. Equation (7) can be expanded into a quadratic polynomial in cos v, implying that there can be two zeros
in v for appropriate values of a, b, and c.

i

"_1 Some useful relationships for symmetrical hexagonal arrays are as follows:

% N=3n2+3n+1,

k. where N is the number of elements in an array with a, rings;

B n, = Int (n¥4 + n,), 8)

where n, is the number of independen’ ~'=ment* .uges in an array with n, rings.
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COMPUTATION OF MAXIMUM AIE FOR CONVOLVED ARRAYS

BTN

It has been noted that the number of degrees of freedom available from a hexagonal array syn-
thesized by the convolution technique being considered here is less than the number of independent
i voltages which can be placed on the array, so that in general a precise synthesis cannot be achieved.
' That is, if we were to require a radiation pattern function to be defined as precisely as possible, then
independent control of the maximum possible number of elements in the array would be required. In

:'*: other words, the convolution synthesis procedure cannot realize all possible array voltage distributions.
This situation raises the following important questions which must be answered before we proceed
' further in developing the synthesis procedure:
: 1. How close to any given array voltage distribution can the convolution synthesis approach?
% 2. Under what conditions is the synthesis procedure useful?
: 3. How do these answers change as the size of the array increases?
‘ The basis for the concern for the degradation in the performance of the synthesis procedure with
. increasing array size is indicated by Table 1, in which the number of elements, number of rings, and
2 number of independent element voltages are listed for various arrays.
Table 1 —Some Parameters of Symmetrical Hexagonal Arrays
:'4 Number of | Number of | Number of Independent
b Rings, n, Elements, N | Element Voltages, n,
b 1 7 1
4 2 19 3
3 37 5
4 61 8
S b 91 11
o 6 127 15
W 7 159 19

From Eq. (8) we see that the ratio of the number of rings to the number of independent elements
is
nf
2

n
T'-i-n,

R, =
Int

4
n+4

~—

e @ L LA,

9

bl

Equation (9) is approximate for odd n, and precise for even n,. If we use 7-element arrays (H,) for the
synthesis, the number of degrees of freedom is equal to n,. If we use one 19-element array (H,o), the
number of degrees of freedom becomes n, + 1 and increases by one for each additional H that is
used in the synthesis. Thus, if the number of Hy arrays used is m, the ratio of degrees of freedom to
the number of independent elements is

4 Fid iy
e W

talintatk

44+ m/n, -
Ry = ——4—;-;'—' (10) ;
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o

3 Equation (10) and Tabie 1 need not cause us to despair of achieving a useful synthesis for larger ¥

3 arrays because, for example, the usefulness of a Taylor synthesis, which requires that the array have 7 B

b4 available degrees of freedom, is independent of the size of the array. Thus, we can point to a case for -
which the number of degrees of freedom need not be comparable to the number of independent ele- -

5 ment volta_ges. ’

‘ We have selected the directivity function as the basis for a figure of merit for the convolution

a synthesis procedure. The advantages of this choice are that the peak nonsupergain directivity of any

£ array is readily identified as N (assuming unity element directivity), and the maximum directivity

achievable from a given synthesis procedure is straightforwardly determined. A figure of merit that can ‘
be applied to arrays of all sizes is then maximum efficiency or AIE, which is the ratio of the achieved
i directivity to N.

We have examined the characteristics of arrays ranging in size from seven to 91 elements by
applying the convolution synthesis procedure so as to maximize the AIE. Seven- (H;) and 19-element
(H)9) arrays were used. Initially, arrays synthesized entirely with H, arrays were examined. Then a
synthesis procedure using one H, array plus a number of H, arrays was tried.

j N
4 N
. Of course, the 7-element array is a trivial case for both H; and H,o, and the 19-element array is a X
2 trivial case for Hyo. -
- To determine the maximum directivity available from the procedure, a straightforward hill-
k- climbing technique was used. This technique involves the measurement of rate of change of gain with :
: respect to all variable parameters and the use of a steepest-ascent path to the maximum gain condition. .
. The procedure can be carried out on a programmable calculator (with some patience) or in minutes X
; using a desk-top computer. .
A

As is the case in many optimization techniques, the hilltop ithat one may achieve may be local
g rather than global. To avoid this pitfall, it is desirable to make judicious choices of the initial values of
J the parameters. This was accomplished by first evaluating the zero loci of uniformly excited hexagonal ¥
3 arrays, then attempting to match the zero loci of the H, or H;g arrays with those of the uniform array '
3 that we wish to approximate. For H;, we use Eqgs. (1) or (2) to determine the trial value of a for a .

: given zero locus. For Hj9 we must select three points on the zero loci and then select from Egs. (5),
(6) and (7) in order to form a set of three simultaneous equations in a, b, and c, the solution of which
will yield the desired initial values.

The steps in the analysis are as follows: The trial values of the coefficients of the various arrays -
b being used in the convolution process are selected. The arrays are convolved to determine the element N
i voltages for the large array. This convolution can be done either numerically after the coefficient ,
values are selected or algebraically prior to selection of numerical values. From a computational stand-
point, the use of algebraic expressions is more efficient. Once the element voltages have been deter-
mined, the directivity and efficiency are easily calculated from D = (EE)?/Z2. Each coefficient is then
incremented and the corresponding increment in directivity is determined, so that a steepest-ascent path .
to the maximum can be followed. X

PR el S L )

Table 2 lists the resulting H, and H,y coefficients for the synthesis procedures that were
attempted, together with the element voltages and values of AIE. The values of AIE are plotted vs N
in Fig. 5. Case B for the 61-element array is not included in Fig. 5 because it represents a local rather

3 than a global maximum. The near-circular zero locus close to the main beam was synthesized with one :
by of the H, arrays, indicated by d = —0.2142 in Table 2. It was found that the global maximum occurs

2 when the inner two ring zero loci are synthesized with the H, array. The marked imrovement that is

’ obtained by using one H,q array in place of two of the H; arrays is readily apparent from Fig. 5.
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Table 2 — Parameters of Optimized Synthesized
Arrays for N = 19 through 91

.
LR L e
sabata a i o odl

Number of Elements | 19 37 37 61 61 61 91 91 ‘1
Synthesis Hp? | )3 [Hyg vH,| H? [Hyg » M2 H g » 1% (1) [H)g = ()° 2
Procedure Case A Case B -

-0.2242 ~0.2304 0.3392 ~0.2108 5

Hyy b 0.5356 0.3457 0.5426 0.2775 4

¢ ~0.0885 -0.1945 0.2645 -0.2013 A

Coefficients . .
d|-0.5750|-0.2625| 0.5747 [-0.2181|  0.5201 -0.2142 |-0.1991| —0.9159 ]

el 04100/ 0.4395 -0.5350{  3.7858 0.5382 |—0.3322]  1.0647 R

H, f —6.645 1.0546 —1.7203 0.4904 -

g 0.4016 0.6541 Y

h 0.3786 -

Array Element 0{—0.4145] 72.453 0.2269 | 0.3198 0.9039 —0.2427 |-0.3702| -0.2400
Voltages 1|-0.4008; 2.449 0.2989 | 0.3191 0.8229 —-0.1450 |—0.3699( -0.3014
21—0.2358| 3.309 | 0.3050 | 0.2292 0.8382 —0.1483 |-0.4314; -0.3134
3]~0.4715] 2.018 0.2694 | 0.3646 0.9065 —0.1843 |-0.3993| -—0.2698
4 0.7667| 0.3078 | 0.4439 0.8642 —0.1104 ]-0.2702( -0.3070
5 2.300 0.2569 | 0.3434 0.8635 ~0.1975 |-0.3559| —0.2684
6 0.4941 0.6806 —0.0626 |—0.4385{ —0.3682
7 0.1977 0.9783 —0.1556 }-0.4856; -0.243%
8 0.2965 0.5953 —-0.1861 |-0.3760( —0.3551
9 —0.0282 -0.1327
10 -0.1409( -0.3019
11 -0.2019] -0.2421
AIE 0.9367| 0.8973] 09931 | 0.8748] 0.9821 0.9341 | 0.8633] 0.9633
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-3 We are encouraged to speculate that maximum AIE may be asymptotic with some value, perhaps
3 in the range of 0.82 to 0.85, for increasing N for the (H;)™ procedure. The maximum AIE available
fa from Hyg * (H)™"" will always exceed that obtained with (H;)™, but it is impossible to estimate from
Fig. 5 whether there is a separate asymptote for this case.
"&* A qualitative idea of the relevance of these AIE optimizations can be obtained by considering the
3 effect of reduced aperture efficiency on the radiation pattern. If the directivity reduction is due to
P quasi-random fluctuations in the aperture distribution, then the power contained in those fluctuations
will be distributed randomly into sidelobes. Phase fluctuations would have the same effect, but we have
. no phase errors. To the degree that they are not controllable, these random sidelobes will limit our
.:; ability to synthesize low-sidelobe radiation patterns.
N
'.‘ By use of this approach, the mean level of the random sidelobes can be estimated. In the Appen-
:': dix, this is worked out in detail. Equation (A6) relating the sidelobe level to the AIE, is used to obtain
the plot of Fig. 6.
& 0
&
fn
o~
:': a. Hig* ("7)'.,-2
<, d
A W
-t >
e w
akt -
) W
30}
8 :
- g H !
N, z
A o
! s
3 B
: 20 [ TR S T S 3
P s 10 20 30 4050 60 80 100
"‘:' NUMBER OF ELEMENTS, N
e Fig. 6 — Mean level of random sidelobes vs N
:‘0.‘ On the other hand, it is noted that the convolution synthesis procedure can be used to achieve
g arbitrarily low sidelobes. For example, Shelton showed that a synthesis. process of the form (H,)™,
) with all array coefficients equal to 1/3, compresses all zero loci to the corners of the hexagonal pattern
s cell and results in an aperture distribution analogous to the linear array with binomial voltages. It will
o be demonstrated in the next section that, in general, (H7)"’ produces ring sidelobes of arbitrarily con-
.. trollable height.
N
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PLOTS OF PATTERNS

The arrays synthesized and presented in the previous section exhibit a twelvefold symmetry in
both aperture and pattern planes. Thus, it suffices to show the patterns in 1/12 of the hexagonal pat-
tern cell (shown in Fig. 2). The symmetry in the pattern plane is iilustrated here, in Fig. 7, for the case
of a uniform H;g array. The normalized field pattern contours are plotted in the first quadrant of the
normalized u — v space. Also shown in this figure are the section of the pattern cell and the twelvefold
symmetric triangular cell. The position of the main beam (v = v = 0) is indicated on the plot by . It
is clear from Fig. 7 that it is sufficient to plot the patterns in the triangular cell adjoining the coordinate
axis; this will be the case in the plots that follow.
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Fig. 7 — Field pattern of a uniform H,y array showing
the symmetries and the pattern cell

For a synthesized array, there are two basic aspects that must be studied to evaluate the synthesis.
One of these is the element voltages and voltage (illumination) taper; the other is the pattern
structure/topography. The synthesis technique presented in this report is based on the location of pat-
tern nulls; hence, it would be instructive to look closely at the null loci, and compare them with those
of the corresponding uniform arrays. These characteristics of the synthesis are discussed in the follow-
ing.

The element voltages for each of the large arrays (discussed in the previous section) are obtained
by direct convolution of the element voltages of the corresponding H; and/or H;y subarrays. Due to
symmetry, it is sufficient to calculate the element voltages or a small number of elements in the large
array; this number is equal to the number of degrees of freedom for the array. From the subarray ele-
ment voltages presented in Table 2, the voltages for the large arrays were computed; these are shown in
Table 3, wherein the voltages are normalized with respect to the center element. One of the charac-
teristics of these voltages is that it is the lowest for the outermost element; this is, of course, a direct
consequence of the convolution method of synthesis. With the exception of the outermost element,
the voltages vary over a 3 to 1 range.

11
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Table 3—Element Voltages for Various Synthesized Arrays

Element No.| HyH, [Hy ey, [Hy g [Hy oy oy o, [ g oy o TH o o o TH, o o o o [ o, o, o
‘ L Case A | CaseB
» Hyg Hyy Hjy Hey Hgy * He t Hy, Hg,
) 10 10 10 10 10 10 10 10
1 0967 099 [ 1317 0.998 0910 0.598 0.99 1.256
2 0.569] 1349 [ 1344 0.717 0.927 0.611 1.166 1.306
3 1138) o823 | 1187 1.140 1.003 0.759 0917 1.124
4 0313 | 1356 1.388 0.956 0.455 0.730 1.279
s 0938 | 1132 1.074 0955 0.814 0.962 1.118
6 0.155 0.753 0.258 1.185 1.534
7 0.678 1.082 0.641 1312 1.016
8 0927 0.659 0.767 1.016 1.479
9 0.076 0.553
10 0.381 1.258
1 0.761 1.009

*AllH g Zeros close to the main beam
1tOne 7 zero close to the main beam

An interesting question that may be raised in optimization of the AIE is how do the null loci
differ from those of the corresponding uniform array which has an AIE = 1. In Fig. 8, the null loci of
a uniform H,y are shown along with those of the synthesized H;q array. The synthesized array has
larger beamwidth between nulls. The null loci of uniform Hj;, and two synthesized H;; arrays are
shown in Fig. 9. The Hj; array synthesized from only H; subarrays has larger beamwidth between
nulls; however, the array synthesized using H;y and Hy arrays has the first null locus identical to that of
the uniform array; i.e., equal beamwidth between nulls.

I L T -1 T T 1 T T

0c 0. 02 03 04 @5 05 0.7 O0O.F 0.9 1.2
(a)

¥ T I 1 T T 1 T T 1 1

¢ 0. 02 03 0.4 95 08 0.7 & 23 1.0
()]

Fig. 8 — Null loci plots of H;y arrays:
(a) uniform (b) Hy * H,
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Fig. 9 — Null loci plots of Hj, arrays: (a) uniform,
® H-, d H1 . H7 and (c) H|9 . H1

The null loci of Hg, arrays are shown in Fig. 10; for the uniform array in Fig. 10a; for the array
convolved from four H, arrays in Fig. 10b; or the array convolved from H;y and two H, arrays, where
all zeros of the H;y are near the main beam, in Fig. 10c; and in Fig. 10d for the array convolved with
one H, subarray zero near the main beam. The beamwidth between nulls for Figs. 10b and d is larger
than and for Fig. 10c equal to that of the uniform array in Fig. 10a. Figure 11 shows the null loci for
three different Hy;,. The beamwidth between nulls for Fig. 11b, the array synthesized from five H; ele-
ments, is larger than that of the uniform array in Fig. 11a. The array synthesized with one H,9 and
three H, elements has the first two null loci (Fig. 11c) identical to those of the uniform array.
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Fig. 10 — Null loci plots of Hg; arrays: (a) uniform, (b)
(H1')‘. (c) Hyg Hy Hy, case A and (d) Hyg * Hy * Hy,
case B.
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- Fig. 11 — Null loci plots of Hyy arrays: (a) uniform,

) ®) (H,*)S and (©) Hyg * (H,*)?

.'J"z‘ For all of the synthesized arrays, the loci of nulls away from the main beam are considerably
different from those of the corresponding uniform arrays.

: To understand the efféct of AIE optimization on the overall array performance, it is necessary to
b examine the pattern topography. This is best accomplished through contour plots of power patterns in
v u-v space. In the following, the power contours are in 3-dB steps and are plotted in the triangular cell.
i Once again, the u-v space is normalized and the scale is shown along the coordinate axis only. Further-
¥ more, contour levels are not shown for the sake of clarity; however, the levels may be readily deter-
. mined from the fact that the lowest contour level shown in all plots is —39 dB.
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Figures 12b and ¢ show the patterns of a uniform H,9 and of the H,y array synthesized from the
convolution of two H; subarrays. The 3-dB beamwidth of the synthesized array is slightly larger.
Notice the similarity of the pattern in Fig. 12c with the pattern in Fig. 12a which is for a uniform H,
array. The ring-like structure of the pattern is quite apparent.

(©)

Fig. 12 — Power pattern for (a) uniform H,,
(b) uniform Hyg and (c) H, * H,

Patterns of Hj, array for the cases of uniform and the two synthesized arrays are shown in Fig. 13.
The near-in sidelobe level of the synthesized arrays is within 0.5 dB (greater than) of that of the uni-
form array. The pattern of Fig. 13b has a ring-like near-in sidelobe structure and the main beam is
relatively flat. This is depicted by multiple symbols near the main beam. Also, the 3-dB beamwidth is

larger. However, the pattern of Fig. 13c has 3-dB beamwidth nearly identical to that of the uniform
array.

'-: IR AR
A 1"‘&'-' N

VU W W WP

B Eaoar




N Bt B TR it TR Tl /A T T
T T T T T T Y T N T T T S e T v e e B e T TR FTE TR TR TETA T e T

NRL REPORT 86%4

Y w
1
?‘i
“‘;:f: 80 0: 02 03 04 05 08 07 CE 03 1.0
- ©
> Fig. 13 — Power patterns for 37-clement arrays: (a) uniform,
% (® Hy * H; * Hy, and () Hyy * H,
LY
24 Putterns for the three designed Hy; arrays and a uniform Hg, array are shown in Fig. 14. The pat-
tern in Fig. 14b is for the array synthesized with four H, subarrays and has a strong ring-like structure.
N The near-in sidelobe level is slightly below that of the uniform array shown in Fig. 14a; however, the
Lz 3-dB beamwidths are identical for the two arrays. The pattern topography of Fig. 14c near the main
Bt beam and the first sidelobe peak is nearly identical to that of the uniform array. Recall that this array is
synthesized using a H;y array with all its zeros near the main beam. Although the first and second nulis
,; are identical (as pointed out previously), the 3-dB beamwidth is marginally larger. The Hg,; array for
I which the pattern is shown in Fig. 14d is synthesized using an H, array with its zero near the main
. beam. This results in a ring-like pattern around the near-in sidelobe peak; however, the widening of |
;.é the ring array from the coordinate axis may, in fact, result in a sidelobe peak near the edge of the cell
rfg and it may show up if the pattern plot was generated in smaller dB steps.
e
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5 Fig. 14 — Power patterns for 61-clement arrays: (a) uniform, (b) (H;*)4, () H;g * H; * Hy,
.; case A and (d) Hj9 * H; * Hy, case B.
Shown in Fig. 15 are the patterns for Hy, arrays: uniform, and the two arrays synthesized with H,
and Hjy arrays. Figure 15b shows patterns of the array generated from five H: subarrays which exhibit
ring-like structure of an H; array. The 3-dB beamwidth is greater than that of the uniform array. The
) pattern in Fig. 15¢ has a sidelobe level nearly identical to that of the uniform array, and the 3-dB
':, beamwidth is slightly larger.
A
q

Some of the important features of the pattern structure for the synthesized arrays discussed above
are summarized in Table 4.

From the patterns presented in this section, the following general characteristics of the syn-
. thesized arrays may be readily identified. In all of the syntheses, the ring-like sidelobe structure near
the main beam is generated in optimized arrays provided the zeros of the H; subarrays are near the

¥ main beam; however, this generally leads to lower AIE. Another interesting feature is that the number
of sidelobe peaks in the triangular cell are less than or equal to those of corresponding uniform arrays.

# CONCLUSIONS

£ An analysis of 7- and 19-element symmetric hexagonal arrays which form canonical arrays in the

synthesis of larger arrays is carried out. Also shown are the null loci and pattern plots of uniformly

excited 7-, 19-, 37-, 61- and 91- element hexagonal arrays.

The null loci of larger uniform arrays are utilized as initial data in the convolution synthesis of
array of the same size with high aperture illumination efficiency. The synthesis is carried out by con-
volving one or more of either 7- and/or 19- element canonical arrays. The AIE of the convolved array
is optimized by a hill climbing process. The aperture illumination AIE, null loci and patterns are
presented for several different arrays of as large as 91 elements. The null loci and the pattern topogra-
phy of each of these arrays are compared with those of the corresponding uniform arrays. Two useful
features are identified. If the synthesis procedure utilizes only H, canonical arrays, then the main beam
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Fig. 15 — Power pattern for Hy, arrays: (a) uniform,
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Table 4—Characteristics of Pattern Structure of Various Hexagonal Arrays

No. of sidelobe | Near-in sidelobe | No. of Near-in
peaks in the level in dB and Ring sidelobe Remarks
triangular cell characteristic peaks
Uniform 2 = —14.5 All sidelobes
along u-axis along the cell
edge
H
19 H-, . H7 2 = —16.5 1
ring sidelobe
Uniform 4 = -16.0 All sidelobes
along w-axis along the cell
edge
H3,
H7 *H, *H, 3 = -16.5 2 Flat main
ring sidelobe beam
H19 'H7 4 = —16.0 0 All sidelobes
along u-axis along the cell
edge
Uniform 6 = —16.5 All sidelobes
along u-axis along the cell
edge
He)
H7 .H7 .H-’ .H-’ 4 = —17.0 3
ring sidelobe
Hl9 *H-, *H, 5 = -16.5 0 All sidelobes
Case A along wu-axis along the cell
edge
Hl9 °H7 . H7 4 = ~17.0 1 Flat main
Case B ring sidelobe beam
Uniform 8 = -17.0 All sidelobes
along w-axis along the cell
edge
H7 .H7 .H-’ .H7 5 &= —17.0 4 Flat main
‘H-, ring sidelobe beam
H
9 ng .H7 .H7 6 o -17.0 0 Flat main beam
'H-, along w-axis All sidelobes
along the cell
edge

and usually the first sidelobe exhibit nearly circular locus. Synthesis of larger arrays with the Hj

\" canonical array leads to patterns that have main beam null locus identical to that of the corresponding
A uniform array.

e

-_;4 Aperture illumination efficiencies for syntheses involving only H; subarrays appear to have an
-~ asymptotic value in the range of 0.8 to 0.85. Synthesis of still larger arrays must be carried out to
' establish this bound conclusively. However, as it should be expected, the syntheses utilizing the Hy
b} ;2 array exhibit higher AIE than the synthesis utilizing only H, arrays.

v

f'.} These convolution synthesis results, in addition to determining the maximum AIE of the con-

-y volved arrays, may provide the basis for a low-sidelobe synthesis technique. If a procedure analogous

to the Taylor synthesis is used, in which the zeros of the maximum-gain configuration are pushed out-

- ward from the main beam, the starting maximum-gain configuration for the hexagonal array case may

-,;{ be the maximum-AIE convolved arrays.
ﬁl
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Appendix

RELATIONSHIP BETWEEN AIE AND THE MEAN
LEVEL OF THE RANDOM SIDELOBES

An expression for the mean level of the random sidelobes of a nonuniformly excited array in
terms of its aperture illumination efficiency (AIE) is derived in this appendix.

Consider an N-element array with element excitation voltages E,, n = 1, 2, ..., N. This nonun-
iform illumination can be expressed as fluctuation from its mean value E,.
E,=E,+AE,n=1,2,,..., N. (A1)

The AIE of the array can be readily obtained from the directivity expression in the section on max-
imum AIE for convolved arrays; i.e.,

(ZE,)?
AlE = g m ———— A2
M= Nx(E,)? (a2)
Substitute the above expression for E, and assume that AE, are random and have zero mean. Then
(NE,)?
- A3)
1= N(NEZ + TAED) (
Let AE? be the mean square value of AE,. Then,
1 AE}
-—] , A4)
K AE? E? (
1+ —
E}

provided AE? << E2.

Note that AE/ E? is the ratio of the power in the fluctuations of the illumination to the power in
the average illumination. However, if it is assumed that all the power in the fluctuations is radiated as
sidelobes, the mean sidelobe level for the array with a directivity of N will be given by

N N

idel io == - . AS
Sidelobe Ratio AE2E: " T-n (AS)
Thus, the mean sidelobe level in dB is
SL = 10 logyo ll—N—-] (A6)
-7

By use of this expression, the mean sidelobe level for various arrays studied in this work is calcu-
lated and plotted in Fig. 6.

It should be noted that this result can also be derived using the expressions for the normalized
pattern and directivity (Eq. 6.41 and 6.46 of [A1]) derived for the case of random errors in amplitude.
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