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Executive $ummary

Arctic sea-ice behavior, particularly roughness and ridging (keeling)

patterns above and below the surface, is of scientific interest to oceanog-

raphers and geologists. It is also of potential interest to those conduct-

ing military operations in the Arctic, and to those exploring for petroleum

and other minerals. In particular, military operations involving submarines

are facilitated by access to the surface from below, so indications of the

distribution of "leads" or "polynyas",or of relatively thin ice regions, are

*1 of interest.

*, This paper investigates the statistical distribution of relatively deep

keels occurring beneath the ice. Such keels may provide obstacles to under-

ice vehicles; detached, they may be the agents by which gouging of the bottom

occurs. Such gouges threaten pipelines or cables.

The present work is based upon data furnished by Dr. Peter Wadhams of

Scott Polar Research Institute, Cambridge, England. It was originally

obtained by upward-looking sonar aboard the submarine U.S.S. GURNARD during

April, 1976, for a route beneath the Beaufort Sea ice.

The methods utilized are those of exploratory data analysis and of

fitting apparently suitable statistical distributions (probability models)

to the distances between successive deep (> 30 ft.) keels, and tQ the depths

of the keels identified. The data suggest that an exponential-like, but not

..................- ,. .......... . .'. -,. - - .- .. ,*. .... ,,......... . . . _ , .'.- ..*. . --- i - . - . . . . .. - .



precisely exponential, model may well represent the data: the simple expo-

nential "model" favored by others previously tends to underestimate the

distances between keels, and, perhaps more importantly, to underestimate

the extreme keel depths. This is of interest, for deep projections are most

likely to impede vehicle progress, and to cause gouging.

The present numerical summaries are of a pilot study. The methodology

used has more and more widely applicable elements: the "sculptured

exponential" distributions utilized here may well be of service for summarizing

other data involving the environment.
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DATA ANALYSIS AND MODELING OF ARCTIC SEA ICE SUBSURFACE ROUGHNESS

D. P. Gaver
P. A. Jacobs

Pepartment of Operations Research
Naval Postgraduate School

Monterey, California 93940

1. Introduction

The spatial pattern of the sea ice cover in the Arctic has been of

considerable scientific interest to geophysicists and oceanographers for

some time. Its presence importantly affects the environment for naval and

other military operations, and for oil and mineral exploration. In partic-

ular, naval submarine operations are influenced by the existence of deep

downward projections ("ice keels") from the surface canopy, by acoustic

wave reflections from the underside of that canopy, and by the apparently

random incidence of essentially open regions in the ice pack ("leads" or

"polynyas") that permit access to the surface from below.

In this paper statistical methods are used to characterize and summa-

rize features of the Arctic ice pack related to those mentioned above. The

analysis is based on a particular set of data furnished by Dr. Peter Wadhams

of Scott Polar Research Institute, Cambridge, England, to whom we are

grateful. A previous analysis of these data has been reported by Wadhams

and Horne [1980], hereafter abbreviated Wh. While the approaches of earlier

investigators have lead to simple one-parameter exponential distributions

as summaries of data describing (a) spatial intervals between keel occurrences,

and also (b) keel depths, our definitions and data analysis suggest that both

keel spacings and keel depths are longer-tailed than the exponential. We further

suggest simple parametric forms to summarize the observed statistical behavior.

- o o . q - - - + .° o -. . . . , . . . ... . . . . . . . . . . .
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2. The Data

The data we analyze were obtained by upward-looking sonar aboard the

submarine U.S.S. GURNARD during the period April 7-10, 1976, from beneath

the Beaufort Sea ice canopy. The route followed by the GURNARD was from

a point north of Barter Island (just over 700 N.) to 75-760 N, thence south-

easterly to a point 72-730 N, and finally westerly to a point northeast of

Pt. Barrow. For a detailed map see WH. The data -- ice drafts, measured

from below the ice to the surface -- were taken over a 1400 km. transect

length. Data tapes were initially cleaned and processed at the Arctic

Submarine Laboratory, Naval Undersea Center, San Diego; they were later

further processed at Scott Polar Research Institute, and observations which

were taken at intervals of 1.3'- 1.5 m. were referred by interpolation to

a nominal 1.0 m. spacing. Furthermore, the data file was split into sections,

each of which make up about 50 km of data. There were 27 such sections,

with a gap appearing between two of them. More detail is available in WH.

Certainly the data set referred to can provide considerable information

concerning the underside of Arctic ice. However, there are recognizable

limitations in the inferences that may be well-justified from even a sophis-

ticated analysis of these particular measurements. For instance, the data

were obtained during a relatively short period of time in one year, so there

is no opportunity t6 as sess mOnth-to-month or season-to-season variability.

In order to obtain more information, more data must be subjected to analysis.

Our purpose here is to suggest methods of analysis that may be useful when

such data become available.

. .
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3. Data on Keel Spacings and Keel Depths: Definitions

The raw data on ice drafts were transformed into data on keel spacings

and magnitudes by the simple expedient of constructing an imaginary line,

L , at a constant depth d(feet) below sea surface, and then measuring dis-

tances (spacings) between successive up- and down-crossings of L , denoted

generically by x , and the maximum depth (keel depth, relative to d)

achieved between a down-crossing and the first subsequent up-crossings,

denoted by y . Figure I should clarify this definition, which differs

somewhat from that of WH: it permits the occurrence of more small spacings
4

than does theirs.

Data on spacings and keels were initially obtained for three levels:

d = 30 (feet), 40, 50. These depths are apparently of interest from a sub-

marine operational view point, but are too deep to be of great interest to

acousticians. Further analysis of crossings at smaller depths is in progress.

3
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4. Exploratory - Descriptive Analyses of Spacings

The initial step in the analysis of spacings was to select a data seg-

ment running from latitude 71.140, longitude 144.225 to latitude 74.328,

longitude 144.378 and to graphicaly display the spacings in various ways to

see if any apparent patterns emerged. We discuss here spacings at a depth

of 30 ft.

(a) Serial plot. This is a plot of xi vs i , where i indicates the

order in which the spacing occurred along the track; i = 1 refers

to the first spacing, i = 2 to the second encountered, etc. Such a

plot appears in Figure 2. There is some visual evidence that

fewer long spacings occur among the first 200 or so (out of more

than 600), hence that the series may be somewhat non-stationary.

(b) Serial histograms. The data were segregated or binned in groups

of size 73 (convenient fraction of total number) in the order of

their occurrence, and each group was histogrammed; see Figure 3

This presentation reveals the exponential-like positive skewness

(J-shapedness) of the data, and also suggests that long spacings

tend to occur late along this segment of the track.

(c) Serial boxplots. The groups of 73 were next box-plotted; see

Tukey [1977], and the means joined by an eye-guiding line. Once

again the picture indicates that the longest spacings tend to

occur later along the track. There is a slight upward trend no-

ticeable in the mean line that is probably attributable to the

Influence of the largest spacings in each group; a similar plot

connecting medians would not likely show much trend; Figure 4.

(d) Histogram of log (spacings), all data. If data are highly skewed,

some form of symmetrizing transformation is often useful; see

Tukey [1977" McNeil 'J77]. The log transformation tends to

5
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symmetrize extreme positive skewness (as in our histograms or in

an exponentially distributed sample); it may also reveal hidden

patterns; see McNeil [1977] p. 11. Figures 5 and 6 show the effect

of such a transformation on the histogram of the 30 ft. spacings

data: two roughly symmetrical but pronounced concentrations of

values, or "bumps", become evident. The lower bump can be identi-

fied with very closely-spaced up and down crossings occurring across

the bottom of a large ice structure (keel); the present way of

identifying keels allows these "pseudo keels", which are usually

defined by relatively shallow gouges, to appear, while the approach

of WH. suppresses them. The upper bump, made up of about half the

data at d = 30 ft., represents the genuine keel spacings believed

to be of operational significance. The lower bump describes high-

frequency keel occurrences likely to be of interest to acousticians,

but this subset of data is also perturbed by measuring instrument

noise; these data should first be smoothed to minimize the noise

contribution. At d = 30 ft. the split between the lower and upper

bumps identified occurs at nearly the median of the data, or at

about 70 m.

On the basis of these last observations the analysis to follow will

focus on attempts to summarize parametrically the distribution of data

associated with the upper bump identified in the log-plot. These data appear

to be comparable to the spacing data discussed by WH. and others. They

appear also to have the most significance to those concerned with subsurface

vehicular (submarine) operations.

-6
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More precisely, the first 200 observations of the series are dropped.

The median of the remaining data is calculated and those data points less

than the median are dropped. Finally, the median is subtracted from the

remaining data points. Results of the analysis of this upper half of the

spacings data will follow.

7

*.• V ° ° 4 ' - '. .. '"-. .° . , . . - . . . . . . ..•° -... . . . . . . . . . . . . . " . . . -.. .. . . . . . ... . -. . . .-



i~w-7

ZZ

V)

I-
LL--

o0

- Z CN

m L U- -- * *

U)

-

U) -- 5

(rWji) S33NV'iSIQI

4Z



C) S34M JOO UUOO ~ dV OO

0 -

P- 6 0 K 0046 0ar0ft K 0104t 0 or. 0CC CW O 0 t 0

WS31SM JO CM S31dWS AO ON S3ndWS JO ON

LnJ

V)

5 N
W OfK Ot06 09 0 K Ot O 0 0 OfK cco.

- ~ dW JOO hiW OO



'00

00 **=) 0Mn

V) **@e x

-o

L.LL.

(j0 0 SL

M o

*z

(.~)SONKOdS

10



4.L

0, LL.

c.

o c-

ovo zOL0

S~1dNWS 30 ON



sld A ONMM0OO SlW OO

CL

81i
0 §

B B

U)-

, 1 Al 0
W t Dig e Ua *i ot o cc 6 at 9

-o ON S31d"lt D ON S31S JO ON

iX

a f as 0 • 09 S OS 0

A ON S31dVWS JO ON S~llMS .40 ON

o 12

_-,. It . . o, . , t , o

.,S~diV JO ON SfldVS .JO ON S31dWS JO GN

4 ," -,,"..,°.-. ". .", . ',_-" -,,. -. ",' -"., ,","-".'."." , .,"."-,. ..... '- -"."- ." "•""_ -. -.....- - . .I i i i i l l i i i k l l b l i i d ' i ' ,. . , " " " 
- J 

.. . ." i



X-I

.1N,

ju

x zJR
U0.z

L.1.0

0.

.13



5. Towards a Parametric Description of Spacings

A simple exponential distribution summarization of spacings data has

been suggested by Hibler [1972], and adopted by WH. also for purposes of

discussion.

Model 1: X - Exponential. Let X be a random variable representing

a typical spacing. Then if x is any positive number, the simple

exponential model is that

P{X > x} = e-  (5.1)

so the probability density of spacings is

fx(x;lP) e P x > 0 (5.2)

and v is the rate of occurrence of spacings per unit distance; equivalently,

E[X] 1 (5.3)

This says that the population average is 1/p . It is well known that the
1

maximum likelihood estimate of p in model (5.1) is simply p = (x) - l

the inverse of the average of observations on X , supposing that successive

spacings are identically distributed and independent. A time series (lagged

correlation and spectrum) analysis of successive spacings at d = 30 ft.

gives evidence of only very weak dependence between spacings; such dependence

will be ignored in what follows.

An informal but informative check for the suitability of the exponen-

tial model is to examine a plot of the order statistics x(j) of the (upper

half of the) data to the corresponding expected exponential order statistics:

a straight line relationship signifies that the simple exponential fits

14
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well. Examination of Figure 8 shows, and Figure 9 reinforces, the appearance

of a systematic upward bow in the data, signifying a systematically longer-

,1 *than-exponential right tail. Such an effect is also present for d = 40 ft.,

and d = 50 ft., but the curvature becomes progressively less noticeable

as the depth, d , increases. It has been noted also that as depth decreases

(eg. d = 10 ft.), there is a tendency for bowing to occur in the opposite

direction, i.e. for spacings to become shorter-tailed than exponential.

A numerical summary of observed data characteristics, in addition to

the message of Figures 8 and 9, thus suggests the need for a representation

other than the exponential; alternatives are considered in the following

sections.

Table 1.

Moment and Quantile Summaries of
Spacings in Excess of Median (70 meters) at Depth d = 30 ft.

Mean: x = 0.929 (km.)

s2 E var[X] 1.485, s = 1.218

Coeff. of variation = = 1.311 (l.0)*
x

Skewness =y = 2.678 (2)*

Kurtosis = Y2= 9.853 (6)*

Lower Quartile z = 0.155

Median = 0.487

Upper Quartile E ? 1.279

*Numbers in parentheses are characteristic of an Exponential model.

N1.

15
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The occurrence of a near-exponential distribution of spacings between

deep keels is perhaps not surprising, in that ice structure formation appears

* to have a random nature without much long-term order. It is the near-

independence of ice structure sizes in neighboring parts of the pack that

is probably responsible for the near-exponentiality of the spacings observed.

It is interesting that the spacing between two consecutive fixed high level

upcrossings in certain Gaussian processes can be shown to be approximately

exponential; see Cramdr and Leadbetter [1967], Chap. 12. Of course ice

depths are by no means Gaussian, but the conditions of weak long-run

*dependence relied upon to produce the Gaussian result are approximately

present for the ice data as well. See also results of Gaver and Jacobs

[1981] regarding the probability of reaching a high level in a non-Gaussian

process. Agreement with the exponential distribution, both for spacings

and keel depths, seems to improve with increase in reference depth, d, as

Is to be expected; numerical and graphical results are not, however, given

in this report.

18



6. Modification of the Exponential Model: The Sculptured Exponential

We propose to fit the upper half of the d = 30 ft. spacings data, i.e.

the magnitude of the spacing that exceeds the median spacing (about 70 m.)

by a modified or sculptured exponential.

Model 2: Linearly Sculptured Exponential. As an alternative to the

exponential (5.1) set

X = AZ(l + CZ) , (6.1)

where X represents a spacing, Z is a unit exponential basic r.v. and A

and C are constants, A being a scale and C reflecting departure from

exponentiality. The term (I + CZ) "sculptures" Z by leaving small values

of Z virtually unchanged (I + CZ Z 1 for Z small), but expanding large

values (I + CZ Z CZ for Z large). Since X is represented as a monotonic

increasing function of Z , we can represent the order statistics, X(j), as

follows:

X(j) = AZ()(I + CZ ), (6.2)

that is the size-ordered X-values, X(1) < X(2) < ... < X(n) are easily

represented in terms of those for Z , Z(0) . Furthermore, if Z 0) is

the jth order statistic of a unit exponential, then

el e2  e.
Z(j) - + + + 2  e , (6.3)

0) T _nT+ +

so the basic exponential Z(j) is represented as a weighted sum of exponential

gaps; here {ei} is a sequence of iid exponential random variables. Even

imbedding representation (6.3) into (6.Z) or (6.1) is not difficult; exact

19



expectations of X(j)'s are easily found. Note that, similarly, the

quantiles or percent points, x(a) , of X can be written in terms of those

of Z, z(a):

x(c) = Az(c)(l + Cz(a)) , (0 < a < 1) . (6.4)

Thus sculpturing gives a simple representation of the inverse distribution

of X in terms of that of Z

The above considerations suggest that sculpturing is sometimes a natural

way of fitting a Wilk-Gnanadesikan [1968] q-q plot. For further discussion

see Gaver and Acar [1979], and Gaver [1982].

Expressions for the moments and (Pearsonian) skewness and kurtosis of

(6.1) are obtainable from the following formulas:

Ak
EXk = Ak k (ki(j+k)!C j , k = 1,2,3,... (6.5)

j=0

in particular

EEX] = A(l+2C) , E[X 2] = A2 (2+2x3!C + 4!C2) (6.6)

E[X 3] = A313! + 3x41C + 3x5!C2 + 6!C3

E[X4 ] = A4[4! + 4x5!C + 6x6!C2 + 4x7!C3 + 8!C4] . (6.7)

From these expressions there follow formulas for central moments obtained

by substitution into the usual general formulas:

20



Var[X] : E[X2] - (E[X])2  (6.8)

Skew X E[X3 - 3E[X 2]E[X + 2(E[X]) (6.9)
(Var[X])3/2

SKurtX] + 6EX 2](EEX]) 2 - 4E[ X3 -JEX - 3(E[X]) 4
KutX (6.10)

(Var[X])

Furthermore, explicit formulas for the distribution and density functions of

Model 2, (6.1), can be derived.

Fx(x; A,C) = P{X <x} I 1 - exp 2x (6.11)

A + /2 + 4AC

is the distribution function, and

fx(x; A,C) =expF- 2x 1 (6.12)

L A + AT + 4AC A2 +4ACx

is the density.

The distributional form resembles that of an ordinary exponential with scale

A and shape parameter 1 for small x , gradually transitioning into a

longer-tailed Weibull with shape parameter 1/2 as x increases. A modifi-

cation of the cumulative hazard in (6.11) suggests itself: instead of

2x/(A + 4' + 4ACx) consider more generally Ax/{f + (l-a)(l+yxP)q}; this

leads to the distributional form

Fx(x;Aa,y,cpgq) I 1 - exp[ x/{a + (l-a)(l+yxP)q}] , (6.13)

p,q,y > 0 , 0 < a < 1

21
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Note that (6.13) allows the representation of both ultimately long-tailed

and ultimately short-tailed distributions relative to the exponential, but

maintains exponential-like behavior for small x . Unfortunately, simple

structural behavior of random variables akin to (6.1) disappears. The

properties of distributions such as (6.13) will be the subject of future

exploration; they are not considered further in this report.

Model 3: Exponentially Sculptured Exponential. A further alternative

to the simple exponential (5.1) is of the form

X =AZeCz, A, C > . (6.14)

The sculpturing term eCZ again leaves small values of Z (exponential)

nearly unchanged, but considerably extends large Z values. Once again by

monotonicity we have

cZj

X -) = AZ 0)e ) (j = 1,2,..., n) (6.15)

.and

x(a) Az()e C  ,  (0 < a < 1) (6.16)

for order statistics and quantiles of X from (6.14).

Expressions for the moments of this model come by differentiating the

moment-generating function of Z

E~eez ]  (-) -I, (0 < e < 1);

22



.2 we obtain

E[X] = A(I-C)-2  (C < 1) (6.17)

E[X 2] = A2 (1-2C)-3  (C < 1/2) (6.18)

E[X 3] = A3(1-3C)-4  (C < 1/3) (6.19)

E[X4 ] = A4 (1-4C) - 5  (C < 1/4) (6.20)

The central moments, i.e. variance, skewness, and kurtosis, then come with

the aid of (6.8), (6.9), and (6.10).

It is not possible to derive a simple expression for the distribution

function and density of the model (6.14).

23
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7. Fitting the Sculptured Exponential Model for Spacings

A number of ways of fitting models or representations such as (6.1)

and (6.14) suggest themselves; among these are the following.

(A) Maximum likelihood: possible for (6.1), using (6.12).

(B) Moment-matching: possible for (6.1), and also (6.14).

(C) Quantile matching: feasible for any sculptured representation.

(D) Hybrid methods: e.g. constrained likelihood fit by requiring

E[X] = x and allowing C in (6.1) to be determined by maximum

likelihood.

(E) Generalized non-linear least-squares, robustified if necessary:

it is propnsed to regress x(j) on Az(j)[l + Cz(j)] where e.g.

z(j) = -tn(l-j/(n+l)), the approximate expected value of the

basic r.v. Z , and an appropriate covariance matrix is utilized.

We report the results of applying several of these methods to fit

Models 2 and 3 to spacings (at d - 30 ft.) data; the results are then

diagnostically examined.

I
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(A) Maximum Likelihood.

The log likelihood function associated with (6.1) and (6.12) is

'"n 2x 12L(A,C; x) = - - -1 + 4AC xj (7.1)

x)"j~l n+ + 4AC x1

Differentiation leads to likelihood equations for A and C ; these must

be solved numerically, e.g. by a Newton-Raphson method. Alternatively, a

search of the likelihood function itself is reasonably effective. Results

are summarized below for the 30 ft. depth data set.

Table 2

Maximum Likelihood Fits of Spacings by a

Sculptured Exponential, (6.1).

n= 231 , A = 0.53(0.09)*, C = 0.39(0.16)*

(Corr(A,C) = - 0.84).*

Estimates Raw Data Model

E[X] 0.93 0.95

Coeff. Var.[XJ 1.31 1.50

Skew[X] 2.68 4.57

IKurt[X] 9.85 40.32

Lower Quartile, Q 0.155 0.170

Median 0.487 0.467

Upper Quartile, Q 1.28 1.13

( ) represent large-sample standard errors calculated from the likelihood
(Fisher information).
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Although the agreement of the lower moments is satisfactory, that of

the higher moments (skewness and kurtosis) is much less so; this points to

the apparent sensitivity of the m.l.e. to extreme values, assigning an

unreasonably high C ("correction") value. Nevertheless, a Kolmogorov-

Smirnov test of goodness of fit yields a value of 0.65 for the fitted

sculptured model, while a Kolmogorov-Smirnov value of 1.73 is found for a

simple exponential fit; the sculptured model is seen by this test as pro-

viding a substantially improved fit. Furthermore, a diagnostic plot of

observed (x) vs. predicted (x.(A,C) order statistics provides a more

satisfactory straight-line fit than does an exponential model. See Figure 10.

A further plot of residuals is given below in Figure 11. The sculptured

model fitted by maximum likelihood to the particular set of data under dis-

cussion appears to predict a somewhat longer far right tail than is evident

from the data.

An alternative diagnostic plot is available for the present and certain

other sculptured models: for (6.1) the transformation obtained by solving

x = Az(l + Cz) for z , using the estimated parameter values provides
A

estimates of the basic z-values, denoted by z , giving rise to the obser-

vations. To the extent that the latter resemble observations on a unit

exponential, the model is verified. Figures 12 and 13 provide such a

diagnostic plot.
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(B) Moment Matching: Linear Sculpturing

An alternative to the maximum likelihood method is that of matching

moments. It is customary to equate the two lowest moments, e.g. sample and

model mean and variance, when fitting two-parameter models. There is

theoretical justification in the present case for matching sample and model

means and coefficients of variations: the goodness-of-exponential-fit test

of Stephens [1978], adapted from ideas of Shapiro and Wilk [1972], is essen-

tially based on the sample of coefficient of variation; (cf. Shapiro and

Wilk [1972], p. 357 footnote). The coefficient of variation is a simple

rational function for the model (6.1), and C can be found explicitly.

The skewness of model (6.1) is also a simple monotonic expression in

C; this can be equated to the sample skewness and solved for an estimate

of C , C . An estimate of A then is obtainable from the first moments.

When applied to spacings at d = 30 ft. the skewness-matching method pro-

duces estimates that differ noticeably from those given by maximum

likelihood: X is larger, and Z is smaller than the corresponding maxi-

mum likelihood estimates. In several respects the skewness-match is to be

preferred: it agrees best with the data evidence in the far tail, i.e. at

the upper quartile and with respect to the kurtosis measures of model and

data.
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Table 3

Moment - Matched Fits of Spacings

by A Sculptured Exponential

Model Model
f C.V. Match 1 ,,Skew. Match '

Estimates Raw Data = 0.67, = 0.193 = 0.827, C = 0.062J

E[X] 0.929 0.929 0.929

Coeff. Var.IX] 1.31 1.31 1.12

Skew[X] 2.68 3.71 2.68

Kurt[X] 9.85 26.01 12.54

Lower Quartile, Q 0.155 0.203 0.242

Median 0.487 0.53 0.598

Upper Quartile, Q 1.29 1.18 1.24

Figures 14 and 15 provide diagnostic plots of quality of fit for the

skewness-matched sculptured model, (6.1).
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(C) Moment Matching: Exponential Sculpturing

The model (6.15) was also fit to the data by choosing C to match the

*.-. coefficient of variation and choosing A to match the mean of the data.

"* The values of the estimated parameters and predicted moments are as follows.

Table 4.

Coefficient of Variation - Match fit of Spacings by the

Sculptured Model (6.14)

A 0.721 C = 0.119

Estimates Raw Data Model

E[X] 0.929 0.929
A

CV.[X] 1.31 1.31

Skew[X] 2.68 4.53

Kurt.[X] 9.84 53.64

Lower Quartile, Q 0.155 0.215

Median 0.487 0.543

Upper Quartile, Q 1.29 1.18

Figures 16 and 17 provide diagnostic plots of quality of fit for the

model (6.14). The residuals appear to have the same shape as the residuals

for the m.l.e. and skewness-match fit of model (6.1). The residuals in

Figure 17 are more symmetrically and closely grouped about the axis than

are the residuals for the maximum likelihood fitted linear model.
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8. The Gamma Model for Spacings

The gamma distribution is an alternative, and classical, model for

spacings that includes the exponential as a special case. Its density is

A-11
fx(x; B,A) = e-x/B WB A 1 (8.1)

Neither the distribution function nor the quantiles or order statistics of

general gamma-distributed random variables are explicitly expressible in

simple closed form.

The gamma has been fitted to the 30 ft. spacings data by maximum

likelihood and also by matching the first two moments. The results are

sumarized below.

Table 5.

Estimates Raw Data Model(Moments) Model(M.L.E.)

= 0.582, C'= 1.60) (W = 0.70, B = 1.33)
S.E. (0.15) (0.60)

Corr(A,B) = - .71

QEtX] 0.93 0.929 0.929

Coeff. Var[X] 1.31 1.311 1.196

Skew[X] 2.68 2.622 2.390

Kurt[X] 9.85 10.32 8.58

Lower Quartile, Q 0.155 0.127 0.172

Median 0.487 0.478 0.541

Upper Quartile, Q 1.279 1.256 1.276
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In Figures 18 and 19 diagnostic plots of the gamma fit by maximum

likelihood are presented. There is a remarkable resemblance between the

appearance of the diagnostics for the m.l.e.- fitted gamma model and the

skewness-fitted sculptured exponential for this data set. Note that both

,. of these model representations now tend to predict smaller extreme right

tails than indicated by the raw data, in contrast to the m.l.e.-fitted

" sculptured exponential.

.43
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9. Statistical Properties of Ice Keels

Turn now to a discussion of the distributional properties of keels,

i.e. the locally maximal projections of individual ice structures below the

sea surface; see Figure 1. The present discussion is confined to those

keels referenced from a 30 ft. depth (keel depths are in units of feet).

Figure 20 is a plot of keel depths (excess over 30 ft.) in sequential

order, Figure 21 is a histogram of raw keel depths, and Figure 22 is a

histogram of log keel depths. The latter shows little evidence of the pro-

nounced "two-bump effect" of the spacings. Earlier work, WH, and Hibler

[1972], among others, has represented keel depths by the simple exponential

model, but again the data give evidence of a systematically longer-than-

exponential right tail; see Figures 23 and 24.

Two theoretical models were fitted to the raw data: the sculptured

exponential, (6.1), and the gamma. Several methods of fitting were employed:

lower moment-matching and maximum likelihood. The adequancy of the fits was

assessed by numerical and graphical methods, and the following tables and

.figures 25-30 summarize the results.
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The exponentially sculptured model (6.14) was also fitted to the keel

data by choosing C to match the coefficient of variation of the data and

choosing A to match the mean. The values of the estimated parameters and

the predicted moments are as follows.

Table 7

Coefficient of Variation - Match fit of Keel Depths by the
Exponentially Sculptured Model

Estimates Raw Data Model

E[X] 6.90 6.90

C.V.[X] 1.26 1.26

Skew[X] 2.22 4.01

Kurt.[X] 5.55 37.86

Lower Quartile, Q 1.20 1.64

Median 3.60 4.13

Upper Quartile, Q 8.60 8.87

Diagnostic Plots appear as Figures 31 and 32.

-As was found to be true for spacings, the maximum likelihood fitted

sculptured model (6.1) applied to the present keel depth (reference

d = 30 ft.) data systematically overestimates the magnitude of the far right

tail (the number of deep keels). In this case the gamma model underestimates

the final right tail values, see Figures 29 and especially 30. The skewness-

matched sculptured exponential also tends to underestimate the far right

tail of the data. An examination of the residual plot of Figure 26 suggests

that the m.l.e.- fitted sculptured model nicely fits all keel size data

except the very largest. The coefficient of variation match fit of expo-

nentially sculptured model (6.14) produces residuals that are less structured
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than either the gamma model or sculptured model (6.1), see Figure 33. The

model (6.14) was also fit by matching the skewness, this fit produced

residuals similar in appearance to Figure 28.
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APPENDIX

Estimates for the Percent-Points of Maximum Keel Depths, and
Corresponding Uncertainty Estimates (Confidence Limits).

In Section 9 the exponentially sculptured model

X = AZeCZ (A-1)

was fitted to a batch of 365 keel depths; this is Model 3, (6.14). Further-

more, diagnostic plots of order statistics residuals indicated a reasonably

successful fit of the data by the model. We now wish to utilize the model

to predict statistical aspects of the maximum keel depth to be encountered

in a further series of keel observations. Specifically we illustrate the

procedures and results by assuming that

(a) a future sequence of 365 keel depths is of interest, and that

these data come independently and randomly from model (A-l), or

(6.14);

(b) we are interested in predicting the 95 h percent point of the

maximum of the data values in (a);

(c) we are also interested in associating 95% confidence limits with

the point estimate of (b).

The above numerical values are illustrative only; it will be equally

possible to predict the median or mean of the future maximum, together with

confidence limits.

The form of the model (A-l) is especially convenient for addressing

(b) and (c). Clearly the 95 - percent point for the maximum of a (future)

sample of 365 unit exponential random variables is

z(365 )(O.95) = -Jnil - (0.95)1/(365 ] = 8.87... ; (A-2)
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such numbers can be obtained accurately and handily from any set of extensive

tables, or even from a hand-held calculator. Now by monotonicity, see (6.16),
-th

the 95,- percent point of the maximum of a sample of 365 future keels is given

by

x(365 )(0.95) = A[z(3 65)(O.95)eC[Z(365)( 0 95)] (A-3)

provided the model is correct and A and C are known. If the model is

correct but A and C are estimates of A and C , then an estimate of

the percent point is

AA

x(365)(0.95) = (365 )(0.95) eC[Z(365)(0 95)] . (A-4)

Thus a point estimate of the percent point of the maximum can be generated

by simply substituting the parameter point estimates into (A-3), a very

simple and direct task.

Next address (c), the uncertainty in the above estimate, or, more

specifically, approximate confidence limits for the unknown percent point.

We compute two estimates: the jackknife confidence limits, and the bootstrap

confidence limits; see Efron [1980] for a leisurely discussion of both

methods.

The jackknife procedure involves deletion of one observation at a time
A A

from the batch of data, and the re-computation of A and C using the

remainder of the data; the estimates obtained oinitting data point i are

called A(i) and C(i) . Next one computes the quantities
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the logarithm is taken in order to render jackknifing more valid by sym-
A

metrizing the sampling distribution of x(365)(0.95) . Finally one computes

A 364 365
L = 365 L0 36T I L (A-6)

(0) 3(i=l (i)

where L(O) E in x(365)(0.95), the logged percent point estimate with no

observations removed. The jackknifed estimate of the variance of L is

here

[A 36 365

VAR[L] =-4 (L(i) - Q2 (A-7)

in the present instance the numerical value is 0.0156. The approximate 95%

confidence interval for in x(365)(0.95) is then

L + 1.96 /VAR[L] = [4.585, 5.075] ; (A-8)

the 95% confidence interval for the actual percent point of the maximum is

then obtained by exponentiating the limits of (A-8), giving the interval

[98.0, 160.0].

The bootstrap procedure involves re-sampling: from the empirical

distribution of the original data points, obtain 200 independent random

"bootstrap" samples of size 365 each, and from each bootstrap sample compute
A

estimates of parameters A and C , and thence of x(365)(0.95); there will

thus be 200 bootstrap estimates in all. Now simply order the latter and

find the 5th - smallest and largest (1950- smallest) of these bootstrap
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estimates, which will be quoted as the 95% confidence interval; and is

[91.8, 149.9]. Notice that the log transformation is not required when the

bootstrap method is utilized. It is gratifying that the bootstrap and jack-

knife methods are in such close numerical agreement for the present data.

Both methods are somewhat more computationally demanding than, say, the

classical "delta method" would be, but are entirely feasible using modern

computers.
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