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FINITE GEOMETRY EFFECTS ON THE STABUI TY OF A CHARGED BEAM

PROPAGATING THROUGH A RELATIVISTIC ANNULAR ELECTRON BEAM

1. Introduction

The stability properties of systems of intense relativistic electron

beams are of considerable interest for many applications. The Collective

Particle Accelerator (CPA), currently under development at the Naval Research

*Laboratory is one such application. The Collective Particle Accelerator is a

device in which an intense modulated hollow electron beam propagates along a

rippled magnetic field. The interaction of the modulated annular electron

beam with the rippled magnetic field produces an axial electric field which

consists of both backward and forward waves 1 
* A solid electron beam can be

*introduced axially and entrapped by the backward wave potential. There is a

transfer of energy from the axial electric field to the axial beam particles

which in turn get accelerated to high energies, provided that both beams

propagate in a stable fashion. In this paper we examine some stability

properties of a solid charged beam propagating through an annular intense

relativistic electron beam in the parameter domain pertinent to the Collective

Particle Accelerator at the Naval Research Laboratory.

An earlier study2 of the coupled transverse oscillation for an intense

unmodulated charged particle beam in a straight guiding magnetic field

concluded that the transverse oscillation excited by the propagation of a

solid charged beam inside a hollow relativistic electron beam is unstable.

The growth rate of this instability is a significant fraction of the diocotron

frequency of the hollow beam f or a solid electron beam and even greater if the

solid beam is made up of ions. In this paper we study this instability more

specifically in the context of the CPA. As in Ref. 2 we use a fluid model for

the hollow electron beam and a kinetic model for the solid beam. In order to
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make the analysis simple, here we ignore the ripples in the axial magnetic

field and the beam modulation. The radius of the solid beam Rsis taken to be

less than the inner radius Rof the hollow electron beam. In order to make

this study more relevant to the experiments we have recognized the f inite

extent of the system in the axial direction. A rigorous study of a finite

system involves a two dimensional eigenvalve equation and its solution. This

is beyond the scope of this paper and will be addressed in a future paper.

Here we solve the wave kinetic equation and show that a successful

acceleration is always possible for the beam head. This is because the wave

energy of the instability travels at the group velocity Vg9 which is much

smaller than the beam velocity v, which in turn is close to the speed of

light. Thus the transverse oscillation is not fatal for the CPA operation as

was implied in Ref. 2.

The composition of this paper is as follows: In Section II1 we review the

equilibrium properties, the basic assumptions and the equations governing the

system. In section III we solve the dispersion relation in the parameter

domain pertinent to the CPA at the Naval Research Laboratory and discuss the

results for a solid electron beam. In Section IV we solve the wave kinetic

equation and discuss its relevance to a finite device and finally in Section V

we give our conclusions.

11. Theory:

The equilibrium configuration is given in figure (1). We f ollow the

treatment as given in Ref . 2. An intense relativistic charged electron beam

propagates along the axial magnetic field B 0 e z The inner radius of this

annular beam is R, while the outer radius is R2 - A solid beam of radius R

propagates along the magnetic field. The solid beam radius R.is smaller than

2
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Figure la - The equilibrium configuration of the hollow and the solid

beams.

ns

0.0 RS R, R2  R

Figure lb - The density profile for the equilibrium as shown in figure Ia.
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the inner radius R, of the annular electron beam. The magnetic field confines

the beams in the radial direction in equilibrium. Cylindrical coordinates

(r,e,z) is used.

We assume that the transverse velocities are much smaller than the axial

velocity i.e. vz2 >> vr + V 2  The hollow beam is tenous ch 2
z r e "ch ph

2 4 2/=e/ 2-1/2
where Oph 4e enh/mh and wch =eBo / hmhc' h = (1-%) and $h = vh/C

Further we assume that v /Y2 N Z e 2/m cY << 1 , where s denotes the solid
S s s s s S

beam particles, vs is Budker's parameter, Ns M 2 w f Wdr rn (r) is the number

of particles per unit axial length, n0 (r) is the equilibrium particle density,
s

-e is the electron charge, Zs is the charge state of the solid beam particles,

ysms C2 is the characteristic particle energy for the solid beam and c is the

speed of light in vacuum. Since the axial velocity is much greater than the

2 2azimuthal velocities (v >> v r + v ) the self-magnetic field in the axial

direction produced by the azimuthal current can be neglected. The equilibrium

is azimuthally and axially symmetric i.e., -- 0 and -- 0.
36 - az

The annular beam electrons are described as macroscopic, cold fluid

immersed in an axial magnetic field B e . The equation of motion and the

continuity equation for the hollow beam electrons are

L+ V *V 'E (1)
+at-.v YhmhX. - {E+- x h,

c

and

+ -0, (2)

4



where E and B are the electric and the magnetic fields respectively, nh and V

are the density and the mean velocity, mh is the rest mass of the annular beam

particles (in this case the electrons).

The distribution function for the solid beam particles is given by

f (x,p) = (n /2?rys) 6(H-w - smsc 2) 6(Pz--s m sc) (3)

where ns is the particle density at r = 0, H = (m c4 + c2 p2/2 + e so (r) is

the total energy, P, M r[p + (e /c) (rBo/2)] is the canonical angular

momentum, P z + (es/c) A (r) is the axial canonical momentum, Ao(r) is themomenum, P

axial component of the vector potential for the azimuthal self magnetic field,

and w, and s ' are constants. (D(r) appearing in the definition of H is

the electrostatic potential for the equilibrium self electric field.

The density profile consistent with the solid beam distribution is given

by 3,2

n 0 r<RnO0(r) {s, s
s o, otherwise.

The fast (+) and the slow (-) laminar rotational frequencies are given by
2

+ E 2+/

s  2 wcs[l- I -- 2)  ] (4)

YS WCS

2 22 2 -1/2

where wcs - eZsB0/ysmsC, ps e 2 Z2 /YsSY - $ v s /C

and es - Sgn (es) . For a valid equilibrium for the solid beam ws  is

5



+ +
restricted between w s i.e., W s  < s  The density profile for the

annular beam electrons is given by,

nh, R1 < r < R2
o(r)

o, otherwise.

The density profiles chosen here have sharp boundaries as shown is figure -

lb. Consistent with the equilibrium conditions just described the rotational

frequency of the annular beam wh(r) is given by2,

wh(r) - _ 2 snsZs $ 2

h (1-s h)s (5Trn h  r

where the diocotron frequency of the hollow beam is given by

2 (6)ph/hch•

For the stability analysis for the coupled tranverse oscillation of an

intense charged beam travelling through a relativistic annular electron beam,

a normal mode approach is used. A dispersion relation is obtained by

linearizing fluid, Vlasov and Maxwell's equations. All perturbations are

assumed to vary in time and space as,

60(x, t) - (r)exp~i(xa + kz - WC)I, (7)

where w is the complex eigen frequency. The azimuthal harmonic number is

X and k is the axial wave vector. We further assume that the axial

wavelength is long i.e.,

6



#I

(kRc )2 << (2 + 1),

and the frequencies are low i.e.,

IwR 12/C 2 << (Z2 + 1),

where R is the radius of the conducting wall.

Under these conditions the dispersion relation obtained by Uhm is given

by,

R

'k' h) P' ~ 2 2Z Srh(w,k ) rs(w,k )  y Y~ (I-$~h) (2

2s R R

H(R1) R1 R1 H(R R2

-- 1 1 _ 1 +  2 R

c c 2Th 2

22x H(R2) R12 R2z

Rc 2 Yh R2  Rc

where the dielectric functions of the hollow and the solid beams are,

H(R1) R 2z H(R2) R 2z R 2z
r(w,k) 2 [1 2£ +  2 '-2---0 (i 2 2--x)]

2Yh R 2 Rv R

H(R2) R2- c - - - 1, (9
c

7



R2z
rs(w,k )  I s

s  2R
c

H(r) WD

an 2 Yh_2 w k5h c Xwh(r)
and

L02
Sps (12)

(- kasC Zs) (- ksC - z ) + c + 2w (s.-- S -- S S £SCS 5

In the following sections of this paper we shall use the dispersion

relation as given in equation (8) to examine the stability of the transverse

oscillations for the NRL CPA. The details of the derivation of the dispersion

relation are given in Ref. 2.

III. Results

In this section we solve the dispersion relation given in equation (8) in

the parameter range pertinent to the NRL CPA. Here R1 = 2.0625 cms, R, = 2.25

cms, Rs M 0.25cms and Rc - 2.3438cms. The injection energy of the hollow beam

electrons is one MeV which corresponds to 5h = 0.941 while the injection

energy of the solid beam electron is 0.7 MeV which gives l8s = 0.906 . The

space charge limiting current for the hollow beam is 20 kilo Amps and 2 kilo

Amps for the solid beam giving the ratio Is/h - 0.1. Given the ratio of the

currents, the velocities and the areas of cross-section of the solid and the

hollow beams, the ratio of the densities can be calculated. The expression

for the density ratio for the solid and the hollow beams is,

ns ( h- ) () , (13)
nh 1h s

8



where Ah and As are the areas of cross-section of the hollow and the solid

beams respectively. In all the calculations given in this paper we have used

the expression (13) for the density ratio and used rw =.1
ph ch)

In figure 2 we plot the real and the imaginary parts of the complex

frequency w against the axial wave vector k, for the azimuthal mode number

Z = 1 . The instability exists roughly for kc/ wD between -0.85 to 0.25, and

achieves a maximum at kc/u D - -0.3 . The growth rate at its peak is about

0.5wD , which is a substantial fraction of the diocotron frequency of the

hollow beam. The instability once again reappears in the range

0.55 < kc/u D < 1.1, but with much reduced temporal growth rate. This as

explained by Uhm2 , is a residual influence of the familiar diocotron

instability. Since the instability is a significant fraction of the diocotron

frequency, Uhm? concluded that the propagation of the solid beam will be

severely limited. In the following section we shall apply the finite geometry

restriction in the axial direction and show that despite the substantial

temporal growth rate it is possible to achieve successful acceleration.

In figure 3 we provide a plot of the maximized growth rate against the

ratio of space charge limited currents (Is/lh) for the solid and the hollow

beams. In this plot the ratio of the densities ns/nh, is calculated self

consistently by equation (13). The values of the self consistent ns/nh are

indicated on the plot at various values of Is/lh . The growth rate increases

with increasing Is/Ih. The ratio of the currents, Is/Ih was varied from 0.01

to 0.2; and the corresponding maximized growth rate increased from 0.153wD to

0.687w D .  The self consistent density ratio ns/nh in the same range increased

from 0.134 to 2.69. The value of kc/w D  where the maximum occured moved from

-0.15 to -0.45.

9
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0.3-
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0.1-

-0.8 -0.4 0.0 0.4 0.8

KC/ COD

Figure 2 - A plot of the growth rate against the axial wave vector. -ere

Ri - 2.0625 cms R2 = 2.25 cms, Rs = 0.25 cms, Rc - 2.3438

Cms. Is/lh - .1 and ns/n h is in accordance of equation (13).

- 0.941, Bs M 0.906 and the azimuthal wave number Z = 1
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0.6 .f 2.016
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0.2 /0.672
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0.134

0.0 1 I I
0.04 0.08 0.12 0.16 0.20

IsIh -

Figure 3 A plot of the growth rates maximized over the axial wave vector

as a function of the ratio of the space charge limited currents

in the solid and the hollow beams. The density ratio ns/nh is

computed self consistently by equation (13) and its magnitude

for various Is/Ih values are indicated on the plot.
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Figure 4 is a plot of the maximized growth rate agailst the velocity of

the solid beam s . Again the density ratio ns/nh is gien by equation

(13). We see that as Bs becomes small the density ratio ns/nh increases

thereby increasing the growth rates. Since in the NRL experiment 3s for a

solid electron beam is always in the opposite direction of the hollow electron

beam velocity Shc , we have restricted our calculations only to negative

values of a.. For s < -0.5 the growth rate becomes more or less constant.

This is unlike the nature indicated in the figure 2 of Ref. 2, where ns/nh is

held constant throughout the range of Ss • Hence the figure 2 of Ref. 2 does

not correspond to one particular experimental setup. If we set Bs = 3h P i.e.

consider the case where both the hollow beam and the solid beam travels at the

same speed the growth rate vanishes.

IV. Finite Geometry Effects:

In the previous section we have shown that a solid electron beam

propagating through a relativistic hollow electron beam is unstable to the

transverse oscillation. This was the primary reason which lead Uhm 2 to

conclude that the propagation of the solid beam through a hollow relativistic

electron beam will be severely limited. In this section we shall study the

propagation of the energy density W due to the instability along with the

propagation of the beam head itself for finite systems.

The wave kinetic equation for the CPA is,

V A.m yW[I - H(z-$sct)], (14)
3t g az

where W is the energy density, V is the group velocity of the transverse

mode, H(z- Sct) is the Heavside step function,

12
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0.2
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Figure 4 - A plot for the growth rate maximized over the axial wave vector

k against the velocity of the solid beam
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1, x)O
H(x) - f

LO, otherwise,

and y is the growth rate of the transverse instability. Fig (5) describes the

CPA configuration. The annular beam propagates along the magnetic

field Boe^ between the radii R, and R9 . The solid beam propagates along the

axis with a radius Rs and with a velocity 6 sc . If the solid beam particles

are electrons then the solid and the annular beam travel in the opposite

direction while if the solid beam particles are ions then they travel in the

same direction. The position of the beam head at any a time t is given

by asct .

First we shall discuss the case of a solid electron beam propagating

through a relativistic hollow electron beam. The configuration is described

in figure (5). The general solution of equation (14) can be written as,

5 c $ c
W(nz) W expf[V fz - H 1- '-)z- +V--n dz-l (14a)

g g g

where,

r -z-V t
g

and

W - W(on)

Define,

- V )n(15)

14
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Vg t / Ct Z"--

Figure 5 -- A schematic diagram of the hollow electron beam and a solid

electron beam. Also shown schematically is the solution W6(z,t)

of equation (14) for this case.
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such that

cs c

Vg

We shall discuss the solution (14a) in three regions:

z > B Ct
(a)

This corresponds to the case of z > z . For z>z the argument of H is

positive and thus the solution becomes

W(z,t) = W (16)0

The solution implies that the energy of the region where the solid beam has

not yet arrived remains unaffected at the initial value Wo .

V t 4 z 4 8 ct
(b) g

This corresponds to the case 0 < z < z . Here the solution is given by,

W(z,t) = W exp{-scfVg-s ct - z)} (17)

At z s ct it reduces to the previous case where W(z,t) - Wo .  An observer

travelling with the beam head, i.e., with a velocity $sc, sees a backward

convective growth of W with a growth length L, in the region between the beam

head and the point at which W(z,t) reaches its maximum value. In the

laboratory frame this growth length is,

16



3sc-V

L - -- g(17a)
g Y

Although from the laboratory frame of reference the instability grows in time,

it is stationary in the region between the peak and the beam head when viewed

from the beam head. This is illustrated in figure 5. As a consequence of the

backward convective nature of the instability near the beam head, there will

be a region in which the effects of the instability are nondestructive,

regardless of the length of the device. If the initial perturbation energy

density (noise level) is 1% of the beam energy density then it takes about

five growth lengths for that perturbation to grow to a level such that W is

comparable to the beam energy WB. Thus a portion of the beam of length - 5Lg

remains only weakly affected by the instability. Since L can be controlled

by the experimental parameters this distance can in principle be increased.

z < V t
(c)

This is the region between the origin (z=0) and the peak of W(z,t) at Z =

Vgt. In this region the solution is given by

W(z,t) - Woexp(-z) (18)
g

Here the energy density rises exponentially as a function of z and reaches a

peak at z - Vgt.

We now apply the solution discussed above specifically to the NRL CPA in

the parameter range given in the previous section. From figure 2 we see that

the maximum temporal growth rate occurs at kc/w D - -0.3 and has a magnitude of

0.486wD . Also from the plot of wr/wD we see that the group velocity Vg given by

17



the slope is roughly 0.0189c. With Bs = 0.906 the injection velocity in

equation (17a) the growth length is 0.61 meters. The diocotron frequency

9x10 8 . Now if the perturbation energy density (i.e., noise level) is 1%

of the beam energy density, the ratio - I for about 5Lg-3 meters and if the
W g

perturbation is 0.01%, then '-- 1 for about 9L g5.49 meters from the beam

head (see figure 5). Thus it is possible to successfully accelerate about 3

to 6 meters (depending on the magnitude of the initial perturbation) of the

solid beam despite the substantial temporal growth. Also this estimate was

done using Bs- 0.906 which is the injection velocity. In figure 6 we use

expression 17a to plot Lg against 6s. As the solid beam gets accelerated

ss approaches unity and Lg increases thereby allowing a larger portion of the

-2
beam to be unaffected by the transverse instability. Also note that wDyh

thus raising the velocity of the hollow electron beam Bh will further

increase Lg . Similar treatment can be given for the case of a solid ion beam.

V. Conclusions

The stability of the transverse oscillations for a charged beam

propagating through a relativistic hollow electron beam was examined in the

parameter regime pertinent to the NRL CPA experiment. The ratio of the beam

densities ns/nh was maintained as a dependent parameter. For the NRL

experiment the ratio of the space charge limited currents (I s/Ih = 0.1, was

used to determine the self consistent ns/nh. For a solid electron beam the

transverse oscillation had a growth of about 0.5w D . The growth rate was found

to increase with Is/Ih. This was mainly because increasing Is/Ih icreased

ns/nh . The maximum growth rate increased with decreasing 8 s . For 6s in the

range of -0.5 to -1.0 the growth rate maintains a fairly constant magnitude.

18
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PS

Figure 6 The magnitude of the growth length Lg, is plotted against the

injection velocity of the solid beam, as
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Finite geometry effects were examined by solving the wave kinetic

equation. It is found that despite the substantial temporal growth rate of

the transverse oscillation it is possible to achieve successful acceleration

of about 3 to 6 meters of the solid beam length for the present operating

parameters. In principle this can be further increased. Thus we conclude

that the transverse oscillation will not be fatal to the operation of this

device.

A similar conclusion for the case of a solid ion beam can also be made.

However it must be pointed out that due to the defocussing of the ion beams

this method of propagating a solid ion beam through a relativistic hollow

electron beam will fail. Thus the analysis given by Uhm2 for the solid ion

beam acceleration does not apply to the NRL CPA experiment. A solid ion beam

will have to propagate through a solid electron beam and this configuration

will make a new formalism necessary. A new formalism dealing with the

propagation of a solid ion beam through a solid electron beam is now being

developed and will be reported in a future paper.
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