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\EﬁThis paper deals with the problem of selecting all populations which
are close to a control or standard. A general Bayes rule for the above
problem is derived. Empirical Bayes rules are derived when the populations
are assumed to be uniformly distributed. Under some conditions on the
marginal and prior distributions, the rate of convergence of the empirical
Bayes risk to the minimum Bayes risk is investigated. _ The rate of
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Empirical Bayes rules have been considered for multiple decision

problems by Deely (1965), Van Ryzin (1970), Van Ryzin and Susarla (1977),
Singh (1977), and Gupta and Hsiao (1981). Most of the papers are concerned
with the selection of the best population where best is usually defined in
terms of the largest or smallest unknown parameter. Gupta and Hsiao

(1981) considered the problem which is concerned with the selection of
populations better than a control. In some practical applications, one may
be interested in selecting populations which are close to a control. We
will consider this kind of problem in this paper.

In Section 2, we propose a general Bayes rule for selecting good popula-
tions. In Section 3, assuming that the populations are uniformly distributed,
empirical Bayes rules are derived for both the known control parameter and
the unknown control parameter cases. Under some conditions on the marginal
and prior distributions, the rate of convergence of the empirical Bayes
risk to the minimum Bayes risk is investigated. The rate of convergence is

§/3

shown to be n~ for some 6, 0 < § < 2,
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2. A General Bayes Rule for Selecting Good Populations

Let mysmysennmy be (k+1) independent populations which are characterized
by parameters BsByseersBys respectively. Assume that L) is the control
population with parameter 8 which may be known or unknown. When 89 is
unknown, let o = (60,91,...,ek) and X = (XO’Xl""’Xk) where X is an observa-

tion from L i=0,1,...,k. When 90 is known, no observation from population

1) is taken, and 8g» X0 are deleted from g and X, respectively. When there is

% no confusion, ¢ and X are used to represent either case. We define population

n; to be a good population if lei-eol < A and a bad population if lei-eol > A,
where o > 0 is a pre-assigned constant. Our goal is to find a Bayes rule
which selects all good populations and rejects bad ones. We assume that given
85s Xi has probability density function f(xilei) with respect to a o-finite
measure u, for i = 0,1,...,k, and 8 has a prior distribution

G(e) = _; Gi(ei) on the parameter space 2. Let G = {s|sc< {1,2,...,k}}

i=0
be the action space and let

(2.1)  L(e,s) = {cy(6n-0-6:)1 _aa(es) +
= iés 170 i77{8;28p-81" "1

0}(61)

€2(8570078) (g saco,1 (%)) * 125{03(ei-OO+A)I{90-A<Gi§ﬁ

)}

+ C4(90+A'61')I{60<ei<eo+A}(ei

be the loss function defined on qQ x G, where Cys i=1,2,3,4 are positive
constants and 1 is the indicator function. The Bayes risk with respect to

G can be expressed as

(2.2) r(G,s) = [ [L(e,s)f(x|e)d6(e)du(x), |
Za

where X is the sample space and f(x|g) = ¥f(xi|ei).




Since the action space is finite, attention can be restricted to the
non-randomized rules for deriving the Bayes rules. For a non-randomized
decision function §: X -+ G, the corresponding Bayes risk with respect to
G is given by
(2.3) r(6:6) = [ [L(2:6()F(x]9)d6(e) dul ).

In the sequel we consider the special case where €] =€y =C3=0Cyp =
constant which can be taken to be unity without loss of generality. If ¢ is

the empty set, we have
(8.9) E ( ) (6:)
L{g,0) = {(8,-08,%a)1 6.) +

(60+A‘ei)I{eo<ei<eo+A}(ei) },

and (2.1) can be expressed as
(2.4) L(8,s) = L{6,¢) + ] {{8,-2-8;)]I (6.) +
g s ics 0 i {eiieo} i
(ei-eO-A)I{eo<ei}(ei)L
Hence, for any §, we have

(2-5) Y‘(G,G) - r(Gs¢)

= % ieg(y{é(eo-A-ei)f(slg)dG(g) +
2 I{eo<ei}(ei-eo)f(zlg)dﬁ(g)du(g)}.
From (2.5), 63(5) is given by i € 68(5) if
(2.6) {]z(eo-A-ei)f(glg)dﬁ(9)+2[{eo<ei}(ei-eo)f(glg)dG(g) <0,

then 68(5) is a Bayes rule with respect to G.




Let mi(x.) = [f(x.]6:)dG;(6.) be the marginal distribution of X.,
i ARl Lht Eane Rha i

"(eilxi) be the posterior distribution of 8 given X; = Xps and E(eilxi)

v

be the expected value of 6; given X; = x;.

; If mi(xi)

(2.6) is equivalent to

A
o

(2.7) (eo-A)-E(eilxi) + 2j(00<61}(ei-eo)n(eilxi)dei
if 8o is known, or

(2.8) E(BOIXO)-E(eiIxi)'A+2f{eo<ei}(ei-eo)"(eilxi)"(eolxo)deideo <0
if % is unknown.

From the above discussion, we have the following main result:

Theorem 2.1. Under the loss function (2.4), the Bayes rule 63(5) with
respect to G is given by

(a) 1If N is known, then i ¢ 68(5) if the inequality (2.7) holds.

(b) If N is unknown, then i ¢ 63(5) if the inequality (2.8) holds

An Application:

Suppose that

: X
{2.9) f(xi\ei) = e 1ei1l(xi!), X; = 0,1,...,ei >0
and o, has a prior distribution gi(ei) = G%(ei) which is given by

0.1 Gi'] 'Biei
(2.10)  g;(05) =850, e Imaid g oy(84)s
where ay > 0 and By > 0 are known. Then

xi+01 X1+ai-] ‘91(1+Bi)

(2.27)  n(eylxy) = (148,) 0 e /T(x5%ay)
and
(2.12) E(ei!xi) = (x1+°i)/(]+81)’

0 for all X; s then

G e




s P s s e n =

P

Lemma 2.2. I n(6,|x;) is defined by (2.11), then
f{eo<9i }(ei'eo)‘ﬂ’(ei Ixi)dei

X a
—1———-{l-r(eo(l+e ),x +a, +1)} 90{1 r(60(1+8 ) x;ta )}

where 8y > 0 is known and
a xa-] -X
r{a; a) = g T e "dx, a>0, a>0.

Proof. Proof is simple and hence omitted.

Lemma 2.3. If "(eilxi) is defined by (2.11) and B; =8, 1=0,1,...,k and

eo is unknown, then

[ 1ag<0; 140500 m(051x¢)n(eg | xg)dode,

(x;*a+xgtag) 2(xg*ag)
_ i 0 1, 0 07 ;1.
= 78 Hzs xgtagsxitag) - —ygg 135 xgragtlxgtay),
where
I(z; a,8) = } ETJ-ET (108 ldx, « >0, 850,
0 "\
and

B(a,8) = I(a)r(s)/r(a+s).

Proof. f{eo<ei}(ei-eo)n(eilxi)n(eolxo)deideo

x+a+ +a
= 17 (og-00) L18) 0™ xi+° i1 Joteg~ (0%0g) (148)gq gq
é o, 1 07 Tx;+a)r(x%ag) i %
0
° w (]+8)xi*°i’“o+°o Xy+a bxgtag xytag-1 -(T+u)og(1+8)
= & { r(xi+ui)rlxo+u0) 0 (u-1)u e dude,




» (x +a +X0+a0) Xitas-1 -(xi+ai+x0+ao+])

(8B (Rgtag k7T (V- Da (1) du

(x +ai+xo*a0)

-(xi+ai+x0+ao+1) x0+u0-1
(e BTy fag ) § (V1)

dv

(xi+ui+x0+u0) +a -1 x0+a0-ldS

" TTraTBlxtar 7] Z(] -25)(1-s) | ‘

(xi+°i+x0+“0) ] 2(x 0)
T 153 XgtageXitey) - — Iz XgragHls Xj+ay).

From Theorem 2.1, Lemma 2.2 and Lemma 2.3, we have the following

theorem:

e

Theorem 2.4. If f(xi|ei) is defined by (2.9) and gi(ei) is defined by

s e

(2.10). Under the loss function (2.4), the Bayes rule 63(5) is given by

(a) If 8 is known, then i ¢ 63(5) if

P ity

X +a,
1811 (1-2r(8p(1+84)5 Xx;+a;*+1)} - 8g(1-2r(ey(148,); X5*ag)} < a.

(b) If % is unknown and By = 8, i=0,1,...,k, then i ¢ 68(5) if

X.+ x0+a0
7+8 {21(7, x0+a0,x +a )-11 + e {1+

.

21(23 0°Xi*%4 )- 41(?. +] o Xytay )Y < A

3. Empirical Bayes Rules for Uniform Populations

In this section we will assume that Xi has probability density function

i
I
t
¢
h
¥
'
4

f(xilei) = %; I(O,ei)(xi)’ where 6, > 0 is unknown. Suppose that ¢ has a

prior distribution G(s) =‘161(01) on Q and Gy has a continuous probability




density function 95 and 9; is positive. Let mi(xi), Mi(xi) be the marginal

pdf and cdf of Xi’ respectively. Then

(31 mlx) = gt dsye)
X_i 1
and

(3.2) Mi(x'i) = Ximi(xi) + Gi(xi)'

From (3.2), we have
(3.3) Gi(xi) = Mi(xi) - ximi(xi).

It follows that

—

@

S
|

b
(3.8) [ 1 d6,(e,) = m,(a) - m,(b)
a

and

~—

D

g
1

= mi(a)
for any x; <a <b <.

3.1. 90 known

In the case where 90 is known, let

(3.5) AGi(xi) = (eO-A)mi(xi)-:[:.dG1.(ei)+2(x ) A

i jo=IN(eg,

From (2.6), we have i € 63(5) if AGi(xi) <0. Ifx; <8y,

(3.6) AGi(xi) i [ 1
= (GO'A'xi)mi(xi)+]'2Mi(°0)+Mi(xi)

= A,’Gi(xi) (say).

If X; > eo,

xR

- (eO-A)mi(xi)-Z a6, (0,)+2 [(0.-6,) s

(ei-eo)f(xi[ei)dGi(ei).

dGi(ei)




1

(3.7) ag (x)) - (eO-A)mi(xi)-z.dei(91.)+2:j:.(61.-60) L NN
1 1

= (xi'eo'A)mi(xi)+] 'Mi(xi)

1}

by 6. (x;)  (say).
[ |

Therefore

(3.8) 68(5) = {ilxi 5‘60,A1,Gi(xi) < O}U{ilxi > eO’AZ,Gi(xi) < 0}.

Remarks :

(1) AGi(xi) is strictly decreasing for 0 < x; < 85-4, strictly increasing
for Bg=d < X < 60+A, and strictly decreasing for eO+A < X3 (we assume
that 8p-4 > 0).

(2) If x; > o4%a, then AGi(xi) > 0. Hence i ¢ 65(x) if x; > syta.

(3) 1If G; is such that 1-2Mi(eo) + Mi(eo'A) > 0, then 53(5) = 4.
Otherwise, i € 58(5) if (BO-A)—d] < X< (90+A)-d2, for some positive
real numbers d] and d2. Hence this *ype of selection rules are Bayes
rules relative to some prior distribution.

If G is unknown, the Bayes rules are not obtainable. In this case,
we consider a sequence(x],A1), (52,42),..., which are independent pairs of
random vectors, each Ay is distributed as G on 9 and 51 = (xil""’xik) has
conditional density function f(x|g) given AT The empirical Bayes
approach, which was introduced by Robbins (1955), attempts to construct a
decision rule concerning A, at stage n+l based on Xy,...,X .. The risk
at stage n+1 taking action Gn(g; 5]""’5n) = Gn(g) is given by
(3.9) rn(G,an) = %E"{iesi(g)[é(eo-A-ei)f(ZIQ)dG(g) +

2 [ (e;-0q)f(x|g)dG(e) J1dx + r{6,0),
(90 ,°°)




where En denotes the expectation with respect to the n independent random

variables X;,...,X each with common density function

k
m(x) = [f(x]8)dG(8) = m m(x,).
Q i=1

Definition 3.1. The sequence of procedures {6n} is said to be asymptotically

optimal (a.o.) relative to G if rn(G,én) - r(G) = o(1) as n » =, where
r(G) = igf r{G,s).

In order to find an a.o. sequences of rules, let
51,8(5) = {ilxi-i eO’Al,Gi(xi) < 0} and 62,8(5) = {i[eo < Xy < Bgth,
AZ,Gi(xi) < 0}. From (3.8) and Remark (2), we have
58(5) = 61,8(5) U 52,8(5)‘ For any i = 1,2,...,k and 2 = 1,2, let
Az,i,n(xi) = Az,i(xi; x]i,...,xni), n=1,2,... be two sequences of real-
valued measurable functions. We define

(3.10) 8p(x) =6 (X} u s, (x),

where
51,n(X) = (i1x; < 0gs 8y j nlxy) < O}
and

52,n(5) = {ileg < x; < 90+A,A2’i’n(xi) < 0}.

We have the following theorem:

Theorem 3.1. If &edGi(e) <e i = 1,2,k and ag 4 (x) 14 A]’Gi(xi),

14
for almost all x; < g and Az,i,n(xi) > AZ,Gi(xi)’ for almost all

g < X§ < 8gtas where > means convergence in probability. Then {cn(g)}

defined by (3.10) is a.o. relative to G.




Proof. 0 < [L(9,6,(x))f(x|e)d6(e)-[L(e,85(x))f(x]|e)dG(e)
f Q

k k
(3.11) =( I A],Gi(xi)jgl mixs)- 1 G.(xi)j£1n5(xj)}

4
iesy plx) "7

1esy (x)
e 31 ’ it
) (x3) : (xs)- 1 (x;) . (x;)).
+ { n n
ies, () *2,6; % 5o 54 ies, gx) 22,6, % *]mJ %5
iti ? j$i

The first term of (3.11) can be expressed as

k k
3.12) | ; ; )}
(3:12) iedlzn(x)A] 8 ™ )ng "y iedlzh(E)A]’1’"(x1)j21mj(x3)
, J#i ’ iti

k
)- 1 Ay 5 Ax:) T omi(x:)}
J 1,i,n* 7 i=] J )
i ter,pl iti

k
4L 8y gonlxg) moma(xg
€6y p(x) 11,070 520

+

K k
§65]ZB(X)A1,i al%;) “,"U(XJ) ieé]zB(X)Al,Gi(xi)j£1mj(xj)}
T J+1 . Jti

A

k
Y-Ay . (Xs x
iesl§n(§)(A1,Gi(x1) 81,1,n x1))i$}"5(x3)
J

k
+ iea]zB(x)( 1,4.00%3)-8y 6, (% ))Jilnﬁ(xj)-
) j¥i

Since by the definition of 8y n()_c), the second sum of (3.12) is less
than or equal to zero.
The second term of (3.11) has a similar result.

Hence, if A

z,i.n(xi) R Az,Gi(xi)’ L = 1,2, then




0 = [L(gs8(0)Flx|2)d6(e)- (265 x)) FCx]0)daCe)

k k k k
Z By, 6, (x )- 894, n(x ) n]m (x y+2 Z 87, 6, (x )- IR n(x ) n]m (xJ)
= J-
J’*i Jti
< 4¢ Z ( ﬂ m. (XJ))
i=1 j=1
jti

with probability near 1, for large n. Hence

[ L(8+s, (X)) F(x|8)dG(e) & [L(8,55(x))F(x{8)da(e)
Q Q

for almost all x.
By Corollary 1 of Robbins (1964), {5 (x)} is a.o. relative to G.

From Theorem 3.1, our problem is reduced to finding consistent estimators
of Al,Gi(xi) and AZ,Gi(xi)' Let

1

(3.13) Min(xi) r Z I(_°° X. ](XJ1),
then Min(xi) L Mi(xi) for all X5 > 0. Next, let ¢(x) > 0 be a Borel function
satisfying the following conditions:

(3.14) (i) sup (x) < =, (i1) f ¢(x)dx =1, and (iii) lim xp(x) = 0

=< X <o X=+co0

and {h(n)} be a sequence of positive constants satisfying the following
conditions:

(3.18) (i) h(n) » 0 as n -+« and (ii) nh(n) » = as n » =,

We define

-X
(3.16) mi,(x) = g (55(%}).




"!!|-lll-lun-l----lllllll--lr1-l-l--llllllIl-!l-ll""'-"--l'-!"-""-l"-"""""""'"'“"'"'1'
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then min(x) 4 mi(x) for a1l x (see Parzen (1962)). For i =1,2,...,k, let

(3.17) Al,i,n(xi) = (GO'A'xi)min(xi)+]'2Min(60)+nin(xi)
and
(3.18) A2,i,n(xi) = (xi'eo'A)min(xi)+]'Min(xi)‘

Then

p
M,Ln“i)*ALG#xﬂ fm~dlxiieo

and

p
Az’i’n(xi) > AZ’Gi(xi) for all 6, < x; < 6gta-

Finally, we define

6n(X) = (x5 < 0gs8y 5 n(x;) < 03U {i]eg < x; < 8g*as 8y 5 ((x;) < O}

Then {5 (x)} is a.o. relative to G.

3.2. e0 unknown

If 8 is unknown, let 0 be the control population and x0 be the random
variable from o We assume that Xo has conditional pdf

21 .
f(x0|eo) = 55 I(O,eo)(xo)’ 8 > 0. In this case

Q= {8 = (85,6y5...50 ) |05 >0, 1 =0,1,...,k}, x = {x = (XgsXqseeesx,)
k

k
Ix; > 0, i =0,1,...,k}, G(g) = nosi(ei), f(x|e) nof(xilei), and

i= i=
at stage n we observed Xy = (an’xnI""’xnk)' Under the loss function
(2.4), the Bayes rule 63(5) is given by

ie 63(5) if AGO,Gi(XO’xi) <0
where
86,.6, (¥orXi) = Joqf(xg|ag)dGg(agIm; (x;)-amg(xg)my (x;)-

f°1f(x1|91)d61(°1)”b(*o)*2{90<91}(°i‘°o)f(x1|°1)f(*o‘°o)°°1(°1)dsb(eo)'




13

Using formula (3.4) if 0 < X; < Xgo We have

(e -04) f( 05 )f(x,|6 )dG (e )dG~{(8,)
{e£<e {o5-00)Flxj103)¥(xglo 0t

® Mi (eo)
= mo(xg) - [ —5o— dGgleg).
Xo 0
and if 0 < Xg < Xy, wWe have

{90<9.}(°i'90)f(xilei)f(xoleo)dei(ei)dso(eo)
1

= (1-G;(x;)) (my (x5)-my(x;)) - myi(x;)(Gy(x;)-Gy(xq))

ImM"(eo dGn(8n) + mo(x;)
-] X
X, 8 0'%7 * MolXy

Hence

(3.19) AGO’Gi(xo’xi) = "‘1("1)(]'”0("0)) + (]+M1(x1))m0(x0) +

)
0 a6, (o)

= MI(e
(xo-xi-A)mi(xi)mo(xo).z){0 ”
= A],GogG.i(XO’xi) (Say)s if 0 < Xi < xo

and
(3-20) AGO,G-(XO’x'i) = “'Mi(xi))"'0(x0)+(]+M0(x0)'2M0(xi))mi(xi) +
1

M; (8p)
(x;-xg=8)m, (x;)mg(xq)+2M, (x; Jmg (x5 )- 2[ 5 —— d6,(6g)

'I

= 4, 164 (xgsx;) (say), if 0 < xy < x;

Thus
(3.21) sg(x) = &; g(x) U &5 p(x)

where

e e .




51,8(%) = H]0 < x; < %92 8 g g (xg2%;) < O)
and
62,8(5) = {1|0 < xo < xil AZ‘GO’Gi(XO)Xi) < 0}.

Similar to Theorem 3.1, we have the following result.
Theorem 3.2. If é edGi(e) <, i=0,1,...,k and for al1 1 < i < k,

P
A],i,n(xo,xi) > A],Go.Gi(XO’xi) for x; < X9 and

p
Az,i,n(XO’xi) > AZ,GO,Gi(XO’xi) for Xg < Xy Let

14

8,(X) = UH]x; < Xgs 8y 5 n(xgs%g) < 02U Lilxg < %5585 5 n(xg%4) < 03,

then {5 (x)} is a.o0. relative to G.
Hence our problem is to find a consistent estimator of
M. (8g)
%

dGO(eo) for Xg < a.

/
a
Theorem 3.3. Let Min(x) and min(x) be defined by (3.13) and (3.16),

respectively. Then

wM-(G) ©
g mn 00 dGOn(eo) {

) dGo(eo) for x5 < a,
where GOn(eo) = MOn(eo)'eo"bn(eo)‘

o M. (8,) o M.(6,)
proof. | -l{i;ll- 46, (8) - j 1 0° A6, (89) |

y |"1n(°o) NAU

dGp,(ep)

ﬂi“.

0 |

sup ‘Min(x) Mi(x)l < e

- <X <o

<

with probability near 1, for large n, by Glivenko-Cantelli Theorem.

Since




Milog) p
is bounded continuous and GOn(eo) -+ Go(eo), we have

( o) M-(eo)

L0 dg, (60) j dGy(04) -

a

Thus
o . (e )
in*"0
|| 25— 6
a 0

(00) - "ieg) d6(6,)]
on'"0 a 9 0''0

o M, (9 ) L M~(9 )
in*"0 i‘vo
< |f === dGn,(6,) - [ ——= dG, (ea)| +
|£ 80 on*°0 £ o0 On' 0

@ M-(eo) o M-(eo)
|£ —‘eo— dGy(6g) - £ —‘-e-o—~ d6y(8)]

< ¢ with probability near 1, for large n.
From Theorem 3.3, if we define
A7, 4,n(%ge%g) = My (%) (1-Mg(xg)) + mgp (xg ) (14 (x))

1n( 0) dG

+ (xg=xg=admyp(x;)  mo,(x5) - ZZO on(60)

where GOn(eo) = MOn(eo) - eomOn(eo) and M, (x), m.(x) are defined by
(3.13) and (3.16), respectively, and

A2 i, n(XO’xi) = "bn(xo)(l'Min(xi)) + min(x')(]+n (xo)'ZMon(xi))

(6q)
+ (xg=xg=a )My (xgIm;  (x;) + 2M (xdmp (x5) - 2] 1neoo 6y, (0g).
Then
Ahign(XO’xi) gAg,GO,Gi(xo!xi). L = 1,2,
Now, let

GH(Z) = {ilxi < xO’Al,i,n(XO’xi) <0)u (ilxo < xi'A2,1,n(x0‘xi) < 0}.

From Theorem 3.2, we have {5n(§)) is a.o. relative to G.

pav e
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3.3. Rate of Convergence of the Empirical Bayes Rules

In this section we will consider the rate of convergence of the

empirical Bayes rules derived in Section 3.1.

Definition 3.2. The sequence of procedures {6,) is said to be asymptotically

optimal of order o relative to G if rn(G,sn)-r(G) = 0(an) as n -+ =, where

n

1im un = 0.
The main result (Theorem 3.8) of this section is based on a series of

lemmas.

Lemma 3.4. Let A],Gi(xi)’ AZ,Gi(xi)’ A],i,n(xi) and AZ,i,n(xi) be defined by
(3.6), (3.7), (3.17) and (3.18) respectively. Then 0 < rn(G,dn)-r(G)

k%0 1-6 5
< i;] 6 IA"Gi(xi)‘ E|A1,i,n(xi)'A1,Gi(xi)| dx; +
k %o - 6
iZ] ‘{0 |A2,G1-(xi)| E|A2.i,n(xi)'A2,Gi("i)| dx;, 6 > 0.

Proof. The proof is similar to that of Lemma 3 of Van Ryzin and Susarla

(1977) and hence omitted.

Lemma 3.5. Let p(x) satisfy the conditions (i) p(x) = 0 if x ¢ (0,a) for
a
some finite a > 0, (ii) 6 p(x)dx = 1, and (iii) suplp(x)| < = and define
X

n X=X
m; (x5} = ﬁﬁ%ﬁy’jZIQ( in 1), where {h(n)} satisfy the conditions (3.15)

(see Johns and Van Ryzin (1972)). Then
a
|Em1n(xi)-mi(xi)| < h(n)fg(xi)élup(u)ldu, for large n, where

f (x;) = sup [mi(x;+y)|, € > O.
e 1 0_<_y_<_e|11 l

—_——————\




e e e e

Proof. Emin(xi) - '"i(xi)
) Y-X4
= h{nY fv(m)mi(ﬂdy - mi(x‘i)
a
= £cp(U)[mi(x,-+uh(n))-mi(x,-)]du

a
é cp(u)[uh(n)m%(xih\n(xi.u)]du

where 0 < "n(xi’“) < uh(n).

For ¢ > 0, let n be large enough so that uh(n) < ¢, then

a
|Em1.n(x,i)-mi(xi)| < h(n)fe(xi)(f)lu @ (u)|du.

Lemma 3.6. Under the conditions of Lemma 3.5, we have

a
var min(x‘.) < ﬁ'h-}'ﬁ)' mi(xi)£ cpz(U)dU.

) 1 n X.‘.-xi
Proof. Var m; (x,) = var (orTmy jglq)(“ﬂ"(v)}
1 8 2 h(n))d
< WhTAY Aq; u)m; (x,+uh(n))du

a
< —ﬁ-}m- mi(xi)é QPZ(U)dU, since mi(xi)+.

Remark: From Lemma 3.5 and Lemma 3.6, we have

"'in(xi) gmi(xi) if fc(xi) < ™,

Lemma 3.7. Under the conditions of Lemma 3.5, we have
(2) Var ay 4 n(x) = O((og-a-x)m(x)) spbes),

(b) var AZ,'I,n(x‘l) = 0((x1-eo-A)2m1(xi) FF%FT)'

17
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(x:)

Proof. (a) Var 8, i.nt%

< 2{(00—A-xi)2Var min(xi) + Var("in(xi)'ZMin(OO))}

a
< 2{(60-A-xi)2mi(xi) EH%HT é 2 (u)du + gﬁ} (By Lemma 3.6)

<M Hﬁ%ﬁ? (eo-A-xi)zmi(xi), for some M > 0.

Similarly, we have the result (b). !

Theorem 3.8. Under the conditions of Lemma 3.5. If
"0 1 2
. -8 § &
(1) 6 'A],G"(x1)| Ieo'A'in m,i/ (Xi)dxi < o,

Bgth
(1) [ lag g (601778 1xs-0gma1%n8/2(x,)dx; < =,
80 *i
i
(119) ["loy o ()]0 ag-a-x; 1R (x; )k, < =,
1

and
90+A .
; - 8
(v é 'Az.Gi(xi)l ®[xg-0g-a 1 £ (x)dx; < =,
0

e

where 0 < ¢ < 2, then

r(6260)-r(6) = O(max{(grtay)®/2, (h(m)°)) as n = o,

Proof. For 0 < & < 2, by Holder inequality and Lemma 3.4, we have

0 < Pn(G,Gn)-r(G)

k %
< ] max(1,2°7 ) 27,6, 00 110 0Var aq 4 n(xy)®Zax, +




e
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0 1-s 5
6 |A~"G](X1)| I(GO-A'xi)(Emin(xi)'mi(xi))' dx]]} +

k 1 _8ntA -
T max(1,2 N0 s, o )T var 8, o (x) Pk,
1:] 60 ;] 1' ] ]

0n*a

0 1-65 8

go IAZ.Gi(xi)l l(xi'eo'A)(Emin(xi)'mi(xi))| dx;1}.

By Lemma 3.7, we have

0
0
| |A1’Gi(xi)l]-6(var 8y 5 .n(x)% 2, = 0((nh(n))"/2)

and
80+A

/ |A2 Gi(xi)|1-6(var By ; n(xi))G/dei - 0((nh(n))'6/2),

3] ’ LILEY

0

By Lemma 3.5, we have

6
0
6 |A]’Gi(xi)|]-6|90'A'xi|6|5 min(xi)'mi(xi)lsdxi = 0((h(n))5)

and

90+A
| 02,6, 04112 1(x4-0g-0) (€ myp (xp)-my (x;)) dy = OC(n(m)®).
Hence

ra(6.8,)-r(6) = O(maxt(nh(n))™¢/, (h(m)®)) as n » =

Corollary 3.9. Under the conditions of Theorem 3.8. If we take h(n) = n”%,

0 <a <1, then the optimal choice of a is 1/3 and rn(G,sn)-r(G) = 0(n'6/3)

as N » o,

——— O

o~

j
|
|
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Remark: If the prior distribution Gi is such that gi(x)/x and mi(x) are
both bounded on (0, 00+A+e), it is easy to check that the conditions of

Theorem 3.8 are satisfied for 0 < § < 1.

C e o Al
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