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ON BAYES AND EMPIRICAL BAYES RULES
rOR SELECTING GOOD POPULATIONS

by --u

Shanti S. Gupta and Lii-Yuh Leu
Purdue University

1. Introduction

Empirical Bayes rules have been considered for multiple decision

problems by Deely (1965), Van Ryzin (1970), Van Ryzin and Susarla (1977),

Singh (1977), and Gupta and Hsiao (1981). Most of the papers are concerned

with the selection of the best population where best is usually defined in

terms of the largest or smallest unknown parameter. Gupta and Hsiao

(1981) considered the problem which is concerned with the selection of

populations better than a control. In some practical applications, one may

be interested in selecting populations which are close to a control. We

will consider this kind of problem in this paper.

In Section 2, we propose a general Bayes rule for selecting good popula-

tions. In Section 3, assuming that the populations are uniformly distributed,

empirical Bayes rules are derived for both the known control parameter and

the unknown control parameter cases. Under some conditions on the marginal

and prior distributions, the rate of convergence of the empirical Bayes

risk to the minimum Bayes risk is investigated. The rate of convergence is

-6/3
shown to be n for some 6, O < 6 < 2.

*This research was supported by the Office of Naval Research Contract
N00014-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.
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2. A General Bayes Rule for Selecting Good Populations

Let Tr 0l,...,* k be (k+l) independent populations which are characterized

by parameters o0,el,...,o k, respectively. Assume that w0 is the control

population with parameter o0 which may be known or unknown. When e0 is

unknown, let o = (0096l,...,0k) and X = (Xo,XI,...,Xk) where Xi is an observa-

tion from ri, i 0 ,1,...,k. When o0 is known, no observation from population

70 is taken, and oO, X0 are deleted from e and X, respectively. When there is

no confusion, o and X are used to represent either case. We define population

i to be a good population if le-60 < A and a bad population if lei-eI >A,

where A > 0 is a pre-assigned constant. Our goal is to find a Bayes rule

which selects all good populations and rejects bad ones. We assume that given

oi, Xi has probability density function f(xilo i) with respect to a a-finite

measure P, for i = 0,1,...,k, and e has a prior distribution
k

G(2) = n Gi(o) on the parameter space a. Let C = {slsc {1,2,...,k}}
i=O 1

be the action space and let

(2.1) L(e,s) = {cl( 0 -A-60)I 0  o .(ei) +
ii-O

c2 (oi'o0"A)I{ +A<i }(0) + .{c 3 (i-0 0+)t 0 A< (I

+ C4(0+A-i)I }Oi) 0

+0 <+A00+1  O

be the loss function defined on a x G, where ci, i = 1,2,3,4 are positive

constants and I is the indicator function. The Bayes risk with respect to

G can be expressed as

(2.2) r(G,s) = f fL(o,s)f(xle)dG(o)dp(x),

where% is the sample space and f(xlo) = rf(x i 0 i ).
i
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Since the action space is finite, attention can be restricted to the

non-randomized rules for deriving the Bayes rules. For a non-randomized

decision function 6: Z c, the corresponding Bayes risk with respect to

G is given by

(2.3) r(G,6) = f IL(e,6(x))f(xle)dG(e)dp(x).

In the sequel we consider the special case where c1 = c2 = c3 = C4 =

constant which can be taken to be unity without loss of generality. If is

the empty set, we have

k
L(e,() = Zl{(ei-eo+6)I }(ei) +i= 0 eo-l<ei<6O

(eo+A-ei )I, (e.),
{ 0 <ei <e0 +A} 18)

and (2.1) can be expressed as

(2.4) L(e,s) = L(e,o) + I {(eO-A-ei)I{ei<eO ( ) +
iEs -0

(6 i - 0 - A) {eO0 <ei i

Hence, for any 6, we have

(2.5) r(G,6) - r(G, )

= I {f(e0-A-ei)f(xle)dG(e) +
Z iE6(x) i-

2 f{e <eii(ei-eo)f(xf )dG(2)dv(x)}.

From (2.5), 6B(x) is given by I E 6B(x) if

(2.6) f(e0-A-ei)f(xle)dG(e)+2f{O <0} (8i-e 0)f(xj2)dG(2) < 0,

then 6B(x) is a Bayes rule with respect to G.
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Let m1(xi) =ff(xilei)dGi(ei) be the marginal distribution ofXi

'"(6ijxi) be the posterior distribution of e i given X i = xi.and E(e I xi)

be the expected value of 6i~ given Xi = xi. If m.(x.) > 0 for all x1, then

(2.6) is equivalent to

(2.7) (e0-)Eei~ (6 21 o<8}eo)7(eilxi)dei < 0

if 80 is known, or

(2.8) E(e01x0)-E(eiIxi)-A+2f{0 }(- 0 6)r(Oil x)7T(8OjxO)deideO< 0

if eis unknown.

From the above discussion, we have the following main result:

Theorem 2.1. Under the loss function (2.4), the Bayes rule 6B(x) with

respect to G is given by

(a) if eo is known, then i E 6B(x) if the inequality (2.7) holds.

(b) If a0is unknown, then i E 6B (x) if the inequality (2.8) holds

An Application:

Suppose that

(2.9) f(x1 l1) =e- ei xi /(xil), Xi >,,..o 0

and e~ has a prior distribution g1(ei) =G!(ei) which is given by

i~ 1

(2.10) gi(ei) = a~i i- eOi M d(')e.

where a,> 0 and a,> 0 are known. Then

(2.11) n(ejlx) = 0l+6j)e rxai

and

(2.12) E(e1!x1) = x~i/I$)
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Lemmna 2.2. If 7r(ei1 xi) is defined by (2.11), then

-- O (B -r(oo(1+oiP;x +0 +1) }-e (1-r(e0 (]+oi);xi+t.)j,1 

i
where 80 > 0 is known and

a x -1
r~a) ae x, a > 0, a> 0.

Proof. Proof is simple and hence omitted.

Lemmna 2.3. If nde. x.) is defined by (2.11) and e. i , 0 ,1,...,k and

6is unknown, then

fi I0 <E) }(a i-o)Wei~xi)w(eo~xo)doideo

(X~ 1+ 0 +) ( ) I+ao xi+a) - T- I(y; xo+ao+ I xi+i) 9

where

I(z; Ci,8) = f ~aB x (1-x) ldx, CL > 0 , a > 0,

and

B(a,8) =~,rs/~~)

Proof. fie 0 01 (6ol-e 0)if(e. xi)ir(e0jx0)doide0

f(eie0) (1+0 1~ 0  e +a.- 0 xo -e- 1 0do o0
r01- Fxf+ajfrx+c 0 . 1 1 0+a- (le)18d
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- (xi+i.+x0+o) xi+i-1 (xi +i+Xo+o+)du

= (I+B)B(xo+ao,Xi+ai) (u-1)u (1+u) d

(xi + +xO+O)x + +X + v

(1+B)B(xo+;oX 1i+xi) i (1-v)(v+1) - +' o0dv

(xi+i+Xo+o) I- x"+- -l

(1+B)B(Xo+oX+i)"(1"2s)(1"s)i1 s ds

(x 0 ) I(!; x +a0 xi+c) - 2(xo0 +a0) (1; Xo+ao+l; xi+ci).

From Theorem 2.1, Lemma 2.2 and Lemma 2.3, we have the following

theorem:

Theorem 2.4. If f(xile i) is defined by (2.9) and gi(ei) is defined by

(2.10). Under the loss function (2.4), the Bayes rule 6B(x) is given by

(a) If e0 is known, then i E 6B(x) if

xi +ai
l1-2r(eO(l+si); xi+ai+l)} - eO{l-2r(eo(l+ai); xi+oi)l < A.

(b) If e is unknown and 8i = 6, i 0,1,...,k, then i E 6B(x) if

+i {21(1; x0 +cz 0 x1+a 1)-l} + {I +

21(1; Xo+a o,xi+ i)-41(I; X 0+a+l'x +a,)) < A.

3. Empirical Bayes Rules for Uniform Populations

In this section we will assume that Xi has probability density function
I

f(xilei) = i I(o,i)(xi ) ' where e > 0 is unknown. Suppose that e has a

prior distribution G(e) = wGi(e i) on o and G has a continuous probability

fi
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density function gi and gi is positive. Let mi(xi), Mi(x i) be the marginal

pdf and cdf of Xi, respectively. Then

(3.1) mi(x i ) = i ] dGi(ei )

and

(3.2) Mi(x i) = ximi(x i) + Gi(xi).

From (3.2), we have

(3.3) Gi(x i) = Mi(x i) - ximi(xi).

It follows that
b l

(3.4) fJ- dGi(ei) mi(a) - mi(b)
a i

and

f dGi(ei) = mi(a)
a

for any xi < a < b < .

3.1. e known

In the case where 0 is known, let

(3.5) AG (xi) = (e0 -A)mi(xi)-f dGi(ei)+2 f (e i-Oo)f(xijei)dGi(ei)"
i Xi  (x,')n(eO,'o)

From (2.6), we have i E 6B(x) if <G(x.) 0 0. If xi < O ,

(3.6) AG(Xi) = (e0-A)mi(xi)-f dGi(ei)+2 f(ei-eO) * dGi(ej)
G1 x I 8

1 0
= (e0 -A-xi)mi(xi)+l-2Mi(eo)+Mi(xi)

= A1,G (Xi) (say).

If xI 60,
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dGi(6i)+2f ( {6-O L dGi(6i )

(3.7) AG (xi) = (e0-A)mi(xi)-f i xi- 0 d
1x. x.

= (xi-eO-A)mi(xi)+l -Mi(x i)

= AG(xi) (say).

Therefore

(3.8) SB(X) = {i lxi - 600,i,Gi (xi) < O}U{i xi > O,A2,Gi (xi) < 0}.

Remarks:

(1) A Gi(xi) is strictly decreasing for 0 < xi < 80-A, strictly increasing

for eO-A < xi < e0+A, and strictly decreasing for a0+A < xi (we assume

that ao- A > 0).

(2) If xi> 0+A, then AG(Xi) > 0. Hence i 4 6 B(X) if xi L VA.

(3) If G. is such that l-2Mi(eO) + Mi(eO-A) > 0, then 6B()=

Otherwise, i E 6B(x) if (eO-A)-d I < xi < (6O+A)-d2 , for some positive

real numbers dI and d2 , Hence this type of selection rules are Bayes

rules relative to some prior distribution.

If G is unknown, the Bayes rules are not obtainable. In this case,

we consider a sequence(XlAl), (X2,2),..., which are independent pairs of

random vectors, each Ai is distributed as G on o and Xi = (Xil"'Xik) has

conditional density function f(xle) given Ai = 6. The empirical Bayes

approach, which was introduced by Robbins (1955), attempts to construct a

decision rule concerning An+1 at stage n+l based on Xl"',..n+l" The risk

at stage n+l taking action 6n(X; X1 ,... Xn) = 6n(x) is given by

(3.9) rn(G,6n) = fEn{ I E[(eoA-ei)f(x e)dG(e) +
x iE 0(x)d

2 f (e1-60)f(xj2)dG(e)))dx + (,,
(60,00
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where E n denotes the expectation with respect to the n independent random

variables X 11-4nX each with common density function

k
m(x)= ff(xje)dG(o) ni m i(x.

Definition 3.1. The sequence of procedures {6 is said to be asymptotically

optimal (a.o.) relative to G if r n (G,6) n r(G) =o(1) as n - ,where

r(G) = inf r(G,6).

In order to find an a.o. sequences of rules, let

6B(x) = fClXj .~elG(i) < 0} and tile~ < x > a+A

A2G(xi) < 0}. From (3.8) and Remark (2), we have

6B(x) =61,(x) U 629B( ) . For any i = 1,2,... ,k and z = 1,2, let

A t~~n~xi) 6 ixi; x1,i***9xni) , n = 1,29,... be two sequences of real-

valued measurable functions. We define

(3.10) 6 n(x) =61,(x) U 62,(x),

where

81nx fi~xi -< 00 Ain(xi) 0}

and

62,n (X) file 0 < X1  e aO+AtA2,i,n (x.) <01.

We have the following theorem:

Theorem_3.1 If dGi(e) < -. i= 1.2,...,k and Al i(x.) " I, (x)

for almost all x 1 . 6 0 and A 2,i,n (xi) PA 2 ,G (xi), for almost all

0~~~ pop0+ hr mascnvrec in rbblt. Te 6()

0o Xi<e0+Awhr -)mencovrec inpoaiiy Thn( x

defined by (3.10) is a.o. relative to G.
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Proof. 0 < fL(6,6 (x))f( xj2)dG(6)-fL(6,6B)fxedG)

k k
a x (xi)1 ix)

(311 =~ E 1X AG. (xi) ii m.(.) A1  116 (x)(x.)1j

k k
+E5nX I 2  x)nm(.- ~ A (xi) R ixi)

I A2 G (xi AE2 ~ 2G. j=1
2, ji 2,()jtj

The first term of (3.11) can be expressed as

k k
(3.12) 1 1 ,G (xi) Rim(x) Alin(x.) n m.(x.)1

iE6 (x) 1 j1lj~j iE. IE5(X)''1j

k k
+A (x.) Rtm(.- ~ A (xi) R .x)
iEd1 (x l,i,n i 1 j=1 ' j' iEdl(. A l,fl j1 = m~x

l 'n (x)11f 1 1 iG 1

k k
+ , 1E18 ~ (xi R ~i= I

kk
(A j 1 ~x -lG (xi))m(x)

i6 1 E~x) , B(xi-Ii~) 1 j 3

jtji

1E ~,n , ~

than or equal to zero.

The second term of (3.11) has a similar result.

Hence, if At ~ (xi) -pbAG (i, = 1,2, then
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0 < fL(8,rn(x))f(_I2)dG(.)-fL(e,6B(.))f(xI2)dG(e)

k k k k
< 2 lAI,Gi(xi)-Al,i,n(xi)l n mj(xj)+2 '&2 ,Gi(x i)- 2 , ,n(x)i l mj(xj)

j1i j=i

k k
<4c 1 ( RI mj(xj))

i=l j=l
jti

with probability near 1, for large n. Hence

f L(o,6n(X))f(xlO)dG(E) P fL(a,6B(x))f(xie)dG(e)

for almost all x.

By Corollary 1 of Robbins (1964), {6n(x)} is a.o. relative to G.

From Theorem 3.1, our problem is reduced to finding consistent estimators

of A1,Gi(xi) and A2 ,Gi(Xi). Let

1 1 IX )

(3.13) Min(Xi) I I (-x i '

then M. (x.) P M.(x.) for all xi > 0. Next, let y(x) > 0 be a Borel function
inli I1 I

satisfying the following conditions:

(3.14) (i) sup cp(x) < -, (ii) f vP(x)dx = 1, and (iii) lim xqo(x) = 0
-*D<X<ao -0o X-*

and {h(n)} be a sequence of positive constants satisfying the following

conditions:

(3.15) (1) h(n) 0 as n+ and (ii) nh(n) as n .

We define

I n 1,X
(3.16) mtn(X) n x n -l
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then min(X) i m(x) for all x (see Parzen (1962)). For i = 1,2,...,k, let

(3.17) l,i,n(Xi) = (eO-A-xi)min(xi)+l-2Min(e0 )+Min(xi)

and

(3.18) A 2 ,i,n(Xi) = (xi-e 0-A)min(xi)+l-Min(xi).

Then

A1,i,n(x i) Ai(Xi) for all xi < a0

and

PA2,i,n(Xi) 4 A2,Gi(Xi) for all e0 < xi < 60+A.

Finally, we define

6 n() = {ilx i : eOAl,i,n(Xi) < 0} U {ile 0 < < 6O+A, A2,i,n(xi ) < 01.

Then {6n(X)} is a.o. relative to G.

3.2. unknown

If 60 is unknown, let T0 be the control population and X0 be the random

variable from no . We assume that X0 has conditional pdf

f(xle°) L I(O  x)' eO > 0. In this case

= {o = (eO,el,..-,ok)Iei > 0, 1 = 0,l,...,k}, Z = (x = (XoXl,...,xk)

k k
Ixi > 0, i = 0,l,...,k), G(2) = n G1 (e), f(xl

B) = n f(xlei), and
i=0 i=O

at stage n we observed n = (XnOXnl"'Xnk)" Under the loss function

(2.4), the Bayes rule 6B(x) is given by

i E 6B(X) if AGo,Gi(xO,xi) < 0

where

AGo,Gi(XO,xi) = fe0f(xolo 0 )dGo(eo)mi(xi)-Amo(xO)mi(xi)-

fe1 f(x i 1el)dGi(e)mO(xo)+2f (e" 1-O)f(x 1 1i8)f(xO1eo)dGl(el)dGo(eO).
( 0. e i
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Using formula (3.4) if 0 < x LX09 we have

f (6 i-e0)f(xilei)f(x0Ie0)dGi(ei)do(e0)
{e0<e1i}

WM.(e )
mO~xO10 dG (e0)

xO0 0

and if 0 < xO< xi, we have

f <ei 1e 0)f(xile 1)f(x0100)dGi(e.)doe)

(l-Gi(x))(igO(x 0)-m0(x.)) - n1i(x1)(G0(xi )-GOx 0))

f e dG0(e0) + M0(x.).

Hence

(3.19) AG PG (xOxi) = mi(xi)(-M 0(x0)) + (l+M1(xj) )m0 (X0 ) +
0'i

SM.(e0)
(x -x -A)Mi(xi)mO(x0)-2f -6 dG0(80)

=Al, 0 G (X0 9xi) (say), if 0 < xi < x0

and

(3.20) AG0,G1 (xO'Xi) = (1-Mi(x 1))m0(x0)+(1+M0(x0)-2M0(x1))mi(x1) +

SM.(e0)
(xi-x 0-A)mi(xi)n10(x0)+2Mi(xi)n10(x1)-2f 1 G d(60

x. 00

A2,G 01G1 (X0,xi) (say), if 0 < xO xi.

Thus

(3.21) 6B)= 'lB U 6,(X

where
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61,B(X) = {ijo < xi <_ xO, Al,Go,Gi (xOxi) < 01

and
ad2,B() -{jO < x0 < xi , A2,Go.,Gi(xOx i) < 0}.

Similar to Theorem 3.1, we have the following result.

Theorem 3.2. If o odGi(e) < -' i = 0,1,...,k and for all 1 < i < k,
P

Al,i,n(XoXi) P Al, GoGi(xO~xi) for xi < x0 and

P
x2,i,n(XOXi) - A2,Go,Gi(X, Xi) for x0 < xi . Let

n = ix< x , l,i,n(xOxi) < 0} U {idx 0 < xiA2,i,n(Xox i ) < 0}1

then {6 (X)} is a.o. relative to G.

Hence our problem is to find a consistent estimator of

Mi(e 0 )f O dGO(e0 ) for x < a.

a 600

Theorem 3.3. Let M. (x) and mi (x) be defined by (3.13) and (3.16),in in
respecti vely. Then

n dG (e0) f - dGo(e0 ) for x0  a,
a 0 a 0

where Gon(8 O) = Mn(O)-Oomon(8O).

~M. (80) 00 M( 0)
Proof. n dGOn(8) - a O dGon(eO) 1

a 60 aG"(O " 0
Co JMln(eo)-Mi(O) n

a 80 On

I-

-a sup lMin(x)-Ml(X)l < E

with probability near 1, for large n, by Glivenko-Cantelli Theorem. Since
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M1(e0)

60 is bounded continuous and G On(00) * G0(e0 ), we have

f 10 dG n(e )- J dG 0 ( 0).
a~0 n a 60

Thus

ifl 0 - f dG0(6O)I
a 0 %( 0  a 0

0~ (0 ) CO .

If 6 dG n(eO f 6 (eO) (e''I
a in O a 0 Gn 0'

if 0 dGn(eO )f i 00) ~ O)
a 0 OO a 60

< E wi th probability near 1, for large n.

From Theorem 3.3, if we define

Allj ,n(x O1xi) = min (xi)(l-M~n(xO)) + m~n(xO)(1+Min(xi))

+ (x 0-Xi-A)min(xi) m~n (x0 ) - 2f 060 GnO)

where G~n(00) = M~n(eO) - 60m~n(e0) and Min(x)l min(x) are defined by

(3.13) and (3.16), respectively, and

A2 ,i,n(xOIxi) = lon(xO)(l-Mi(x.)) + min(x.)(l+M C~xO)-2M n(x.))

+ (x-OAmnx~ in(xi) + 2M in(xi)mn(xi) -2f 6 dG On(O0).

Then

iil,i,n(xo~xi) +A~ L,G0,G1 (x03xi), lp 12.

Now, let

6 n W = (lIXi -S OAl i,n(xo~x i) < 0) U {iIxO <xi1A2,i,n(x0~xi) < 01.

From Theorem 3.2, we have {6 (x)} is a.o. relative to G.
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3.3. Rate of Convergence of the Empirical Bayes Rules

In this section we will consider the rate of convergence of the

empirical Bayes rules derived in Section 3.1.

Definition 3.2. The sequence of procedures {6n } is said to be asymptotically
optimal of order an relative to G if rn(G,6 )-r(G) = O(an) as n - , where

n n n n
lim = 0.

The main result (Theorem 3.8) of this section is based on a series of

1 emmnas.

Lemma 3.4. Let A1 ,G (xi), A2,G (xi), A,i,n(xi) and A2,i,n(xi) be defined by
i 2,1 i 1in1 A,~(

(3.6), (3.7), (3.17) and (3.18) respectively. Then 0 < rn(G,6 n)-r(G)

k 6O
k 1-66
- IA1,Gi(Xi)l -E[Al,i,n(Xi)-"I,Gi(Xi) dxi +

k eO+A

f 0IA 2 G(xi)l -6EIA 2 in(xi)-A2 G(Xi)1 6dxi, 6 > 0.

Proof. The proof is similar to that of Lemma 3 of Van Ryzin and Susarla

(1977) and hence omitted.

Lemma 3.5. Let yo(x) satisfy the conditions (i) c,(x) = 0 if x 4 (O,a) for

some finite a > 0, (ii) V(x)dx = 1, and (iii) suplcp(x)I < - and define

l n X i-ximin(X i) = n j~y(-' , where {h(n)} satisfy the conditions (3.15)

(see Johns and Van Ryzin (1972)). Then
a

IEmin(xi)-mi(xi)i < h(n)f (xi) uL p(u)jdu, for large n, where

fC(xi) = sup 1mj(xi+y)I, £ > 0.
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Proof. Em in(xi) - mi(xi)
y-x

h- 1 p(F _T)mi(y)dy - mi(xi)

C P(u)[mi(xi+uh(n))-mi(xi ) ]du

Scp(u)[uh(n)m(xi+nn(xiu))du

where 0 < nn(Xi,U) < uh(n).

For £ 0 0, let n be large enough so that uh(n) < E, then

a
L Emn (xi)-mi(xi) I h(n)f(xi)fIu y(u)Idu.

ind, ic

Lemma 3.6. Under the conditions of Lemma 3.5, we have

(a) ~var m~in(Xi) = n(e-x)- m(x) n(n'

Proof. Var mn(X i ) = var -- A)2m1 ( )}

a 2
I (u)mi(xi+uh(n))du !

I m i(xi)a y 2(u)du, since mi(xi)+.

Remark: From Lemma 3.5 and Lemma 3.6, we have

Min (xi) . mi(x i )  if f C(xi) < ®

Lemm 3.7. Under the conditions of Lemma 3.5, we have

(a) Vat A1l,n(XI ) = 0((O0-A-xi)2mi(xi) I )

(b) Vat A 2,i,n (x ) _ 0((Xi-e0A)2mi(xi
) nI )
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Proof. (a) Var A lin(x.)

< 2(oO-AXi 2Var min (x.) + var(Min( x.)-2M. in a)
2 f 1 a 2f5

2((e..A-x.) Mi(xi) hn T) tp ~(u)du + Yjj1 (By Lemma 3.6)

M - (0 -A..x ) 2m.(x.), for some M > 0.

Similarly, we have the result (b).

Theorem 3.8. Under the conditions of Lemmna 3.5. If

00 1-6 ,-X6m6/2(x~x o

90 A 1 6 I x ~ o 6 6 6/ 2 (
(i) f 1A,.X)l - x-e-tm 1  ()dx. <

IA , i (
0

0IAl,Gi(xi)I 160 16

andi0i) 
-) 1-61X i 0 f6(x )dx <

(iv) f0+ IA2,G.(xI ~ l~ixo 0- (xdx

where 0 < 6 < 2, then

rn(G,6n )-r(G) = 0(max((jjnEjj3 )6/,(~)6 )a

Proof. For 0 < 6 < 2, by Holder inequality and Lemma 3.4, we have

0 < r n (G,6 n )-r(G)

k 1 b I x) 1  ( a 0)6/2 +
I {max(1, A ' 6 1,G 1 r Ali,n(xi) dxi
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00 ,G~x~ 1-6 J(OAx)Ein(xi)-m.(x.)) 16dxi]1 +

k {,x(2 1-A
{max( 1  )[1- 0  JA (xl 16(var A2 . (x.)1 2 x

00+A 1-6
f JA2 G.x)I l(x a 0 A)(Emin(xi)-mi(xi))I5dxi]1.
0

By Lenuna 3.7, we have

e0 1 6 i) 612/6 2~ '1,~(~j -(var A, (xi 2dxi 0( (nh(n))~ 2

and

f~ IA2,G (Xi)I 1-6 (var A2,in(xi) )612 dxi =0((nh(n))-6/
2).

By Lemmna 3.5, we have

JA1G x ~ 1 - AxiE min(xi)-mi(xi) 16dxi 0((h(n))6)

and

1 A2  iiI16jx- 0 A( min(xi)-mi(xi))I'dxi 0((h(n))6)
80

Hence

r(G.6n)-r(G) = 0(max{(nh(n))-612, (~) 6 )a

Corollary 3.9. Under the conditions of Theorem 3.8. If we take h(n) n-

0 < a < 1, then the optimal choice of . is 1/3 and rn (G.6 n)-r(G) = 0(n 6/3)

as n
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Remark: If the prior distribution Gi is such that gi(x)/x and mi(x) are

both bounded on (0, 60+A+C), it is easy to check that the conditions of

Theorem 3.8 are satisfied for 0 < 6 < 1.
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