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Page 2.

In the book is given the survey/coverage of the most important

.2 methods of the analysis of the disruption/separation of tracking in

the locked followers of automatic radio equipment under the effect of

fluctuating interferences. As examples is examined the phenomenon of

the disruption/separation of tracking in the diagrams of the

self-alignment of frequency and phase, in the systems of the

automatic tracking of radar targets. The analytical methods of study,

given in the book, rest in essence on the apparatus for Markov

processes. Special attention is given to the analysis of the

disruption/separation Qf tracking with the help of the analog and

digital computers. Besides the direct application/appendix to the

study of the disruption/separation of tracking the material can be

useful, also, with the research of other nonlinear phenomena in radio

engineering and the automation.

The book is intended for scientific workers and engineers, who

carry out research and design of the radio engineering systems of

automatic tracking.

"in.

4 5- ¶ .,-.
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Page 3.

PREFACE.

The tendency to fully automate the work of radio sets and to

maximally decrease the role of the man-operator led to the wide

acceptance in radio engineering of followers. Specific for the work

of the radio engineering systems of automatic tracking is the action

of the fluctuating interferences, which are usually present in the

receiving circuit. Beside the fact that the fluctuations

worsen/impair the accuracy of the work of followers, appears the

danger of the disturbance/breakdown of the very mode/conditions of

tracking, i.e., dWsruption/separation. With this phenomenon it is

necessary to be counted during the design of many radio engineering

systems.

The methods of the analy3is of the disruption/separation of

tracking began be developed to. intensely only in recent years. This

is explained by the considerable mathematical difficulties, which

appear during the solution of in principle nonlinear problems whichH include the analysis of disruption/separation. In connection with

"4, this the theory of the disruption/separation of tracking is at

present presented, as a rule, only in the periodical articles. The
":" CS:

,•. 4•. .. . : ..... ,. .. . ., . ,. .. .'. , '. . .. . - . .. . . . .. .
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dispersion of information according to different methods of analysis

creates known difficulties for the specialists, who carry out

research and design of servo systems. In this book is undertaken the

attempt to generalize and to systematize available material according

to the analysis of the disruption/separation of tracking.

On the pages of the book the analysis of disruption/separation

is conducted, as a rule, on the basis of the block diagram of

device/equipment without the concrete definition of the functional

designation/purpose of one or the other network elements.

Page 4.

Therefore, it is possible to consider radio engineering

devices/equipment different in the designation/purpose from the

single systematic positions. However, in order to facilitate

performance calculation of disruption/separation in the

concrete/specific/actual device/equipment, in Chapter 1 are given the

fundamental principles, which make it possible to determine the

parameters of block diagrams for different systems of automatic

tracking.

Analytical research of the disruption/separation of tracking in

essence is based on the theory of Markov processes, the series/row of
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information from which is presented in ehapter 2. Here considerable

attentior is given to practically important questions of the

co)'-;truc:'ion of Ma,'kov models for describing of serve systems and

cr. -t ?'eco-.-'.ng of bound,.ry conditions for the multidimensional

equr., -2f ;9.''' •.r - PI inck and Pontriagin.

material of the book is ddicated to the calculation of the

probabilty of disrupting/separating the tracking for the assigned

time interva. (Chapter 3, 4, 6). In this case, as it seems to us, it

was possible to consider the majority of the methods, known at

present, which carry more or less general character.

In Chapter 5 is assembled the material iccording to the analysis

- of the less total characteristics of disruption/separation. They

include, for example, mean time to the disruption/separation and

critical power of fluctuations.

"Widespread putting into engineering practice of the means of

"electronic computational engineering makes available research of

complicated nonlinear regulating circuits whose analytical analysis

to carry out difficultly. The questions, which relate to the

numerical methods of the analysis of the disruption/separation of

"tracking, are examined in Chapter 6.

• .. ,
4.;° ., .
4.., .. . ......- ..- '..•. . . ; .'- ... .,... ,.' - .. - .. - . '.' .. - .-.-. '- °. '. . -,; - . .. . .
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During the writing of the book the preference was given up not

to strict mathematical proofs, but to the physical treatment of

methods and phenomena. The presentation of material in the majority

of the cases is illustrated by specific examples. Therefore the book

can be available to readers having the information about the

probability theory in the limits of the program of general technical

VUZ _ - [Institute of Higher Education].

* The majority of the methods, examined in the book, is applicable

not only for the analysis of the disruption/separation of tracking.

The material of the book can be useful, for example, during the

research of capture mode in the servo systems, durin2 the analysis of

some modes of operation of self-excited oscillators and during the

calculation of the parameters of the ejections of random processes.

Page 5.

The participation of the authors in the work on the book was

expressed as follows: S 4.3, 6.3, 6.4 were written by V. D. Razevig,

ehapter 2 and S 4.2 - by both authors together, remaining material

was written by G. V. Obrezkov.

To the writing of the book in many respects contributed the

-. scientific seminars and the consultations, conducted by Cand. the

.5-

p. -
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this book.

Devoting the book of- memory of one of their teachers, V. L.

Lebedev, the authors hope thus at least to partially express

gratitude for that situation of friendly participation and

benevolence of which it was accompanied work in its laboratory, and

to note the large services of V. L. Lebedev in the development of the

theory of statistical radio engineering.
-q

0*'
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Chapter 1.

NONLINEAR SERVO SYSTEMS THEIR ELEMENTS.

In spite of the large diversity of the radio engineering systems

of automatic tracking, frequently it is possible to manufacture

single approach to their research. The significant role in this case

plays the study of the work of followers on the basis of the analysis

of their block diagrams. In this chapter are examined the methods of

the composition of block diagrams and are investigated their

characteristics for different systems of autonmatic tracking.

1.1. Block diagram of the system of tracking.

The majority of the radio engineering servo systems is

constructed on the functional diagram, depicted in Fig. 1.1. Tnput

signal uwh(,i), vhich carries information about the tracked parameter

X(t), enters discriminator 1. At the output of discriminator as a

result of the comparison of signals uU(,., 0) and unux(L, t) is formed

stress/voltage u1 (x, t), which depends on error x(t)-O(t)- 3 (t) of the

"disagreement/mismatch between the input (measured) parameter W(t) and

.,. . . . . . . . . .. .
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A

its e.-timation X(t), which is formed as a result of the work of the

ring of tracking.

2 a., AT,0

Fig. 1. 1. Typical functional diagram of servo system
1. discriminator; 2. filter; 3. control circuit

. . . . . . . . . . . .. .' - * ." '. . -
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Due to the presence in input signal ,n(Q I) of interferences

stress/voltage u1 (x, t). fluctuates; therefore for increasing the

"accuracy of tracking into the system usually are introduced filtering

cascades/stages 2. Stress/voltage u2 (x, t) from the output of filter

is supplied to the diagram of control of 3. The latter develops

signal us1,(O, 1), which is modulated by estimation X(t) in the same way

as input signal ia,(7, 1) by the parameter W(t). Depending on the

designation/purpose of diagram from it are removed/taken either

stress/voltage uuzO, I), or stress/voltage from other points of

diagram, proportional to certain function of estimation X(t) (for

example, .by its derivative).

Let us pause at the short characteristic of the elements/cells

of the functional diagram, depicted in Fie. 1.1.

Discriminator. Device/equipment is in i...inciple nonlinear, which
*4

-is necessary for the isolation/liberation (demodul~ation) of the

signal, proportional to the mismatch error of the parameters W(t) and
A
X(t). The latter, as a rule, are not additive with respect to their

%.

.4 -

.4 ... _
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carriers - stresses/voltages U(n t) and umuz •. ). However, for the

parameters X and W at the sufficiently low value of

disagreement/mismatch x-X-W discriminator can be considered linear

device/equipment. Here is outlined analogy with the amplitude

detector, nonlinear according to the principle of its operation, but

linear for the signal amplitude envelope.

S-ubsequently it is convenient to be abstracted from the method

of modulation of input and output signals by the parameters W and W

and to use with the block diagram (Fig. 1.2) of the device/equipment

of tracking the parameter XMt).

-:!

I-

' .." .

" :" ".".'v '.- .- .''..'..' .''. ) -. -" -, " "- .% - ' .-..-. -. .' .- ".- * .* .. • . .. . - ' - -. "- ..
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'.-I . . . .. .... - .

Fig. 1.2. Standard block diagram of the tracking device.

Page 8.

Discriminator Fig. 1.2 presents by the upper part of the drawing. In

this case is separately isolated the subtractor, which develops
Amismatch error x(t)-X(t)-X(t) between the measured parameter X(t) and

its estimation X(t).

The dependence, vhich connects the mathematical expectation of

output potential of real discriminator with disagreement/mismatch x,

in Fig. 1.2 is designated by F(x). This dependence is conventionally

designated as discriminatory characteristic. Characteristics F(x) of

some concrete/specific/actual types of discriminators are

investigated in S 1.2. Range of values x, output beyond limits of

which leads to the disruption/separation of tracking, let us name the

aperture of discriminatory characteristic, or, shorter, by the

*• aperture of discriminator.

o.9
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Fluctuating voltage component at the output of discriminator in

the block diagram is considered by the introduction of random process

1(t) with a spectral density of JV(x). Here and everywhere

subsequently by spectrum is understood the following Fourier

* transform above the correlation function r(r):

"N.=2 r( (1.)LL
The passband of the radio engineering servo systems licks

usually in the limits from zero to ones, and rarer - tens of Hertz.

In this frequency band the dependence of spectral density N,(x) on

the frequency w is expressed weakly; therefore frequently assume/set

""N,(z) -NN(x), considering noise t(t) white. The dependence of spectral

density N.(x) on the mismatch error x occurs in many types of

discriminators and is called fluctuating characteristic. The standard

fluctuating ch:aracteristics of real discriminators are examined in S

1.2.

For evaluating the quality of the work of discriminators

frequently is used the coefficient, that characterizes

signal-to-noise ratio at the output:

'II

Sx-- -9.
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where 1.-- the maximum stress/voltage, removed from the output of

* discriminator; k - the dimension factor of proportionality.

* Page 9.

Performance calculation F(x) and N. (x) represents independent,

.i now and then very complex problem for each concrete/specific/actual

type of discriminators. Using subsequently only with the block

diagrams of followers, we consider characteristics F(x) and N(x)

known. To their calculation is dedicated the very vast literature

whose short survey/coverage is given in the following paragraph.

SIn the majority of the practical cases discriminator it suffices

to consider nonlinear inertia-free component/link. However, there are

the situations, when the inertness of discriminator cannot be

disregarded/neglected in comparison with the inertness of the

remaining part of the diagram of tracking. In this case frequently it

is possible to approximately represent the block diagram of

discriminator in the form of series connection of the inertia-free

block of nonlinearity with characteristic F(x) and linear inertia

element/cell. This leads as a result to an increase in the

dimensionality of the differential equation, which describes the

behavior of the system of tracking.

,4 _ •t - W ,' '. • . . . '- B " . ' " ' ' " . . " . " . " ' ' ' ' ' ' . • - " • ". . " . . " . " .
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"Filtering cascades/stages. Since useful output potential of

discriminator is a slowly varying function of time, then as the

filters in the real systems usually are used low-pass filters. The

widest use received the following types of filters: integrating, with

the operational gear ratio/trarsmission factor K#(p)=- 9---0= ( --
dt

differential operator); proportional-integrating-d(*(p)= i+PT, :
I +p

active integrating-;$(})=X*(1+P etc. The filtering

cascades/stages, as a rule, are linear and as their complete

characteristic serves operational gear ratio/transmission factor

4(p).

-. 4" Diagram of control. As has already been mentioned, its

designation/purpose is reduced to modulation of stress/voltage

UMQ 0' by the estimation of the parameter ?(t). During the analysis

of servo system within the framework of its block diagram the method

of modulation does not play role; therefore as the fundamental

characteristic of the diagram of control serves dependencel-M(z),

where z(t) - the stress/voltage, removed from the output of filter.

Page 10.

A
In the majority of the cases the characteristic )(z) is linear in the

/ limits, necessary for retaining/preserving/maintaining the

-.. mode/conditions of tracking. Feast thio the diagram of control is
-..

-'4

*. *4* ~ *
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characterized only by conversion conductance K7 -dl/dz.

Sometimes the inertness of the diagram of control is

comensurated with the inertness of filterl (see Fig. 1.1). For

example, if in the system with the phase discriminator as the control

device is used reactance tube, then this diagram of control is

simultaneously ideal integrator with the operational gear

ratio/transmission factor J(,(P) w"aYIP.

If the feedback loop of control system consists only of linear

elements/cells, then it are conveniently characterized by the

operational gear ratio/transmission factor, which encompasses.the

gear ratios/transmission factors of filter and diagram of control

* (p) - K*(P)Iv(P)

Differential equation. With the help of the block diagram it is

easy to register the differential equation, which describes the

behavior of the system of tracking. Thus, on the block diagram,

depicted in Fig. 1.2, for the following error x(t) we have

X(')-A) -K(p) (FMx + WQ) 1. (1.2)

Operational equation (1.2) is stochastic, since into it enters

random function 1(t). Revealing in each specific case the content of

operator K(p), on basis (1.2) we obtain the differential equation of

the analyzed servo system. For example, if the feedback loop of
• -j

•- • o •-o '. o • - Vo* .. * .o * .. * . .o . . . . . . ..- . . . ,
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system consists of the diagram of control, which is simultaneously

integrator, so that KI(p) --KY/P. and the filter of lower first-order

frequencies with the gear ratio/transmission factor Ke(p)--%/Q-(|p7,

then PO +PT) where K

The behavior of this system is described stochastic differential

equation of the second order:

Page 11.

S• 1.2. Characteristics of the most widely used discriminators.

The analysis of the disruption/separation of tracking cannot be

produced without the knowledge of the characteristics of

discriminatory device/equipment. The most important characteristics

are dependences on disagreement/mismatch x of the constant component

of F(x) and spectral density No(x) of process at the output of

discriminator. The calculation of these characteristics is in the

general case complicated and labor-consuming task, since it is

necessary to consider the passage of signal and interference not only

through the discriminator, which is nonlinear device/equipment, but

also through entire circuit of receiver, which also contains in a

number of cases substantially nonlinear components/links. In this

• i ', ,• •"", • -"• -..- "• -... ".." . •- ""- -. ."- - .--. " . •. . .. -
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paragraph is given the short survey/coverage of the results available

in the literature according to the analysis of the most important

types of discriminators.

1. Temporary/time discriminators.

For the temporary/time discrimination of pulse video signal the

widest use received the diagram, depicted in Fig. 1.3 [92].iihe input

voltage, vhich is the envelope of the mixture of noise and periodic

pulse signal, enters the cascades/stages of coincidence KS, and KS,.

In these cascades/stages by gates/strobes Uci and Ux from the input

-voltage are cut out the impulses/momenta/pulses by duration T,

shifted relative to each other the interval of time r.

Fig. 1.3. The functional diagram of the temporary/time discriminator:

KS - cascade/stage of coincidence; A1 - detector.

-- .
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Impulses/momenta/pulses are supplied to the detectors D, and D., the

results of detection are subtracted and are formed output

stress/voltage ux(t) of temporary/time discriminator, depending on

disagreement/mismatch x between the center of signal and the axis of

the symmetry of gates/strobes.

To the analysis of different diagrams of temporary/time

discriminators are dedicated works [91-93, 95, 97] and series/row of

*• others (more complete bibliography on this question is given in

"923)

Is distinguished the work of temporary/time discriminator with

tho jettisoning and without jettisoning of stress/voltage on the

detectors D, and D, before the arrival of next

impulse/momentum/pulse. To the evaluation of the effect of

jettisoning stress/voltage on the characteristics of discriminator is

dedicated work [97]. As in it it is shown, the temporary/time

discriminator without jettisoning of stress/voltage possesses the

further filtering properties the large, is the more the time constant

TP-of the discharqe circuit of detector. Therefore in the diagram

without the jettisoning in comparison with the discriminator with theL.... - jettisoning with increase l is reduced the dispersion of output

*.1
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stress/voltage. However, both diagrams ensure at the output of

discriminator virtually identical relation signal/noise.

With not too small a time constant of charging circuits of

detectors, output potential of discriminator with the jettisoning

after the next operation of selection can be represented in the form

4+r
U1 =k ju dt - Sk :)d

where t., to.+ - respectively the beginning of the first and second

selecting impulses/momenta/pulses; T - duration of one selecting

pulse; k - proportionality.factor. Taking into account that ir the

pauses between the signal pulses occurs the discharge of tie

capacities/capacitances of detectors, for calculating the

discriminatory characteristic it is possible to ure the

relationship/ratio

4+1?

where I - repetition period of the signal pulses; a-l/T., Tp-'the

time constant of the discharge circuit of detector.

Page 13.

In the given relationship/ratio input voltage u(t) should be

considered as the function of disagreement/mismatch x between signal

• -. .• •, ..• .• •,-,-• .. • .'....'..-..-....... .- .. ... *.-... ,• .. .. , •• .,. . . . . . .
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and axi~s of the symmetry of gates/strobes. Strictly speaking,

* : chara.cteristic F(W) is periodic function x vith the repetition period

1, equal to the repetition period of the signal pulses. However, with

the large mark-space ratios (I'ecl) periodicity F(x) it is possible

not to consider.

Most frequently the gates/strobes of temporary/time

discriminator place directly one after another, so that r-T. In this

case, if signal is approximated by square pulse with duration T., the

characteristic of discriminator F(x) depending on %.he duration of one

Cate/strobe T takes the form, shown in Fig. 1.4. The

sla e/transconductance of discriminatory characteristic in the region
4

of the small disagreements/mismatches xr0 is maximum, if the duration

of gates/strobes is not less than the duration of signal (T >, T,). In

the mode/conditions of tracking usually use the gates/strobes, equal

in the duration to signal. This ensures the best signal-to-noise

ratio at the output of discriminator. If signal functions in the

mixture with the noise, then djuring the calculation of discriminatory

characteristic should be considered the tffect ctf suppression of

signal in the detector of the radio pulses of r-ceiver [92].

4
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rp.'

Fig. 1.4. Characteristics of the temporary/time discriminator: 1)

Tul/2 To; 2) T=T.; 3) T>To.

Page 14%

As a result for a maximum increase in the constant component, of

output potential of discriminator, which occurs during

disagreement/mismatch x-T./2, it is possible to obtain the following

expression: . ."--U.7 ICS ,X -61 (e-01,. I'-T)+

where 9=UeWI'%;Us--respectively signal amplitude and the

dispersion of noise, led to the entrance of linedr receiver; K -

factor of auplification of receiver, switching on the cascade/stage

of coincidence and detector; I., I, - modified functions of Bessel of

the first order of zero and first order respectively.

I '
.. 'I
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As it was noted, with the work of temporary/time discriminator

with the jettisoning output stress/voltage is (Fig. 1.5) the sequence

of exponential impulses/momenta/pulses with the duration 1, equal to

the repetition period of the signal pulses. The amplitude of pulses U

* is by chance with dispersion O(x), which depends and the general case

* on disagreement/mismatch x. The spectrum of this stress/voltage takes

* ~~the f orm Kx

.. 2

In the region of lower frequencies w~-0 we have

il(I -

2 al)lj(4) (1.4)

To the determination of dispersion Ou2Wx i3 dedicated, in

particular, work C92]. In Fig. 1.6 according to the results of this

work are constructed graphs IV~) in different ratios q of signal to

the noise at the entrance of linear receiver.

During the calculationnof curves it was assumed that the signal

pulse has a rectangular form and a duration, te equal width of one

gate/strobe (T.iT). Furthesrmcie, it was considerid that frequency

"receiver response has Gaussian form with a bandwidthe of Af rl/T..

o......../ms..hz.Te.pcr. f hs tes/olae ae
.. .. .. .. for
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Fig. 1.5 outpnt potential of discriminator with the jettisoning.

Page 15.

As can be seen from Fig. 1.6, on a small level of signal (q! 0,5) the

nonuniformity of fluctuating characteristic can be

disregarded/neglected, assuming/setting
2,,V (o1 ( - -,1 ,

For dispersion 4(0) in work [92] is obtained the following

expression, valid when T>T,*

:I + •.7,0) ; (12-)? (L'r) + --,
76

4.,t

where

*. b,=2q'e"[.(- +',

,ii

4
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7iu 2 -coefficients of the averaging of fluctuations at the output

of the detector of radio pulses.
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Fig. 1.6. Fluctuating characteristics of temporary/time

discriminator.

Page 16.

If the frequency receiver response has a form of gaussian curve, then

.4I e '"I I
1 I (V'941) - - Or)s' [1 -11

* '22

* where C(z) - the probability integral, equal to

1)=, •e dx. (1.5)

The case when strobing/gating is produced by spike pulses

(T.<cT), spread up to the distance rTo, and detectors D, and D. are

peak, it is examined in works [95, 971. Discriminators of such type

-q • *""4 "' o ** ' *' * . 4"-. ••" . ,°,4 *' . * ° -" ° 4 .." " -" -"•" . . .. . .

i.Z." .... ".'. ," . ." ." ", . -' -" " ' ' ,- "- ." . ."- -." . "_ " " • • '-.. . . .."." . ."• -, ."' i-:-
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are used in the practice considerably more thinly.

Sometimes the receiving circuit, which precedes temporary/time

discriminator, contains the series/row of substantially nonlinear

cascades/stages. To nom can relate the limiters, cascades/stages with

the logarithmic amplitude characteristics, etc. Performance

calculation of discriminators in this case substantially is

complicated. Some results of performance calculation of

discriminators in these cases are given in works [94, 96].

b.

.4

2. Phase discriminators.

Phase discriminators [91, 98, 99] extensively are used in many

radio engineering devices/equipment. With their aid is realized, for

example, phase tracking and frequency of received signnl. They

frequently are used in the devices/equipment of information recovery

about angular target position in radars, etc..

The widest use obtained two types of phase discriminators -

balance and commutation [911. The diagram of balance discriminator is

depicted in Fig. 1.7. Let us consider its work under the effect at

the input of monochromatic signal uaz(t)-Ussin(*t+q), vhere 4 - phase

displacement.of input signal relative to supporting/reference

Un -in
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If amplitude detectors D, and D2 are linear, then discriminatory

characteristic can be represented [91] in the form

here •F(,)J(A. (VIV1 +2A V1 + h-V l +,'- 2h cosy).

where' h---/U• " the ratio of the amplitudes of reference and input

signals on secondary vindings of transformers; I(x- the gea-

ratio/transmission factor of detectors D, and D2.

Standardized/normalized discriminatory characteristics f(q)-

"F(q)I2Kx1hs for the different values of coefficient of h are given

in Fig. 1.8. With hml the discriminatory characteristic of phase

discriminator has a form, close to the triangular. With the large

amplitudes of reference voltage U..)Um, vhich usually occurs in the

real devices/equipment, discriminatory characteristic takes the form

F(9) -2KxU cosq. (1.6)

The analysis of the york of balance phase discriminator under

the effect at its input of the mixture of signal and noise is given

in vork [98].

For the approximate computations of the characteristics of phase

discriminator in the sufficiently large ratios of the amplitudes of

4..

q* .* % ** S** ,***** •* . q . 9 . % % * . ,4 . . . . . .... .... .° - -' " " " "- .' " " ".. . ""
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supporting/reference and input of signals (hZ5) phase discriminator

can be replaced with the multiplier, which realizes the operation

"uz,(I)

In this case discriminatory characteristic is determined by

expression (1.6), and the spectrum of the output stress/voltage in

the region of lover frequencies coincides with the spectrum of input

voltage near the frequency of reference oscillator.

CC

a..

%* (''

\ !

°'

C

C * C C C * C C

CC- *C C CC
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Fig. 1.7. Diagram of balance phase discriminator.

Page 18.

Let us note that if in the diagram of balance discriminator are used

detectors with the quadratic volt-ampere characteristics, then with

the ideal diymmetry of diagram the spectrum of input voltage is

transferred to the zero frequency without the distortions with any

amplitudes of reference signal.

Wide acceptance in the practice, especially vith the work at the

low frequencies, received commutation type phase discriminators (Fig.

1.9).

.1

4'' '''" ° o ", """ . . . 2 , " ,o. ' ' . . ' . " o " • "" . ' , ' 'S4.1 % ,% % % " , . " • o . , , . o . . . . .
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Fig. 1.8. Fig. 1.9.

Fig. 1.8. Discriminatory characteristics of phase discriminator.

Fig. 1.9. Commutation- type phase discriminator.

Page 19.

Reference voltage "aa(t) in the detectors of such type usually has a

form of meander with period T-2,/w, where w - carrier frequency ofI?

input signal un(t). The constant component of stress/voltage unui(t) on

the total cathode load is determined by phase displacement q between

input and reference voltages (91]:

U.2F. (4p) --K.CU. COST,,

-J
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vhere Ko-- the gear ratio/transmission factor of phase

discriminator, equal to

fda*.zN2SR

S, Rj- respectively slope/transconductance and anode resistance.

Noise effect on commutation type phase discriminator is examined

in work [991, where in particular, is found the expression of the

spectral density of the output stress/voltage

(21+1), , (1.7)

where K.-SI(S+I/R4+IIR)- the gear ratio/transmission factor of

cathode follower; N.(M)- the spectral density of the input voltage,
which is the additive mixture of signal and noise; 2(o) the

frequency characteristic of iov-pass filter at the output of phase

discriminator.

The spectrum of the output stress/voltage in the region of lower

frequencies is determined by the member of sum (1.7), which

corresponds to 1--l:

i.e. commutation phase discriminator similar to ideal multiplier

realizes a transfer of the frequency of the input signal into the

region of lower frequencies without the distortion of the form of the

spectrum.

%"

*8''" "' - " "•'' .? -''•" -- •.. .. ,". .. " ." -' _ .- . . . • - ,-, .- i,._ ••.• - --
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Usually as the low-pass filter is used the integrating RC

network (tee Fig. 1.9). In this case

F' )= 2-- r.o TO RC.

..-* 3. Frequency discriminators 1

FOOTNOTE ". The material of this section is written together with Yu.

A. Yevsikov. ENDFOOTNOTS

"Frequency discriminators are the devices/equipment, which

convert frequency entering the stress/voltage. The output

stress/voltage of discriminator un(t) is obtained as a result of the

comparison of frequency of input w with certain standard frequency

w., for example by the resonance frequency of duct/contour or system

of ducts/contours.

Among the works, dedicated to research of frequency

discriminators during the combined action of signal and noise, one

should note El, 11, 100-105]. In the practice the widest use obtained

-a Q



°71

DOC 83061002 PAGE 34

two types of the discriminators: discriminator on detuned circuits

[913 (Fig. 1.lOa) and discriminator with the duct/contour and phase

inverter [1E (Fig. 1.10b). Both discriminators have the accuracy

close to the optimum of the measurement of signal frequency with

fluctuating interference [1].

- - , :, -• .' . . 4 "-"- " "- -" " - - ",---,- -. ,.- ".---' -- -".--.-...-i**""' "" - -
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Fig. 1.10. Diagrams of the frequency discriminators: a) on the

* detuned circuits; b) with the duct/contour and the phase inverter. 0

- filter; XI - amplitude detector; F.D- phase discriminator.

N:, Page 21.

S~In work (1001 are obtained the discriminatory characteristtcs

-: F(z) of frequency discriminator with the detuned circuits under the

•"ieffect at the entrance of monochromatic signal , 31(t) -L'cosw• and

.. normal broadband noise. In the case of the complete symmetry of the

•. ~arms of discriminator and when the filters 0,• and I2 are single

oscillatory circuits, and amplitude detectors JI• and •, are linear,

• : characteristic 7'(z) is determined by the 4ependence

.. (1.8)

S~vhere K - gear ratio/transmission factor of one arm at the resonance

frequency (taking into account the gear ratio/transmission factor of

amplitude detector); qouuL/,.o,"Ua, (-- maximum signal amplitude at the

output of one duct/contour (with the coincidence of signal frequency

**A

.......... .................. ..**4. .
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with the resonance frequency of duct/cozitour); a - efficient noise'

voltage in the ban. of one duct/contour;

1+' gs r

- dimensionless detuning of the resonance frequencies of the

ducts/contours;

- generalized detuning of signal; a - attenuation factor of

ducts/contours.

If is permitted a 20-30-percent error in the definition of

characteristic F(x), then function B(z) can be calculated according

to the approximation formula

In Fig. 1.11 are constructed standardized/normalized

discriminatory characteristics i(z_)-P(z)IU•, calculated according to

formula (1.6) with x,-l.5.

Page 22.

The calculation of spectral density No(x) of fluctuations at the

output of discriminator with the detuned circuits is produced in work

0 ~v
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"[101] with the same assumptions as in [100]. During the analysis was

used the approximation of the distribution of the signal amplitude

envelope and noise by law of Nakagama. As a result was obtained the

formula for calculating the spectral density N, (x) with the arbitrary

detuning x and x..

For the case when signal can be represented by narrow-band

"normal random process, the calculation of spectral density N*'(x) is

carried out in work [102]. The resulvs of this work are generalized

in [104] in the 3e of iionuniform interference spectrum at the

entrance of discriminator.

To the study of the passage of the fluctuating (in particular,

harmonic) signal and interference with the arbitrary energy spectrum

through the discriminators (see Fig. 1.10a, b) is dedicated work

[1051.

( . ...
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Fig. 1.11. Characteristics of frequency discriminator on the detuned

circuits.

Page 23.

It is assumed in it that the amplitude detectors of discriminator

with the detuned circuits have square-law characteristics u-KNU1,.

where u - instantaneous output potential of detector, Un--. signal

amplitude at the entrance, and the phase discriminator of

discriminator with the phase inverter is ideal multiplier with the

gear ratio/transmission factor K*A. Then the mathematical expectation

of the output stress/voltage of discriminators of both types is

determined by the expression

. (1.9)

I.

:-i.-q-•-• , -. .- • o- - • * .• . ° ..
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where N )N(,Q+J(,Q)N +. -displaced into the region of

lover frequencies the total energy spectrum of signal and

* ~interference by the entrance of discriminator; OUCw-w. - deviation of

the current frequency wa from standard value cwo; Qc(n)-~jCa()-ca0- the

divergence of the medium frequency of the spectrum of signal

(interterence) from the frequency w.; *(Q) - standardized static

characteristic. Function 00O) and coefficient a,~ depend on the type

of discriminator. For the discriminator on the detuned circuits

2 2o

-+' (O) = 83610 (aPAGE),P

for the discriminator with the phase inverter

where N(Q)-jR(,IQ)I; t•(,)-Ki(jQ+jw*)- displaced complex gear

ratios/transmission factors of filters 0p, which form part of the

discriminators (see Fig. 1.10).

The energy spectrum of processes at the outputs of

discriminators of both typesuis determined by the expression

wheraefristhiscrnt o0 1 )and ioeffiiento o tdehe o circ

* woer ficiintror the discriminator on the detuned circuits

* .. o..e isriinto w.t ... ........ .*inverter*
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-Me [•, (it AC3 A+ lo), it Z 01. + jo)J,

for the discriminator vith the phase inverter

Page 24.

Here R*(jw) - the function, complex conjugated with X(jw).

From expression (1.10) it follows that the spectral density in

the frequency region, close to the zero, is equal to

Relationships,.atios 10), (1.11) are valid in the case of

harmonic signal, if we assume

As an example let us give expression for the

standardized/normalized spectral density of process at the output of

frequency discriminator with the duct/contour and the phase inverter,

obtained on the assumption that at the entrance of discriminator

functions the harmonic signal and white , that passed through

the amplifier with ampliiude-frequency characteristic:

4.

S - 4 9 ,'-",' '. .
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The static characteristic of discriminator in the passband uf

amplifier is considered linear

1(0) =so.
Then from expression (1.10) it follows

"" N, (1) .

".(* Fq' {e-a2 + .Tq [(2x.--) X

where xvmOPx.m=DJ P=,Pv+P.- the total power of signal and noise

at the entrance of discriminator;P. m=&2! P,,= f/2y; m-

spectral noise density; qm.PPs- ratio of the power of signal to

the power of noise.

Page 25.

Fig. 1.12 depicts dependences ,,(x4), calculated by formula (1.12)

with the zero detuning of signal x,-O.From the graphs it is possible

to find the cut-off frequency, at which the spectral density is in

effect constant.

Fig. 1.13 depicts fluctuating characteristics no(xc).They can be

used for the analysis of the disruption/separation of tracking when

.9
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the energy spectrum of output stress/voltage u,(t) of discriminator

is uniform in the band of follower. From the graphs it is evident

that spectral density ,,(Xc) sharply depends on detuning xc virtually

in the entire region of the interesting us signal-to-noise ratios.

Frequently into the circuit of the receiver, which precedes

frequency discriminator, for the standardization of power is switched

on system ARU or limiter. Performance calculation of discriminator in

the presence of inertial system ARU can be carried out through

formulas (1.9) and (1.10), if we as the input spectral density use

function N(*)-MR(*)P.(P,+P.) where P, - poier of oscillations, ensured

by system ARU El].

-p

S o'S. * * * -
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Fig. 1.12. Fig. 1.13.

Fig. 1.12. Spectrum of output potential of frequency discriminator.

Fig. 1.13. Fluctuating characteristics ne(k.)..

J ,•

4. Direction finders.

For the isolation/liberation from the signal of information

* about the angular position of radar target are used the

L devices/equipment, called direction 'finders. Recently the widest use

fo'ceived direction finders with the instantaneous comparison of

sinals. As an example can serve sum-and-difference type direction

.;iderwhose siraplified functional diagram for one plane of direction

Ifinding is depicted in Flag. 1.14.

Page 26.
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Tho signal, r~flected from target, comes simultaneously two

antennas with radiation patterns G1 (o) and G,(Q) displaced to the

angle 2A. The plumbing, which stands at the input of receiver,

forms/shapes total f and difference., of stresses/voltages, which

together with a stress/voltage of the heterodyne F enter mixers SM1

and SM.. The stresses/voltages, obtained as a result of conversion,

are reinforced by cascades/stages UPCh, and vPCh, and enter the phase

discriminator FD. For the standardization of received signal in the

amplitude in the diagram, depicted in Fig. 1.14, is used

instantaneous automatic gain control (MARU). Because of NRU output

potential of total channel is kept constant, and the output

stress/voltage of difference channel is changed inversely

proportional to voltage on the input of total channel. Phase

discriminator (FD), implementing the operation of the multiplication

of input signals, forms/shapes on the output of direction finder the

stress/voltage, proportional to the relation of the stresses/voltages

of the difference and total channels

8 (1.13)

The calculation of the discriminatory and fluctuating.

characteristics of direction finders composes, as a rule, very

complex problem, since for this it is necessary to analyze a large

quantity of cascades/stages of receiver, including nonlinear. Without

• ., , '*. .. . . . . ..-... . ... .. .
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stopping on the details of analysis, let us note that the

*. discriminatory characteristic of the direction finder in question can

be obtained from relationship ratio (1.13), if we take into account

concrete/specific/actual forms radiation patterns of the antennas of

* receiver.

.°
.2 ,"

4°

*+ 5 4 * ** *S *5 -°° 
5
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Fig. 1.14. Total-difference type direction finder: SM -mixer; r

heterodyne; UPCh - IF amplifier; FD - phase discriminator; MARU -

diagram of instantaneous automatic gain control.

Page 27.

As a result the discriminatory characteristic of direction finder

i w vill be determined by the expression

where 2P - angle between maximums of radiation patterns; 9 - current

displacement angle between the axis of equisignal sector and the

direction of the arrival of signal; U. - maximum output potential of

phase discriminator, attained at the disagreement/mismatch -±Oi.

The more detailed calculation of tne discriminatory

characteristics of the direction finders of different types is, for

example, in C911. In this work let us note only the special

feature/peculiarity of discriminatory characteristics (Fig. 1.15),

***• % *. .- * *•. . . . . . .o.-. . .
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which consists in the existence of several points of stable and

unstable equilibrium. This is explained by the presence of minor

lobes in radiation patterns of the antennas of direction finder. The

working section of discriminatory characteristic, which has the

greatest slope/transconductance, is arranged/located in the vicinity

0-0. It is formed by major lobes of radiation patterns. Side-lobe

level of radiation patterns usually is 20-40 dB lover than the level

of the main things and therefore in the majority of cases it cannot

bo taken into consideration. However, sometimes target tracking can

be realized by minor lobes, then discriminatory characteristic must

be examined in the form, shown in Fig. 1.15.

Together with the direction finder of the type examined in the

"practice frequently is applied the system with instantaneous

amplitude comparison [91], the standardization of signal in which is

realized by logarithmic amplifiers. The calculation of the

discriminatory .and fluctuating characteristics of this direction

finder is, for example, in work [106].

.-'. . ....-.
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Fig. 1.15. Standard direction-finding characteristic.

1.3. Concept of interruption of tracking.

As was noted in S 1.2, the behavior of servo system can be

described stochastic differential equation (1.2), which characterizes

change in the time of following error in the regulating circuit. The

solution of this equation due to the.presence of noise e(t) is the

random function of time. By analogy with Brownian motion it is

possible to say that coordinate x(t) randomly "strays" along the axis

Page 28.

However, dependence F(x) can be considered as certain force, which

-ttempts to hold down/retain coordinate x(t) near the point of stable

1 equilibrium of system. If with wandering coordinate x(t) will be

beyond the limits of the points 7,, 7. whose coordinates are

established/installed previously, then with some stipulations it is

*--* **** 4.. *,~~**~* *f°**.;
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possible to claim that in the system occurred the

disr,'tion/separation of tracking. The position of end-points 7i and

7, in the majority of the cases is determined on the sharp decrease

near them of restoring force F(x). This occurs, for example, in the

servo auto-selector of impulses/momenta/pulses on distance [44, 62,

753 and in the system of frequency self-alignment [55, 561 whose

discriminatory characteristics are depicted respectively in Fig. 1.4

and 1.11. In such systems as a result of the output of coordinate

x(t) from the aperture of discriminatory characteristic the ring of

automatic control is broken and system becomes unguided.

In some systems of coordinates 'T, 72 correspond to those

misalignments x, with which the power of the signal, which passed

through the receiver from the ring of automatic control, falls below

threshold level. This occurs, for example, in the system of angular

target tracking when the receiver of locator additionally is gated on

the distance or in the frequency. With the sufficiently large

tracking errors on the angle the power of signal in the total channel

falls. If the freedom from interference of internal duct/contour is

insufficiently high, then with some threshold value of following

error on the angle occurs the disruption/separation of range tracking

(frequency). This leads to the disappearance of signal at the output

of direction finder and to the disruption/separation of tracking by

angle [71).

4. .
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In a number of cases the characteristic of discriminator is

periodic function x. If the porosity of characteristic is great, then

by disruption/separation of tracking it is possible to understand the

output of coordinate x beyond the limits 7,, 7,, determined from the

decrease of restoring force of F(x) in one period of discriminatory

characteristic. This is completely justified, since wandering of

coordinate in region F(x)-0 occupies usually long time. A similar

situation is observed, for example, in the pulse auto-selector with

the large porosity of transmitted pulses.

Page 29.

With low duty factor of the characteristic of discriminator (for

example, in the system of phase automatic frequency control) by

disruption/separation of tracking frequently is understood [60, 70]

the first output of coordinate x(t) for the nearest points of

unstable equilibrium on characteristic F(x). This event is

occasionally referred to as the disruption/separation of synchronism

[54], in contrast to the total loss of tracking the frequency, which

occurs only with the repeated migrations/jumps of phase. A question

about the disruptioi/separation of traczing in the systems with the

periodic characteristics of discrimi-:tors is in more detail examined
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in S 3.3.

Strictly speaking, by disruption/separation of tracking should

be understood the output of coordinate x(t) beyond the limits of the

* aperture of discriminatory characteristic to the period, greater than

certain permitted for this system. However, the probability of the

return of coordinate x( t) for a comparatively short time to the

region of tracking is usually small; therefore in such cases with the

great probability it is possible to claim that the first output of

coordinate x(t) beyond the limits of aperture 7,, 7. is equivalent to

the disruption/separation of tracking. The validity of this

confi'-ation increases with the increase of the inertness of

regulating circuit. 'ubsequently, as a rule, by disruption/separation

of tracking is understood the first output of coordinate x beyond the

limits of the established/installed boundaries 7Y, 72.

Let us pause at the fundamental quantitative characteristics of

the disruption/separation of tracking. Total characteristic is

probability P(x., t) of disrupting/separating the tracking for the

preset time of observation t. In this case it- is assumed that at the

initial moment t-0 ocurred the mode/conditions of tracking, i.e.,

.7<x,-x(t-O)<7,. Depending on the character of task the initial value

A 'of coordinate x. can be determined or random.

( .-.
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Sometimes for the characteristic of disruption/separation

instead of probability P(x., t) is used its derived

being density of distribution of the probability of time to the

disruption/separation. However, probability P(x., t) can be

considered as the integral law of time allocatiun to the

disruption/separation of tracking.

The important parameter, which are determining the quality of

follower, is the intensity of fluctuations at the entrance of the

system, in which the disruption/separation for the preset time of

observation occurs with the probability not more than the given one.

Page 30.

By intensity of fluctuations, as a rule, is understood the value of

spectral density No(x) the low-frequency components of noise nt),
the led to the output discriminator. The recalculation of this value

in the signal-to-noise ratio at the input of discriminator, which is

most interesting for the practice, can be carried out with the help

of the relationships/ratios, given in S 1.2.

The enumerated characteristics of the disruption/separation of

tracking are sufficiently complete; however, their practical

-'•-'•.• .- / .. - -•." .- -. ' -. ' .' ... '.-'. -i-..- •--- .- .- • i ••• . . .. -. ".- .'- - ", - *. -. * .*• °
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determination is frequently connected with the serious mathematical

difficulties. Therefore for the approximate calculations it is

expedient to use simpler, although by less general/common/total

characteristics. For example, in the strongly inertial systems of

tracking with the time of observation, the much larger time of the

-:! establishment of transient mode/conditions, the dependence of the

probability of disruption/separation on the power of fluctuations

* carries the character, close to the threshold. In such systems for

the approximate computations it is possible to propose [68] that with

spectr'al density, larger certain critical value Np, the

disruption/separation of tracking occurs with the probability, close

CC to one, but at the less spectral density - virtually it is not

observed. Value M., in these cases is used for the rough estimate of-

the quality of the work of servo system.

Approximately the phenomenon of disruption/separation can be

characterized also by the first moments/torques of distributing

Wz,(t) the time, which passed from the start of system to the

disruption/separation of tracking. Important role they here play the

mean time m,(x.) to the disrup,-ion/separatiorn and dispersion S(xo) of

time to the disruption/separation. The determination of these values

in many instances can be carried out by comparatively simple methods.

In more detail questions of the determination of the first moments of

t•ime to the disruption/separation are examined in Chapter 5.

,,- ,, .. ,* ..So, .' . ;....',..,,.....S. * . ,*°.* . . . . " . . -,, .. .. ". " . . *:.. .S - .* -..* **. . . . . .. . .•, - . ; .. . .' " . " - .-. + .
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1.4. Short historical outline.

With the development of vibration theory began to increase the

interest in the analysis of the nonlinear dynamic systems, subjected

to the action of random interferences. The first works in this

direction appeared in the thirties of the current century. Here

should be, first of all, noted the basic work of A. A. Andronov, L.

S. Pontriagin and A. A. Witt [353, in whom it was for the first time

proposed to use for determining the statistical characteristics of

dynamic systems an apparatus for the theory of Markov processes. To

the success of this apptoach to a considerable degree contributed the

appearing on the eve fundamental work of A. N. Kolmogorov and M. A.

Leontovich [25, 26], dedicated to a strict mathematical

conclusion/output of equations of Fokker-Planck.

Page 31.

A considerable effect on further development of the me-hods of
S.

the analysis of the nonlinear systems, subjected to the action of

random disturbances, had the works of S. 4. Rytov, I. L. Bershteyn,

P. I. Kuzneusov, R. L. Stratonovich, V. I. Tikhonov, P. S. Landy.

Among them should be isolated articles [23, 28, 36, 37, 50]. Fruitful

.9°

.4

U
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proved to be also the ideas of the work of Kramers [271 and

Chandrasekhar [20], the dedicated to the study of diffusion Brownian

particles in nonuniform field of force.

For the first time the task of the analysis of the

disruption/separation of tracking in the radio engineering regulating

circuits formulated, apparently, A. M. Vasil'yev [44]. After noting

the analogy between the behavior of Brownian particles and random

change of the following error in the regulating circuit, A. M.

Vasillyev succeeded in using for the analysis of the

disruption/separation of tracking the apparatus of the diffusion

equations of Fokker-Planck. To a number of first works according to

the analysis of the disruption/separation of tracking belongs also

the work of I. A. Bol'shakov [461, in whom with the help of

Peetz-Galerkin method is found the approximation for the probability

of disruption/separation in the nonlinear first-order system.

Considerable attention to the problem of the

disruption/separation of tracking was given in the international

congresses for the automatic control (IFAK), where among others were

represented reports [32, 48, 49]. Thematics of the majority of

reports, as a rule, did not exceed the scope of the examination of

first-order systems.

.... ,."". ".".-.' .......... ............ ."'" " " "" .'°,.", •....- .. • ..... i •,. .i; . ,.•-. .•-
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The significant contribution to the research of the equations of

Fokker-Planck introduced the monograph of R. L. Stratonovich [14]

left in 1961, who played noticeable role and in the development of

applied questions of .the theory of Markov processes.

Beginning with 1959-1961 the analysis of the

disruption/separation of tracking in the radio engineering systems it

is developed especially ral dly, store/add up the basic schools,

which work in this direction. One of them, headed by V. I. Tikhonov,

successfully works in the region of the analysis of the statistical

* characteristics of the systems of phase automatic frequency control

[45, 52-54, 64, 69, 80, etc.]. The analysis of stability of the pulse

servo system in the conditions for noise effect is carried out in the

work of I. N. Amiantov and V. I. Tikhonov [21]. In the work of V. I.

.* Tikhonov [47] is for the first time examined the system FAPCh,

* described stochastic differential second order equation. The detailed

- survey/coverage of works up to 1964, dedicated to the analysis of the

statistical characteristics of different systems FAPCh, is given in

article [601.

The work of another school (55, 62, 63, 67, 71, 84, etc.],

created by V. L. Lebedev, are dedicated to the analysis of

disruption/separation in different servo systems of the first and

second order. In particular, in works (55, 62, 67] considerable

)

i'S

.°°
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attention is given to the research of the disruption/separation of

"'i tracking by conducting the analogy with the Brownian particles, the

• .. surmounting particles, which surmount potential Barber. In the

Sarticle of S. V. Pervachev [62 is for the first time correctly posed

.. the problem about the disruption/separation of tracking in the system

of the second order with the proportional-integrating filter, is

comprised for this case the equation of Fokker-Planck and for a

series/row of special cases is obtained its approximate solution.

ii• To the analysis of the statistical characteristics of systems

!."C,"•.- FAPCh70 7,e..is dedicated the series/row of the works of V. V. Shakhgil'dyan

j To the determination of the approximate stall conditions of

• •'•-•tracking in the complicated nonlinear systems is given much attention

-.i

i:•_ in the work of collective under G. G. Sigalov's management/manual

.•L• [68, 85, etc.].

Page 32.

•_..•tTaking into account that the dependence of the probability off

•i disrupting/separating the tracking on the signal-to-noise ratio in a

S~number of cases carries a sharply pronounced threshold character, the

( ..,••i-authors of these works, using theory of statistical linearization and

o .I • • . . . ° . • o . ° . . ° • . ....

o'q.1 , o • ° ' ° ° ° • q -° q °o ° h .° .. ' • ° . . , ° ° . • -
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averaged differential equations, define critical stall conditions as

loss of stability in the system. To analogous questions are dedicated

also works [69, 881. Unfortunately, the estimations, found with such

methods, lose their statistical properties and do not depend on the

time of noise effect in the system.

In the works of V. M. Artem'yev [89, etc.] to the analysis of

the disruption/separation of tracking extends one of the

modifiuations of the method of successive approximations - method of

S". the averaging of functional corrections which is used for approximate

solution of the equation of Fokker-Planck. However, unwieldiness of

method substantially impedes its use in the practice.

;.1

-.Among the foreign research in the field of the analysis of the.

disruption/separation of tracking it is possible to note works (51,

57, 58, 66, 761, dedicated in essence to the study of different

systems of phase automtic frequency control.

On the formulation of the problem to the analysis of

disruption/separation is close the task of the definition of the

characteristics of the ejections of noise for certain level. To

detailed research of these questions is dedicated, in particular,

monograph [17].

...................
* . .
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Development of analog and digital computational technology made

it possible to work out the series/row of the methods of determining

the probability of disruption/separation with the help of the

simulation of servo systems in the computers. In works [32, 82, 90]

is demonstrated the possibility of determining the statistical

characteristics of servo systems by the method of solution in the

analog and digital computers of the corresponding equations of

Fokker-Planck and Pontriagin.

To experimental resear f the disruption/separation of

tracking in different radiG .,ineering regulating circuits are

* • dedicated works [52, 53, 56, 58, 61, 76).

Certain representation about the hi~tory of the development of

the methods of the analysis of the disruption/separation of tracking

"can be obtained from the section 5 of the bibliography, placed at the

end of the book. Bibliography in this section is comprised in the

chronological order.

-q

-q. . .. .. . .. . . . . . . .. - : .:-
" ' ". " ' " ' - ' - " " . ' ' , • ,"- .'• ••:-- , .': • -, -.. - - "
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Page 33.

Chapter 2.

BASIC INFORMATION FROM THE THEORY OF MARKOV PROCESSES.

The theory of Markov processes in spite of a comparative youth

is the very developed region of mathematics and plays large role in

the research of nonlinear regulating circuits. Without having the

capability to state it in detail, let us pause at some most important

positions, necessary for the analysis of the disruption/separation of

tracking.

2.1. Basic concepts. Terminology.

Concept of aftereffect. For determining the Markov process high

value has a concept of aftereffect. Random process x(t) is

characterized by a-dimensional probability density

W(xi,'X ..x , if; It. tI .. ,, v 1,),vhere Xi- value of process of x(t) at the

moment of time t,.

S.
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Let us introduce into the examination conditional density

�,�Xm I tmIt, t;. x2 ji:...x,-*t._.. ,), which characterizes the distribution of

process of x(t) at the moment of time I;, if at the previous

moments/torques it took values XA, XA .. , X- This makes it possible

to register .#, J; ... , XM) = XI, xs, ...., x .,) X

XW(X,,..., XM.,). (2.A)

Here and sometimes subsequently for the reduction of recording

temporary/time arguments in the distribution functions lover.

Special. interest they present two special cases:

I) w(Imlx, -... X.)-w(x.). (2.2)

The given relationship/ratio characterizes the mutual independence of

separate ordinates Xi of process x(t).

* Page 34.

In this case multidimensional probability density ialls into the

product of the one-dimensional onea

V (XI, •3, -W' (XIi)(X2) ...

The process, vhich possesses property (2.2), is called white noise.

Oj :y :.�:2) -(xW x ..n X9.,)-w(Xjlx.-,). (2.3)

cf

*. . . . . . . . . . . . . . . .-: :::,;:":"::,-: -: :::"-::-: . i:::: ::..::.'-:";:- - -.- ::• :::.::: :-:: -:
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Relationship/ratio (2.3) characterizes the simplest form of

cbmunication between the separate ordinates of process x(t), i.e.,

the value of ordinate at the m moment of time depends only on the

value of ordinate at the previous moment/torque. This random process

is conventionally designated as process without the aftereffect or by

Markovian (on the name of A. A. Markov, who for the first time

studied the discrete/digital version of this process).

Markov process is completely characterized by two. dimensional

prokbility density, or it is more precise, by one-dimensional

density and with the probability density of transition.

Actually/really, on the basis of (2.1) taking into account (2.3) we
obtain wx,.. ,•w(, .,x.)w(.I.,

=, (,,....,,. )w(X.., 1 0.,, (X. I X.-, =(24
V (XI). 0vs I x,)... (XI. I xM-). (•4

.'unction O(xjx))-W(x, bl; xi, I) is a probability density of the

transition of process of x(t) from state xi, of occurred at the moment

time L" into state X) up to the moment/torque of time.11 .

Markov process is conveniently examined in the phase space 8

whose dimensionality is determined by number n of mutually

independent coordinates x,.x, ... , X,. If n-l, the Markov process x(t)

is called one-dimensional, if n>l - multidimensional. In the latter

case the state of process x(t) at the moment of time t4 is

a. . . . .. . . . . . - . - - , : . . . . . . . . . .a. .. . . . a , - - . a a' "
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characterized by vector x-{(xiu, Xh..., X%'•. determined in the phase

space QZ. Then the probability density of transition is

written/recorded as w(x,, 1; x, t4).

Page 35.

It is possible to show E5] that process x(t) is n-dimensional

Markovian, if its components A1 satisfy the system stochastic

differential equations

.-•.•-• .• ... d. + •,b,, (x, Ag... ,,. •, (2.5).

where abu.,- determiined functions, in the general case nonlinear,

e(t)-jndependent white noises with the single spectral densities.

In expression (2.5) the spectral density of real random process

always can be reduced to the single by the corresponding change in

the coefficients of intensities bij- However, this requirement is not

fwudamental and is introduced only for convenience in further

recording.

A question about how to determine multidimensional Markov

process so that the following error would be one of its component, is

examined in the following paragraph.

.5 -- . °*

o... •••, ' '•...•. , '• .:• ,o.'.• , .. ,.', ,,%" ..... ,.,... . . .. ..( .. . . .
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Are at present known sufficient conditions with executing of

which there is continuous and unique solution of the system

stochastic equations (2.5) [5]. These conditioits limit an increase in

coefficients ai(4xI'and bj(x, I). For the one-dimensional Markov

process, for example, must exist such M<., so that so on of all zeQ

and y/=Q would be satisfied the conditions

•a(x. t-ay. t)1 + Ib(x, 4)-b(y, t)I MIx-yi,

,I(x, 1) +,(x, 0) M(I +x2),

With the disturbance of these conditions for existence of the

unique and continuous solution stochastic equation must be proved

additionally. in the tasks about the disruption/separation of

tracking stochastic equation is assigned in the limited interval of

values x; therefore the formulated conditions, as a rule, are

satisfied for the real fornu of discriminatory and fluctuating

characteristics.

Let us pause at some important properties of Markov processes.

Stability. Markov process is called stationary (uniform), if the

probability density.of transition w(xj, t ; xj, tj) depends only about

difference r-a--t and it does not depend on the position of the

initial moment of reading *4.'

Relationship/ratio of Chapman-Smoluxovsky. Large role in the
.-..

•,•"• " •',,''- % ., , ,-,.,• •",•• .. % ,', •• •" . . " . ",. • - • - - • - "- ". ". ". ". ". ". ..- j,-. .. •. .. ' .. ,. ",- - -. " ., "• .,• •.- .- .- ,,,".-r C
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theory of Markov processes plays the relationship/ratio of Chapman-

Smoluxovsky.

Page 36.

-. If we introduce three moments/torques of time t., t' and t, such,

that 4k'<i, that this relationship/ratio takes form [187

w " ; ye, r" ; x,,,•w (x, t ,dx'. (2.6)

It makes it possible to determine the probability dens'.ty of the

transition of process of x(t) from state x, into state x, if they are

known to the probab4.ity density of transitions from x, to the

intermediate state x' and from x' in x.

2.2. Description of control systems with the help of the Markov

processes.

In the servo radio engineering systems the random process x(t)

being investigated (for example, the current error of automatic

tracking) is assigned stochastic differential equation of form (1.2).

In order to have the capability to study the behavior of process x(t)

by the methcds of the theory of Markov processes, it is necessary to,

first of all, express-x(t)' through the components of the

corresponding Markov process x(t), in the general case of

k '.
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multidimensional. In other words, it is necessary to select such

coordinates of n-dimensional phase space 10 so that x(t) in this space

would prove to be process without the aftereffect. For this is

necessary satisfaction oZ the following conditions.

First, all random disturbances, entering initial equation (1.2),

must take the form of white noises. In the second place, should be so

Sselected the coordinates of phase space, in which is determined

vector x(t), so that n-dimeisional equation (1.2) it would be

possible to register in the form of system (2.5) stochastic

first-order equations. The first condition usually is satisfied,

since the servo systems.in the majority of the practical cases have

the narrow passband -in limits of which the interference spectrum it

is possible to consider "uniform. In such a case, when the spectrum of

disturbance/perturbation q(t) is substantially nonuniform in the

passband of system, the introduction of the further forming filter

(Fig. 2.1) with the operational gear ratio/transmission factor KJ(P)

makes it possible to reduce the perturbing action to the white noise

W(t'. As a result initial atochastic equation (1.2) will take the

form
(p) = -r (x) ÷Kt (p) t (01 (2.7)

Page 37.

The introduction of the forming filter leads to an increase in
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the order stochastic differential equation and, therefore, to the

complication of the process of determining the probability of

disrupt ion/serarat ion.

Satisfaction of the second condition, as a rule, causes great

difficulties and requires further limitations to the form of

differential equation (2.7). In particular, for this it is necessary

that the gear ratios/transmission factors K(p) and Kk(P) would be the

rational-fractional functions of operator p.

Known several methods of the determination of phase coordinates

"x,, x2, ... ,x8, which make it possible to introduce the Markov process of

-, x(t), connected with random process of x(t) [10, 24, 39, 42, 57, 62].

Let us consider some of them.

First method. Let K(p)=L (p)IM,(p) v K1 (P)PL (p)/M,(p)m where

Le, LI, M, and M, - polynomials of the degrees cf operator p. Let us

register i-quation (2.7) in the following form:
,df(p)x(t)-i ).t-~)~x-~~~) 28

where M(p)'-MM(p)Mi(, m)-pnp*+jjpo.-i+ ... +1z-V polynomial of the n

degree relative to L(,.)-L.(p)M,1 (p)-ip+ ... +4 and

Q(p)•=4(p)Lj(p)=:.'+... qa- polynomials are not older than the

(n-1)th degree. Without the limitation of generality let us assume

I' - - - .

oO . ... * . ,* . x*.* * . .- .- .
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Let us isolate separately the case, when Q(p) is the polynomial

of zero degree (Q(p)-q.).

.° .

. . . ****-** ,
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"Fig. 2.1. Bringing random disturbance to the white noise.

Page 38.

- In this case the following error x(*" is one of the components of the

-' n-dimensional Markov process x(t) i ae space with traditional phase

°-°o coordinates xa X. X•,:

dx,
di

d9 A z8 (2.9)

dx,., ... ..

dth - -..... • •.•-- -.. pox, --

with-r•--i the introduction of multidimensional Markov process is

complicated. Let us consider the preliminarily special case when

dependence F(x) is linear, i.e., F(x)-Sx (linear discriminator).

According to [10] let us introduce the first n-i coordinates of phase

spece 0 that so that

\/'.

•" ° • o • . , . . . . . ° . . .. . .
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ds, 1I

dd

d I +ct (1)

.. •d * S * * * * * * *

Ox dx +

* here C,. C3. .... C.-,-- some, unknown thus far coefficients.

From (2.10) it follows that
- * _

For-the linear function F(x)-Sx is fulfilled the relationship/ratio

L(p)P(x) MSL(P)X. (.2
Page 39.

Taking into account (2.11) and (2.12) equation (2.8) takes the

- form

,,-F -7 , ,," - P* "• :•"':"
I+I

a-'i

--• , 4..+M•- (.p)!a(1-s• lxft,,,

d~j () jh,1 ~
dig .'
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Let us select coefficients C4 so that the factors, which stand

in equation (2.13) with the derivatives of white noise, would become

zero. For this is necessary satisfaction of the following conditions:

O* i f+,.Ch+q,=O. (2.14)

Sequentially solving equations (2.14), let us determine unknown

coefficients C1, Ca ... * CM-1. with the execution of equalities (2.14)

equation (2.13) takes the form

Latter/last equation and equations (2.10) form the unknown system

.o . . . " • -• -" -" " .. . •. . . - " " . • . . . - . . . . .-• . •'' '. " _ ' - -- "
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stochastic differential equations relatively component xx, 09...,x, of

the n-dimensional Markov process x(t).

With the nonlinear characteristic of discriminator F(x) of

equation (2.8) also it is possible to reduce to the system stochastic

first-order equations, not containing derivatives of white noise.

Page 40.

S. V. Pervachev proposed the following method of the introduction of

the first n-1 the component of the Markov process

X8-='X

4-•i÷'2•,I+, Cie (A. l)

*dxu,+

dx +

00 f.....x.. 4 .. + 4 ,XJ~

* where s- max. (m, r) - the greatest exponent of polynomials L(p) and

Q(p).

.. .-..,.... -.-. . .. ,..-. ... *. ..- -...- ,..-.-..,. . ... ., . . •• . . .. . . .-
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In cintrast to system (2.10) here factors C, are the functions

of variable/alternating XP The general/common/total methodology of

the determination of functions Ci(x) is analogous to the methodology

of that "-'--.-ed above of the determination of coefficients Ct in

equalities (2.10).

Let us consider the example very widespread in practice.

Example. Let the feedback loop of the ring of automatic control

consist of integrator and proportional-integrating filter, so that

0~~~~ K(p)-~jj~m 7

The perturbing action let us represent in the form

* a)..•(f. where I(1)- white noise with the single spectral

density. Then differential equation (1.2) will take the form

* ~ ~ ~ ~ ~ e Td(+X TjF .(s x~(~n+I (I ,+_.__a- +_ ,,_ ,.,.___T_ 0

S(• (2.35)

Page 41.

According to (2.16) let us introduce new variables x,, x,:

.:~-. .- m.s,+C*'•. (js,,). (2.19)

+ 1 C* - t -o . . . . . .. .
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After substituting (2.19) in initial equation (2.18), we will obtain

the second equation

J_ -, -s• 7
j+~ +~ - [K+ C(l+n dF~s2

.(- + dIN.t-(,)j(j * (2.20)

Factor C is determined from the conditiou of equality to zero

coefficients with the derivative of white the bag:

C---A

As a result the system stochastic equations relatively component XI,

x, of tvo-.dimensional Markov process takes form [62]:

M -•-., ,- Ka. V' 76 O,,),t
_sl I _KndF Oh,,) ' F ,

+OL+Id -K -1nKOX (2.21)

As it follows from (2.19), in the method of replacing the

variable/alternating examined the studied random process x(t)

corresponds to one component x,(t) the introduced two-dimensional

Markov process x(t).

• -_.,,, ,, - . .'-." . . ." , -, - - -. . . . . . . .. . . . .-- -, -. ....
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The second method of the composition of the system stochastic

equations was examined by J. Dub [243 for the linear system and was

spread by Z. Viterbi (57] to the nonlinear followers. Let us consider

one of the modifications of this method where in contrast to [573 is

considered tho action of the determined disturbance/perturbation

We wiii be bounded to the analysis of the situation when the

random disturbance, converted to the output of the discriminator (see

Fig. 2.1), it is possible to represent in the form of the white noise

FOOTNOTE *. When K(t) 16 1 to the system of equations, which

characterize the ring of tracking, should be supplemented the

equations, which describe the forming filter. ENDFOOTNOTE.

Page 42.

Under this condition equation (2.8) takes the form

::•,Iw .(.) I (-C M t~ Le W IF"(A + 1 (0l.

Let us introduce the new variable/alternating x,(t) so, in order

•..to X•OzO LS()-• 0

. Joining two latter/last relationships/ratios, we will obtain the

,. •,., ; • : .- . , ."- .- ., - - • -. . " . . .. ."
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equation
M I(p x.Q) I4 4t) ,

to which corresponds the following system stochastic equations:

dx8 -3(2. 42
- 1.1

Sthese evressions it is taken into consideration, that

h(0WME PiP1'L,(0)zW /•, As a result of the done

replacement of variable/alternating the random process x(t) being

investigated it is possible to represent by linear combination of

components X) and dynamic disturbance/perturbation X(t):

It is here assumed that are known initial conditions xi(0), ... ,X()

which occurred upon the inclusion of system into moment/torque t-0.

"-* The advantage of the method of the introduction of phase

coordinates examined in comparison with the first is the absence in

equations (2.22) of derivatives of characteristic f(x). Furthermore,

white noise t(t) enters only into one equation of system (2.22).

Page 43.
4."i

. . . * . . . * .° .
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As shon in S 2.3, these facts conduct to considerable simplification

in the corresponding equation of Fokker-Planck.

However, to in practice use the method of replacing the

coordinates examined is inconvenient, since disturbance/perturbation

X(t) enters into the dependence, which connects components x, with

process of x(t). With X(tj • const the domain of definition of

boundary-value problem for the equation of Fokker-Planck, comprised

for coordinates X. is changed in the time.

Of the deficiency/lack indicated it is possible to get rid in

the particular, but sufficiently spread case when dynamic

disturbance/perturbation X(t) is approximated by the polynomial

old degree s of which does not exceed the order of astaticism of

regulating circuit. Let us recall that for the system, which

possesses astaticism of the s order, coefficients

-- .j.--O. In this case the processes, which take place in

the regulating circuit, will not be changed, if dynamic

disturbancj/perturbation X(t) is replaced with constant stress U,

applied to the output of discriminator additively with the random

stress/vultage t(t), and we by correspondingly change initial

V- . . - .- . .. ** ,* .. - '" . -" ,. . - - ' . " " ..*..' -' •-.
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conditions in the system. The equation of control system in the new

coordinates takes the form
i _,.(0- -.• I (,4 + U + I01

o.,

Hence we will obtain the system stochastic equations:

lj*=*.

"* "
4 ._. - . --. . .... -.. .. . .. . ...

(2.23)

where the following error is expressed only through coordinates

* 3A:

! Page 44.

Constant stress U---I&&V and changed initial conditions ZM(O)

in the system form at the output of ripple filter signal - W(t),

which is equivalent to action at the entrance of the system of signal

-(t). Let us designate increases in the iaitial conditions through i:

zi (O) -- X (O) +e, -- , Z , n. (2.24)

"In order to form at the entrance of discriminator polynomial

* W(t) the s order, it is necessary in accordance with (2.24) to change

S.* ° ., • •, . .
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a., initial conditions on s integrators to values tr ..
8arespectively

and feed. to the entrance of chain/network from s integrators constant

voltage eo~i. Initial conditions xos, &. Xi are not changed, SO Lhat

eo+2=wt.+3am... =e,10. So that the increases e,,, ez would form

signal ?W(r) must be implemented the equality

Equalizing coefficients with the identical degrees of t, we will

obtain system of equations

l1t.-. gh+,+ -if 1,%+2+ T' sit +i* + -6+1

which consistently is permitted:

Thus, vdlues S&can be c~alculated acco~rding to the recurrent

equatiurns

SIL. 1 -T+ (2.25)

Page 45.

. - R



ExamplIe, For the servo system with the integrator and the

- proportional-integrating filter, let us make the replacement of the

variable/alternating z1 VZ 2 according to formulas (.2.23) under the

*effect of X(t)in~~~ This leads tc the f'olioý,ing systems of equa-

tions dz,

dx, K K (4(2,26)
where x (') ~zi(t) +Tiza()

Irn acccrdance with (2.24)-(2.25) the initial conditions are

connected with the following relationships: V

From this we determine the initial value of the tracking error

at point in time after closing the tracking ring XO)UEA.+xI(O)+Tix2(0)-

.9..

.42

F. =- 
Ca

~a42~M
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are given the basic facts from the theory of the equations of

Fokker-Planck.

* Page 46.

Determination. Let n-dimensional Markov process

X(t)-IX'(4), XI, Xu(M))be described by the system stochastic

equations

ds (, +~I Vbi$ )( 1. 2,... (2.5

Then the probability density w(x, t) of continuous lMarkov process

satisfies the equation of Fokker-Planck:

the matrix/die of coefficients at the second derivatives B. If matrix

B is nondegenerate, the equation of Fokker-Planck relates to the

parabolic type. if matrix/die is degenerated in- certain point or set

of points, then equation relates to ultra-parabolic

(elliptic-pirabolic) type [34].

The coefficients of equation (2.27)

A,( 0=m f.: Y + 1) Xsf) (2.28) ..-- 7" F -- 77n7

,7 ' l
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c~haracterize local average/mean rate of change in coordinate "arid

Bij(x, i=i z+)-ttIIg+)-g) (2.29)

m14

""correlation of component ai and XPn

In the tradition, which arose during the study of the behavior of

Brownian particles, coefficients Aiand BO are called respectively

the coefficients of removal/drift and diffusion. They are determined

from the system stochastic equations (2.5). The formal solutions of

this system are expressed by the following integral equalities:("a

Page 47.

Not examining in detail, let us note that there are two methods of

calculating stochastic integrals C5, 15] entering in (2.30.). If we

use tor the calculation the method, proposed by &-. Ito [5, 40], then

we will obtain that the coefficients stochastic equation (2.5) and

equation of Fokker-Planck (2.'/) ire connected with the

relationrhips/rat ios

. I * I • ** I -I * I * .I~ . .
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•~A .. x, a=. (x, ,',(2.31)

"B"j (x, b, (x. A bg (x,O. (2.32)

S°h--

In this case it is assumed that spectral density M. (x) of random

process is cnnnected with the correlation function r(T) with Fourier

transform (1.1).

But if we use determination stochastic integral in the

.. ssynmetrized form, proposed by R. L. Stratonovich [15], then we obtain

another form of the recording of the coefficient of the

removal/drift:

•X O. l m (x, Q+ o4b^ (2.33)

Difference in the forms of the recording of the coefficients of

removal/drift in the methods of K. Ito and R. L. Stratonovich let us

"clarify based on the example of the one-dimensional Markov process

x(t), assigned stochastic equation

This equation is conveniently represented in the form

dx-r a(x)dt +b(x)dC,

vhere dSt=O(t) dt - differential of single Wiener process. Passing to

the finite increments, let us register

aA.

J1,21 4 1

'" " " -" '"" " -'' " "" " "" i. '" .. . """-.."'' .- --
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* . I

the increases Ax and AS are independent random quantities also, in

* this case
A (z) 4a(X).

Physically this result is feasible, 'if one assumes that in the

* feedback loop of regulating circuit is inherent the del3y to the

* pe-iod, greater than the-time of the correlation of random

disturbance *'(t) Cl, 30).

4-.

During the treatment according to R. L. Stratonovich there is nn

such delay,, therefore, as shown, for example, in [30]

as a result of what the coefficient of removal/drift is equal to

4 A (x = a (x + -L- b (x) b' (

S.9

.44

;. .A~l,,-l-

,'lJ...A ph nreases ant itar isndtetprouendet raundoiqueanltitoes alsout the

p°•-VT
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advisability of the selection of that or another form of the

recording of the coefficient of removal/drift in the equations of

Fokker-Planck, that corresponds to the physical model in question.

Apparently, the use/application of a concrete/specific/actual form o!

recording must be produced on the basis of the comparison of the time

of the correlation of real broadband random process J(') and signal

lag in the ring of automatic control which usually accompanies the

m passoye of signal in the radio engineering circuits.

Subsequently is used, in essence, the form of the recording of

the coefficients of removal/drift, proposed by R. L. Stratonovich. In

the partIcular case of b(x, t)-b(t) both forms of the recording of to

the coefficients of 'removal/drift coincide.

Flow of probability. In order to determine this concept, let us

* lead the analogy between the behavior of tho trajectories of process

*" x(t) in the phase space 2 and the Brownian motion.

Let us assume that w(x, t) - the concentration o.f the d'ffusing

Brownian particles. Let us take any volume V with surface of S and it

is computed a quantity of particles, pasing through the element/cell

of surface AS for the time At.

* Page 49.

M - W Aj4
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Since A-4A(*,1)D-- vector of the average speeds, the quantity of

particles, passing through AS for the time At due to the convection,

is proportional to scalar product Aw to the external normal n to the

element/cell of surface AS:

(Aw, n)&W,. (2.34)

Let us assume for simplicity that B(z)-B and let us consider the

"quantity of particles, passing through AS due to the diffusion. It is

proportional normal derivative concentration of substance aw/al:

S(2.35)

Minus sign means that the diffusion occurs in the direction from the

larger concentration of substance'to smaller. Let us consider a

"change of the number of particles in volume of the V for time

intervals At. For this time according to (2.34) and (2.35) through

surface of S from volume V leaves following a quantity of the

S-particles:

n"

A change in the number of particles within V produces change in

concentration v(x, t).. Let us count a change in the number of

particles within V for the time At:

-3L

____ ___ ____ ___ ___ ____ ___ ____ ___ _ _ ____,JL -
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N,=, t[w(x t+t)-W(x, OIdV
".4

"or

! �N, = -dVAt.

e i If within volume of the V not sources of corpuscular emission and

does not occur their absorptions, then according to the law of

he . conservation of matter N,-N,, i.e.

is dfVmm §[(Aw, A1)- B4f]dS.

Applying the theorem of an Ostrogradskiy-Gauss, we will obtain

Pt -IidV9..m dfv(Aw.rBgradu)dV.

e

n

. C5

VI4

-4

i %

________________'______
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Since volumie V is arbitr-ary, then for any point must be implemented

the equality
?~div (Au, ±Bgrad w) =0,

being nothing else but the equation of Fokker-Planck (2.27). The

expression, which stands in'the parenthesis, is the resulting

particle flux through surface element of dS due to convection (Aw)

and diffusions (-*B grad w). Consequently, if we represent the

- eq*.;ation of Fokker-Planck (2.27) in the divergent form

~+ div11=O0, .(2.36)

then I1(x, t) can be considered as che vtctor of the flow of

probability density with the components

Hi =AM B~jp), 29.. n.(2.37)

The equation of Fokker-Planck (2.36) expresses, thus, the

differential law of conservation of probability.

Examples oi the composition of the equations of Fokker-Planck.

Using formulas (2.32) and (2.33) for coefficients Aj andBij,let us

register the equation of Fokker-Planck for the probability density of

Xf
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!* following error x(t) in the system with the integrator and the

proportional-integrating filter (see ain example in S 2.2). As was

shown in S 2.2, for the system in question were -)ossible the

different methods of the introduction of the components of Markov

Ed process. If components x, and x, are introduced by the system of

stochastic equations (2.21), then the equation of Fokker-Planck takes

the form

OW Oh, X[, 0 + I {Kp• A )(%}I

'V ++
fjnTF!('L' x,-KF~j+

whee (x1 )]x

. a+7 .(tie [nN "04

-T (I- , K'I
-7- N- ____ OX,

-7 L _U_ d No)I(X3)W 1 , (2.38)

* vhere X-X.x1

Page 51.

k*Witl" the help of the second method of the introduction of the

components of Markov process was obtained the system stochastic

of equations (2.26). To it corresponds the equation of Fokker-Planck for

density w(z1 , z,, t):

Z4

_ _ .. i ,." " -. •'1,-_,- '-,-.-'',,'-,- '.- ,- ."--"' .- , - ,.'" -" ' .',. . . .'."- . ..,, . . . . ..."" " ." '- .. *-.. .- "- '" . "- .. .. . . . . . . . . . . .* * - .N. . . . . . .-. .n
- ---'--
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+I Kin dN* (S) 3 K2O (2.9)
YTT.-J~jY, (-Ti NO(xW)(.9

moreover X-z2.TZ., n-T,/T.

S Fundamental solution. In order to find the solution of the

-* equation of Fokker-Planck, it is necessary to, first of all,

determine initial conditions. At the moment of time t-0 of the ',ralue

of the Markov process of x(0)-x. they can be random with a

probability density of w,(x). Then function v.(x) is initial

- condition for equation (2.27)

:4 ~'. ~0)W w(x) (2.40)

If at zero time occurs the inclusion/coinnection of noise or ring

closure of automatic control, then usually initial values are known

accurately and are described by determined vector xein(x.,,X, x... X.4)in

this casu initial condition takes the form

(2.41)

The solution of the equation of Fokker-Planck,

examined/considered in the unlimited phase space and which satisfies

initial condition (2.41), is called the fundamental solution of the

problem of Cauchy. As it follows from the definition, fundamental

r solution coincides with the probability density of transition w(x, t;

WM W.

AZcT W8

6*~~ ~~~ 4f * .*.*
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Page 52.

Fundamental solution makes it possible to determine the solution of

the equation of Fokker-Planck with arbitrary initial condition (2.40)

.:(X, t) wlx, t; xQ,). (Qx dx,. (2.42)
alue

Linear tas. To find the unsteady solution of equation in the

partial derivatives in the general case is very difficult.

Exception/elim3nation compile arl equation, which describe the

"behavior of linear systems. In these cases the coeffic - ;s of

ring removal/drift in the equation of Fokker-Planck are the linear

functions of the space coordinates xj,•x...,xO:
own

), in A,(x, f= @q&(0t)+ri,
awl

and the diffusion coefficients on coordinates xh do not depend

Bl (X, Q1 - B,• IM).

The system stochastic differential equations, which describe the

fies behavior of linear system, is con-eniently registered in the matrix

the form
=Qx +R + bS, (2.43)

1

X, t;
where S---iIi, 'X•-, R-IreJ-- column vectors; Q=IlqijII, b=-l6bjI-

- . • -o-*.•°-- . . * ° - .* .. N OWi •, • b " • -" " ' ' '° ° • . - . -'- ° " -° - " _" ". -%. " % °
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square matrices/dies.

It is possible to show that in linear system (2.43) vector x(t)

is distributed according to normal law [19]

V (X° A2

(2.44)

where D-I(x--.i)(xr-m•)-- mutual correlation matrix/die; D -

determinant of matrix/die D; x, - vector of initial conditions;

M-Imi-- vector of average/mean values. Symbolt indicates the

transposition of matrix/die.

"• - -. Page 53.

Matrices/dies M and D are found as a result of solving the

equations dM R

-- = QM +R, M (0) =x,,
(2.45)

7.= QD+DQ+ +{bb÷, D(0) D.

However, the use/application of equations of Fokker-Planck for

the analysis of linear tasks is not significant, since result (2.44)

can be obtained by the methods of the correlation theory of random

processes (10].

0/:]:The practical value of the equation of Fokker-Planck they

""C "-.N•"-, •'• ,N•• .;,)2 " ', -.. ?.:.:-:., ... -::. :',r- ' ' ., -, .:-.'...% -v7 • , ." . .,-'
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acquire during the research of nonlinear control systems and, in

particular, durinq the analysis of the disruption/separation of

tracking.

During the research of the disruption/separation of tracking the

Markov process x(t) takes values not on the entire infinite plane,

but on certain of its part; therefore the equation of Fokker-Planck

must be supplemented by boundary conditions. To the discussion of

boandary conditions for the tasks about the first

reaching/achievement of boundary by multidimensional Markov process

is dedicated S 2.5.

2.4. Possibilities of simplification in the equation of

Fokker-Planck.

In certain cases the equation of Fokker-Planck can be given to

the simpler form by replacing the variable/alternating of

differentiation. Let us pause at the most knoyn methods of

replacement.

Replacement of V. Feller's variable/alternating [40]. With the

help of the introduction of the new space coordinate

XSIY~)(2.46)
7 wo

I'J
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- it is possible to reduce the equation of Fokker-Planck

+ [A (X, 2 Tpi[B (x) wI (2.47)

to the equation with the constant coefficient of the diffusion

+ [A& 4 -] =(2.44)

where v,(x,)

Page 54.

-'4

In this case the coefficient of removal/drift takes the form

As (Xs. ,[" (I dB(x)
.44=

In this expression the variable/alternating x must be substituted

according to (2.46) the new variable/alternating x,.

"Feller's ideas can be used for simplification in one special

rcase of the equation of the second order, which describes the system

of self-alignment with the-integrator and the integrating filter:

F 'Afuation (2.49) it is characteristic that coefficient of

diffusion B(x) depends only on following error x and does not depend

on the derivative y. The replacement of the variable/alternating

"*%- .- % .- %.4 .. '- - .4 . -** 4 % . 4.- ..- ." . - .. . • •. . , ,. , . - -. . . .- . , . . -, .. .- . " . ..-

4 ,4 ,4 ,, - -. .,.- . .. , ., .,. - ., . .. . . .- .. - . • .. - , .. . - .. - .- .. ,. - ., - ..... ,.,.. . ... . . .
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.JY8~) y~x)(2.50)
5 0

reduces equation (2.49) to the form

Owl~ ~ ~ ~ (X IoOF "

where

A, x,,,,

a•,(x%, MI*, B=B(x)w(x, y, ).
The replacement of 1. D. Cherkasov's variable/alternating [431

makes it possible to reduce the one-dimensional equation of
Fokker-Planck

[A (x, owl=, [B(x, owl (2?52)
to the simplest form of the equation of the thermal conductivity

fundamental solution of which is well known

X3, im exp[-~Ae]
Page 55.

This conversion is possible, if it is converted into zero determinant

,,'.
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.',(x, 1) P'=lx, ) V=(x, 1) = 0, (2.54)

£,,=(X, ) f9',, V- 1) T" V(x, 0)

where (, Y, T4 -,,/I). • [B. 41 O-"'1 A, P I,0=VZZO

T(xi )=2A (x. t--}B'.(x. f-

-yF(•tl JB', 0I(C, 01'4124.

In the resulting expressions the index indicates the

variable/alternating, in terms of which is produced the

differentiation.

With satisfaction of concdition (2.54) new variable/alternating

are determined by the eipressions

t,== exp[--2 x, -2 ,=[- D (.dx, 1)1+
.1_,}." ,0 S. 't'-!. Y -x. ,A W',.(S,. %" ep D- (x, ,)l 6,.

Sw.ere

D (x. +1= [YI'.(X. ,)-Y(x ,(,,]di.

Function w,(x 1 , t,) is connected with the initial density w(x,

t) with the relationship/ratio

X.7 1,. , .

,',,-
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Page 56.

In the particular case when B(x, t)-B(x), initial equation it is

possible to reduce to form (2.53), if the coefficient of

removal/drift is determined by the expression

where C(t) and C,(t) the arbitrary functions of time. Hence it

follows that with B(x, t)-B-const the reduction of the equation of

Fokker-Planck to form (2.53) is possible only in such a case, when

the coefficient of removal/drift is the linear function x:

, A(x, 9)-.XCY1+C¢(I).

This occurs only in the linear regulating circuits. Thus, the

limitations, superimposed on the form of the functior A(x, t) and

B(x, t), prove to be very rigid.

Replacement of V. L. Lebedev's variable/alternating. In work

[31] is proposed the following method of replacing the

variable/alternating: x,-*0(x, t), tl-(t), that makes it possible to

reduce equation (2.52) to substantially the simpler form

After computing partial derivatives in equation (2.52) ar'ý
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taking into account that in the modified equation the diffusion

coefficient must be equal toWD(t),we will obtain the following

expression for the function •:

:: •(x,,O+CVt' ,0(2.56)

where C( t) - the arbitrary function of time.

Page 57.

In this case the coefficient of removal/drift is equal to

(X,. 2 Of{M(f)+[INU(4 ) +
i +u'€,'16(.,. 4+u(tOP(.,. 0. (2.6 -7)

whtre"

012Ax (x, B1: [B(,X" ,I

Bt(Z , (C. t)

2 dC yff
MQ) -, 4'c*•-, N(q)=•(.

The entering expression (2.57) functions a(x, t) and p(x, t) are

uniquely determined by coefficients of A and B of the initial

equation of Fokker-Planck (2.52), and functions M(t), N(t) and U(t)

can be varied. They are chosen so that the coefficient of the

removal/drift of the modified equation would take the form

A .• •. "t ' (-... , . . . .i.- ..... . 5.
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Representation (2.58) is possible upon the satisfaction of the

following equation:
U(O OA, II,.tI -2A, 1XI, ",,dU (1)1 04I (X. 1)

""A, (x, i,) 04 (X. 1)=U(.)OA,(,o=•1• (2.59)

Entering this equation derivatives of function O(x, t) can be

calculated as follows:

(qV m

M + IN U + 21 Ix,-
2U Mu a0', Vx, Q). (Z,60

After substituting expressions (2.57) and (2.60) in (2.59), we

will obtain ordinary differential equation for the unknown function

N(t), into which enter also the arbitrary functions M(t) and U(t).

Them are chosen so that the obtained equation would have a solution

(at least trivial). Then the initial equation of Fokker-Planck (2.52)[it is possible to reduce to form (2.55).

Page 58.

After determining function N(t), we find

(-r.A.v.
N," "p•d du. (2.61)

.* .X.
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"Entering in (2.56) function C(t) is determined by the expression

".-- (u)exp N () dov du. (2.62)
-. " 0

.. 5. Bounde.y conditions in the tasks about the disruption/separation

*' of tracking.

,.4

In the tasks about the disruption/separation the following error

x(t) is or the component of the multidimensional tMarkov process x(t)

[for example, (2.19)], or the linear combination of components [for
example, (2.26)]. By disruption/separation of tracking, as was noted

Cin S 1.3, frequently is understood the first output of the trajectory

of random process x(t) beyond the established/installed boundaries
-'--• 7i, 72, usually connected with the aperture of the diiscriminatory

d-• characteristic F(x). Therefore those realizations of Markov process

in which value x at certain moment of time r falls outside boundaries

7, 72, must be withdrawn from the examination with t>r. For this on

the straight lines x=7k and x-.7 are placed the absorbing boundaries.

Mathematical recording of boundary conditions. Let us switch

over to the mathematical description of boundary conditions for the

"if' equation of Fokker-Planck in the tasks about the first
reaching/achievement of boundaries by the multidimensional Markov

o o. ... o. . • .. . -

•: .. ... , ,. .:.: - . . .. . . .. . ... . .........-...-
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process of x(t). Let in the n-dimensional region Q with boundary of G

assignedly is the equation of Fokker-Planck
a •+ 0[Aj x, w•=•.•• [B, (x, owl. (2.27)

the matrix/die of diffusion VB1jI can be degenerate.

Boundary conditions of G must be such that into the region 0 of

phase space would not be allowed/assumed trajectories from without.

In the one-dimensional case for this it suffices to require

S= 0 (2.63)

Page 59.

For the multidimensional tasks conkition (2.63) can prove to be

too rigid [86, 87), since it removes not only the entering, but also

outgoing from the region 2 trajectories. In order to find sufficient

and necessary boundary conditions, let us isolate on surface of G the

regular part Ia, on which are in principle possible the trajectories,

entering the .region Q. In order to reduce them, let us require
w (x. 0)E 0. (2.64)

Since through the remaining part of bounde,'y G-1 trajectories cannot

return to the region 0, then it is sufficient so that 4(x, t) on G-G

vould satisfy only the equation of Fokker-Planck. Required

satisfaction of any further conditions should not be.

.. ~~~~ .
5% = • "% , , • . -"• , . • ."-"- ' . .,., . ''' . ' . ' . .' . " .- ' -' . "' , "' ''" .. .. " .. - . . " .. , . "'-"-" "
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}N. Let us consider the method of the isolation/liberation of the

regular part of the boundary.

The points of boundary x belongs ', if is implemented one of

following two conditions [34, 41]:

1. The matrix/die of diffusion is not degenerated in direction

n, normal to the boundary

,Bj(x)fnj•O. (2.65)

* where n-- direction cosines of the external standard/normal n.

2. Matrix/die of diffusion B is degenerated in direction n, but

is satisfied condition

S[Ai(x) - . n ,< 0. (2.66)

Physical treatment. Let us clarify the formulated conditions. In

such a case, when matrix/die B is degenerated in direction n, is

satisfied the condition
SBl (x) fnij = 0. (2.67)

', -I

Taking into account that elements/cells Bj are connected with the

coefficients stochastic equations bu with dependence (2.32),

-.1
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expression (2.67) can be registered in the form

j b,,(x)n,=O, 1=1, 2,...,n. (2.68)

Page 60.

Latter/last equalities mean that external noise effect of the

type of white noise is absent from the direction normal to the

boundary. Therefore normal to the boundary of the component of

process x(t) is differentiated, i.e., sufficiently smooth. This makes

it possible unambiguously to determine, in what direction moves the

trajectory near the boundary - to it or from it. Actually/really,

taking into account (2.37), let us consider the component normal to C

the boundary of the vector of the flow
(II. )= [Atx -M • ) n•QI n) Ai (x)toni

Taking into account (2.68), after simple conversions we will obtain

(l, n) = A(x) -- +Bt (x) w (x, 1) .i, (2.69)
M. L) .jm2 XJ

If normal component of flow (in, n) at point xeG is positive,

then through this point in the trajectory they leave from the region

1. In this case of x does not belong G. To enter into the region 0

trajectories can only through those sections of the boundaries on

which (13, n) <0. Using a property of probability density w(x, t)>,0,

- - - - - -- - - -
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from (2.69) we will obtain the second condition of the

accessory/affiliation of point x with the regular part of the

boundary.

If condition (2.68) is not satisfied, then the component of

Markov process, normal to the boundary, is nondifferentiated.

Trajectory x(t), approaching the boundary, manages a countless

multitude of times to cross it. Therefore in order to ensure the

condition for absorption on the boundary, in such situatior it is

necessary to require satisfaction of condition (2.64).

In the majority of the tasks about the disruption/separation of

tracking the boundary of the region of tracking is normal to one of

the coordinate axes-ix of ph3se space. In this case satisfaction of

condition (2.68) is equivalent so that in the equation of

Fokker-Planck is absent the .econd density derivative of probability

in terms of variable/alternating xi. In this case to value w(x, t) on

coordinate xi can be superimposed less than limitations.

Page 61.

It is here convenient to lead analogy with the ordinary differential

equations: for the unique solution of second order equation it is

dI" (~ necessary to be given two boundary conditions, but during its
*9(Z:?!-
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degeneration into the first-order equation the presence of two

limitations to the unknown function can lead generally to the absence

of solution.

Equation (2.27), initial condition (2.40) and boundary

conditions (2.64) form boundary-value problem for the equation of

Fokker-Flanck. From the results of works [34, 41] it follows that the

solution of the boundary-value problem presented exists and it is

singular. Since boundary condition (2.64) is assigned only on the

regular part of Z of boundary, then on the remaining part of G-U of

boundary probability density is determined in the course of solution

of task.

Let us consider several examples to the recording of boundary

conditions in different tasks.

Example 1. Control system with the integrator and the

integrating filter is described stochastic equations:

dx,-r=X,,

ds, __KF (xi) + x, (2.70)
w TecrTe+sponding

which are obtained from (2.21) with n-TJ/T-0. The corresponding
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equation of Fokker-Planck is ultra-parabolic and takes the form

" (A~w) + '(A.W) =-Ty(BW),

(2.71)
where

As=x,, A,= K±xu+,±,± ,

,aB B_ K'N(x,) (2.72)

In this example of formula for the coefficients of removal/drift

(2.31), (2.33) they coincide, since noise functions only on one

N coordinate x,, but spectral density N.(x 1 ) depends on following error

x, and does not depend on its derivative x2.

Page 62.

The region of tracking 0 on the phase plane (x,, x,) is limited

by lines x,-7. and x,-7. (Fig. 2.2), which form boundary of G. On the

left side of boundary (x,=-7) the direction cosines of external

standard/normal n-(n,, 42) are equal to n,--l. n2-0. On the right side

of boundary (x,-7 3 ) n,-l, n,-O. On the entire boundary of G the

matrix/die of diffusion B is degenerated, since condition (2.68) is

satisfied both on the left and on the right sides of the boundary.

Let us isolate the regular part of boundary !ý. By virtue of (2.66)

for points'x2' must be satisfied the condition

.": C ,''':•
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IA., (x) +jns+

I . )- [ ,, .(x,,() its<0. (2.73)

Using relationship/ratio (2.72) and taking into account that n2 -0, we

convert (2.73) to the following form:

x~n,<0. (2.74)

With xj-7, the direction cosine n,--l; therefore condition

(2.74) is implemented with x,>0. On right boundary (x,-7.) n,-l;

therefore condition (2.74) is correct with x2<0. Thus, the regular

part of boundary G form rays/beams x,-7i, 0<x,<0 and x,=72 , -0<x1<0,

on which is assigned the condition for absorption (2.64).

Let us clarify this example. From equations (2.70), which

describe the two-dimensional Markov process of x(t), it follows that

x2 (t) - the continuous random process, undifferentiable not in a

moment of time.

.'o

4.

4i-* -. - . -* *." * %.-S , -. --.. S- -- ,•- - -,. -* *S ,~* -. -. -. . S - S -',.-..,,-. -. . . . . - .. . . - . -.- . -.- S S

,..,, ,.,-... .. 5, , .•- ,..,,.,,,,. .•,. . •- . - .- *5.-.,-. . . -. , *.. ... - .....- .. . .. . . .. .. .- -.-.
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4.u

* 4 $

Fig. 2.2. Boundary conditions in the system of the second order with

the integrating filter.

Page 63.

on component x1 (t) random jerks/impulses of the type of white noise

directly do not act, since

-herefore process x,(t).is smoother than x3 (t). At each moment of

time it has the final derivative dx(t)/dt-x,(t). With X2>0 the

motion of trajectories on the phase plane occurs only in the

direction of an increase in coordinate x , , when x,<0 - in the

opposite direction. The directions of the motion of phase

trajectories are shovn in Fig. 2.2 by arrows/pointers. To enter into

the region 8 phase trajectories can only through the regular part of

o°".5 •" "" ' ' ' "."- ' ' • • '--", , " '., • ,-.- - - - """ ". " - ' " . .
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boundary •. In order not to allow this, it is necessary to require
4,w(x, j.--_0. Let us note that if we assume w(x, t)-0 on the entire

W.undary of G, then there does not exist the nontrivial solution of

equation (2.71) E86].

Example 2. The system of self-alignment with the integrator and

the proportional-integrating filter is described, as shown in S 2.2,

by two methods. Using the first method is introduced Markov process

z(t)m-f,(),. (O)). controlled by the system stochastic equations (2.21).

The corresponding equation of Fokker-Planck takes form (2.38). As it

follows from (2.21), the matrix/die of the intensities of the white

Roises b in this example has the following components:

b$. M * Y" -' ,. b . - 0.

- d, M I t I )

The region of tracking 0 is the same as in previous example

Ya•izIDy--O<zz<w). But the matrix/die of diffusion not at one point of

boundary is degenerated, sinceI, -bsa-be +u,,+h hbla--s± bi •0.

'ml

Therefore entire/all boundary is regular &G, and the condition for

absorption (2.64) must be assigned on the entire boundary

.4 IzEo- 0 o.(2.75)

Let us clarify this result. In contrast to previous example both

a.'.

"a,
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components x,(t) and x2 (t) two-dimensional Markov process are

wudifferentiable.

Page 64.

Consequently, phase trajectories on the plane (x,, x2 ) are strongly

cut and if we designate the possible directions of the motion of

trajectories by arrows/pointers, then it should be directed them in

different directions independent of the quadrant of plane (x 1 , xa).

Therefore in order not to allow the return of trajectories to'the

region 0, it is necessary to require satisfaction of condition (2.75)

* .- on the entire boundary of G.

With the help of the second method of the introduction of

multidimensional Markov process is obtained the system stochastic

equations (2.26), which describes Markov process z(t).(t), z).

Following error x(t) is connected with components z, and z2 with the

relationship/ratio

The region of tracking A has a boundary of G (Fig. 2.3), formed by

the lines

In spite of the fact that noise J(t) enters only in one equation

of system (2.26), ccoCd.ýion (2.68) of degenerating the matrix/die of

.
,i
.%

S. % N % " - " • '""' - - , '" . '' - '' ' . "' ' ''' . '" " ' . '' . '' , "' ' ' - ' " " " " " " " ' ' ' '
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diffusion B in the direction, perpendicular to boundary, is not

satisfied. Actually/really, in the case

bit mb~ginbgbmO bi~t we (X),

in question therefore condition (2.68) takes the form

bsnt-O. (2.76)
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ja

1,/1

*6

'Fig. 2.3. Boundary conditions in the system of the second order with

proportional-integrating filter.

Page 65.

The direction cosines of external normals to the boundaries are equal

to

1+4 OL, I+•

where e, and e, - scale factors along the axes z, and z2,, Hence it is

apparent that with T1 >O condition (2.76) is satisfied not at one

..*.

q"i , '€ \ ' ' ',. , . . . , . .. - " - • - , " - ,.. X - " . " . " . " . " - ' . " . ' . . - • . . - " . . . . - - u
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'4.

point of boundary G. Thus, entire/all boundary G in this example is

regular.

L..et us clarify the obtained result. In form the system

stochastic equations (2.26), which describes two-dimensional Markov

process f*,iza). coincides with system (2.70). Therefore in this case,

just as in example 1, phase trajectories are smooth smooth curves.

Difference lies in the fact thMt in a latter/last example boundary G

is notiorthogonal to axis z.. Therefore at each point of boundary are

possible both the outgoing from the region 0 trajectories and

entering it (Fig. 2.3). The trajectory which at certain moment of

time t for the first time left abroad of G, at the following

moment/torque can return conversely. In order not to allow this, it

is necessary to require satisfacti.Nn of condition (2.64) on the

entire boundary of G.

2.6. Boundary-value problem for the equation of Pontriagin.

Equation of Pontriagin. Probability density w(x, t), obtained as

a result of solving the boundary-value problem for the equation of

"1 Fokker-Planck (2.27), makes it possible to determine the probability

of the first reaching/achievement of boundaries of the region 0:
v= (x, Q ,'(277

If at zero time t-0 value x is known accurate
w.(X, 0) a (x-xo).

a. -
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then for probability P(x., t) of the first reaching/achievement of

boundary is correct the equation of Pontriagin E35]

A. 'P (2.78)T "' {• t) •;,+ I(x..t,,,,

Page 66.

Function P(x., t) is probability that for a period of time t the

representative point at least one time fall outside the limits of

region 0, being found at zero time at point with coordinates

XIM,1m. X0 u,..,Z.en within the region. Coefficients Ai and Bj equation

(2.78) make the same sense, as in the equation of Fokker-Planck

(2.27).

If the initial state of dynamic system with the distribution

,(x. O)-wW(x).

then probability P(t) of the first reaching/achievement of boundaries

is randomly determined by the expression

P ( P (x,, . (x) dx,. (2.79)

Boundary conditions. For the unique solution of equation (2.78)

it is necessary to formulate initial and boundary conditions.

9..

'.1
"• • • '''I "~~~ rq~i ';.. - w . v. ..-.. ". '.-.-..' ' '. '.. -.. '. '. ".. .' .•- • ' •"
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If at zero. time t,-O representative point x=x, is found within

the region 0, then probability that at the same moment of time the

trajectory fall outside the limits of region 2, it is equal to zero:

P(4 O) -0. (2.80)

"Initial condition (2.80) means that the phase trajectc-y cannot for

infinitesimal time pass the final distance, which separates/liberates

point x. from the boundary.

Boundary conditions for the equation of Pontriagin are assigned

on the regular part G* of boundary G and are written/recorded in the

form
P (1..-Q (2.81)

Condition (2.81) characterizes the authenticity of the emergence of

trajectory from phase field 2, if trajectory is found on G*.

Of the regular part of boundary G* for the equation of

Pontriagin it is determined as follows. Point x. lies/rests on the

regular part of boundary G*, if is implemented one of the conditions:

1. The matrix/die of diffusion B is not degenerated in direction

Sn, normal to the boundary

Bi B(X,.n 0a&. (2.82)

Page 67.

pgo
. .*....
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2. Matrix/die B is degenerated, but is fulfilled inecuali-ty

Ai (x, - Os>0. (2.83)

Comparing the enumerated conditions with the determination of

* the regular part of the boundary for the equation of Fokker-Planck,

let us note the coincidence of conditions (2.82) and (2.65) and the

contrast of conditions (2.83) and (2.66). A difference in conditions

(2.83) and (2.66) is caused by different physical sense of

three-dimensional/space variable/alternating in the equations of

Fokker-Planck and Pontriagin. In the equation of Fokker-Planck these

7 - variable/alternating are connected with the current following error,

while in the equation of Pontriagin - with the initial state of

system. On the parts of the boundary where matrix/die B is

degenerated, it is possible to unambiguously indicate the direction

of phase trajectories. Trajectory, which is located at the moment of

time t on the boundary, leaves at the following moment/toi'que regioi

2 only in such a case, wheni normal to the boundary component of the

flow of probability is positive, i.e., is satisfied condition (2.83).

When the matrix/die of diffusion is not degenerated, the phase

trajectory is nondifferentiated. Reaching boundary of G, trajectory

exceeds the limits of region 0 independent of flow direction.

LL.' 0K : :
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For the one-dimensional equation of Pontriagin boundary

conditions take the following form:

P 1, P (X,,. ,=. (2.84)

Equation (2.78), initial condition (2.80) and boundary condition

(2.81) form boundary-value problem for the equation of Pontriagin.

Example. Let us compose boundary-value problem for determining

the probability of disrupting/separating the tracking in the

regulating circuit with the integrator and the integrating filter in

the feedback loop (see an example in S 2.5).

The behavior of the system in question is described stochastic

-equations (2.70). Hence it follows that the equation of Pontriagin

takes the form

*~~ Asx,*~g1 +As +

where r•oefficitnts A. and Bisare determined by expressions (2.72).

Page 68.

By disruption/separation of tracking is understood the first

output of process x(t) for the level 7, or 7., moreover 7,<x,*7,. The

--.
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region of tracking Q on the phase plane (x,,, x. 2 ) is limited by

lines x,-=7, and x,,=72 (see Fig. 2.2).

"In accordance with (2.80) initial condition for the

boundary-value problem in question is written/recorded in the form
PlyH, XO o)-.0

Let us register boundary conditions. The matrix/die of the

diffusion coefficients in this example is degenerated, and condition

(2.83) is equivalent to the following:

- where a--direction cosine of external normal to the boundary, equal

.40

€en
B- ps s.,mI,.

Key: (1). w.;th.

Thus, condition (2.86) is satisfied in the following sections of

"boundary:

andSX41-YS ni X..>0.

Key: (1). with.

0•"These straight lines are shown in Fig. 2.2 by dotted line. They

•. . .- . . . . . . . . -. -.. .-.. . . . . . . . . . . . . .-.
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form the regular part G* of boundary G for the boundary-value problem

of the equation of Pontriagin.

p..
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Page 69.

Chapter 3.

DISRUPTION OF TRACKING IN QUASI-STATIONARY SYSTEMS.

The systems of tracking, subjected to disruption/separation, are

in principle unsteady. In this chapter are analyzed the systems in

f• which up to the moment/torque of the beginning of observation had

time to be completed all transient processes, and dynamic following

error was constant during entire mode/conditions of tracking. Such

systems of automatic tracking let us name quasi-stationary.

3.1. Application of the theory of the ejections of random processes.

Poisson's law. In many radio engineering tasks the

disruption/separation of tracking can be considered- as the output of

following error x(t) beyond the limits of some fixed levels Yi, 7,

connected one way or another with the aperture of the discriminatory

characteristic F(x). This makes it possible to use for the analysis

* *
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of disruption/separation some positions of the correlation theory of

ejections [17].

It is known that the distribution of the ejections of the

fluctuations above the threshold 7, which noticeably exceeds actual

stress of fluctuations (y7o.), obeys the law of Poisson

P (n, (3.1)

where P(n. in) - probability of appearance for time t. is exact n of

ejections; v - frequency of ejections by which is understood an

average number of intersections with the process of determined by the

sign of derivative x(t) of the level 7 per unit time.

On the basis (3.1) the probability of the appearance at least of

one ejection of noise above the level 7 for time t. is determined by

the formula

'P (.) X I (0 t.)= 1(3.2)
Page 70.

Identifying disruption/separaticn with the reaching/achievement

by the following error x(t) of one of the boundaries of the aperture

of discriminator 7. or 7. and taking into account that

reaching/achievement of right or left boundary on a comparatively

small noise level is events mutually independent, we will obtain
P US)-P,(t,) + P, (i)--P1 (1) P2(40), (3.3) ••

" " ""~~~~~~~~~~. .... "....:"."......"-.."- "- .'."." ."•i. ........ ......... • . .... ' •
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where pIM(tu).._1exp[..vt._, probability of reaching/achievement by

.*i process of x(t) of boundaries '7Y and 72 corresponding v1 , v. -

.'- frequencies of the ejections of error x(t) for the levels 7, and 72.

'S..

For small probabilities of disruption/separation Y<0,1+÷0,2,,

which are of special interest in the applications/appendices, instead

of (3.3) it is possible to register

--. .(3.4)
P =

Thus, the calculation of-the probability of

disrupting/separating the tracking when making these assumptions is

reduced to the definition of the frequencies of the ejections v1 and

P. whose sum can be considered as the frequency of

disruptions/separations.

The frequency of the ejections of the random differentiated

process x(t) above the fixed level 7 is determined by following

formula [17]:

•L. where , - two-dimensional density of distribution of

process and it by derivative, undertaken with x-7.

0%
.. . . . .. . . . . . . . . . . . . . . . . . . . .
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However, to calculate the frequency of ejections from the given

formula in the general case is difficult, since it is necessary to

know two-.dimensional probability density w(x, i). Exception is the

normal stationary process of x(t), for which w(x, x') is equal to the

product of one-dimensional densities and can be comparatively easily

determined.

Frequency of ejections in the linear systsam. Let us consider the

system, which has in the limits of aperture the linear characteristic

of discriminator (Fig. 3.1). Let us assume also, that spectral

density N* of normal noise 1(t), which led to the output

discriminator, does not depend on disagreement/mismatch x. In such

systems process x(t) up to the moment of separation is developed in

the linear section of discriminatory characteristic; therefore during

the determination of the frequency of ejections system can be

considered linear.

Page 71.

In the linear system the following error x(t) is distributed

according to the normal law
.V

where G(O, mA(( _ dispersion and the mathematical expectation of

/

'A
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process.

If the normal process x(t) is stationary and central 2

and m2(t) and has twice differentiated correlation function r(r)-

..*"-R(t), then the frequency of the ejections of this process for the

level 7 is determined [2, 17] according to the formula
• = •-•-"()•••,(3.6)

where

"d'R

m"' 
u)lO- ,o

LS..i

I ", '.% % %• '." n " ,. .
. . . . .% • .." ." ' -., .

. . . .
".
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When correlation function r(r) does not have the second

derivative in zero (integral in the numerator (3.8) it diverges),

process x(t) is undifferentiable. The frequency of the ejections of

this process above the level 7, strictly speaking, is equal to

infinity. This is explained by the fact that in inmmediate proximity

of 7 the prucess x(t: in view of brokenness manages an infinite

number of times to cross this level. Hov ver, if we are not

interested in the microstructure of process x(t), then the frequency

of its ejections must remain final. Therefore in certain cases can

prove to be useful the artificial reception/procedure of the

calculation of the frequency of ejections [2], according to which

where function N(jw) is such that NIW)-ljw)NI-jw)-INljw)12.

It must be noted that formula (3.10) is very approximate and in

certain cases can lead to the erroneous results.

Page 73.

Usually in the servo systems due to the action of regular

•.4 . , , V , % ,,..,, '''' ''" . . . ° " .- " • • ." • . . .- ". .
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dynamic disturbance/perturbation X(t) (see Fig. 1.2) the mathematical

expectation of process x(t) is excellent from zero. If in this case

mx(l)-mx-const, then for calculating the frequency of the ejections of

this process above the level 7 can be used formulas (3.6)-(3.7), in

which should be value 7 replaced the equivalent threshold

Wi-y-m. (3.1)

Formulas. Let us give the resultant expressions for the

frequency of the ejections of following error x(t) above the level 7

in certain frequently encountered systems.

Let the servo system have the block diagram, depicted in Fig.

1.2. If the characteristi: of discriminator F(x) is linear with

slope/transconductance S (see Fig. 3.1), then depending on the

operational gear ratio/transmission factor of feedback loop K(p) we

have:

1. First-order system with .the ideal integrator [K(p)-K/p]:KS 2•
-S-exp[--a]. (3.12)

K(N.

2. First-order system with the integrating filter

[K(p)-K/(l+pT)]: V= 2+T"P [ (.3

3. System of the second order with the integrator and the

proportional-integrating filter [K(p)-K(l+pT1 )/p(1+pT)J:

/ •

. C .". . .
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I --+ exp[ SL0+ Q (3.14)

a = TIT, k. = KSTn',

In the particular case of integrating filter (n-0) we have

1f r•~ as

4. System with astaticism of second order [K(p)-K(1+pT1 )/p2]:

j / (I +I(STj)' 2YkVST, *(3.16)

Yi IC K j-jex P oI+,KS7"I)

Page 74.

5. System of third order with filter K(p)-K/p(l+pT)( 1+pT1 ):

I- Ks r_ ys ( T + T,-.CS,)J.L_.• .,•Jv= r +texpL To r+ ,

2. 6. System of third order with filter K(p)-K( l+pT1 )/pz(l+pT):

S 1. I2(T, - T)

I+ N q. (I +KSII1)

.,,= r/T. (3.17)

Example. Let us determine the probability of disruption/separation in

the servo system (see Fig. 1.2) with the proportional-integrating

filter [K(p)-K(l+pT1 )/p(l+pT)] and with the characteristic of

"discriminator F(x)-Sx in the limits of aperture -7,<x<7.. Let the

input dynamic disturbance/perturbation take the form X(t)4X.+Xt;

noise W(t) - white with a spectral density of N., which does not

... . . . . . . .- . . , . . - . .... . . . ..
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depend on disagreement/mismatch x. Let us assume that at the

beginning of observation the transient processes in the system had

time to be established/installed.

The frequency of the ejections of process x(t) above the level 7

to the considered/examined system is determined by expression (3.14).

So that during the calculation of the probability of

disruption/separation it would be possible to use formula (3.4), it

is necessary to preliminarily centralize process of x(t) and to

determine equivalent thresholds Va V2P Conservative value of dynamic

error is equal to mx2 -5/KS. Hence according to (3.11) we obtain

equivalent threshold values T- ,_As a resultT~ssT--l,K--y sarsl

for the probability of disrupting/separating the tracking taking into

account (3.4) and (3.14) we have

2x 1+x

X L,,2(,.+ )S1+,,STn1:
KNe.(I + /4)

2( -- S (I + KST• )

where 4-KSThs, nmTJT, imt/T- dimensionless time.

Page 75.

In the particular case when is absent dynamic error X,-0 and
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n<<l, result noticeably is simplified:

______ e- KN(+,)7 2'k y6 2~S(+ISTfl) 1.(3.19)

According to the obtained relationships/ratios is constructed

the series/row of the dependences of the probability of

disruption/separation on the parameters of servo system (Fig. 3.2 and

3.3). Fig. 3.2 depicts the dependence of the probability of

disruption/separation in the system of tbq second order with

!. integrating filter (n-0) on the dimensionless parameter Y-KNo/S7 2 ,,

which characterizes the relation of the power of noise and signal at

the output of discriminator. During the calculation it was accepted:

CE .KST-0.2, r-i, X,-0. Let us recall that with KST<0.25 and n=0 the

-5transient processes in the system carry aperiodic character. In Fig.

3.2 solid line constructed the approximate dependence, by dotted line

- a more precise dependence, found by the simulation of servo system

on the digital computer (TsVM [tTaM - digital computer]). The

methodology of this simulation is presented into S 6.2. From the

comparison of graphs is visible their asymptotic convergence with

Y40. This confirms the assumption made at first about the fact that

on the sufficiently small noise level Z(t) the ejections of following

error for the levels 7,, 7. are subordinated to Poisson distribution.

IL.% - - - * O - O . . o . °. -.- .,- -.. - .-. °, .
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Fig. 3.2. Fig. 3.3.

Fig. 3.2. Probability of disrupting/separating tracking in linear

system.

Fig. 3.3. Probability of disrupting/separating tracking in linear

system with proportional-integrating filter.

:.• Page 76.

In Fig. 3.3 is constructed the dependence of the probability of

disruptg. .2. Prabiity o rupting/s in the system with the

proportional-integrating filter on the relation of time constants

n-T,/T in the following parameters of regulating circuit: KST-640,

Y-KN./ST1.-6.4, r-1, WI-0. With continuous line is constructed the

curve, calculated by formulas (3.18), (3.19). Dotted line there
constructed the analogous dependence, found by simulation on TsVM.

-.- -

• * °°... . . .. ..°° • • • . , ° . .°4. • . . .. • . o • . . • •• -. . - . •. .
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From the comparison of curves it is evident that for

proportional-integrating filter (A 4_Q) of formula (3•18)-(3.19)

they give a large error during the determination of the probability

of disruption/separation, than for the integrating filter (n-0, Fig.

3.2). The relative disagreement between approximate value of the

probability of disruption/separation, found from formulas

(3.18)-(3.19), and preci5e value in the system with(n *)does not

vanish even with Y40. This is explained by the fact that with(

process x(t) is nondifferential; therefore it does not have the final

frequency of ejections. The determination of the frequency of

eje- ions fi.om approximation formula (3.10) introduces appreciable

error into the value of the probability of disruption/separation.

Analogous result give formulas (3.12), (3.13) and (3.±6). However,

the given methodology it is expedient to use for the approximate

calculations at the initial stage of the design of the systems of

tracking, since with comparative simplicity of linings/calculations

it gives qualitatively accurate picture and it makes it possible to

determine acceptable noise level at the output of discriminator with

an accuracy to 20-30* in the stress/voltage. Thus, in the example

examined with n-0.04 an error in the determination of the noise

voltage, which calls the probability of disruption/separation P=0.1

within the dimensionless time r=1, was about 20*.

In the systems with the low coefficients of KST<I0 is possible

N
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even Lhe qualitative disturbance/breakdown of the dependence of the

probability of disruption/separation on-the parameters of the

proportional-integrating filter. For example, after calculating from

formula (3.18) the system, which possesses KST=0.2 we will obtain

that the probability of disruption/separation is reduced with an

increase in relation n up to n-0.9. At the same time a more precise

calculation and experimental check lead to the inverse dependence -

the probability of disruption/separation noticeably increases with

increase in n. Therefore with the low factor's of amplification of the

ring of servo system one ought not to use for the calculations of

formula (3.18)-(3.19).

Page 77.

Analysis of nonlinear systems. For calculating small

probabilities of disrupting/separating the tracking in the nonlinear

stationary regulating circuits remains Valid formula (3.4), which

escape/ensues from the Poisson distribution. The difficulty of the

analysis of such systems consists in the calculation of the freqrxency

of the ejections of process x(t) above the level 7 that it is.

connected with the determination of two-dimensional probability

density w(x, i). With the dependence of spectral density No(x)of

noise J(t) from disagreement/mismatch x or ir, the systems with the

nonlinear characteristics of discriminators F(x) the error

) : •::::.i•i,•'% / • -- ••: ,- • • -: ;.? -:: .•• :. . •.:•.:: • -•:,• •" <. :
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distribution of tracking w(x, t) 'differs from normal. In 'hese cases

it is not possible to directly use formulas (3.6), (3.: for

calculating the frequency of ejections.

• jThe frequency of disruptions/separations in the nonlinear

systems under specific conditions sufficiently accurately can be

calculated with the help of the methods of the theory of Markov

processes. This approach to the determination of mean time to

disruption/separation mi, unambiguously connected with the frequency

of disruptions/separations by the dependence

C -- is examined into S 5.3. The complexity of the theory of Markov

processes frequently makes it necessary to be converted to the

simpler, although to the less precise receptions/procedures of

analysis.

One of them can be the method of reference system 7?ith the

subsequent use of correlation methods of analysis examined in this

paragraph. In particular, for the linearization of the discriminatory

characteristic F(x) can be used the method of statistical

linearization [7], widely used during the research of nonlinear

reTulating circuits. To reduce the dependence of spectral density

N, (x) on disagreement/mismatch x is possible, for example, by the

~ :>replacement of the real disturbance/perturbation t(t) with certain
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equivalent fo(t) with the constant spectral density
J

N..~N(x) a(x) dx,"' 1(3.20
TI

where w(x) - the probability density of the error distribution of

tracking, which in the first approximation, can be assumed/set by

normal.

Page 78.

In the systems of the first and second order with the

integrating filter is feasible the following simple method of the

linearization of the characteristic of discriminator. As shown in S

3.2, the probability of disrupting/separating the tracking in such

systems very weakly depends on the form of discriminatory

charaý--eristif, and it is determined in essence by the areas,

included betwe9 ., the point of stable equilibrium x; and the

boundaries of the aperture of discriminator. Thus, the initial

nonlinear characteristic F(x) of discriminator can be substituted

linear with slipe/transconductance S-F'(ZA) and by the boundaries of

aperture, determined from the forimulas:

with f>.0 %.,r V "-,2d

ZAJ/,- [F (x) -- .Jdx, (3.2) ,.

'I ; : , , • . , . . " , , , . . ., , . . ... . . ... . . . * -. . . . . . . . .. *. . . . . - . .. .* *... . *.*... .1 " : ..: . ? , • • . [ . . .
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with fo,<o 2

Yoe=- [F (x) -f. dx•,
StA

vwhere Ie-F(x4}- constant detuning in the system, caused by the action

* of dynamic disturbance/perturbation X(t); X•,n4 xi-respectively the
• •O .-. point of the stable and unstable equilibriumn, determined with

S~N.(x)-const, from the equation
S- ([-.-o. (3.22)

The method of the linearization of characteristic F(x) examined

is applicable also in the system of the second order with the

- proportional-integrating filter, if RSTn•,l00 or RSTn'<<l [62], and in

.2S.'the system with astaticism of second order [673 with KST 2 *1 l0.

.2 Page 79.
Furthedymre, in systems whose linear section of the discriminatory

characteristic near the point of stable equilibrium exceeds w of

the aperture, the method of linearization examined leads to an error

in the determination of signal-to-noise ratio from the power not more

ce Onear. the point of..- stabl eqiiru exceeds V, of
the aprue the mintedtriaino inlt-os ai rmtepwrntmr
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" than 20 with any relationships/ratios between the parameters of

system [62, 67].

After the linearization of regulating circuit the probability of

disrupting/separating, the tracking in it is determined from iormula

(3.4).

Example. Let us consider the servo system of the second order

with the integrating filter. The characteristic of the discriminator

S. (T. - x) 0, i ../2, <x < e.,.

(X) so(if + Sri nPH - YO.2;x;- y, X3.23)
0 (MNII I X T..

Key: (1). with.

and spectral density N. does not depend on x. Let us determine the

probability of disrupting/separatiLg the tracking in the absence of

dynamic error in system.

Following the methodology presented, let us replace the

objective parameter of discriminator (3.23) with equivalent linear

Mal• characteristic with slope/transconductance S., after assuming in

accordance with (3.21) Ye.Yel/V2:

j...,

[/.'.;',_'.,f:"". IS. n•Pn Ixl '.
,• • .(•) • o•p, IlSx.

O'ni X-
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Key: (1). with.

Formula for determining the probability of disruption/separation

taking into account (3.4) and (3.15) in this case takes the form

P (,)M VK-.T exp L j. (3.24)

On Fig. 3.4 solid lints constructed those calculated with the

help of (3.24) the dependence of the probability of

disruption/separation P on the dimensionless coefficient of

*.• Y-KN,/y2*S. with different KS.T.

-J, The tine of observation was proposed by such that 1./T-I. More

precise results obtained with the help of the simulation of initial

nonlinear system on TsVM are shown in the figure by dotted line. From

the comparison of curves it is evident that for the system of the

second order with the integrating filter calculation of the

probability of disruption/separation by the methods of correlation

theory gives good results. This confirms assumption about the fact

that in such systems is permitted the replacement of objective

pcrameter F(x) of aperture linear with the equivalent change in

accordance with (3.31). However, an error in the replacement.

increases with the decrease of the central linear section of

characteristic F(x).

NL7•

I,• , , ,. , ,• . . . . . . . -- .- -. . . . - . . . . . . . . . . . .. .
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Page 80.

If in the system is used the proportional-integrating or active

integrating filter, then in the general case it is not possible to

produce the replacezv'nt of the initial characteristic F(x) linear on

the criterion of the equality of area under curve F(x). In this case

it is necessary to use any other methods of linearization, for

example on statistical criteria [7]. However, an error in these

methods is comparatively great, which noticeably reduces the accuracy

of the determination of the probability of disruption/separation by

the methods of the theory of ejections. is it forces to be

converted and to more precise methods of analysis. Most promising of

them is the method of determining the probability of

disruption/separation on the basis of the theory of Markov processes.

4,14

4.
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*4442

Fig, 3.4. Probability of. disrupting/separating the tracking in the

nonlinear system of the second order with the integrating filter.

3.2. Analysis of disruption/separation in the fixed systems with the

help of the theory of Markov processes.

If following error x(t) is the component of the Markov process

x(t), then the prob,)ility of disruption/separation is determined as

a result of solving the boundary-value problem for the equation of

Fokker-Planck (2.27) with the absorbing boundaries, situated on the

edges of the aperture of discriminator.

In this paragraph is examined the methd of approximate solution

of the equation of Fokker-Planck whose basic ideas were for the first

time proposed by Kramers into 1q9,o during the analysis of Brownian

motion in field of force.

S• "• "• . • . .. .. .." .-.......... . .-...... -............ .... .. .-. ... , ..-... 4 4 ". - .
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Investigating the behavior of Brownian particles in the medium with

the high viscosity and reducing the problem to the solution of the

one-dimensional equation of Fokker-Planck, Kramers in work [27] found

the solution of this equation taking into account the series/row of

limitations to the form of field of force.

In 1943 Chandrasekar analyzed some particular cases of the

behavior of the Brownian particles, described stochastic differential

equation of second order [20].

Subsequently of the idea of the work of Kramers and

Chandrasekhar it was possible to use for the analysis of the

disruption/separation of tracking in the regulating circuits. This

method was developed in the work of V. L. Lebedev, N. V. Belousovoy

[55, 71] and S. V. Pervachev [62, 67]. However, it is not universal

and at present it makes it possible to analyze the systems only of

first and partially second order. Nevertheless method deserves

attention, since with v comparatively small volume of calculations it

makes it possible to obtain the series/row of practically important

results.

Let us consider this method, gradually complicating the

'444-
4'.'• % % • • • • ,_ • ' . - • . ..- • .,, "L , , , - - • ." .' . - -' ,' ' , -- . - ," " ' ' •
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b.0

"structure of the device/equipment of automatic control.

1. Systems of first-order tracking.

Formulation of the problem. Let us determine the probability of

disrupting/separating the tracking in the system (Fig. 3.5),

described by differential first-order equation

Ax M - (3.25)

Let the dynamic disturbance/perturbation W(t) be such, that

dX/dt-X,,-const.

(N4~

°.'

II'. .• --- .• % " • " .. .". ."- .o ., ' " "
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.Mr

Fig. 3.5. Block diagram of servo system with one integrator.

Page 82.

Let us register the equation of Fokker-Planck for the

probability density of process x(t):

dw•_O__ _ & x -A1w . K'N. 0w
-• (0 aK[F , (x) A •-w)+ (3.26)

where A.QJX.

Understanding by the disruption/separation of tracking the first

output of coordinate x beyond the limits 7,, 7. the aperture of

discriminatory characteristic, let us supplement equation (3.26) with

the boundary conditions!W ( )-(V, t)0. (3.27)

Let us introduce into the examination the flow of probability

density fl(x, t) and, using divergent form (2.36) of the equation of

Fokker-Planck, let us register

K.. IF.. . . . . . .., .. ... (3 .2 8 )n1 (,X = , J() ^ ,x -T
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Let us assume that the transient processes in the system up to
.. "

the moment/torque of the beginning of observation will be finished or

the time of their establishment will compose the insignificant part

of entire time of observation tn. Then, if the probability of

disruption/separation is sufficiently small (P(t0):'0,2), probability

density w(x, t) little is changed for the time of observation;

therefore

.1 (x, t) m - const. (3.29)

Relationship/ratio of Kramers. Let us introduce function *(X) (Fig.

-* 3.6), such, that

.•, .,•o,•(3.•).I(' IF (k) -- A] -- (330
. . Function $ (x) is called potential or potential function.

"Actually/really, if we consider w(x, t) as the density of

distribution of Brownian particles along coordinate x, then value K

EF(x)-A] characterizes the regular force, which functions on the

particles, and .9 (x) - potential field in which are located the

particles. After expressing the flow through the potential, on the

basis (3.28) and (3.30) we will obtain

U ,X d$ (A_ KVN. d (s) (3.31)

Page 83.

- Latter/last equality can be represented in the form

(7')~~1 le-----[(x)-e. I. (3.32)



DOC =83061005 PAGE-

in what not difficult to be convinced, aperture its right side.

Zntegrating both parts of expression (3.32) on x in the

arbitrary limits from XA to XB, we will obtain the relationship/ratio

of Kramers [27]
K'N. [. (.; ,, ZA

=KIN. [ (S) a (IK (3.33)
AD

4 1 k e4:Wx~l MSO dX

SA

playing important role in the solution of boundary-value probl.ms for

the equation of Fokker-Planck.

4-

Determination of the probability of disruption/separation. Let

us assume that zA is the point of stable eq•'ilibrium in the system

(see Fig. 3.6), and point Xa coincides with one of the absorbing

boundaries x,-W Let us introduce potential W(x) by such form, in

order to e(XA)-O. This always can be done, since addition to function

fl(xj of constant value will not influence density distribution of

probability w(x,t).

S. . .o •
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Fig. 3.6. Coefficient of removal/drift and the potential function of

servo system.

.4

-•Let us -tote also that in view of boundary condition (3.27) W(XB}"0.

• This makes it possible to register relationship/ratio (3.33) in the

S~~following form: ]•-AN•4.(.4

4• ." I

A _A

F Usually the point of stable equilibrium is arranged/lfocated in
Lthe linear section of the characteristic of discriminator. Therefore

approximately it is possible to consider that near x()the

' ~density of probability obeys the norma~l distribution law

"."folwnom

".S . ,. . . . . . . . . . . . . . ..
.4 .. , , '. . -.- , . - - . . .-.-. . .. .-. -". ,- -. . . -. . --. .-.- .. - . ... - .. - ."-"-',' . . . ... . .- .
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where conservative value of dispersion C2 is determined by the

relat .onship/rat io

valid for the linear regulating circuits. With this K(jw) - the

complex gear ratio/transmission factor of the feedback loop of the

servo system (see Fig."1,2), SA- mutuil conductance of discriminator

in region X"'IXA. Tadng into account that for the system K(jw)-K/jw

in question, we obtain JCKN44S . Thus,

M (3.35)

With the constant flow TI the probability of reaching/achievement

by coordinate x for time In of point 7, is determined from the

formula
2 -I(3.36)

Hence taking into account (3.34) and (3.35)

Ps .) Iva VFKff e. '
AN

Page 85.
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Producing analogous conversions for the boundary 7y and taking

into account that with small probabilities of disruption/separation

the ejections of process x(t) beyond the boundaries f, and y, - event

independent, let us register the resultant expression for the

probability of disruption/separation for time t,

P(4) M T

-[ f 4$"V~Y~df 1*(3.3r,
J i

The obtained relationship/ratio is correct with any form of

( ~ discriminatory characteristic. It is important only so that in the

vicinity of the point of stable equilibrium LA characteristic F(x)

"would be close to the linear.

The integrals, entering expression (3.37) if necessary can be

accurately calculated by the analytical or graphic method. Let us

isolate the case, which is frequently encountered in the practice

when calculation according to formula (3.37) substantially is

simplified.

Let us assume that the characteristic of discriminator is the

odd function F(-x)--F(*x). let us take for the definition, that the

input dynamic disturbance/perturbation W(t) causes positive detuning

rnI
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A>O.

The integrals, entering in (3.37), virtually are determined by

the small regions x near the maximums of potential field J (x) (see

Fig. 3.6), since with small probabilities of disruption/separation

4m(x)/j(zNG.*>. Let us expand function P(x) in the vicinity of its

maximums in the Taylor series. Characteristic F(x) near these points

in many practical cases can be approximated by linear section with

slope/transconductance Sam---Ffdz. therefore let us take into account

only two terms of the expansion

4W Xt"T" (3.38)
,-KS,•- z •-iam zp. x.,

~ey: 11). with.

Where .,=P(x,} and P,=-P(x - value of the potential thresholds.

.N"

.K:..
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With the low value the detuning A-0 position x. of the maximum

of potential field virtually coincides with the boundary 7,.

In this case, taking into account (3.38), we obtain

* - e(*Xdx = e' dx ft
SA XA

s o 4 1r _ I K S X d X ._

x-, --I If T C,==-- of -,

and probability of disruption/separation is equal to

*~~ VS) S M8t

where

JO.;= K , (x) dx.

In othotr limiting case with the large detuning A-7 parabolic

approximation (3.38) of potential field near point X2 can be

continued into the region infinite x. Then

y. :_ e'A.dx ow . (3.4

•.!~d fto'• xK7# ~ 4- ^ V.4

.. €B
",,SA
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as a result the probability of disruption/separation is equal to

P Q M - 2a '08" (2e"'P1"w' +" e"•. (3.42)

where

ra.J Kf[F (k) -A]dxa Ps K S[P(x)rAldx.
SA &A

Page 87.

Frequently during the analysis of the disruption/separation of A

tracking the potential threshold near the point 7Yi they approximate

not by one branch of parabola as is done in (3.40), but two,

extending integration limits on ±.. This gives certain further error

in the determination of the probability of disruption/separation. It

is possible to disregard it if A is sufficiently great so that one of

the potential thresholds would be noticeably higher than another.

Then instead of (3.42) and 03.39) we obtain one overall dependence

P (,)} - " I/e3NI+.-e•Ieo]. (3.43)

Taking into account that a decisive effect on value P(*3 ) in

formulas (3.39), (3.42), (3.43) have the exponential terms, it is

N *.** a,...........
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,V possible to do the conclusion that in first-order systems the

probability of disruption/separation in essence depends not on the

form of the discriminatory characteristic F(x), but on the height of

potential barriers ', and ?,, i.e., on the areas under the branches

of discriminatory characteristic. This can be used for replacing the

objective parameter F(x) of linear when the heights/altitudes of the

potential thresholds in the linearized system will remain equal to

barrier heights in the reference system. The latter is achieved by

the introduction of equivalent boundaries 'y, and Y according to

formulas (3.21). The linearization of system makes it possible to use

* for the proximate analysis of the disruption/separation of tracking

methods of the theory of ejections.

Account of the fluctuating characteristic of discriminator. Let

us spread the method of determining the probability of

disruption/separation presented to the case when the spectral density

of white noise at the output of discriminator depends on

disagreement/mismatch x. Let the differential equation, which

describes the behavior of system, take the form

where in contrast to (3.25) the intensity of white noise is the

function of following error x.

"Page 88.

.......................... ......
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For this case let us compose the equation of Fokker.-Planck, using a

form of R. L. Stratonovich's recording:

00(X (a + +BJ (3.4+4).r~i~a
where

Expression for the flow of probability density takes the form
I T )L- - xQ " (3.dq) ,

Let us find the solution of equation (3.44), which little varies

in the time. As shown in [14], the steady-state solution of equation

(3.44) takes the form

0 C ex m d ](3 .4

where C - constant, determined from standardization condition.

On the basis (3.45) and (3.46) it is possible to obtain the

expression for the stationary flow, which, as it follows from [55],

takes the form

UM ~eV{2 w A~u(x) X

Xe [2 411}. (3.47)

". UP

.. S"
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Conformity (3.45) and (3.47) is not diff.icult to check by direct

differentiation. From (3.47) it follows that

raw exPf- 2 f W

-'I

,Ow Vt afoi x(X)eep 2 fig. 36 (3.48)

Page 89.

For det ting the probability of overcoming by trajectory x(t)

of the potent threshold at point x. (see Fig. 3.6), let us

'. p. integrate both parts of expression (3.48) with respect to x in the

limits from XA (point of stable equilibrium) to absorbing boundary
xa1- As a result we will obtain the following expression for the

flow of probability density:

" lva , s) exp12 JR( X

$A SA

which is the generalization of the relationship/ratio of Kramers

(3.33).

Taking into account that w(xn)--O, we have
n - ~ ' . * * .. * . : . * ~ * *.* . . *-



"DOC u 83061006 PAGE /( A

YB PA) 0(A

M~~J (3.50)
SA X

Relationships/ratios (3.50) and (3.36) make it possible to

determine the probability of achieving the absorbing boundary 7..

However, direct calculations according to formula (3.50) are bulky;

therefore let us produce further simplification in this expression.

Density distribution of probability near the point of stable

equilibrium usually differs little from the normal

*(~=)L;w u~7z 2 4~djt

whence

-v (A)V.1  4w(%AT (3.51)-W(X)= vs,',' @A•, "B (AA)

Page 90.

Further reasonings differ little from case of B(x) -const.

Considering internal integral in expression (3.50) as certain

potential field, which has maximums at points x, and x., '.et us

introduce the approximation

I. 
-

.
.

.

.
.

.
.

.
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'x x,)' np .

C- 2

I'"

-- , (x- x' np X,

where

Key: (1). with.

The value of external integral in (3.50) virtually is determined

by the behavior of function.P,(x) in the small region about the

maximum of potential field; therefore

,.. i• i,• 'e'p[-2 •~,-,+
TIT- A I

A-4A

Xe 3p So , (X-X) . (3.57

With small detuning A-0 the point of the unstable equilibrium x,

is close t3 absorbing boundary XA,•f therefore upper integration

limit in (3.52) can be replaced by xa.

With large detuning A-FuI2 upper integration limit can be

approximately increased to infinity. As a resjult we will obtain

following expression for the flow of probability density through the

right boundary:

X

-,, © :* * **4: * .- -
,.,*2 . * . * * .. a ' . . a . - *

.,.,,.a * -
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where
I SpH a.x paCC(po/Kax -

1/2 npH60AM paccTpOAKax.

Key: (1). with small maladjustments

(2). with large maladjustments
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The flow through the left boundary the value of detiming is

independent of determined by the relationship/ratio

Y -(XA) 0-(xA) • e-x,,

"Hence on the basis (3.36) and (3.51) is obtained the resultant

expression for the probability of disruption/separation, for time ts:

P(@••VT"(x,-2,a"- [V•B(-T• s e-J',+

+ VS, (x,) e-I. (3.53)

Points xA and x. are respectively the points of the stable and

unstable equilibrium of system. They can be determined from the

condition - dB(x)

Conclusions/outputs. As a result of the analysis conducted are

obtained expressions (3.39), (3.42), (3.43), (3.53), the making .h

possible to approximately determine the probability of

disruption/separation trackings in the nonlinear first-order systems.

9-.°-)
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t.•

• .• The basic assumptions, done in the analysis run, are reduced to

the following. It is assumed that the probability of

disrupting/separating the tracking in the system is sufficiently

small (P(t,)< 0,1+0,2), therefore the error distribution of tracking

v(x) little varies for the time of observation tin. The characteristic

of discriminator F(x) has linear section near the point of stable

equilibrium XA. which is used during the calculation of probability

density at this point w(x4).

From the obtained relationships/ratios it fol'ows that the

probability of disrupting/separating the tracking in first-order

systems in essence is determined by the exponential factors whose

indices dspend on the height/altitude of potential thresholds 09 and

Page 92.

Since values ', and W,_ are determined only by the area, included

under the discriminatory characteristic, then it is possible to

consider that the probability of disrupting/separating the tracking

in first-order systems virtually does not depend on the form of

characteristic F(x) with those fixed/recorded 'i and a,.

2. System of the second order with the integrating filter.
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Formulation of the problem, Let us consider servo system with

the gear ratio/transmission factor of the circuit of feedback

Stochastic differential equation for the following error x(t) of

this system takes the form

,f T x 'P (3.54)

where all designations are analogous to designations in (3.25).

* After assuming dx/dt-y and dX/dt-X1 ,-const, let us compose on the

'II

O I1,,&

(3.55)

* where

A=7

It is necessary to determine probability that for time t, which

hpassed from the morment/torque of inclusion/connection, trajc.tory

x(t) at least one time fall outside the limits 7o, 7. the aperture of

discriminator.

Physical analogy. Let us consider the potential field

r (X) I5 F Q -Al 4 (3-R6
..... XA.... . .

where ~i . * . - . . -
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where xA - point of stable equilibrium in the system.

In contrast to first-order system equation (3.54) describes the

behavior of the Brownian particles, which have finite mass T.

Therefore particles, being locat(-d in the potential field, possess

the specific inertia and cannot for the short time substantially

change their trajectory.

Page 93.

After ac'tieving the maximum of potential threshold ' (Fig. 3.7) and

having positive speEd, particles with the probability, close to one,

are rolled up beyond the limits of the barrier (they surmount it).

Thus, the disruption/separation of tracking can be identified not

with the reaching/achievement by coordinate x(t) of bcundaries 7,

7., but with output x(t) beyond the limits of the potential

thresholds. Let us determine the probability of overcoming by process

x(t) of the barrier, arranged/located at point Xx (Fig. 3.7).

Quasi-stationary solution. The solution of equation (3.55),

found on the assumption that O/wl01-0, takes form [14, 20)

% '. .
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sp2y (x y e)],N- KN (3.57)

where C-the constant, determined from standardization condition;

S(x)- potential field, introduced by relationship/ratio (3.56).

Let us assume that near the point of stable equilibrium XA t

characteristic of discriminat,.c is linear with slope/transconductance

5S and root-mean-square following error is small in comparison with

the extent of linear section. With small probabilities of

disruption/separation (P(Q5 ) . 0,2) two-dimensional density of

distribution w(x, y, t) in region xX.xA is approximately determined

by expression (3.57), which taking into account linearity F(x) near

x• takes the form

ex (- -- - - - 3.58)

where g='KN,IA, .;=/('N14T - dispersion of processes of x(t) and

y(t).

Near the potential threshold the true distrioution w(x, y) does

not correspond to (3.58).

.r'i
r •i" " --- -- '.•..--'' '"-'""''",,--" --:','. -:.--''."-: . ' -'-""' :]"? -- --- -.-,- "-"-
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Fig. 3.7. Approximation of potential near the barrier.

Page 94.

In [20] it is proposed-to seek the quasi-stationary solution of

equation (3.55) in the form

S. w (., y} -- Q (X1 A)-- -y 4T

where function Q(x, y) must satisfy the conditions

MI 8^1:0;;;
Key: (1). with.

Let us approximate potential field near xB by the parabola (see

Fig. 3.7): M TX B ~ (.1

where - height/altitude of the potential threshold; S)"

"dI:(i--mutual conductance of discriminator near X8.

--~ -f -- --s
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Taking into account (3.61) solution (3.59) near point Xo is

determined by the expression

Ix. g) Jxa==Q (x, y) exp-2TMY''+2 (x -)' •, 1(3.62)

where

Let us introduce new variable/alternating -_x-xs. In this

case the steady-state equation of Fokker-Planck in vicinity XvXa

will take the form
. $X aw -I a KS8X 68.

and solution (3.62) is equal

2rs S X 1(3.6)
Page 95.

Substituting (3.64) in (3.63), w( obtain equation for

determining the unknown function Q(X, y):

JV KB 22- YOQ K'N.8 (3.65)07•.• T X.- dy T- .y = T2- de"

The obvious solution of equatioli Q(X, y)_=l does not interest us,

since it does not satisfy conditions (3.60), which for new variable X

take the form

:. OX.Y)m I X (X ,,- X,-A). (3.66)
... :. ~0 ripH X ---

Key: (1). with.

.°. . . 1
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Let usassume that the solution of equation (3.65), which

satisfies boundary conditions (3.66), can be found in the form

Q (X, y) - Q (y-aX) -,Q (z), (3.67)

where a - certain constant value. Substituting (3.67) in equation

(3.65) and passing to the differentiation with respect to new to the

variable/alternating z, we will obtain
_[•_ i),_•s K_'xN.d'Q (.•
[(T- 1)y ,KS -Am -s" (368

So that expression (3.68) would not contradict (3.67), necessary

to assume
* KSB

ST• a&., (3.69)

as a result of what equation (3.68) takes the form

-~~A 1) He d NdIQ

'- Page 96.

Its solution is located by the direct integration

Q(z)=CeSexp [20 A.)~1 (3.70)

where C., z. - constants, determined from conditions (3.66). In this

case these conditions with the small error can be substituted by the

following: M

(.Inp X.GoO, 
(.1

-- Rdo X-.-.

4 .
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Key: (1). with.

Hence finally we obtain

Q rv 4 - 1)2 -. 1)C

where am-•in• --/ -- positive root of equation (3.69) [negative

root does not satisfy conditions (3.71)].

Thus, the steady-state solution of the equation of Fokker-Planck

near the potential threshold takes the form

" - 4TJ'M ]

eX O[ 1,./ "@ N. i J [ - -PM

(3.7V

Probability of disruption/separation. The flow of probability

density through point Xs is determined by the expression

Lf l(xo) yo (Xu=0,y) dy. (3.7M

After substituting (3.72) and (3.73), after integration we will

in parts obtain expression for the flow through the potential,

threshold Lxf=
.4.B

S.' WTI*
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Let us define the probability of disruption/separation in the

presence of two potential thresholds as
PON) - I Ht Its+ II 7,U1, (3.74)

and let us register final formula fcr the probability of

disrupting/separating the tracking

.} ~~exp(-- K'-N, -r

- K'-- 1(3.75)+7*-i!-5

where 1u time of observation; S. - mutual conductance of

"-157 discriminator at the pa'irt of stable equilibrium of system; SYI -

absolute values of the slope/transconductance of discriminatory

characteristic in the vicinities of the potential thresholds; "., ,

heights/altitudes of zhe potential thresholds, determined by the

-* relationships/ratios

a'= S[P(x)-Aldx, P•= [f (Fx)- -!]dx,

x., x• - coordinates of the potential thresholds which depending on

the sign of unbalance A coincide either with the point of unstable

"equilibrium x,. or with the boundary of the aperture of the

discriminatory characteristic
xj-max(x,, Vu), xa=min(x,u V:).

0 Here for the certainty it is reported 1,<0, 72>0. If, for example,

•'•%' %g "• • ',•'° ,, ,..' •. .. : %.. •, , • . *.*.*.*.*..". . .*. * " .. . .. , >. .'..*.'..*. .
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A>O, thenXt--ii, X--xu. Coordinate x, is deezermined from -the conditions
F A 0.dF <(0.P~x)--•d=, -- :),,<.

If is fulfilled inequality ) -KS7>1, then formula (3.75) is

simplified and takes the form

---- 4T2 -. " 1-. (3.76)
Page 98.

After comparing the obtained expression with (3.15), let us note

that the probability of disruption/separation in the system in

question is equal to the probability of disruption/separation in the

linear system, if the heights/altitudes of the potential thresholds

in both systems are identical. This can be achieved/reached, if we as

the boundaries of the aperture of linear system take values Via and

va determined by relationships/ratios (3.21).

Account of the fluctuating. characteristic of discriminator. The

methodology of the determination of the probability of

disrupting/separating the tracking presented taking into account the

series/row of further limitations can be spread also to the case when

the spectral density of effect J(t) depends on disagreement/mismatch

x [62].

Let in stochastic equation (3.54) N.-N.(x) and dW/dt-),-const.

-........ "".".-.".-..-......,4.------o , - . * -.--. ---. •
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If the time constant T of the integrating filter is low, then

equation (3.54) is degenerated into the first-order equation which

was analyzed in the previous section. The probability of

disruption/separation in this case is determined by dependence

(3.53).

Let us consider another limiting case when T is great
(KSAT• 1).

As was already said in this paragraph, equation (3.54) describes

the behavior of inertia Brownian particle in field of force KF(x). In

'-* this case the coefficient with dx/dt plays the role of friction. As

can be seen from (3.54), with the high value T the role of friction

is reduced. For the analysis of systems with small friction let us

introduce into the examination the variable/alternating E, which

characterizes energy of particle with the single ma.3 in potential

field 0(x) [14]: (377)

where --A point of stable equilibrium of

system.

C,

"" Equation (3.54) taking into account (3.77) can be represented in

the form of the following system:

. ..
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r° =

(3.78)

where

Page 99.

Using the methodology, presented in S 2.3, let us compose the

equation of Fokker-Planck for the two-dimensional probability density

w(x, E): O-W I; V( 21Pe- &, wl ~l+ 2•(- , .)

V) -!-Z,-T C g'{e ) [E--• (x)jw}. (3.79)

As before, us interests the solution of equation (3.79), close

to the stationary. The two-dimensional density w(x, E) can be

represented in the form

w(x, E)-W(xjE)w(E), (3.80)

where w(xlE) - the conditional density of distribution of value x.

For the particle, which moves in the potential field with small

friction, the retention time in the vicinity of point x is inversely
proportional to speed V2o uently,

C 0 npm e (x) <E,

""" , .. .. . -"

• • .. ,..-..'..'..' .' ...'.. •. .. .. ... .. .. '. .. '..'• '..' . , .... ,. . .. ..... .. • •, •. , • .... ...,,,. •
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Key: (1). with.

where C - coefficient, determined by standardization condition:
Sds

M

R(E) - range of values x, where ,6(x)<E.

Let us substitute (3.80) in equation (3.79). Taking into account

(3.81), let us produce the termwise integration of equation (3.79)

for x in region R(E).

Page 100.

As a result we will obtain the one-dimensional equation of

Fokker-Planck relative to the density of distribution of energy w(E):

#,, ( a •r,(E) +* (E) 1-- +_ a _ +, (E)•= I,•;• -- -- J' • •,;•J'R ~ ~ -~~[w:2 If ,wT.()J
(3.82)

where _o _J(x d.c E
E x) dx,

R(E)

'�( ) =4- gx - (z) 'dR(E)

x°,•. ... ° . :.............. . . 4
• . • o~ ~ ~ ~o °o , °o o~~~~~o , o ,• • . . . .. •. o°. . . . . . . . . . . . . . . . ... .. . . . . ..° o • o o o . .° • % .• • , , o •. . • • • • =
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moreover d di( )_

In the system with sma.Li friction (fading) the value of energy E

is kept constant during several oscillatory periods. Therefore, if

following error x at certain moment of time is within the limit3 of

the aperture of discriminatory characteristic, but has the supply of
energy E, greater than the height/altitude of potential threshold

M,then during the nearest period of oscillations x(t) will surmount

this barrier and will achieve the absorbing boundary. Thus, a

sufficient stall conditions of tracking is executing of the

inequality
Er.e'M; (3.83)

In the general case in the servo system there are two potential
thresholds (see Fig. 3.6); however, if the supply of energy E exceeds

the height/altitude at least of smaller of them, then
disruption/separation will occur with the probability, close to one.

Thus, the task aaout the disruption/separation of tracking in
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the system of the second order is reduced to the solution of the

one-dimensional equation of Fokker-Planck (3.82) with the boundary

condition s(

where x. - near to zA point of unstable equilibrium.

Page 101.

The problem, close to this, was examined during the analysis of

the disruption/separation of tracking in first-order system;

,CA, therefore let us now pause only at .the separate stages of further

* solution.

The flow 13(E) probability density, directed in the direction of

the absorbing boundary, on the basis (3.82) is equal to

r(E) +3(E) +1 w(~ )r(E) (E)
(3.85)

This expression can be converted [62] to the form

_ d (2E) (N) . (3.86)

where
A
S,(s)do

H.(E) 2 . T ,
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Considering flow as constant, let us integrate both parts of

equality (3.86) with respect to E in the limits from zero to

Taking into account (3.84), we will obtain
-[•'M V"

I, w(O) ex XH (E) dE . (3.87)
218.(O) +1V1

Let us expand function H(E) in power series in the vicinity of

.point 'M. After taking having only given the first of term of

expansion, let us compute the integral, entering expression (3.87).

In this case we obtain idE).wp (PM) and let us replace lower

. integration limit by-co. After some conversions we will obtain

W.O) -r t e m 1 a
yOTl1Ae (3.88)

Approximate value w(0) can be found from the steady-state A*

"- solution of equation (3.85), which corresponds to l(E)-O:

C% 1wEC,, eE)ep[- 2 J, ÷,( , (3.89)

_ ..... *
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Conclusions/outputs. The nonlinear system of the second order

"with the integrating filter in the general case to analyze

difficultly. Expression (3.75) makes it possible to determine the

probability of disruption/separation in the system under the effect

- on it of the noise whose spectral density does not depend on

disagreement/mismatch x. The assumptions, done during

conclusion/output (3.75), in essence are the same az they were

accepted during the analysis of first-order systems. Calculation

formula somewhat is simplified, if KS.T>>lo In this case expression

-; (3.76) for the probability of disrupting/separating the tracking in

the nonlinear system coincides with the formula, obtained during the

analysis of linear system, if the potential thresholds in both

* systems are identical.

- The theoretical analynis of the disruption/separation of

"tracking in the systems where the level of noise effect depends on

disagreement/mismatch %, is carried out only for the case of a small

Sfading in the system. The probability of disruption/separation in

" this case is determined by depeii.gence (3.90).

Page 103.

3. System with astaticism of tle second order.

.* . . . . . . *. * * . . . ". *
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Generalities. The tendency to decrease the dynamic errors in

" regulating circuits makes it necessary to use systems wish the

*• i increased degree of astaticism. One. of such systems, which obtained

recently wide acceptance, is system with two integrators in the

feedback loop and attenuating chain/network, which ensures the

necessary stability factor. The resulting gear ratio/transmission

factor of the feedback loop of this system is equal to

-K (0)_ = Q+ PrT) (3.91)

and stochastic differential equation, describing the behavior of

- following error in the time, takes the form

-(I + KT, d) 7-+KF (x)-
a•-- --Ky N.x - KT, -d O (x) .(3.92) -

Ad'N dt 3

The for the first time theoretical analysis of the

disruption/separation of cracking in the system with astaticism of

the second order was carried out by S. V. PerN-chev in work [671.

Using basic ideas of this work, let us determine the probability of

disruption/separation in the system in question during the smaller

limitations to the form of input disturbances/perturbations, after

-* placing dX/dt2=W,=cons and taking into account the dependence of

spectral density N.(x) on mismatch x.

As shown in [671 with suffieiently low value T, equation (3.92)

S.........
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will approximately take the form

d1% ~ d +Fx A N(x 0 (3.93)

It describes the behavior of-non' inear system with a small changing

in attenuation length. Introducing into the examinat.'on energy

E..../2+ W, let u.s represent equation (3..93) in the form of the

system d

dE (3.94)

where .?A-potential energy

Page 104.

Probability of disruption/separation. System of equations (3.94)

in form is analogous to system (3.78), which was examined during *be

analysis of follower with- the integrating filter. Therefore, lowering

conversions, identical to those carried out in the previous section,

let us register the resultant expression for the probability of

disruption/separation in the system with astaticism of the second

ordernduring the small fading:

i Sysem , •/• -- (--

-.."- - ,-
,,-, (3.96)
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where

x(B)= Jx x (3.97)
R(r)

~(E)RNo x) ~E -e1 (x) dx; (3.98

dFWs=F, (XA), go A-r--(s)

~2 LO' Ji
di. _0 .L~ii

j~zx XI ) Al d-vthe height/altitude of smaller potential
XA

threshold; XA, X-- respectively the coordinate of the points of

--. 4

stable and unstable equilibrium; R(E) - range of value,-- x, where

In the particular case when spectral density is constant

_- N,(x)=N., formula (3.96) takes the .orm

4(E)

Page 105.

* -. Expression (3.99) is conveniently represented in the following

form:
I P -,8. '"Yexp ,.-•. (3.100)

"where =,= . - variance of error of trackin found on the

_ ./.... assumption that the servo system is linear, To =f [F(x)-Ajdx-

J.F

•'. i---...-;

MON 
.
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a equivalent threshold of the linear system, which has the same

height/altitude of smaller potential threshold as initial nonlinear

system,: x2 - the correction factor, which considers the nonuniformity
of friction in the system and equal to

N9 V + KSTO L A ( )r 3 01

&r I CE i E

0 0

Recording (3.100) is convenient fact that the exponential

member, who has the greatest effect on the value of the probability

of disruption/separation, has the same form (with an accuracy to x2)

* as in expression (3.16), found according to the law of Poisson.

As showed the experimental check, carried out for theAr

characteristics of the discri.minators of different forms, expression

(3.100) gives accuracy satisfactory*for the practice at values of

S'~2,1-l (about 10-15% according to the relation of stresses/voltages

* signal/noise).

A special case. Let us give calculated relationships/ratios for

the case when characteristic F(x) is approximated by the trapezoidal

dependence (Fig. 3.8). The form of characteristic is determined by

the slope/transconductance of the working section S-F(0) and by

coefficient p-(x 1-z,)/x,,. Let us assume the spectral noise density at

the output of discriminator does' not depend on disagreement/mismatch

x, but input dynamic effect WL(t) is such, that d 2 Wdtz=0.

" : : i-----

-- __:-A --
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Potential function in the system in question on the basis (3.95)

is equal to

KS 0
•(3.102) I(SX •,,• .i-x,-x, npu x.' x x:', +.v,

Key: (1). with.

"The potential threshold which surmounts trajectory x(t) during

"the disruption/separation of tracking, it has the height

PA=(- + x, =;csx,
The probability of disrupting/separating the tracking in the

system in question is computed from formula (3.100), in -,hich it is

"prelimina'ily necessary to determine ?("M and x.
"a...

Let us find function ?(-*.•)Taking into account (3.102), and also

that 7.

C 6up. <IIxa+x
Cx

._, -go Ml +

-40 
0



.3-. . . . . . . . . . . . .i , 1• J J
-- ; .. •

!•.: Key:" (1). With.I

S~~we wiii obtain ii
i.3. -

,iI

;• I _______

-'/~ ,ea,,,

o . . . .

.3.
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i'3
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.4I

3.j

__>%?

J-a'



DOC -83061007 PAGE I'

Fig. 3.8. Trapezoidal approximation of the characteristic of

discriminator.

Page 107.

* Analogously we find

N'.y() - PH B<

""~~8- "0, 1 -

C+c

Key: (1). with.

where

- e=YF I/ +E-amin J/T

E 2 =x, Eg ."-'(2p + 1).

On the basis of the obtained relationships/ratios the

a.

• -- -- - --.., t. -- _--
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coefficient x2 can be calculated by the graphical integrotion. The

depedence o the results of calculations on value p is depicted in

Fig. 3.9 as solid line. Dotted line there constructed the dependence

* ,(p), obtained experimentally. For the experimentation in the analog

computer was gathered the ring of automatic control, described by

differential equation (3.92).

MV- -- ý -."

I~llII

"" --
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Fig. 3.9. Dependence of correction factor x on the form of the
characteristic of discriminator.-
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To the entrance of system was supplied noise effect and by the

repeated lounchir.gs/startinga of machine was determined the

probability of disrupting/separating the tracking 1.

FOOTNOTE •. In more detail the methodology of experiment in the

analog computers is presented in S 6.1.

On the obtained probability with the help of relationship/ratio

"(3.100) was computed the corresponding value x. the disagreement

between the theoretical and experimental values x is caused by an

error in the determination from formula '3.100) of the relation of
4 stresses/voltages the signal/noise, with which the

-p.a

i -

.- *.
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disruption/separation of -:racking occurs with the assigned

probability. As can be seen from Fig. 3.9, this error does not exceed

10% over a wide range of a change in the form of the characteristic

of discriminator.

As follows from (3.100), the greatest effect on the probability

of disrupting/separating the tracking has the value of exponential

term. Therefore for the approximate computation of probability the

factor, which stands in formula (3.100) before the exponential curve,

can be replaced ,ith another expression by analogy with (3.7) so that

the probability of disruption/separation would be equal to

wili (3.103,,P • exp le "I' -eXP se

"where

+- the root-mean-square frequency of process x(t).

As shown in work [67], transition from formula (3.100) to

(3.103) does not introduce into the calculation of appreciable error.

Formula (3.1C3) it is .possible to use with any attenuation lengths

KSTa, in the system, selecting by correspondingly coefficient x. The

theoretical analysis on the basis of which is constructed the

dependence x(p) in Fig. 3.9, 4as carried out on the assumption that

the fading in the system is small (KST2«<<1). The experimental check

Vi
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showed that the obtained results can be used together with formula

(3.103) up to values of KST3,-I. In this case an error in the

determination of signal-to-noise ratio from the stress/voltage does

not exceed 15*.
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* '"With KST3,>l the theoretical analysis of system to carry out is

* qsufficiently difficult. For calculating the probability of

disruption/separation in this case with the utilized trapezoidal

approximation of characteristic F(x) it is possible to use formula

(� ... 1(3.103), substituting in it the values x, found experimentally (Fig.

"3.10). The graphs, constructed in Fig. 3.10, are described

sufficiently well by the empirical formula

,Q +1) (3.104)

where

•.' , 0,5 + 0,33C-"'; 1 0, 18(0 +19 KS7)3.

As can be seen from Fig. 3.10, with KST2 , '30 value K is

virtually close to one with any form of the characteristic of

discriminator. This is explained by the fact that with the the large

KTS 2 , the servo system in question is degenerated into first-order

system, the probability of disruption/separation in which, as shown

in this paragraph, is determined in essence by the height/altitude of

•* .- % "•-•'•%-. °
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* the potential threshold and virtually does not depend on the form of

* discriminatory characteristic.
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"Fig. 3.10. Experimental values K for the system with the high fading.

Page .10.

Conclusions/outputs. For the system with astaticism of the

"second order in the arbitrary parameters of filter the calculation of

the probability of disruption/separation can be carried out through

approximation formula (3.103). When the analyzed system has small

fading (KST2 1 <1), can be used more precise dependence (3.100).

Formula (3.96) makes it possible to lead calculation taking into

account the dependence of spectral noise density on

disagreement/mismatch x.

When the linear section of the characteristic of discriminator

F(x) comprises more than 1/3 apertures, coefficient x differs from

.°* -... . . . .. a. - - - - - -
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one less than by 15%, independent of the parameters of system. This

speaks, that the analysis of the disruption/separation of tracking in

such systems with the small error can be produced by the methods of

the theory of the ejections (see S 3.1) during the replacement of

objective parameter F(x) of linear with the equivalent thresholds,

determined by relationships/ratios (3.21).

For the characteristics with a small linear section a reduction

in the coefficient x depending on the parameters of system can be

very essential. This it is necessary to consider during the

identification of the parameters of system, which ensure the minimum

probability of disrupting/separating the tracking, and at the

determination of the required signal-to-noise ratio at the output of

discriminator.

4. System of the second order with proportional-integrating filter.

Let us consider servo system with the gear ratio/transmission

factor of feedback loop XK ( L+pTI)
S(3.105)

System with this filter possesses a series/row of advantages in

comparison with the system with the simple integrating filter: by

increased pull-in range, by best transient process and so forth, etc.

o• o~~~~~~~~~~~.. .-..... ....... .... °O°.-o•. .. .°.•.- '
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The differential equation, which describes the behavior of the

system of the second order with proportional-integrating filter

(3.106), takes the form

dX d') di.

-K V-.(x• (Qi- Kr 'IVJV'(xoi•t)1 ' 3.106)
where n-T,/T.

Page 111.

This equation can be represented in the form of the system of

two differential first-order equations (2.21). If we the coefficients

of removal/drift write/record in the~form, proposed by R. L.

Stratonovich, the equation of Fokker-Planck will take form (2.38)i

Let us consider the case when N.(x)=N,-const, dX/dt=0. By

analogy with the previous calculation let us determine the

probability of disrupting/separating the tracking in the system being

investigated by expression (3.103),- after changing by correspondingly

22
of value ,e 1, and x2. Since 01, and 1 are respectively

root-mean-square frequency and dispersion in the linear system, on

the basis (3..•" and (3.7) let us register

"oil • (+0ISTnt

5IKN I + KSTn (3.107)-I w +cSm
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Let us determine coefficient C. With n~l or T4= with n-const the

analyzed regulating circuit is degenerated into first-order system

with the coefficient it is born .into first-order system with the gear

ratio/transmission factor of feedback loop K(p) =Kn/p. A similar

system is analyzed in p. 1 of this paragraph, whence it follows that

in this case x-l. With n40 the filter becomes integrating and the

analysis, carried out in p. 2, shows that x=1. Determination x in the

* arbitrary parameters of filter is connected with the considerable

mathematical difficulties. Let is consider the special case when

fading in the system is small (KST>I, KSTnl<0.5) [62].

With sufficiently low value KSTnz<<I and N.( x)-N, jamming

intensity, as can be seen from (2.21), virtually it is possible to

count independent from disagreement/mismatch x. This makes it

possible to register initial differential equation (3.106) in the

form
for d' r dPL+ -+I(F(x)= t(, (3.106,)

=x di

* where U(N)- equivalent broadband noise. The intensity of this noise

it is possible not to make more precise, since coefficient x is

determined not by the power of interference, but by the inconstancy

of friction in the system.

Page 112.
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In view of the analogy between equations (3.108) and (3.93) the

analysis of system with proportional-integrating filter can be

carried out employing the procedure, which was being applied in the

examination of system with astaticism of the second order. Lowering

conversions, let us register final expression for determining the

correction factor x:

X + +- K In (E) (3.109)

where __________

A= VT---J P(x) dx;
dx

(I7 t()= (Z (3.110)S V-.(x) dx- -P(W4vmF(Cý Q ;

-•M='(T), T- the boundary of the region of tracking; R(E) - range

of values x, where E

Comparing expressions (3.109) and (3.101), it is not difficult

to be convinced of the existence of single-valued

connection/communication of i.oefficient K for the

proportional-integrating filter with the analogous coefficient, found

for the system with astaticism of the second order at the identical

characteristics F(x) and small fading in both systems. Thus, the

-. / .. ',
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calculation of the probability of disruption/separation in the system

with the proportional-integrating filter substantially is

facilitated, if with the same characteristic F(x) is known value K in

the system with astaticism of the second order. Thus, in the• case of

the trapezoidal characteristic F(x), depicted in Fig. 3.8, correction

factor x for the system with filter (3.105) can be determined via the

corresponding recalculation of the graph x(p), constructed in Fig.

319.

Conclusions/outputs. The probability of disra1ption/separation in

the system of the second order with the proportional-integrating

filter is approximately determined by formula (3.103) during the

appropriate replacement of entering it parameters 6M @ and xI.

Root-mean-square frequency,'Wiiand dispersion s, of following error

are computed with the help of approximate relationships/ratios

(3.107).
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The correction factor x, which considers the nonuniformity of fading

in the system, during a small fading (KST>I, KSTn 2 <0.5) can be

calculated by formulas (3.109)-(2.110).

On the accuracy of formula (3.103) for the system with the
0,"
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lq:
proportional-integrating filter it is possible to judge by the family

of curves (Fig. 3.11), obtained 3rn work [62). Solid lines in the

figure correspond to the values x, found theoretically with the help

of relationship/ratio(3.109) at the trapezoidal characteristic F(x),

which has linear section 21 times of less than the aperture of

discriminator.

* Are there constructed the dependences K(n), found by the simulation

* of system on the analog computer. As can be seen from figure, with

the execution of conditions KSTn 2 <0.5 and KST>l the coefficient

with an accuracy to 5-10% is determined by dependence (3.109). Is the

r. same accuracy of the determination of the relation of

"stresses/voltages signal/noise on the output of discriminator with

the assigned probability of disruption/separation PN0.2. As in the

system with astaticism of the second order, coefficient x differs

from one not more than by 10*, if the linear section of the

characteristic of discriminator composes at least 1/3 apertures.

From the analysis conducted it follows that in the systems with

the proportional-integrating filter the coefficient c is reduced most

strongly wit, KMSTn 2-0.b. This is explained by the fact that during

this combination of the parameters the fading in the system,

remaining small, considerably is changed due to the inconstancy of

value KnT(dF( x)/dx),

% T . . . .. . . . . . . .. . . . . .... *- • ,. S...- -.. -.-* . -~ . *. .-. . .. - ". . - ,- . . .- . .. .- -. . .*
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Fig. 3.11. Dependence of correction factor on the parameters of

"-, filter.
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A change of equivalent threshold xY' in the system leads to the fact dI

that value nIom•,hich corresponds to the minimum probability of

V disruption/separation, does not coincide with value n,=1/YST..at

vhich the variance of error of tracking in the linear system is

minimum.

3.3. Special features/peculiarities of the analysis of systems with

the periodic characteristics of discriminators.

A series/row of radio engineering systems of automatic tracking,

such, for example, as the system of phase automatic frequency control

(PAPCh), have the periodic characteristics of discriminators F(x). In

a,"

44* **" o '' . * * . . ". "- ° • . " * % ° - : . . • •" . • * , ' "* * -"
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such systems are absent or are very small the ranges of values x, in

which is .,ot exhibited the controlling action of discriminator.

The-oL'ore in the ,seneral case it is difficult to unambiguously

" bounda.ies y, and y. to the region of the trackings, output

be, .'limits of which is identical to the disruption/separation of

tracking.

The action of fluctuating interference in the systems with the

periodic characteristics F(x) can lead to jumping over of following

error to an arbitrary number of periods. The level of hazard of such

migrations/jwmps is determined by the conditions for work and by the

concrete/specific/actual designation/purpose of the system-of

tracking. There are systems (for example, the tracking meters
*1ý

phases), for which a change in the following error for one period is

inadmissible. In these cases it suffices to examine the behavior of

process x(t) only in one period of discriminatory characteristic,

41 considering that on its ends/leads are arranged/located the absorbing

boundaries. The analysis of disruption/separation in this case is

reduced to the already examined cases with the noncyclic

characteristics F(x). By an example of the analysis of the system of

phase automatic frequency control and as the integrating filter

serves work [63].

"However, there are many systems work of which does not
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significantly affect transition x(t) to one or several periods. For

example, this is the same system of phase self-alignment, which uses

for the tracking the frequency of received signal (Fig.. 3.12). In

this device/equipment the single migration/jump of phase for the

period yet does not lead to the loss of tracking the signal

frequency.

Page 115.

Let us consider, to what it leads noise effect on the system

with the periodic characteristic F(x) baseL on the example of phase

automatic frequency control. Despite the fact that to research of

work of FAPCh during-the noise effect are devAted numerous works [45,

51-54, 63, 70, 76-80, 83, etc.], the problem of the analysis of

disruption/separation in this system is far not completely solved.

However, the conducted investigations makes it possible to do a

series/row of practically important conclusions/outputs and to give

in certain cases the quantitative estimation of the degree of

interference effect on the mode/conditions of tracking the frequency.

Noise effect on the system with the reriodic characteristic F

(k) to a consi'erable degree is determined by the presence of dynamic

error and by the inertness of system. Dynamic error of FAPCh is

characterized by initial detuning between the signal frequency and

......-............................ ... .. .....* -
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natural frequency of the adjustable/tuneable generator. If detuning

is more than pull-in range system of FAPCh, then even after the

single migration/jump of phase error for the period the

* mode/conditions of tracking is broken with the probability, close to

one. The same occurs, also, with small detuning, if the inertness of

system is great. In these cases the single migration/jump of phase

error for the period virtually leads to the disruption/separation of

tracking the frequency; therefore during the analysis has the

capability to place at the points of unstable equilibrium the

absorbing boundaries.

K. E;A In the remaining cases in the system of FAPCh are

established/installed the mode/conditions of tracking, from time to

time interrupted/broken by separate short duration failures. If the

frequency of the migrations/jumps of phase is small, this

mode/conditions can prove to be permissible. It they frequently call

the mode/conditions of asynchronous tracking [53].

.
. . . . . . . . . . . . . . . . . . . . . . .
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Fig. 3.12. Functional diagram of FAPCh: FD - phase discriminator;

FNCh - low-pass filter; PG - readjustable generator; UCh.- control of

frequency.
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With the coincidence of the initial signal frequencies and

adjustable/tuneable generator the medium frequency of the

adjustable/tuneable generator will not be changed, since in this case

the ejections of phase to the positive and negative sides are

equiprobable. However, this fact yet does not make it possible to

judge the reliability of the mode/conditions of tracking, since the

dispersion of the frequency of the adjustable/tuneable generator in

this case is. different from zero.

If there is an initial detuning between the signal frequencies

and adjustable/tuneable generator d0, then the heiqhts/altitudes of

,- -- 'I
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two adjacent potential thresholds are not equal; therefore

representative point attempts to roll down in the direction of

smaller barriers. In this case together with the dispersion appears

the constant component of frequency disagreement/mismatch.

Certain representation about the reliability of the

mode/conditions o! asynchronous tracking in the system FAPCh they can

give average/mean value and the dispersion of frequency

disagreement/mismatch and, especially, an average number of

migrations/jumps of phase per unit time. Following works [47, 53,

64], let us determine these characteristics in the system FAPCh with

- the integrating filter. The differential equation of the system in

*? question during the noise effect t&kes the form

dy+ +1F +v X Aco* (Q (3.111)
"di, dt

where T - time constant of the integrating filter; A&w -initial

detuning of the signal frequencies and adjustable/tuneable generator;

N, - the spectral density of the broadband noise, led to the output

of discriminator; to(t) - s~ngle white noise; F(W) - the

discriminatory characteristic of phase discriminator; K - gear

ratio/transmission factor of the element/cell, which manages the

frequency of the adjustable/tuneable generator.

Assuming/setting the characteristic of discriminator sinusoidal
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F(p)=U sin o and introducing designations a=l/T, A=KU, Ao=L., let us

compose the equation of Fokker-Planck for the stationary

two-dimensional probability density of combined phase distribution 0

and difference frequency o:

where2 ~ -- A sinj 0J +i', (3.112)

Page 117.

Since system is intended for the tracking the frequency, then it

i; unimportant, in what period of the characteristic of phase

discriminator F(x) is realized this .tracking. Consequently, during

the determination of steady-state solution of w(o, 9) it is possible

to use periodicity condition
wcp+2x (3.113)

Furthermore, function w(p, p) must satisfy the condition for the

standardization (•d? S., )dj-l (3.114)

The exact solution of the steady-state equation of Fokker-Planck

(3.112) taking into account conditions (3.113) and (3.114) in the

absence of initial detuning (&,=0) takes form [47]

I! - WD 2.. ep .(3.115)

2x/. C471) B



DOC 83061007 PAGE 29'

Hence it follows that the one-dimensional probability density of

distributing the difference frequency is determined by the

expression

::• • d? exp -- •(3.116)

-- o-o

From (3.116) it follows that a difference in the signal

frequencies and adjustable/tuneable generator in the absence of

detuning is subordinated to the normal law of distribution with the

zero average/mean value

; (3.117)
OX• and by the dispersion

B

If the initial detuning of frequencies Aw0 is different from

zero, to accurately solve equation (3.112) is sufficiently difficult.

Page 118.

For the determination of approximate solution we will use the method,

proposed by V. I. ?ikhonov [47].

Let us determine the solution of equation (3.112) in the form of

:i©

"0'

-° ",o.
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the series/row w~y y=~ ,~9)(4?) (2). (3.119)
4=0

where function 4(?) they are subject to definition, and

v )exp(-) (3.120q

Let us substitute series/row (3.119) into the initial equation

of Fokker-Planck (3.112) and will take into account that on the basis

(3.120)

~,(m~(#) wins+ 1,-.a) M(i).~ (3.121)

As a result we will obtain

W('4+2 (j;) LIU 21 (-- ( -A sin,) W11+1) (0) LM •

am •O nuO
L. L ccnW(X LIU (3.122)

4=9

Equalizing coefficients with identical derivatives W(")(T), we will

obtain the system of ordinary differential equations for determining

the functions "(y):
L'3 (y) =O,

L () -- (, -- A si _(3.123)
2n ~" LL 2 n+ V+1 •)

Being limited by two members of sum of expression (3.119), let

us register approximate solution of the equation of Fokker-Planck,
j z
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found taking into account periodicity conditions (3.113) and

standardization (3.114)

X [~~P + ~ -ez e+, p2- ) e, (D) +D' 1 )(L, (D) y

I -exp (2 0s.) I P

S.-Dcosy)dT], (3.124)

where D.=-AB D4 W;I,(z) -function of Bessel of alleged index and

alleged argument.
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Hence it follows that the one-dimensional densities of

distribution of a phase difference and frequency take the form

';. J ((3%) ID,) IIID,(D) exp (D.?+ D cosp) X

"X exp (-DT --. cosy) dT, (3.125)

( -)-hr exp (2OD.)
1.8 4nlexp(n.w) X

:<.Xl/,A(D)I" exp -- •(3.12)

From (3.126) we find the average/mean detuning of the

frequencies - ibD, a(? As 'xD'-, 11D. (D)J- (3.127)

and the.dispersion

2 B
. . . . . . . ...... . (3.128)

""° 4 .•Z

-
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For evaluating the reliability of tracking FAPCh the frequency

of received signal it is possible to introduce into the examination

* probability that an absolute difference in the frequencies will not

exceed the allowed value of i :

P(1yIs)w w(9)d ~ (3.129)

Estimation only according to the average value is insufficient,

since with the zero detuning Aw,-0 condition Jil<js is satisfied with

any noise level and any p..

Page 120..

The reliability of the mode/conditions of tracking can be judged

also from the medium frequency of the migrations/jumps of phase. As

is known [17], the frequency of the ejections of random function o(t)

for the level 0 is determined by the formula

(3.130o

Substituting in integral (3.130) the obtained expression for

two-dimensional probability (3.124) and producing integration, we

will obtain [64]

. U4a, 11 (D) (3.131)
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"where w(0)--one-dimensional density of distribution of phase,

calculated according to formula (3.125) at point Tp=O.In the absence

of initial detuning (&=.-0) expression (3.131) considerably is

simplified

V ( (3.132)

In particular, the frequency of the migrations/jumps of phase

for levels 0-* 'is equal to

(3.133)
.1 4X19(D)

C". The me4hod of determining the statistical characteristics of

FAPCh examined can be, apparently, spred also to the systems with

other filters. Such attempts are done in works [70, 78].

In (78] this method is used for the definition of

characteristics of FAPCh with proportional-integrating filter..

However, due to method accepted in this work of the expression of

phase error o(t) through the components of two-dimensional Markov

process, the obtained results are valid only in some special cases.

In work [70] is done the attempt to determine statistical

characteristics of FAPCh with the arbitrary filter in the feedback

. .. /.. .. . . . . . . .. '. ... .. . . . . . . .
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loop. However, the insufficient proof of some positions, which lie at

the basis of the method proposed, requires the careful

use/application of the obtained results.
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Relationships/ratios (3.131)-(3.133) make it possible to

determine an average number of migrations/jumps of phase •er unit

time. However, under the noise effect are possible the

migrations/jumps of the various kinds: to one, two or several periods

for a comparatively short time, i.e., simultaneously can occur the

series of migrations/jumps [56, 64]. On the duration of this series

(about the number of periods to which they will be completed the

migration/jump) the carried out analysis cannot give response/answer,

since during the determination of the two-dimensional density of

distribution of the probability of phase and frequency was used

periodicity condition (3.113) of the solution of the equation of

Fokker-Planck and thereby was carried out the averaging of

statistical characteristics on all periods of characteristic F(x).

The attempt to approximately determine the distribution of

migrations/jumps accordir-y to a number of periods is done in work

[79] to the example to linearized FAPCh with the integrating filter.

However, a quantity of assumptions done during the analysis and

unwieldiness of final results impede the use of the latter in the

a - - • . .. ... . . . -.
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practice. Nevertheless, the series/row of the conclusions/outputs,

obtained in [79], qualitatively correctly reflects physics of

phenomenon.

" .• •~~ ~~ ~~~~.. . .• - .. • . -• - - . . , - . - .... . . . . . . . . . . . .-.. . . *. . .. . .B -. .
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Chapter 4.

DISRUPTION OF TRACKING IN TIME-DEPENDENT SYSTEMS.

In the practice frequently it is necessary to deal concerning

the regulating circuits processes in which carry unsteady character.

The transiency of pi •cesses can be caused by the series/row of

reasons. For example, dynamic disturbance/perturbation X(t)

frequently leads to the fact that the mathematical expectation of

following error ,m(t') becomes th- function of time. Transiency can be

the corollary of inconstancy in the time of noise level t(t). With it
it is necessary to be counted, if the time of the establishment of

transient processes in. the system is commensurated with the time of

observation. Therefore the analysis of the disruption/separation of

tracking in the time-dependent systems represents utgent task. In

this chapter are examined several approximation methods, which allow

with one or the other degree of accuracy to take into account the

transiency of processes during the analysis of the

disruption/separation of tracking regulating circuits.

,. ' -°

"• . •. . . . .. .'- - - .-- . . . . .. ...



DOC 83061008 PAGE

4.1. Generalization of the theory of ejections for the analysis of

time-dependent systems.

Generalization of Poisson's law. The simplest methods of the

approximate definition of the probability of disruption/separation,

as this follows from the previous material, gives the theory of the

ejections of random functions, which uses a Poisson character of the

distribution of the rare ejections of noise. However, during the

derivation of formula (3.4) it was assumed that the frequency of the

ejections of process x(t) above the level 7 does not change in time.

In the time-dependent systems this condition is not satisfied, since

either the dispersion of process o;.(I), or the level of equivalent

t)--'-m-(l) threshold is the function of time.

Page 123.

For the analysis of such systems with the help of the theory of

ejections let us introduce the function P(t), which characterizes the

frequency of the ejections of the unsteady process x(t) above the

variable/alternating threshold 7(t). Let us assume that the noise

level is sufficiently small so that the separate ejections for the

threshold would prove to be independent variables. Let us decompose
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entire time of observation i,, to m of sufficiently small sections

with the duration At so that in each i section the frequency of

ejections it would be possible to consider constant vi=-v(1).

Taking into account the mutual independence of the ejections of

noise above the level 7(t), let us determine the probability of the

appearance at least of one ejection for time l,1

Pl I e1

Passing to the limit with At-0, we will obtain the

"generalization of Poisson's formula (3.2) to the unsteady case

. (

Thus, the probability of disruption/separation in the

time-dependent system of automatic control on the sufficiently small

noise level is approximately determined by the dependence

'P(tn)= I1-exp - Y.()+ (1 dt }lw

Sq VQ

Here in contrast to (4.1) is taken into consideration the presence of

two thresholds 7,(t) and 7,( t), which respectively led to the

appearance of two addend in the frequency disruptions/separations

w1(t) and P,( t). Dependence (3.4) is obtained from (4.2) as partial

-A,

.. . . . . . . . . . . . . . . .

'• • '- -. .. . .• • :. , , • • •. . •. , ,. -,. . .- . - • , • - . . . .. ,-. . .'. ,.". . . ., ." . - .. . .. - .. ..
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case when P(t)-const.

Frequency of ejections. Further calculation of the probability

of disruption/separation requires the determination of the dependence

of the frequency of ejections of v,(t) and P,( t) on the time and on

the parameters of system.
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As shown in (173, frequency v+(t) of the intersection with random

process of x(t) of the determined function 7(t) from bottom to top 1

is determined by the dependence

where ()

w(x, i) - the combined density of distribution of process of x(t) and

its derivative.

FOOTNOTE *. By intersection from bottom to top is understood the

event, consisting in the fact that the sign of expression 7(t)-x(t)

varies from the positive to the negative. The value of the derivative

of random process x(t) in this case can be negative. ENDFOOTNOTE.

41."
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It is analogous, for the frequency -(t). ejections dowrnward we have

+0

Thus, the frequency of disruptions/separations in the system

with two boundaries is defined as

- f (TI (Q (0rQ ill ) +~ (t))j, (4.4. -0

where

The direct calculation of the frequency of

disruptions/separations according to (4.3) is difficult, since

usually the two-dimensional density w(x, i) of distribution is

unknown. Exception are the linear systems in which the following

error is distributed according to the normal law. In the literature

is described a series/row of special cases of the transiency of noise

and threshold when it is possible to obtaini exact expressions for the

average number H(t) of ejections for the preset time of observation t

[17, 22, etc.]. Since P(t)-dH(t)/dt, then these expressions can prove

to be useful during the calculation of the probability of

disruption/separation. In particular, from the mentioned works it

follows that the frequency of the ejections of the normal stationary

process x(t) above level yq(l--•--s(i), where s(t) - the determined

function, is determined by the expression

"*• *°"""" • ° *°... . . . . . '. Z-.-. .. . .. ".° ° *. . .. °. . "• °.. ." % -°° •-.o . .° . .* . .°
•\'•.'•.'.'.•.;,'," . ... • .... ,_.., -. ... .-... .... ..... . .......... ,...... . . . .. , ,.' ,. ...... . 4 . . • -- ,..



L

DOC - 83061008 PAGE

where &(t) -ds/dt; #(z) - probability integral (1.5); 0 zthe

dispersion of process of x(t); -- the root-mean-square frequency

of process x(t), determined by relationship/ratio (3.8). During

conclusion/output (4.4) it was assumed that process x(t) was
centralized, i.e., M.,G)-O.
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. (. • If -ate of change in the time of threshold V,(i) is small in

comparison with the speed of process x(t), in other words, if

i(4)/w.!axCI, thei, expression in the curly braces of formula (4.4)

cpproaches one, and formula takes the form

Oil (
v)~exp (45

From the comparison of expressions (4.5) and (3.7) it is evident

that in the case of the slow transiency of threshold during the

calculation of the frequency of ejections it suff ices in formula

(3.7) to replace constant threshold 7 viO variable/alternating y7(i).

The analogous fact of

takes place also when normal process is unsteady, and rate

-N

*0*~. *." i.-**..~.**yy -... . . ... .. . .-
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of change in its dispersion is small. In this case the frequency of

ejections can be found according to formula (3.7), where should be

taken into account change in the time of dispersion and threshold.

Taking into account that the calculation of the frequency of

disruptions/separations in the nonlinear systems is

hindered/hampered, for the proximate analysis of such systems is

cu.rried out their preliminary linearization. For this, as in the

fixed systems, are applied the method of statistical linearization or

linearization on the criterion of the equality of the supply of

potential enercy in the linear and nonlinear systems. It must be

noted that this met•'odology of the determination of the probability

of disruption/separation does not possess high accuracy.

Harmonic effect. In order to consider, in what cases during the

analysis of the disruption/separation of tracking it is necessary to

consider the dynamics of processes, let us consider regulating

circuit (see Fig. 1.2), at the entrance of which functions the

harmonic disturbance/perttirbation:
•(t) • in ,o•.(4.6)

We will consider that the random effect t(t) converted to the

output of discriminator is white noise with a spectral density of

N,=const.

* .' 1
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Page 126.

For simplicity let us assume also, that the discriminatory

characteristic is linear in the limits of the aperture
Fix)-Sx, -Y<X<Y.

Under the action of regular disturbance/perturbation (4.6) the

mathematical expectation of following error in the steady-state
%'S

mode/conditions varies in the time also according to the sinusoidal
law. With an accuracy to phase it is possible to register

m.(4) -A sin'l,

moreover amplitude A of oscillation is defined as

I'!

where S - slope/transcondu-tance of discriminatory characteristic;

X(jw) - the complex frequency characteristic of the feedback loop of

system.

We centralize following error and will introduce the equivalent

thresholds
vi--y-A sin cot,
,*--,Y-A sin jo.

Assuming that the frequency of disturbance/perturbation W is

considerably lower than the root-mean-square frequency on of servo

S.,.. system, for calculating the probability of disruption/separation we

5% ( "<

S .1

-%' .' ... ......- " "..'.- ',..".- .. ' S,'. ".. .".-' ' '. .. ," .-. , , . . .
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will use relationships/ratios (4.2) and (4.5). As a result we will

•. obtr in

P, (1.)= P; Ip-27 + sin. dt +

+(exp A Yd} 47

If A/7<0.25-0.2, then without the large error it is possible to

register

1~~s -2A

I- AY I..tsin 1 W-- sin,.
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During the calculation of the integrals, entering expression

(4.7), wu use an expansion of exponential curves in the series/rows

in the modified Bessel functions:

1(4.8)

As a result for the probability of disruption/separation taking

into account dynamics we have

A (t.) 0w .l xp
-- - W...O

1&% (2 i k(-2 I~ 49

Aw
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Coefficient A characterizes the ratio of the intensity.of

* dynamic effect to the aperture of discriminator and power of

fluctuations.

Let us note that the probability of disruption/separation in the

analyzed system, found without taking into account dynamic

disturbance/perturbation, is determined by the dependence

To consider the degree of the effect of dynamic

disturbance/perturbation on the probability of disruption/separation

is possible, after calculating the relation of probabilities

P(t,,)/Po(tn). In particular, if the time of observation is multiple to

half of the period of perturbing effect (4,.mnz, then

Table 4.1 gives the values of the relations of the probabilities

of disruption/separation depending on values a, found taking into

account the action of dynamic disturbance/perturbation W(t), also,

without it.

Page 128.

""-.
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From the table it is evident that during the analysis of the

disruption/separation of tracking it is possible to disregard the

act;on of harmonic disturbance/perturbation, if coefficient a<1-2.

With a>3 ignoring the dynamics of process X(t) leads to the very

large errors in the determination of the probability of

disruption/separation.

To approximately take into account the unsteady dynamic effect

is possible also by the replacement of real mathematical expectation

m.(t) by its effective value. Thus, for the case of harmonic effect in

question we approximately consider that the dynamic following error

is time-constant and is equal to m(t)-momAIJ/2. In this case, as it

. follows from S 3.1, the probability of disruption/separation is

*l determined by the formula
,_N_) • exp 2[ +'e-- 2e2

Comparing the obtained result with a more precise (4.9) with

,m-1, 2, 3, ... , let us find an error in this method of the

account of the sinusoidal dynamic effect
p (t,) -= .(,) e.-, 4,z,9 ,= 2

P, (t) £ -A., "

From the latter/last relationship/ratio it follows that the

error in the' determination of the probability of

disruption/separation is less, the less the amplitude A of dynamic

.. . %** -...
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error in comparison with the aperture 27 of discriminatory

characteristic and rms error a.

4.2. Method of Bubnov - Galerkin.

The method of Bubnov - Galerkin [12] is the well developed

method of approximate solution of the tasks of mathematical physics.

For the first time the analysis of the disruption/separation of

tracking by this method is carried out by I. A. Bol2shakov [46].

..-..... .-. ..-. . - ..;- ,-- , ~- .. ' . .. -... ,.. A , 2 ' .. - .-. .. .. . -. . . . ... .. . ... .. - * - -. -- _--- - -. . -,
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Table 4.1.

I I
II1I

P (1,)/P, (is) 1 1,06 J1.27 [2 4,88 27.2

Page 129.

In principle the method of Bubnov - Ga1erkin let u. use for solving

the equations of arbitrary dimensionality. However, unwieldiness of

linings/calculations does not make it possible to use it for solving

the multidimensional diffusion equations. In connection with this we

will be bounded in this paragraph to the analysis first-order of Af

servo systems.

Let the behavior of system be described stochastic differential

equation
EM-4x O+b(x, ONO) (4.10)

with the coefficients of a(x, t) and b(x, t) nonlinear in the general

case. The value of following error at the moment of the beginning of

observation t-O let us designate x.. The transiency of task depends

on the dependence of coefficients a and k. on the time and on the

presence of the transient mode/conditions of the establishment of

tracking error.

V.

.9

9.
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The probability of disruption/saparation P(x,, t) in the system

of tracking is determined as a result of solving the equation of

Pontriagin (2.78), supplemented by initial (2.80) and boundary (2.84)

conditions. In order to have uniform boundary conditions, let us

introduce function U(x., t)-1-P(x., t), which is the probability of

retaining/preserving/maintaining the mode/conditicons of tracking in

the system for a period of time t, if at zero time following error

was equal to x,. As a result of this replacement we will obtain the

following boundary-value problem:

O- (X . f& = A x. du + xs ) o (4.11)

U(x1, U)=1, (T,<X.<0, (4.12)

where coefficients A(x., t) and B(x., t) are expressed as the

coefficients of initial stochastic equation (4.10) [see

(2.31)-(2.33)].

If in equation (4.11) coefficients A and B do not depend on

time, then variable/alternating are divided. Actually/really, if we

introduce

U(,., t).T(,)X(,,), (4.14)
that

[/....:. T' (I) T a (x) X" (s,) + A (•) X, (z,) *(.5

(•iffi , ,.(•) •=1. (4.15)
-* ,- - . ,.T

*' " "" " . . . . ... -. i- ..
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The exact solution of boundary-value problem for eigenfunctions X(x.)

succeeds in finding very rarely. Exception is the task about the

disruption/separation of tracking in the system from the linear in

the limits aperture by the characteristic of discriminator (A(x)-Sx,

B(x)-const) [49, 59, 65, 74, 75]. However, even in this simplest task

X(x,) it is not expressed as elementary functions, which impedes

calculation. For the analysis of nonlinear systems it is expedient to

use the approximate methods of solving the boundary-value problems,

one of which is the method of Bubnov - Galerkin.

The method of Bubnov - Galerkin, actually, is further

development of the method of separation of variable/alternating.

Because of the fact that as functions X(x,) are used not the

eigenfunctions of differential equation (4.15), but the previously

selected coordinate functions, the process of solving the

boundary-value problem significantly is simplified and the class of

tasks solved by this method can be expanded virtually for arbitrary

A( x, t) and B(x, t).

'S.'

-. .
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Fundamental principles. According to the method of Bubnov -

Galerkin the n approximation of solution of task (4.1l)-(4.13) let us

define as
U

U,,(x., 0=( CA(Oi(X.). (4.16)

where (y%(x*))- the complete in the .egion y, x 7: system of the

coordinate functions, which are rotated into zero on the boundary of

*" the region.

Factors Ch are determined from the condition of orthogonality

. L[Uu(xk t)) to all functions 9(X*). Here L - differential partial

"differential operator, who corresponds to writing of equation (4.11)

in the form L [U(x., t)] -0. In this case

Page 131.

The condition of orthogonality reduces to the system of the

differential equations

(L(U,(xo, $)], f,)=0, (4.17)

IMl, 2,, * n,

where (u, v) indicates the scalar product of functions u and v.r2.• ' ..-. ..
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Functions C(O), which depend only on the time, will be taken out as

the sign of scalar product; therefore (4.17) it is system n

first-order of ordinary differential equations relative to functions
c,,I).

Initial conditions Ck(O), necessary for the unique solution of

system (4.17), are determined from the resolution of initial

condition U(x., 0) in the series/row in terms of the set of functions

ECh (o) (x)= U (x.. o)=0 . (4.18)

System of equations (4.17) considerably is simplified, if as the
set of functions q are selected the orthogonal functions

(Th. 9j)=0 ripm k*L. (4.19)

Key: (1). with.

In that case the system of differential equations (4.17) takes the

form
.S() 0A(x,. I d•h(6)

d. Q 0 (x.) +-

B , , x , (x,) t 1, ... ,

(4.20)

Using a property of orthogonality (4.19), from (4.18) we find

c,(o = (0) ' ,?) (4.21)

(' , ',1"- '
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The scalar product of two functions let us define as the

integral

(U (x)u a)v(x) dx, (4.22)
Ta

where p(x) - weight function.
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The successful selection of weight function and sequence of

coordinate functions V(x) in many respects contributes to the success

"in the solution of problem, raising the speed of the convergence of

"-" • approximations/approaches U,(x. 0).

First method. The simplest and spread method of the solution of

problem presumes that as the coordinate functions are used the

functions of the trigonometric series:

?S(X)=cOS"F•(• s7 (?(X)- COS--,-

4(x)=Si, 0.... (4.2

with single weight function

pQ')- I. (4.24)

Here and subsequently for the convenience it is placed 7=-7,=7, what

always it is possible to attain by the replacement of the

"variable/alternating xe.

•o.-. -. .".-. ,. •. ."o°..". -. ". " .• •" •.. - ° ° • .- , . .- . - . . . - -- .
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For solving the system of equations (4.20) it is necessary to

preliminarily compute the scalar products, entering the coefficients

with unknowns Ck'(). System (4.20) considerably is simplified, if

coefficients A and B do not depend on the time: A(x., t)-N(x.),

B(x,,t)=B(x*). Then (4.20) it is the system of linear equ-.tions with

the constant coefficients, and its solution is lncated analytically.

Second method. If the coefficients stochastic equation do not

depend on time, then it is possible to attempt to improve the

convergence of solution (4416) by the selection of weight factor

p(X).

It is known [14] that eigenfunctions Xh(xo) of equation (4.11)

are orthogonal with a weight of W0 ,(x):

. W. j._ (X)X1(W dx0 JpH k#t. (4.23)
-T

Key: (1). with.

Here wg(x)- the solution of the steady-state equation of Fokker -

Planck:
jA (x) of (] (x) on (x)], (4.26)

the supplemented by conditions reflection at points =7:

n[(T, O)=n(-T, 0=0.
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The solution of equation (4.26) takes the form

Co B 4 (4.27)

where c - constant, determined from standardization condition.

The or-hogonality of eigerfunctions Xh(Xo) with a weight of

•W, 0,(xo) ma. it possible to assume that in scalar product (4.22) as

the weight factor it is expedient to select
"p(x) w.s(x). (4.28)

The nearer the system of coordinate functions ph(xo) to eigenfunctions

Xh(Xo), the more precise approximate representation (4.16). Let us

isolate in functions qh(xo) factor 'w.(xe)and it is represented them

in the form

F~t (X.) [we?(,)"~ x) (4.29)

where as w(x) it is convenient to select the system of orthogonal

funt ions

tit ,(x).,(.),dx=0 • 1. (4.30)

Key: (1). with.

4%

.:= ::|::.1i-:~-..- -
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System of coordinate functions 9ý(xo) selected thus is orthogonal with

a weight of wCT(x61As a result the system of equations (4.17) is

converted to the form

dC, (,)1_P W(x)dxl c,( J(x)R,",,(,),(.)+

-a--

+ B' (x) f 'k( •) -+ (x) +At (-x+

+ B~x) f0I X)- 4A B" fh x), (.v) dx, (4.3 1)
48 (x) -21

I= It, 29 3..9

The simplest orthogonal functions are trigonometric (4.23), which can

be used as system •&(X).
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In order to explain advantages and deficiencies/lacks in the

described methods of determiniii of scalar product and selection of

the system of coordinate functions, let us solve by two methods the

following task.

Example X. We analyze the simplest (without the filter) system

of phase automatic frequency control whose functional diagram is

represented in Fig.. 3.12. Considering that the control of the phase
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of the adjustable/tuneable generator :s produced via the

rearrangement of its frequency, let us register differential equation

* of FAPCh:
... =x) -- JK)ta (0, (4.3

where x - instantaneous phase difference of the oscillations of input

signal and adjustable/tuneable generator; Fo(x) - calibrated

(maxF.(x)ml) the characteristic of phase detector; w=o-"-w- the

initial detuning of the frequency of the adjustab-le/tuneable

generator w, relative to signal frequency %)-; Q-u.uK- the band of

synchronism; Um,- the maximum stress/voltage, developed by phase

discriminator; K - mutual conductance of the control of frequency; N,

S'4 - spectral noise density,"led to the output of phase discriminator.

Let us note that differential equation (4.32) under specific

conditions approximately describes also system of FAPCh with the

proportional-integrating filter.

The discriminatory characteristic of phase discriminator is

frequently approximated by expression F,(x)-sin x.

We will be bounded to the examination of the case &-0. For

probability U(xo, t) of absence, for time t of the migrations/jumps of

. - the phase through the points of unstable equilibrium -w and w with

initial disagreem.•nt/mismatch of phases, equal x(O)-x,, occurs the

boundary-value problem

- ( .:
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=U _, oW.(4.9

0

U(XO)=1. -- i<x.<:, (4.R

(0, 4.3)

where a-4Q/K 2N, - ratio of the power of signal and noise in the band

of closed system; r=I/4K2 Nt - dimensionless time.
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Following the first method of the introduction of coordinate

functions, we seek the solution of boundary-value problem

(4.33)-(4.35) in the form .

where CA(1)-- *uncti, that are subject to further determination.

With the weight factor in expression (4.22) p(x)-l from (4.20) we

will obtain system n of the ordinary differential equations:

& ( -1S.. ( 1) X(7
I2

S(2k- 1) (21- - 1 -

(2k 1)2(2k- 1) (2- I 9 1 ,2v..n
2) 2 2 j

(4.37)
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Since in this example the coefficients of equation (4.33) do not

depend on time r, then system (..37) is the system of homogeneous

equations with the constant coefficients. The matrix/die of

coefficients with unknown functions Ch(T) takes the form

• j-i' .- 0* 0. 0 0 • 0

S 9 564 0 0 0 0 , 0

, 2,574=o -T - ' o o . o
4 4 4

o 0 0 0 (-2k+Z) (2k--I)' (2k+) 0

o 0 00 0 0
4 4 4
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The solution of the systei. of homogeneous equations (4.37) with

the constant coefficients let us represent in the form of the linear

combination of the particular solutions

- b-1

where - the eigenvalues of matrix/die a; A•--the corresponding to

them eigen vectors. Eigenvalues MA are the roots of the

characteristic equation
det (a-4l) -0,

,, () ::§

- . .

- - - - . - .



DOC " 83061008 PAGE 25ý

'hereI - unit matrix. Eigenvectors Akare determined with an

accuracy to factors cq which are introduced into expression (4.38).

For the certainty let us assume that elements/cells Am of

eigenvectors are equal to the subdeterninants of matrix/die a, to

equivalent components am. After the calculation of eigenvectors Ah

coefficients ck are found from the system of the algebraic equations:

C.AC =, 1 1,2,...,,
Awll

where the initial conditions

.C14 A, ,

* are determined by op to formula (4.21).

Lowering intermediate linings/calculations, let us write out two

first approximations:

cii the first approximation
us 1X B O 4.39)

where
V. -•

second approximation/approach

us(x.9 ')=[Ae +(±-A)e'Co2

r 9 +4 -. UP))
3a 2-e +

* L



where

"A (9+ 4142) - 3m) (9 + 4)X)

Us (A? - xi
1,2) 10-- 6" 4 +.16a -- I e.'
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Superscripts in eigenvalues 14"," indicate number of

approximation/approach.

On the obtained relationships/ratios on Fig. 4.1 are constructed

the graphs of the probability of t$- absence of phase jump-overs for

the time r during zero initial disagreement/mismatch (x.-0). In the

figure are constructed three first approximations (numeral indicates

the number of approximation/approach). Solid li i constructed the

curves, which correspond p(x)-l, to dash -p(x)-wc(x). As can be seen

from (4.39), in the signal-to-noise ratios a •.I first approximation

gives physically inaccurate results - function U(r) begins to

increase in the time. However, up to the values a-0.5-0.7 the

accuracy of formula (4.39) is completely sufficient for the practical

calculations. Second approximation/approach (4.40) with

a> (1+2v"M-3.24 has complex eigenvalues, which also contradicts

physical sense, since boundary-value problems for the one-dimensional

equatiorls of Fokker - Planck have the real spectrum, which lies at

the negative region. Therefore with the large ones a it is necessary

to compute higher approximations/approaches.

.o . . . .° .. " . .
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Fig. 4.1. The first approximations of the method of Bubnov

Galerkin.
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:': Following the secon; -.ethod of the introduction of coordinate

-•:: functions, the solution of boundary-value problem (4.33)-(4.35) we

seek in the form
X

(2 -- 1) -

)V Cos(4.41) C

Due to the symmetry of coefficient A(xo) --a sin x. and boundary

j conditions (4.35) in expansion (4.41) are left only cosinusoidal

terms.

i..1Steady-state solution (4.27) of the equation of Fokker -Planck

in this example takes the form

-. :. WUCIr(e. = e" X° '.

. °
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System of equations (4.31) appears as follows:
n

On the basis (4.21) we will obtain initial conditions for unknown

functions C&(r):
c 2() /-c (2k-')x

From (4.42) it follows that the eigenvalues with the large

numbers are approximately equal to Am-(2k-1) 2(4. The eigenvalues of

first two approximations/approaches are computed in the quadratures

j41  s-2s+2
(4.0)

""-'++5s+oa+84
M4

From comparison (4.43) with (4.39) and (4.40) it is evident that with

small ones a the first two eigenvalues, found with two methods,

virtually coincide. This is explained by the fact that weight factor

we0 (x) with the decrease a approaches constant value. The advantages

of the second method are reveaied/detected with the large ones a.

From (4.43) it follows that the eigenvalues, fc .1 with the second

method, are negative at any values of signal-to-noise ratio a.

N..• .:. 7 .- .~- _ _ _ _
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Fig. 4.1b shows first four approximations/approaches (4.41) with

a-1.5. From the figure one can see that with selection of coordinate

functions q'&(Xo) by the second method the convergence of the method of

Bubnov - Galerkin is improved.

'InTable 4.2 it is shown, as are stabilized eigenvalues 00' with

an increase in the number of approximation/approach n (is used the

second method, a-1.5).

In conclusion let us note that the expansion in terms of the

system of coordinate functions (4.29) is expedient at the values

a>1-1.5, when substantially deteriorates the convergence of

expansions in terms of the set of functions (4.23) without taking

into account weight factor (4.28). With small ones a both the methods

examined give virtually identical results; however, the first method

of the introduction of coordinate functions is simpler.

Example 2. In York [46] the method of Bubnov - Galerkin was used

for solving the equation of Fokker - Planck, the probability of

disruption/separation was determined from formula (2.77). As the

system of coordinate functions were used trigonometric functions

,:. (4.23) with the weight factor p(x)-l.

•.-.......,
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Table 4.2.

MevoalI pew I /n ")J I
""---ra. 1 -0.- 1M.-. as 2 -0.049136 -2,81O8 4 --

3 -0.042033 -2.09272I -6.567446 - -_ 4 -0,041894 -2,600381 -- 6-545740 -12.55306
. -0.041892 -2.606362 -6.54355 -12.8392 -20.3•1987
6 -0,041892 -2.606361 -6,.43848 -12.53789 -20.&3632

-A -2541 -4

cauui'u',e- -ue.490972 -2.528423 --. 52 -252967 -20,08

:3 Key: (1). Method of solution. (2). Bubnov- galer'zina. (3).

Asymptotic.
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"With A(x.)--A(-x.), B(x.)=Bo and x.=0 is obtained the following

expression for probability of the disruption/separation:

- I4 eA. -- A,',,-,0 "- - Iep f_ [_

........

3OB

X 'ri, (4.44)

-" where

SA & - A .x) d
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Expression (4.44) is arithmetic mean of the second and third

approximations/approaches, moreao.er the members of order B"4 and

above are rejected/thrown. It is clear that the probability of

." disrupting/separating the tracking must be the function, which not

decreases in the time. Expression (4.44) satisfies this condition

ofily in such a case, when the indices of all expoitential curves are

negative. Usually A,>X,>A,>;, therefore solution (4.44) makes sense

with satisfaction of the condition

i.e. on the sufficiently high noise level.

4.3. Asymptotic method.

In the previous paragraph the solution of boundary-value problem

for the probability of disruption/separation is represented in the

form of series/row along the system of improper functions. The method

* of Bubnov - Galerkin makes it possible to efficiently find out the

Sdominant terms of series/row, i.e., members, who corr:espond to small

in the absolute value eigenvalues x& The determination of the highest

approximations/approaches is connected with the considerable

"computational difficulties. For the leading terms of series/row can

be used asymptotic expansions of eigen functions [13J.

CJ
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The determination of the probability of the absence of

disruption/separation U(x,, t) for time t is reduced to the solution

of boundary-value problem with uniform boundary conditions (4.11)-

(4.13). If the coefficients of equation (4.11) do not depend on time,

then as a result of separation cf variables (4.14) for functions T(t)

and X(x.) we will obtain equations (4.15). Since eigenvalues X<O,

then for the convenience subsequently let us assume X--• 2 . From

(4.15) we find

T (0 - CO-, (4.46)

)B (,) X" + A (x+) X? + p A'-O. (4.47)

Page 141.

Let us consider the possibility of solving equation (4.47) at the

high values of the parameter a2. By the replacement of the

variable/alternating

X'(SO)-X(X)Z(b4). (4.48)

equation (4.47) is reduced to the equation of Riccati:
• 2A _ 2

zl+*z 2AZ +' 2 0.--O." (4.40)

Let us represent solution of Z(x.) in the form of the asymptotic

series/row

z (XV) pie (xs) + ?1 (00 + l!,-+.. S(4.0)

lap '.
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The min*- totals of asymptotic series/row approximate well function

Z(x,) at the high values A. For finding of unknown functions , •,

p, we differentiate (4.50) and will substitute result in equation

(4.49), leaving only terms with the degrees g2, g and AO:

2A
pbfy + t2 + 21.$,I, + 2.,yT + 1'. + T, + -a top +

2A4 2• ~ -- ,+ ,+.-0.

Gathering terms with the identical degrees M, we will obtain system

of equations relative to functions p., ,, q2. As a result of its

solution we find

,f (s.) - =A (4.)" (

-, (x) * 4)+ ' BB (.) 1 A)

AB (x)- B" (x.) + }B. (j4)],,

Since XI-XZ, then

X ez. z M

Page 142.

Consey(-ently, two asymptotic solutions of equation (4.47) take the

form:

*- *. . *-.
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(4.M

where

I..

get) W B (t~~J ()= iy,, (C) Id C;

l4T(x)-- steady-state solution (4.27) of the equation of Fokker
Planck (4.26) with the reflecting boundaries at points 7T, ,.

"Since the constants of integration can be attributed to the

unknown thus far factor C in expression (4.46), then in solution

(4.52) for the certainty let us place lower integration limit c equal •

to zero.

Let us represent the unkncrn solution of boundary-value problem

in the form o." the linear combination of particular solutions (4.52)

X(,X) -CtX+(X1)++CX-(x,) (4.53)

and let us require so that at the points 7,, 72 asymptotic solution

(4.53) would be converted into zero according to boundary conditions

"(4.13):
S~cIX+(y,i) +C,,X_(- ! -0,

. ~~CtX+ 1* + CIX_(Ov) -o.

, Constants C, and C, are determined as a result of solving the

.. ...... ..- *-..-........- .
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obtained uniform system of equations. Since solution must be

nontrivial, then the determinant of system must become zero. From

this condition we obtain equation for the eigenvalues

Hence we obtain the quadratic equation relatively a, of two solutions

of which makes sense only one:

Pb + hu+ +4 + (l,)-- r1,[h (Y,)--(Y')..' (4.4)

Second solution of quadratic equation gives the values u, close to

"zero, with which asymptotic solution (4.50) is not correct. With

large k formula (4.54) is simplified:

L h (12, -- •11.5
-": g('r--(i,) + (4.55)

Let us now find the asymptotic representation of eigenfunctions

-X•l(z). In expression (4.53) one of the constants is choser

arbitrarily. Let C,=X_ (72).

"Page 143.

"Then for the satisfaction to boundary conditions (4.13) t 3-- X+(Y2).

With an accuracy ÷z constant the eigenfunction

-' (r) -- X.. (1,) X+ (x,) - X+ (7,) X. 1x). (4.56)

v .The solution of boundary-value problem (4.i1)-(4.13) is



p.
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written/recorded in the form

U (X9. 0) at h(c)

Coefficients aa are determined from. the expansion of initial

condition (4.12) U(x,, 0)-1 in the series/row in terms of system

For determining the.coefficients from (4.57) it is necessary

"* to find set of functions Y.% orthogonal to the eigenfunctions of

equ:ntion (4.47). From the theory of linear differential operators it

is known that the eigenfunctions of the adjoint equations are

orthogonal. The equation, conjugated/combined to (4.47), is the

equation
I
2 (ar- (AY + Y- 0. (4.58)

Using a property of orthogonality, let us multiply both parts of

equality (4.57) to eigenfunctions Y, of equation (4.58) and will

integrate from 7, to 72. As a result let us find the coefficients

-- X [ x) Yk (s) dx Yj, (x) dx. 4.59)

The asymptotic solutions of equation (4.58) are located by the

same method such as is obtained the solution of equation (4.47):

_(A_ 
(4.60)

*. . . . .. . . . . . . . . . . . .. .I -OW . . . . . . .
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The eigenvalues, which correspond to eigenfunctions YA(x), coincide

with the spectrum of functions XA(W). From (4.52) and (4.60) it follows

that the asymptotic solutions of straight line and

conjugated/combined of equations are connected with the

"relationship/ratio

-Ya(z) .,o,~(x)X ,.lX). (4.81)

Substituting (4.61) in (4.59), we will obtain the resultant

expression for the coefficients

_ [ in ,1 c 14 ) ds (xw. ) X() (s)ds. (4.62)
k I,

%.'
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Thus, is obtained the asymptotic .solution of boundary-value

problem (4.11)-(4.13), valid with large ones

we W X ..) 7-412iX & (41 .631
*i woo (s) X2 (s) dx

Substituting in (4.63) eigenfunctions (4.56) and taking into account

(4.52), we convert asymptotic solution to the form

. -,2t {•, (g (x.)-g ('r,)l-***j [A (x)h ""

U (x,, , - -A d R' ) w., "

where

y -'~•~ -(1/s) $in] ph [g (0)-R (Y,)j - 1h(x)h-(Y.)] dx

B-'"2 ([) singh Wx qg (7-- 1h h (Ta)]) dx

It is possible to show that if YZ=-TI=7, A(x)=-A(-Y) and

"B(x)-B(-x), then

k :

,t, . . .
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U(4, t)- k k ( ) (- ,(4.65)

where

Jt= We so*}

h-- 1,3,5,..

The obtained asymptotic solutions are valid with eigenvalues

li-p--. large by the absolute value Small eigenvalues can be found

. with Bubnov- Galerkin method (see 5 4.2).
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While the first approximations, which correspond to eigenvalues small

in the absolute value, found with Bubnov-Galerkin method, describe

solution with large t, asymptotic approxima-ions/approaches they make

more precise solution with small't.

In conclusion let us consider an example of system FAPCh (4.33),

for which the first eigenvalues are found in S 4.2 with

Bubnov-Galerkin method. Let us recall that in the analyzed case of

A(x) --a sin x, B(x)-2, 7-w. The probability not of

disruption/separation, calculated according to formula (4.65), it

. ... . . . ... .. .
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takes the form

whr C~OS' (os(.,- -1.(X.)), (4.66)
where ,

oI - A

h() -6-• - T-dnl2--- snx,

2'•'• 8(21-), '- It--dimensionless time.

For the comparison of asymptotic method with Bubnov-Galerkin

method Table 4.2 gives the sequence of eigenvalues ltm--O with a-1.5.

From the table it is evident that already the second eigenvalues,

found with both methods, are close to each other. Therefore the first

two terms of the expansion of the solution of boundary-value problem

should be found out bv Bubnov-Galerkin method, and with t)3 used

asymptotic approximation/approach (4.66). To use only a first

approximation according to Bubnov-Galerkin method is impossible,

since in this case we obtain eigenvalue •'P with the large error.

4.4. Method of compensating sources.
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During the solution of the problems about the first

reaching/achievement by process of x(t) of boundaries 7., 7, the

equation of Fokker-Planck is assigned only in the limited region Q.

The exact solution of boundary-value problem for this equation

usually causes large mathematical difficulties and very rarely it can

be found explicitly. At the same time for some tasks without the

special labor/work it is possible to find the solution of the

equation of Fokker-Planck, spread to entire infinite phase space.

Page 146.

Under the initial conditions of form (2.41) this solution is called

the fundamental solution of the problem of Cauchy (see S 2.3). In

"particular, if the analyzed process x(t) can be represented as the

result of the passage of white noise through the linear

device/equipment with the rational-fractional transfer function, then

the fundamental solution of the problem of Cauchy for the equation of

Fokker-Planck will be the normal law of the probability distribution

whose parameters are comparatively easily located by the methods of
correlation theory. On the basis of known fundamental solution it is

possible to design the solution of boundary-value problem [72, 73,

81, 84].

Method of compensation. Let us consider preliminarily the

•o", , ..

* -c ~.o J°• .- - .S °•- :Y'. V - L . ;. - , •.. .i o .°.
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disruption/separation of tracking in the system, linear in the limits

of the aperture of discriminator:

* P(x)u=So = with

By disruption/separation of tracking is understood the first output

of coordinate x beyond the boundaries 7,, 72. Let the following error

x(t) be the component of n-dimensional Markov process

x(O)-{x1-x(t), Xg ... , x%). The state of vector x(t) at the moment of the

beginning of observation t-0 let us designate Xe"-{X• XU ... ,

The equation of Fokker-Planck for the probability density of

transition w(x, t; x.) in the general case takes form (2.27). The

unknown probability of disruption/separation is computed from the
formula

forulaPq= 1--w(x, txodx, (4.67)

where Q - n-dimensional phase space, limited on coordinate x, by the

absorbing boundaries of x,=7,, x,-7,; v(x, t; x,) - the solution of

the equation of Fokker-Planck (2.27), supplemented by the boundary

conditions

w(x, 0;-)8xx 1 ,(.8

Here G - regular part of boundary G of phase space Q.

'- , -" ., X.-o.~ • . . -. .. . - - - ... --
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Let us continue the linear characteristic of discriminator F(x)

-Sx to entire region -m<x<m and we will tempo:arily consider thLt

there are no absorbing boundaries. Then the fundamental solution of

the problem of Cauchy satisfies equation (2.27) and initial condition

(4.68) and is n-dimensional normal law (2.44). Let us designate this

solution of w,(x, t; x.). Function w,(x, t; x,) yet is noc the

solution of boundary-value problem (2.27), (4.68)-(4.69), since on

the regular part of G of boundary fundamental solution does not

"become zero. For the compensation for probability density on G let us

,. ° place beyond the limits of region 0 the series/row of the further

sources of density so, in order to at the initial moment t=0

N

where a-- unknown thus far coefficients of the intensities of the

further sourcer, arranged/located at zero t4me at points Xi.

Since poles Xi of auxiliary sources are arranged/located beyond

the limits of the absorbing boundaries, latter/last recording does

not contradict condition (4.68) of boundary-value problem. In view of

the linearity of the equation of Fokker-Planck his solution taking

into account (4.70) can be represented as the superposition of the

.'. fundamental solutions

K=+
. . *
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:, • =w, x,.t; x,) -il.: u*,(xtI; x,). (4.71)
Iasi

Let us select coefficients ai in such a way that the resulting

"probability density on the regular part of the boundary

•.e (X, 4x X#, .-- we Ix, f; x,

' would vanish with an increase in number N of commutating poles. This

makes it possible to consider combination (4.71) Lpproximate solution

of initial boundary-value problem. Increasing a number of commutating

poles, we obtain increasingly more degrees of freedom in the

selection of coefficients ai in order to approach (4.71) the exact

solution.
.1'
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In the limit with N-* it is possible to obtain the exact solution of

boundary-value problem in the form

V (X. A.Q =,we.(X, A Q a (z) C,. (I, ; z) dz, (4.72)

where 0 - entire n-dimensional space, with exception of region Q.

Weight function a(z) is determined from boundary condition

(4.69), which takin5 into account (4.72) takes the form

we,(X, Aa(z)w..xf;z) dz. (4.73

ZED°..
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Thus, the solution of boundary-value problem succeeds in

reducing to the composition of linear combination (4.72) and the

solution of the auxiliary integral equation of Fredholm first kind

(4.73). To some simple examples of the solution of boundary-value

problems by the method examiaed it is possible to be introduced in

[72].

Approximate approach. In connection with the fact thi"e the exact

Ssolution of the equation of Fredholm (4.73) in the majority of the

cases to find difficultly, let us pause at the approximate method of

Q,*' solving the boundary-value problems by the method of compensating

' sources [81].

After taking as the basis solution in the form of finite series

(4.71), let us bound a quantity of further sources with a number of

absorbing boundaries and will place reversing poles into the points

of the mirror reflection of the basic pole x, relative to boundaries

'is, 72: ;={2',-., -x..... ,"14. (4.74)
XS V={ ,-4- #, -Cx,, ...I --4m).

Taking into account that the phase space 0 is limited only on

coordinate x,, let us switch over to one-dimensional probability

densities, after integrating both parts (4.71) with respect to

'f• f . f .
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I..-

variable/alternating zt ... , x in the infinite limits.

Page 149.

As a result the probability of disruption/separation is equal to

• f P(t,=1 - (X, , x,) (4.75)
.18

N
where one-dimensional density w(x, 1 z.) is approximately determined

by the linear combination

-,w:,t,; x.) ,,,, (x. &; x,)-.
,.,-, (x. t; x,)--;W (x, fr; x). (4.76)

Let us note that after integration boundary conditions (4.69)

for the one-dimensional densities in the general case cease to be

uniform: w(yi t; x1 •.

However, taking into account that the boundar*-s t,, 72 the region of

tracking, as a rule, coincide with the points of the unstable

equilibrium of system or close to them, natural to expect near thL

"boundaries of the very low value of probability density. Therefore

. approximately let us assume

In particular, relationship/ratio (4.77) becomes precise, if'."4

eentire/all boundary .. regular (G-G). This it has locally, for

eexample, in the servo system of the second order with

.4 "" '

-,2_,Z. ~ .~.- - -*
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I portional-integrating filter.

Usually do not succeed in finding the values of coefficients a.

and a. -hich would satisfy condition (4.77) and in this case they

. were not the functions of time t or coordinate x. Approximate

solution of boundary-value problem can be found, after determining

coefficients ., a., so that boundary conditions (4.77) would be

satisfied only on the average within the time of the observation

f S
w,(TI,,). XI;) aimsp (Y2(3)' t; X4 dt 0. (4.78)

Solving the system of linear algebraic ecpuations (4.78), we find

WW 1 - 35 , (4.79)
where

we* ( ; J) di

- average/mean for the time of observation fu probability density on

boundary YJ, caused by source with pole Xj.

Page 150.

Let us consider some examples of the analysis of the

disruption/separation of tracking in the regulating circuits by the

method of the compensating sources.

4
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Example 1. Let us calculate the probability of

"disruption/separation in first-order system (see Fig. 3.5) on the

assumption that dX/dt=0 and F(x)=Sx with -7<x<7. Stochastic equation

of the system beinq investiqated takes the form

S-KSx -K _jV (A,, (4.80)

and the corresponding to it equation of Fokker-Planck

ow ' (4.81)

"Let up to moment/torque t-0 of the inclusion of noise the

following error in tht system take value of x(0)=x.. The transiency

. of task is exhibited in the fact that dispersion Oz,(t)and

mathematical expectation m,(i) of following error during the

transient process depend on time.

-or determining the probability of disruption/separation it is

necessary to solve equation (4.81), supplemented by the boundary

conditions

w(x, 0; xO) 6(x-XO), (4.8)

w(--, i; xo) =w(, ; Xo) -0. (4.83)

The fundamental soiution of the problem of Cauchy for equation (4.81)

with initial condition (4.82) is the one-dimensional normal law

exp ( (x- l' (4.84)
1.. ,() =• i)

where
= • • --- "),a=KS.

In accordance with (4.74) let us place the poles of the

[,2
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compensating sources into points x,=-27-x., x,=27-x 0 . As a result the

compensating for probability densities will take the form

wI (X, t; x,) - (.1. ) exp - 2f2 (1) e .,

I P [-(2y - X e-' (4.5)
,, (X.ty 2X *, (Y2 s. 2,) (t)
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"The obtained expressions make it possible to determine in

formulas (4.79) the coefficients of intensity a, and a.. For the

determination of the probability of disruption/separation let us

integrate expression (4.76) in accordance with (4.7r', taking into

f; ' account the concrete/specific/actual form of fundamental solutions

(4.84)-(4.85). As F. result we will obtain

P-Y,2 (/-2 f. 1_ 2--

2 -2Y. ) -2 I-2 0.eI (fe)

e dx+as +(v --c,) \

2 Y-2', n) '2 
( .(4.86)

Some results of the numerical calculations, carried out

according tc, formula (4.86), are given in Fig. 4.2, where are

accepted the following designations: Y=KN,/S7 2 , X=x,/7, T=•.•l.
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475

4S5

Fig. 4.2. The probability of disrupting/separating the tracking in

first-order system: - method of compensation; 0 0 - solution of

boundary-value problem on AVM; A - results of work [65].
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On the accuracy of the solution of boundary-value problem it is

possible to judge by the comparison of the obtained results with the

results of other methods. In particular, the same initial equation of

Fokker-Planck (4.81) with boundary conditions (4.82)-(4.83) was

solved in the analog computer (see S 6.3) and, furthermore, with x,-0

the solution of problem is compared with the more accurate results,

found in [65]. From comparison it is evident that the method of the

compensating sources for first-order system can give fair results

during the calculation of the probability of disruption/separation up

;.' '. .- - . - ;. . - . - . -. " - . ,- . . ; .--.. .* . * " .. . . .
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F to values of P,<O.8.

Example 2. is complicated the previous example, after

supplementing into the feedback loop of servo system

proportional-integrating filter, so as to the resulting gear

ratio/transmission factor would become equal to

K(p)-K(l+pT,)/p(l+pT). Stochastic equation. which describes the

behavior of the analyzed system, takes form (2.18), and the

two-dimensional equation of Fo '--Planck - (2.38). The boundary

conditions of the decided tasK -ain form (4.68)-(4.69). In this

case the regular part G of the boundary of the region of tracking on

the phase plane consists of the line.

-'if 7>0

or X=

Key: (1). with.

if TI-0.

In the first case condition (4.77) becomes precise.

""Z~-* * .- - - - -
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Following the general/common/total procedure of calculation of

the probability of disruption/separation, let us determine

one-dimensional area of transitional probability in the form (4.76).

The f'.nctions, which compose linear combination (4.76), are the

one-dimensional probability densities of the Gaussian process x(t):s Ir --m. (I=. t)J'I (S. •,

Mathematical expectation and dispersion, entering distribution

(4.87), are found directly from stochastic equation (2.18) of linear

system, for example, with the help of its averaging and conversion

according to Laplace [8]. In this example
c.eo9 be~bI 'eb.ee

so, -b ' +[es+(a+K.n) ! O--n

4+ + (a - b)2 (a + b) X

where ,b , 1+K,,n± " (P+ n)'Y-4-1K, Jý

I T
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Assuming that. at the moment of the beginning of observation,

which coincides with the inclusion/connecti4,n of noise, the state of

process x(t) is determined by parameters xo and X;, in accordance

with (4.74) lot us take the coord'. ates of commutating poles

x,=-27-x,, x2 =27-x,, xmx2=-xo. Thus, all parameters, entering

,,. .-:.:, .. . ... . , . , , • . . . .. . ,,. . • . , • , .,
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one-dimensional functions (4.87), are determined and it is possible

to switch over to the calculation of the coefficients of compensation

ai, a. in formulas (4.79). With the obtained coefficients of

compensation the unknown probability of disruption/separation is

determined from formula .(4.75), which in this case takes the form
a

where a.--l. (4.)

In particular, with KST-0.2, Y-KN./S73-10 according to formula

(4.88) were carried out the calculations whose results were

represented in Fig. 4.3 in the form of graphs (solid lines). Dotted

. line there showed more precise dependences, found by the simulation

of servo system on TsVM.

-,

-(
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Fig. 4.3. Disruption/separation of tracking in the system with the

proportional-integrating filter.
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Conclusions. As it follows from the examples examined, the

method of compensation allows with an accuracy sufficient for the

practice to determine the probability of disrupting/separating the

tracking during the nonstationary systems of the work of regulating

circuits. The very good accuracy of the determination of probability

(10-20% with PQ0.5-0.8) occurs during the analysis of the systems of

tracking with first-order filters.

From the comparison of Fig. 4.3 and 4.2 it is evident that

during the analysis of the systems of the second order the method of

the compensating sources gives greater error than during the analysis

•::,•;•. . ,•..'.?•.•.'.•... . .-. . .•, :. . - _ .. ,., - , .. . ,,. •. .. ,.



6:_

I...

DOC 83061009 PAGE

of first-order systems. This is explained by the fact that with the
determination of coefficients ao and a. and the multidimensional case

besides the averaging of probability density on the boundary in the

"in supplemented the averaging on space coordinates X•...,x-.

Furtnermore, in the multidimensional tasks boundary condition itself

(4.77) for the one-dimensional densities becomes approximated, if the

regular part of the boundary is only the part of the entire boundary

of the reion Q (GfG). Therefore, as can be seen from Fig. 4.3, with

n-0 is observed the greatest error in the solution, which at the

". level P-0.1 leads to the error in the determination of the

"permissible signal-to-noise ratio from the stress/voltage

approximately/exemplarily to 20*.

4.5. Generalization of the method of the compensating sources to the

nonlinear systems.

Formulation of the problem. In the previous paragraph were

analyzed the servo systems with the linear discriminatory

characteristic in the limits of entire aperture 7,<x<72 . Much more

frequent in the practice are encountered the systems whose

discriminatory characteristics are substantially nonlinear. In the

principle there is Dissibility [84) to conduct approximate analysis

"*. of such systems with the method of compensation, if we preliminarily

"linearize system in the limits of its aperture. However, known
* -

- . * .
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linearization methods possess a comparatively large error. Therefore

to more expediently analyze disruption/separation in the linearized

* systems on the basis of Poisson's law (see S 4.1), but not with the

help of the method of compensation, since the latter, without

removing errors in the linearization, requires sufficiently

cumbersome calculations.

In this naragraph the method of compensation applies to

nonlinear regulating circuits whose discriminatory characteristics

can be approximated by the piecewise-linear dependences.

Page 1,55. Af

Furthermore, it is assumed that the random effect 1(t) has the

spectral density, which does not depend on disagreement/mismatch i.

This approximately can be achieved/reached, for example, with the

help of the averaging according to formula (3.20).

In S 2.3 it is shown that approximate solution of boundary-value

problem for the equation of Fokker-Planck for the system with the

characteristic of discriminator linear in the finite segment 7,<x<72

can be found in the form of the sum of fundamental solutions. Such

solutions are determined for each linear section of the

characteristic of discriminator and then "are joined" at the salient
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points. For the join of solutions is used the continuity conuition of

the probability density and flow of probability [38, 42] upon

transfer from one section of the characteristic of discriminator to

• ,"another. Since approximate solution is sought in the form of the

- final sum of the fundamental solutions of the problem of Cauchy, for

.• the join of solutions by analogy with the previous material is used

* the approximate criterion of the continuity of the probability

density, and flow on the average for the time of observation.

Analysis oZ first-order systems. Let is examine in more detail

"the methodology of the solution of boundary-value problem for the

one-dimensional equation of Fokker-Planck in the case when the

*" characteristic of discriminator consists of three linear sections

"" (Fig. 4.4 - solid line). Let the boundary-value problem being subject

* to solution be determined by the one-dimensional equation of

Fokker-Planck, by initial condition (4.,2) and boundary conditions

w(ys. ; x,)-o. (4.89)

.% --

", * . . . .
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Fig. 4.4. Characteristics of disc-iminator.

Page 156.

Let us find approximate solution of boundary-value problem for

each linear section of the characteristic of discriminator F(x). In .

the section ToixC solution let us represent in the form of the sum

of three functions: -, -,,lx,) ,tx,+

+ , (x. I; x,).(4.90)

being the fundamental solutions of the problem of Cauchy for the

equation of Fokker-Planck, found on the assumption that

characteristic F(x) is linear with slope/transconductance S, in the

entire region -=<x<m (Fig. 4.4). In this case solution w,(x, t; x.)

is obtained for the basic pole x,, thanks to which is satisfied

initial condition (4.82) of task, and solutions w.(x, t; x,) and

wO(x, t; x,) are found for commutating poles x, and x,, which lie

beyond the limits of the salient points of characteristic. Solutions

- 0. , .. . , . . A ZC- -,, - . . .. %-. . . - . . . . , ' A . 2t. ..- - . . , . . . - . -. � < . .- -. " - . [
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w, ( t; x1 ), w,(x, t; x2 ), undertaken with the weights a,, a,, are

intended for the satisfaction of the conditions of join at points cp

and Q..

The solution of boundary-value problem in the section 7,<x<.p,

let us represent also in the form of the sum of the fundamental

solutions 0 (x, t; x• L.,9 (x, t; x), + w, x, f; xj, (4.91)

of those found on the assumption that the characteristic of

discriminator is continued to infinity with slope/transconductance

S,, which occurred in the section being analyzed. The poles of

solutions x., x, are chosc<- beyond the limits of section 7,<x<,,O, in

order not to break the initial condition of initial task.

Let us analogously register solution ih the region qa.x<7, in

the form
.(4,t; .x,) •,w, •x,4 x + (x, ,; x), (4.92)

where w2 (x, t; x,) and w.(x, t; x,) -the fundamental solutions,

obtpined with F(x)-Sx, -. <x<W.

Page 157.

As a result the solution of boundary-value problem takes the

form:

,>" .
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s (x, t; x.I)x +
SV 6t;, ,(x, t;x)pt (4.93)

U. Ir.,•X<T.,"

Key: (1). with.

where wv(x, t; •-)- one-dimensional Gaussian probability densities

(4.84); ai-a, - coefficients of the intensities of further sources,

which are subject to further determination,

"Join of solutions. Strilctly speaking, the solution of

boundary-value problem must satisfy continuity conditions at the

salient points of the characteristic of discriminator Vi for the

probability density

Sw(x,t; x3), -- (xt; x,)] o i= ,1 2 (4.94)

- and for the flow of probability density
-U 1-- -1 12•,. (4.95)

"urthermore, solution must satisiy Zuundary conditions (4.89). During

"the recording of approximate solution in the form (4.93) for

satisfaction of the enumerated conditions it is necessary to fit the

appropriate coefficients a,-a,. However, for the majority of the

4' practical tasks this cannot be done. Therefore it. is expedient to

S. ... ,, .-

". - - :- " .. .: ":. .. . . . . " - ----" -- .-... .- " -"-"---.--
t t . S. . L ,2 . .t . . IA • ...*.• " =. s .• "-.-.. t - r . .. 2 •* ", -
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- rep)ace boundary conditions (4.89) and conditions of jcin

" (4.941)-(4.95) with those approximated, after requiring so that they

would be implemented only on the average within the time of

observation in.

Page i•<>

As a result -or determining the coefficients of !r.tensities we have a

"" system of the linear algebraic equations:

• .... w ,, Pl t>, ,; .,a) dt + a,, w e (,p , t; x j dt +._

•I.-tu

N Nwe ;.) d= + as J; xj)di+

as. WO(y. t; x. a Z2kW4*,X)'

~1fl~L. EM V't
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+ 1 v1 t; x4)dt,

+ He ('pa, t; x,) dt+ tI q, ; x,)dt +

1 11

I IN
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where flg(x, t; Xj)- flow of probability density; found under the same

conditions as corresponding i-fundamental solution Wi( , t;x,) wi.h the

pole at point Xj. Flow fli(x, I; xj) unambiguously is expressed as known

fundamental solution i(x, ; ,). This coinection/communication for each

specific case follows from the comparison of the initial equation of

SYokker-Planck with his divergent form of recording (2.36).

The solution of the system of algebraic equations (4.96)

relative to coefficients a,-a, does not cause fundamental

".* difficulties; however, the process of calculating the definite

integrals, entering the system, frequen~tly proves to be very bulky,

* (. --•since it. is necessary to apply numerical methods.

Page 159.

Substantial to facilitate the process of calculating the coefficients

a,-a, it is possible after using TsVrM; however, if ni.essary all

linings/calculatiors can be carried out by hand, for example, by

graphic method. The P'curacy of the calculation of definite integrals

"can be low, are sufficient to ensure it about 10%. Further increase

in the accuracy does not lead to the refinement of the probability of

disruption/separation due to errors in the method itself.

Let us pause at the selection of poles xj of the further sources

" °" of
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of probability density.PAs has already been mentioned, their

coordinates on x axis must be arranged/located beyond the limits of

the corresponding working sections of thl characteristic of

Z.i discriminator, so that would not be broken initial condition (4.82).

""* As showed numerical checking, solution (4.S3) in this case is not

susceptible to the position of further sources. By analogy with the

material of the previous paragraph we consider that poles xj are

arranged/located mutually symmetrically relative to points q, 0, and

'V,, V,- Thus, if basic pole has a coordinate x,, then for the further

ones let us assume

(4.97)

During this selection of poles and in absence of external

dynamic disturbance/perturbation. (d/dt-0) the equation of

Fokker-Planck in sections x>Q, and x<p, becomes syrimetrical relative

-'. to points 7. and 7.. Because of the fact that poles x,, x. and x,, x,

are mutually symmetrical relative to the same points, for

satisfaction of the conditions for aosorption (4.89) it suffices to

"assume a,--a,, a,--c,. In this case a number of unknown coefficients

"*" of intensities is decreased to four, which simplifies their

determ-'Aation. Finally, in the absence of dynamic

disturbance/perturbation, to the symmetrical characteristic o"l

discriminator F(x)--F(-x) and the initial disagreement/mismatch x.=0

a number of independent coefficient= is decreased up to two, since
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A special case. Let us consider the systim of first-order (Fig.

3.5) automatic trac.cing with the integrator in the feedback loop

K(p)-K/p.

Page 160.

Let us determine the probability of disrupting/separating the

tracking during the arbitrary determined input

-- disturbance/perturbation X(t) and the random disturbance t(t) in the

form of white noise with a spectral density of N., which does not

depend on fo:.lowing error x. Stochastic equation of the analyzed

system taies the form - . .-..

Let at zero time the state of system be known accurate .or

x(0)-x,. For calculating the probability of disruption/separation it

is necessary to solve the boundary-value problen

x-), wT2 f; 0 (4.99)

* 'and to fulfill integration for formula (4.75).

Let us assume that the charac&.eristic of discriminator F(x) is

approximated by the dependence, depicted in Fig. 4.4. In accordance

-4- -k " %
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with the method of the compensating sources approximate solution of

* boundary-value problem (4.99) let us determine in the form (4.93),

moreover commutating poles it is placed in accordance with (4.97).

"The probability densities, entering in (4.93), are described by the

-.. " gaussian dependences _2

i ! { [•--" ~('")] , 0 I ..~ ~ex -, 9.:) 0_o €0 "• 2,,
(.4.100)

Taking into account that the initial equation of Fokker-Planck

(4.99) in the divergent form takes the form
aw (X,. t., so OM (X , ; X4)

*' for the flow of probability density along x axis we will obtain

depending on the section cf the characteristic of discriminator the

following expression:

where

Page 161.

' Dispersions of(f,, the found with path averaging and the twofold

conversion stochastic equation (4.98) according to Laplace [8], are

equal to * [--exp(-2NOI,

and mathematical expectations mnj(xj, VI are the solutions of the

t
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differential equations
di -- f- i (04. "t (X,. •) = 1.

which also follows from (4.98).

For the final solution of boundary-value problem (4.99) should

be found the coefficients of intensities a,,-,, after solving system

o "(4.96) at the substitution of the obtained expressions for w(X, t; Xj)

*iI and I(S, 1; X j). The integration of solution (4.93) by formula (4.75)

difficulties does not cause and leads as a result to the sum of the

"*i tabulated probability integrals.

Ok tlExample. Employing the given procedure can be designed the

probability of disruption/separation in the various forms of dynamic

"effect X(t).

"4'

.- -- M- -
*Mf" Al
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Fig. 4.5. Disruption/separation of tracking taking into account the

dynamics of disturbance/perturbation.

Page 162.

In particular, iii Fig. 4.5 are constructed the graph/diagrams of the

dependence of the probability of disruption/separation P(r) on the

generalized time of observation I-KS•. under the influence W(t),

determined by relationships/ratios (Fig. .6)-
"I;e s, t C O.

iv -ve - at I t,.

Key: (1). with.

This disturbance/perturbation occurs, for example, in the automatic

i

fk.-*.

qq'-- ~V.4
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range finder of radar with the target tracking which in the interval

of time O~t~t, moves with the constant longitudinal acceleration.

During the calculation it was assumed that the characteristic of

discriminator was symmetrical 7,=-7,2t,--2€,-2q (see Fig. 4.4) and

* up to moment/torque t-0 of the inclusion of noise in the system is

established/installed initial following error x.=V./K=O.IQ. Graphs in

"Fig. 4.5 are constructed at the different values of parameters
Y-N,K/Sp 2 and --VV.I.Ss, the first of which characterizes the relation

'* of the power of noise and signal at the uutput of discriminator, the

second - conservative value of dynamic following error with t4w. The

\. ( • duration of the action of acceleration in the input

• disturbance/perturbation was received by such that KSd,-."

From Fig. 4.5 it follows that most strongly the dynamics of

input disturbance/perturbation affects the probability of

* disrupting/separating the tracking with a small noise level (Y.<2) and

the long time of observation r>2-3. In large noise (Y=8) even

essential dynamic disturbance/perturbation (P=0.75) virtually does

not change the form of dependence P(7).

Error in the method. The accuracy of the method of the

compensating sources can be evaluated via the comparison of the

obtained results with the results of other, more precise methods. For

::: 
AM
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ai Iexample, in Fig. 4.5 points noted the values of the probability of

disruption/separation, found with the method of solution of

boundary-value problem (4.99) on the analog computer (see S 6.3). The

of comparison of results confirms the possibility of solving theOf

boundary-value problems (at least one-dimensional) for the equation

of Fokker-Planck with the fair for the practice accuracy.

in

ion

hie

he.

and ,

Fr
'S -/
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Fig. 4.6. Input dynamic effect.

"oIn this case can be taken into consideration the effects, onnected

with the complicated dynamics of input disturbance/ptzrturbation W(t).

Checking the accuracy of the method of the compensating sources

was carried out via comparison with a series/row of other methods-,

for example with the method of the s' mulation stochastic equation in

-the analog and digital computers, with the method of Bubnov-Galerkin,

- etc. Table 4.3, in particular, gives the values of the probability of

* disruption/separati~on in first-orier the system examined with

* dX/dt-0, the found with the method compensations and Bubnov-Galerkin

method. During the calculation it was assumed that Y-8, x,=O.

-~All comparisons conducted confirm the completely satisfactory

* -. accuracy of method for the anal~ysis of nonlinear first-order systems



DOC = 83061009 PAGE

up to the values of probability P<0.6-0.8 and time of observation

rSI0 (order 10-30* on the probability of disruption/separation).

Multidimensional systems. The method of determining the

probability of disruption/separation presented in the

piecewise-linear systems can be spread also to the cases, when

following errcr is the component of multidimensional Markov process

([Jl, 84J. For some tasks which can be described by the differential

second order equations, it succeeds by the method of compensation

sufficient to accurately determine the probability of

t). •disrupting/separating the tracking taking into account the tran•.iency

of the conditions for the work of device/equipment. However, at the

same time there are situations, when the analysis of
.es

disruption/separation in the systems of the order higher than first

in leads to appreciable errors in the determination o probability.

in, Furthermore, even during the analysis of nonlinear systems with the

of filters of the second order the determination of (he probability of

disruption/separation by compensation requires conducting the great

i computational work, connected with the Jetermination of the

co fficients of compensation.

r"
~ms

?'2) -'

- .--°°' e
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Table 4.3.

(1) __________ cRM apm
2 70oA PeU W0 1 3.0-

*• MeMoA Xo.fneHcauW4 0.26 0.52710.746 0.825

MIA By~sa-raxpuma 0.6 0,50 0,808 0.925

Key: (1). Method of solution. (2). Probability of

disruption/separation when r. (3). M•thod of compensation. (4).
.Bubnov-Galerkin method.

i;.",ov

Page 164.

icy

In such situations becomes appropriate the transition from the manual

calculation to the machine. However, programming the task of

'calculating the coefficients of compensation is connected with the

precomputation of dispersions and mathematical expectations, which
e,"are determining the fundamental solutions of the problem of Cauchy

for each linear section of characteristic F(x). This task, although

it does not represent fundamental difficulties, is sometimes very

bulky. Therefore during the analysis of the systems of the second and

higher of orders taking into account dynamics it is expedient to use

TsVM for determining the probability of disruption/separation not by

compensation, but one of the numerical methods, e4xamined/considered

"in C'hapter 6, for example, by the Monte Carlo method.



* -. *.o

DOC 830CI010 PAGE

Page 165.

"•" Chapter 5.

PARTICULAR CHARACTERISTICS OF THE DISRUPTION OF TRACKING.

The probability of disrupting/separating the tracking P(tu)for

the preset time of observation tv is most comp' '. characteristic of

the phenomenon of disruption/separation. The calculation of this

anual characteristic in many instances is hindered/hampered or requires

"- conducting large number of computational works. Frequently,

the •.especially at the preliminary stage., of the design of systems, it

ich - proves to be appropriate to proc:a to b,% from the calculation of the

chy p probability of disruption/separation, after switching over to the

analysis of more particular characteristics. By such characteristics

7g they -an become, for example, mean time to the disruption/separation

nd and of tracking or critical noise level, with which the

use disruption/separation even on begins. The material of data they are

t by main and dedicated to the calculation of similar characteristics.

e red
5.1. Determination of the critical power of noise with the help of

::oi "
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the method of statistical linearization.

Strictly speaking, the method of statistical linearization [7],

as any other method of the linearization of system, is not applied

for the analysis of the disruption/separation of tracking, since for

the linear system vanishes the sense of the concept itself about the

disruption/separation. However, with the known stipulations and with

the series/row of further limitations the method of statistical

linearization can be used for the proximate analysis of the

disruption/separation of tracking. This is admissible, for example,

if the linearization of system is produced only in the limits of the

/, ~ aperture of discriminatory characteristic. In this paragraph the

linearization of system wi12 foresee itself for the determination of

the series/row of tbe stopper facts, which associate the method of

statistical linearization and approximately characterizing the

stability of system. Therefore it is. possible to determine the

critical level of spectral density N1 of noise at the output of the

* discriminator, with which the danger of disruption/separation is

"still small.

Page 166.

The for the first time similar method of the analysis of

S.... .. disruption/separation in the regulating circuits was proposed by G.

4' * -. N•• D ;'-.*'V .--. > :.:._-:..... .'.. '.,' . .-..... .-. .., .. . • • .. -*.- . • -.. • .. .
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G. Sigalov and Ye. A. Yashugin [683 and B. I..Shakhtarin [69].

Theoretical analysis. Let us consider the servo system Fig. 1.2,

which is located under the effect of regular X(t) and random t(t) of

disturbances/perturbations, the spectral density of the latter not

depending on disagreement/mismatch x and constant in the passband of

the ring of the automatic control: N.(x);N*. We will be bounded also

"to the analysis of the systems in which dynamic

disturbance/perturbation X(r) leads to constant error x(t)-mm-"const.

Let us designate output potential of discriminator, caused by

dynamic error, through mp(mx, 0g), by stressing thereby the dependence

of value jn from the mathematical expectation and the dispersion of

disagreement/mismatch x(t). On the basis of the block diagram of the

servo system (see Fig. 1.2) let us register the relationship/ratio,

which connects mathematical expectations mx, mn, and Input dynamic

disturbance/perturbation X(t)

In steady state regular component of process at the output of

discriminator is equal to

where X(M), K(s) - converted according to Lapl.ace input

disturbance/perturbation X(t) and operator K(p).

:: ..

I •. ' . . - ., ...:-' . - - .',.-. . ,.- . " . . , -. . , " . .. , . - ,. . . . . . , .
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When system possesses astaticism of the n order, 3.e.K ', (p)

dynamic error ms is constant, if disturbance/perturbation takes the

form of polynomial not older than the n degree

--. )-++... +,t,.

Page 167.

In this case to the linearized system

(5.2)

where K,(m, s-- equivalent mutual conductance of discriminator,

t. introduced according to the method of statistical linearization and

which considers the passage only of regular component. Introducing

the equivalent slope/transconductance of discriminator Kt,1 I @1, for

the central random ccmponent, let us register expression for the

dispersion in the linearized system

(5.3

"where KS
-[K,. K( (+A 93,,) doo

r"s•iI

K(jw) - the complex gear ratio/transmission factor of feedback loop.

Let us repret,.0t (5.2) and (5.3) in the form of system of

.. -: v.

-- . '.-
_-o ~ *.*~* ,* *- .
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equations
)ýA .m } 5.4)
N.=f..O, J

,y=K K.QiZ 0•. f=,f IKQx t, ) K Lp)I.
where

If parameters ka and N. of input disturbances/perturbations are

such, that the system of tracking is located on the face of

disruption/separation, then their small variations lead to large

changes in conservative values ms and (.Let us give increase At, to

parameter 4.. In accordance with (5.2) and (5.3) this will produce

increases in mathematical expectatioak ms and dispersion * .System

(5.4) of signs the form

1 1x
1%+Aa.=i(tn+Am4X

J0

Xp[K.(mx+An6 %2+As) Kip)I,](5)

is decomposed nonlinear functions 4 and f in the Taylor series

according to degrees Am 3' and A and we will be bounded to the

linear terms of expansion.

Page 168.

After the subtraction of steady-state values (5.4) we will obtain for

---

.C' `..:......:.•• .... • • :`:.z;.•• :?.• ?.?...•.•.:..:.`...`..•.•:":-; . :o ,• :• ; .
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the increases system of equations:

(+ in,,AM."J+ nZ'

Loss of stability occurs in such a case, when the determinant of

system of equations (5.6) becomes zero. Hence, taking into account

the implicit dependence of functions 0 and f on a,. and %' it is
possible to register the stall conditions of tracking [68]

• _ _,~+ .• Of € ' OKI,

AK, 0 (5.7)

In the particular case of the absence of dynamic error (M*i-0)

relationship/ratio (5.7) is simplified and takes the form

"The direct use of relationship/ratio (5.7) for the practical

calculations is frequently connected with the bulky transformations.

Therefore to more conveniently use the graphic method of determining

the critical noise level.

Graphic method. Let us clarify the graphic method of determining

the critical noise level based on specific example.

*" ,(

.i
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Let there be the servo system of phase automatic frequency

control with one integrator in the feedback loop K(p)=K/p (see Fig.

3.5) and characteristic of the discriminator

P() -A sin . (5.9)

On the system functions dynamic disturbance/perturbation

X(t)XXt and white noise t(t) with a spectral density of N,. It is

necessary to determine the critical value of spectral density N,. It

is necessary to determine the critical value of spectral density NY9,1

Page 169.

The solution of problem let us begin from the calculation of

coefficients r.(m, @,) and KI(in,,a2) the transmissions of the

linearized system for constant and random components. Following the

method of statistical linearization assuming that the following error -

x(t) is distributed according to the law, close to the normal, we

have
- K.(m,,o)-,,I

0X0n dx -n
-x sin a~exp ( dx5.0

Ka On, C? A os(m x (5.11)
* 2
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Further calculation requires the concrete definition of the

parameters of system. Let K=1 r.ad/(V-s), A=I V, a=l rad-1, X,=0.3

rad/s.

Taking into account that mr-Kofs and by using

relationship/ratio (5.10), let us construct auxiliary family of

:* curves mpm-m(mx) (Fig. 5.1) at the different values of dispersion

, .. - * o . .- . ..... -... •.. .- . . . ~. ..

" •" •• ' ": ' " ' " "' " " "" * " "" " " " . - - .- . , .. ,.. - .-.--- . -, . - - -- ",. • -
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'00

Fig. 5.1. Fig. 5.2.

Fig. 5.1. Auxiliary graphs for calculating critical power of noise.

Key: (1). W . (2). rad.

Fig. 5.2. Determination of critical power of noise.
"4'

Key: (1). V2/Hz. (2). rad.

Page 170.

Conservative value of dynamic error, led to the output o7

discriminator, on the basis (5.1) is equal

(5.12)

Equation (5.12) is graphically the horizontal line (Fig. 5.1)

•o?• -° -.. ° .. . -.. .- o.. o.• .o ,o ~ o. ... . .. -° ° , , ,° . . .- ° ° . - . . . . .° ..° . . -. . o- - ° ,
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whose ordinar •n this case is equal to mr-0,3 V. For the points of

:. intewse-i.on oi the constructed dependencer with the straight line

let us find the appropriate values of coefficient KI(me () in

fQmu.a (5.11). Taking into account that the second equation of

zysten (5.4) in the case in quaestion takes the form

le. us 6 mine spectral density for each obtained value KjC(m 1 ,

and let us construct the giph/diagram of dependence N.=f(@ (Fig.

5.2).

S- As can be seen from Fig. 5.2, with smalls of the l'eVel of input

disturbance/perturbation the variance of error of tracking is in

effect proportional to spectral density. In this case process x(t) is

developed in essence in the linear section of the characteristic of

discriminator. With an increase in the spectral density the

proportionality is broken and near No-Nup the rate of the

build-up/growth of dispersicn becon..ýs infinite, i.e., system loses

stability, is observed the disruption/separation of tracking. Thus,

the critical value of spectral density in the example in question

comprises Nxva2,24 V2 /Hz.

"It is interesting to consider, with what probability occurs the

disruption/separation of tracking in the system in question under the
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effect on it of the noise whose spectral density is equal to

critical. For this servo system it is possible to simulate/model in

the digital computer and by the Monte Carlo method to determine the

probability of disrupting/separating the tracking for the preset time

of observation. The graph/diagram of the obtained dependence of the

probability of disruption/separation on the spectral noise density

with the time of observation 4m!-5- is depicted in Fig. 5.3.
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As can be seen from graph, the obtained estimation of the critical

power of noise determines sufficiently well-conditions, with which

the disruption/separation of tracking becomes dangerous.

Fig. 5.4 depicts the dependence of critical spectral density

No in the system in question on the value of dynamic

disturbance/perturbation X.. Curve is constructed with the help of

the graphic method of analysis.

Analysis of the system of the second order. Let us consider one

additional example, which has larger practical value. Let the

feedback loop of regulating circuit have a gear ratio/transmission

factor
K(p)=K (

-. o
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and the characteristic of discriminator is approximated by the

dependencei': p (x) == xexp -- -

4%

i2

Input dynamic disturbance/perturbation X (t) let us place equal

to W(t) m).*+x.+t.

Since the system possesses astaticism of the second order,

conservative value of following error is equal to zero.

(---

**

"-4""w ,.,, '",v,,; '."-' , -" . , -- ,- , -. ,,,- . . . , " ' ' .,. " - - . '

S.4-.-' . . i, .: ., :
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"Fig. 5.3. Fig. 5.4.

"Fig. 5.3. Dependence of probability of disruption/separation on noise

level at power of close one to critical.

Fig. 5.4. Dependence of critical noise level on dynamic

disturbance/perturbation and to first-order system.
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_*• For the gear ratio/transmission factor of discriminator on random

component we have X. ( . .X | t)F X

The variance of error of tracking in the linearized system on

: * *.-*..-., .-. ,. -. -, -,"_ .'" ,-',. "..',~ ",-.',.-"-"v.C-.'- '. '-" ' " .'.- .- --. . ."-.'- .- .-- "
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the basis (5.3) is equal to

I=_, _+_._,__,, (5.16)
S -47TIK (m, (me '

whence taking into account (5.15) we obtain

4T1 4S2P

(1 ~ (1+ 2sý12 +K(ST2] (.7

For determining the critical spectral density Nf, it is

necessary to find such values of N., with which the derivative of

expression (5.17) on dispersion a would become zero. Calculations in

this case to more conveniently produce graphically. The results of

calculations are shown in Fig. 5.5, where are constructed the

dependences of dimensionless spectral density NM=M.NeYM•W'/ on the

generalized parameter of system KST21 . In rig. 5.5 ;s noticeable not

pronounced optimum, which is observed with KST 2
1 -2.5. The

experimental check confirms the presence of optimim, in the system

with astaticism of the second order, although at smaller value of

KST 2
1 .

CY

U_...

[.4 "

-. -
2-i *.1. . - * - - . -
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Fig. 5.5. Critical spectral density in the system with astaticism of

the second order.

Page 173.

Conclusions/outputs. The .method of the analysis of nonlinear

.reguliting circuits examined.makes it possible to approximately

consid,.r noise level with which the mode/conditions of tracking

becomes unreliable. As showed the experimental checks, method gives

the correct estimation of order of magnitude Nx thich has the vital

importance with they are approximato the calculations of regulating

circuits.

The advantage of method is its comparative simplicity and the

possibility of method is its comparative simplicity and possibility

of the analysis of systems virtually with any filters and

discriminatory characteristics. When the fluctuating characteristic

of discriminator depends on disagreement/mismatch x, the method
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presented can be used after the statistical averaging of

characteristic N.(x) according to formula (3.20).

Deficiencies/lacks in the method include its comparatively low

accuracy and impossibility to obtain the temporary/time and

statistical characteristics of the phenomenon of

disruption/separation. Therefore one ought not to use this method for

the determination of the thin effects, connected with the work of the

follower (for example, for determining the optimum parameters of

discriminator and filter in cases when optimum it is expressed

weakly). Due to the errors, inherent in the method of statistical

linearization, in these cases can be allowed noticeable errors.

5.2. Determination of critical stall conditions on the basis of the

ecqiation -f Pontriagin.

The determination of critical spectral density Nup with the help

of the method of statistical linearization is frequently connected

with the cumbersome calculations. Therefore let us consider one

additional method [88] of determining the critical pover of noise,

valid for the nonlinear systems of first order. At the basis of

method lies/rests the fact that the first approximation fo: the

probability of disruption/separation, found with Bubnov-Galerkin

method, under some conditions leads to the results, which contradict

V "- - - - - -. . . . . . . . o ° . . o .
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the physical basis of phenomenon. For the first time to this is

converrted attention in the work of I. A. Bol'shakov [461.

The probability of the absence-of disruption/separation in

first-order fixed system satisfies the equation of Pontriagin

moreover U(*:T, t)-0.

In accordance with Bjbnov-Galerkin method (see S 4.2) let us

find first approximation for functions U(x., t) in the form

Page 174.

Assuming/setting ()-c"-W--,we will obtain

*~*)not~ {B~ j (X*)cost ±dsp +

From the physical considerations it is clear that the function

#(t) must decrease in the time. This is possible only in such a case,

when is satisfied the condition

. . . . . . .. . . . ... ... " .....

. .- ?...-.-...-.., ......... .... .,,...-,.. ... ,...-.. * .- . *-.:,.,. ,...-.*.-..,..--...-...,.- .- ,. .......... .
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In this case it proves to be that the amount of the minimum

.powier of noise, at which inequality (5.19) still is fulfilled, is

very close to the critical, computed from the method statistical

linearization. Thus, the determination of the critical stall

conditions of tracking in the nonlinear first-order systems can be

reduced to the solution of the algebraic equation

To~~d comut Jc~tz)f~ d%. (5.20)
--T --T

To compute definite integrals in (5.20), as a rule, is not

difficult; therefore the calculation of the critical stall conditions

of tracking on the basis of equation (5.20) can prove to be simpler

than the calculation according to the method of statistical

7" linearization.

Example. Let us consider servo system with the integrator in the

feedback loop (see Fig. 3.5). Stochastic differential equation of

this systel takes form (3.25). The input dynamic

diiturbanc,./peiturbation 1(t)- const, and the characteristic of the

discriminator

Key. (1). with.

Let the spectral density of the white noise, led to the output*0*!'
4I
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of discriminator, not depend on following error, i.e., N.(x) -N..

Then under the done assumptions

2

and equation (5.20) takes the form
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Hence critical spectral noise density

as s.-- •-N•oM72 • (5.22)

Calculation according to the method of statistical linearization

in this case gives N.,•Mo/57kr. which is close to (5.22).

Let us note that the method of determining the critical spectral

density examined is valid in cases when the fluctuating

characteristic of discriminator is not the constant (N,(x)L7

const). Some examples of the determination of critical stall

N:< conditiorns by the method presented are also in work [88].

5.3. The time characteristics cf the disruption/separation of

tracking.

',0*
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In many practical cases it is necessary to know the

probabilistic characteristics of time interval, which passed from the

beginning of observation to the disruption/separation. Total

characteristic of time of disruption/separation is its density of

distribution WVa,()- Regarding 7V MW indicates probability that in

the system with initial conditions x., which occurred at

moment/torque t-0, the disruption/separation of tracking will occur

in the interval of time T- .<t<T+At/2.

Examining the integral law of time allocation to the

disruption/separation

r

..) =w• d,%, (5.23)

let us note that

., I,, =• - w (x, h, Q• x, (5.24)

where w(x, t; x.) - the probability density of the transition of

random process of x(t) for time T from the phase state x, into the

state y. Function w(x, t; x.) can be determined by the method of

solution of the corresponding boundary-value problem for the equation

of Fokker-Planck in the n-dimensional phase space G. From (5.24) it

follows that the integral density of distribution of time to the

*. disruption/separation coincides with the solution of boundary-value

problem for the equation of PontriagilL (2.78).

'?.; )

•........ .
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The determination of the density of distribution of time to the

disruption/separation by the method of solution of the equation of
Fokker-Planck or Pontriagin can it is carried out by the same methods

which were examined during the analysis of the probability of

disrupting/separating the tracking. As a rule, these methods are very

* labor-consuming. However, in many instances it suffices to know less

total characteristics. Frequently, for example, it is possible to be

bounded only to the determination of several first moments of time to

-/.-. the disruption/separation. .

Mean time to the disruption/separation. For the firs~t moment of

time to the disruption/separation it is possible to register
4o--

* m ~ TW!V~dT= T),T dT. (5.25)

a

Introducing the probability of tracking U(x., T)-l-P(x,, T) and

computing integral in (5.25) in parts taking into account the fact

a..°

.•

*wC • a.. *
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thaim pl(x0,-T)_I,we will obtain

U (x-, 7 •t. (5.26)

Using the obtained relationship/ratio, let us form an equation

for the mean time to the disruption/separation, understanding under

the disruption/separation the first output of following error beyond

the limits of the aperture of discriminatory characteristic. Let the

equation of Pontriagin for probability U(x., T) of the absence of

disruption/separation for time T take the fcrm

dl)U
i (Q + B,(x.(,Q (5.27)

I j tJm7

S'where x. - n-dimensional vector, which characterizes the initial

state of system: x9--,xx.,.,X0.). The coefficients of removal/drift

AMx.) ;and diffusion Bqj(r)°" do not depend on time, which is correct for

the systems, which have the constant parameters and which are located

under the stationary effects.
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After integrating each term of equation (5.27) for by the

variable/alternating T from zero to and taking into account that

•:" + n •= U(x,, 7) =--I*
I.%

on the basis (5.26) we will obtain differential equation for the mean

.. . * .. ". . ,.
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time to the disruption/separation

Bi, (x,) + AA (x,) + ) +10.•" .O:•,O~o#OX.t

(5.28)

Equation (5.28) is for the first time obtained by L. S.

Pontriagin in work [35], in connection with which it they

occasionally refer to as second equation of Pontriamin.

During the determination of mean time to the

disruption/separation equation (5.28) is supplemented by the boundary

conditions (
10

where Glis regular part of the boundary of the region of tracking 2

in the phase space for te equations of Pontriagin (see S 2.6).

If following error x(tW is cne-dimensional Markov process, then

(5.28) it is converted into the ordinary differential equation

B. + -- (x. .+ 1=o (5.30)

with the uniform boundary conditions

M"(¥1 "m1 (y2 ) -0O, (5.31)

-.1 where 'y, 7 - boundaries of the aperture of discriminatory

"characteristic.

C-.
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Equation (5.30) belongs to the class of linear differential

equations with the variable coefficients. Its sclution is written out

in general form.

Actually/really, after designating y-dmj/dx,, we will obtain

2 A (,,) 2 0.("2)

Let us introduce the new functions u and;V so, in order to

y-uv. In this case 15.32) take the form

du do A ixo) 2 (5.33)
:i• *, 4,, .W.sB,,) su+--.
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Let us select v in such a way that it would be performed the

equality (

hence we obtain

* - mCa'•. y s- 2 w (so).

From (5.33) taking into account (5.34) we obtain equation for

*i determining the function u: -

• . , -, % --+ 0-'• .

~: '%'&

"% •. " " % . -. • .' . %• . ....*- .'''.. " . -- * .. . " ' . ". . . " . . ' .$ ". . . ".- . ". . - - . "
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Taking into account of expression (5.35), we find the solution of the

latter/last equation

2 S

Taking into account that y-dm,/dx,-uv, finally we will obtain

M, (,) ,-- e (z) dirdx.
,C%

Determining integration constant from boundary conditions

(5.31), let us register the resultant expression for the mean time of

reaching/achievement of boundaries Y,, 72 by the one-dimensional

.Markov process

ms (X.q) B2J(z) dzdx e '9 x) dx-
Ti 18

28z ~s dzdx] Ct(s dx} XSIs Ia Xe

X ['o e"(X) xj-(5.36)

Moments/torques of higher orders. In the case of one-dimensional

-Markov process comparatively easily are written/recorded the

equations for the moments of time to the disruption/separation of the

order higher than first. Let the equation of Pontriagin for

*, probability P(x., T) of achieving the boundaries y,, 72 for time T

S take the form
a*(re =--- ap*IB &
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Differentiating it on time T and taking into account that the

density of distribution of time to the disruption/separation on the

basis (5.23) is equal to

Sap( (5.37)

we will obtain

6W(7) M__.rnf-=a () +± . V--•B-' (5.38)

. ( • Let us introduce'the characteristic function of time to the

disruption/separation of the tracking..........................- .9•

Let us multiply each term of equation (5.38) on e"r an:i let us

produce integration in accordance with (5.39). As a result we will

obtain

B (x4 +A(Q .)-+jvO =0. (5.40)

.d4

It is known that the characteristic function O(v, x.) can be

""represented by Maclaurin series:

6(*Ov, .j= I+ Uvp. 15.0)

A..

. -.. . . .. . . . . . . . . . . . . . . . . . . . .
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In this case mk(xo)- the moment/torque of the k order of time to the

disruption/separation of tracking. Substituting expansion (5.41) in

equation (5.40) and equalizing coefficients with identical degrees

(jv), we will obtain the following recurrent equation for the

moment/torque of the k order

IB . +A% (so) dMI,(xo) +km'7, B ¢ . - + A (x.) d%,_ (*) O

k=1. 29,..., (5.42)

moreover m,(x.)-l. Equations (5.42) must have solutions under the

boundary conditions"" m(y,) -mA (,z) -0O. (5.43)

From (5.42) follows, in particular, equation (5.30V for the mean MT

time to the disruption/separation.
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Dispersion of time to the disruption/separation. Equation for

the dispersion of time to the disruption/separation on the basis

(5.42) takes the form

where *(A ,) (x,)(1544)

[-a'

.4 (4 •()-[14

'p -. ? . '.'? . .. :.. . ... .. •.• ... •. .. . . ."• " ". ,... . .. .. .. .. ..... -.. . . : . .. ... .-. :•, • -
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moreover

Let us consider some examples of the calculation of the time

characteristics of the disruption/separation of tracking.

"1. First-order system with "linear" discriminator. L.et the

follower have linear with slope/transconductance S the characteristic

of discriminator in the limits of aperture -7<x<7 (see rig, 3.1) and

filter in the feedback loop

K

'IOStcastic equation, which describes the behavior of the

analyzed system, takes the form

dz

--T<X<T. (5.47)
_, .€|-l

where W(t) - input dynamic effect.

The example in question is completely realistic.

w,*

---S

V..

-• "i _i •,]i'"':•' ."""• ".' ,'%• "" "," " k. J "" ""a" " -"° " -"•x- ,"C" -" - -" "-• - : -". "- . ". , ' - " "". - "'" ". " . . .. " " "" -. " "' , * . . . . . *- . *. * . .. "...
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Fig. 5.6. The functional diagram of the particular self-alignment: SM

- mixer; UPCh - amplifier of intermediate frequency; ChD - frequency

discriminator; FNCh - low-pass filter; RL - reactance tube; [-

adj•,-table/tuneable heterodyne.
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By equation (5.47) is described, for example, the behavior of the

system of frequency self-alignment (Fig. 5.6) with filter (5.46) when

the passband of UPCh already of the staggering of frequency

discriminator. In this case the characteristic of discriminator

practical is linear in the limits of the passband Af of UPCh. If

detuning x between the signal frequencies and heterodyne exceeds half

of band UPCh jxj>Af/2-7, then signal to the entrance of discriminator

does not pass and system is broken; therefore points ±7 can be

considered the absorbing boundaries.

Examining the case W(7) =-= const, on the basis (5.47) let us

i•

a•.' : • .. - .. • / . . . ..... . . . - . . . . ° . . ' - . , . - .- • o , .. ' . .
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"register equation for the mean time to the disruption/separation
=I d.i

moreover x.=

Introducing the new variable/alternating
(5.49)

let us represent (5.48) in the form

K3Ne n -a~+=0, (5.50)

"* I, (y~l ,, ()) =0, "f, - -T- ,--',

Equation (5.50) is a special case 6f equation (5.30), in which

one should assume
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On the basis of (5.36), let us find expression for the mean time

to the disruption/separation in the example

. •... ,,, (x,= J= s 0 ,, ,) ['(-) - (c,,)] e " dx.--7ip-o"

.=...;.

x . I-00. . J
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Where

,-I

i~ +"
-.! @ 8, = * , 1.9v-.e•
:-,4TZ+.5

With a small dynamic error <<7( I+KS) we have

According to formula (5.53) in Fig. 5.7 are constructed the

graph/diagrams of the dependence of dimensionless mean time to the

disruption/separation am, on generalized parameter VIVI2 at the

different values of the initial error X-x,/7.

Let us pass to determining the dispersion of time to the

disruption/separation.

4e I

.............-"- ."'.'.''.'.'.* -.'--.. ... . . . . . . . . . '.-. -'. "-'.. '••'....-,- _- . . .. . -•-,...•..
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001,

4 4D2.543 4414 471I y~

Fig. 5.7. Mean time to the disruption/separation in first-order

system.
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"For this it is nc;cessary to solve boundary-value problem for ordinary

differential equation (5,44) with boundary conditions (5.45). The

solution of equation (5.44) can be found in general form with the

method which was used during the solution of equation (5.30). the

result of solution taking into account conditions (5.45) takes the

form

To Ts Ts

vhere"•'.•where C -9e" (S) Jq (y) e " C)dydz C-T (S)dz;

o.9

ax
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- mean time to the disruption/separation of tracking as the

function of the initial error x,. In the general case of m,(x.) it is

determined by dependence (5.36).

We will be bounded to the examination of a special case of

symmetrical boundaries Y,--7I=Y with the low value of dynamic error

- C<<7( 1+KS). With satisfaction of these conditions mean time to the..1

disruption/separation is determined by expression (5.53); therefore

Taking into account the concrete/specific/actual form of

coefficients (5.51) of initial equation, on the basis (5.54) and

(5.55) after some transformations we will obtain the following

expression for the dispersion of time to the disruption/separation

during the zero initial disagreement/mismatch:

d2._. (5.56)

The dependence of dimensionless dispersion &'W(O) on generalized

parameter Ty/2T is constructed according to formula (5.56) in Fig.

*.9

,'C °. •.,.••;'•;; •.'•:-'.•.'.;-',':°... ... .- % /... .:-- .... .... % .
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5. 8. At the low values y/<I expression (5.56) considerably is

simplified
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As shoved numerical checking, latter/last formula gives the

possibility to calculate the dispersion of the time to the

disruption/separation with the accuracy not less than 20%, if

T/. o,5.

The expressions obtained in this example .for the mean time and

the dispersion of time to the disruption/separation of tracking can

be used also for the approximate determination of the time

characteristics of disruption/separation in the nonlinear first-order

systems, if we preliminarily produce their linearization.

When the feedback loop of. control system has instead of (5.46)

operational gear ratio/transmission factor K(p)-K/p, the obtained

relationships/ratios and graphs will remain in the force, if we

consider that a-KS, P2 -KNo/4S, 73=-71-7.

2. First-order system with rectangular characteristic of

S""* discriminator. Let us determine mean time to the

. .-.,. ..'-
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disruption/separation of tracking in the system, which has the

discriminatory characteristic:

-AUPH -~T<X<O,
0npii TI

Key: (1). with.

and the fluctuating characteristic N.(x)-N.- const. Such dependences

approximately occur, for example, in the servo auto-selector when

strobe pulses are considerably longer than signal ones.

Let us consider the case when feedback loop consists of one

integrator: K(p)-K/p,MtW(t) -X.M

A.

q
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Fig. 5.8. Dispersion of the time milking of disruption/separation in

first-order system.
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In this case the equation for the mean time takes form (5.30), where

one should assume
* B(,q• JK'VN. A (.)-- (,x.)..

Using expression (5.36)-of the general solution of

boundary-value problem (5.30)-(5.31) taking. into account the fact

that • .

A (dx) 4A

"after some transformations we will obtain

" - s.a l+e~ie

where

a= 4A

_•'k~°% ,, ',- .,•."• -. -' " ._. '.• .... . .. - . - . . -. ."..• ,, :, •.,,, ,, ,. .. <, . .• . ., . . _ .. . . . . .. ... . . .. . . ;:_•.AW *; . ; .-
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In the particular case during zero initial disagreement/mismatch

(x,-O) the result takes the form

X, ( = 4A2 (en I -al).

3. Mean time to phase skip [jump-over] in system of phase automati:

frequency control. The system of phase automatic frequency control

whose functional diagram is depicted in Fig. 3.12, is described by

the following differential equation:

On - 9 ()10ysitin,KfQ) (5.58)

where V(t) - an instantaneous phase difference of the

adjustable/tuneable generator and signal; K(p) - the operational gear

ratio/transmission factor of filter; QO- initial detuning of

frequencies; Q,--band of retention; K - gear ratio/transmission

factor of the element/cell, which manages frequency (reactance tube);

N, - the spectral density of the white noise, led to the output of

discriminator.

Let us consider the case when K(p)-n.
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Actually this occurs in the absence of filter (n-l) or during the use

of the proportional-integrating filter K -)T- P in the system

• . "

.¶1 • ? '' '''' '' ' ' : - ' '''' ' ''. . - • - - ' . - - ' . ...- ' '' .- ' ''. . . ... ' . ' .. .. ,' - - ' . ...
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with the very large band of retention. in the latter case of n-Tx/T.

The determination of mean time to the first migration/jump of

phase to the assigned magnitude for FAPCh systems was produced in

works (17, 57, 77]. Let us consider the case when the synchronized

generator is tuned to a frequency of received signal (Us'-O).' For

determining the mean time to the first excess by the phase v of

"values ±V, it is necessary to solve the boundary-value problem

=0.NO d, _ +1=0, -- I

"On the basis of general solution (5.36) let us register

* expression for the mean time m, during the zero initial

disagreement/mismatch p,-O:

where
£ 49

Using an expansion of integrands in the series/row of the Bessel

functions, instead of (5.60) we will obtain [57]

o'°

.! .q C . .4- - . - -- - .- - . -- --
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X sin 2k?,+8 ~ (a) (Of ?, ,k)j.1

(5.61J)
where

"f I ( S M • 4cosk,,

Y 1,, •,ht I)= Ji k lam
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If it is necessary to determine mean time to the first

migration/jump of phase on ±2w, then, setting in (5.61) 01 =2w, we

will obtain [17]

4 (o)= 20 . (5.62)

In a number of cases the transition of phase beyond the limits

oi ±r can be considered as the disruption/separation of tracking.

Mean time before the onset of this event, as shown in [57], half the

value, determined by expression (5.62).

;'N
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Page 188.

Chapter 6.

ANALYSIS OF THE DISRUPTION OF TRACKING WITH THE HMLP OF ELECTRONIC

COMPUTERS.

The use/application of analog and digital computer computational

technology makes it possible investigated the compl~a problems cannot

be analytically solved which at present. The methods of the study of

the disruption/separation of tracking with the help of the digital

and analog computers can be divided into two groups. Into the first

group enter the methods for statistical testing, which make it

possible to find the solution stochastic differential equations of

servo system. The application of these methods in the analog and

digital computers is stated in S 6.1, 6.2. Into another group enter

the methods of the numerical solution of the equations of

Fokker-Planck and Pcntriagin, who describe the probabilistic

characteristics of servo systems (S 6.3, 6.4).

* 6.1. Simulation of servo system in the analog computers.
.

. .

•
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The behavior of servo system, which is iccated under the action

of the determined 94(t) and random ki(t) disturbances, is described

stochastic different ial equation of the type

des di-I da-Ax X•-= !•'• -r, w,.., x,•, 0, 1, 0, ..., I k ) •,0 V ....

(6.1)
The solution of this equation is random function x(t), which

characterizes change in the time of tracking error. It .is obvious

that by having sufficiently large group of the realizations of

process x(t), by its corresponding working/treatment it is pos.3ible

to obtain the necessary statistical characteristics of process, for

example, the probability of disruption/separation for the preset

time, the mean time to the disruption/separation, etc.

Page 189.

This method of the definition of characteristics in the

literature was called the method for statistical testing (Monte Carlo

method) (6].

For the determination of the probability of the

disruption/separation of tracking for time ta is sufficient from

total Mach number of the realizations of process x(t) to isolate

4'

,}
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those N realizations in which the following error within time to

exceeded the allowed values 7. or 7.. Relation N1M'P*(t) gives the

estimation of the probability of disrupting/separating the tracking.

With increase of M the estimation asymptotically approaches a true

value of the probability of disruption/separation. Thus, the task of

determining the probability of disruption/separation is reduced to

obtaining of the group of the realizaticns of process x(t) and its

comparatively simple statistical processing.

One of the practical methods of obtaining the realizations x(t)

is the simul-, on of differential equation (6.1) in the analog

computer (AVM). Actually, gathering from the units of machine the

necessary integrodifferentiating components/links and nonlinear

devices/equipment and supplying the appropriate

disturbances/perturbations, we will obtain the analog model whose

behavior is described by equation (6.1). Obser-iing the processes,

which occur in the model, it is possible to judge the solution of

equation (6.1). Are examined below only some special

features/peculiarities of the construction of analog models for the

solution of the problems about the disruption/separation of tracking.

In more detail general/common/total questions of analog simulation

are presented, for example, in monograph [9].

Construction of model. During the creation of analog model it is
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convenient to proceed directly from the block diagram of the follower

(see Fig. 1.2). With such method of simulation to each element/cell

of block diagram is placed in the conformity its model, described by

the same equations.

The overwhelming majority of the cascades/stages of servo system

"can be simulated/modelled on AVM with the help of the standard

operational amplifiers, Included by active and reactive/jet feedback.

The models of the simplest linear components/links, which are

frequently encountered in the regulating circuits, and their gear

ratios/transmission factors are given in Table 6.1.

Page 190.
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Table 6.1.
I,) I " 36 Kit=

, ,

Cy..•ToKOM +Ro... "4

+

CySKTop +XaIa +.. + uj"--

R*C*HI~tpV5OMO• mwao d_
S-,. R-

IT. 7-4 ca R#Co, #

b%'" S' ' 'mm - - -R.C

Ka.(i
•4 Key: (1). Name of cascade/stage. (2). Connection/communication

.."
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between input and output. (3). Schematic of model. (4). Designations.

(5). Inertia-iree inverter-amplifier. (6). Summetor. (7). Integrator.

(8). Inertia component/link. (9). Proportional-integrating filter.

(10). Differentiatar.
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The parameters of the elementary cascaies/stages, entering the

model, are chosen in such a way that the coefficients of the

differential equation of model would be Proportional to the

appropriate coefficients of initial equation (6.1).

Let us pause in more detail at the methodology of the

construction of analog model. Let us consider the following specific

problem.

Let us assume the analyzed regulating circuit (see Fig. 1.2)

consists of the nonlinear inertialess discriminator with

characteristic F(x), proportional-integrating filtrer K#(p)= 1+pT and

control device with the operational gear ratio/transmission factor

1(y(P)-K/p. At the input of discriminator functions regular

disturbance/perturbation M(t), at the output - broadband random

process W(t) with a spectral density in the region of the lower

frequencies of N,. Stochastic diffrential equation, which describes

-""I.,. . . ." - - \ " . t " ". • - •.' - • " " " "
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the behavior of the system in question, takes the form

.d- + - -dF- W-

dt' 62
=7'•, .. a'+ L-K4- -K-. (6.2)

Using Table 6.1, let us find for each element/cell of the block

diagram (see Fig. 1.2) its analog model. Combining the models of

separate units in accordance with the block diagram and introducing

the necessary disturbances/perturbations in the form of

stresses/voltages U) and Ut, we will obtain the common model of the

ring of automatic control (Fig. 6.1). The designation/purpose of the

separate network elements briefly is reduced to the following. The

device/equipment, assembled on the operational amplifier Yl,

forms/shapes stress/voltage Ux, proportional to following error

x( tl). The unit of nonlinearity BN-1 reproduces the characteristic of

discriminator F(x), undertaken with minus sign. Amplifier Y2 performs

the role of the summator, with the help of which into the diagram is

introduced noise stress/voltage U.(t). The proportional-integrating

filter is assembled on the basis of operational amplifier Y3,

integrator - on the basis of amplifier Y4. If the solved problem has

not zero initial conditions, then into the amplifiers Y3 and Y4 must

be introduced the corresponding stresses!voltages.

* Page 192.
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So that the obtained diagram would be adequate to initial

device/equipment, it is necessary to supply in congruence parameters

of both systems. Let us introduce the scale factors, which connect

stresses/voltages at the nodes of analog model with the processes in

the reference system:
u•=M).aQ), U1 =M2 .x(),

* t(=A~,~(t) LIM,.Fx),(6.3)
U,= M1.IQ). Us=M,.zf).

Furthermore, let us introduce concept of "machine" time tn.

connected with time tof differential equation (6.2) by the scale

factor
Mf• 1(6.4)

Time ta" characterizes the reaction rate in the model. By the

appropriate selection of coefficient MI it is possible to ensure

that processes in the model would proceed more rapid than real ones

(Mg<lj or slower (M#>I).

The junction/unit stresses/voltages of model (Fig. 6.1) are

connected as follows:

. , - 0,, - ,

- ROO ! +CIRSpu,:::,~U u= - c...,. (6.5)

U" =-,--•.uz (-.) dt

where pmd/dt--differential operator in the machine time.

4!
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=R R:t It H "" "

Ua3.. (6..

Considering relationships (6.3)-(6.4), connecting machine and

initial variable/alternating, let us represent equation (6.6) in the

following form:

S()=R 1. M, R,.R,,M, -x_
R1 =•,, "-? •.1i) - R5 ,,4 C4 M P

RM 1Re t4 (6.7)

From identity cnc15tion of equations (6.2) and (6.7) we obtain,

C;C8"

" -'-

Fig 6..Shmai faalgmd

Pae'93

Let us.combine.the.led.dependences.into.one.equatio
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that the parameters of analog model must satisfy the following

requirements:
R,,M). Rj*ojR,, MtM,..

r- R,,R,1RC 4,,lM.
(6.8)

,,j',-

It3, CR,, = M,.T,, C,,. AMT.

As can be seen from (6.8), a number of coefficients, to be

determined, exceeds a number of equations. This allows/assumes some

arbitrariness in the selection of the parameters of analog circuit.
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The number of the operational amplifiers, entpring the model,

can be abbreviated/reduced, if we combine the opei •tion of addition

with the inertia conversions as this shown, for example, in Fig. 6.2.

In this case input dynamic disturbance/perturbation is supplied into

the model in the form of voltage Q, process )(t) proportional to

derivative.

Noise stress/voltage U1(), introduced into the analog model, must

have the statistical characteristics, identical to initial process

t(t). If machine time 4ý differs from real %, then in accordance

with the value of scale factor Mi should-be corrected spectral noise

density U1(t)
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7.3

The accuracy of the determination of the probability of

disruption/serFration during'the simulation on AVM is comparatively

small and in essence it depends on the characteristics of the

utilized machine (zero drift of operational amplifiers) and the

stability of the generator of random stress/voltage. Usually in the

standard universal computers it is possible to determine the

threshold power of noise, with which the probability of

disruption/separation does not exceed assigned value, with an

accuracy to 10-20%. For the practice of this in the majority of the

cases it is sufficient. If during the solution of problem is required

high accuracy, then it is necessary to take special measures for the

. stabilization of noise source and to use machines with a small zero

drift of operational amplifiers.

4."

.1

* . . . .
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Fig. 6.2. The simplified circuit of model.

Pnge 195.

6.2. Solution stochastic equations in the digital computers.

Similar to differential equations for the determined functions,.

stochastic differential equation can be solved by the means of

discrete/digital computer technology. To questions of the

use/application of electronic digital computers for solving the

differential equations is dedicated a whole series of the books. As

an example let us name monographs [3, 61. Therefore in this work let

us pause only at the short characteristic of the most important

methods of solution and let usjnote the series/row of the special

features/peculiarities, connected with the numerical solution
stochastic equations.

"The majority of the known methods of the numerical solution of

ordinary differential equations can be spread also to the solution of

- . 227 h
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"the equations, which contain random functions. As shown in S 6.1, for

the definition of the characteristics of the disruption/separation of

tracking it is necessary to develop the sufficiently large group of

the realizations of the process being investigated. This can be done

repeated solution of problem on TsVM.

The methods of solving the ordinary differential equations,

including stochastic, can be divided into two classes:

1. Finite-difference methods, based on the series expansion of

Taylor. They include [6] the methods of Euler, Runge-Xutta, Adams and

the series/row of others.

2. tethods in which analyzed system of continuous action is

substituted by equivalent discrete/digital system. The latter is

described by equations in the finite differences which can be solved

on TsVM. This class includes the methods of Boxer-Thaler,

Bergen-Ragazzini, Tsypkin, etc.. [3].

This classification is conditional, that as any method as a

result is reduced to the solution of the finite--difference equations.

In a number of cases the methods of the second class prove to be more

-economically; however, their practical use requires a comparatively

great preparatory work on the composition of the algorithm of

•.'

S • o a . a. aoo.. . . . . .. . .. .%
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solution for each specific problem. Furthermore, appear the

difficulties of the analysis of nonlinear closed systems, which makes

it necessary to artificially introduce into the feedback loop of the

system being investigated delay line at least to one clock space of

solution.
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The methods of the first class are more universal. Taking into

account the noted special features/peculiarities, let us pause in

greater detail at the methods of solving the differential equations,

which relaze to the first class.

Initial relationships/ratios. Let there be first-order ordinary

differential equation

and is assigned the initial condition x(O)=x,. Let us find the

solution of this equation on interval O_44.t, in a finite number of

points oct,-42,<...<L,<J.. For this we will use the expansion of

function x(t) in the Taylor series in the vicinity of point I,:

-(it)+ yt s) (•t()+ (Y-N' $ "( +"" (6.9)

Let us compute the first derivatives x't) at point t,:

.! - . .. . . .
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e(It) If (X. 01

X"(t u[ 0,1.1) •, O,(x.,1) 1(x ,

Substituting into expression (6.9) and assuming/setting them

x(t).-x(h+), we will obtain recursion formula for calculating the

values of function x(t) at the moments of time t,<t,<...:

H 2 of' 8(X(it),tIt)+(11t+1) -- Yt() + -I f (X 04-) 1,) + -21 'L di( z,.,t, +

+ts (I)1. 't) 1(X (it). (t)6+• t (.. 04-It)o)

where H-- &,--.

Retaining in this formula a sufficient number of terms, it is

possible to compute the unknown function x(t) with the necessary

accuracy. Depending on a quantity of terms of series/row (6.10),

utilized for calculation z(At+), they distinguish several methods of
solution. The widest use received the following methods: Euler's

* method, which considers two members of series/row, by Euler-Cauchy (3

members) and Runge-Kutta (5 members of series/row and more).

Let us consider some of these methods in connection with the

solution stochastic differential equations.

-4..
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Euler's method. As was shown in Chapter 2, stochastic

differential equation of the n-order by the corresponding replacement

of variable/alternating can be represented in the form of the system

cf nonlinear stochastic differential first-order equations. Let us

register this system in the form
'• ,(XI, S I,, ,x,, it, (0, 4(It ... ,,4a(Ot) (6.11)

where •(*) -the random functions of time, k=l, 2, ... , n.

For the uniformity of recording let us represent t in the form

bf-variable/alternating x,+lmt and let us supplement to system (6.11) I:

one additional differential equation

As a result the reference system of equations can be registered

in the form

-, x,,...,x), k -,, ,...,m, (6.12)

,.vhere ,.m1,mn+I.

Accordingly Euler's methods the value of functions at the end of

(i+l) space X•+i) are found through the values of functions in -Ie

beginning of this step Xhi according to following formula [6):

where H.,+e--t4-- step of solution.

. . .. . .
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Euler's method relates to the simplest methods of solving the

differential equations. Its deficiency/lack is a comparatively low

accuracy whose increase by decreasing the step H is not always

possible-due to tie loss of stability of solution. Of this

deficiency/lack is 'virtually deprived Runge-Kutta method.

- Runge-Kutta method [6]. According to this method the solution of

system (6.12) on (i+lj step is located through the values of

--I functions xw, Xj, ... •X at the previous space of integration for the

formulas
A i y 4 + +, = ( + + 24, 1 ...,

moreover coefficients /(,%,, , Ks,, Ks'are determined by the

express ions

Kis = Hf, (x,, x,, o.. ,x .,

SI.+...+, 'AK;,. HfI Kit K 1

.. A .. (,,,=s 1 , 1ff,,,( i, + X, .. x., im+ !,,,).

•2_."Page 1i•. 4=f(x+,,;+ ...

*. 'In the reference system of equations (6.12; implicitly enter

•------:idisturba,•ces/perturbations •(t), which are the random functions of

Kii K

+ r X,+ "'X,

• ' . % % , ,, . . : . , ., . . . . - . . . . .. " . .' . . . " . ... . . . . . ' . . - -. " . . .. . . . " - . ' . . ' . - , ,.• - . ° ° . . - . - .• . - - o - - ...
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time. Entire temporary/time dependences in the digital computers are

discrete/digital selections. Therefore during the simulation on TsVM

of random processes it is necessary to manufacture this sequence of

random numbers M)}, so that its statistical properties would be close

to the properties of initial process E(t).

Simulation of the uncorrelated sequences. Large role during the

analysis of the disruption/separation of tracking play the

weakly-correlated random processes. For the simulation of such

* processes on TsVM it suffices to manufacture the sequence of

independent random numbers It, distributed according to required law

It is usually assumed &hat k(t) is gaussian process. However, if

process t(t) has broad band in comparison with the filter pass bane

in the feedback loop of syste~i, then the one-dimensional law of

distribution w(Q) does not play the significant role. Under these

conditions independent of w(t) the process is normalized by a filter.

Therefore during the simulation it suffices as selections 'i to use

..the random numbers, distributed evenly. Since matbematical

expectation of process t(t) is usually equal to zero, random numbers

ti must be centralized. So that the ._ •quence of numbers {t) would be

adequate to initial random process t(t), it is necessary to ensure

the equality of the spectral densities of initial process t(t) and

I

½.>-K.____
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the process, been simulated in the machine.

Page 199.

For the elongation/extent of one step of solution value it

generated by machine, remains constant. The spectrum of the sequence

of the square iancorrelated pulses with the random amplitudes and

fixed/recorded durations H takes the form

*where ardispersion of value ti

In the range of lower frequencies spectral density (6.14) is

equal to
r2 B. (6.15)

The widest use in TsVM find random-number transducers Vi,

distributed evenly on interval [0, 1n. The mathematical expseqation

of the sequence of such numbers is equal to rndo,5mand dispersion

2 =1/12.

In order to simulate/model on the basis of numbers V the

unworrelated central noise t(t) with a spectral density of N. with

the selected space of solution H, it suffices to use the following

algorithmo

V Ht4- -O05). (6.16)

Th iesueinTVffidrndmnmertasucr :

ditibtd vny nineva 0 i. T mahmaia ......................... n
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Simulation of the correlated noise. With simulation of the

correlated noise t(t) with discrete/digital selection {•} it is

important to ensure the required law of distribution w(g), and the

required correlation function of numbers.

For the simulation of the sequence of numbers (ed, distributed

Sa~ccording to the normal law, it is possible to use the central limit

theorem of the probability theory, after taking as 41 the sim of

independent random quantities U distributed according to the

arbitrary law. Using a random-number transducer Xi with the uniform

law of distribution in interval [0, 1], it is possible to obtain

numbers Li, distributed according to the law, close to the normal, if 01

T we use the algorithm

Page 200.

The sequence of numbers (}, formed by algorithm (6.17), has a

mathematical expectation M% and a dispersion 2. In the majority of

the practical cases for obtaining the normally distributed values

1 in expression i6.17) it suffices to sum up 5-7 random numbers XU.

The numbers, distributed according to the law, different from

o°2

',

-.......................... . .
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the normal, can be obtained by the corresponding nonlinear conversion

of initial numbers Xj (3, 6]. In order to ensure the required law of

the correlation of the developed numbers, can be used the method of

sliding addition [3].

Calculation of the probability of disrupting/separating the

tracking. Let us consider one of the possible methods of programming

for determining the probability of disrupting/separating the tracking

based on the example of regulating circuit (see Fig. 1.2) with the

operational gear ratio/transmission factor of feedback loop
K

W Rp V+T) V+PTJ (6.18)

Let the discriminator be inertia-free nonlinear element/cell.

with known discriminatory F(x) and fluctuating N,(x) by

characteristics (noise I(t), converted to the output of

discriminator, is broadband). At the entrance of system functions the

dynamic disturbance/perturbation W(t), which is the known function of

time. The initial state of system is assigned: x(0)=X,o, x(0)=x.,,

x(0'=1x,. By disruption/separation of tracking is understood the

first output of following error x(t) beyond the limits 7,, 7, the

*:[ aperture of discriminatory characteristic, moreover j,<x<7y.

On the basis (6.18) and the block diagram of the follower (see

* Fig. 1.2) let us compose stochastic differential equation relative to

the current following error x(t):
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mTfi) +T(+ L +m4+,KP(x)=

dq

where m-T,1 /T.

Page 201.
',°

This equation can be represented in the form of system of

equations of first-ore'-r:
* ds,

dxt

dso K (6.19)

where
"A, + Vl+ NO d•k I Al

* In order to determine one of the solutions stochastic system

(6.19), we will use Euler's method. Let us decompose the time of

observation !n to n of the equal intervals H whose length let us

take as the space of solution. In zcordance with (6.13) the solution

of systemi (6.19) at (i+l) step is determined by the values of

variable/alternating at the previous i spzce:

,L,'•t,',r~~~~~~~~~~~~~..-..•..'.'..:. -,-. -...... ' -... -.-..........-. ... •....-..-...... .. . •..-....S S
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X,(il+) -X• +Hx3i,
X,(i÷,)= xi+ + 11x6,,
XiX 8 T<m+~xi 6.s0)

where ti- the random numbers, simulating effect t(t) in accordance

with algorithm (6.16), Ag-A(4), i1--.0, 1, 2, .. , n-1.

In order to obtain M. solutions of system (6.19) and to

calculate the probability of disruption/separation, it is possible to

use the program, whose block diagram is depicted in Fig. 6.3. In the

unit of initial data are introduced all constants, entering in
AN

(6.19). Mach numbersAand N are used for calculating the total number

of realizations of process x(t) and number of realizations, in which

occurred the disruption/separation of tracking.

Page 202.

On the basis of the assigned initial conditions x,., x2,, x., from
formulas (6.20) consecutively/serially are computed functions

*xZU+). XI(i+i). xgi+i. After each calculation x.w) the result is equal with

the boundary values 7. and.7,. If Vy"<x,(i+tl<Y4,, calculations are

continued, otherwise is recorded the disruption/separation of

S. '. ** 5 *.. .. . . . .. , . .. . . . . ... ..
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tracking, to number N is adjoined one and is produced transition to

the calculation of new realization. The calculation of a total number

of realizations is realized by an addition of one to Mach number

after each turning to the initial conditions of task.

I
i~

• K
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Fig. 6.3. Flowchart for determining the probability of

disruption/separation.

Key: (1). Initial data. (2). Press/printing. (3). End/lead.

Page 203.

When M reaches the given number M, the calculation of realizations

...................

.'....................*.%q
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ceases and is counted the estimation of the probability of

disrupting/separating the tracking P*(,l-=N/M0. After the

conclusion/output of the obtained result for the press/printing the

process of solution is finished.

Analogously are composed programs also for calculating other

statistical characteristics of disruption/separation.

The approximate estimate of number M., required for guaranteeing

the assigned accuracy during the calculation of the probability of

disruption/separation by the Monte Carlo method, can be obtained with

the help of the asymptotic formula of De Moivre-Laplace:

T, [v•h/*2Pe (I Ap-) 1,

where J*(a<NjM0<P) -probability that the frequency of

disruptions/separations N/Mo, found from 14o to realizations,

1Ses/rests within the limits between a and p; $(x) - probability

integral (1.5); P - probability of disruption/separation; Api, Ap, -

error in the determination of the probability of

disrupt ion/separat ion.

If the probability of disruption/separation P prior to the

beginning of experiment is unknown even approximately, then with

)
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certain supply in the accuracy it is possible to assume P=0.5.

Representation about the number of realizations M., required for

determining the probability of disruption/separation with the

assigned accuracy can be obtained from Fig. 6.4 which is constructed

as follows.

.4

cq.

4,

d

V.:
1q

- . 4

"". . ..
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Fig. 6.4. To the convergence of the method for statistical testing.

Page 204.

With selected number of starts M. (M,=100, 200, .... 1500) was

reýalized the series of 10 statistically independent trials on M.

startings in each. In the course of each test was determined

- estimation P*mN/?4., which was noted in 6.4 by point. Produced

experiment makes it possible to judge the spread of estimations with

:different sizes of samples M,

Selection of the space of solution. From the value of the space

of discretization/digitization H in many respects depends the

S accuracy of the solution of problem. During the selection of space it

is convenient to proceed from effective band width of the s acked

system

.4 Ap$*-; 2 I Kx i)J d@D,
4.

difrn ie o ape ,

. '*3 4 4 * -4.-4 4 4 -- .---- 4.4 .4 . - 4 4 - . -

S- 4. . . . . 4.--- 4
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where K(j(o)- complex gear ratio/transmission factor of the

linearized locked regulating circuit.

Usually it is impossible to analytically determine the required

space of discretization/digitizationwhich would make it possible to

find the probability of disruption/separation with the assigned

accuracy. Therefort during the solution of such problems on TsVM

selection space can be produced in the following manner. To determine

the probability of disruption/separation with the selected initial

space H,, then the space to decrease 2-3 times and to again determine

S' the probability of disruption/separation. If the obtained values of

probabilities differ little, then H, is accepted for further

solution. Otherwise the fragmentation of space is continued until

probability is stibilized.

-.-

I-, :• ,,• ,,- " , . . - . . . . . - . .. .
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Fig. 6.5. Effect of the space of discretization/digitization on the
accuracy of the determination of the probability of

disruption/separation in first-order system.

I.
I_
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Let us give some considerations on the approximate selection of

the initial space H,. Use of relationship/ratio IIl-1I/2&. of

escape/ensuing from the theorem Kotelnikov, frequently gives

inadmissibly the value of space H,. The acceptable value i1. strongly

depends on that, we differentiate or not process x(t). In such a

case, when process x(t) is not differentiated, the frequency of

discretization/digitization must several orders exceed value AF.. As

an example on Fig. 6.5 are constructed the calculated with the help

of TsVM [-WBM - digital computer] graphs of the pri.abiAity of

disruption/separation in first-order servo system as the functions of

dimensionless frequency 4-I/2ýfI&F,, The values of probabilities P are

calibrated with respect to precise values PT. From the figure ore

can see that for determining the probability of disruption/separation

with an accuracy to 10% should be taken the very low pitch:

. -(6.21)

If process x(t) is smooth as, for example, in the servo system

of the second order with the integrating filter, then for obtaining

-o.".
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the same accuracy it suffices to take

, F10-' (6.22)

For the system of tracking with the proportional-integrating

filter K(p)=K(l+pT)/p(l+pT) the required space of

discretization/digitization can be within the limits from (6.21) to
P..

(6.22) depending on value T,/T.

6.3. Solution of equations in the partial derivatives in the analog

computers.

Method of straight lines. At present for solving the

boundary-value problems of mathematical physics were adopted

simulator. Are known the examples when with their aid were solved

equations in the partial derivatives with two, three and even four

independent variables. The simplest simulators are grid models from

-- the passive elements/cells for the solution of the problems of

thermal conductivity.

Page 206.

However, for the equations of Fokker-Planck or Pontriagin they are

"not applied due to the presence cf members with first-order

4 derivative fox the space coordinates. In this paragraph is described

"".--. *.-*-
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the method of straight lines (differential-difference method) for the

solution of the problems about the disruption/separation of tracking

in the analog computers. In principle the method of straight lines

can be used, also, during the solution of the multidimensional

equations, the practical difficulties of solving which are connected

with the limited number of operational amplifiers in standard AVM.

Let us consider the use/application of a method of straight

lines [12, 29, 82] for the solution on AVM of the one-dimensional

equation of Pontriagin

IA -~ B(X O (6.23)

*- with the boundary-value conditions

P(Yg )t) u, (6.24)

"P(x" 0) -o, Y1<X<b (6.25)

where P(x,t) - the probability of disrupting/separating the tracking

for time t-with the initial following error :.

Let us divide the segment iy1 , 72] into N intervals with a

* length of Ax=(7,-7 1 ) IN each. At the internal nodes

Let-.yr+1pac (1-l, 2,by c d N--i)

"* . Let us replace &~rivatives by coordinate x w~ith the finite-difference
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analogs:
OP----• ( ,=P,+, Y) ,-A,( M

(6.26)
"~ ~Op (X.• Pj., "2A÷ (1-'); + A''

where P(() =P(x4I).

" Page 207.

Substituting (6.26) in (6.23), we will obtain the system first-order

of ordinary differential equations with the constant coefficients

; p,+,Q--PI)+P~,,(6,27)

(•),)

where A,-A(xj),B9u-B(x4). Integrating (6.27) on the time, we will obtain

the following system of £quations:

d 2 (Uz)' 2Ax (AX)- +
+ • "•"Jd%* (6.28)

System of equations (6.28) is gathered on the AVM with the help

of N-1 integrators. Pig. 6.6 depicts the block diagram of obtaining

solution in the i node/tuit. To solution P't(t) in the i node/unit is

placed into the conformity stress/voltage Ui():

"- Pi(t) M Mu 4(t). (6.29)
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At end-point& i=0 and i=N the solution is known: P8=0p --=j. Therefore

in these nodes/units are supported constant stresses U-u,--,U. Hence

is determined the scale factor M=I/U. For the economy of a number of

operational amplifiers in the diagram on Fig. 6.6 are not used the

inverters between the nodes. Therefore stresses/voltages uj at the

nodes consecutively/serially change sign. In each node/unit stands

the integrator with three entrances. Amplification factors in each

entrance are equal to the appropriate coefficients of equation

(6.28). Initial conditions are determined from expression (6.25)

g1o),-" -1, 2, ... , N-I. (6.30)

Sometimes it can seem tha. anplification factors for the set on

AVM. In that case it is expedient to change the scale (see S G.1).
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Fig. 6.6. Diagram of obtaining solution in the i node/unit.
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The accuracy of the solution of boundary-value problem

(6.23)-(6.25) on AVM is determined by the systematic ereor in the

method of straight lines and by the instrument error ir the

installation/setting up of the gear ratios/transmission factors of

integrators.

The systematic error in the method of straight lines depends on

the length of elementary interval Ax and error of the approximation

of derivatives in equa ion (6.27). Previously we succeed in

evaluating these errors only in simplest cases [29]. For equation

(6.23) a priori estimations are not obtained.

We will be bounded to the determination of upper limit for value

f.'

.. . . .. . . . . . . . . . . . . . . .
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Ax. Let us consider equation with the constant coefficients of

removal/drift and diffusion

O -" A OP B6.31)

Without limiting generality, let us assume that 7.,=O, 7,=l. The

*use/application of Fourier's method makes it possible to find in this

case the exact solution of equation (6.31):
p ¢, ,) 1- •2 it -- ()u A/B). X,,+.'/,,

)~4-{ (u~n'+-) sJ] exp -- x sin (aitx), (6.32)

"" with which it is convenient to be congruent/equate approximate

Csolutions.

In order to obtain uniform boundary conditions, let us introduce

the probability of retaining/preserving/maintaining the tracking

U(x,t) -l-P(x,t). The replacement of the variable/alternating
t,-Bt/(Ax)2 converts the system of differential equations (6.27) for

problem (6.31) to the following form:

S=¥., tu-e (t,) + pU,., (I,), (6.33

where

I A I A•:-.l---•'•- •xq==+(6.34)

The eigenvalues X of system of equations (6.33) are the roots of

Ž.2 \ j'"'cici~' ~?:-:.--:~*c~.->
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the characteristic polynomial N-i of degree. In order to determine

,.1 them is-comprised the system of recurrent re'lationships/ratios, which

is solved by the method of z-conversions of Loran:

""29 1=1t2,..., N-l. (6.35)

Page 209.

From (6.34) it follows that p-&q-1. Therefore, if p.>0 and qP0,

then p<1 and q<,1. Thus, 0Upq•l/4. In this case from (6.35) it follows

that all eigenvalues )-<O. But if interval Ax is selected

exaggerated, then either p<0 or q<0. As a result product pq<0 and

eigenvalues ý, become complex, which is impossible in the

boundary-value problems for the equations Of Fokker-Planck or

first-order Pontriagin. Therefore during the use of a method of

straight lines for solving equation (6.31) must be satisfied the

condit ion

(6.36)

In the general case, with the arbitrary coefficients of A(x) and

B(x) in equation (6.23) it is impossible to find explicitly

, eigenvalues X. Assuming that in the problems with the variable

coefficients the appearance of instability of approximate solution

carries local character, we consider that the condition of[N convergence (6.36) must be performed at each point cutting off

"S- -.Z
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AX i min (6.37)

As basis/base for assumption (6.3'7) serves also proved for a

series/row of the individual cases theorem [29]: for the convergence

of the method of straight lines for certain equation it is sufficient

c.-, ence of net point method for the same equation. As it will be

shown into S 6.4, condition (6.37) is sufficient for the convergence

of the method of walls. From this condition we find lower limit for a

. number of integrators, necessary during the solution of the

-* boundary-value problem
maxZC.e A (z) 1 (6.38)

N E W T,< 'X< T 1 BS ( )

During the practical use of a method of straight lines it is

necessary to investigate its convergence by a consecutive increase in

the number of divisions N of segment [7,, 72]. In Table 6.2 for case

of A-2 and B=2 is illustrated the convergence of approximate

solutions P(x,t) to precise (6.32) with an increase in the iumber-of

separations N (is accepted linear interpolation of the solutions

between the nodes).

Page 210.

The instrument error is connected with the fact that on AVM

K .
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inaccurately are displayed the factors of amplification of

integrators. If in equation (6.28) all coefficients are put out

absolutely accurately, then I|mPJ(t).r,[. Inaccuracy leads to the

fact that the sum of coefficients in equation. (6.28) is not equal to

zero; therefore steady-state solution is excellent from one.

The practical use of a method of straight lines showed that

basic error is the systematic error, caused by a finite number of

nodes N. With increase of N increases the weight of the instrument

* error.

Increase in the accuracy of the method of straight lines. In

certain cases of the available number of integrators it can prove to

be insufficiently for achievement of the required accuracy.

The first method of increasing the accuracy of solution lies in

the fact that the points of the separation of segment [7z, 7,]

distribute unevenly, congealing them in the region of maximum rate of

change P(x,t) - near the boundary ones, points 7, 72.

i•''. " --...'-'.. -. - .- ".... -' . -. -. -.- %-- -.. -.- . .• -' S . . . . - .. . - - - . -
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Table 6.2.

IIIl. PI I ii p u ,- J

0.01 0,069 0,028 0,019 0.005 0,0009
0,02 0,14 0,077 0,064 0,026 0,0276

0,8 0,05 0,34 '0,29 0,26 0,24 0,2482
0.10 0,5 0,67 0.56 9,55 0,5604
0,20 0,79 0,85 0.82 0,84 0.8517
0,40 0,97 0.99 0,98 0,98 0,9831

0,01 0,5 0,081 0,11 0,077 0,0596
0,02 0,58 0,20 0,18 0,16 0,1630
0,06 0,67 0,39 0,41 0,38 0,3627

0,25 0.10 0,77 0.62.. 0,63 0,61 0,6080
0,20 0,89 0.88 0,85 0,86 0,865
0,40 0.96 j1,00 0,97 0,96 0,9847

Key: (1). with. (2). Precise

"- Page 211.

During the irregular-spaced separation of hL-i-x--. the

derivatives on the coordinate are approximated as follows:

alp +~ Asg. h~<: - I." 4 +, (.,+ + .,-,) 1d 4.:i4S)
~''I~2Pg+,b41.t1-- -- P| (Agl~g" + h" 4 1) +i Pt -- &'+a.'

* .;• OP' 1g Ag2 g., ,h,.• (h,,,it + -:.,-,)'

-'.., The second method consists of a precise approximation of

"derivatives in comparison with (6.26). In the i node/unit during the

calculation aP/ax and a2 P/ax2 we use values Pt not at three points,

but in five:

- - ... ..* . . . - . . . - . . . * .* --.
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OP -P+,+j -8Pt+ 8P., + P,.,
• X * t ' "1 2 4 ,%

Op'P I ..__-_-P-- ""16(Pt+,--Pt-_)--30P.

12 (Ux)

For the illustration of the advantage of the approximation of

derivatives on five points (6.40) in comparison with the

approximation on three points (6.26) let us consider the following

example. The coefficient of removal/drift A(x)=16x24. This expression

is a good approximation of the characteristic of frequency

discriminator. In this case the maximums of characteristic are

arranged/located at points x-±0.5, the absorbing boundaries are

placed at points x-±l.5, where restoring force composes 5% of the

maximum. The diffusion coefficient is placed equal to B-2. In Table

6.3 it is shown, as depends on a number of nodes/units N an absolute

error in approximate solution (solutions are obtained at the moment

of time t-4 at points x-l and x-0).

4.L
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Table 6.3.

""u1c8 30 16 1 24

-. 1 0,607 0,133 0.081 0,029 0.016
"(6. 26) -- -- - - - -S0 0.744 0,182 0,114 0,041 0.018

1 0,093 .--0,21 -0,014 --0,001 0,000
. (6. 40)

-- 0 0000 -0..ooo000

146

.Key: (1). Method of approximation. (2). Absolute error in approximate

.solution with N.
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As the exact solution is accepced the result, obtained with N=50:

with x-1 P=0.491, with x-O P=0.296.

The comparison of two methods of the approximation of

derivatives (S.26) and (6.40) shows that during the use of five

points is sufficient to have N-10-12. At the same time the use only

of three points increases the necessary number of integrators N to

26-30.

A--

-.1

"•-"% '% "% " .. ,. '.' ." -. . , ".% - " -. '.•. . . . , -. ,. ... . .
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In conclusion let us note that if the minimally necessary number

of integrators N1 .., found from (6.38), exceeds a number of

integrators available in AVM or them is insufficient for achievement

of the assigned accuracy, then it is necessary to use digital

computers. For this system (6.27) of differential first-order

equations is solved by the methods of linear algebra. Furthermore,

the use/application of TsVM makes it possible to consider the case of

* time-varying of coefficients A(x,t) and B(x,t) cf equation (6.23). In

this case system (6.27) is converted into the system of differential
W k arrive at our numerical solution by employing known finite-difference)

"equations with the variable coefficients. A methods (method of

Runge-Kutta, Adams, etc. [6)). Solution on AVM of equations with the

%me-varying coefficients to in practice carry out difficultly.

6.4. Solution of boundary-value problems in the digital computers.

The basic method of solution on TsVM of boundary-value problems

for the equations in the partial derivatives is difference method [4].

The solution to the stationary equation for two-and three-
dimensional problems is examined in work E321. Boundary-valie

- --. problems for the unsteady one-dimensional equations of Fokker-

Planck are placed in the standard difference diagrams for the

parabolic equation.

"In this paragraph is ex e-ed the method of obtaining the

explicit difference diagrams, based on the approximation of

continuous Markov process with discrete/digital [90]. This method is

Z. --.



, , . ., , , - , , - - - - - - - - . . . . . . - - ' . "'-. * -o . - . - . . " % • . -.

I . DOC = 83061012 PAGE 3 ,7

applied for the solution one- and two-dimensional unsteady problems.

To solve the equations of higher order is difficult due to the

existing limitations in the volume of working storage and operating

speee, of contemporary computers.
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One-dimensional problem. Let us consider the equation, which

describes difference diagram for solving the one-dimeivsional equation

of Fokker-Planck with the constant coefficient of diffusion B:

Equations with the variable coefficient of B(x) are reduced to (6.41)

with the heAp of .he described into S 2.4 replacementof coordinate

Let us introduce the i:-crete model of the continuous Markov

prýzess r(t), examined/considered in the interival yj•x•j.. We

discretize many states of the Marko7 process x(t):

L:i ihere

I _ 7

SNW
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It is assumed that the end-points 7, and 7, coincide with the

"nodes/units of discrete/digital Markov chain. At the moments of time

14t-k- the Markov process x(t) under the action of noise

disturbance/perturbation obtains the increase

So that the discrete/digital Markov process would converge to

•: -:- continuous, must be satisfied condition [18]

V (6.42)

The promability of increat.e Ax-+Ii, let us designate through

p(x), and increase Ax'--h-- through q(W). The evolution of

discrete/digital Harkov chain is described by the equation of Markov

+q(x+h.)W.x rh=, 0, (6.43)

vhere W(x, 4)-•(x, 4)Oh- probability of %he stay in the node/unit

with coordinate x at-the moment of time t. For determining the

probability W(x, t) equation (6.43) is written/recorded in the
nodes/units of discrete/digital grid ;.: the moments of time 4:

where

)o"• Wh , (
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The transition probabilities p and q are found from the

condition for passag'e to the limit of difference equation (6.43) into

the equation of Fokker-Planck (6.41) with At4O. values p and q it is

expedient to represent in the form

p(X)uig+ C()A uS ( q~ -C (x) hI. (6.45

47. Of both parts of equation (6.43) let us subtract W(x,t), let us

divide on At and let us takie int-o account relationsh~ips/ratios (6.42)

and (6.45). As a reftult we will obtain the difference equation

At

A;,~~ p2W (S. f) +VU-. W ((S

k."s

From comparison (6.46) with (6.41) we find

C ()=A Wx (6.47)

The obtained dif~ference diagram is stable, if coefficients in

equation f6.44) are ion-negative s4]. This leads to the following

conditicn:
- A x . 0."--

~~~0 M'_ -c 7 -T ý ý _t - ______
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The physical sense of (6.48) lies in the fact that the transition

probabilities p and q satisfy conditions 0p<l, 01'_V<l.

The solution of boundary-value problem is reduced to the

consecutive calculation of the probabilities of stetes Whi of

discrete/digital Markov chain according-(6.44) on each temporary/time

layer 1k-*MI for all nodes xj-,hh, with exception of boundary ones, at

which is assigned the condition for the absorption

Page 215.

At the moment of time 1m0 is knawn initial distribution

(2.40)

The probability of disruption/separation P(4) is located by the

addition of the probabilities of the states Markov chain through the

region yi<X<W

"I-.4
P (t)I -.- W6. (6.49)

1=,I1+

Example. Let us solve boundary-value problem for equation 1.6.41)

with the linear coefficient of removal/drift A(x)=-Sx and the

- ~--~- - '.------_-__,o
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syuunetrical boundaries 7a=-7,=7. At zero time the following error is

equal to zero: w.(x)=6(x). By the replacement of variable/alternating

,,•zXI.8•yt,Ijequation (6.41) is reduced to the form

owl (Xt I,) 0 .o,,

where a=8S7-2 /4. Segment -7:X-7 is converted into the sewment

-*/2 Sx,< . If the calculation of difference diagram (6.44) is begun

directly from the temporary/time layer t,=At, then as a result of

extremely high rate of change in the solution near point x-0 with

small t for achievement of a good accuracy it is necessary to take

low pitches A.

,I

S ..2 ± r. . . . . .. . . -. - - . :. :.~ & . .-
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Fig. 6.7. Fig. 6.8.

"Fig. 6.7. Solutions of one-dimensional boundary-value problem for

equation of Fokker-Planck.

Fig. 6.8 Probability of achieving boundaries in linear first-order

system.
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On the other hand, with small t solution (2.44) of problem without

taking into account boundary conditions does not manage considerably

"to spread. Therefore it is possible to find similar t' that with the

U
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assigned error through the probability the representative point will

be found in the segment [-*/3, /] and begin calculation from

moment/torque t=t'+At. Fig. 6.7 shows dependences found thus of

"- density of distribution w,(x 1 , t,) on coordinate x, at different

moments of time. The probability of disruption/separation at the

different values of parameter a is shown in Fig. 6.8. Since in the

course of time rate of change of the solution.w(x, 1) is decreased,

then for the reduction in the volume of calculations it is
expedient in resolving the boundary-value problem to enlargen

space he and value At, connected with the 'pace with re-

lationship/ratio (6.42). In this case must not be broken

condition (6.48).

Two-dimensional problem. The presentation of the methods of

solving the two-dimensional boundary-value problems let us begin

based on the example of control system with the integrator and the

integrating filter in the feedback loop. As it follows from (2.71).

the equation of Fokker-Planck in this case takes the form

w0(X. 1. ) aw B ft

where

-" For the convenience in (6.50) are introduced new in comparison with

(2.70) the dt:signations: x=x,, y=x,. Furthermore, it is accepted that

the dynamic disturbance/perturbation is changed with a constant
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velocity of dX/dt=X?, but spectral density does not depend on the

detuning: N (x)=N..

As shown in example 1 S 2.5, equation (6.50) is supplemented by

the boundary conditions
/a °-,

For obtaining the difference diagram let us introduce the

discrete/digital two-diiensional Markov process, which approximates

the continuous process fx(t), y(t)). Let us decompose the region of

" tracking Q(7,1 SxZ7,, --. <y<.) by the rectangular grid:

Page 217.

Let us introduce discrete time 4w,*-A k-0, 1, 2, ... and as the

two-dimensional discrete/digital Markov process let us take the

following model. Since white noise t(t) enters only into the second

equation of the system stochastic equations (2.70), the at the

moments of time taI random abrupt bias/displacement endures only

component, y(t):

__ =y(!At)--y It) - ±/•. (6.52)

Component x(t) smoother function. In the interval of time At

7 MR

-, ---
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according to the first equation of system (2.70) process x(t) obtains

the increase

.x •=xV+ -x( Y) (r)d,-zy(t+ At. (6.)

It is here accepted that in the interval between moments/torques t

and t+A4t the value of component y is constant and equal to y(t+At)o

So that the digital process yj would converge to continuous process

of y(t) with t-*0 just as in the one-dimensional problem, must be

performed a specific ratio between values hy and At:

v,='•. (6.54)

"0 .•The evolution of two-dimensional discrete/digital Markov chain

is described by the following equation of Markov:

W(x. ,, t+)=
-p•x-.x, g-- 1 ,)W(X-Ax, y--•, O+
+q(x-Ax. y+4,)W(x-Ax, y+h,, 0, (6.55)

where W(x,y,t) -- (xzyt, M)h -- the probability of the stay in the

,,ode/unit with coordinates (x,y) at the moment of time t; p(x,y,) -

the probability of increaseAg-+h2; q(x, Y)*- the probability of

increase Agsm-h-- During the numerical calculations equation (6.55)

is written/recorded in the nodes of network with coordinates

x-mil4 g)-Jhv at the moments of time &-kI:

_.*[ -
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Wkh+I aj.j.,',,+i.,W, (6.56)

where

,-, pQ(L,, !h), qij= q (1i4= J).

During the composition of equation (6.56) it was considered that the

representative point of discrete/digital Markov chain falls only into

the mesh points. For this must be performed the following

relationship/ratio between the increases in terms of all three

variable/alternating

k.k,- . (6.57)

The transition probabilities p and % are determined from the

condition for the transition of difference equation (6.55) into the

equation of ?'okker-Planck (6.50) with At40. For this we preliminarily

* convert the first two members in equation (6.50)

a d w
,r ,,(x,. . 1 -(-+MW; ), _ (6.5

where A=yAt increase in the direction, determined by the equation

of integral curves in plane y=const-

•di d%

° - a a
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.Substituting (6.58) in equation (6.50) and substituting

- • derivatives on y by finite differences, we will obtain that the

equation of Markov (6.55) with satisfaction of condition (4-.54)

passes in the equation of Fokker-Planck (6.50), if transition

"probabilities are determined by the equalities

Difference diagram (0.55) is stable with satisfaction of the

condition

-... ,•< o;

With the numerical solution of problem for obtaining the finite

number of nodes/units infinite with y region 0 it is necessary to

:,- - --•. . . . . ' 4 4
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bound on certain-level y=±L, which is admissible in connection with

decrease w(x,y,t) with y4w. On lines y=±L is assigned zero boundary

condition.

Page 219.

Thus, spaces on to the variable/alternating x, y and t are

connected with three conditions: (6.54), (6.57) and (6.60). The

solution of boundary-value problem consists of the calculation of the

probabilities of the states of two-dimensional Markov chain according

to formula (6.56) consecutively/serially for temporary/time layers

Difference equation (6.56) is obtained from (6.55) on the

assumption that the distaace between the nodes along the axis x is

equal to product Ail', (6.57). In certain cases value h, is sc low

that the volume of working storage TsVM proves to be insufficient for

positiofiing/arranging the entire grid, considertbly increases the

ccunt time. The use of larger/coarser space h. >k!At leads to the

fact that the representative point of discrete/digital Markov chain

can not fall into the mesh points. Actually/really, if in difference

equation (6.55) function W(x, y, t+At) is computed at nodes

*iý -,thy, then function W(x-yAt, yV'h1 , t) they are computed into

points (x--yAl, y#h t), not always coinciding with the-mesh points.

4q, ,• , : . - -: . . ; . - - . - : • ." • . ' _ " : "". , - :• '" . .. • , ' ' " . _ . - ," . " • " - ' • • _ _o • : : , , . . -
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The values of probability W at intermediate points are found out with

the help of interpolation on x. The condition of convergence (6.60)

of difference equation (6.55) does not depend on space /z value of

which affects only the accuracy of interpolation.

Example. Let us consider the case of the linear discriminator:

A(x,y)a-ax-y, 7,--,'0.b under the initial condition

w,(x,y)-S(x)6(y).

-I

S..
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*As

4-.4p•.

Fig. 6.9. Solution of two-dimensional boundarl-value problem for the

equation of Fokker-Planck.

Page 220.

"Just as in the one-dimenrional problem, the nur zal solution

convenie:itly to begin from certain moment/torque of time t', up to

*: which the 6-function had time sufficiently to spread. Solution (2.44)

of problem in the unlimited space at the moment of time t' is

considered as the initial condition -or the rumerical calculation of

* difference diagram from the moment/torque of time tý+At. Fig. 6.9

shows distribution w(x,yt) at the moment of time t-l.5, found for

values of a-0.25, B-0.2. Solution is obtained when h,-o;,. he.-OM,

At-0.0b, t'•0.45, L-1. Froi the figure one can see that on boundaries

of x-±0.5, at points with a zero rate of y=0 distribution w(x,y,t) is

*S= -. .

"* - S . s 5
-. = 5 9
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disruptive. Up to the moment/torque of time t=l.5 the pronability of

the absence of disruption/.eparation U(t)=0.930. It is determined by

the addition of probabilities V.t.! according to all nodes (i, j),

which belong to region 0.

For the confirmation of the correctness of the method of solving

the boundary-value problem accepted for the two-dimensional equations

of Fokker-?lanck the obtained results were equal with the results of

the digital simulation of the system stochastic equations (2.70) by

the methods, presented into S 6.2. The comparison of the

probabilities of disrupting/separating the tracking was conducted

Th both in the linear ones and in the nonlinear control systems. In all

cases is obtained a good coincidence of results.

Solution of the equation of Pontriagin. In this paragraph the

probability of disruption/separation was determined indirectly - by

t"- solution of boundary-value problem for the equation of

Fokker-Planck with the subsequent integration of probability density

for the region of tracking 0. During the research of

disruption/separation the probability distribution of following error

is not usually of interest. Therefore to more expediently solve the

*[[ equation of Pontriagin, since in this case is determined the

.4 dependence of the probability of disruption/separation P(x., y., t)

".-. on the initial conditions {x,, y.

1~UuL.~l.~i:3..I.. .c~~ TC**2 Y-3c.i-:x. - 'f
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Let us consider based on the example of control system with the

integrator and integrating filter (2.70) the solution of the equation

of Pontriagin relative to the probability of achieving the boundaries

of P(x,, y,, t) for time t, if at the initial moment t-O following

error has components 2E y.:

OP, BOCO (8P.61

Boundary conditions for equation (6.61) are obtained in the example,

eXamined into S 2.6,

where the regular part of boundary G'form the straight lines x,-7,,

-a<y,<O and x,-7,, O<y,<m. Initial condition takes t~he form

Key: (1). with.

Page 221.

At the moment of time t=0+0 at points (7., 0), (i72 0) the

" probability of disruption/separation is equal to

P (TI e,). 0, 0 +)= -. (6.84)

,- -.- -.. '...'... .......... --- " ".. .. .
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This is explained by the fact that at zero time rate y with

*robability P-l/2 can become either positive or negative. Therefore

the representative point, which had at zero time of coordinate (7',

0) or (72, 0), at the subsequent moment of time will leave beyond the

boundaries of the region 0 with probability P=1/2. Expression (6.64)

should be taken as the initial condition for the nodes/units of

difference diagram (7,, 0) and (72, 0).

In order to use the difference diagram of the previous section,

by the replacement

SPg. ( ,= " y.e( (6.65)

let us lead equation (6.61) to form (6.50)

- A --- A(x, u),I,-T--. (6.66)

Equation (6.66) describes Markov process with the components Ex.,

.y.), which satisfy the unstable system stochastic equations

-. dx t o

(6.67)
App=rox-I-maiT y. -I- T f,, (.

Approximating continuous Markov process J~x. , y.j

S.. * -. . .* * *.. . . . .. .-
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discrete/digital, we will obtain the difference equation

,( x$,'. + AO
,•p~x--y) T,. )(x#.- A, y. - h,. +

+q(xi-Ax. vA+ T),(x.-•. A .+h,. 0. (6.58)

In this case

Ay- thy, &M---OMSt

h. -. Y~t

I-I

.%
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Difference equation (6.68) is stable with satisfaction of

condition (6.60). Boundary conditions escape/ensue from comparison

(6.65) with (6.62) and (6.63):

Key: (1). with.

For the proof of assumption (6.64) li't us register difference

equation (6.68) at the moment of time t=lAaltzint.x-7, y8,0:

+++'hOM)m(ys. -h,) y (y 1,'h,,o).
"" - ...... .. . C 1llegibleJ

Since according to (6.69) then, aperture q(x,,

y.), we will obtain +
p (" , _I (y,, All)•

Passing to the limit with At4O, which involves l..'-Oiet us find

fl?(T, 0, 1)=To

The obtained result coincides with (6.64).
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As the illustration Fig. 6.10 shows solution P(xo, y., t) at the
moment of time t=1.5 for A(x,, y,)--0.25x,-y°, B=0.2, -,=-7 1=0.5. in

contrast to the equation of Fokera-Planck during the solution of

boundary-value problem for the equation of Pontriagin (6.61) does not

succeed in finding the analytical solution, valid with small t.

Therefore for achievement of identical accuracy it is necessary to

take more fine pitches. Furthermore, region 0 is limited at the level

of the high values L. All this causes an increase in the necessary

volume of working storage of TsVM and rount time. In given in Fig.

6.9 and 6.10 examples the time of solution of problem in the machine

"BESM-4" is approximately/exemplarily 5-10 min.

The systems of the second order with the proportional filters.

The method of solving the boundary-value problems presented can be

used also for the analysis of the sys:ems of control, in which in the

feedback loop are correcting terms. In S 2.2 are described two

methods of the introduction of multidimensional Markov process for

such systems. During calculations on TsVM it is expedient to uose the

secc-nd method using which in the system stochastic equations (2.26)

white noise enters only into one equation and in case (2.70)

examined.

Page 223.

%e -
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In this case the equation of Fokker-Planck is simpler, which

facilitates the composition of difference diagram.

As an example let us consider system with the integrator and

proportional-integrating filter. The system stochastic equations

(2.26) is analogous (2.70). Difference lies in the fact that the

region of the trackings 0 in the phase space (z 1, z2 ) is limited by

the inclined lines

z,+T•z 2-y 1, Zi+ TiZ 3,=, (6.70)

which form boundary of G (see Fig. 2.3). The condition for absorption

(2.75) is assigned therefore on the entire boundary of G of region 0.

As the illustration Fig. 6.11 shows solution w(z , , z,, t) at the

moment of time t-l.5 for the case O(t)=0, A(z.,

z,)-=.0.25(z,+T,z,)-z 2 , 80.2, 7,=-7,0.5, n=T,/T=0.5.

Further observations. The solution of problems with the

coefficient of diffusion B(x) depending on following error x leads to

the nonuniform grids.

14ii

.• .
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.4",

Fig. 6.10. Solution of two-dimensional boundary-value problem for the

equation of Pontriagin.

Page 224.

in some cases (see S 2.4) by the replacement of variable/alterniating

it is possible to give task tG case of Bx)const. But if the

coefficient of diffusion B is constant, but the coefficient of

removal/drift A(x, t) depends on time, then grid remains Uniform, and

the transition probabilities p and q become the functions of time.

The latter fact virtually does not complicate the solution of

problem.

a i a .. ,.."
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it is in principl- possible to compose difference diagrams,

al&s , "r the kolution of three-dimensional unsteady problems.

i,wiver, th- existing limitat'ons in the volume of the working

storaq. .ntemporar;- TsVM considerably narrow parametric domain in

which "An be solved three-dimensional task.

_Al

* Fg. .11 Soutin o tw-dimensional boundary-value problem, for the

Fig 6.1 ouino•w

system with proportional-integrating filter.

- '

. , - " ,

. . . . . .. . . . .
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CONCLUSION.

In the present monograph is examined the series/row of the

methods of the analysis of the disruption/separation of tracking,

most frecquently used in the practice. This makes it possible to do

some conclusions about the possibilities of one or the other method

and advisability of its uae/application under the specific

conditions.

*1I

-vI

•. 4 ".. . . ". . .. . .,. .. . -. ..

•'4,; . - ' :, ! . , , , . ' . - - " '. - . . . . ' , • . . ,

.4, - . : _ . -. . . - ., :- ' , , • : .- . .. .. . . .. . . .. - . .. . . . . . .



K ~ DOC -83061013 PACE

The greatest possibilities for the analysis of the

disruption/separation of tracking possesses the method for

statistical testing (Monte Carlo method). With its aid it is possible

to determine the characteristics of disruption/separation for the

very broad class of regulating circuits. In this case the

mathematical model of system can be constructed taking into account

many thin special features/peculiarities of the work of

concrete/specific/actual device/equipment.

An essential deficiency/lack in the method for statistical

testing is the need of applying the computers. This raises in price

research and does not give the possibility to obtain analytical

dependences.

The Monte Carlo m.thod sufficiently successfully is realized

both on the analog ones and in the digital computers. The latter,

however, ensure the considerably high accuracy of the obtained

results. A method for statistical testing it is difficult to use in

cases when it is necessary to investigate the work of regulating
circuit during the long time of observation. it is inconvenient also

* for the analysis of systems with the very small probabilities of

disrupting/separating the tracking P•IO!-I-Q3 , since in this case

appears the need for carrying out a large number of

launchings/startings of machine.

"• •. •$ •, , • • -• • • ' 'i• •*' "-' •' '-' '-'2 '' "- -~- •" '' -'- -. " -" " ". -. '- "" -"-



S.DOC =83061013 PAGE3 A

Among the analytical methods the greatest accuracy possess the

methods, which are based on the theory of Markov processes.

Unfortunately, their use/application is significantly limited to the

order of the analyzed system. Most successfully they are used for the

analysis of disruption/separation in first-order systems. In this

"case for the fixed systems it is expedient to apply the method, which

is based on the relationship/ratio of Kramers, for the time-dependent

systems - Bubnov-Galerkin method or the method of the compensating

sources. With the complication of the conditions for the work of

system increases the labor expense for the solution of problem.

Page 226.

Thus, if Kramers process gives sufficientiy simple calculated

correlations, then Bubnov-Galerkin method leads to the simple results

only in the case of the sufficiently high level of the noise effect

when for determining the probability of disruption/separation it

"suffices to be bounded to the first or second approximation/approach.

On a small noise level it is necessary to seek higher

approximations/approaches, that it is possible to do with the help of

electronic computational engineering. In a number of cases

* Bubnov-Galerkin method successfully is combined with the asymptotic

p '

* ***, 1*. **** -. - .. *• - o.
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method which makes it possible sufficient simply to determine the

high eigenvalues of solution.

The method of the compensating sources makes it possible to find

the probability of disruption/separation in the systems, subjected to

complicated dynamic effects; however, it requires comparatively

labor-consuming calculations of definite integrals. In cases when

discriminatory characteristic can be approximated by the

piecewise-linear dependence with a small number of salient points (on

"- thc order of two-three), all calculations can be carried out by hand.

* With the complicated characteristics for the calculation it is

necessary to use a computer. In these cases the method of the

compensating sources usually loses its advantages in comparison with

the method for statistical testing. Furthermore, one should also

consider that the latter/last method requires smaller preparatory

work in constructing a program of solution.

For the analysis of the systems of the second order to apply the

theory of Markov processes somewhat more difficult. The sufficiently

well analytical methods of solving the equations of Fokker-Planck are

developed only for the stationary regulating circuits. However, in

these cases it is possible to determine the probability of

disruption/separation not in any parameters of servo system.

Successfully yield to analysis systems with the high or small fading.

". ..,* o. . * . * , * .,*" * . . . . . . .
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In the intermediate cases it is necessary to introduce in the

calculated relationships/ratios of correction in the form of the

coefficients, determined experimentally (see S 3.2).

The proximate analysis of the time-dependent systems of the

second order can be carried out with the help of the method of the

compensating sources. Errors in this method substantially increase in

comparison with the analysis of first-order sy'stems.

Page 227.

The statistical characteristics of the servo systems of the

first and second orders with the very high accuracy can be calculated

by the method of solution of the corresponding equations of

Fokker-Planck and Pontriagin on the electronic coiputers.

For the analysis of systems of higher than the second order to

apply the theory of Markov processes is very difficult and at present

this is virtually not done.

By nature and formulation of the problem to the analysis of

disruption/separation are close the questions, decided in the theory

of ejections. Therefore sometimes for the analysis of the

disruption/separation of tracking it is possible to use the results,
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obtained in the theory of ejections. Most successfully this can be

done when the system of tracking in the limits of the aperture of

discriminator is considered linear, and following error is the

differentiated random function of time. The order of servo system in

this case does not play the significant role.

Connecting the analysis of the disruption/separation of tracking

with the theory of ejections, it must be noted that many questions of

the theory of ejections comparatively easily are solved, if is

*" determined the probability of the first reaching/achievement of

* threshold level. So, if for the stationary random process of x(t) is

-known probability that x(t) in the time interval of observation at

least one time will leave for the level 7, then by simple

calculations it is possible to find, in particular, such

characteristics of the ejections of process x(t) above the level 7 as

the frequency of ejections, the distribution of the durations of
:4

"ejections and intervals between them, the distribution of the

greatest values, attained by process of x(t) in the time interval of

observation and the like [33].

The approximate estimate of the quality of the work of servo

*systems under the conditions for noise effect they can give also the

characteristics, less complete than the probability of

- - < disruption/separation for the preset time of observation. They

• • ".' - - - - - - - - - -
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include, for example, mean time and the dispersion of time to the

disruption/separation, the critical power of noise at which the

disruption/separation it is possible to virtually yet not be

considered the like. The time characteristics of

disruption/separation (mean time, dispersion) with the sufficiently

high accuracy comparatively simply are determined for first-order

servo systems. For the svstens of higher order their calculation is

connected with the solution of partial differential equations. The

critical power of noise is determined comparatively simply; however,

it characterizes the phenomenon of disruption/separation very

approximately.
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