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Page 2.

In the book is given the survey/coverage of the most important
methods of the analysis of the disruption/separation of tracking in
the locked follovers of automatic radio equipment under the effect of
fluctusting interferences. As examples is examined the phenomenon of
the disruption/separation of tracking in the diagrams of the
self-alignment of frequency and phase, in the systems of the
automatic tracking ¢f radar targets. The analytical methods of study,
given in the book, rest in essence on the apparatus for Markov
processes. Special attention is given to the analysis of the
disruption/separation of tracking with the help of the analog and ~
digital computers. Besides the direct application/appendix to the -
study of the disruption/sepafation of tracking the material can be
useful, also, with the research of other nonlinear phenomena in radio

engineering and the automation.

The book is intended for scientific workers and engineers, who

carry out research and design of the radio engineering systems of

automatic tracking.
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Page 3.
PREFACE.

The tendency to fully automate the work of radio sets and to
maximally decrease the role of the man-operator led to the wide
acceptance in radioc engineering of followers. Specific for the work
of the radio engineering systems of automatic tracking is the action
of the fluctuating interferences, which are usually present in the
receiving circuit. Beside the fact that the fluctuations
wvorsen/impair the accuracy of the work of followars, appears the
éanger of the disturbance/breakdown of the very mode/conditions of
tracking, i.e., disruption/separation. With this phenomenon it is
necessary to be couhted during the design of many radio engineering

systems.

The methods of the analysis of the disruption/separation of
tracking began be develcpeé to. intensely only in recent years. This
is explained by the considerable mathematical difficultiss, which
appear during the solution of in principle nonlinear problems which
include the analysis of disruption/separation. In connection with
this the theory of the disruption/separation of tracking is at

present presented, as a rule, only in the periodical articles. The
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dispersion of information according to different methods of analysis
creates known difficultiés for the specialists, who carry out
research and design of servo systems. In this book is undertaken the
attempt to generalize and to systematize available material according

to the analysis of the disruption/separation of tracking.

On the pages of the book the analysis of disruption/separation
is conducted, as a rule, on the basis of the block diagram of
device/equipment without the concrete definition of the functional

designation/purpose of cne or the other network elements.
Page 4. Y ‘35

Therefore, it is possible to consider radio engingerfhg
devices/equipnent different in the designation/purpose from the
single systematic positions. However, in order to facilitate
performance calcula£ion of disruption/separation in the
concrete/specific/actual device/equipment, in €hapter 1 are given the
fundamental principles, which make it possible to determine the
par;meters of block diagrams for different systems of automatic

tracking.

Analytical research of the disruption/separation of tracking in

essence is based -on the theory of Markov processes, the series/row of _
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information from which is presented in €hapter 2. Here considerable

e ram)
e 1;.’..&.

23
«lals

attentior is given %o practically important questions of the
cor.-struc:ion of Ma.kov models for describing of servc systems and
c. - -zt recovding of boundury conditions for the multidimensional

eque : sove of v «pr - Plinck and Pontriagin.

Material of the book is ducdicated to the calculation of the
probabii.iy of disrupting/separating the tracking for the assigned
time intervai (Chepter 3, 4, 6). In this case, as it seems to us, it
was possible to consider the majority of the methods, known at

present, which carry mofe or less general character.

cemy
- q‘:

(L)
s’

In Chapter 5 is assembled the material according to the analysis
of the less total characteristics of disruption/separation. They
include, for example, mean time to the disruption/separation and

critical power of fluctuations.

Widespread putting intc engineering practice of the means of
?« electronic computational engineering makes available research of
complicated nonlinear regulating circuits whose analytical analysis
to carry out difficultly. The questions, which relate to the

:E numerical methods of the analysis of the disruption/separation of

tracking, are examined in Chapter 6.
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During the writing of the book the preference was given up not

. o
AL NAARS

to strict mathematical proofs, but to the physical treatment of

. ¥
A XL

methods and phenomena. The presentation of material in the majority
'éﬁ of the cases is illustrated by specific examples. Therefore the book
3§ can be available to readers having the information about the

probability theory in the limits of the prcgram of general technical

e

%é vuz . [Institute of Higher Education].

o The majority of the methods, examined in the book, is applicable
E? not only for the analysis of the disruption/separation of tracking.
fjg_ The material of the book can be useful, for example, during the

}ﬁ " “research of capture mode in the servo systems, during the analysis of ‘:}
;g some modes of operation of self-excited oscillators and during the

iﬁ calculation of the parameters of the ejections of random processes.
'a Page 5.

r The participation of the ;ﬂthors in the vork on the book was

i%_ expressed as follows: § 4.3, 6.3, 6.4 were written by V. D. Razevig,
ﬂ% Chapter 2 and § 4.2 - by both authors together, remaining material

3% vas written by G. V. Obrezkov.

To the writing of the book in many respects contributed the

- scientific seminars and the consultations, conducted by Cand. the
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physics and mathematics department. of sciences graduate student F.
V. Shirokov and the Dr. of tech. sciences professor L. S. Gutkin. The
authors express appreciation to them and to all participants in the
seminars. The authors are grateful to all comrades, who read the
manuscript, who took part in its discussion, and especially they wish
to note the great wvork, carried out by official reviewers of the book
by Prof. v. L. Tikhonov and by Prof. I. A. Bol'shakov. The authors

R express a deep appreciation for the constant attention to the work
and friendly support to docent S. V. Pervachev, transactions and
ideas of whom in many respects were used as basis for the writing of

this book.

Devoting the book of memory of one of their teachers, V. L.

Lebedev, the authors hope thus at least to partially express

gratitude for that situation of friendly participation and
benevolence of which it was accompanied work in its laboratory, and
to note the large services of V. L. Lebedev in the development of the

theory of statistical radio engineering.

---------------------------------------------------

.................
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...............
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Chapter 1.

NONLINEAR SERVO SYSTEM3 THEIR ELEMENTS.

In spite of the large diversity of the radio engineering systems
of automatic tracking, frequently it is possible to manufacture
single approach to their research. The significant role in this case
plays the study of the work of followers on the basis of the analysis
of‘their block diagrams. In this chapter are examined the methods of
the composition of block diagrams and are investigated their !59

characteristics for different systems of automatic tracking.

1.1. Block diagram of the system of tracking.
The majority of the radio engineering servo systems is
coqstructed on the functional diagram, depicted in Fig. 1.1. Ihput
' sigﬁal usx (A, ), which carries information about the tracked parameter
A(t), enters discriminator 1. At the outpu: of discriminator as a
result of the comparison of signals um() f) and umx(i, t) is formed
stress/voltage u,(x, t), which depends on error x(t)=r(t)-A(t) of the

"disagreement/mismatch between the input (measured) parameter A(t) and
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N
its estimation A(t), which is formed as a result of the work of the

ring of tracking.

-

Fig. 1. 1. Typical functional diagram of servo system
1. discriminator; 2. filter; 3. control circuit
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Page 7.

Due to the presence in input signal _uu(l. ) of interferences
stress/veltage u,(x, t) fluctuates; therefore for increasing the
accuracy of tracking into the s}stem usually are introduced filtering
cascades/stages 2. Stress/voltage u,(x, t) from the output of filter
is supplied to the diagram of control of 3. The latter develops
signal u,..;(-i, {), wvhich is modulated by estimation ?‘(t) in the same way
as input signal #s(A {) by the parameter A(t). Depending on the
designation/purpose of diagram from it are removed/taken either
stress/voltage Usux(d ). or stress/vcltage from other points of

N
diagram, proportioral to certain function of estimation A(t) (for

example, -by its derivative).

Let us pause &t the short characteristic of the elesments/cells

of the functional diagram, depicted in Fic. 1.1.

Discriminator. Device/equipment is in y.inciple nonlinear, which
is necessary for the isolation/liberation (demodulation) of the

signal, proportional to the mismatch error of the parameters A(t) and

N
A(t). The latter, as a rule, are not additive with respect to their

..............
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carriers - stresses/voltages Um (M &) and ususx (A, £). However, for the
parameters A and'a at the sufficiently low value of
disagreement/mismatch x-XJQ discriminator can be considered linear
device/equipment. Here is outlined analogy with the amplitude
detector, nonlinear according to the principle of its operation, but

linear for the signal amplitude envelope.

Subsequently it is convenient to be abstracted from the method
of modulation of input and output signals by the parameters A and ’):
and to use with the block diagram (Fig. 1.2) of the device/equipment
of tracking the parameter A(t).

......................
.....
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Fig. 1.2. Standard block diagram of the tracking device.
Page 8.

Discriminator Fig. 1.2 presents by the upper part of the drawing. In
this case is separately isolated the subtractor, which.develops
mismatch error x(t)-k(t)-‘;‘(t) between the measured parameter A(t) and ﬂ
its estimation a(t).

The dependence, which connects the matheﬁatical expectation of
output potential of real discriminator with disagreement/mismatch x,
in Pig. 1.2 is designated by F(x). This dependence is conventionally
designated as discriminatory qharicteristic. Characteristics F(x) of
some concrete/specific/actual types of discriminators are
investigatad in § 1.2. Range of values x, output beyond limits of
vhich leads to the disruption/separation of tracking, let us name the

aperture of discriminatory characteristic, or, shorter, by the

aperture of discriminator.

.............
----------
-----
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Fluctuating voltage component at the output of discriminator ip
the block diagra;n is considered by the introduction of random process
¢(t) with a spectral density of N (x). Here and everywhere
subsequently by spectrum is understood the following Fourier

transform above the correlation function r(r):
[ 4 *» »
N,azj r(1)e"’"d¢=45r(t)cosmdz. (1.1)
| o

The passband of the radio en-gineering servo systexl;s licks
usually in the limits from zero to ones, and rarer - tens of Hertz.
In this frequency band the dependence of spectral density N_(x) on
the frequency w is’ expressed weakly; therefore frequently assume/set
N.(x)-N.(ij: considering noise §(t) white. The dependence of spectral
density N,(x) on the mismatch error x occurs in many types of
discriminators and is called fluctuating characteristic. The standard
fluctuating characteristics of real discriminators are examined in §

1.2,

For evaluating the quality of the work of discriminators
frequently is used the coefficient, that characterizes

signal-to-noise ratio at the output:

Un
‘.uukm.
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/ﬁ/ =
vhere Un— the maximum stress/voltage, removed from the output of

discriminator; k - the dimension factor of proportionality.
Page 9.

Performance calculation P(x) and N, (%) represents independent,
now and then very complex problem for each concrete/specific/acgyal
type of discriminators. Using subsequently only with the block
diagrams of followers, we consider characteristics F(x) and N,(x)
known. To their calculation is dedicated the very vast literature

vhose short survey/coverage is given in the following paragraph.

In the majority of the practical cases discriminator it suffices
to consider nonlinear inertia-free component/link. However, there are
the situations, when the inertness of discriminator cannot be
disregarded/neglected in comparison with the inertness of the
remaining part of the diagram of tracking. In this case fréquently it
is possible to approximately represent the block diagram of
discriminator in the form of series connection of the inertia-free
block of nonlinearity with characteristic F(x) and linear inertia
element/cell. This leads as a result to an increase in the

dimensionality of the differential equation, which describes the

behavior of the system of tracking.
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Filtering cascades/stages. Since useful output potential of

.—.-
“ e
AAS
L

discriminator is a slowly varying function of time, then as the
filters in the real systemé usually are used low-pass filters. The
wvidest use received the following types of filters: integrating, with
the operational gear ratio/trarsmission factor K4 (p) =_lTlﬂ" (p= Fd‘--—
differential operator); proportional-integrating-K, (p) = —:l—:%;'_;'
active integrating-l(.(p)aﬁi;ii’ etc. The filtering '
cacscades/stagqes, as“i'idié; are linear and as their complete

characteristic serves operational gear ratio/transmission factor

; Ko (p)-

m Diagram of control. As has already been mentioned, its
,_.*. ' designation/purpose is reduced to modulation of stress/voltage
:: M(L; i) by the estimation of the parameter ’i(t). During the analysis
‘j of serve system within the framework of its ‘block diagram the method
:'; of :.nodulation does not play role; therefore as the fundamental

- A
characteristic of the diagram of control serves dependence 'X-Mz),

.f vhere z(t) - the stress/voltage, removed from the output of filter.
a7 )
Page 10.
2
i A
o In the majority of the cases the characteristic A(z) is linear in the

limits, necessary for retaining/preserviag/maintaining the

(-\:;..;:. mode/conditions of tracking. Feast thi> the diagram of control is
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characterized only by conversion conductance Ky = di/dz,

Sometimes the inertness of the diagram of control is
commensurated vith the inertness of filter 2 (see Fig. 1.1). For
example, if in the system with the phase discriminator as the control
device is used reactance tube, then this diagram of control is
simultaneously ideal integrator with the operational gear

ratio/transmission factor Ky (p) =Kilp.

I1f the feedback loop of control system consists only of linear
elements/cells, then it are conveniently characterized by the
operational gear ratio/transmission factor, which encompasses.the

gear ratios/transmission factors of filter and diagram of control
K (p) = Ko () Ky (p)-

Differential equation. With the help of the block diagram it is
easy to register the differential equation, which describes the
behavior of the system of tracking. Thus, on the block diagram,
depicted in Pig. 1.2, for the following error x{t) we have

x(t) = A(t) — K(p) (F(x) +8(D) ) (1.2)

Opefhtional equation (1.2) is stochastic, since into it enters
random function §(t). Revealing in each specific case the content of
operator K(p), on bagis (1.2) we obtain the differential equation of
the analyzed servo system. For example, if the feedback loop of
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system consists of the diagram of control, which is simultaneously
integrator, so that Ky(p) =Ky/P. and the filter of lower first-order
frequencies with the gear ratio/transmission factor Ky (p)=K,/(i4-p7),
then K(p)=- 1:. 77 vhere K=KX,.

The benavior of this system is described stochastic differential

equation of the second order:

Page 11.
1.2. Characteristics of the most widely used discriminators.
The analysis of the disruption/separation of tracking cannot be

produced without the knowledge of the characteristics of

discriminatory device/equipment. The most important characteristics

_are dependences on disagreement/mismatch x of the constant component

of F(x) and spectral density N_(x) of process at the output of
discriminator. The calculation of these charactzristics is in the
general case complicated and labor-consuming task, since it is
necessary to consider the passage of signal and interference not only
through the discriminator, wvhich is nonlinear device/equipment, but

also through entire circuit of receiver, which also contains in a

number of cases substantially nonlinear components/links. In this
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paragraph is given the short survey/coverage of the results available

in the literature according to the analysis of the most important

types of discriminators.
1. Temporary/time discriminators.

For the temporary/time discrimination of pulse video signal the
wvidest use received the diagram, depicted in Fig. 1.3 [92].‘iie input
voltage, vhich is the envelope of the mixture of noise andg periodic
pulse signal, enters the cascades/stages of coincidence KS, and KS,.

In these cascades/stages by gates/strobes Ues and@ Us from the input
‘voltage are cut out the impulses/momenta/pulses by duration T, QEE

shifted relative to each other the interval of time 7.

S

.d;ﬁ” uale)

Pig. 1.3. The functional diagram of the temporary/time discriminator:

KS - cascade/stage of coincidence; N1 - detector.

...................
..............................................
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Impulses/momenta/pulses are supplied to the detectors D, and D,, the
results of detection are subtracted and are formed output
stress/voltage Ux(f) of temporary/time discriminator, depending on
disagreement/mismatch x betweern the center of signal and the axis of

the symmetry of gates/strobes. '

To the ‘analysis of different diagrams of temporary/time
discrimirators are dedicated works [91-93, 95, 97] and series/row of
others (more complete bibliographf on this question is given in
[92]).

Is distinguished the work of temporary/time discriminator with
the jettisoning and without jettisoning of stress/voltags on the
detectors D, and D, before the arrivai of next
impuise/momenturi/pulse. To the evaluation of the effect of
jettisoning stress/voltage on the characteristics of discriminator is
dedicated work [97]. As in it it is shown, the temporary/iime

discriminator without jettisoning of stress/voltage possesses the

. further filtering properties the large, is the more the time constant

Ty of the discharqge circuit of detector. Therefore in the diagram

without the jettisoning in comparison with the discriminator with the

jettisoning with increase 7, is reduced the dispersion of output
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F{ stress/voltage. However, both diagrams ensure at the outwvut of

discriminator virtually identical relation signal/noise.

With not too small a time constant of charging circuits of
detectors, output potential of discriminator with the jettisoning

after the next operation of selection can be represented in the form

x " fobraT
X w=k (u0dt—k [ Lo,
:’; b ey

vhere t,, t,+7 - respectively the beginning of the first and second
selecting impulses/momenta/pulses; T - duration of one selecting

pulse; k - proportionality .factor. Taking into account that ir the

pauses betveen the signal pulses occurs the discharge of the @
capacities/capacitances of detectors, for calculating the

discriminatory characteristic it is possible to uce the

relationship/ratio .
(424 ht3+T
rm.-a.-b[ [ ma-"] ma]e-«,
fo#y.

vhere / - repetition period of the signal pulses; a=1/T;, Tp— 'the

time constant of the discharge circuit of detector.
Page 13.

In the given relationship/ratio input voltage u(t) should be

considered as the function of disagreement/mismatch x between signal
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and axis of the symmetry of gates/strobes. Strictly speaking,
characteristic F(z) is periodic function x with the repetition period
[, equal to the repetition period of the signal pulses. However, with
the large mark-space ratios (//sc>»1) periodicity F{(x) it is possible

not to consider.

Most frequentlg the gates/strcbes of temporary/time
discriminator place directly one after another, so that 7r=T. In this
case, if signal is approximated by square pulse with duration T,, the
characteristic of discriminator F(x) depending on .he duration of one
cate/strobe T takes the form, shown in Fig. 1.4. The
sioﬁe/transconductance Bf discriminatory characteriséic in the region
of the small disagreements/mismatches x~0 is maximum, if the duration
of gates/strobes is not less than the duration of signal (T 2> T,). In
the mode/conditions of tracking usually use the gates/strobes, equal
in the duration to signal. This ensures the best signal-to-noise
ratio at the output of discriminator. If signal functions in the
mixture with the noise, then during ihe calculation of discriminatory
characteristic should be considered the effect ¢f suppression of

signal in the detector of the radio pulses of raceiver [92].
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Fig. 1.4. Characteristics of the temporary/time discriminator: 1)

T=1/2 T,;: 2) T=T,; 3) ™T,.
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As a result for a maximum increase in the constant component of
cutput potential of discriminator, which occurs during . @!@
disagreemcnt/mismatch x=T,/2, it is possible to ohtain the following

expressicn: _ e -
U;fsﬂbfvfégé““<k*ﬂtp;(%;)4‘

UGG e

[P P

- — ...,. , -
vhere 9=3Ue/V 2 9: Uew 9, — respectively signal amplitude and the
dispersioh of noise, 1led to the entrance of linecdar receiver; K -~
factor of amplification of receiver, switching on the cascade/stage

of coincidence and detector; I,, I, - modified functions of Bessel of

the first order of zero and first order respectively.
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As it was noted, with the work of temporary/time discriminator
with the jettisoning output stress/voltage is (Fig. 1.5) the sequence
of exponential impuises/momenta/pulses with the duration ¢, equal to
the repetition period of the signal pulses. The amplitude of pulses U
is by chance with dispersion c",'(x). which depends and the general case

on disagreement/mismatch x. The spectrum of this stress/voltage takes
the form

N DB (g 4 o cogal
) =mramrl e — 27 cosal].

In the region of lower frequencies w~0 we have

26, (%) (1 =¥y
Nyy=2EC P, (1.9

—

To the determination of dispersion JLUﬁ is dedicated, in
particular, work [92]. In Pig. 1.6 according to the results of this
vork are constructed graphs Jb@ﬂ in different ratios q of signal to

the noise at the entrance of linear receiver.

During the calculation of curves it was assumed that the signal
pulse has a rectangular form and a duration, the equal width of one
gate/strobe (T,=T). Furthermecre, it was consider-d that frequency

receiver response has Gaussian form with a bandwidth of Af=1/T,.
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Fig. 1.5 output potential of discriminator with the jettisoning.

Page 15.

As can be seen from Fig. 1.6, on a small level of signal (¢= 0,5)
nonuniformity of fluctuating cliaracteristic can be
disregarded/neglected, assuming/setting

20, (0) (1 — e=¥yt
e ¢

N.(X) ~ N.(0)=

o hmargi

for dispersion %0 in work [92) is obtained the following

expression, valid when T?.i'.:
do=+4 4 (5) [E(5)-B0]+
F4T [ (N =T @D+ (1 —b) X
TN fp St
X(T=%)n(r-%}

wvhere

bl (§) 41,8
b= ()41 (5]
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2

A A . s . .
v, 72 - coefficients of the averaging of fluctuations at the output

of the detector of radio pulses.
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Pig. 1.6. Fluctuating characteristics of temporary/time

diszriminator.
Page 16. éﬂ

1f the frequency receiver response has a form of gaussian curve, then

e—s- (Al‘)'].

?f@9==jfégﬁ-¢KVQEa¢ﬂ*-3;1537[l-

s (4f3)*
)

Q=g o0/ ) — g l1—e

vhere #(z) - the probability integral, equal to

®(2)= ?% 5&"’4& (1.5)

The case vhen strobing/gating is produced by spike puises

(T,<<T), ipread up to the distance 7~T,, and detectors D, and D, are

peak, it is examined in works [95, 97]. Discriminators of such type
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are used in the practice considerably more thinly.

Sometimes the receiving circuit, which precedes temporary/time
discriminator, contains the series/row of substantially nonlinear
cascades/stages. To nom can relate tne limiters, cascades/stages with
the lcgarithmic amplitude characteristics, etc. Performance
calculation of discriminators in this case substantially is
complicated. Some results of performance calculation of

discriminators in these cases are given in works [94, 961.
2, Phase discriminators.

Phase discriminators [91, 98, 99] extensively are used in many
radio engineering devices/equipment. With their aid is realized, for
example, phase tracking and frequency of received signal. They
frequently are used in the devices/equipment of information recovery

about angular target position in radars, etc..

The widest use obtained two types of phase discriminators -
balance and commutation [91]. The diagram of balance discriminator is
depicted in Pig. 1.7. Let us consider its work under the effect at
the input of monochromstic signal u.i(t)-(l,sin (at+9), where ¢ - phase

aisplacement.of input signal relative to supporting/reference

oa (1) =Us sin !,
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~Page 17.

If amplitude detectors D, and D, are linear, then discriminatory

characteristic can be represented [91] in the form
| F@)=KUn(V T+ 2hcwmy— YV TR — T cas),

© Ao . aes

v —ta e

where A==Usm/Un— the ratio of the amplitudes of reference and input
signals on secondary'vindings of transformers; Ky~ the gear

ratio/transmigssion factor of detectors D, and D,.

Standardized/normalized discriminatory characteristics f(9)=
‘F('¢)I2K.l}; for the different values of coefficient of h are given #R
? in Pig. 1.8. With h=l the discriminadtory characteristic of phase
; discriminator has a form, close to the triangular. With the large
amplitudes of reference voltage Uwm>Um, which usually occurs in the
real devices/equipment, discriminatory characteristic takes the form
F(9) =2KxUn coso. (1.6)
The analysis of the work of balance phase discriminator under

‘; the effect at its input of the mixture of signal and noise is g{ven

in work [98].

For the approximate computations of the characteristics of phase

discriminator in the sufficiently large ratios of the amplitudes of

PN R N N
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supporting/reference and input of signals (425) phase discriminator
can be replaced with the multiplier, which realizes the operation
bauz (1) mhung () usn(t).
In this case discriminatory characteristic is determined by
expression (1.6), and the spectrum of the output stress/voltage in
the region of lower frequencies coincides with the spectrum of input

voltage near the frequency of reference oscillator.

PRI B . D S P T
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Fig. 1.7. Diagram of balance phase discriminator.

Page 18.

Let us note that if in the diagram of balance discriminator are used
detectors with the quadratic volt-ampere characteristics, then with
the ideal symmetry of diagram the spectrum of input voltage is -

transferred to the zero frequency without the distortions with any

amplitudes of reference signal.

Wide acceptance in the practice, especially with the work at the
lov frequencies, received commutation type phase discriminators (Fig.
1.9). |

AU T T Y S T
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Pig. 1.8. Discriminatory characteristics of phase discriminator.
Fig. 1.9. Commutation- type phase discriminator.
Page 19.

Reference voltage "Uw(f) in the detectors of such type usually has a
form of meander vith period T=2r/w, vhere w - carrier frequency of
input signal usl(f). e r:;onstant component of stress/voltags umx(f) on
the total cathode load is determined by phase displacement ¢ between
input and reference voltages [91]5

.l;gux =F (Q) = K..U m COSQ,

......................
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3% -
vhere Kex— the gear ratio/transmission factor of phase

digscriminator, equal to

.K“_-_-_ (%'?)”—’7\-‘%%;—)-;

S, Ri— respectively slope/transconductance and anode resistance.

Noise effect on commutation type phaée discriminator is examined
in work [99], vhere in particular, is found the expression of the

spectral density of the output stress/voltage

N ..:.ﬁl‘ﬂ ".1 Nog j0— (2 4 1) @]
o ns .(.) L i (2‘+l)' ’ (1.7)

=~ . )
vhere Key=S/(S+1/Ri+1/R) — the gear ratio/transmission factor of ‘@
cathode follower; Nau(@) — the spectral density of the input vcltage,
vhich is the additive mixture of signal and noise; F:@o- the
frequency characteristic of iow-pass filter at the output of phase

discriminator.

The spectrum of the output stress/voltage in the region of lower

frequencies is determined by the member of sum (1.7), which

corresponds to [=-1: :
&5 F N
N.=—.T .(') i (8 o),
i.e. commutation phase discriminator similar to ideal multiplier
realizes a transfer of the frequency of the input signal into the

region of lower frequencies without the distortion of the form of the
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Page 20.

Usually as the low-pass filter is used the integrating RC

netvork (see Fig. 1.9). In this case

1
+ ‘.T. s T‘ = RC.

Ao=;

3. Frequency discriminators ?!.

-« FOOTNOTE *. The material of this section is written together with ¥u.
CF= A. Yevsikov. ENDFOOTNOTE. )

Frequency discriminators are the devices/equipment, which
convert frequency entering the stress/voltage. The output
stress/voltage of discriminator uz(f) is obtained as a result of the
comparison of frequency of input w with certain standard frequency
w,, for example by the resonance frequency of duct/contour or system

of ducts/contours.

Among the works, dedicated to research of frequency
discriminators during the combined action of signal and noise, one

should note [1, 11, 100-105]. In the practice the widest use obtained

o .
--------
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tvo types of the discriminators: discriminator on detuned circuits
{91] (FPig. 1.10a) and discriminator with the duct/contour and phase
inverter [1] (Pig. 1.10b). Both discriminators have the accuracy
close to the optimum of the measurement of signal frequency with
fluctuating interference [1].

)

.................
...........................
....................................................
....................
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Pig. 1.10. Diagrams of the frequency discriminators: a) on the
detuned circuits; b) with the duct/contour and@ the phase inverter. &

- filter; N - amplitude detector; FD - phase discriminator.
Page 21.

In work [100] are obtained the discriminatory characteristics
F(x) of frequency discriminator with the detuned circuits under the
effect at the entrance of monochromatic signal ux(f)=Um coswct and
normal broadband noise. In the case of the complete symmetry of the
arms of discriminator and when the filters ®, and ®, are single
ogcillatory circuits, and amplitude detectors [, and‘ i, are linear,
characteristic P(x) is determined by the Aependence

F=— L B@)—B@l 08

where K - gear ratio/transmission factor of one arm at the resonance
frequency (taking into account the gear ratio/transmission factor oi
amplitude detector);: }iQ-QU.QJV—%.MUm— maximum signal amplitude at the

output of one duct/contour (with the coincidence of signal frequency

....................................................

...........................

..............................
.........................
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with the resonance frequency of duct/coutour); o - efficient ncise’

voltage in the bana of one duct/contour;

s (5 [0 (5) 41 (3]

____’ Qe , = Q -,
e e R = T

s
-xt"' 2‘..

- dimensionless &etuning'éf the resonance frequencies of the

ducts/contours:;

PR el X

- generalized detuning of signal; a - attenuation factor of

ducts/contours.

If is permitted a 20-30-percent error in the definition of
characteristic F(x), then function B(z) can be calculated according
to the approximation formula |

B~ Y1+

In Pig. 1.11 are constructed standardized/normalized

discriminatory characteristics [(x)=F(x)/UmK, calculated according to

formula (1.5) with x,=1.5.

Page 22.

The calculation of spectral density N, (x) of fluctuations at the

output of discriminator with the detuned circuits is produced in work
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{101] with the same assumptions as in [100]. During the analysis was
used the approximation of the distribution of the signal amplitude
envelope and noise by law of Nakagama. As a result was obtained the

formula for calculating the spectral density N,(¥) with the arbitrary

detuning x and x,.

For the case when signal can be represented by narrow-band
normal random process, the calculation of spectral density N, (%) is
carried out.in work [102]). The resulus of this work are generalized
in [104] in the : se of nonuniform irterference spectrum at the

entrance of discriminator.

To the study of the passage of the fluctuating (in particular,

harmonic) signal and intqrfé}ence with the arbitrary energy spectrum

through the discriminators (see Fig. 1.10a, b) is dedicated work
[105].
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Fig. 1.11. Characteristics of frequency discriminator on the detuned

circuits.
Page 23.

It is assumed in it that the amplitude detectors of discriminator
with the detuned circuits have square-law characteristics u-K.U:,..
where u - instantaneous output potential of detector, Um=— signal
amplitude at the entrance, and the phase discriminator of
discriminator with the phase inverter is ideal multiplier with the
gear ratio/transmission factor K¢s. Then the mathematical expectaticn
of the output stress/voltage of discriminators of both types is

determined by the expression
[

r(oc.o.)=.-2.';4f Nosmds (1.9)

-
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vhere ﬁ(Q)-Nc(Q.Qc)HVa(Q. Qn) =N (Q+w) — displaced into the region of
lower frequencies the total energy speétrum of signal and
interference by the entrance of discriminator; Q=w-w, - deviation of
the current frequency w from standard value @o; Qc(u)-mc(g)—a)o": the
divergence of the medium frequency of the spectrum of signal
(interterence) from the frequency w,; v(Q) -~ standardized static
characteristic. Function ¢(Q) and coefficient u, depend on the type
of discriminator. For the discriminator on the detuned circuits
PQ =k @ =5 Q) p =K

for the discriminator with the phase inverter

¥(Q) =Im Ko (1), pi= Ko,
vhere Ki(f)=|R:(jQ)|: Ri(jQ)=Ki(/Q+jee) — displaced complex gear
ratios/transmission factors of filters ¢, which form part of the

discriminators (see Fig. 1.10).

The energf spectrum of processes at the outputs of

discriminators of both types is determined by the expression

M@ 0)=2% [ FpAe+oze oa (110

—

vhere for the discriminator on the detuned circuits

..............

..........
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h=K:o
EO=EORe+0+EOF ¢+ —
—Re (R, (HX®, R+ j0) K, (R, (% + j0),
for the discriminator with the phase inverter
Xt
-“‘=,_§£, o .
16 0)=F O+ 64 0)—2Re (R, @ K, R+ /0.
Page 24&.

Here K#(jw) - the function, complex conjugated with K(jw).

From expression (1.10) it follows that the spectral density in

_:’ the frequency region, close to the zero, is equal to QG

no.0)=2 [ Fovea o

-0

Relationghips, atios - 10), (1.11) are valid in the case of

harmonic signal, if we assume
N,0,0)=«"30~0).

As an example let us give expression for the
standardized/normalized spectral density of process at the output of
frequency discriminator with the duct/contour and the phase inverter,
obtained on the assumption that at the entrance of discriminator
functions the harmonic signal and white .¢i<s, that passed through

the amplifier with amplitude-irequency characteristic:

.......................................................
.....................
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The static characteristic of discriminator in the passband of
amplifier is considered linear
¢ (Q)=SQ.
Then from expression (1.10) it follows
Rylxy) = N; (x4)

—————
sy +

. -m'-;y.- {e"".”+ﬂq [(2xe—x)* X

IR CRait X2 XF tias NIRRT
vhere xmQfp, =0} P=P.+Pu— the total power of signal and noise
at the entrance of discriminator;P, -}]"/2; Pa=Godl2Vx; Gpy—

spectral noise density; 4=PP./P._— ratio of the power of signal to

the pover of noise.
Page 25.

Pig. 1.12 depicts dependences n:(x.), calculated by formula (1.12)
with the zero detuning of signal x.=0.Prom the graphs it is possible
to find the cut-off frequency, at which the spectral density is in

effect constant.

Pig. 1.13 depicts fluctuating characteristics n(xc).They can be

used for the analysis of the disruption/separation of tracking when
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the energy spectrum of output stress/voltage ux(f) of discriminator
is uniform in the band of follower. From the graphs it is evident
that spectral density 'kQ&) sharply depends on detuning x, virtually

in the entire region of the interesting us signal-to-noise ratios.

Prequently into the circuit of the receiver, which precedes

. frequency discriminator, for the standardization of power is switched

on sysiem ARU or limiter. Performance calculation of discriminator in
the presence of inertial system ARU can be carried out through
formalas (1.9) and {1.10), if we as the input spectral density use
function Ni(w)=N(w)Py(P.+Ps), vhere P, - pover of oscillations, ensured

by system ARU [1].

LA Y O Y. T T T T
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Fig. 1.12. Pig. 1.13.

Fig. 1.12. Spectrum of output potential of frequency discriminator.
Pig. 1.13. PFluctuating characteristics ax.).
4. Direction finders.

For the isolation/liberation from the signal of information
about the angular position of radar target are used the
devices/equipment, called direction finders. Recently the widest use
regeived direction finders with the instantaneous comparison of
signals. As an example can serve sum-and-difference type direction
<inder whose simplified functionai diagram for one plane of direction

finding is depicted in Fig. 1.14.

Page 26.
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The¢ signal, raflected from target, comes simultaneously two
antennas vith radiation patterns G,(¢) and G,(¢) displaced to the
angle 28. The plumbing, which stands at the input of receiver,
forms/shapes total , and differenc® 4, of stresses/voltages, which
together with a stress/voltage of the heterodyne I' enter mixers SM,
and SM,. The stresses/voltages, obtained as a result of conversion,
are reinforced by cascades/stages UPCh, and .PCh, and enter the phase
digscriminator FD. For the standardization of received signal in the
amplitude in the diagram, depicted in Fig. ;.14,_is used
instantaneous automatic gain qpntrol (MARU). Because of 1\RU output
potential of total channel is kept constant, and the output ) ﬁ!@
stress/voltage of difference channel is changed inversely
proportional to voltage on the input of total channel. Phase
discriminator (FD), implementing the operation of the multiplication
of input signals, forms/shapes on the output of direction finder the
stress/voltage, proportional to the relation of the stresses/voltages
of the difference and total channels

"hn~‘;f" (1.13)

The calculation of the discriminatory and fluctuating

characteristics of direction finders composes, as a rule, very

complex problem, since for this it is necessary to analyze a iarge

quantity of cascades/stages of receiver, including nonlinear. Without
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stopping on tha details of analysis, let us note that the
discriminatory characteristic of the direction finder in question can
be obtained from relationship ratio (1.13), if we take into account
concrete/specific/actual forms radiation patterns of the antennas of

receiver.

* we
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Pig. 1.14. Total-difference type direction finder: SM - mixer; [ -
heterodyneé UPCh -~ IF amplifier; FD - phase discriminator; MARU -

diagram of instantaneous automatic gain control.
Page 27.

As 2 result the discriminatory characteristic of direction finder ‘a
will be determined by the expression ‘

’m_u..%{r.:%'ﬁ-g-:-:—i;g—. | EALLEL)
vhere 28 - angle between maximums of radiation patterns; 6 - current
displacement angle between the axis of equisignal sector and the
direction of the arrival of signal; U, - maximum output potential of

phase discriminator, attained at the disagreement/mismatch 6=1g.

The more detailed calculation of tane discriminatory
characteristics of the direction finders of different types is, for
example, in [91]). In this work let us note only the special

feature/peculiarity of discriminatory characteristics (Fig. 1.15),

_____________________________
.............................................................
............
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which consists in the existence of several points of stable and
unstable equilibrium. This is explained by the presence of minor
lobes in radiation patterns of ihe antennas of direction finder. The
working section of discriminatory characteristic, which has the
greatest slope/transconductance, is arranged/located in the vicinity
6~0. It is formed by major lobes of radiation patterns. Side-lobe
level of radiation patterns usually is 20-40 dB lower than the level
of the main things and therefore in the majority of cases it cannot
be taken into consideration. However, sometimes target tracking can
be realized by minor lobes, then discriminatory characteristic must
= (f{[: be examined in the form, shown in Fig. 1.15.

- Together with the direction finder of the type examined in the
practice frequently is applied the system with instantaneous
amplitude comparison [91], the standardization of signal in which is
realized by logarithmic amplifiers. The calculation of the
discriminatory and fluctuating characteristics of this direction

finder is, for example, in work [106]. -
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Pig. 1.15. Standard direction-finding characteristic.
1.3. Concept of interruption of tracking.

As was noted in § 1.1, the behavior of servo system can be
described stochastic differential equation (1.2), which characterizes
change in the time of following error. in the regulating circuit. The
solution of this equation due to the .presence of noise {(t) is the ﬁ!§
random function of time. By analogy with Brownian motion it is

possible ta say that coordinate x(t) randomly "strays" along the axis

- o)x<m,
Page 28.

However, dependence F(x) can be considered as certain force, which
-~ttempts to hold down/retain coordinate x(t) near the point of stable
2quilibrium of system. If with wandering coordinate x(t) will be

beyond the limits of the points v,, vy, whose coordinates are

established/installed previously, then with some stipulations it is
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possible to claim that in the system occurred the
disr.ption/separation of tracking. The position of end-points 7y, and
v, in the majority of the cases is determined on the sharp decrease
near them of restoring force F(x). This occcurs, for example, in the
servo auto-selector of impulses/momenta/pulses on distance [44, 62,
75) and in the system of frequency self-alignment [55, 56] whose
discriminatory characteristics are depicted respectively in Fig. 1.4
and 1.11. In such systems as a result of the output of coordinate
x(t) from the aperture of discriminatory characteristic the ring of

automatic control is broken and system becomes unguided.

In some systems of coordinates v,, ¥, correspond to those

misalignments x, with which the power of the signai, which passed

~ through the receiver from the ring of automatic control, falls below

''''''''

threshold level. This occurs, for example, in the system of argular
target tracking when the receiver of locator additionally is gated on
the distance or in the frequency. With the sufficiently large -
tracking errors on the angle the power of signal in the total channel
falls. If the freedom from interference of internal duct/contour is
insufficiently high, then with some threshold value of following
error on the angle occurs the disruption/separation of range tracking
(frequency). This leads to the disappearance of signal at the output
of direction finder and to the disruption/separation of tracking by
angle [71].
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In & number of cases the characteristic of discriminator is
periodic function x. If the porosity of characteristic is great, then
by disruption/separation of tracking it is possible to understand the
output of coordinate x beyond the limits v,, 7., determined from the
decrease of restoring force of F(x) in one period of discriminatory
characteristic. This is completely justified, since wandering of
coordinate in region F(x)~0 occupies usually long time. A similar
situation is observed, for example, in the pulse auto-selector with

the large porosity of transmitted pulses.
Page 29. ”

With low duty factor of the characteristic of discriminator (for
example, in the system of phase automatic frequency control) by
disruption/separation of tracking frequently is understocd [60, 70]

the first cutput of coordinate x(t) for the nearest points of

unstable equilibrium on characteristic F(x). This event is

DN -'.':'m

DRt O
¢ fatey T
PP NV S S Qi P

occasionally referred to as the disruption/separation >f synchronism
[54], in contrast to the total loss of tracking the frequercy, which
occurs only with the repeated migrations/jumps of phase. A question

" about the disruptios/separation of tracking in the systems with the

periodic characteristics of discrimir-tors is in more detail examined
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in § 3.3.

Strictly spe2king, by disruption/separation of tracking should
be understood the cutput of coordinate x(t) beyond the limits of the
aperture of discriminatory characteristic to the period, greater than
certain permitted for this system. However, the probability of the
return of coordinate x( t) for a comparatively short time to the
region of tracking is usually small; therefore in such cases with the
great probability it is possible to claim that the first output of
coordinate x(t) beyond the limits of aperture y,, ¥y, is equivalent to
the disruption/separation of tracking. The validity of this
confi-wation increases with the increase of the inertness of
regulating circuit. “ubsequently, as a rule, by disruption/separation
of tracking is understood the first output of coordinate x beyond the

limits of the established/installed boundaries v,, 7.. i

Let us pause at the fundamental quantitative characteristics of

the disruption/separation of tracking. Total characteristic is

probability P(x,, t) of disrupting/separating the tracking for the
preset time of observation t. In this case it- is assumed that at the
initial moment t=0 ozcurred the mode/conditions of tracking, i.e.,
7,<x,=x(t=0)<v,. Depending on the character of task the initial value

of coordinate x, can be determined or random.

. . . S R . - . . .
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Sometimes for the characteristic of disruption/separation

L instead of probability P(x,, t) is used its derived

GP (xu‘) 4
W‘.(f)= a {1.15)

being density of distribution of the prcbability of time to the

disruption/separation. However, probability P(x,, t) can be
considered as the integral law of time allocatiun to the

disruption/separation of tracking.

The important parameter, which are determining the quality of
follower, is the intensity of fluctuations at the entrance of the
system, in which the disruption/separation for the preset time of

observation occurs with the probability not more than the given one. @3
Page 30.

By intensity of fluctuations, as a rule, is understood the value cf
spectral density N,(x) the low-freguency coﬁponents of noise §it},
the led to the output discriminator. The recalculation of this value
in the signal-to-noise ratio at the input of discriminator, which is
most interesting for the practice, can be carried out with the lLelp

of the relationships/ratios, given in § 1.2.

The enumerated characteristics of the disruption/separation of

tracking are sufficiently complete; however, their practical

'''''''''''''''''''''''''''''
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determination is frequently connected with the serious mathematical
difficulties. Therefore for the approximate calculations it is
expedient to use simpler, although by less general/common/total
characteristics. For example, in the strongly inertial systems of
tracking with the time of observation, the much larger time of the

establishment of transient mode/conditions, the dependence of the

probability of disruption/separation on the power of fluctuations
carries the character, close to the threshold. In such systems for

the approximate computations it is possible to proﬁose [68] that with
spectiral density, larger certain critical value Ny, the |
disruption/separation of tracking occurs with the probability, close |
to one, but at the less speéiral density - virtually it is not
observed. Value Ny, in these cases is used for the rough estimate of

the quality of the work of servo system.

Approximately the phenomenon of disruption/separation can be

characterized also by the first moment;/torques of distributing

W.(t) the time, which passed from the start of system to the
disruption/separation of tracking. Important role they here play the
mean time m,(x,) to the disrup.:on/separatior. and dispersion &(x) of
time to the disruption/separation. The determination of these values
in many instances can be carried out by comparatively simple methods.
In more detail questions of the determination of the first moments of

time to the 'disruption/separation are examined in Chapter 5.
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™ 1.4. Short historical outline.

With the development of vibration theory began to increase the
interest in the analysis of the nonlinear dynamic systems, subjected
to the action of random interferences. The first works in this
N direction appeared in the thirties of the current century. Here

should be, first of all, noted the basic work of A. A. Andronov, L.

S. Pontriagin and A. A. Witt [35], in wvhom it was for the first time
- proposed to use for determining the statistical characteristics of
dynamic systems an apparatus for the theory of Markov processes. To
the success of this approach to a considerable degree contributed the qgu
appearing on the eve fundamental work of A. N. Kolmogorov and M. A.
Leontovich {25, 26], dedicated to 2 strict mathematical

conclusion/output of equations of Fokker-Planck.

Page 31.

A considersble effect on further development of the me*hods of

? the analysis of the nonlinear systems, subjected to the action of
random disturbances, had the works of S. M. Rytov, I. L. Bershteyn,
-; P. 1. Kuzne.sov, R. L. Stratonovich, V. 1. Tikhcnov, P. S. Landy.

Among them should be isolated articles [23, 28, 36, 37, 50]. Fruitful

L. e RS ST Y
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proved to be alsc the ideas of the work of Kramers [27] and
Chandrasekhar [20], the dedicated to the study of diffusion Brownian

particles in nonvniform field of force.

Por the first time the task of the analysis of the
disruption/separation of tracking in the radio engineering regulating
circuits formulated, aprarently, A. M. Vasil'yev [44]. After noting
. the analogy between the behavior of Brownian particles and random
change of the following error in the regulating circuit, A. M.
Vasil'yev succeeded in using for the analysis of the
disruption/separation of tracking the apparatus of the diffusion
equations of Fokker-Planck. To a number of first works according to
the analysis of the disruption/separation of tracking belongs also
the work of I. A. Bol'shakov [46], in vhom with the help of
Peetz-Galerkin method is found the approximation for the probability

of disruption/separation in the nonlinear first-order system.

Considerable attention to the problem of the
disruption/separation of tracking was given in the international
congresses for the automatic control (IFAK), where among others were
represented raports [32, 48, 49]. Thematics of the majority of
reports, as a rule, did not exceed the scope of the examination of

first-order systems.

...............................
.............

............
............................
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The significant contribution to the research of the equations of
Pokker-Planck introduced the monograph of R. L. Stratonovich [14]
left in 1961, who played noticeable role and in the development of
applied questicns of the theory of Markov processes.

Beginning with 1959-1961 the analysis of the
disruption/separation of tracking in the radio engineering systems it
is developed especially ra: dly, store/add up the basic schools,
which work in this direction. One of them, headed by V. I. Tikhonov,
successfully works in the region of the analysis of the statistical
characteristics of the systems of phase automatic frequancy control
[45, 52-54, 64, 59, 80, etc.]. The analysis of stability of the pulse
servo system in the conditions for noise effect is carried out in the
vork of I. N. Amiantov and V. I. Tikhonov {[21]. In the work of V. I.
Tikhonov [47] is for the first time examined the system FAPCh,
described stochastic differential second order equation. The detailed
survey/coverage of works up to 1964, dedicated to the analysis of the
statistical characteristics of different systems FAPCh, is given in

article [60].

The vork of another school [55, 62, 63, 67, 71, 84, etc.],
created by V. L. Lebedev, are dedicated to the analysis of
disruption/separation in different servo systems of the first and

second order. In particular, in works [55, 62, 67] considerable
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attention is given to the research of the disruption/separation of
tracking by conducting the analogy with the Brownian particles, the
surmounting particles, which surmount potential Barber. In the
-article of S. V. Pervachev [62] is for the first time correctly posed
the problem about the disruption/separation of tracking in the system
of the second order with the proportional-integrating filter, is
comprised for this case the equation of Fokker-Planck and for a

series/rov of special cases is obtained its approximate solution.

To the analysis of the statistical characteristics of systems
FAPCh is dedicated the series/row of the works of V. V. Shaklkgil'dyan
[70, 77, etc.].

To the determination of the approximate stall conditions of
tracking in the complicated nonlinear systems is given much attention
in the work of collective under G. G. Sigalov's management/manual

[68, 85, etc.].
Page 32.

Taking into account that the dependence of the probability of
disrupting/separating the tracking on the signal-to-noise ratio in a
number of cases carries a sharply pronounced threshold character, the

authors of these works, using theory of statistical linearization and

- L T R I S . FIRS
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averaged differential equations, define critical stall conditions as
3 loss of stability in the system. To analogous questions are dedicated
| . also works [69, 88]. Unfortunately, the estimations, found with such
;i methods, lose their statistical properties and do not depend on the

time of noise effect in the system.

ﬁ In the works of V. M. Artem'yev [89, etc.] to the analysis of

; the disruption/separation of tracking extends one of the
modifi_ations of the method of successive approximations - method of
the averaging of functional co;rections which is used for approximate
solution of the equation of PFokker-Planck. However, unwieldiness of

method substantially impedes its use in the practice. -~

-Among the foreign research in the field of the analysis of the-
disruption/separation of tracking it is possible to note works [51,
57, 58, 66, 76], dedicated in essence to the study of different

systems of phase automstic frequency control.

g On the formulation of the problem to the analysis of
X disrupticn/separation is close the task of the definiticn of the
characteristics of the ejections of noise for certain level. To

detailed research of these questions is dedicated, in particular,

monograph [17].
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Development of analog and digital computational technology made
it possible to work out the series/rowv of the methods of determining
the probability of disruption/separation with the help of the
simulation of servo systems in the computers. In works [32, 82, 90]
is demonstrated the possibility of determining the statistical
characteristics cf servo systems by the method of solution in the
analog and digital computers of the corresponding‘equations of

Fokker-Planck and Pontriagin.

To experimental resear f the disruption/separation of
tracking in different radic . ineering regulating circuits are

dedicated works [52, 53, 56, 58, 61, 761. )

Certain representation about the hictory of the development of
the methods of the analysis of the disruption/separation of tracking
can be obtained from the section B of the bibliography, placed at the
end oé the book. Bibliography in this section is comprised in the

chronological order.
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Page 33.
Chapter 2.
BASIC INFORMATION FPROM THE THEORY OF MARKOV PROCESSES.

The theory of Markov processes in spite of a comparative youth
is the very developed region of mathematic; and plays large role in
the research of nonlinear regulating circuits. Without having the o
capability to state :t in detail, let us pause at some most important
positions, necessary for the analysis of the disruption/separation of

tracking.
2.1. Basic concepts. Terminology.

Concept of aftereffect. For dﬁterdining the Markov process high
value has a concept of aftereffect. Random process x(t) is
characterized by m-dimensional probability density

®(%1, %3, oo il B oo fm), vhere Zi— value of process of x(t) at the

moment of time I
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Let us introduce into the examination conditional density
w(xn-‘ tm] %, Uy X3, U35 oo Emats Im-1), Yhich characterizes the distribution of
| pfocess of x(t) at the moment of time ‘;'if at the previous
moments/torques it took values %y, %1, ..o m-+ This makes it possible

to regiSter *ﬂ x'. coor xu)zw (x" x., cooy X..-.) x

WKW (XX, s cor Krmes)s @4

Here and sometimes subsequently for the reduction of recording

temporary/time arguments in the distribution functions lower.

Cﬂ > . Special interest they present two special cases:

N el . Set) = (). (22)

o ——————. . —— v . wonmie

The given rélationship/ratio characterizes the mutual independence of

separate ordindtes X% of process x(t).
Page 34.

In this case multidimensional probability density .alls into the
product of the one-dimensional ones _

W T e T) =W (E)D(5) .. ().
The process, which possesses property (2.2), is called white noise.

2) w(Xm| Xy X3 o0 xml)'w(hi;;v-l)- (2.3)

------------
................




...........

DOC = 83061003 pace bV

Relationship/ratio (2.3) characterizes the simplest form of
communication between the separate ordinates of process x(t), i.e.,
the value of ordinate at the m moment of time depends only on the
value of ordinate at the previous moment/torque. This random process
is conventionally designated as process without the aftereffect or by
Markovian (on the name of A. A. Markov, who for the first time

studied the discrete/digital version of this process).

Markov process is completely characterized by two--dimensional
probability density, or it is more precise, by one-dimensional
density and with the probability density of transition.
Actually/really, on the basis of (2.1) taking into account (2.3) we a0

obtain W0 oere Xm) = (X0 conr X)) W (X | Xmoy) =

=U(X,. coey xﬂo')w(xﬂ-llxﬂ'l)w(xﬂ|x~") =
= w(x') w (x. | x,),... W (xn lxm-|)o (2°4)

Function ®(%|%)=w(x; & x, &) is a probability density of the
transition of process of x(t) from state %i of occurred at the moment
time % into state ¥ up to the moment/torque of time.{;

Mavkov process is conveniently examined in the phase space
vhose dimensionality is determined by number n of mutually
independent coordinates Xy X3 .. ¥« 1f n=1, the Markov process x(t)
is called one-dimensional, if n>1 ~ multidimersional. In the latter

case the state of process x(t) at the moment of time #h is

B, P T Y W . Y.



...............
..........

DOC = 83061003 PAGE b$

characterized by vector Xam={xin, X, <00 Znr), determined in the phase
space 3. Then the probability density of transition is

written/recorded as w(x; & Xi, ).
Page 35.

It is possible to show [5] that process x(t) is n-dimensional
Markovian, if its componeni:s"" satisfy the system stochastic

differential equations

ot 4 Pl e 5 D00

O A SO Y ¥

vhere &, by— determined functions, in the general case nonlinear,
8(f) —independent white noises with the single spectral densities.
In expression (2.5) the spectral density of real random process
always can be reduced to the single by the corresponding change in
the coeificients of ?mtensii:ies bis- Hovever, this requirement is not
fundamental and is introduced only for convenience in further

recording.

A question about how to determine multidimensional Markov
process so that the following error would be one of its component, is

examined in the following paragraph.

Y
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Are at present known sufficient conditions with executing of
whiclh: there is continuous and unique solution of the system
stochastic equations (2.5) [5]. These conditious limit an increase in
coefficients as(x, _?). and by;(%, !). Por the one-dimensional Markov
process, for example, must exist such M<e, so that so on of all xeQ

and yeQ would be satisfied the conditions

-Ja(s, H—a(s. O] +]b(x, O=b(y, ) |<M|s—y[, |
a3(x, ) +6%(x, ) S M2(1+23), :
With the disturbance of these conditions for existence of the

unique and continuous solution stochastic equation must be proved
additionally. In the tasks about the disruption/separation of

tracking stochastic equation is assigned in the limited interval of ‘ﬂ
values x; therefore the formulated conditions, as a rule, are
satisfied for the real formu of discriminatory and fluctuating

characteristics.
Let us pause at some important properties of Markov processes.

Stability. Markov process is called stationary (uniform), if the
probability density. of transition w(x; ¢;; x;, {;) depends only about
difference t=4{—# and it does not depend on the position of tne

[ . Ny 1
initial moment of reading ‘¢ ‘'

Relationship/ratio of Chapman-Smoluxovsky. Large role in the
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theory of Markov processes plays the relationship/ratio of Chapman-

Smoluxovsky.
Page 36.

If we introduce three moments/torques of time t,, t' and t, such,

e that f<t<t, that this relationship/ratio takes form [18°

s wix, t; x, 1) = S WK’ 15 X, d) 0 (X, 6 X' ) dx', (2.6)

3 . -0 e e

o It makes it possible to determine the probability density of the

transition of process of x(t) from state x, into state x, if they are
known to the probabiliiy density of transitions from x, to the

intermediate state x' and from x' in x.

2.2. Description of control systems with the help of the Markov

processes.

In the servo radio engingering systems the random process x(t)
being investigated (for example, the current error of automatic
tracking) is assigned stochastic differential equation of form (1.2).
In order to have the capability to study the behavior of process x(t)
by the methcds of the theory of Mafkov processes, it is necessary to,
first of all, express x(f)) through the components of the

corresponding Markov process x{t), in the general case of

.- . 3 . LY P . A . . . - ® - A - - - .« - - - » - - - T e
. PRSI . - Ty e A e e RN R . - L e e . .. . - R
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- multidimensional. In cther words, it is necessary to select such

coordinates of n-dimensiznal phase space @ so that x(t) in this space

would prove to be process without the aftereffect. For this is

necessary satisfaction of the following conditions.

First, all random disturbances, entering initial equation (1.2),
mustwtake the form of white noises. In the second place, should be so
selected the coordinates of phase space, in which is determined
vector x(t), so that n-dimessional equation (1.2) it would be
possible to register in the form of system (2.5) stochastic
first-order equations. The first condition usually is satisfied,
since the servo systems in the majoriéy of the practical cases have 5!9
the narrow passband ‘in limits of which the interference spectrum it .
is possible to consider uniform. In such a case, when the spectrum of
disturbance/perturbation n(t) is substantially nonuniform in the

~passband of system, the introduction of the further forming filter
(Fig. 2.1) with the operational gear ratio/transmission factor K(p)

. makes it possible to reduce t@e perturbing action to the white noise
g(t). As a result initial stochastic equation (1.2) will take the

form

x{) =20 —K () F @)+ K, (P)t (). N

2 Page 37.

introduction of the forming filter leads to an increase in

...............

------
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the order stochastic differential equation and, therefore, to the
complication of the process of determining the probability of

disruption/seraration.

Satisfaction of the second condition, as a rule, causes great
difficulties and requires further limitacions to the form of
differential equation {2.7). In particular, for this it is necessary
that the gear ratios/transmission factors K(p) and K{(P) would be the

rational-fractional functions of operator p.

Rnown several methods of the determination of phase coordinates
Xy, X3, ..., X», which make it possible to introduce the Markov process of
x(t), connected with random process of x(t) [10, 24, -39, 42, 57, 62].

Let us consider some of them.

First method. Let K (p)=L.(D)/M:(p) 8 K, (P)=1, (p)/M, (p)m where
Le, L,, M, and M, - polynomials of the aegrees cf operator p. Let us
register equation (2.7) in the_ following form:
M(p)x(t) =M ()M —L(P) F()—QPIE(D),  (28)
vhere M(P)'-MO(P)MA(.P-)-&.lup”"*‘lh—lp_":;;l" 'Hlo—l polynomial of the n
dégree relative to Lip)=L,(pIM,(p) mimp™+ ... +{ and
Q(P)=Ls(p)Li(p)=7-0"+ ... g— polynomials are not older than the

(n-1)th degree. Without the limitation of generality let us assume

Pu=1,

LY
................
.................

.....
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Let us isolate separately the case, when Q(p) is the polynomial

of zero degree (Q(p)=q,).

™

........
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.......
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Alt Q(‘)
LX) Do %(2) L

Y,

| X1p) |e

Fig. 2.1. Bringing random disturbance tv the white noise.

Page 38.
In this case the following error x/*' is one of the components of the |
n-dimensional Markov process x(t) .. ae space with traditional phase
coordinates X, %, %

T x = ]

X, ==-X40), -

il e
i
+Mp) 2O —LP)F(x)—aqk).

with VE;Y[’the introduction of multidimensional Markov process is

complicated. Let us consider the preliminarily special case when
dependence F(x) is linear, i.e., F(x)=Sx (linear discriminator).
According to [10] let us introduce the first n-1 coordinates of phase

spece  that so thut

....................
............
.................
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=x(‘)v ]
__.x.-i-C!(l).

41— 5, +.CR O, - @19

vhere €, Cs ... Ca-t— some, unknown thus far coefficients.

Prom (2.10) it follows that

I;a.x.,,-ygc.- S0 o 1<k<n—1,
. Loew
. :
fatpr Yoot -
Por the linear function F(x)=Sx is fulfilled the relationship/ratio

L(p)F(x)-SL(_p)x. . (2.12)
Page 39. -

Taking into account (2.11) and (2.12) equation (2.8) takes the

form

- § ' -3 dle “) fmde}
h7'=—2 }\ng,“ —— it 2 hd-‘c._
AmO [~ Am)

=l
— i Y s M (PR~ s;]z.xm

,sg L 10) ,2_-“ noiCr— x Wyt @19
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Let us select coefficients C; so that the factors, which stand
in equation (2.13) with the derivatives of white noise, would become

zero. For this is necessary satisfaction of the following conditions:

— .
" ot iCai+ ST bk =0, @19
Aml . k=l

‘=‘.2'.uon—l° °

Sequentially solving equations (2.14), let us determine unknown
coefficients Ci Cu... Cat' with the execution of equalities (2.14)

equation (2.13) takes the form

|
_ h%“""M(P)l(o "gl‘txl-r.:"sz I Xnes = .

A=m(

=1
- [g pCat-S 2 hCr 4+ q.} (o). (2.15)
] il

Latter/last equation and equations (2.10) form the unknown system

‘‘‘‘‘‘‘‘
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stochastic differential equations relatively component X, %, ... %, -Of

the n-dimensional Markov process x(t).

With the nonlinear characteristic of discriminator F(x) of
equation (2.8) also it is possible to reduce to the system stochastic

first-order equations, not containing derivatives of white noise.

Page 40.

S. V. Pervachev proposed the following method of the introduction of

the first n-1 the component of the Markov process
X, = x (f), . 1 '

T=x

< o & 0 &6 & 0 % 9 0 0 0 o

. .
T—'— &3 Xyoa4y+Cit (0' {(2.16)
e ke s+ G N, '
Lactts = %o o+ C (30 2JD,
) '

® 6 & o o 9 o o ¢ 0 & & * & o 0 2 0 o o

. %- ‘=X;+C. (x.. Ky oees xl-:) t (t)’ '

- where 3= max. (m, r) - the greatest exponent of polynomials L(p) and

a(p).
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In contrast to system (2.10) here factors C:i are the functions
of variable/alternating ;;wfhe general/common/total methodoiogy of
the.determination of functions CK{)is analogous to the methodology
of that '---eged above of the determination of coefficients Ci in

equalities (2.10).
Let us consider the example very widespread in practice.

Example. Let the feedback loop of the ring of automatic control

consist of integrator and proportional-integrating filter, so that
K149l . T o
x“)- ’ +’ Oa-.T‘ (2"7)
The perturbing action let us represent in the form
L) = VR G)(, vhere p(y—- white noise with the single spectral

dengity. Then differential equetion {1.2) will take the form
: \
d m !
rgr + (1 + 0 L) K=
114 F.(j * (6] (2.18)

-

+- — KV NG e—Kn7
Page 41. —

According to (2.16) le: us introduce new variables x,, x,:

%y = xll),
L m m + CYTLGIR O, (2.19)
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After substituting (2.19) in initial equation (2.18), we will obtain
the second equation

-%;"----;r(l-l-lw%%i)n—-’;-l’(x.)-l-

&\ VG dF
+_“_‘.._.+_;T.!_?___z.(_”)-[x+c(1+xnr_7($l)}x
LN
Xt ()= Kn- 0 LEDEALUL,

(2.20)

Factor C is determined from the conditicn of equality to zero
coefficients with the derivative of white the bag:
C=—Kn,

As a result the system stochastic equations relatively component x,,

x, of twvo-dimenzional Markov process takes form [62]: . g@@
'%""-&—Knﬂ.—"(x.)t‘(l).
L (1LY, Ky |
+ I ++%—-%—Vﬁ.’ﬁ(x—n-xn’r.x @
| XY vins

As it follows from (2.19), in the method of replacing the
variable/alternating examined the studied random process x(t)

corresponds to one component x,(t) the introduced two-dimensional

Markov process x(t).
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The second xmethod of the composition of the system stochastic
equations was examined by J. Dub [24] for the linear systems and was
spread by E. Viterbi [57] to the nonlinear followers. Let us consider
one of the modifications of this method where in contrast to [57] is
considered the action of the determined disturbance/gp2rturbation

Alt).

We will be bounded to the analysis of the situation when the
random disturbance, converted to the output of the discriminator (see

Fig. 2.1), it is possible to represent in the form of the white noije

(K‘(p)al‘)’;.
FOOTNOTE *. When Kj(p)ssy to the system of equations, which

characterize the ring of tracking, should be supplemented the

equations, which describe the forming filter. ENDFOOTNOTE.
Page 42.
Under this condition equation (2.8) takes the form
M, (0) [ () — 3 (0} = — Lo () [F 1)+ £ (0.
Let us introduce the new variable/alternating x,(t) so, in order

to £ —2@0=g-L@)x 0.

Joining two latter/last relationships/ratios, we will obtain the

» R PR R . -
. . Y. A L T, T O T N T T T T
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equation
Ma(p) x1(1) = —bF (2)—1(0),

to vhich corresponds the following system stochastic equations:

4
4=

%—’-nx‘ (2.22)

T = Wi b= LF ) — 180,

)
Zn these exPresszons 1t is taken into consideration, that

M.(ﬂ)=2 ﬁP"sL’(P)S ngp‘. pa==1l. As a result of the done
replacement of vanable/alternatmg the random process x(t) being
investigated it is possible to represent by linear combination of - A

components X{) and dynamic disturbance/perturbation A(t):

o - -
5 ]
2= Yhxi 0420,
[
It is here assumed that are known initial conditions x4(0), ..., xx(0),

wvhich occurred upon the inclusion of system into moment/i:orque t=0.

The advantage of the method of the introduction of phase
coordinates examined in comparison with the first is the absence in
equations (2.22) of derivatives of characteristic f(x). Furthermore,

vhite noise §(t) enters only into one equation of system (2.22).

Page 43.

...........
..........................

.....
----------------------------
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As shown in § 2.3, these facts conduct to considerable simplification

in the corresponding equation of Fokker-Planck.

However, to in practice use the method of replacing the
coordinates examined is inconvenient, since disturbance/perturbation
A(t) enters into the dependence, which connects components <Yiwith
process of x(t). With A(t) 7f const the domain of definition of
boundary~value problem for the equation of Fokker-Planck, comprised

for coordinates X is changed in the time.

Of the deficiency/lack indicated it is possible to get rid in
the particular, but sufficiently spread case when dynamic
disturbance/perturbation A(t) is approximated by the peclynomial

m=z.+1.t+-ﬂ-f+ A

01d degree s cf wh:ch does not exceed the order of astaticism of
regulating circuwit. Let us recall that for the system, which
possesses astaticism of the s order, coefficients |

pe== ... =uey=0 In this case the processes, which take place in
the regulating circuit, will not be changed, if dynamic
disturbanc./perturbation A(t) is replaced with constant stress U,
applied to the output of discriminator additively with the random

stress/voltage §(t), and we by correspondingly change initial




..................................
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%

conditions in the system. The equation of contirol system in the new

coordinates takes the form

— 2 (=g P +U+E0]-

Hence we will obtain the system stochastic equations:

- hd - A}

%az,. . ]

= - en

‘7‘,3=-p.z, —cee = Pa o Zn = oF (¥) —

i) =& (D), |

vhere the following error is expréssed only through coordinates 4!?
2 _ -

=225 0= Pl b
Psge 44. '

Constant stress Us=—pAJly and changed initial conditions 2i(0)
in the system form at the output of ripple filter signal - A(t),
vhich is equivalent to action at the ertrance of the system of signal

A(t). Let us designate increases in the iuitial conditions through e;:

2,(0) = 2¢(0) +ey, i=1, 2, ..., 1. (2.24)

In order to form at the entrance of discriminater polynomial

A(t) the s order, it is necessary in accordance with (2.24) to change

.................................................
....................................
..........................................
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initial conditions on s integrators to values ¢, ... & respectively
and feed to the entrance of chain/network from s integrators constant
voltage é&s1. Initial conditions X3, .+« ¥» are not changed, so that
Ceta=eoa™ ... ==¢a=l, SO that the increases e,, e, ..+ %+ would form

signal A{7) must be implemerted the equality

(x+-j:- p+...+i-p~) (.,+. L t')
] =3, At e

Equalizing coefficients with the identical degrees of t, we will

obtain system of equations
zl-—‘l+;+ Ty .l+l+l '.+l+' ”+
-—-0 ‘ 2o'~o so

l.-

8510
which consistently is permitted:

dopt™Ae :

i

8=4;., "'."'I:‘z'"

8oy == Ay c-g+ 2'l'
Thus, values ® can be calculated according to the recurrent
equatiovns

Iy [ PN .

"l“—'-'lu-a""i':'"ﬂ ‘T"‘*'— -"T"""’" (2.25)

k'ﬂ'+‘ ’.on. ‘o

Page 45.




Example, For the servo system with the integrator and the
proportional-integrating filter, let us make the replacement of the
variable/alternating 295 25 according to formulas {2.23) under the

effect of A(t)=M+Ad. | This leads tc the following systems of equa-

tions

dz,
& =

. - —— 2.26
Gt w2y = - F (1) -1, ~ KV F ), @.2)

x(8) =2,(8) 4- T2 (8}

In acccrdance with (2.24)-(2.25) the initial conditions are

connected with the following relationships:
- 2,(0) =x4(0) +Aho—T1A1,
2310) = x2(0) +2s.
From this we determine the initlal value of the tracking error

at point in time after closing the tracking ring x{0)=Ae+x(0)+7:¥2(0).

ol ©
L l"'l

1 ;,\.'.‘_A."

)
[;
atat

O]
]
2" A a2
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are given the basic facts from the theory of the equations of

Fokker-Planck.
Page 46.

Determination. Let n-dimensional Markov process
X()={x1{¢), z3(9), ... #a(!)} be described by the system stochastic

equations

ju=}

Stman 0+ Youtx H6O. t=1. 2.con. @)

Then the probability density w(x, t) of continuous Markov process
satisfies the eguation of Fckker-Planck: !;3
L] L
ow [ 1 3
. _5.5.2 A (x, ) o]= 2 Bar; B (% 9ol (@227)
_ ) L=l S

Equation (2.27) is linear equation in the partial derivatives

with the variable coefficients. The type of equation is determined by

" the matrix/die of coefficients at the'second derivatives B. If matrix
B is nondegenerate, the equat{on of Fokker-Planck relates to the
parabolic type. If matrix/die is degererated in certain point or set
of points, then equation relates to ultra-parabolic
(elliptic-pirabolic) type [34].

The coeffizients of equation (2.27)

A‘ (x' o — {i:.ﬂ[:" (¢ 4+ :) - %y “)] (2.28) __
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characterize local average/mean rate cf change in coordinate %t and

1% (0 %) — 2 (O] [24(t 4 %) — %4 (1)] (2.29)
.

- correlation of component X and **

In the tradition, which arose during the study of the behavior of
Brownian particles, coefficients A:and Bu are called respectively
the coeificients of removal/drift and diffusion. They are determined
from the system stochastic equations (2.5). The formal solutions of

this system are expressed by the following integral equalities:

 aenOH a0, e
T ,
s ¢
+3 [bulxto G W ds. - (2.3
=t _

Page 47.

Not examining in detail, let us note that there are two methods of
caiculating stochastic integrais [5, 15] entering in (2.37). If we
use for the calculation the method, proposed by X. Ito {5, 40],‘then
we will obtain that the coefficients stochastic equation (2.5) and
equation of Pokker-Planck (2.2/) are connected with the

relationships/ratios
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A (x, N)==aq4(x, i), (2.31)
Biy (%, ) = Ytat 0baixn. @32
. [ 1

In this case it is assumed that spectral density ¥, (¥} cf random
process is connected with the correlation function r(r) with Fourier

transform (1.1).

But if we use determination stochastic integral in the
symmetrized form, proposed by R. L. Stratonovich [15], then we obtain
another form of the recording of the covefficient of the
removal/drift:

. L .
Al A=l 044 V) 2000 b0 @3
I, =i

Difference in the forms of the recording of the coefficients nf
removal/drift in the methods of K. Ito and R. L. Stratonovich let us
clarify based on the example of the one-dimensional Markov process
x{t), assigned stochastic equation

S =aw+swen.
This equation is conveniently represented in the form
dxsea(x)dt+b(x)de,
vhere d{=t°*(t) dt - differential of single Wiener process. Passing to

the finite increments, let us register

—
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Ax:a(x)&-l-d‘(‘) AxBE 4 o b () A0 4 2L Axal -,

Regarding (2.28) the coefficient of removal/drift is equal to

AWmlim Esa(x)+l LU'M‘

Page 48.

During the treatment stochastic integral according to K. Ito,

the increases Ax and A} are independent random quantities, also, in

this case
A(x) =a(x).
Physically this result is feasible, if one assumes that in the
feedback loop of regulating circuit is inherent the delav to the
pe.iod, greater than the time of the correlation of random

disturbance {°*(t) [1, 30].

During the treatment according to R. L. Stratonovich there is no

such delay, therefore. ss showr, for exampie, in [30]

lim A%4%

Meg B

= b0,

H I8 - b 8 AR
IR ) LSO

.
»
A BLEA A

as a result of what the coefficient of removal/drift is equal to

AW =0 (x)+ < b(x) b’ (x).
At present it is not yet produced a unique solution about the

] ..: E I LA % %

N N AN
SRR
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advisability of the selection of that or another form of the
recording of the coefficient of removal/drift in the egquations of
Fokker~-Planck, that corresponds to the physical model in question.
Apparently, the use/application of a concrete/specific/actual form of
recording must be produced on the basis of the comparison of the time
of the correlation of real broadband random process {*(t) and signal
lag in the ring of automatic control which usually accompanies the

passage of signal in the radio enqgineering circuits.

Subsequently is used, in essence, the form of the recording of
the coefficients of removal/drift, proposed by R. L. Stratonovich. In
the particular case of b(x, t)=b(t) both forms of the recording of q!a‘

the coefficients of remcval/drif{t coincide.

Flow of probability. In order to determine this concept, let us
lead the analogy between the hehavicr of the trajectories of process

x(t) in the ptase space 8 and the Brownian motion.

Let us assume that w(x, t) - the concentration «f the diffusing
Brownian particles. Let us take any volume V with surface of S and it
is computed a quantity of particles, pacsing through the element/cell
of surface AS for the time At.

Page 49.
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Since AmlA((x, {)li—: vector of the average speeds, the quantity of
particles, passing through AS for the time At due to the convection,
is proportional to scalar product Aw to the external normal n to the
element/cell of surface AS:
(Aw, n)ASAY, (2.34)
Let us assume for simplicity that B{x)=8 and let us consider the
quantity of particles, passing through ‘AS due to the diffusion. It is

proportional normal derivative concentration of substance 3w/dm:

| pow '
—-5 B3 -asAL, (2.395)

nin;;s sign means that the diffusion occurs in the direction from the
larger concentration of substance to smaller. Let us consider a
change of the number of particles in volume of the V for time
intervals At. PFor this time according to (2.34) and (2.35) through
surface of S from volume V leaves following a quantity of the

particles: _ '
Ny=§ [(Aw. n)—-1-B "-,5] dSat,
s

A change in the number of particles witnin V produces change in

concentration w(x, t). Let us count a change in the number of

particles within V for the time At:

- "’t? ;: N N ,A ??,, %:_ j'g‘;‘ fﬁ{? “‘.‘-Sﬁ%‘ \.‘ &

o~

%
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. l.""‘,‘

efalilatalaal

N.;jlw(x. t4-Af) —w(x, ]dV

or

-
.
.
-
-
-

N, =5%-'-JVN.

I1f within volume of the V not sources of corpuscular emission and
does not occur their absorptions, then according to the law of

conservation of matter N,=N,, i.e.
o 1 niw
J’wdv--ﬂ(u. n)—-3 BE | ds.
s

Applying the theorem of an Ostrogradskiy-Gauss, we will obtain

jgav.,_J div (Aw—-5-Byradw)dv.
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Page 50.

Since volume V is arbitrary, then for any point must be implemented
the equality
' £3-,f"=---{--div (Aw-——;-Bgradw)=0.
being nothing else but the equation of Fokker-Planck (2.27). The
expression, vhich stands in the parenthesis, is the resulting
particle flux through surface element of dS due to convection (Aw)
and diffusions (- ¥ B grad w). Consequently, if we represent the
eguation of Fokker-Planck (2.27) in the divergent form
= pdivI=0, . (2.36)
then II{x, t) can be considered as ;he vector of the flow of
probability density with the components
=Aw— %-ﬁ;%(&,w), i=1, %.on. (2.37)
. =
The equation of Fokker-Planck (2.36) expresses, thus, the

diffsrential law of conservation of probability.

Examples of the compositicn of the equations of Fokker-Planck.
Using formulas (2.32) and (2.33) for coefficients A; and B, let us

register tlhe equation of Fokker-Planck for the probability density of

.
5y,

-
x
.
<
“ul
.7

. A s
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following error x(t) in the system with the integrator and the
proportional-integrating filter (see an example in § 2.2). As was
shown in § 2.2, for the system in question were possible the
different methods of the introduction of the components of Markov
process. If components x, and x, are introduced by the system of
stochastic equations (2.21), then the equation of Fokker-Planck takes
the form

_é.'_t*_na-‘.ﬁ;.'l.-y?‘!-{[x,-g-—‘-xﬂnﬂ%‘ﬁ’-]w}-};
""E{ [—-\x+xnr“”"")x. KF(x.)+Td,.+

dl(l—n-—-Kn‘T ‘-‘F—"‘-‘v‘) 2Ny ]
+%-+—z' K'n : I X o
e J }_“‘“("’K'N (x.) w] +

+ p] dx‘ax"[nx. (I—M—KI&‘T ‘!F {x) )N.(xl)wl-i—
2 [F (1 - KT EEN N o], 3

vhere x-x,.

Page 51.

Witk the help of the second method of the introduction of the
. components of Markov process Qas obtained the system stochastic
equations (2.26). To it corresponds the equation of Fokker-Planck for

density w(z,;, z,, t):

TR W T WY VY Vg Vg ¢ WU R Y Loy T, 8% ® T T Ve ¥ T W LA S . A L . N A
LR NE S L AR e e e . . . . b « . . e Lol
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IR AR Jw}___...;. 2 (!‘T.,’. N.,(x)w), 2.39)

Ttagmta{[-F-Frotet

moreover x=z,+T,z,, n=T7,/T.

Fundamental solution. In order to find the solution of the
equation of Pokker-Planck, it is neceésary to, first of all,
determine initial conditions. At the moment of time t=0 of the value
of the Markov process of x(0)=x, they can be randcm with a
probability density of w,(x). Then functior w,(x} is initial
condition for equation (2.27)

w(x, 0) =wy(x). . (2.40)

If at zero time occurs the inclusion/connection of noise or ring
closure of automatic control, then usually initial values are known
accurately and are described by determined vector Xem{Xs, X, .... X}, in
this case initial condition takes the form

WX, 0) ftay =8 (X — X) =28 (X,—2),) 8%, —X0y) ... 3 (Xa—un).
(2.41)

The solution of the equation of Fokker-Planck,
examined/considered in the unlimited phase space and which satisfies
initial condition (2.41), is called the fundamental solution of the
problem of Cauchy. As it follows from the definition, fundamental

solution coincides with the probability density of transition w(x, t;
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Fundamental solution makes it possible to determine the solution of

the equati.;m of Pokker-Planck with arbitrary initial condition (2.40)

ol(x, t)a-a;w:(x. £ X We(Xe) dXoo : (2.4§)

e Linear task. To find the unsteady solution of equation in the
partial derivatives in the general case is very difficult.
BException/elimination compile an equation, which describe the
behavior of linear systems. In these cases the cceffic - ¢s of .“.:
ring removal/drift in the equation of Fokker-Planck are the linear
oun functions of the space coordinates xy, %, ..., La: 1
ol in A 0=300n+r
[ |
and the diffusion coefficients on ccordinates x; do not depend ‘
Bij(x, t) =By (?).
The system stochastic differential equations, which describe the
fies behavior of linear system, is con.eniently registere¢ in the matrix |
the form : o )
4 F= Qx +R+ bE, (243)
x, t; i

vhere =¥, x=[xl." R=[rnj]— column vectors; Q=/qslh b= |joyll—
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square matrices/dies.

~
~

It is possible to show that in linear system (2.43) vector x(t)

is distributed according to normal law {19]

: r . 1 -1y
w(x, t %) =grg e [~ (x—M)*D"" (x - 1212)]4;)

where Dm|(x(—m)(x;—m;)} — mutual correlation matrix/die; D -

determinant of matrix/die D; x, - vector of initial conditions;
' L 13
M=jlm— vector of average/mean values. Symbcl indicates the

transposition of matrix/die.
- Page 53.

Matrices/dies M and D are found as a result of solving the

equations M
ZF=QM+R, M(O) =x,,

2.45)

=QD+DQ* -+ bb*, D(O) =D,

Hovever, the use/application of equations of Fokker-Planck for

the analysis of linear tasks is not significant, since result (2.44)

can be obtained by the methods of the correlation theory of random ‘

processes [10]. |

The practical value of the equation of Pokker-Planck they

---------
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acquire during the research of nonlinear control systems and, in

particular, during the analysis of the disruption/separation of

tracking.

During the research of the disruption/separation of tracking the
Markov process x(t) takes values not on the entire infinite plane, |
but on certain of its part; therefore the equation of Fokker-Planck |
must be supplemented by boundary conditions. To the discussion of J
boandary conditions for the tasks about the first :
reaching/achievement of boundary by multidimensional Markov process j

is dedicated § 2.5.

2.4. Possibilities of simplification in the equation of

Fokker-Planck.

In certain cases the equation of Fokker-Planck can be given to
the simpler form by replacing the variable/zlternating of
differentiation. Let us pause at the most krown methods of

replacement.

Replacement of V. Feller's veriebie/zlternating [40]). With the

help of the introduction of the new space coordinate

X

,-\-\ [t oe
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it is possible to reduce the equation of Fokker-Planck

e 2 1A Nol=amBu] (24

to the equation with the constant coefficient of the diffusion

Bt e nol=0% 04y
vhere w, (xl.__t)i'V__F(x)“g (< l).‘

Page 54.

In this case the coefficient of removal/drift takes the form

1 dB e
Als, D= pm[at -+

In this expression the variable/alternating x must be substituted

according to (2.46) the newv variable/alternating x,.

Peller's ideas can be used for simplification in one special
case of the equation of the second order, which describes the system

of self-alignment with the- integrator and the integrating- filter:

o ) |
Y YR LES o5l

F .quation (2.49) it is characteristic that coefficient of
diffusion B(x) depends only on following error x and does not depend

on the derivative y. The replacement of the variable/alternating

----------------
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(2.50)

reduces equation {2.48) to the form

| dtw,
o (e g O .+ o +.;:_.. (4, (0 9wl == S0 2.51)

0%y

where

A.“o ' ‘)"";‘ ﬂB' (‘) |
Ay )= W '

2y &y ¥ §=BR)w(x, g, 0).

The replacement of i. D. Cherkasov's variable/alternating [43}
makes it possible to reduce the one-dimensional equation of {
Fokker-Planck _ o -

R Y L ERS A TR WL |

to the simplest fo}ﬁhaguthe equation of the thermal conductivity
—J-%Y—-I-H o --}——-L%—H o ’ (2.53)
' . [
fundamental solution of which is well known

(6 = meap L5 5]

Page 55. -

This conversion is possible, if it is converted into zero determinant

N O T

& - - - - -~ - -_
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ale, ) B D Y6 D
st ) Pale ) Vel 0)
ek ) Bl ) Y'xalx, )

(2.54)

where

45 0= VEET B A4k bix 9=V D,
Tl 0=24(x =5 Blalx, §—
—VEET ‘g By, 0BG, I,

In the resulting expressions the index indicates the
variable/alternating, in terms of which is produced the
differentiation.
With satisfaction of condition (2.54) new variable/alternating

are determined by the expressions

' ‘ )
t,=5exp[—2D &, ) ds, X, = "‘"’exp[ D(z ]+

¢
++ 5 . (s, ,L.fc. (%, ;)(::1'():. %) o'z, %) exp [~ D {x, )] dx,

wi.ere

{x, %)

D, o-—---i—f [Pete 9 =12 9T ]

Punction w,(x,, t,) is connected with the initial density w(x,

t) with the relationship/ratio

"-:‘ (-\‘:.\_E-‘ . “0 o == lg" 'l (xl' ‘t)’

N LTI SN I M N R \\-~- .._‘.-\.‘ -__-_-_. ._. ‘._. e e ety e e N
N et e e '-'\ 3 A A AR A R A S O S st e .
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Page 56.

In the particular case when B(x, t)=B(x), initial equation it is
possible to reduce to form (2.53), if the coefficient of

removal/drift is determined by the expression
Au.o=-p(x)[cm 5 ot Th@+60)

vhere C(t) and C,(t) the arbxtrary functions of time. Hence it

follows that with B(x, t)=Baconst the reduction of the equat;on of

Pokker-Planck to form (2.53) is possible only in such a case, vhen

the coefficient of removal/drift is the linear function x: 4!@
1 A(x, 8) =xC(8)+Ci(f).

This occurs only in the liﬂee;wreéﬁlatigg circuits. Thus, the

limitations, superimposed on the form of the functior A(x, t) and

B(x, t), prove to be very rigid.

Replecement of V. L. Lebedev's variable/alternating. In work

[31] is proposed the following method of repiacing the

_variable/alternating: x,=y(x, t), t,=¢(t), that makes it possible to

reduce equation (2.52) to substantially the simpler form
|} [ | 0 Y l 6‘ ~
;‘:_%_'Lao(:,){-a(a (x,?u,)ﬁﬁ}. (2.59)

After computing partial derivatives in equation (2.52) ani

-
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taking into account that in the modified equation the diffusion
coefficient must be equal to®(fy),we will obtain the following

expression for the function y:

e =V O éyﬁf"!‘c(‘)- (2.56)

where C( t) - the arbitrary function of time.
Page 57.

In this case the coefficient of removal/drift is equal to
1 e
A, (xy ‘J,=W{M(‘)+W«)U(‘)+.

_+2U'(’)l'(x- H+U®OB(, ) (2.57)

vhere”
«(tr, 0= {1BG.O1"&
]
Bix, 0=——V-L_‘5—[2A(x, f)—B',{x, t)] —

— Bf(‘o t)
fwmm’ﬂ

M(l)-_-.—},—?"’—w-w. N(f)::?‘“—),.(](t):}/tb—(t,).

The entering expression (2.57) functions a(x, t) and B(x, t) are
uniquely determined by coefficients of A and B of the initial
equation of Fokker-Planck (2.52), and functions M(t), N(t) and U(t)
can be varied. They are chousen so that the coefficient of the

removal/drift of the modified equation would take the form
Ag(x.. lg) "0(‘1)/"(4\5:). (258)

......
.....................
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Representation (2.58) is possible upon the satisfaction of the

following equation:

[U(l) 04, (x,. ¢) 2.4 (xt' ’)dU(l) N (x, ‘)

ox
-—U(l) 04, (x 6) N (:;; ‘)' (2.59) )

Entering this equation derivatives of function y(x, t) can be
calculated as follows:

%J* 0 {M O+INOUO +2u' Olatx, H—
—2U () a"s (x, D). (2.60)

After substituting expressions (2.57) and (2.60) in (2.59), we
will obtain ordinary differential equation for the unknown function
N(t), into which enter also the arbitrary functions M(t) and U(t).

Them are chosen so that the obtained equation would have a solution

(at least triviali). Then the initial equation of Fokker-Planck (2.52)

it is possible to reduce to form (2.55).

Page 58.

After determining function N(t), we find

t,=9(0= S exp [f N @v) do] du. (2.61)
0

T ¢
2

S—
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Entering in (2.56) function C(t) is determined by the expression
¢ s
cCly=~ g M) e_pr N(v)do}da. (2.62)
' 0 ;
..5. Bounde:y conditions in the tasks about the disruption/separation

of tracking.

In the tasks about the disruption/separation the following error
x(t) is or the component of the multidimensional Markov process x(t)
[for example, (2.19)], or the linear combination of components [for
example, (2.26)]. By disruption/separation of tracking, as was noted
<?¥!; in § 1.3, frequently is understood the first output of the trajectory
of random process x(t) beyond the established/installed bcundaries
Y:: 71, uSually connected with the aperture of the discriminatory

characteristic F(x). Therefore those realizations of Markov process

in vhich value x at certain moment of time r falls outside boundaries
Yy, 72, must be withdrawn from the examination with t>r. For this on

the straight lines x=vy, and x=y, are placed the absorbing boundaries.

Mathematical recording of boundary conditions. Let us switch
over to the mathematical description of boundary conditions for the
equation of Fokker-Planck in the tasks about the first

reaching/achievement of boundaries by the multidimensional Markov

..................................................................

........
..................
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process of x(t). Let in the n-dimensional region @ with boundary of G

assignedly is the equation of Fokker-Planck

| "-5--}-‘”2-3%[4;()(. nul=-4Y! 52 1Bux, Hul. @21
™~

i, ==l

the matrix/die of diffusion Byl can be degenerate.

Boundary conditions of G must be such that into the region @ of
pﬁése space would not be allowed/assumed trajectories from without.

In the one-dimensional case for this it suffices to require
- w5, Ol g=0. (2.63)
/

Page 59.

For the multidimensional tasks conuitioﬁ (2.63) can prove to be
too rigid [86, 87], since it removes not only the entering, but also
outgoing from the region @ trajectories. In order to find sufficient
énd'necessary boundary conditions, let us isolate on surface of G the
regular part @, on which are in principle possible the trajecteries,

entering the -region @, In order to reduce them, let us require

r

Since through the remaining part of bounday G-G trajectories cannot
return to the region @, then it is sufficient so that w(x, t) on G-G

would satisfy only the equation of Fokker-Planck. Required

satisfaction of any further conditions should not be.
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- Let us consider the method of the isolation/liberation of the

l
regular part of the boundary. |

The points of boundary x belongs G, if is implemented one of

following two conditions [34, 41]:

n, normal to the boundary

X By (x) nin; 0, . (2.69)

|
1
|
|
i
1. The matrix/die of diffusion is not degenerated in direction j
|
1
]
i
{, [mi} |

i

Q where n;— direction cosines of the external standard/normal n.

2. Matrix/die of diffusion B is degenerated in direction n, but

is satisfied condition

) [Adx)-—-;— 2-"-%;#"—] m<0.  (2.66)

i} J=}
Physical treatment. Let us clarify the formulated conditions. In
such a case, when matrix/die B is degenerated in direction n, is

satisfied the condition n :
X Byy(x) any=0. (2.67)

. i, [=1 .

N Taking into account that elements/cells B;; are connected with the

coefficients stochastic equations §; with dependence (2.32),

5
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expression (2.67) can be registered in the form

ibu(x)m=0. =1, 2,..,n. (2.68) -

m)

Page 60.

Latter/last equalities mean that external noise effect of the
type of white noise is absent from the direction normal to the
boundary. Therefore normal to the boundary of the component of
process x(t) is differentiated, i.e., sufficiently smooth. This makes
it possible unambiguously to determine, in what direction moves the
trajectory near the boundgty - to it or from it. Actually/really,
taking into account (2.37), let us consider the component normal to
the boundary of the vector of the flow

(T, n)= E[Ag(x)w_ : 2 6(831(:)')‘, ‘

1 i=sl |=1

Taking into account (2.68), after simple conversions we will obtain

(II n)-‘z Ai(x) — ig;—;-(-!)-]tl’(x.l)n{. (2.69)

[-l

If normal component of flow (II, n) at point xeG is positive,
then through this point in the trajectory they leave from the region
Q. In this case of x does not belong G. To enter into the region Q
trajectories can only through those sections of the boundaries on

wvhich (I, n) <0. Using a property of probability density w(x, t)30,

A

&
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from (2.69) we will obtain the second condition of the
accessory/affiliation of point x with the regular part of the

boundary.

If condition (2.68) is not satisfied, then the component of

.
LA LL T

K Markov process, normal tc the boundary, is nondifferentiated.
Et Trajectory x(t), approaching the boundary, tanages a countless
multitude of times to cross it. Therefore in order to ensure the

condition for absorption on the boundary, in such situatior it is

oS
FAnSy Y,

necessary to require satisfaction of condition (2.64).

| KPS
P 1y SN I

In the majority of the tasks about the disruption/separation of

tracking the boundary of the region of tracking is normal to one of

<5 et . .; O
P IVIRIPVT

the coordinate axes f; of phase space. In this case satisfaction of

condition (2.68) is equivalent so that in the equation of

N

Vb

Pokker-Planck is absent the second density derivative of probability

I
L 4
-8

s Y.

in terms of variable/alternating x. In this case to value w(x, t) on

coordinate % can be superimposed less than limitations.
Page 61.

i It is here convenient to lead analogy with the ordinary differential

equations: for the unique solution of second order equation it is

- ... Necessary to be given two boundary conditions, but during its

“® e ¥ - . . .
R aBa® o aldat ot atat At
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degeneration into the first-order equation the presence of two

limitations to the unknown function can lead generally to the absence

of solution.

Equation (2.27), initial condition (2.40) and boundary

conditions (2.64) form boundary-value problem for the equation of

Fokker~Flanck. From the results of works [34, 41] it follows that the

solution of the boundary-value problem presented exists and it is

singular. Since boundary condition (2.64) is assigned only on the

regular part of § of boundary, then on the remaining part of G-8 of

boundary probability density is determined in the course of solution

of task.

[Y

Let us consider several examples to the recording of boundary

conditions in different tasks.

Example 1. Control system with Ehe.integrator and the

integrating filter is described stochastic equations:

X, =X,

dx,

s,

dt, _ _KF() ks, o, | dh @7

s e LT ?
+E VN E 0,

J

vhich are obtained from (2.21) with n=T,/T=0. The cdrresponding

-

CRaE T

.........

- ~
----------------
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equation of Fokker-Planck is ultra-parabolic and takes the form

Ow (x4, %3, ) ; 0 d 1 o
Tt ] o Ae) + 2 ()= 2 B,0),

2
(2.71)

vhere
A=x A=-NEl a2 2
B,=B,=B,=0, 8,=X%&_ @ ?
* In this example of formula for the coefficients of removal/drift
(2.31), (2.33) they coincide, since noise functions only on one J
coordinate x,, but spectral density N,(x,) depends on following error ?

x, and does not depend on its derivative x,.
Page 62.

The region of tracking @ on the phase plane (x,, x,) is limited
by lines x,=y, and x,=y, (Pig. 2.2),~yhich form boundary of G. On the
left side of boundary {(x,=y,) the direction cosines of external
standard/normal n-bu;nd are gqual to n,=-1. n,=0. On the right side
of boundary (x,=vy,) n,-l; n,=0. On the entire boundary of G the
matrix/die of diffusion B is degenerated, since condition {2.68) is
satisfied both on the left and on the right sides of the boundary.

Let us isolate the regular part of boundary G. By virtue of (2.66)

for points x€C must be satisfied the condition
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Haw- ["“" 0 2l <0 @79

Using relationship/ratio (2.72) and taking into account that n,=0, we
convert (2.73) to the following form:
w1 <0. (2.74)

With x,=y, the direction-cosine n,=-1; therefore condition
(2.74) is implemented with x,>0. On right boundary (x;-7;) n,=1;
therefore condition (2.74) is correct with x,<0. Thus, the regular
part of boundary & form rays/beams x,=vy,, 0<x,<e» and x,=y,, -*<x,<0,

~on which is assigned the condition for absorption (2.64).

Let us clarify this example. From equations (2.70), which
describe the two-dimensional Markov process of x(t), it follows that

x,(t) - the continuous random process, undifferentiable not in a

moment of time.
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Pig. 2.2. Boundary conditions in the system of the second order with

the integrating filter.

. Page 63.

| o

On component x,(t) random jerks/impulses of the type of white noise

divectly do not act, since

T
&m=5&®*+&@-

Thevefore process x,(t) is smoother .than x,(t). At each moment of

time it has the final derivative dx,(t)/dt=x,(t). With x,>0 the

motion of trajectories on the phase plane occurs only in the

direction of an increase in coordinate x,, when x,<0 - in the

opposite direction. The directions of the motion of phase

trajectories are shown in Pig. 2.2 by arrows/pointers. To enter into

the region 8 phase trajectories can only through the regular part cof
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|
I
boundary G. In order not to allow this, it is necessary to require 1
“’(3-‘)':65"'_‘0' Let us note that if we assume w(x, t)=0 on the entire |
koundary of G, then there does not exist the nontrivial solution of }

equation (2.71) [86].

Example 2. The system of self-alignment with the integrator and
the proportional-integrating filter is described, as shown in § 2.2,
by two methods. Using the first method is introduced Markov process
() ={x:(4), %)), controlled by the system stochastic equations (2.21).
The corresponding equation of Fokker-Planck takes form (2.38). As it
follows from (2.21), the matrix/die of the intensities of the white

noises b in this example has the following components: ﬂ

by mnK VN, (%), b3 mmbyy =0,

b;.-K(l—n-Ku'r 1%%)-) VN, (x,). |

The region of tracking @ is the same as in previous example
V33N —~w<n<o). But the matrix/die of diffusion not at one point of

boundary is degenerated, since

3

.
2 byt by, 4 byt e by 1 by, #£0.
doul

Therefore entire/all boundary is regular G¥G, and the rondition for
absorption (2.64) must be assigned on the entire boundary
: » (5. 0) lygo=0. 2.75)

u Let us clarify this result. In contrast to previous example both
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components x,(t) and x,(t) two-dimensional Markov process are |

undifferentiable.
Page 64.

Consequently, phase trajectories on the plane (x,, x,) are strongly
cut and if we designate the possible directions of the motion of
trajectories by arrows/pointers, then it should be directed them in
different directions independent of the quadrant of plane (x,, x,).
Therefore in order not to allow the return of trajectories to’'the
region 8, it is necessary to require satisfaction of condition (2.75)

on the entire boundary of G.
With the help of the second method of the introduction of

1
|
|
|
l
1
|
l
|
1
|
multidimensional Markov process is obtained the system stochastic {
equations (2.26), which describes Markov process z(!)={n(t), 22(1)). i

Following error x(t) is connected with components z, and z, with the
relationship/ratio 1
x-ﬁ.-{-hz.. !

The region of tracking @ has a boundary of G (Fig. 2.3), formed by

the lines _ l
HtTismyy, 3+ Tisr==y ‘
In spite of the fact that noise ¢(t) enters only in one equation }

of system (2.26), concition (2.68) of degenerating the matrix/die of

............................
.........................

...................................
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diffusion B in the direction, perpendicular to boundary, is not

satisfied. Actually/really, in the case
o..-o,.-b..-o.o..-ﬂ,’f-ﬁ.'(?.

in question therefore condition (2.68) takes the form

b3y =0, ' (2.76)

* e
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'Pig. 2.3. Boundary conditions in the system of the second order with

proportional-integrating filter.
Page 65.

The direction cosines of external normals to the boundaries are equal

to

r.-;:-

AT

= ——————————=) ny== 4

V '+_:?(%I')'

vhere e, and e, - scale factors along the axes z, and z,. Hence it is

apparent that with T,>0 conditicn (2.76) is satisfied not at one

---------

PR RN

........

.............
..........
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point of boundary G. Thus, entire/all boundary G in this example is

regular.

Let us clarify the obtained result. In form the system
stochastic equations (2.26), which describes two-dimensional Markov
process u“;u.coincides with system (2.70). Therefore in this case,
just as in example 1, phase trajectories are smooth smooth curves.
Difference lies in the fact that in a latter/last example boundary G
is nouorthogonal to axis z,. Therefore at each point of boundary are
possible both the outgoing from the region @ trajectories and
entering it (Pig. 2.3). The trajectory which at certain moment of
time t for the first time left abroad of G, at the following
moment/torque can return conversely. In order not to allow this, it
is necessary tc require satisfaction of condition (2.64) on the

entire boundary of G.
2.6. Boundary-value problem for the equation of Pontriagin.

Equation of Pontriagin. Probability density w(x, t), obtained as
a result of solving the boundary-value problem for the equation of
Fokker-Planck (2.27), makes it possible to determine the probability
of the first reaching/achievement of boundaries of the region Q:

P(h=1~ J o (x, ) dx. .77

If at zero time t=9 value x i; known accurate
o(x, 0) =3(x—x),
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then for probability P(x,, t) of the first reaching/achievement of
boundary is correct the equation of Pontriagin [35]
[ ] LJ
P 4 | NP
T NAe 0T Y B ey @)
=1 ’ INEL

Page 66.

Punction P(i., t) is probability that for a pericd of time t the
representative point at least one time fall outside the limits of
region @, being found at zero time at point with coordinates
Xo={Xe, X3, Xa3 ..., Son} within the region. Coefficients A; and Bi equation
(2.78) make the same sense, as in the equation of Fokker-Planck

(2.27).

If the initial state of dynamic system with the distribution

| (x, 0) =we(x),
then probability P(t) of the first reaching/achievement of boundaries

is randomly determined by the expression

P =5 P (X,, ) w, (X,) dX,. (2.79)

Boundary conditions. For the unique solution of equation (2.78)

it is necessary v formulate initial and boundary conditions.

RS
L e B A
PR YT R DL P . DR N TR T ) J
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1f at zero- time t,=0 representative point x=x, is found within
the region @, then probability that at the same moment of time the
trajectory fall outside the limits of region @, it is equal to zero:
P(xq, 0) =0, (2.80)
Initial condition (2.80) méans that the phase trajectc-y cannot for
infinitesimal time pass the final distance, which separates/liberates

point x, from the boundary.

Boundary conditions for the equation of Pontriagin are assigned
on the regular part G* of boundary G and are written/recorded in the
form .

PulDlge=1. 2381)
Condition (2.81) characterizes the authenticity of the emergence of

trajectory from phase field @, if trajectory is found on Gx.

Of the regular part of boundary G* for the equation of
Pontriagin it is determined as follows. Point x, lies/rests on the

regular part of boundary Gx, if is imnlemented one of the conditions:

1. The matrix/die of diffusion B is not degenerated in direction

n, normal to the bounaary

. é Byy (X o0 £) ngny5& 0. (2.82)”

INE
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2. Matrix/die B is degenerated, but is fulfilled inecuality

f} [A{ (Xe t)—-;-;"] —"%L’l] n>0.  (289)
=

Xed
i=)

Comparing the enumerated conditions with the determination cf
the reqgular part of the boundary for the equation of Fokker-Planck,
let us note the coincidence of conditions (2.82) and (2.65) and the
contrast of conditions (2.83) and (2.66). A difference in conditions
(2.83) and (2.66) is caused by different physical sense of
three-dimensional/space variable/alternating in the equations of
Fokker-Planck and Pontriagin. In thg equation of Fokker-Planck these
variable/alternating are connected with the current following error,
while in the equation of Pontriagin - with the initial state of
system. On the parts of the boundary vhere matrix/die B is
degenerated, it is possible to unambigucusly indicate the direction
of phase trajectories. Trajectory, which is located at the moment of
time t on the boundary, leaves at the following moment/torque region
g only in such a case, when normal to the boundary component of the

flow of probability is positive, i.e., is satisfied condition (2.83).

When the matrix/die of diffusion is not degenerated, the phase

trajectory is nondifferentiated. Reaching boundary of G, trajectory

exceeds the limits of region @ independent of flow direction.

.
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For the one-dimensional equation of Pontriagin boundary
conditions take the following form:
FK&u‘H“.h==P@%'9“.h==1- (2.84)
Equation (2.78), initial condition (2.80) and boundarf condition

(2.81) form boundary-value proﬁlem for the equation of Pontriagin.

Example. Let us compose boundary-value problem for determining
the probability of disrupting/separating the tracking in the
regulating circuit with the integrator and the integrating filter in

the feedback loop (see an example in § 2.5).

'*he behavior of the system in question is described stochastic
-equations (2.70). Hence it follows that the equation of Pontriagin

takes the form

.‘1‘.’_‘»1«.3.'_’5"_.‘)..-4,?;;.5.,4, W'F-%",_W' {2.85)

where coefficients A; and By are determined by expressions (2.72).

Page 68.

By disruption/separation of tracking is understood the first

output of process x(t) for the level 4, or y,, moreover ¥,<xX,<v,. The
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region of tracking 2 on the phase plane (x,,, X,,) is limited by

lines x,,=y, and x,,=y, (see Fig. 2.2).

In accordance with (2.80) initial condition for the
boundary-value problem in question is written/recorded in the form
P(zw, X, 0)m0.

Let us register boundary conditions. Thg matrix/die of the
diffusion coefficients in this example is degenerated, and condition
(2.83) is equivalent to the following:

Xy >0, 2.36)

where " direction cosine of external normal to the bcundary, equal

to ’ | T

' —'&&s-ﬁv
""{ | 0P8 Zey == Tae

Key: (1). with,

-~

Thus, condition (2.86) is satisfied in the following sections of

boundary:

. - .
Sumys Gpr <0
Zo=vs n;."i >0,

(1). with.

These straight lines are shown in Fig. 2.2 by dotted line. They

_______________________________________
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form the regular part Gx of boundary G for the boundary-value problem

of the equation'of Pontriagin.
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Page 69S.
Chapter 3.
DISRUPTION OF TRACKING IN QUASI-STATIONARY SYSTEMSL

The systems of tracking, subjected to disruption/separation, are
in principle unsteady. In this chapter are analyzed the systems in
vhich up to the momen:/torque of the beginning of observation had
time to be completed all transient processes, and dynamic following
error wvas constant during entire mode/conditions of tracking. Such

systems of automatic tracking let us name quasi-stationary.
3.1. Application of the theory of the ejections of random processes.

Poisson's law. In many radio engineering tasks the
disruption/separation of tracking can be considered.as the output of
following error x(t) beyond the limits of some fixed levels 7,, 7.,

connected one way or another with the aperture of the discriminatory

characteristic P(x). This makes it possible to use for the analysis
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of disruption/separation some positions of the correlation theory of -

ejections [17].

It is known that the distribution of the ejections of the
fluctuations above the threshold ¢, which noticeably exceeds actual
stress of fluctuations (y3a:), obeys the law of Poisson

Prty="01 "0, i1 @)

..

vhere P(n, !) - probability of appearance for time /s is exact n of

ejections; » - frequency of ejections by which is understood an

#¢verage number of intersections with the process of determined by the

sign of derivative x(t) of the level v per unit time. 5?5
~ On tie basis (3.1) the probability of the appearance at least of

one ejection of noise above the level 4 for time {;, is determined by

the formula

-*.

Pity=1=PO,t)=1—e ", (3.2)
Page 70. T

3 Identifying disruption/separat:on with the reaching/achievenment

by the following error x(t) of one of the boundaries of the aperture

- TerTer

of discriminator ¥, or v, and taking into account that
reaching/achievement of right or left boundary on a comparatively

small noise level is events mutually independent, we will obtain
P(tc) = Py (tx) + P (¢n) —P1 (4x) Pa(tu), (33)

N
s

..........................
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vhere Py (tn) = 1—exp [—vigfa] — probability of reaching/achievement by -
process of x(t) of boundaries ¢, and 7, corresponding »,, », -

frequencies of the ejections of error x(t) for the levels y, and v,.

Por small probabilities of disruption/separation P<0,1+02,
wvhich are of special interest in the applications/appendices, instead
of (3.3) it is possible to register

L oPE)=1— "M (v H . B4

Thus, the calculation of -th.e probability of
disrupting/separating the tracking when making these assumptions is
reduced to the definition of the freguencies of the ejections », and
v, vhose sum can be considered as the frequency of

-

disruptions/separations.

The frequency of the ejections of the random differentiated
process x(t) above the fixed. level v is determined by following
formula [17]:

v(r)-—-fkw(r. ) d,

vhere w-('t.-})—:w(i.i)l;., - two-dimensional density of distribution of

procéss and it by derivative, undertaken with x=v,




PREAEL

DMty

-----
.
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However, to calculate the frequency of ejections from the given
formula in the general case is difficult, since it is necessary to
know two--dimensional probability density w(x, x). Exception is the
normal stationary process of x(t), for which w(x, x) is equal to the
product of one-dimensional densities and can be comparatively easily

determined.

Frequency of ejections in the linear systsm. Let us consider the
system, which has in the limits of aperture the linear characteristic
of discriminator (Fig. 3.1)}. Let us assume also, that spectral
density ¥, of normal noise t(t), which led to the output
discriminator, does not depend on disagreement/mismatch x. In such QA
systems process x(t) up to the moment of separation is developed in

the linear section of discriminatory characteristic; therefore during

the determination of the frequency of ejections system can be

considered liqgar.
Page 71.

In the linear system the following error x({(t) .is distributed

according to the normal law

P _ (x —m, (D)
o (X. I) = W CAP{"" '——2';3"('6—‘}' (3°5)

vhere o, () M:() - dispersion and the mathematical expectation of

....................................
.......................
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process.

If the normal process x(t) is stationary and central (’:(’)=°‘:

and m,(l).;_-.O) and has twice differentiated correlation function r(r)=

~-=:R(gj, then the trequency of the ejections of this process for the

level ¢ is determined [2, 17] according to the formula

v o VR O (3.6) .

vhere

, d*R (v)
R 0) ==

=0
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Pig. 3.1. Characteristic of "linear" discriminator.

Page 72.

For the practiczl calculations of the frequency of ejections the
parameters, entering formula (3.6), are conveniently expressed
thréﬁgh the spectral density of p;ocess x(t):

v=%le.w’"" ’ KN

" where eg - root-mean-square frequency of process x(t), determined by

the expression

[ _J
Juw (@) do
.8 X% ?" - .
11 ] © ’ (3.8)
* swmu

N(w) - the spectral density of process x(t), connected with the
correlation function r{r) with Fourier transform (1.1); ¢ -

variance of error of the tracking:

' 0: :’--&-SN (») de. . 3.9
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When correlation function r(r) does not have the second
derivative in zero (integral in the numerator (3.8) it diverges),
process x(t) is undifferentiable. The frequency of the ejections of
this process above the level v, strictly speaking, is equal to
infinity. This is explained by the fact that in immediate proximity
of 7 the prucess x(t. in view of brokenness manages an infinite
number of times to cross this level. How ver, if we are not
interested in the microstructure of process x(t), then the frequency
of its ejections must remain final. Therefore in certain cases can
prove to be useful the artificial reception/procedure of the

: (:>4E; calculation of the frequency of ejections [2], according to which

. ) s
- -;‘:e-'""! {.;?,-I [ joN (o) = [joN (0)]oes |'d-} .
@.10,

" where function Tf(jw) is such that N(u);ﬁ'(jw)-;{(“jw)-lg(jw)I’.

v

O NA

It must be noted that formula (3.10) is very approximate and in

s, AT
A
RS P

certain cases can lead to the erroneous results.

L tOxq)
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P

v
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3
3
X

Usually in the servo systems due to the action of regular

- Y
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dynamic disturbance/perturbation A(t) (see Fig. 1.2) the mathematical
expectation of process x(t) is excellent from zero. If in this case
mx(l) =m;=const, then for calculating the frequency of the ejections of
this process above the level y can be used formulas (3.6)-(3.7), in
which should be value y replaced the equivalent threshold
Vommy—My. (3.11)
Formulas. Let us give the resultant expressions for the

frequency of the ejecfions of following error x(t) above the level v

in certain frequently encountered systems.

Let the servo system have the block diagram, depicted in Fig.
1.2, 1f the characteristiz of discriminator F(x) is linear with 5!?
slope/transconductance S (see Fig. 3.1), then depending on the
operational gear ratio/transmission factor of feedback loop K(p).we

have: !

1. FPirst-order system with the ideal integrator [K(p)=K/pl:

S R
| v= %exp[—%:-]. (3.12)
3 2. First-order system with the integrating filter
i
; [R(p)=K/{1+pT)]: L KS T L KS
V== —%T—QXP[———-WF—J- (3‘13)

3. System of the second order with the integrator and the

Rl $-L 7 gt e

Ty

proportional-integrating filter [K(p)=K(1+pT,)/p(1+pT)]:
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_ 1y U=r=kI'+hk 28 (1 +KSTn) ]
=2V F R e -] 619

n=T,|T, ky=KSTn'-

In the particular case of integrating filter (n=0) we have

=g Fep[-25]. (3.15)

4. System with astaticism of second order [K(p)=K(1+pT,)/p31l:

. 1 v/ poll+KSTH wor, |,
=% KTy “"[ N.(1+K87’{)] 19

Page 74. |

5. System of third order with filter K(p)=K/p(1+pT)( 1+pT,):

Y 25 (T+ T, — KSTT,)
:'ifb/ TR _exp[_-"'_‘RW.‘(TTr,T"‘]'

6. System of third order with filter K(p)=K( 1+pT,)/p*{(1+pT):

Ks AEmSh 1 4 nKST S (T, — 1)
had 'E:' 1+ xsr N. a+Ksth |’
u==T,/T (3.17)
Example. Let us determine the probability of disruption/seéaration in
the servo system (see Fig. 1.2) with the proportional-integrating
filter [R(p)=K(1+pT,)/p(1+pT)] and with the characteristic of
discriminator F(x)=Sx in the limits of aperture -7,<x<y,. Let the

input dynamic disturbance/perturbation take the form A(t)=X.+X,t;

noise §(t) - white with a spectral density of N,, which does not




- . Y
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depend on disagreement/mismatch x. Let us assume tha: at the
beginning of observation the transient processes in the system had

time to be established/installed.

The frequency of the ejections of process x(t) above the level y
to the considered/examined system is determined by expression (3.14).
So that during the calculation of the probability of .
disruption/separation it would be possible to use formula (3.4), it
is necessary to preliminarily centralize process of x(t) and to
determine equivalent thresholds Y& Y Conservative value of dynamic
error is equal to me=M/KS. Hence according tq (3.11) we obtain
equivalent threshold values 7“"_,_..1.._.7%., 7”=1.__K’1§, As a result ‘:I.S!
for the probability of disrupting/separating the tracking taking into

" account (3.4) and (3.14) we have

P=)/ KsT IR X

2(1.+%)’8(1+K87n)
X\@o |~ ——maFm | T

A\
. 2 1.—7'3- S(1 4 KSTn) :

vhere ky=KSTn3, n=TyT, t=1,/T — dimensionless time.

Page 75.

In the particular case when is absent dynamic error A,=0 and

e "

PRy
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n<<l, result noticeably is simplified:

VEST VIi+R [ 21;‘;3(3+K8Tn)]'
TTE ~ RN UFE (3.19)

According to the obtained relationships/ratios is constructed

P(x)=

the series/row of the dependences of the probability of
disruption/separation on the parameters 6f servo system (Fig. 3.2 and
3.3). Pig. 3.2 depicts the dependence of the probability of
disruption/separation in the system of the second order with
integrating filter (n=0) on the dimensionless parameter Y=RKN,/Sy?,,
which characterizes the relation of the power of noise and signal at
the output of discriminator. During the calculation it was accepted:
KST=0.2, 7=1, A,=0. Let us recall that with KST<0.25 and n=0 the
transient processes in the system carry aperiodic character. In Fig.
3.2 solid line constructed the approximate dependence, by dotted line
- & more precise dependence, found by the simulation of servo system
on the digital computer (TsVM [IBM - digital computer]). The
methodology of this simulation is presented into § 6.2. From the
comparison of graphs is visible their asymptotic convergence with
Y+0. This confirms the assumption made at first about the fact that
on the sufficiently small noise level ¢(t) the ejections of following

error for thes lsvels y,, v, are subordinated to Poisson distribution.

.................



P A A L D e e g i e e R A A N T G St

ChSacie Ran B4y gt iatiNin Mehc vk b Rial i A 4 A L I T YA e L T R AR U e e ‘1

DOC = 83061005 PAGEI 59..
2 /'
U4
a5 z
A, P X
,, (1 \Q ya
410 |t o4 T
)/ 32
0,05 g s
Q02 40 Q06N

0 "2 + ¢ Y

Fig. 3.2. Fig. 3.3.

Fig. 3.2. Probability of disrupting/separating tracking in linear

system.

Fig. 3.3. Probability of disrupting/separating ctracking in linear [

" system with proportional-integrating filter.
Page 76.

In Pig. 3.3 is constructed the dependence of the probability of
disrupting/separating the tracking in the system with the
proportional-integrating filter on the relation of time constants
n=T,/T in the following parameters of regulating circuit: KST=640,
Y=KN,/Sy?,=6.4, r=1, A,=0. With continuous line is constructed the

curve, calculated by formulas (3.18), (3.19). Dotted line there

constructed the analogous dependence, found by simuiation on TsVM.

S
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From the comparison of curves it is evident that for

proportional-integrating filter (n # O ) of formula (3.18)~(2.19)

fhey give a large error during the determination of the probability

of disruption/separation, than for the integrating filter (n=Q, Fig.

3.2). The relative disagreement between approximate value of the |

probability of disruption/separation, found from formulas

(3.18)-(3.19), and precize value in the system with(n,eo)does not

vanish even with ¥+0. This is explained by the fact that withfn :#:O) |
5 process x(t) is nondifferential; therefore it does not have tﬁe final

i frequency of ejections. The determination of the frequency of

eje- ions fiom approximation formula (3.10) int;oduces appreciable
CJM!; error into the value of the probability of disruption/separation.

= Analogous result give formulas (3.12), (3.13) and (3..6). However,
the given methodology it is expedient to use for the approximate i
calculations at the initial stage of the design of the systems of |
tracking, since with comparative simplicity of liningﬁ/calculations |
it gives qualitatively accurate picture and it makes it possible to
determine acceptable noise level at the output of discriminator with
an accuracy to 20-30% in the stress/voltage..Thus, in the example
examined with n=0.04 an error in the determination of the noise
voltage, which calls the probability of disruption/separation P=0.1

3 within the dimensionless time r=l, was about 20%.

'&,,\;;a _In the systems with the low coefficients of KST<10 is possible
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even ithe qualitative disturbance/breakdown of the deperdence of the
probability of disruption/separation on the parameters of the
proportional-integrating filter. For example, after calculating from
formula (3.18) the system, which possesses KST=0.2 we will obtain
that the probability of disrupticn/separation is reduced with an
increase in relation n up to n=0.9. At the same time a more precise
calculation and experimentail check lead to the inverse dependence -
the probability of disruption/separatiocn ncticeably increases with
increase in n. Therefore with the low factors of amplification of the
ring of servo systeam one ought not to use for the calculations of
formula (3.18)-(3.19).

. . . bl )
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Analysis of nonlinear systems. For calculating small
probabilities of disrﬁpting/separating the tracking in the nonlinear
stationary regulating circuits remains valid formula (3.4), which
escape/ensues from the Poisson.distribution. The difficulty of the
analy§is of such systems consists in the calculation of the frequency
of thé ejectigps of process x{(t) above the level v that it is.
connected with the determination of two-dimensional probability
density w(x, x). With the dependence of spectral density N_(x)of

noise §{(t) from disagreement/mismatch x or ir. the systems with the

nonlinear characteristics of discriminators F{x) the error
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: distribution of tracking w(x, t) Jdiffers from normal. In “hese cases

it is not possible to directly use formulas (3.6), (3.. for

calculating the frequency of ejections.

The frequency of disruptions/separations in the nonlinear

systems under specific conditions sufficiently accurately can be
calculated with the help of the methods of the theory of Markov

- processes. This approach to the determination of mean time to

!! disruption/se¢paration m; unambiguously connected with the fregquency
s of disruptions/separations by the dependence

..
- -
0y

1
e, v, + v =-;'-,-.

is examined into § S5.3. The complexity of the theory of Markov
processes frequently makes it necessary to be converted to the
simpler, although to the less precise receptions/procedures of

analysis.

One of them can be the method of reference system with the
subsequent use of correlation methods of analysis examined in this
paragraph. In particular, for the linearization of the discriminatory
characteristic F(x) can be used the method of statistical
linearization [7], widely used during the rescarch of nonlinear
regulating circuits. To reduce the dependence of spectral density
N, {x) on disagreement/mismatch x is possible, for example, by the

replacement of the real disturbance/perturbation #(t) with certain

.............
.....

.......................
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equivalent §(f) with the constant spectral density

N~=3'N. Wodx" (3.20)
Ts .

vhere w(x) - the probability density of the error distribution of

tracking, which in the first approximation, can be assumed/set by

normal.
Page 78.

In the systems of the first and second order with the
integrating filter is feasible the following simple method of the
linearization of the characteristic of discriminator. As shown in § an
? 3.2, the probability of disrupting/separating the tracking in such .
: systems very weakly depends on the form of discriminaiory

charac~eristir, and it is determined in essence by the areas,

included betwe.. the point of stable equilibrium x, and the
boundaries of the aperture of discriminator. Thus, the initial
nonlinear characteristic F(x)-of discriminator can be substituted
linear with glape/transconducfance S=F'(x4) and by the boundaries of

aperture, determined from the foramulas:

- : L
?.32—'/-3-.([F(x)—[.]dx,
A

with £,30

G

To==7/ + [ 1P =fide, @.21)
24
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with f,g0 X,
1..-—-—‘/ + [ F@—nidz,
. A
2 T
’ 7u=]/'s"j [F (x) — fo]dx,
7

vhere Jo=F(x4) - constant detuning in the system, caused by the action

of. dynamic disturbance/pérturbation A(t); %A and %1 -respectively the
point of the ‘stable and unstable equilibrium, determined with
N,(x)=const, from the equation

. F(x)=fom0. (3.22)
The method of the linearization of characteristic F(x) examined
is applicable also in the system of the second order with the
.proportional-integrating filter, if strn’>,100 or KSTn®<<l [62], and in
the system vith astaticism of second order [67] with KST?,210.
Page T79.
rui'théx:md;é, in systems whose linear section of the discriminatory
characteristic near the point of stable equilibrium exceeds :/, of
the aperture, the method of linearization examined leads to an error

in the determination of signal-to-noise ratio from the power not more

..............................
............................................................
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than 20% with any relationships/ratios between the parameters of

system [62, 67].

After the linearization of regulating circuit the probability of
disrupting/separating. the tracking in it is determined from formula

(3.4).

Example. Let us consider the servo system of the second order

. with the integrating filter. The characteristic of the discriminator

Sx - Onpn 2] <12,
Se (Yo— %) D uph ¥/2 KR X< Y0 .
F(x)m{—S,(te+ 2)00p —~Yo25 2 ==  3.29)

9 Bopu | 2] Y 72

Key: (1). with.

and spectral density N, does not depend on x. Let us determine the
probability of disrupting/separati~g the tracking in the absence of

dynamic error in system.

Following the methodology presented, let us replace the
objective parameter of discriminator (3.23) with equivalent linear
characteristic with slope/transconductance S,, after assuming in

accordance with (3.21) te=1/¥Z:

Y
s.‘ l?pl lxl<7’.
R ={ G 151> 10

.

.................................
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- Formula for determining the probability of disruption/separation
taking into account (3.4) and (3.15) in this case takes the form

Pty = 'L;- VKS,T exp [-— —I:‘isﬁ':j . (3.24)

On Fig. 3.4 solid lines constructed those calculated with the

3 help of (3.24) the dependence of the probability of
disruption/separation P on the dimensionless coefficient of

X Y=KN,/v?*,S, with different KS,T.

o BN The tinae Bf observation was proposed b} such that W/T=l. More
precise results obtained with the help of the simulation of initial
nonlinear system on TsVM are shown in the figure by dotted line. From
' the comparison of curves it is evident that for the system of the

E% second order with the integrating filter calculation of the

f probability of disruption/separation by the methods of correlation

s : theory giveé cood results.'rhig confirms assumption about the fact

» that in such systems is permitted the replacement of objective

oo vorameter F(x) of aperture linear with the equivalent change in
accordance with (3.31). However, an error in the replacement .

increases with the decrease of the central linear section of

o
‘.: s '3
= characteristic F(x).
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If in the system is used the proportional-~integrating or active
int;egrating filter, then in the general case it is not possible to
produce the replacem-nt of the initial characteristic F(x) linear on
the criterion of the equality of area under curve F(x). In this case
it is necessary to use any other methods of linearization, for
example on statistical criteria [7]. However, an error in these
methods is comparatively great, which noticeably reduces the accuracy
of the determination of the probability of disruption/separation by
thé methods of the theory of ejections. * is it forces to be
converted and to more precise methods of analysis. Most promising of
them is the method of determining the probability of

disruption/separation on the basis of the theory of Markov processes.

s\_

o
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Pig. 3.4. Probability of disrupting/separating the tracking in the

nonlinear system of the second order with the integrating filter.

3.2. Analysis of disruption/separation in the fixad systems with the

help of the theory of Markov processes.

I1f following error x(t) is the component of the Markov process
x(t), then the prob.bility of disruption/separation is determined as
a result of solving the boundary-value problem for the equation of
FoEker-Planck (2.27) with the absorbing boundaries, situated on the

edges of the aperture of discriminator.

In this paragraph is examined the methnd of approximate solution
of the equation of Pokker-Planck whose basic ideas were for the first
time proposed by Kramers into |Q#0D during the analysis of Brownian

motion in field of force.

...............................................
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Investigating the behavior of Brownian particles in the medium with
the high viscosity and reducing the problem to the solution of the
one-dimensional equation of Fokker-Planck, Kramers in work [27] found
the solution of this equation taking into account the series,/row of

limitations to the form of field of force.

In 1943 Chandrasekar analyzed some particular cases of the
behavior of the Brownian particles, described stochastic differential

equation of second order [20].

Subsequently of the idea of the work of Kramers and
Chandrasekhar it was possible to use for the analysis of the
disruption/separation of tracking in the regulating circuits. This
method was developed in the work of V. L. Lebedev, N. V. Belousovoy

[55, 71] and S. V. Pervachev [62, 67]. However, it is not universal

and at present it makes it possible to analyze the systems only of
first and partially second order. Nevertheless method deserves _
attention, since with & comparatively small volume of calcuiations it |
makes it possible to obtain the series/row of practically important

results.

Let us consider this method, gradually complicating the

.......
------------
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structure of the device/equipment of automatic control.
1. Systems of first-order tracking.

Pormulation of the problem. Let us determine the probability of
disrupting/separating the tracking in the system (Fig. 3.5),
described by differential first-order equation

L D~ KP () + KV N (). (3.25)

Let the dynamic disturbance/perturtation A(t) be such, that

dA/dt=),=const.




DOC = $3061005 PAGE M‘*

A~z [ 4te)

X
Y2

°

Fig. 3.5. Block diagram of servo system with one integrator.

Page 82.

Let us register the equation of Fokker-Planck for the

probability density of process x(t):

: N, O*w
! do (= 2 KIF)—Alw}+ 53252, (326)

h o

where A=/K.

Understanding by the disruption/separation of tracking the first
output of coordinate x beyond the limits ¥,, ¥, the aperture of
discriminatory charactéristic, let us supplement equation (3.26) with
the boundary conditions :
wlys, §) = (v ) =0. (3.27)

Let us introduce into the examination the flow of probability
density [i(x, ¢{) and, using divergent form (2.36) of the equation of

Fokker-Planck, let us register

] I = — K IF (9 — Al (. A — 3 22502

(3.28)




------------------------------------

%.
]
:
:
4
4
)
A
e

DOC = 83061005 PAGF ,45
Let us assume that the transient processes in the system up to
the moment/torque of the beginning of observation will be finished or

the time of their establishment will compose the insignificant part

of entire time of obscervation s Then, if the probability of
disruption/separation is sufficiently small (P(fs) *02), prabability
density w(x, t) little is changed for the time of observation;
therefore '

M(x, t) sHO=const. (3.29)
Relationship/ratio of Kramers. Let us introduce function &(x) (Fig.
3.6), such, that

KiF ) —A="52. (3.0

Function & (x) is called potential or potential function.

Actually/really, if we consider w(x, t) as the density of
distribution of Brownian particles along coordinate x, then value K
[F(x)-A] characterizes thé regular force, which functions on the
particles, and & (x) - potential field in which are located the
particles. After expressing the flow through the potential, on the
basis (3.28) and (3.30) we will obtain . i

Do—w()iGR Khih @)

Page 83.

- Latter/last equality can be represented in the form

me' TN .’%ﬁt E".“. [w (x)'e.!." K b (3.32) |

o st 7

.
. L. .« .
......
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in what not difficult to be convinced, aperture its right side.

I ntegrating both parts of expression (3.32) on x in the
arbitrary limits from Xa to *s we will obtain the relationship/ratio
of Kramers [27]

KN, w(,),‘\"(‘)/”"lr"
il ., (3.33)

%

{4
4 S e‘.f(")IK’ﬁ’o dx

5a .

playing important role in the solution of boundary-value problems for

the equation of Fokker-Planck. . _
Determination of the probability of disruption/separation. Let

us assume that x4 is the point of stable equilibrium ir the system

(see Fig. 3.6), and point XB coincides with one of the absorbing

boundaries X»=Y¥+ Let us introduce potential & (%) by such form, ia

order to &(x,)=0. This always can be done, since addition to function

F(x). of constant value will not infiuence density distribution of

probability w(x,t).

...............................
.........................

''''''''''
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Pig. 3.6. Coefficient of removal/drift and the potential function of

servo systenm.
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Let us wote also that in view of boundary condition (3.27} w(xs)=0.
This makes it possible to register relationship/ratio (3.33) in the

following form:

4 Y QPN KN 4
A

Usually the point of stable equilibrium is arranged/located in
the linear section of the characteristic of discriminator. Therefore
appronmately 1t 1s posszble to consxder that near x4 the

density of probability obeys the normal distribution law
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U(X) '” P ~ -ﬁ%'. exp[ (’—2':2‘ ) ],

t

where conservative value of dispersion o

s 1s determined by the

relationship/ratio

&= f| b | e

valid for the linear regulating circuits. With this K(jw) - the
cormplex gear ratio/transmission factor of the feedback loop of the
servo system (see Fig.'1.2), Sa- mutuial conductance of discriminator
in region ¥~vX,. Ta.ing into account that for the system K{jw)=K/jo

in question, we obtain °: = KN,/4S, . Thus,
w(ix,) ~ :R%:' @39 -
With the constant flow 1 the probability of reaching/achievement

by coordinate x for time {x of point 4, is determined from the

formula .
-  Pyuallts ' (3.36)

Hence taking into account (3.34) and (3.25)

i
Pﬂ (‘!) b Kfz ys‘ ]Ug 0[2 ﬁ § 6#‘”N'JX] .
A

Page 85.
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Producing analogous conversions for the boundary v, and taking
into account that with small prcbabilities of cdisruption/separation
the ejections of process x(t) beyond the toundaries y, and vy, - event
independent, let us ragister the resultant expression for the

probability ef disruption/separation for time s

1

' Ly er‘ Ts -
Pl = ﬂ%‘.};é_‘“’ j‘ RELZT TN
x4

Ts 1
- I!ﬁ’“ywmdx1- L (.31
*a g . '

The obtained relationship/ratio is correct with any form of
discriminatory characteristic. It is important oaly so that in the
vicinivy of the point of stable equilibrium xa characteristic F{x)

-

would be close to the linear.

The integrals, esntering expression (3.37) if necessary can be
accurately calculated by the analytical or greaphic¢ method. Let us
isolate the case, which is frequently encountered in tne practice
vhen calculation according to formula (3.37) substantially is

simplified.

Let us assume that ihe characteristic of discriminazor is the
o34 function P(-x)=-F( x). let us take for the definition, that the

input dynamic disturbance/perturbation A{t) causes positive detuning

4
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The integrals, entering in (3.37), virtually are determined by
the small regions x near the maximums of potential field & (x) (see
Fig. 3.6), since with small probabilities of disruption,/separation
3P (x)/KNo»]. Let us expand function (x) in the vicinity of its
maximums in the Teylor series. Characteristic F(x) near these points
in many practical cases can be approximezted by linear section with
slope/transconductance Sa=—dF/dx, therefore let us take into account
only two terms of the expansion
& --}-KS,(x-wr.)‘ np? XY,

20~ (3.38)

>, w-;-KS,(x—« x) npu@x«.x,.

Fey: (1), with.

vhere F=P(s) and #,=P(r) - value of the potential thresholds.
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With the low value the detuning A~0 position x, of the maximum

of poéential field virtually coincides with the boundary 7v,.

In this case, taking into account (3.38), wve obtain

..'feﬁfum‘"“dx==‘fkﬁ’“m“““dxtu

A A
© . 1 :
~ -;-S exp{k-,—ﬁ.-[f.-—-TKS,(x-— ‘{)'] }dx::
-—00 .
| KNy 430 /KN,
-5z ¢ W
(1=Yy="Tp

and probability of disruption/separation is equal to
ppyR T S,

where

=K ;F(x)dx.

In other limiting case with the large detuning A~y parabolic
approximation (3.38) of potential field near point x, can be

continued into the region infinite x. Then
- Y e4’(:)JK'N. dx ~ _;_V =KW, e‘.f./K’No . (3.40)
35

j' s ) / T o, (@41)

%A

R T RS T L L S e e U R
Y R T DA VR Jomte e e Lt (e T Lt S
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as a result the probability of disruption/separation is'equal to
Pl)= 'K_—E—““. {2e‘¢fll KWy + e K*No ] , .(3.42)

vhere
- X
.?e-K r[F(x)—A]dx; *=K S[F(x)-—A]dx.
. L7 ' 7] .

Page 87.

PFrequently during the analysis of the disruption)separation of §F§
tracking the potential threshold near the point ¥, they approximate
not by one branch of parabola as is done in (3.40), but two,
extending integration limits on t=. This gives ceriain further error
in the determination of the probability of disruption/separation. It

is possible to disregard it if A is sufficiently great so that one of

the potential thresholds would be noticeably higher than another.

Then instead of (3.42) and (3.39) we obtain one overall dependence
Pt ~ A% % &"'[e"""’m'-}-‘e"""’ “'”°]. (3.43)

Taking into account that a decisive effect on value P({s) in

formulas (3.39), (3.42), (3.43) have the exponential terms, it is
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possible to do the conclusion that in first-order systems the
probability of disruption/separation in essence depends not on the
form of the discriminatory characteristic F(x), but on the height of
potential barriers '9_. and &, i.e., on the areas under the branches
of discriminatory characteristic. This can be used for replacing the
objective parameter F(x) of linear vhen the heights/altitudes of the
potential thresholds in the linearized system will remain equal to
barrier heights in the reference system. The latter is achieved by
the introduction of equivalent boundaries. Yo and Y» according to

formulas (3.21). The linearization of system makes it possible to use

for the proximate analysis of the disruption/separation of tracking

X (.)4%' methods of the theory of ejections. = * .

Account of the fluctuating characteristic of discriminator. Let
us spread the method of determining the probability of
disruption/separation presented to the case when the spectral density
of white noise at the output of discriminator depends on
disagreement/mismatch x. Let the differential equation, which
describes the behavior of system, take the form

= +bl0e0,
where in contrast to (3.25) the intensity of white noise is the

function of following error x.

Page 88.

.........................
.....................................

..........
------




IR - -» e < ~ET e - ) Al TE LT TR TN U T e LT N Te T T T T
LA RS I UM I S S A WA i S R SR R A 2t R A '-‘.'J R ‘-‘.‘-".‘wz. \"*'- R ‘.q ..... R G ';?I

DOC = 83061006 PAGE ,544

For this case let us compose the equation of Fokker-Planck, using a

form of R. L. Stratonovich's recording:

oo 2 (a2 ) o] 3 ol G40

B=by.

Expression for the flow of probability density takes the form
d ] dB '
D=s@eix )1 B G— ez G4

Let us find the solution of equation (3.44), which little varies

vhere

in the time. As ‘shown in [14], the steady-state solution of equation

(3.44) takes the form

2
y# C a -
vhere C - constant, determined from standardization condition.

On the basis (3.45) and (3.46) it is pcssible to obtain the
expressicn for the stationary flow, which, as it follows from [55],

takes the form

ﬂ-—'}"ﬁ(x)-i-exp[%‘ j e & ';{Vm‘m)x
24 .

s

X exp|—2 ';%ac } (347

...................................
.........................................
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Conformity (3.45) and (3.47) is not difficult to check by direct
differentiation. From (3.47) it follows that

ries ] [ 4]

--a,-{l"r(?)w(x)exp —2 fg%ga . (3.48)
“ -
Page 8°.
For det -1ing the probability of overcoming by trajectory x(t)

& of the potent .. threshold at point x, (see Fig. 3.6), let us

: <:>!;; integrate both parts of expression (3.48) with respect to x in the
limits from ZXa (point of stable equilibrium) to absorbing boundary
xp=ys AS a result we will obtain the following expression for the

flov of probability density:

4 =l
{VFE)‘. (x) exp [— 2 S B_(()—“]} :{ .

D= T - (3. 49)
1 a(® . 'x
z-irm—):-np{ Ima} dx R

vhich is the generalizati&n of the relationship/ratio of Kramers

(3.33).

Taking into account that w(xp)=0, we have

R R e e




......
............................

"DOC = 83061006 PAGE /SL

’ (3.50)

Relationships/ratios (3.50) and (3.36) make it possible to
determine the probability of achieving the absorbing boundary 7,.
However, direct calculations according to formula (3.50) are bulky;

therefore let us produce further simplification in this expression.

Density distribution of probability near the point of stable

equilibrium usually differs little from the normal

o Wy, =] 2 S"m dc]..
13

b exp [ & 5A)
; Vie, P75 )
wvhence
1 Fix)—@ @y -
". (“A ) 3 ﬁT-V ‘:E (’A) . (3.51),
Page 350,

Further reasonings differ little .from case of B(x) =const.
Considering internal integral in expression (3.50) as certain
potential field, which has maximums at points x, and x,, let us

introduce the approximation
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' £
| .
z > ......_S(x_;:\! npE X ~ Xy,
C(O 3 2 1 174
24 ,._TS‘(x_xa) npE X ~v X,

where
4a (x)

=P (%), 3‘-‘-"‘4’3‘['51;)’]...,' i=1,2

Xey: (1). with,

The value of external integral in (3.50) virtually is determined
by the behavior of function &(x) in the small region about the

maximum of potential field; therefore

29 ]
Tt expl —2f 28 ge loxm e X
;& e T 23;‘ B O | Ve

Xe"?m [-—‘-;-S.(s'—x.)']dx. (3.52

With small detuning A~0 the point of the unstable equilibrium x,
is close to absorbing boundary X»s™Ys» therefore upper integration

limit in (3.52) can be replaced by x,.

With large detuning A~Fw/2 upper integration limit can be
approximately increased to infinity. As a result we will obtain
following expression for the flow of probability density through the

right boundary:
M VBE) wix) Y SEEL ¢

..............
...............
"""""""""""""""""
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viiere
‘’)
gk MaJbiX paccTpodKax, .

t=
{ 1/2 npa i Gomsux paccTpolikax.
Key: (1). with small maladjustments

(2)., with large maladjustments
Page 91. ' o )

The flow through the left boundary the value of detuning is

independent of determined by the relationsh.p/ratio

Dm—VEBR,) w(x) ) SEGL -,

Hence on the basis (3.36) and (3.51) is obtained the resultant

expression for the probability of disruption/separation, for time & AW

PlI= =) 1B (s)—2'tx) WETS, et
+eV B e ). (3.53)

Points x4 and x, are respectively the points of the stable and
unstable equilibrium of system. They can be determined from the

condition i

()
a()=— T i

Conclusions/outputs. As a result of the analysis conducted are
obtained expressions (3.39), (3.42), (3.43), (3.53), the making 1.
possiﬁle to approximately determine the probability of

disruption/separation trackings in the nonlinear first-order systems.

......




,,,,,,,,
-------
............................................

The basic assumptions, done in the analysis run, are reduced to
the following. It is assumed that the probability of
disrupting/separating the tracking in the system is sufficiently
small (P(t)< 0,1+-0,2), therefore the error distribution of tracking
w(x) little varies for the time of observation /. The characteristic
of discriminator F(x) has linear section near the point of stable
equilibrium XA, which is used during the calculation of probability

density at this point ®(x,).

From the obtained relationships/ratios it follows that the
probability of disrupting/separating the tracking in first-order
systems i.n essence is determined by the exponential factors whose
indices depend on the height/altitude of potential thresholds &, and
’

Page 92.

Since values < and ¥, are determined only by the area, included
under the discriminatory characteristic, then it is possible to '
consider that the probability of disrupting/separating the tracking
in first-crder systems virtually does not depend on the form of

characteristic F(x) with those fixed/recorded ¥ and &

2. System of the second order with the integrating filter.
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Formulation of the problem. Let us consider servo system with ﬁ
the gear ratio/transmission factor of the circuit of feedback
K
KO =0
Stochastic differential equation for the following error x(t) of
this system takes the form
o an g A

vhere all designations are analogous to designations in (3.25).

After assuming dx/dt=y and d\/dt=X,=const, let us compose on the

basis of (3.54) the equation of Fokker-Planck for the two-dimensional

probability density w(x, y, t): e o

i

do ! 9 N |

F= el P - - A0 5,

(3.55) |

where o |
A=-l"-(—.

It is necessary to determine probability that for time ty which
passed from the moment/torque of inclusion/connection, trajc.-tory
x(t) at least one time fall outside the limits v¥,, v, the aperture of

discriminator.

Physical analogy. Let us consider the potential field

. sw=F[ro-na 659
L7 T

N
v

|
* v - Ta et v - ..' ‘."..‘ .-‘4
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where Xa -~ point of stable equilibrium in the system.

In contrast to first-order system equation (3.54) describes the
behavior of the Brownian particles, which have finite mass T,
Therefore particles, being located in the potential field, possess
the specific inertia and cannot for the short time substantially

change their trajectory.
Page 93.

Afier achieving the maximum of potential threshold s (Fig. 3.7) and
having positive speecd, particles with tﬁe probability, close to one,
are rolled up beyond the limits of the barrier (they surmount it).
Thus, the disruption/separation of tracking can be identified not
with the reaching/achievement by coordinate z(t) of bcundaries ¥,,
7., but with output x(t) beyond the limits of the potential
thresholds. Let us determine éhe probability of overcoming by process

x(t) of the barrier, arranged/located at point X3 (Fig. 3.7).

Quasi-stationary solution. The solution of equation (3.55),

found on the assumption that = oOw/dt=0, takes form [14, 20]
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win ) =Cexp [~ Fr—gw; 0], . (50

where C—~the constant, determined from standardization condition;

& (x) - potential field, introduced by relationship/ratio (3.56).

Let us assume that nesr the point of stable equilibrium *4 tre
characteristic of discriminat. s is linear with slope/transconductance
Sa and root-mean-square following error is small in comparison with
the extent of linear section. With small probabilities of
disruption/separation (P(f) S 02) two-dimensional density of
distribution w{x, y, t) in région x~x, is approximately detarmined
by expression (3.57), which taking into account linearity F(x) near

x4 takes the form

v(x.v)L~,.~vs.£:.;exp[--;§ A

’

vhere é,xu‘/gé;‘, ,:gl(*NJ4T - dispersion of processes of x(t) and

y(t).

Near the potential threshold the true distripution w(x, y) does

not correspond to (3.38).

.....................................
.........................
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Fig. 3.7. Approximation of potential near the barrier.
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In [20] it is proposed tc seek the quasi-stationary solution of ‘

equaticn (3.55) in the form
Q= y T
. '(x--y)—-mrﬂp[‘-'p‘z - .’(‘)J, (3.59)
[

vhere function Q(x, y) must satisfy the conditions

()
1 mpr x~ X,
3.
Qx, 4) {0 B x> x, (8.60

Key: (1). with. . N

Let us approximate potential field near xs by the parabola (see

Fig. 3.7):

S :
vhere &, - height/altitude of the potential threshold; Sp=
=-——dpi"’ “_‘ — mutual conductance of discriminator near X

8

.............
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Taking into account (3.61) solution (3.59) near point %s is

determined by the expression

82 )y =CQ 5, ) exp| — 228 +”° sl .

where

— 2 73; AT | KN,
C—?A’W:t/'-zc"‘ Tuh,

Let us introduce new variable/alternating X=x—xs  1In this
case the steady-state equation of Fokker-Planck in vicinity X~Z%
will take the form

VSR b SR B
and soiution (3.62) is equal

1 25, X1
(5 sy = OQK, e { ~ i+ | @9
Page 95. :

Substituting (3.64) in (3.63), we¢ obtain equation for

determining the unknown function Q(X, y)'

KSg KN, Q.
y7+ X % +‘i“'5y'= o 86

The obvious solution of equation Q(X, y)=1 does not interest us,

since it does not satisfy conditions (3.60), which for new variable X

take the form

() '
QX. 4) ~ { !y X — (5, — x,):

0 ol X oo @56)

Key: (1). with.
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Let us. assume that the solution of equation’ (3.65), which
satisfies boundary conditions (3.66), can be found in the form
Q(X, y) = Q(y—aX)=Q(2), (3.67)
vhere a - certain constant value. Substituting (3.67) in equation
y (3.65) and passing to the differentiation with respect to new to the
f variable/alternating z, we will obtain
" —6T = y—KSX|-Rm Sl L2 (358)
5 So that expression (3.68) would not contradict (3.67), necessary
53 to assume :
; 2 _=a, (3.69)
I 4%} as a result of what equation (3.§§) takes the form
—er— s L=Sp L
. Page 96. T T

Its solution is located by the direct integration

Qw=C, ge,p[ -’-’-“;T‘-l’i"—]dz. e

where C,, z, - constants, determzned from conditions (3.66). In this

case these conditions with the small error can be substituted by the

following:

! (O.X-o-oo '
Q(x'”"'{'o n@ X—co. @7

T |
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Key: (1). with.

Hence finally we obtain

o- VIR - 20

z )
vhere Gﬂﬁr‘l‘,/ -alq--{-—,!- — positive root of equation (3.69) [negative

root does not satisfy conditions (3.71)].

Thus, the steady-state solution of the equation of Fokker-Planck
near the potential threshold takes the form

"X'v)":gz —':xrl'"i"[’%]x

N o (aT — 1) &
x“&[- Rmo+ KN, ] j &p [~ KN, ]dz.
1 - '
- en
Probability of disruption/separation. The flow of probability

density through point %» is determined by the expression

i) = | pmiX=0, . X5

After substituéing (3.72) and (3.73), after integration we will

in parts obtain expression for the flow through the potential

threshold
n(x) ='g;"/r[1/m+'r‘ !‘}'} X

)(exp(-—‘nn")

.........................................
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Let us define the probability of disruption/separation in the
presence of two potential thresholds as
P(ty) = || b+ |Majte (3.74)
ané let us register final formula fcr the probability of

disrupting/separating the tracking

Pea=£{V TV e+ B~ o o)+
+VEV #+ 5 e ()} 079

where & — time of observation; S, - mutual conductance of

. discriminator at the p&irt of stable equilivrium of system; Siy -

absolute values of the slope/transconductance of discriminatory

characteristic in the vicinities of the potential thresholds; P &~
heights/altitudes of “he potential thresholds, determined by the

relaticnships/ratios

% Xy .
.9,=-..;.‘.5' [F (x) — A} dx, 9,:-..‘7‘.3‘ [F (x)—A}dx;
X X )

X,, X, - coordinates of the potential thkresholds which depending on
the sign of unbalance A coincide either with the point of unstable
equilibrium xx or with the boundary of the aperture of the
discriminatory characteristic

Xy=max(%u, Y1), Xa==min (%, y2).

Here for the certainty it is reported 7y,<0, v,>0. 1f, for example,

................................
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A>0, then %i=yy, ;=X Coordinate x; is decermined from the conditions

Flxg—A=0,£&| g,

dx sz

If is fulfilled inequality VKSJ » 1, then formula (3.75) is
simplified and takes the form

Page 98. _P(t,):%‘fisr:[ P (—%%)'{'exp (""4/{’%.1)] (3.76)

After comparing the obtained expression with (3.15), let us note
that the probability of disruption/separation in the system in
question is equal to the probability of disruption/separation in the
linear system, if the heights/altitudes of the potential thresholds
in both systems are identical. This can be achieved/reached, if we as
the boundaries of the aperture of linear system take values Y» and

vY» determined bf relationships/ratios (3.21).

Account of the fluctuating characteristic of discriminator. The
methodology of the determination of the probability of
disrupting/separating the tracking presented taking into account the
series/row of further limitations can be spread also to the case when
the spectral density of effect ((t) depends on disagreement/mismatch

x [62].

Let in stochastic equation (3.54) N,=N,(x) and dr/dt=)\,=const.
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If the time constant T of the integrating filter is low, then
equation (3.54) is degenerated into the first-order équation which
was analyzed in the previous section. The probability of
disruption/separation in this case is determined by dependence

(3.53).

Let us consider another limiting case when T is great
(KSAT> 1).

As was already said in this paragraph, equation (3.54) describes

the behavior of inertia Brownian particle in field of force KF(x). In

this case the coefficient with dx/dt plays the rcle of friction. as
can be seen from (3.54), with the high value T the role of friction
is reduced. For the analysis‘bf systems with small friction let us
introduce into the examination the variable/alternating E, which
characterizes energy of particle with the single mars in potential
field (v [14]: , '
E=342W @77

 J . .
vhere ’(‘)‘-‘";’f["'@""]d‘; %4~ point of stable equilibrium of

s .

system.

Equation (3.54) taking into account (3.77) can be represented in

the form of the following system:
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~
~ .. B . e e Pl
I N T T Y . N T D T T L e _..1




DOC = 83061006 PAGE 20

& =V TE=F G,

o _ 2 (£ 2 )+ VIE—F@IEE O

(3.78)

where
Z(x)ngﬂ.(x).
Page 99.

Using the methodology, presented in § 2.3, let us compose the
equation of Fokker-Planck for the two-dimensional probability density

w(x, E):

== W ITE=F@ o+ 25 [+ E-2 (0 -
—5 20 o 2 2 [E—2 (el 379 =

As before, us interests the solution of equation (3.79), close
to the stationary. The two-dimensional density w(x, E) can be
represented in the form

w(x, E) =w(z|E)w(E), (3.80)

where w(x|E) - the conditional density of distribution of value x.

Por the particle, which moves in the potential field with small
friction, the retention t:me in the vicinity of point x is inversely |

proportional to speed x=})2[E—%(x)|. Consequently,

Cc

) '
o(x;E): Ym npH .9(x)<E’

(3.81)

0 npg & (x) = E, e
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Key: (1). with.

where C - coefficient, determined by standardization condition:
C= j‘ dx =3
VE—J’(:) ’
R(E)

R(E) - range of values x, where P(x)<E.

Let us substitute (3.80) in equationm (3 79). Taking into account
(3.81), let us produce the termwise integration of equation (3.79)

for x in region R(E).
Page 100.

As a result we will obtain the one~-dimensional egquation of

Pokker-Planck relative to the density of distribution of energy w(E):

Ein o

where

(6= ;Vf—a_‘(x ) dx, 9,(5)....s .__E____:‘i‘_;(;;

R(B)
% £)=-§-§ g WV E—F(x) dx,
R(E)

_8(x)dxs
4 (E)= T L ZTrar

...........
.....

. - . - -
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nureover %E—=9. (&), %,‘-—==‘P. (E).

In the system with sma.i friction (fading) the value of energy E
is kept constant during several oscillatory periods. Therefore, if
following error x at certain moment of time is within the limits of
the aperture of discriminatory characteristic, but has the supply of
energy E, greater éhan the height/altitude of potential threshcld o
&, then during the nearest period of oscillations x(t) will surmount

this barrier and will achieve the absorbing boundary. Thus, a

sufficient stall conditions of tracking is executing of the

inequality

E>%,. (3.89)

In the general case in the servo system there are two potential
thresholds (see Fig. 3.6); however, if the supply of enerqy E exceeds
the height/altitude at least of smaller of them, then

disruption/separation will occur with the probability, close to one.

Thus, the task aoout the disruption/separation of traucking in

1

\

............. M

L) . -« W
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the system of the second order is reduced to the solution of the
one-dimensional equation of Fokker-Planck (3.82) with the boundary

condition %
w(E=2,)=0, .r,-q’,‘.-j[m-md:. (3.84)

L]

— -

vhere x, - near to xa point of unstable equilibrium.
Page 101.

The problem, close to this, was examined during the analysis of
the disruption/separation of tracking in first-order system;
Y
- Ca‘ therefore let us now pause only at .the separate stages of further

solution,

The flow II(E) probability density, directed in the direction of

the absorbing boundary, on the basis (3.82) is equal to

"B _#(B1eh)_ 1 d[HBwE
1=~ ]q.u:) | e -
' ' (3.85)

This expression can be converted [62] to the form

ﬂ(ﬂ”me)__t_l_ »(5) e
— o= dE[m B ], (3.86)
e

HE)=2| HI25.
L

............
'''''''

. '~ e
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Considering flow as constant, let us integrate both parts of
equality (3.86) with respect to E in the limits from zero to Sue

Taking into account (3.84), we will obtain

w (0) exp H (£)
0= f W@ el - B8

Let us expand function H(E) in power series in the vicinity of
point Pu. After taking having only given the first of ‘erm of
expansi;on, let us compute the integral, entering expression (3.87).
In this case we obtain 1{5:(5);%.(3‘,‘) and let us replace lower

integration limit by —~«., After some conversions we will cbtain

0 =H(5* )
s '“‘))’r 20 _o@)e M (3.88)
Approximate value w(0) can be found from the steady-state . I

solution of equation (3.85), which corresponds to H(E)-O:

. .
» (E)=C9, (E) exp [-2 ‘( ’;.‘2) d.]. {3.89)
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_this case is determined by deperfence (3.90).
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Conclusions/outputs. The nonlinear system of the second order
with the integrating filter in the general case to analyze
difficultly. Expression (3.75) makes it possible to determine the
probability of disruption/separation in the system under the effect
on it of the noise whose speciral density does not depend on
disagreement/mismatch x. The assumptions, done during
conclusion/output (3.75), in essence are the same as they werec
accepted during the analysis of first-order systems. Calculation
formula somewhat is cimplified, if KS,T>>1. In this case expression
(3.76) for the probability of disrupving/separating the tracking in
the nonlinear system coincides.with the formula, obtained during the
analysis of linear system, if the potential thresholds in both

systems are identical.

The theoretical znalysis of the disruption/separation of
tracking in the systems where thz level of noise effect depends on
disagreement/mismatch x, is carried out only for the case of a small
fading in the system. The probability of disruption/separation in

Page 103.

3. Sysiem with astaticism of tl.e second ordzr.
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Generaiities. The tendency to decrease the dynamic errors in
regulating circuits makes it necessary to use systems wi“h the
increased degree of astaticism. One. of such systems, which cbtained
recently wide acceptance, is system with two integrators in the
feedback loop and attenuating chain/network, which ensures the
necessary stability factof. The resulting gear ratio/transmission

factor of the feedback loop of this system is equal to

T,
Kip)= _ﬁﬂ_;_;_l’_)., (3.91

and stochastic differential equation, describing the behavior of

following error in the time, takes the form
o KT, TS kF W= |
=T —KV R e () — KT, LERER 0L .49

The for the first time theoretical analysis of the
disruption/separation of cracking in the system with astaticism of
the second order was carried out by S. V. Pers-chev in work [67].
Using bésic ideas of this work, let us determine the probability of
disruption/separation in the system in question during the smaller
limitations to the form of input disturbances/perturbations, after
placing d*k/dt’ak,cconssla and taking into account the dependence of
spectral aensity N,(x) on mismatch x.

As shownin [67] with sufficiently low value T, equation (3.92)
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will approximately take the form

L5 gy, 08 L RE () -k, =KV TR (). 399

It describes the behavior of nonlinear system with a small changing
in attenuation length. Intrcducing into the examinat.on energy

E=x32+ & (x), let us represent equation (3.93) in the form of the
system dx =VW ,
r*—aw—snwr”m+ 9%
+VIEE=F WKy N ()2 ), |

vhere P (x)— potential energy

2 =K {IFQ - (5.99

Page 104.

Probability of disruption/separation. System of equations (3.94)
in form is analogous to system (3.78), which was examined during +*he
analysis of follower with the integrating filter. Therefore, lowering
conversions, identical to those carried out in the previous section,
let us register the resultant expression for the probability of
disruption/separation in the system with astaticism of the second

order during the small fading:

”’*"‘”"—7‘ Sidw ey ~%J§T‘§}dz]. (3.9

A2 {;,_‘:5 A s T NERD ?&«W&Wﬁi RS L eI
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1B)= [VE=FDF (dx; (8.97)

R(E)

$(B)= 5~.(x) VE=P () dx; ' (3.98)

R(E)
N (%}
F'(X),‘:dp(:)t S=F (xA)’ 2= KW, (%)

Kt d*N,{x)
=TT |,

|

u='IK[F ()~ Aldx—the height/altitude of smaller potential

threshold, Xy x.— respectively the coordinate of the points of

s ,-,_n;‘: -

AV

At

stable and unstable equiiibrium; R(E) - range of value- x, where

E>2 ).

"
»
. b

In the particular case when spectral density is constant

et

o) T, 0, 0
. ‘,‘!.'.‘r.’n-‘l R
AN

N,(x)=N,, formula (3.96) takes the ‘orm

Tu
Pig= i‘_,l(’i.,(s 3 ---‘;-‘-Ji—:%-df . (399)/

[N

1,

Page 105.

P A

WA

Expression (3.99) is com;eniently represented in the following

form:

ST 2K, §
P(t,)~——':—g.——9(.9“)exp(—u'27, ). (3.100)

where ’—”'_‘-;Ksﬂ - iance of e f tracki found th
o, =4 —F —— - variance of error of tracking, found on the

e,

r
assumption that the servo system is linear, y,= -%-S [F (x)—A] dx —

R

s 0
o o
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equivalent threshold of the linear system, which has the same
height/altitude of smaller potential threshold as initial nonlinear
system; «* - the correction factor, which considers the nonuniformity

of friction in the system and equal to

Pu

Pu
NJO+KSTH ¢ e (8 N, i 98
W= o ' SW-’) dE =5 “ dE. (3.101)

Recording (3.100) is convenient fact that the exponential
member, who has the greatest effect on the value of the probaﬁility
of disruption/separation, has the same form (with an accuracy to «3)

as in expression (3.16), found according to the law of Poisson.

As showed the experimental check, carried out for the 5@‘
characteristics of the discriminators of different forms, expression
{3.100) gives accuracy satisfactory for the practice at values of
KST?,51 (about 10-15% according to the relation of stresses/voltages

signal/noise).

A special case. Let us give calculated relationships/ratics for
the case when characteristic F(x) is approximated by the trapezoidal
dependence (Fig. 3.8). The form of characteristic is determined by
the slope/transconductance of the working section S=F'(0) and by
coefficient p=(x*-x,)/x,. Let us assume the spectral noise density at
the output of discriminator does not depend on disagreement/mismatch

x, but input dynamic effect A{t) is such, that d2)\/dt3=Q.
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is equal to .
5 & npk ||k,
@
- npe X, S| x| <Xy

2 (=lKsx, | x| - 5 £

KS 9 @
fuqu.--!-ax1-x;-xo npit X, <[ x| KX, 4%,
' 810

‘ L]

Key: (1). with.

the disruption/separation of tracking, it has the height
Pp=2(, + x)=KSx,x,.

prelimina—ily necessary to determine ?(™v) and «.

that - S s S
iF S npl|x|<x,. .
Pymi=! 000 x<|z|<x,
—S:npu X, K| x| <X 4 X,

Potential function in the system in question on the basis (3.95)

The potential threshold which surmounts trajectory x(t) during

The probability of disrupting/separating the tracking in the

" system in question is computed from formula (3.100), in *hich it is

Iet us find function ‘f(’u)- Taking into account (3.102), and also

.

s
- SEudy -
Az.““':.
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Key: (1). With.

we will obtain

ata
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Pig. 3.8. Trapezoidal approximation of the characteristic of

discriminator.
Page 107.

3 Analogously we find (
N [
~ﬂ(l4§ { 1 o E<E,
¢ No(8) _ | - upu E,<E<E,
( 0

e—d

‘+a+‘ UPH E'<E<’H'

Key: (1). with.

wvhere | c=-3-(g——l)m’ ""’V—Ej'i‘z‘"‘:‘n!/‘f
=

zl

On the basis of the obtained relationships/ratios the

e oot = 7 e a T - P
. N
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coefficient #* can be calculated by the graphical integration. The
dependence of the results of calculations on value p is depicted in
Fig. 3.9 as solid line. Dotted line there constructed the dependence
x(p), obtained experimentally. For the experimentation in the analog
computer was gathered the ring of automatic control, described by

differential equation (3.92).
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Fig. 3.9. Dependence of correction factor x on the form of the

characteristic of discriminator.
Page 108.

To the entrance of system was supplied noise effect and by the
repeated launchirgs/startings of machine was determined the

probability of disrupting/separating the tracking *.

FOOTNOTE *. In more detail the methodology of experiment in the

analog computers is presented in § é.l.

On the obtained probability with the help of relationship/ratio
(3.100) was computed the corresponding value «. the disagreement
between the thecoretical and experimental values « is caused by an
error in the det;rmination from formula (3.100) of the relation of

stresses/voltages the signal/noise, with which the
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disruption/separation of tracking occurs with the assigned
probability. As can be seen from Fig. 3.9, this error does not exceed
10% over a wide range of a change in the form of the characteristic

of discriminator.

As follows from (3.100), the greatest effect on the probability
of disrupting/separating the tracking has the value of exponential
term. Therefore for the approximate computation of probability the
factor, which stands in formula (3.100) before the exponential curve,
can be replaced with another expression by analogy with (3.7) so that

the probanility of disruption/separation would be equal to

a
,P(t.)~'-','£5'-[ap(-x'%)+up (—-x’{%)]. {3.103) .

where

=V KS :1:(:81”) — the root-mean-square fiequency of process x(t).
As shown in work [67], transition from formula (3.100) to
(3.103) does not introduce ints the calculation of appreciable error.
Formula (3.1C3) it is possible to use with any attenuation lengths
KST*, in the system, selecting by correspondingly coefficient #. The
theoretical analysis on the basis of which is constructed the

dependence «(p) in Fig. 3.9, was carried out on the assumption that

the fading in the system is small (KST?,<<1). The experimental cieck

é .
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showed that the obtained results can be used together with formula
(3.103) up to values of KST?,~1, In this case an error in the
determination of signal-to-noise ratio from the stress/voitage does

not exceed 15%.
Page 109.

With KST’,>f the theoretical analysis of system to carry out is
sufficiently difficult. For calculating the probability of
disruption/separation in ikis case with the utilized trapezoidal »
approximation of characteristic F(x) it is possible to use formula
(3.103), substituting in it the wvalues x, found experimentally (Figq.
3.10). The graphs, constructed in Fig. 3.10, are described

sufficiently well by the empirical formula

wms S0ED, (3.104)

where

0==0,5+4 0,33, [=20,18 (1 4-1g KST').

As can be seen from Fig..3.10, with KST?, >.30 value « is
virtually close to one with any form of the characteristic of
discriminator. This is explained by the fact that with the the large
KTS?, the servo system in question is degenerated into first-order
systeom, the probability of disruption/separation in which, as shown

in this paragraph, is determined in essence by the height/altitude of

o N e i S N R e W e N Ve -
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the potential threshold and virtually does not depend on the form of

discriminatory characteristic.
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Conclusions/outputs. For the system with astaticism of the

When the linear section of the characteristic of discriminator

z ///"
) /
a9
pe0 _/ // g

a8 L '
. 2 4 /

a7 : i /'/

. 3 :/

a‘a’ ) 10 100 XS re

Fig. 3.10. Experimental values « for the system with the high fading.

second order in the arbitrary parameters of filter the calculation of
the probability of disruption/separation can be carried out through
approximation formula (3.103). When the analyzed system has small
fading (KST?,<1), can be used more precise dependence (3.i00).
Formula (3.96) makes it.possib}e to lead calculation taking into
account the dependence of spectral noise density on

disagreement/mismatch x.

F(x) comprises more than 1/3 apertures, coefficient x differs from

....................................

...................................................
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one less than by 15%, independent of the parameters of system. This
speaks, that the analysis of the disruption/separation of tracking in
such systems with the small error can be produced by the methods of
the theory of the ejections (see § 3.1) during the replacement of
objective parameter F(x) of linear with the equivalent thresholds,

determined by relationships/ratios <3.21).

For the characteristics with a small linear section a reduction
in the coefficient x depending on the parameters of system can be
very essential. This it is necessary to consider during the
identification of the parameters of system, which ensure the minimum
probability of disrupting/separating the tracking, and at the
determination of the required signal-to-noise ratio at the output of

discriminator.
4. System of the second order with proporticnal~-integrating filter.

Let us consider servo system with the gear ratio/transmission

factor of feedback loop

() — K (i 4 pT})
"_K(p)" P+ pT} (3.109)

System with this filter possesses z series/row of advantages in
comparigon with the system with the simple integrating filter: by

increased pull-in range, by best transient process and so forth, etc.

........
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: The differential equation, which describes the behavior of the
system of the second order with proportional-integrating filter
(3.103), takes the form
3 @ dF (x) \ dx A
ra7‘+(1+xrn )& L KF () =T+~
S — )
3 — KV N0 () — KTn AL RGEOL, 5,105
. vhere n=T,/T.
5 Page 111.
This equation can be represented in the form of the system of
: two differential first-order equations (2.21). If we the coefficients
S (35 of removal/drift write/record in the”form, proposed by‘R. L.
S Stratonovich, the equation of Fokker-Planck will take form (2.38).
:; Let us consider the case when N,(x)=N,=const, d\/dt=0. By

analogy with the previous calculation let us determine the
probability of disrupting/separating the tracking in the system being
investigated by expression (3.}03),'after changing by correspondinglf
of value w,, c: and «*. Since %, and s’. are respectively
root-mean-square frequency and dispersion in the linear system, on

the basis (3.74° and (3.7) let us register

- = V KS (I =n— KTy + KSTw
n= T 1 4 K3Tn? '

2 __|KNo | 4- KSTnt
=& TyrTA (3.107)
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Let us determine coefficient «. With n»l1 or T»= with n=const the
analyzed regulating circuit is degenerated into first-order system
with the coefficient it is born .into first-order system with the gear
ratio/transmission factor of feedback loop K(p) =Kn/p. A similar
system is analyzed in p. 1 of this paragraph, whence it follows that
in this case «=~1. With n+0 the filter becomes integrating and the
analysis, carried out in p. 2, shows that x=1. Determination « in the
arbitrary parameters of filter is connected with the considerable
mathemétical difficulties. Let us consider the special case when

fading in the system is small (KST>1, KSTn2<0.5) [62].

With sufficiently low value KSTn?<<1l and N,( x)=N, jamming
intensity, as can be seen from (2.21), virtually it is possible to
count independent from disagreement/mismatch x. This makes it

possible to register initial differential equation (3.106) in the

form

IE+[ 1+ KA St KF () =60, @.105)

where io_(g"_- equivalent broadband noise. The intensity of this noise
it is possible not to make more precise, since coefficient « is
determined not by the power of interference, but by the inconstancy

of friction in the system.

Page 112.
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In viev of the analogy between equations (3.108) and (3.23) the
analysis of system with proportional-integrating filter can be
carried out employing the procedure, wnich was being applied in the
examination of system with astaticism of the second order. Lowerirg
conversions, let us register final expression for determining the

correction facto; 'y . ..
P ke My () '
: J— n AL
x._.l_*_m 1+-3.—A-‘-§ *TE)—dE ' (3.1@)

where \
1@= [ VE=7m L ux,
R(E) '

(3.110)

$(E)= _( VE=F@® dx; #(x)==S(Fat;
e : J

Pm=2(1), 71— the boundary of the region of tracking; R(E) - range

of values x, where “E}-’(x).

Comparing expressions (3.109) and (3.101), it is not difficult
to be convinced of the existence of single-valued
connection/communication of coefficient « for the
proportional-integrating filter with the analogous coefficient, found
for the system with astaticism of the second order at the identical

characteristics F(x) and small fading in both systems. Thus, the

...........................................................
....................................
.......................................
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/ -
calculation cf the probability of disruption/separation in the system
with the proportional-integrating filter substantially is
facilitated, if with the same characteristic F(x) is known value ¢« in
the system with astaticism of the second order. Thus, in the case of
the trapezoidal characteristic F(x), depicted in Fig. 3.8, correction
factor ¢ for the system with filter (3.105) can be determined via the
corresponding recalculation of the granh x{p), constructed in Fig.

3.9.

Conclusions/outputs. The probability of disruption/separation in

N the system of the second order with the proportional-integrating

ﬁ filter is approximately determined by formula (3.103) during the i
appropriate replacement of em_:ering it parameters ®m 0: and «°. -

/

¥ Root-meap-square frequencgﬂytrhnd dispersion ::'of following error

—

are computed with the help of approximate relationships/ratios

(3.107). .
Page 113.

The correction factor «, which considers the nonuniformity of fading

in the system, during a small fading (KST>1, KSTn?<0.5) can be

calculated by formulas (3.109)-(2.110).

On the accuracy of formula (3.103) for the system with the
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proportional-integrating filter it is possible to judge by the family
of curves (Fig. 3.11), obtained jn work {62]. Solid lines in the
figure correspond to the values «, found theoretically with the help
of relationship/ratio(3.109) at the trapezoidal characteristic F(x),
wﬁich has linear section 21 times of less than the aperture of
discriminator. _ .
Are there censtructed the dependences x(n), found by the simulation
of system on the analog computer. As can be seen from figure, with
the execution of conditions KSTn?<0.5 and KST>1 the coefficient «
with an accuracy to 5-10% is determined by dependence (3.108). Is the
same accuracy of the determination of the relation of
stresses/voltages signal/noise on the output of discriminator with
the assigned probability of disruption/separation §§0.2. As in the
system with astaticism of the second order, coefficient x differs
from one not more than by 10%, if the linear section of the

characteristic of discriminator composes at least 1/3 apertures.

From the analysis conducted it follows that in the systems with
the proportional-integrating f&lter the coefficient « is reduced most
'strongly with XSTn?~0.b5. This is explained by the fact that during
this combination of the parameters the fading in the systemn,
remaining.small, considerably is changed due to the inconstancy of

value KnT(dF( x)/dx)-

....................................
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Fig. 3.11. Dependénce of correction factor on the parameters of

filter.
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A change of equivalent thresho.d *V» in the system leads to the fact
that value 7osr, vhich corresponds to the minimum probability of
disruption/separation, does not coincide with value n,=1/yKST,at
which the variance of error of tracking in the linear system is

minimum,.

3.3. Special features/peculiarities of the analysis of systems with

the periodic characteristics of discriminators.

A series/row of radio engineering systems of automatic tracking,

such, for example, as the system of phase automatic frequency controi

(FAPCh), have the periodic characteristics of discriminators F(x). In

(R
LY
-
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ﬂi such systens are absent or are very small the ranges of values x, in

which is ..ot exhibited the controlling action of discriminator.
" Tne.&fore in the _eneral case it is difficult to unambiguously
il bounda‘ies ¥y, and v, to the region of the trackings, output
X3 ber : " limits of which is identical to the disruption/separation of

tracking.

The action of fluctuating interference in the systems with the
& periodic characteristics F(x) can lead tc jumping over of following
: error to an arbitrary number of periods. The level of hazard of such
migrations/jumps is determined by the conditions for work and by the
Q GE; concrete/specific/actual designation/purpose of the system-of
%) tracking. There are systems (for example, the tracking meters
s phases), for which a change in the following error for one period is
inadmissible. In these cases it suffices to examine the behavior of
process x(t) only in one perind of discriminatory characteristic,
- considering that on its ends/leads are arranged/located the absorbing
boundaries. The analysis of disruption/separation in this case is
reduced to the already examineé cases with the noncyclic
characteristics F(x). By an example of the analysis of the system of
phase automatic frequency control and as the integrating filter

serves work [63].

S
LR

However, there are many systems work of which does not
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significantly affect transition x(t) to one or several periods. For
example, this is the same system of phase self-alignment, which uses
for thie tracking the frequency of received signal {(Fig. 3.12). In
this device/equipment the single migration/jump of phase for the
period yer does not lead to the loss of tracking the signal
frequency.

-

Page 115.

Let us consider, to what it leads noise effect on the system
with the periodic characteristic F(x) based on the example of phase
automaticifrequency control. Despite tﬁe fact that to research of
work of FAPCh during -the noise effect are devoted numerous works [45,
51-54, 63, 70, 76-80, 83, etc.], the problen of the analysis of
disruption/separation in this system is far not completely solved.
Hovever, the conducted investigations makes it possible to do a
series/row of practically important conclusions/outputs and to give
in certain cases the quantitative estimation of the degree of

interference effect on the mode/conditions of tracking the frequency.

Noise effect on the system with the reriodic characteristic F
(x) to a consi’erable degree is determined by the presence of dynamic

error and by the inertness of system. Dynamic error of FAPCh is

characterized by initial detuning between the signal frequency and

O S R T
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natural frequency of the adjustable/tuneable generator. If detuning
is more than pull-in range system of FAPCh, then even after the

. single migration/jump of phase error for the period the
mode/conditions of tracking is hroken with the probability, close to
one. The same occurs, also, w@th small detuning, if the inertness of
system is great. In these cases the single migration/jump of phase
error for the period virtually leads to the disruption/separation of
tracking the frequency; therefore during the analysis has the
capability to place at the points of unstable equilibrium the

absorbing boundaries.

In the remaining cases in the system of FAPCh are .
established/installed the mode/corditions of tracking, from time to
time interrupted/broken by separate short duration failures. If the
frequency of the migrations/jumps of phase is small, this

mode/conditions can prove to be permissible. It they frequently call

the mode/conditions of asynchronous tracking [53].
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Pig. 3.12. Punctional diagram of FAPCh: FD - phase discriminator;

FNCh - low-pass filter; PG - readjustable generator; UCh - control of

frequency.
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With the coincidence of the initial signal frequencies and -
adjustable/tuneable generator the medium frequency of the
adjustable/tuneable generator will not be changed, since in this case
the ejections of phase to the positive and negative sides are
eguiprobable. However, this fact yet does not make it possible to
judge the reliability of the mode/conditions of tracking, since the
dispersion of the frequency of-the adjustable/tuneable generator in

this case is.different from zero.

If there is an initial detuning between the signal frequencies

and adjustable/tuneable generator Aq%o, then the heiahts/altitudes of
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two adjacent potential thresholds are not equal; therefore
representative point attempts to roll down in the direction of
smelier barriers. In this case together with the dispersion appears

the constant component of frequency disagreement/mismatch.

Certain representation about the reliability of the
mode/conditions of asynchronous tracking in the system FAPCh they can
give sverage/mean value and the dispersion of frequency
disagreement/mismatch and, especially, an average number of
migrations/jumps of phase per unit time. Following works {47, 53,
64], let us determine these characteristics in the system FAPCh with
the integrating filter, Tﬁe differential equation of the system in

question during the noise effect takes the form
TEI+ B L KF @) =bay - KYNE @, @11

vhere T - time constant of the integrating filter; Aw, - initial
detuning of the signal frequencies and adjustable/tuneable generator;

N, - the spectral density of the broadband noise, led to the output

of discriminator; (*(t) - s’ngle white noise; F(¢) - the
discrimninatory characteristic of phase discriminator; K - gear
ratio/transmission factor of the element/cell, which manages the

frequency of the adjustable/tuneable generator.

Assuming/setting the cheracteristic of discriminator sinusoidal

. P TP UL I
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F(e)=U sin ¢ and introducing designations a=1/T, A=KU, A,=Aw,, let us
compose the equation of Fokker-Planck for the stationary
two-dimensional probability density of combined phase distribution ¢

and difference frequency o:

_8_’.(!'!.) '] . . o,
vhere T op = (A —dsing)u] +95T, (112
ag"_T:'*"”,.
Page 117.

Since system is intended for the tracking the.frequency, then it
iz unimportant, in what periéd of the characteristic of phase S
discriminator F(x) is realized this tracking. Consequently, during
the determination of steady-state solution of w(o, @) it is possible
to use periodicity condition
w(® =w@+2, 9. (3.113)
Furthermore, function w(¢e, ¢) must satisfy the condition for the

standardization S .
far Joo Dap=1, (3.114)
- —-op

4

The exact solution of the steady-state equation of Fokker-~Planck

(3.112) taking into account conditions (3.113) and (3.114) in the

absence of initial detuning (A,=0) takes form [47]

e e RSt A — ——— A e -4 e

R : -—f T , R X ———— .

"B out, (‘?3‘) B ] (3.115)

...................................................
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Hence it follows that the one-dimensional probability density of
distributing the difference frequency Q is determined by the

expression

w(é)=_f o dr=} Ten(-%). @i

From (3.116) it follows that a difference in the signal
frequencies and adjustable/tuneable generator in the absence of
detuning is subordinated to the normal law of distribution with the

zero average/mean value

o aroce

- o ..
?= (ew(®)dp=0 B.117
and by the dispersion —co
s B8 )
ST (8.118)

If the initial detuning of frequencies Aw, is different from

zero, to accurately solve equation (3.112) is sufficiently difficult.

Page 118.

For the determination of approximate solution we will use the method,

proposed by V. I. Tikhonov [47].

Let us determine the solution of equation (3.112) in the form of

............

........................
----------------------
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h i =Y ;
the series/row 2@ =Y L.(7) o™ (), 3.119)
n=x0

where function La(®) they are subject to definition, and

w(§)=exp(-1g-'). (3.120)

Let us substitute series/row (3.119) into the initial equation
of Fokker-Planck (3.112) and will take into account that on the basis
(3.120)

i) () = — WY @) — w0 @) @120

As a result we will obtain

Y = L) — G4 —sing) Y o ) L ) =

/=l n=0

=7 Y@ Lo —F Puer@ e @
© am=0 A=l

Equalizing coefficients with identical derivatives g (), we will
obtain the system of ordinery differential equations for determining
the functions La(9): . '

U@®=0, -
L@ — 2 0 —sn®) L @)= | (312
= % L'y @)—2(r+ 1') 5 L'nas @)
. Being limited by two members of sum of expression (3.119), let

"\ us register approximate solution of the equation of Fokker-Planck,

Y
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found taking into account periodicity conditions (3.113) and

standardlzatxon (3.114)
o (e, 9) = () Lo () + o' 6 L, B =

l/..a w2l 1, )t e () x

. 2xD
X [—9 +a T.-i—“f;‘;ﬁ},;,— exp (Dyp4-D cos ¢) S exp(—Dyy—
A4

—Dcosy) dy]. (3.124)

vhere .D.=2L-;‘3- ng'ﬁé-. ,,(z) - function of Bessel of alleged index and

alleged argument.
Page 119.

Hence it follows that the one-dimensional densities of

distribution of a phase difference and frequency take the form

w(p) = ,“. T3 &P (-D.)l L D) 'exp (Dsp+ D cose) X

*+2n

X j exp (—DyY — D cos 1) dt, (3.125)

re 1 — exp (2 J—exp(280y)
w(F) = {}/w -9 V-B i exp (RZ.) X
XIa@Ftep(=F) @i
From (3.126) we find the average/mean detuning of the
frequencies = sluD.
Px=d, ] ID. (D) ]“ (3.127)

and the dispersion

a:. ~ . (3.128)
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Par evaluating the reliability of tracking FAPCh the frequency
of received signal it is possible to introduce into the examination
probability that an absolute difference in the frequencies will not
exceed the allowed value of é.:

Plal<i=1— |wids.  GI1D)

-

Estimation only according to the average value : is insufficient,
R

since with the zero detuning Aw,=0 condition l;}<:§. is satisfied with

any noise level and any ?..
Page 120. . . . ‘e

The reliability of the mode/conditions of tracking can be judged
alsc from the medium frequency of the migrations/jumps of phase. As

is known [17], the frequenéy of the ejections of random function o(t)

for the level ® is determined by the formula’

V()= )'éw(v=o. ?) dy. (3.130)

ST BRI

Substitutina in integral (3.130) the obtained expression for

»
«

Fe

two-dimensional probability (3.124) and producing integration, we

will obtain [64]

v(«b)—]/—r[u(w)-p L V‘B.—’,"—’i”(‘T)—] (3.131)

..............
...............
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where @(®) —one-dimensional density of distribution of phase,
calculated according to formula (3.125) at point ¢=@,In the absence
of initial detuning (Aw,=0) expression (3.131) considerably is
simplified

B eDm.

O =Y = (3.132)

In particular, the frequency of the migrations/jumps of phase
for levels O==xx 'is equal to

(3.133)

y"ﬂ' 2
viER=Y 5w, 0
The method of determining the statistical characteristics of

FAPCh examined can be, apparently, spred also to the systems with

other filters. Such attempts are done in works [70, 78].

In [78] this method is used for the definition of
characteristics of FAPCh with proportional-integrating filter.
However, due to method accepted in this work of the expression of
phase error ¢(t) through the ébmponents of two-dimensional Markov

process, the obtained results are valid only in some special cases.

In vork {70] is done the attempt to determine statistical

characteristics of FAPCh with the arbitrary filter in the feedback
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loop. However, the insufficient proof of some positions, which lie at
the basis of the method proposed, requires the careful

use/application of the obtained results.
Page 121.

Relationships/ratios (3.131)~(3.133) make it possible to
determine an average number of migrations/jumps of phase Der unit
time. However, under the noise effect are possible the
migrations/jumps of the various kinds: to one, two or several periods
for a comparatively short time, i.e., simultaneously can occur the
series of migrations/jumps [56, 64]. On the duration of this series

(about the number of periods to which they will be completed the

" migration/jump} the carried out analysis cannot give response/ansver,

since during the determination of the two-dimensional density of
distribution of the probability of phase and frequency was used
periodicity condition (3.113) of the solution of the equation of
Fokker-Planck and thereby was carried out the averaging of
statistical characteristics on'all periods of characteristic F(x).
The attemﬁt to approximately determine the distribution of
migrations/jumps according to a number of periods is done in work
[79] to the example‘to linearized FAPCh with the integrating filter.
Hovever, a quantity of assumptions done during the analysis and

unvieldiness of final results impede the use of the latter in the

o aret a8, - .,
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practice. Nevertheless, the series/row of the conclusions/outputs,
obtained in [79], qualitatively correctly reflects physics of

phenomenon.
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Page 122.
Chapter 4.
DISRUPTION OF TRACKING IN TIME-DEPENDENT SYSTEMS.

In the practice frequently it is necessary to deal concerning
the regulating circuits processes in which carry unsteady character.
The transiency of pi ocesses can bg caused by the series/row of
reasons. For example, dynamic disturbance/perturbation A(t) o5
frequently leads to the fact that the mathematical expectation of )
following error m.(f) becomes th:-function of time. Transiency can be
the corollary of inconstancy in the time of noise level f(t). With it
it is necessary to be counted, if the time of the establishment of
transient processes in the system is commensurated with the time of
observation. Therefore the analysis of the disruption/separation of
tracking in the time-dependent.systems represents urgent task. In
this chapter are examined several approximation methods, which allow
with one or the other degr-~e of accuracy to take into account the
transiency of processes during the analysis of the

disruption/separation of tracking regulating circuits.
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4.1. Generalization of the theory of ejections for the analysis of

time-~dependent systems.

Generalization of Poisson's law. The simplest methods of the
approximate definition of the probability of disruption/separation,
as this follows'from the previous material, gives the theory of the
ejeccions of random functions, which uses a Poisson character of the
distribution of the rare ejections of noise. However, during the
derivatién of formula (3.4) it was assumed that the frequency of the
ejections of process x{(t) above the level y does not change in time.
In the time-dependeﬁt systems this condition is ﬂot satisfied, since
either the dzsperszon of p"ocees 0°x(t), or the level of equivalent

Ye(f) =y—me(f}) threshold is the function of time.

Page 123.

Por the analysis of such systems with the help of the theory of
ejections let us introduce the.function v(t), which characterizes the
frequency of the ejections of the unsteady process x(t) above the
variable/alternating threshold y(t). Let us assume that the noise .
level is sufficiently small so that the separate ejectiones for the

threshold would prove to be independent variables. Let us decompose

________________
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entire time of observation {, tom of sufficiently small sections
with the duration At so that in each i section the frequency of

ejections it would be possible to consider constant wvi=v({).

Taking into account the mutual independence of the ejections of
noise above the level y(t), let us determine the probapility of the
appearance at least of one ejection for time {

L o »n
P(t.)al—"e-" =l-—exp(—2 vAl )
im) . lm}
Passing to the limit with At-+0, we will obtain the

generalization of Poisson's formula (3.2) to the unsteady case
' 1

P(t.)--l—up(—j'.v«)dt)- @y

Thus, the probability of disruption/separation in the
time-dependent system of automatic control on the sufficiently small
noise level is approximately determined by the- dependence

ty

P.(tl)= 1—exp {_5 [V () v (0] dt }~
l. .
~ ‘{ v () +v () at. 4.2)

Here in contrast to (4.1) is taken into consideration the presence of
tvo thresholds v,(t) and 4,( t), which respectively led to the
appearance of two addend in the frequency disruptions/separations

»,(t) and »,( t). Dependence (3.4) is obtained from (4.2) as partial




-t

‘w(x, x) - the combined density of distribution of process of x(t) and

. .,
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case when »(t)=const.

Frequency of ejections. Further calculation of the probability
of disruption/separation requires the determination of the dependence
of the frequency of ejections of »,(t) and v,( t) on the time and on

the parameters of systen.
Page 124.

As shown in [17], frequency v*({) of the intersection with random
process of x(t) cf the determined function y(t) from bottom to top °*

is determined by the dependence

v*(o=jh<ow««>. 1O+ dn, 2 ()=x)—1(0,
T w0 1O+ O =005 &) [y,

S+

wvhere

its derivative.

FOOTNOTE !. By intersection from bottom to top is understood the

event, consisting in the fact that the sign of expression y(t)-x(t)
varies from the positive to the negative. The value of the derivative

of random process x(t) in this case can be negative. ENDFOOTNOTE.

.....................
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It is analogeus, for the frequency v~ (t)- ejections dovriward we have

° .8 .. .
) V== (10200 YO+2()dn-
) -et
Thus, the frequency of disruptions/separations in the system

with two boundaries is defined as
VO % 0= {7 O 0 O T2 ) -0 0 4 —
0

- f WAPGO WO+, @3
-
vhere :
o= 2 (1) —vi(¢).

The direct ralculation of the frequency of
disruptions/separations according to (4.3) is difficult, since am
usually the two-dimensional density w(x, x) of distribution is
unknown. Exception are the linear systems in which the following
error is distributed according to the normai law. In the literature
is described a series/row of special cases of the transiency of noise
and threshold when it is possible to obtain exact expressions for the
average number H(t) of ejections for the preset time of observation t
{17, 22, etc.]. Since v(t)sdﬂ(i)/dt, ther these expressions can prove
to be useful during the calculation of the probability of |
disruption/separation. In particular, from the mentioned works it
follows that the frequency of the ejections of the normal stationary

process x(t) above level y,(f)=v—s(f), where s(t) - the determined

function, is determined by the expression
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()= :bi‘!ex; (- %2—) {exp(-— '—TT’. ;;::z‘ )+

2

e

where s(t) =ds/dt; #(z) - probability integral (1.5); g, — the
dispersion of process of x(t); wy— the root-mean-square fregquency
of process x(t), determined by relationship/ratio (3.8). During

conclusion/output (4.4) it was assumed that process x(*) was

centralized, i.e., Ms({)=0.
Page 125.

If -ate of change in the time of threshold y,({) is small in
comparison with the speed of process x(t), in other words, if
i) ]omox K1, r.heﬁ expression in the curly braces of formula (4.4)

cpproaches one, and formula takes the form

v{l) ~ ;,',—'exp ( - %L) (4.5}

From the comparison of expressions (4.5) and (3.7) it is evident
that in the case of the slow transiency of threshold during the
calculation of the frequency of ejections it suf{ices in formula

(3.7) to replace constant threshold ¥ wi... variahle/alternating y,({).

The analogous fact of

takes place also when normal process is unsteady, and rate
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of change in its dispersion is small. In this case the frequency of
ejections can be found according to formula (3.7), where should be

taken into account change in the time of dispersion and threshold.

Taking into account that the calculation of the frequency of
disruptions/separations in the nonlinear systems is .
hindered/hampered, for the proximate analysis of such systems is
c.rried out their preliminary linearization. Fcr this, as in the
fixed systems, are applied the method of statistical linearization or
linearization on the criterion of the equality of the supply of
potential ener¢y in the linear and norlinear systems. It must be
noted that this metfodoiogy of the determination of the probability

of disruption/separation does not possess high accuracy.

HYarmonic effect. In order to consider, in what cases during the
analysis of the disruption/separation of tracking it is necessary to
consider the dynamics of processes, let us consider regulating
circuit (see Fig. 1.2), at the entrance of which funétions the
harmonic disturbarce/periurbation:

A (1) = Ao Sin wol. - {4.6)

We will consider that the random effect f{(t) converted to the

output of discriminator is white noise with a spectral density of

N.,=const.
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For simplicity let us assume also, that the discriminatory
characteristic is linear in the limits of the aperture
F(x) =Sz, —y<x<¥y.
Under the action of regular disturbance/perturbation (4.6) the
§ mathematical expectation of following error in the steady-state
mode/conditions varies in the time also accesding to the sinusoidal
law. With an accuracy to phase it is possible to register
my () = A sinwef,

moreover amplitude A of oscillation is gefined as

1
A=1ol‘] +3RU¢) ....'
wvhere S8 - slope/transconductance of discriminatory characteristic;

K(jw) - the complex frequency characteristic of the feedback loop of

system.

We centralize following error and will introduce the equivalent

o thresholds

T, .

% yio= —y—A sin wf,

1 - yo=y—A sin wof.

;3 Assuming that the frequency of disturbance/perturbation We is
% considerably lower than the root-mean-square frequency oy of servo

system, for calculating the probability of disruption/separation we
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will use relationships/ratios (4.2) and (4.5). As a result we will

obtain

If A/v<0.25-0.2, then without the large error it is possible to

register

(l:-—,"-sin-.t)..uu 1= 2 siney.

Page 127.

During the calculation of the integrals, entering expression
(4.7), wo use an expansion of exponential curves in the series/rows

in the modified Bessel functions:

e =10+ 2 Y e cosk (5 —x),

e | (4.8)
~s = 1 @)+ 2 (— 1P (@) cos k| 5-—x):
' L (7= |

As a result for the probability of disruption/separation taking

into account dynamics we have

“Pla=gatew( =57 ) fohdee -

=Y &l @sin (= — 204)] } (4.9)

Awmi
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Coefficient a = Ay/s® characterizes the ratio of the intensity.of
s
dynamic effect to the aperture of discriminator and power of

fluctuations.

Let us note that the probability of disruption/separation in the
analyzed system, found without taking into account dynamic

disturbance/perturbation, is determined by the dependence
i (1. X

To consider the degree of the effect of dynamic
disturbance/perturbation on the probability of disrupticn/separagion
is possible, after calculating the relation of probabilities
P(tw)/Po(ts). In particular, if the time of cbservation is multiple to

half of the period of perturbing effect (lwwo=mz), then

P _
=il

Table 4.1 gives the values of the relations of the probabilities
of disruption/separationr. depending on values a, found taking into
account the action of dynamic disturbance/perturbation A(t), also,

without it.

Page 128.
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From the table it is evident that during the analysis of the

disruption/separation of tracking it is possible to disregard the
action of harmonic disturbance/perturbation, if coefficient a<l-2.
With >3 ignoring the dynamics of process A(t) leads to the very
large errors in the determination of the probability of

disruption/separation.

To approximately take into account the unsteady dynamic effect
is possible also by the replacement of real mathematical expectation
my(t) by its effective value. Thus, for the case of harmonic effect in
question we approximately consider that the dynamic following error
is time-constant and is equal to m,(t)-mo__-AlVi In this case, as it P 2
follows from § 3.1, the probability of disruption/separation is

determined by the formula

P.o(h):%"—' exp [-(‘1'-;:#'] -}-exp [-—-ﬁ{.iiﬁ] }

Comparing the obtained result with a more precise (4.9) with
g==§§. m=l, 2, 3, ..., let us find an error in this method of the

account of the sinusoidal dynamic effect

Pl _T0(® s apeds g A

AL

From the latter/last relationship/ratio it follows that the
error in tbhe determination of the probability of

disruption/separation is less, the less the amplitude A of dynamic
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error in comparison with the aperture 2y of discriminatory

characteristic and rms er:or oy
4.2. Method of Bubnov ~ Galerkin.

The method of Bubnov - Galerkin [12] is the weil developed
method of approximate solution of the tasks of mathematical physics.
For the first time the analysis of the disruption/separation of

tracking by this method is carried out by I. A. Bo'l'shakov [46].




.
v . -
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Table 4.1.
s 0 0.8 1 2 3 $
P (t3)/P, (ts) 1 |1,06]1,27]2,28]4,88|27.2
Page 129.

In principle the method of Bubnov - Galerkin let uc use for solving

the equations of arbitrary dimensionality. However, unwieldiness of
linings/calculations does not make it possible to use it for solving

the multidimensignal diffusion equations. In connection with this we

will be bounded in this paragraph to the analysis first-order of |

Servo systems.

Let the behavior of system be described stochastic differential

equation
Gr=alx. 0+b(x 9P0 (4.10)

with the coefficients of a(x, t) and b(x, t) nonlinear in the general
case. The value of following e}ror at the moment of the beginning of
observation t=0 let us designate x,. The transiency of task depends
on the dependence of coefficients a and L on the time and on the
presence of the transient mode/conditions of the establishment of

tracking error.
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The probability of disruption/separation P(x,, t) in the system
of tracking is determined as a result of solving the equation of
Pontriagin (2.78), supplemented by initial (2.80) and boundary (2.84)
conditions. In order to have uniform boundary conditions, let us
introduce function U(x,, t)=1-P(x,, t), which is the probability of
retaining/preserving/maintaining the mode/conditiuns of tracking in
the system for a period of time t, if at zero time following error
was equal to x,. As a result of this replacement we will obtain the

following boundary-value problem:
U (%, U 4 B(xe ) U
-%?—9==Aixb oazrp._%%ll%&{, (4.11)

U(X., O)==X, 12 < X< 1o (4.12)
 Utta =Ur, =0, (413
vhere coefficients A(x,, t) and B(x,, t) are expressed as the

coefficients of initial stochastic equation (4.10) [see

(2031)‘(2033)].

If in equation (4.11) coefficients A and B do not depend on
time, then variable/alternating are divided. Actually/really, if we
introduce

Uz, =T 60X ), 4.14)
that o . - .

H
T B (%) X" (%) + A (x0) X' (2,)
o= parn) =i @
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The exact solution of boundary-value problem for eigenfunctions X(x,)
succeeds in finding very Earely. Exception is the task about the
disruption/separation of tracking in the system from the linear in

the limits aperture by the characteristic of discriminator (A(x)=Sx,
B(x)=const) [49, 59, 65, 74, 75]. However, even in this simplest task
X(x,) it is not expressed as elementary functions, which 1mpedes
calculation, For the analyszs of nonlinear systems it is expedzent to @
uge the approximate methods of solving the boundary-value problems,

one of which is the method of Bubnov - Galerkin.

The method of Bubnov - Galerkin, actually, is further
development of the method of separation of variable/alternating.
Because of the fact that as functions X(x,) are used not the
eigenfunctions of differential equation (4.15), but the previously
selected coordinate functions, the process of solving the
boundary-value problem significantly is simplified and the class of

tasks solved by this method can be expanded virtually for arbitrary

A( x, t) and Bix, t).

e Y g w g B
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Fundamental principles. According to the method of Bubnov -
Galerkin the n approximation of solution of task (4.11)-(4.13) let us

define as

Ustin D=2 CeOma(x), - 416
Am!

vhere (#(%))— the complete in the .egion 73 £ x,& 7, System of the
coordinate functions, which are rotated into zero on the boundary of

the region.

Factors C» are determined from the condition of orthogonality
L{Ua(xs t)] to all functions ga(x). Here L - differential partial
differential operator, who corresponds to writing of equation (4.11)

in the form L [U(x,, t)] =0. In this case

) @ _ I Ll
L=-°—'-—A(xn ‘)3}; TB“" 033'
Page 131. .
— c . L.
The + condition of orthogonality reduces to the system of the

differential equations

(L{Un (%0 )], @) =0, (4.17)
I=1,2,..,n,

where (u, v) indicates the scalar product of functions u and v.

L PO Oy
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Functions Ca(f), which depend only on the time, will be taken out as
the sign of scalar product; therefore (4.17) it is system n

first-order of ordinary differential equations relative to functions

Ci{d).

Initial conditions C,(0), necessary for the unique solution of
system (4.17), are determined from the resolution of initial
condition U(x,, 0) in the series/rowv in terms of the set of functions

Pn’

f.‘. GO o x) =U(x O)=1. (4.18)

Aml

System of equations (4.17) considerabiy is simplified, if as the P

e

set of functions ¢ are selected the orthogonal functions
(or @1)=0 npn kkel. (4.19)

Key: (1). with.

In that case the system of differential equations (4.17) takes the

form -

Ll L. zc. o [( Ao 05 )+

Am]
+-{ - B{ »i)d’h(x.)’ ) =1 2.,
(3ob 055 e =t

Using a property of orthogonality (4.19), from (4.18) we find

1, i
GO = ‘{T';)T @.21

..............
- - ~
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The scalar product of two functions let us define as the

integral

®, 0)= ?9 (x) u(x) o (x)dx, 4.22)
L[]

where p(x) - weight function.
Page 132.

The successful selection of weight function and sequence of
coordinate functions ¢x(x) in many respects contributes to the success
in the solutior of problem, raising the speed of the convergence of

approximations/approaches Un(*e 1)-

First method. The simplest and spread method of the solution of
problem presumes that as the coordinate functions are used the

functions of the trigonometric series:

P % 3R
? (x)""cmﬁ" Ps (X)—-Slﬂ K] ’ ?.(x)—cm-ﬁ"u
v i) =sinZE,... 4.23)
with single weight function
o(x)=1. (4.24)

Here and subsequently for the convenience it is placed y,=-v,=y, what
always it is possible to attain by the replacement of the

variable/alternating x,.
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For solving the system of equations {(4.20) it is necessary to
preliminarily compute the scalar products, entering the coeificients
with unknowns (,(¢!). System (4.20) considerably is simplified, if
coefficients A and B do not depend on the time: A(x,, t)=A(x,),
B(x,,t)=B(x,). Then (4.20) it is the system of linear equ:tions with

the constant coefficients, and its solution is lncated analytically.

Second method. If the coefficients stochastic equation do not
depend on time, then it is possible to attempt to improve the
convergence of solution (4.16) by the selection of weight factor

p(x).

It is known [14] that eigenfunctions Xa(%) of equation (4.11)

are orthogonal with a weight of we(x):

[t Ko Xicaae=0 B eht @2

-1

Key: (1). with.

Here w,(x)— the solution of the steady-state eguation of Fokker -

Planck: _ .
¢“:i~‘ (x) Wer (X)l=-}£—. [B(x) e ()], (4.26)

the supplemented by conditions reflection at points =v:
oy, )=0I(-y, =0.

iy
L4,

CoaT et .~ _'.\.

[OPTE T DY Y O SO arTwy.J
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The solution of equation (4.26) takes the form
. ( X )
¢ . AR
wate)= g5y 0 {2 S—m““}' 21
9

where ¢ - constant, determined from standardization condition.

The orthogonality of eigerfunctions Xa(x) with a weight of
wer(%) mar . it possible to assume that in scalar product (4.22) as
the weight factor it is expedient to select

| p(x) == ter (2). . (428)

The nearer the system of coordinate functions qu(x) to eigenfunctions
Xx(x), the more precise approximate representation (4.16). Let us
isolate in functions qa(%) factor Pﬁi;zzsﬁand it is represented them
in the form . '
P (£ = [wes (£)] ™ 4n (), (4.29)
where as ?.0@) it is convenient to select the system of orthogonzi

funtions

1 @
{ 490 de=0 npu k4L (4.30)
-%

Key: (1). with.
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System of coordinate functions ¢:(x;) selected thus is orthogonal with
a veight of wer(%)As a result the system of equations (4.17) is

~

. converted to the form

-] a8 1
w01 [ f q»f(x)dx} Voo {B(x) Y8 4+

+ B ()¢ 0 )= [T +4' o+

+B’ (x) li’é:&-)— 4A (%)) _%_ 3" x)]% (X) 4 {x)} d{, (4.31)

l= lp 20 009 n.

The simplest orthogonal functions are trigonometric (4.23), which can

be used as system (%) am

In order to explain advantages and deficiencies/lacks in the
agescribed methods of determiring of scalar product and selection of
the system of coordinate functions, let us solve by two methods the

following task.

Example 1. We analyze the simplest (without the filter) system
of phase automatic frequency control whose functional diagram is

represented in Fig. 3.12. Considering that the control of the phase

.........................
....................
.................................

........
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of the adjustable/tuneable generator is produced via the

rearrangement of its frequency, let us register differential egquation
of FAPCh:

% —a—0F, () +KYN,B 0, (439
where x - instantaneous phase difference of the oscillations of input
signal and adjustable/tuneable generator; F,(x) - calibrated
(maxF,(x)=1) the characteristic of phase detector; e=wy~wc— the
in;tial detuning of the frequency of the adjustable/tuneable
generator w, relative to signal freqﬁency e, Q=umK — the band of
synchronism; g4, . the maximum stress/voltage, developed by phase
discriminator; K - mutual conductance of the control of frequency; N,
- spectral noise density, "led to the output of phase discriminator.
Let us noute that differential equation (4.32) under specific
conditions approximately describes also system of FAPCh with the

propertional-integrating filter.

The discriminatory characteristic of phase discriminator is

frequently approximated by expression F,(x)=sin x.

We will be bounded to the examination of the cese w=0. For .
probability U(x,, t) of absence. for time t of the migrations/jumps of
the phase through the points of unstable equilibrium -x and x with
initial disagreem:nt/mismatch of phases, ecual x(0)=x,, occurs the

boundary-value problem

..................

W YL S NP Y
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Wy _ e, U U
T T asiik, -‘ax—."""';g-’ (4.33
Uz O) =1, —a<x,<x, (4.3
U(—=v)=U(x,) =0, (4.3%
vhere a=4Q/K’N, - ratio of the power of signal and noise in the band
of closed system; r=1/4K?N,t - dimensionless time.
Page 135.
., Pollowing the first method of the introduction of coordinate
' functions, we seek the solution of boundary-value problem
N (4.33)-(4.35) in the form .
-“‘ n
o - 1) %
::" Y / (x..t)z-.z Ca(3) cos -Q-k—-i-—)—.'o (4.36)
N . = .
vhere (,(t)- ‘unctir that are subject to further determination.
With the weight factor in expression {4.22) p(x)=1 from (4.20) we
; will obtain system n of the ordinary differential equations:
- -l n
LW LI o @—NZy, Ec.(z) a(2k—1) X
d 2 2 kas)
H — 2 — 1
XS sin xsin & 2“’::05( 3 )X 4% —

(2 —1)? r '(21:-—1): (2A—-4=x , =12, ...n
S Rk i
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Since in this example the coefficients of equation (4.33) do not

depend on time 7, then system (4.37) is the system of homogeneous

equations with the constant coefficients. The matrix/die of

coefficients with unknown functions Ci(t) takes the form

[ ] & t
-z—l 3 0 0- 0 0 0 « 0
a 9 &a
Re=
242 k—1)*

0 0 o o, LTHEN_@CNte)

- - @r1y?
0 0 ¢ 0. 0 0 0 ol

Page 136.

The solution of the syste.. of homogeneous equations (4.37) with
the constant coefficients let us represent in the form of the linear
combination of the particular sclutions

[ l.!
Cg (“) = 2 c.Aae ’ (4.38)
A=t
wvhere 3,— the eigenvalues of matrix/die a; A,— the corresponding to

them eigen vectors. Eigenvalues M are the roots of the

characteristic equation
det (a—al) =0,
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where-I - unit matrix. Eigenvectors A, are determined with an
accuracy to factors ¢, which are introduced into expression (4.38).
For the certainty let us assume that elements/cells Am of
eigenvectors are equal to the subdeterminants of matrix/die a, to
equivalent components aax. After the calculation of eigenvectors A,

coefficients ¢ are found from the system of the algebraic equations:

2.: "IAR=CI(0)0 = 1, 29 ey
[

where the initial conditions

4
Ci(Q)=(—1)* @A=1)=

are determined by op to formuia (4.21).

2
Lowering intermediate ‘linings/calculations, let us write out two

first approximations:

the first approximation

U, (% %) =-:4 ¢ ' cos -, (4.39)

where
s
second approximation/approach
3 4 qﬂ'
Uybrwi)={4e ' +(-—4)e ]cos

e

ap‘
|

toga (1) |l o
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Superscripts in eigenvalues 1?7 indicate number of

approximation/approach.

On the obtained relationships/ratios on Fig. 4.1 are constructed
the graphs of the probability of th= absence of.phase jump-avers for
the time 7 during zero initial disagreement/mismatch (x,=0). In the
figure are constructed three first approximations (numeral indicates
the number of approximation/approach). Solid 1i = constructed the
curves, vhich correspond p(x)=1, to dash —p(x)=wce(x). As can be seen
from (4.39), in the signal-to-noise ratios a.23.1 first approximation
gives physically inaccurate results - function U(r) begins to
increase in the time. However, up to the values a=0.5-0.7 the
accuracy of formula (4.39) is completely sufficient for the practical
calculations. Second approximation/approach (4.40) with
a> ﬁ: (1+2 V:?')~3.24 has complex eigenvalues, which also contradicts
physical sense, since boundaryfvalue problems for the one-dimensional
equations of Fokker - Planck have the real spectrum, which lies at
the negative region. Therefore with the large ones a it is necessary

to compute higher approximations/approaches.

....................

...........................................
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Pig. 4.1. The first approximations of the method of Bubnov -

Galerkin.
Page 138.
Following the seconc “ethod of the introduc;tion of coordinate

functions, the sclution of boundary-value problem (4.33)-(4.35) we

seek in the form

Un bt )= == g Cax)cos BNE 4 q)

Due to the symmetry of coefficient A(x,) =-a sin x, and boundary
conditions (4.35) in expansion (4.41) are left only cosinusoidal

terns.

Steady~-state solution (4.27) of the equation of Fokker - Plaﬁck

in this example takes the form

Wy () = €%,
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System of equations (4.31) appears as follows:

dcdli(‘) [ -l] Ct(‘)"'—zcu(t)s —sm X —

- cos.x] cos (2#—2 D20 &= > D24, (4.42

On the basis (4.21) we will obtain initial conditions for unknown

functions Ci(x):

o=t [§ ™ aBiqze

Prom (4.42) it follows that the eigenvalues with the large
numbers are approximately equal to ),m—(2k—1)}4. The eigenvalues of

first two approximations/approaches are‘computed in the quadratures

4.49
W m e D o Y T o 15 a6,

l;l) =__¢'-2:+2 .

Prom comparison (4.43) with (4.39) and (4.40) it is evident that with
small ones a the first two eigenvalues, found with two 'methods,
‘virtually coincide. This is explained by the fact that weight factor
wee(x) with the decrease a approaches constant value. The advantages
of the second method are reveaied/detected with the large ones c.
From (4.43) it follows that the eigenvalues, fc¢ .1 with the second

method, are negative at any values of signal-to-noise ratio a.

.................
................
------------
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Pig. 4.1b shows first four approximations/approaches (4.41) with
a=l.5. From the figure one can see that with selection of coordinate
functions quM) by the second method the convergence of the method of

Bubnov - Galerkin is improved.

'In Table 4.2 it is shown, as are stabilized eigenvalues 1?’ with
an increase in the number of approximation/approach n (is used the

second method, a=1.5).

In conclusion let us note that the expansion in terms of the
system of coordinate functions (4.29) is expedient at the values
a>1-1.5, when substantially deteriorates the convergence of
expansions in terms of the set of functions (4.23) without taking

into account weight factor (4.28). With small ones a both the methods

exanined give virtually identical results; however, the first method

of the introduction of coordinate functions is simpler.

Bxample 2. In vork [46] the method of Bubnov - Galerkin wes used
for solving the equation of Fokker - Planck, the probability of
disruption/separation was determined from formula (2.77). As the
system of coordinate functions were used trigonometric functions

(4.23) with the weight factor p(x)=1.
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Table 4.2,
MU)
m:um~ . 1{"’ ;gv) xg') x‘n) xgn)
5]
ByGnosa—Ta. 1 {—0,155250 - - - -
ASDXING 2 | =0,040136 | —~2,638364 - - -
3 ~0,042033 | —2,600271 | —6,%7446 - -
4 =0, 41804 | —2,60G381  --6,545740 -—12,85396 -—
8 | —=0,04i892 | —2,608362 , ~6,543856 | —i2.53027 ~20,510487
[} ~0,041892 | ~2,60636! | —8,543848 —12,63789 | ~20,53632
@)
Acnigrorute. =0:490972 | —2,823413 | ~5,528220 | —12,52967 | ~=20,53028

Key: (1). Method of solution. (2). Bubnov - galeriina. (3).

Asymptotic.

Page 140.

With A(x,)=-A(-x,), B(x,)=B, and x,=0 is obtained the following

expression for probability of the disruption/separation:

(-5 b 13-

TEebh ()l 4-
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Expression (4.44) is ar.:thmetic mean of the second and third
approximations/approaches, moreuser the members of order By* and
above are rejected/thrown. It is clear that the probability of
disrupting/separating the tracking must be the function, which not
decreases in the time. Expression (4.44) satisfies this condition
only in such a case, when the indices of all expoitential curves are
negative. Usually Ai>4>Ai>.. therefore solution (4.44) makes sense

with satisfaction of the condition

—'§;> A . (4.45)

i.e. on the sufficiently high noise level.
4.3. Asymptotic method.

In the previous paragraph the solution of boundary-value problem
for the probability of disruption/separation is represented in the
form of series/row along the system of improper functions. The method
of Bubnov - Galerkin makes it possible to efficiently find out the
dominant terms of series/row, i.e., members, who correspond to small
in the absolute value eigenvalues i, The determination of the highest
approximations/approaches is connected wiéh the considerable '

computational difficulties. For the leading terms of series/row can

be used asvmptotic expansions of eigen functions [13].
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The determination of the probability of the absence of
disruption/separation U(x,, t) for time t is reduced to the solution
of boundary-value problem with uniform boundary conditions (4.11)~
(4.13). If the coefficients of equation (4.11) do not depend on time,
then as a result of separation cf variables (4.14) for functions T(t)
and X{x,) we will obtain equations (4.15). Since eigenvalues A<0,
then for the convenience subsequently let us assume A=-u3. From

(4.15) we find

T (f) = Ce™, (4.46)
-',—s(s.)x"-c-.i (%) X7 o 2 w0, (4.47)

Page 141.

Let us consider the possibility of solving equation (4.47) at the

high values of the parameter u®. By the replacement of the

variable/alternating .
X (x0) = X(52) 2(0). _ T (es8)
eguation (4.47) is reduced toithe equation of Riccati:
_za+lz'+-2-£-z+.%-m-o.- (4.49)
Let us represent solution of Z(x,) in the form of the asymptotic

series/row

Z (%) ~ 190 (%) + #5 (30)4',’ () o, (4.50)

........................
..............................

...............
----------------------------------
..................................................
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2¢
The mino. totals of asymptotic series/row approximate well function
Z{x,) at the high values u. For finding of unknown functions ¢,, 9,,
9, we differentiate (4.50) and will substitute result in equation

(4.49), leaving only terms with the degrees u?, u and u°:

24
Pk 51+ 200t o+ 25000 + B0 0 + 01 5 e+
4 2
+ ME " +T»’+nt -.'o.

Gathering terms with the identical degrees u, we will obtain system
of 2quations relative to functions o¢,, @,, ¢.. As a result of its
solution we find

B (x4) — 44 (x,)
o (%e) == £ | By 1) = 4B =) '

(4.51)

[EN) ’ .
o 50 |t { A (50 4 (5 B

B(x,)B"
— A s B (g — 220

). 4 315 (x.>1=}-

_ Since X'=XZ, then

(4

X (x2) = exp {'fz ® a}:’

Page 142.

Consec -ently, two asymptotic solutions of equation (4.47) take the

form:

..............

...............
ccccc
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Xy () "}‘/m}}m exp {il [P’l (x4) —“;l,,'h ("’o)]}'

(4.52)
where

[
a(x)acfuzgt)ldtz

werlx) — Steady-state solution (4.27) of the equation of Fokker -

Planck (4.26) with the reflecting boundaries at points «v,, ~,.

Since the constants of integration can be attributed to the
unknown thus far factor C in expression (4.46), then in solution

(4.52) for the certainty letr us place lower integration limit ¢ equal -

to zero.

Let us represent the unkncwn solution of boundary-value problem
in the form ol the linear combination of particular solutions (4.52)
X{xe) mCiX s (x0) +CsX - (x0) (4.53)
and let us require sc that at the points ¥,, 7, asymptotic seclution

(4.53) would be converted into zero according to boundary conditions
(4.13)¢

CiXy () +CoX (- Y =0,
CiX4(v2} +CaX_ (v3) =0.

Constants C, and C, are determined as a result of solving the
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obtained uniform system of equations. Since solution must be
nontrivial, then the determinant of system must become zero. From

this condition we obtain equation for the eigenvalues

sn o g = g 1] = - b 1= A 0] =0

Hence we obtain the quadratic equation relatively u, of two solutions

of which makes sense only cne:

!_s + Ve L (g —g(n)ial) —an)] (4.54) '
b= AR _

Second solution of quadratic equation gives the values u, close to
zero, with which asymptotic solution (4.50) is not correct. With

large k formula (4.54) is simplified:

kn A —hin) 4.66)
P R (
Let us now find the asymptotic representation of eigenfunctions
‘Xu(x). In expression (4.53) one of the constants is chosen

arbitrarily. Let C,=X_. (v,).
Page 143.

Then for the satisfaction tc boundary conditions (4.13) Ci=—Xi(ys).
With an accuracy *o constant the eigeanfunction

a0 =X () Xy (50 = Xy (1) X (50). (4.56)
The solution of boundary-value problem (4.11)-(4.13) is
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writteri/recorded in the form

a 2
Ute =3, ane & X, (x0)
X%

Coefficients ax are determined from the expansion of initial
condition (4.12) U(x,, 0)=1 in the series/row in terms of system
Xa(s): .

}ow i &X' (%) (4.57)
Al
Por determining the coefficients 4, from (4.57) it is necessary

to find set of functions Y, orthogénal to the eigenfunctions of

stion (4.47). From the theory of linear differential operators it
is known that the eigenfunctions of the adjoint equations are
orthogonal. The equation, conjugated/combined to (4.47), is the
equation

5 (BYY — (ATY + Y = 0. (4.59)

Using a property cf orthogonality, let us multiply both parts of
equality (4.57) to eigenfunctions Y. of eqﬁation (4.58) and will
integrate from v, to v,. As & result let us find the coefficients

1, -31
dy - [§X a(x) ¥y (x)dx ] _‘P!’,b {x) dx. 4.59)
T

Ts

The asymptotic solutions of equation (4.58) are located by the

same method such as is obtained the solution of equation (4.47):

Yaals) L ] 4.60
R R ) | Y

.....................................
..............................
..............

............
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The eigenvalues, which correspond to eigenfunctions Y.(x), coincide
with the spectrum of functions Xi(x). Prom (4.52) and (4.60) it follows
that the asymptotic solutions of straight line and
conjugated/combined of equations are connected with the
relationship/ratio

Yi(x) =wer (%) Xa(s). (481)

Substituting (4.61) in (4.59), we will obtain the resultant
expression for the coefficiants

3% )

= B e (2) X () ds] S-(x) Xalx)dz.  (4.62)
- T - 1] .

..............................
...........................
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Thus, is obtained the asymptotic -solution of boundary-vélue

problem (4.11)-(4.13), vali¢ with large ones
1

f-.(x) Xa(x)dx .

e P Xy(x)  (4.63)

Ulxeroj= 2 ;‘
A f Weor (%) X3 (x) dx
T .
Substituting in (4.63) eigenfunctions (4.56) and taking into account

(4.52), we convert asymptotic solution to the form

. o |
G nm 2 4.."‘3' sin [ (%)= (o)1 — o= [k (o) —hia) ,} '.
' k VB (%) Ve (%) .

(4.64)
where
d.-

1
f Vi) B (s st I (g (0] — - K —htr)

T
-

1 .
j‘ 513 (x) alnt {m (8 (x) ~ g (11 -;;';* (A {z)—h (1.)1} z -
T .

It is possible to show that if vy,=-y,=y, A(x)=-A(-x) and
B{(x)=B(~-x), then '

I MO

"
o
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2% (mz(x.) - -;L- o) )

VB Vemtg

where
Wes (X) h

. - e

: ) ‘_P”mmzl ) el ’

v VB G eoa'-(m (x) = o h (;s)) dx

-

. - ‘.3.5. x

The obtained asymptotic solutions are valid with eigenvalues
i&--m%-large by the absolute value Small eigenvalues can be found

with Bubnov- Galerkin method (see § 4.2).
(A%  page 145.

While the first approximations, ‘which correspond to eigenvalues small
in the absolute value, found with Bubnov-Galerkin method, describe
solution with large't, asymptotic approxima-ions/approaches they make

more precise solution with small t.

In conclusion let us consﬁder an example of system FAPCh (4.33),
for which the first eigenvalues are found in § 4.2 with
Bubnov-Galerkin method. Let us recall that in the analyzed case of
A(x) =-a sin x, B(x)=2, y=x. The probability not of

disruption/separation, calculated according to formula (4.65), it
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takes the form

[- -}
2 1 \
Uleyo 1) me Ec,e"" cos'(mx.——s;‘—h(x.) I
vwhere Imi

cos % 1
[ cos (p,x - h (x)) ds

¢y mm (= 1} s .
5@0:‘ (e = im)) e
al al S
"0‘)"'1'6' X o Tz—:lnzx—-‘—dnx.
A—~1 e KW,

.—-‘-|

MR T Y E= Y™ 4 dimensiorless time.

For the comparison of asymptotic method with Bubnov-Galerkin
method Table 4.2 gives the sequence of eigenvalues Am—py with a=1.5.
From the table it is evident that aiready the second eigenvalues,
found with both methods, are close to each other. Therefore the first
twvo terms of the expansion of the solution of boundary-value problem
should be found out bv Bubnov-Galerkin method, and with.133 used
asymptotic approximation/appro;ch (4.66). To use only a first
approximation according to Bubnov-Galerkin method is impossible,

L4 - [ £ o .| *
since in this case we obtain eigenvalue - M) with the large error.

4.4. Method of compensating sources.
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During the solution of the problems about the first
reaching/achievement by process of x(t) of boundaries vy,, 7, the
equation of Fokker-Planck is assigned only in the limited region Q.
The exact solution of boundary-value problem for this equation
usually causes large mathematical difficulties and very rarely it can
be found explicitly. At the same time for some tasks without the
special labor/work it is possible to find the‘solution of the

equation of Fokker-Planck, spread to entire infinite phase space.

Page 146.

Under the initial conditions of form (2.41) this solution is called
the fundamental solution of the rvoblem of Cauchy (see § 2.3). In
particular, if the analyzed process x(t) can be represented as the
result of the passage of white noise through the linear
device/equipment with the rational-fractional transfer function, then
the fundamental solution of the problem of Cauchy for the equation of
Fokker-Planck will be the normal law of the probability distribution
vhose parameters are cgmparatiQely easily located by the methods of
correlation theory. On the basis of known fundamental soiution it is
possible to design the solution of boundary-value problem [72, 73,
81, 84].

Method of compensation. Let us consider preliminarily the

.............
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disruption/separation of tracking in the system, linear in the limits
of the aperture of discriminator:

-

} vith <2<

F(x)=Sx,
N, (x) == N, = const

By disruption/separation of tracking is understood the first output
of coordinate x beyond the boundaries y,, y,. Let the following error
x(t) be the component of n-dimensional Markov process

x(.t)-{x‘-x(t),'};, ..» Xa}. The state of vector x(t) at the moment of the

beginning of observation t=0 let us designate Xo={Xot, Xea, o o),

The equation of Fokker-Planck for the prohability density of K,
transition w(x, t; x,) in the general case takes form (2.27). The -
unknown probability of disruption/separation is computed from the

fornula

P(t):s'l—-Sw(x..t; x) dx, (4.67

vhere 8 - n-dimensional phase space, limited on coordinate x, by the
absorbing boundaries of x,=y,, x,=y,; w(x, t; x,) - the solution of
the equation of Fokker-Planck (2.27.), supplemented by the boundary

conditions
‘ w(x, 0; Xo) =d(x—%s), - (4.68)

.(X.‘;X.)!,eaa(). ' . (4.69)

Here‘\G/- regular part of boundary G of phase space Q.

............
.....................
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Let us continue the linear characteristic of discriminator F(x)
=Sx to entire region -«<x<o and we will tempo:arily consider thit
there are no absorbing boundaries. Then the fundamental solution of
the problem of Cauchy satisfies equation (2.27) and initial condition
(4.68) and is n-dimensional normal law (2.44). Let us designate this
solution of w,(x, t; x,). Function w,(x, t; x,) yet is noc¢ the )
solution of boundary-value problem (2.27), (4.68);(4.69), since on
the regular part ofha'of boundary fundamental solution does not
become zero. For the compensation for probability density on G let us

place beyond the limits of region @ the series/row of the further

sources of density so, in order to at the initial moment t=0

N
w(x0Gx)=x—x)—Y ed(x—x), (470)

im)

vhere qa;— unknowvn thus far coefficients of the intensities of the
further sources, arranged/located at zero +ime at points X

Since poles X{ of auxiliary sources are arranged/located beyond
the limits of the abscrbing boundaries, latter/last .recording does
not contradict condition (4.68) of boundary-value problem. In view of
the linearity of the equation of Fokker-Planck his solution taking
into account (4.70) can be represented as the superposition of the

fundamental solutions
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w(x, f; x) =uw, (x,; X,) —|§: aw, (X, {; X;). (4.71)
{m)

Let us select coefficients a; in such a way that the resulting

probability density on the regular part of the boundary

f=l

vm o w e

[’o (x, £ x,) "‘ﬁ w, (x, & X{)]
x€0

would vanish with an increase in number N of commutating poles. This
makes it possible to consider combination (4.71) cpproximate solution
of initial boundary-value problem. Increasing a number of commutating
poles, we obtain increasingly more degrees of freedom in the
selection of coefficients @i in order to approach (4.71) the exact

‘selution. .
Page 148.

In the limit with N9= it is possible to obtain the exact solution of
boundary-value problem in the form
w(x, £ X) =, (x, & X~ i o () w (x, 4 2)dz, (4.72)
ﬂ -

vhere §i - entire n-dimensional space, with exception of region 8.

Weight function a(z) is determined from boundary condition

(4.69), which taking into account (4.72) takes the form

w, (x, £; X)

Sfe@mmtn| 4 613
e 7 1%€0
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Thus, the solution of boundary-value problem succeeds in
reducing to the composition of linear combination (4.72) and the
solution of the auxiliary integral equation of Fredholm first kind
(4.73). To some simple examples of the solution of boundary-value
problems by the method examined it is possible to be introduced in
{72].

Approximate approach. In connection with the fact th¢: the exact
solution of the equation of Fredholm (4.73) in the majority of the
cases to find difficultly, let us pause at the approximate method of
_ (v;ggb solving the bounCary-value problems by the method of compensating

sources [81].

After taking as the basis solution in the form of finite series
(4.71), let us bound a quantity of further scurces with a number of
absorbing boundaries and will place raversing poles into the points

of the mirror reflection of the basic pole x, relative to boundaries

Yir Y23 ‘15{21,"':01' = Xogs se0t -x.'}, (4’74)
Xy = {2y = Xoy0 = Lygr c2s == Xpm}.

Taking into account that the phase space @ is limited only on
cocrdinate x,, let us switch over to one-dimensional probability

densities, after integrating both parts (4.71) with respect to

-----------------------------
.................................
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variable/alternating ¥ ..., ¥» in the infinite limits.
Page 149.
As a result the probability of disruption/separation is equal to
Y
Ply=1~— S’U(x. iy x,)dx, (4.75)
- * “ ‘
vhere one-dimensional density w(z, l-. Xe} is approximately determined
by the linear ccmbination
ﬁxﬁ t.; x‘) ~ w. (x. t‘; x.) hamnd
— e, (%, 1y} X,) —ayw, (%, £; X,). (4.76)

Let us note that after integration boundary conditions (4.69) qﬁg
for the one-dimensional densities in the general case cease to be
uniforms T T

2 (vim ¢ Xo) 540,
§ However, taking into account that the boundar.es vy,, ¥, the region of
'ﬁ tracking, as a rule, coincide with the points of the unstable
- equilibrium of system or close to them, natural to expect near the
?F boundaries of the very low value of probability density. Therefore
~
X approximetely let us assume
o W (%) £ X |y, W G R L, 0. (A7)
§ In particular, relationship/ratio (4.77) becomes precise, if
é"'

entire/all boundary .. reguiar (aaG). This it has locally, for

example, in the servo system of the second order with

......................
..........
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I .portional-integrating filter.

Usually do not succeed in finding the values of coefficients a,
and &, which would satisfy condition (4.77) and in this case they
were not the functions of time t or coordinate x. Approximate
solution of boundary-value problem can be found, after determining
coefficients u,, a,, so that boundary conditions (4.77) would be

satisfied only on the average within the time of the observatiocn

t

s
S'{w. Matar b X} = X e, ({uia & X¢) } dt =0.(4.78)

Il

Solving the system of linear algebraic equations (4.78), we find

. Bos g = D5, 104s 0y, Boy — 0y, 51y
Z11Tag = 00, 05,° % T B30y — 0,505, (4°79)
where S

lI
fy= ; w, (T3 & %) 3t

- average/mean for the time of observation /i prcbability density on

boundary Y» caused by source with pole Xi

Page 150.

Let us consider some examples of the analysis of the
disruption/separacion of tracking in the regulating circuits by the

methcd of the compensating sources. -

P Y PR Y Pl & A s . e o+ P S Y. R YT
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BExample 1. Let us calculate the probability of

disruption/separation in first-order system (see Fig. 3.5) on the

assumption that dA/dt=0 and F(x)=Sx with -y<x<y. Stochastic equation

of the system being investiqgated takes the form
dx

S =—KSx—KVN.p (4.80)
and the corresponding to it equation of Fokker-Planck
: xw F .
) et 20 ks (o) + B3 5. (4.81)

Let up to moment/torque t=0 of the inclusion of noise the

following error in tht system take value of x(0)=x,. The transiency

of task is exhibited in the fact that dispersion gz(t)and
mathematical expectation m.(¢) of following error during the

transient process depend on time.

For determining the probability of disrupticn/separation it is

necessary to solve equation (4.81), supplemented by the boundzry

conditions
w(x, 0; xg) = d(x—xo), (4.82)

w(—y, & %) =w(y, t; X)=0. . (4.83)

The fundamental solution of the problem of Cauchy for ecuation (4.81)

with initial condition (4.82) is the one—dimeqsional normal law

! ey
ol = T U

2o=SN1 —etey, a=KS.

@ (x. & X)) =

where

In accordance with (4.74) let us place the poles of the

AP TR PR Wy VT 2 . - ani DTSN I L a ——
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compensating sources into points x,=-2y-%,, X,=2y-X,. AS 3 result the

compensating for probability densities will take the form

- -nt]2
U.(x,f; X,):: ! exp{_ [+ (214 x4} & t] }’

Vn oa () 262 ()

— ! [x— (Qr—xs) e-ePy
w, (X%, 5 %)= . () exp {_ 2¢2 (f) } (4:89)

Page 151.

The obtained expressions make it possible to determine in
formulas (4.79) the coefficients of intensity a, and a,. For the
determiration of the probability of disruption/separation let us
integrate expression {4.76) in accordance with (4.7%), taking into
account the concrete/specific/actual form of fundamental solutions

(4.84)-(4.85). As a result we will obtain

—al —al
1 1—%e %\ 'l afYTF e ')
Plt)~ I”TQ(VT-O(t.)) 2 ‘p(VT'. t) +

-t —at
, s \ 1o of1=@tzde )
g_q,( {4 {27+ %o )+__2_¢( +

) V2 e, (ta) e, (ty)
o o f1=Cr—sx) " 45 @(7i@'~_’° x-)-e_“"').(‘}.63<5)
+3? V2 e, (ta) 2 V2 i)

Somv results of the numerical calculations, carried out

according to formula (4.86), are given in Fig. 4.2, where are

accepted the following designations: Y=KN,/Sy?, X=x,/v, t=KSt,
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¢ a* 80 45 0 ¢
Pig. 4.2. The probability of disrupting/separating the tracking in

first-order system: === - method of compensation; @ O - solution of

boundary-value problem on AVM; A - results of work [€5].
Page 152.

On the accuracy of the solution of boundary-value problem it is
possible to judge by the comparison of the obtained results with the
results of other methodé. In particular, the same initial equation of
Fokker-Planck (4.81) with boundary conditions (4.82)-(4.83) was
solved in the analog computer (see § 6.3) and, furthermore, with x,=0
the solution of problem is compared with the more accurate results,
found in [65]. From comparison it is evident that the method of the
compensating sources for first-order system can give fair results

during the calculation of the probability of disruption/separation up
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to values of P<0.8.

Example 2. is complicated the previous example, after
supplementing into the feedback loop of servo system
proportional-integrating filter, so as to the resulting gear
ratio/transmission factor would become equal to
K(p)=K(1+pT,)/p(1+pT). Stochastic equation. which describes the
behavior of the analyzed system, takes form (2.18), and the
tvo-dimensional equation of Fr “*-Plgnck - (2.38). The boundary
conditions of the decided tasx -ain form (4.68)-(4.69). In this
case the regular partﬂa/of the buundary of the region of tracking on

the phase plane consists of the lines

=% if T>0
or - —1%{)0.
4 5<0’

Key: (1). with.

In the first case condition (4.77) becomes precise.
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Following the general/common/total procedure of calculation of
the probability of disruption/separation, let us determine
one-dimensional arez of transitional probability in the form (4.76).
The faanctions, which compose linear combination (4.76), are the

one-dimensional probability densities of the Gaussian process z(t):

' 5 '] [ ’
W (%8 X¢) Vi;'_n—(‘) exp {—L-E".lg-%&ﬂ} (.87}

Mathematical expectation and dispersion, entering distribution

{4.87), are found directly from stochastic eguation (2.18) of linear
system, for example, with the help of its averaging and conversion

according to Laplace [8]. In this example
ae~8d e o4 e~¥mo-0d

By (X, §) e 5y s +[£'+($+K.n)'zt}—".f:r“v

N Rl 2fan—pn—f -
A0 “T{ Kl F K T =P e+ X

!
vhere a, b= i+ Knt+ ¥V (+ Kn)* — 48K, |

K.-Kso’a-%’v A == .z%"l
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Assuming that. at the moment of the beginning of observation,
which coincides with the inclusion/connectiun of noise, the state of
process x(t) is determined by parameters x, and ;., in accordance
with (4.74) lct us take the coord!. ates of commutating poles

L hd
X,=~2y-X,, X,=2vy-X,, X,=~X,=-X,. Thus, all parameters, entering
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one-dimensional functions (4.87), are determined and it is possible
to switch over to the calculation of the coefficients of compensation
a,, a, in formulas (4.79). With the obtaired coefficients of
compensation the unknown probability of disruption/separation is

determined from formula .(4.75), which in this case takes the form

Pliimls 2 (Fmea o (™))

{4.88)
vhere a,=-1.

In p.rticular, with KST=0.2, Y=KN,/Sy®*=10 acccrding to formula
(4.88) were carried out the celculations whose results vere
represented in Fig. 4.3 in the form of graphs (solid lines). Dotted
line there showed more precise dependences, found by the simulation

of servo system on TsVM.
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Fig. 4.3. Disruption/separation of tracking in the system with the

N

proportional-integrating filter.
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5

Conclusions. As it follows from the examples examined, the
method of compensation allows with an accuracy sufficient for the

practice to determine the probability of disrupting/separating the

tracking cduring the nonstationary systems of the work of regulating
circuits. The very good accuracy of the determination of probability |
(10-20% with P<0.5-0.8) occurs during the analysis of the systems of

tracking with first-order filters.

From the comparison of Fig. 4.3 and 4.2 it is evident that
during the analysis of the systems of the second order the method of

the compensating sources gives greater error than during the analysis

......
------------
-------
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of first-order systems. This is explained by the fact that with the
determination of coefficients a, and a, and the multidimensional case
besides the averaging of probability density on the boundary in the

‘-~ is supplemented the averaging on space coordinates X ... ¥
Furthermore, in the multidimensional tasks boundary condition itself
(4.77) for the one-dimensional densities becomes approximated, if the
regular part of the boundary is only the part of the entire boundary
of the reiion @ (E%b). Therefore, as can be seen from Fig. 4.3, with
n=0 is obsefved the greatest error in the sclution, which at the
level P=0.1 leads to the error in the determination of the
pe;missible signal-to-noise ratio from the stres;/voltage

approximately/exemplarily to 20%.

4.5. Generalization of the method of the compensating sources to the

nonlinear systems.

Formulation of the problem. In the previous paragraph were
analyzed the servo systems with the linear discriminatory
characteristic in the limits of entire apertﬁre v,<x<y,. Much more
frequent in the practice are encountered the systems whose
discriminatory characteristics are substantially nonlinear. In the
principle there is possibility [84) to conduct approximate analysis
of such systems with the method of compensation, if we preliminarily

linearize system in the limits of its aperture. However, known
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linearization methods possess a comparatively large error. Therefore
to more expediently aralyze disruption/separation in the linearized
systems on the basis of Poisson's law (see § 4.1), but not with the
help oi the method of compensation, since the latter, without
removing errors in the linearization, requires sufficiently

cumbersome calculations.

In this »naragraph the method of compensaticn applies to
nonlinear regulating circuits whose discriminatory characteristics

can be approximated by the piecewise-linear dependences.
Page 155. . an

Purthermore, it is assumed that the random effect {({(t) has the
spectral density, which does not depend on disagreement/mismatch <%.
This approximately can be achieved/reached, for example, with the

help of the averaging according to formula (3.20).

In § 2.3 it is shown that'approximate solution of boundary-value
problem for the equation of Fokker-Planck for the system with the
characteristic of discriminator linear in the finite segment +,<x<y,
can be found in the form of the sum of fundamental solutions. Such
solutions are determined for each linear section of the

characteristic of discriminator and then "are joined" at the salient
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points. For the join of solutions is used the continuity conuition of
the probability density and flow of probability [38, 42] upon
transfer from one section of the characteristic of discriminator to
another. Since approximate solution is sought in the form of the
final sum of the fundamental solutions of the problem of Cauchy, for
the join of solutions by analogy with the previous material is used
the approximate criterion of the continuity of the probability

density and flow on the average for the time of observation.

Analysis of first-order systems. Let “s examine in more detail
the methodelogy of the solution of boundary-value problem for the
one-dimensional equation of Fokker-Planck in the case when the
characteristic of discriminator consists of three linear sections -
(rig. 4.4 - solid 1iﬁe). Let the boundary-value problem being subject
to soiution be determined by the one-dimensional equation of

Fokker-Planck, by initial condition (4..,2) and boundary conditions

-

o 5 5)=0. (389
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Piq. 4.4. Characteristics of disc~iminator.
Page 156.

Let us find approximate solution of boundary-value problem for
each linear section of the characteristic of discriminator F(x). In -/,
the section 9:_5_}_:_(.?, solution let us represent in the form of the sum
of three funccions: j. % ‘;;‘.)"'w. (% & %) + a0, (%, 1; %)+

+ @, (%, £; X)) (4.90)

being the fundamental solutions of the problem of Cauchy for the
equation of Fokker-Planck, found on the assumption that
characteristic F(x) is iinear with slope/transconductance S, in the
entire region:-m<x<u (Fig. 4.4). In this case solution w,(x, t; x,)

is obtained for the basic pole x,, thanks to which is satisfied

initial condition (4.82) of task, and solutions w,{(x, t; x,) and

wo(x, t; x,) afe found for commutating poles x, and x,, which lie

beyond the limits of the salient points of characteristic. Solutions
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w,(x, t; x,), wo(x, t; %,), undertaken with the weights «,, a,, are
intended for the satisfaction of the conditions of join at points o,

and o¢,.

The solution of boundary-value problem in the section y,<x<g,
let us represent also in the form of the sum of the fundamental
solutions wix, t; )~ e, (5, 6 X,) o, (x5 5),  (491)
of those found on the assumption that the characteristic of
discriminator is continued to infinity with slope/transconductance
S,, vwhich occurred in the section being analyzed. The poles of
solutions x,, x, are chosc» beyond the limits of section v,<x<¢, in

order not to break the initial condition of initial task.

Let us analogously register solution in the region ¢,<x<y, in

the form .
w (2 h x) ~ aw, (x5 X)) e, (X, 5 X (4.92)

vhere w,(x, t; x,) and w,(x, t; x,) - the fundamental solutions,

obtrined with P(x)=S,x, -u<x<Q.
Page 157.

As a result the solution of boundary-value problem takes the

form:
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[ &, (%, £ %) 7 8@, (%, 5 <)
< X<P,
w, (%, £ X,) - 2,0, (%, ¢; x,) +
] .(x’tt x') ad -!_a‘w. (x’ t;.x,) Iipu ?'<x<?” (4.93)
&, W, (xt H xu\! + a0, (X. Y xg) .
- B PSSy

Rey: (1). with.

where wi(% & %) — one-dimensional Gaussian probability densities

(4.84); c,~a, -~ coefficients of the intensities of further sources,

which are subject to further determination,

Join of solutions. Strictly speaking, the solution of L
boundary-value problem must satisfy continuity conditions at the
salient points of the characteristic of discriminator ¥ for the
probability density

w(x,t;x,)lm‘“':-m(x. b %) gy $=1,2 (4.99)
and for the flow of probability density

T (X, b )] 1y, eSS S i=12. (4.9
Turthermore, solutioﬁ must satisi{y Suvundary conditions (4.89). During
the recording of approximate solution in the form (4.93) for
satisfaction of the enumerated conditions it is necessary to fit the
appropriate coefficients a,-c,. However,.for the majority of the

practical tasks this cannot be done. Therefore it is expedient to
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reniace boundary coaditions (4.89) and conditions of jcin

(4.94)-(4.95) with those approximated, after requiring so that they

would be implemented only on the average within the time of

observation ln

Page 1ZI°.

-

As a result “or determining the coefficients of irtensities we have a

system of the linear algebraic equations:

l' :'
§ w, (9, 1; x,) dt +a.)' w, (p,, £; X,)df 4
(ﬂ'..d -

!, 4 t. _
+ 2, j W9, 5 X)) di=a, 5& w,(9,, & X )i+

ty

+ ‘1'46‘: o, (?v i; x() dtv : (4.96)

" 1

W, (9.8 X At 4, { @, (004 x,) dt -
. ¢

[ ; BN l.-q. s

:
2 ty .
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+a, J w, (Pt X)dt, :
’l ‘I
. bf O (e tix)dt+a, (T, (0,8 x,) dt +
!l 'l
+a, _g I, (e, & x,) dt = aabf 0. 4 x,)dt-+-
0
+a, 5 I, (9, 5 £ o,
t. ‘n
J Oy (e Xy dt-- ¢z§ I, (94, 4 x,) dt -+
i :
H f.
+a, é’ I, (9, £) di=a, | T, x)dt+

‘l
+ 409’ ﬁl (?ﬂ t; xg) dtv

' ’. '.

&, S ®, (Y1 & x;) di =-a, g ®, (Y0 5 2 )dE == 0,
] 9
t, !

“ujwa(n't;xs)dt'}'“otjwa (1a £ x,) dt =0, ‘

)
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where [IIi(x, &, x;) — flow of probability density, found under the same
conditions as corresponding i~-fundamental solution "HCﬁ ﬁlﬁj wi .h the
pole at point x; Flow Mi(x, &; x;) unambiguously is expressed as known
fundamental solution wi(x, {; X;). This counection/communication for each
specific case follows from the comparison of the initial equation of

Pokker-Planck with his divergent form of recording (2.36).

The solution of the system of algebraic equations (4.96) .
relative to coefficients a,-a, does not cause fundamental
difficulties; however, the process of calculating the definite
integrals, entering *he system, frequently proves to be very bulky,

since it. is necessary to apply numerical methods.

Page 159.

Substantial to facilitate the process of calculating the coefficients
a,~a, it is possible after using TsVM; howevar, if nc_essary all
linings/calculatiors can be carried out by harnd, for example, by
graphic method. The 2 :curacy af the calculation of definite integrals
can be low, are sufficient to ensure it about 10%. Further increase
in the accuracy does not lead to the refinement of the probability of

disruption/separation due to errors in the method itself.

Let us pause at the selection of poles Xi of the further sources
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...... of probability density. As has already been mentioned, their
coordinates on x axis must be arranged/located beyond the limits of
the corresponding working sections of the characteristic of
discriminator, so that would not be broken initial condition (4.82).
As showed numerical checking, solution (4.%3) in this case is not
susceptible to the position of further sources. By analogy with the
material of the previous paragraph we consider that poles Xi are

arranged/located mutually symmetrically relative to points o¢,, ¢, and

Y.+ Y2+ Thus, if basic pole has a coordinate x,, then for the further

ones let us assume

.

Xym 2y, Xyw=LQ3 3 (4.97)

- Xy Qug-—Xg, Xgw=2yr—Xe

During this selection of poles and in absence of external

.
RS R

dynamiz disturbance/perturbation.(d\/dt=0) the equation of

Fokker-Planck in sections x>¢, and x<¢, becomes symmetrical relative

-
L RIPeYon ,,r". e 18

A
S SO 2 ~dgn

to points v, and v,. Because of the fact that poles x,, x, and x,, x,

are mutually symmetrical relative to the same points, for

»
el

satisfaction of the conditions for apbsorption (4.89) it suffices to

POV XS

assume ¢ ,*-a,, d,==Qs. IN thié.case a number of unknown coefficients_
of intensities is decreased to four, which simplifies their.
determination. Finally, in the absence of dynamic
disturbance/perturbation, to the symmetrical characteristic o”
discriminator F(x)=-F{-x) and the initial disagreement/mismatch x,=0

a number of independent cuefficients is decreased up to two, since

LR
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A special case. Let us consider the system of first-order (Fig.
3.5) automatic trac«ing with the integrator in the feedback loop

K(p)=K/p.
Page 160.

Let us determine the probability of disrupting/separating ‘the
tracking during the arbitrary determined input
disturbance/perturbation A(t) and the random disturbance_s(t) in the
TQZ; form of white noise with a spectral density of N,, which does not
depend on fo.lowing error x. Stochastic equatiocn of the analyzed
system takes the form R
| & = —K[F (VTR0 (4.98) )
Let at zero time the state of system be known accurate .or
x(0)=x,. For calculating the probability of disruption/separation it

is necessary to solve the boundary-value problem

ow(xlixg 1 0 {[dh K, o'w
___“ o) e-‘-{ -:47—“”’(%)}*%-:— T
wix, 0; x) =3 (x—x,), w{l,i;n i x)=0 (499

and to fulfill integration for formula (4.75).

Let us assume that the charac.eristic of discriminator F(x) is

approximated by the dependence, depicted in Fig. 4.4. In accordance

0 o
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with the method of the compensating sources approximate solution of
boundary-value problem (4.99) let us determine in the form (4.93),
moreover commutating poles it is placed in accordance with (4.97).
The probability densities, entering in (4.93), are described by the

gaussian dependences

ix=m (xs.!)l'}‘ {=0,1,2

. .— l
w(x, ¢t x‘)—V——“@, m exp { 2T ()
.(4.100)

Taking into account that the initial equation of Fokker-Planck

(4.99) in the divergent form takes the form

ow(x.tiny) ___ OI(x.4 %)
o = ox

for the flow of probability density aleng x axis we will obtain

depending on the section cf the characteristic of discriminator the

following expression:

M ix, b x) =y s, b 25 [R‘”o (5 m (29,00) 4

' d5¢(0)
+G —W),

where

,O(x)=p_0x' fs (X)="—"ﬁ, (x~7.)- fa (x)"_':ps e —Yd:

&“Ks‘: i=0,1, 2,
Page 161.

Dispersions cﬁ@%-the founéd with path averaging and the twofold

conversion stochastic equation (4.98) according to Laplace [8], are
equal to NX
$) =3 [\ —exp(— 2],

and mathematical expectaticns m(x; t} are the solutions of the

. w3 D Al .- L= = -
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differential equations
dmg (x4.,8) _d\
) = — k), my (e, Oy =,

which also follows from (4.98).

Por the final solution of boundary-value problem (4.99) should
be found the coefficients of intensities a,-a,, after solving system
{4.96) at the substitution of the obtained expressions for ws(x, t:_‘:)
and Ii(x, f; x;). The integration of solution (4.93) by formula (4.75)
difficulties does not cause and leads as a result to the sum of the

tabulated probability integrals.

Example. Employing the given procedure can be designed the
probability of disruption/separation in the various forms of dynamic

effect A(t).
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Fig. 4.5. Disruption/separation of tracking taking into account the

dynamics of disturbance/perturbation.

; [ fo)
Page 162.
In particular, iu Fig. 4.5 are constructed the graph/diaqrams of the -~
dependence of the probability of disruption/separation P(r) on the
generalized time of observation t=ASds under the influence A(t),
determined by relationships/ratios (Fig. 4.6):
: ‘ ' »
':‘:: ]V. t<0,
%-{V,-}-af o 0 Ity
N Vam Vo + oty 0k 3 45
g Key: (1). with.
;j This disturbance/perturbation occurs, for example, in the automatic
>
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range finder of radar with the target tracking which in the interval

of time O0K!&K/» moves with the constant longitudinal acceleration.

During the calculation it was assumed that the characteristic of
discriminator was symmetrical y,=-v,=2¢,=-2¢,=2¢ (see Fig. 4.4) and
up to momert/torque t=0 of the inclusion of noise in the system is
established/installed initial fellowing error x,=V,/K=0.le. Graphs in
Fig. 4.5 are constructed at the different values of parameters
¥=N,K/S,0* and v=V,/KSs, the first of which characterizes the relation
of the power of noise and signal at the uufput of discriminator, the
second - conservative value of dynamic following error with t-«. The
[ oy duration of the .action of acceleration in the input '

disturbance/perturbation was received by such that KSew=2

From Fig. 4.5 it follows that most strongly the dynamics of
input disturbance/perturbation affects the probability of
disrupting/separating the tracking with a small noise level (¥<2) and
the long time of observation r>2-3. In large noise (Y=8) even
essential dynamic disturbance/perturbation (»=0.75) virtually does

not change the form of dependence P(7).

. A

N
)
v

Error in the method. The accuracy of the metLod of the

» Sandle

compensating sources can be evaluated via the comparison of the

S

obtained results with the results of other, more precise methods. for
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example, in Fig. 4.5 points noted the values of the probability of

al

disruption/separation, found with the method of solution of

boundary-value problem (4.99) on the analog computer (see § 6.3). The

c comparison of results confirms the possibility of solving the
o
3 boundary-value problems (at least one-dimensional) for the equation
) of Fokker-Planck with the fair for the practice accuracy.
in '
ion
he
he
8

and
for .
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Fig. 4.6. Input dynamic effect.
Page 163.

In this case can be taken into consideration the effects, connected

with the complicated dynamics of input disturbance/perturbation A(t).

Checking the accuracy of the method of the compensating sources
vas carried out via comparison with a series/row of other methods,
for example with the method of the simulation stochastic equation in
the analog and digital computers, with the method of Bubnov-Galerkin,
etc. Table 4.3, in ;érticular, gives the values of the probability of
disruption/separation in first-order the system examined with
d\/dt=0, the found with the meihod compensations and Bubnov-Galerkin

method. During the calculation it was assumed that ¥=8, x,=0.

All comparisons conducted confirm the completely satisfactory

accuracy of method for the analysis of nonlinear first-order systems
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up to the values of probability P<0.6-0.8 and time of observation

7510 (order 10-30% on the probability of disruption/separation).

Multidimensional systems. The method of determining the
probability of disruption/separation presented in the
piecewise~linear systems can be spread also to the cases, when
following errcr is the component'of multidimensional Markov process
[J1, 84). For some tasks which can be described by the differential
second order equations, it succeeds by the method of compensation

sufficient to accurately determine the probability of

disrupting/separating the tracking taking into account the transiency

of the conditions for the work of device/equipment. However, at the
same time there are situations, when the analysis of
disruption/separation in the systems of the order higher than first
leads to appreciable errors in the determination o probability.
Furthermore, even during the analysis of nonlinear systems with the
filte;s of the second order the determination of the probability of
disruption/separation by compensation requires conducting the great
computational work, connected with the 3etermination of the

coficients of compensation.

=




.........
............

DOC = 83061002 PAGE 9&35
Table 4.3.
1) (a)&m cpuias Op <t ° ]
€TOR peuIemIL:
05 | 10| 20| 30
Q)
Mefoa xomnencaunu 0,26 |0,527{0,746{ 0,825
O]
Mesox BySwosa—I'asepuns 0,26 | 0,505 | 0,808 0,925

Key: (1). Method of solution. {(2). Probability of
disruption/separation when r. (3). M2thod of compensation. (4).

Bubnov~-Galerkin method.
Page 164.

In such situations becomes appropriate the transition from the manual

calculation to the machine. However, programming the task of

-calculating the coefficients of compensation is connected with the

pracomputation of dispersions and mathematical expectations, which
are determining the fundamental soiutions of the problem of Cauchy
for each linear section of characteristic F(x). This task, although
it does not represent fundamental difficulties, is sometimes very
bulky. Therefore during the aﬁalysis of the systems of the second and
higher of orders taking into account dynamics it is expedient to use
TsVM for determining the probability of disruption/separation not by
compensation, but one of the numerical methods, exémined/considered

in (hapter 6, for example, by the Monte Carlo method. N

sl e et el S Y e N e
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Page 1665.
Chapter 5.
PARTICULAR CHARACTERISTICS OF THE DISRUPTION OF TRACKING.

The probability of disrupting/separating the tracking P{l) for
the preset time of observation fz is most comp’® = characteristic of
the phenomenoﬁ of disruption/separation. The calculation of this
characteristic in many instances is hindered/hampered or reyuires 72
conducting large number of computational works. Frequently,
especially at the preliminary stagex of the design of systems, it
proves to be appropriate to prove to bs from the calculation of the -
probability of disruption/separation, after switching over to the
analysis of more particular characteristics. By such characteristics
they ~an become, for example, mean time to the disruption/separation
of trackiné or critical noise 1evel, with wia.ch the

disruption/separation even on begins. The material of data they are

main and dedicated to the calculation of similar characteristics.

5.1. Determination of the critical power of noise with the help of
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% the method of statistical linearization.

Strictly speaking, the method of statistical linearization [7]
Eé as any other method of the linearization of system, is not applied
& for the analysis of the disruption/separation of tracking, since for
the linear system vanishes the sense of the concept itself about tie
o disruption/separation. However, with the known stipulations ard with
: the series/row oquurther limitations the method of statistical
linearization can be used for the proximate analysis of the
Ny disruption/separation ¢f tracking. This is admissible, for example,
if the linearization of system is produced only in the limits of the
/AQ aperture of discriminatory characteristic. In this paragraph the
linearization of system will foresee itself for the determination of
the series/rov of the stopper facts, which associate the method of

statistical linearization and approximately characterizing the

géé stability of system. Therefore it iz possible to determine the

jfﬁ critical level of spectral density N, of nﬁise at the output of the
- discriminator, with which the danger of disruption/separation is

3:3 still small. '

Page 166.

The for the first time similar method of the analysis of

R disruption/separation in the regulating circuits was proposed by G.
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G. Sigalov and Ye. A, Yashugin [68] and B. I. -Shakhtarin [69].

Theoretical analysis. Let us consider the servo system Fig. 1.2,
which is located under the effect of regular A(t) and random £(t) of
disturbances/perturbations, the spectral density of the latter not
depending on disagreement/mismatch x and constant in the passband of
the ring of the automatic control: AL(x);Aa. We will be bounded also
to the analysis of the systems in which dynamic -

disturbance/perturbation A(r) leads to constant error .;;(:il)-mz'CO“St‘

Let us designate output potential of discriminator, caused by
dynamic error, through mp(m., o%), by stressing thereby the dependence o
of value mr from the mathematical expectation and the dispersion of N
disagreement/mismatch x(t). On the basis of the block diagram of the
servo system (see Fig. 1.2) let us register the relatiosnship/ratio,
wvhich connects mathematical expectations my nmr and input dynamic
disturbance/perturbation A(t)

ma=1(8) — K (0) my (s, S)).

In steady state regular cﬁmponent of process 3t ihe output of

discriminator is equal to
m e c:)-"'-i‘i_lg %_(%)_R%' R
wvhere A(o), K(s) -~ converted accordinuy to Laplace input

disturbance/perturbation A(t) and operator R{(p).

-----------------------




DN A e B S A S A T ARa A S AL GF 5 A Vi & Sl S A rte. B B dbeae, SR JNL I B S R
N e e S e L A e . .

DOC = 83061010 PAGE 717

When system possesses astaticism of the n order, i.e.
.. K -‘%—gz} 0 = l)
& K@=z O

dynamic error ms: is constant, if disturbance/perturbation takes the

form of polynomial not older than the n degree
&{l) mAgtdl+ ... +ini®,
Page 167.

In this case to the linearized system

N . $5.2)
ﬂl.z K-K.(ﬂ.- ‘i)

where K, m,, aﬁ— equivalent mutual conductance of discriminator,_
/\@ introduced according to the method of statistical linearization and
which considers the passage only of regular component. Introducing
the equivalent s],opi/transconductance of discriminator K,ims J) for
the central random ccmponent, let us register expression for the

dispersion in the linearized system

63

= ¥, '
o f (K (me oD, K(P)]

wvhere

.
’

s Pl K "do] ™
K K(P)l=[’2i')i1+x.(m...'bx(l‘),d ]

K(jw) - the complex gear ratio/transmission factor of feedback loop.

v

Let us repres..% (5.2) and (5.3) in the form of system of

.......
....................
LIRS .

- ~ L} -
LAY U T T I Y. . T . . Y T
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equaticns
Ay == Mix; (5.4)
Ny=f-, .

8= K Ko (meo &) [=F1K, imz 32, K(P)]-

vwhere

If paramerers M and N, of input disturbances/perturbatfons are
such, that the system of tracking is located on the face of
disruption/separation, then their small variations lead to large
changes in conservative values Ms and c’..Let us give increase 4%, to
parameter As. In accordance with (5.2) and (5.3) this will produce
increases in mathematical expectatiou mMs and dispersion ff-System

(5.4) of signs the form Py

Ay - By =2 (s - Amsy X
X Ky ns 8y, @, + 83, Kip), 5

 Ne=@4adX -
X7 K, (mz + Atz o 4 42), K {p)].

Is decomposed nonlinear functions ¢ and f in the Taylor series
according to degrees M, and Aa: and we will be bounded to the

linear terms of expansion. -

Pace 168.

After the subtraction of steady-state values (35.4) we will obtain for

~ e « - - - et .
- v . «® w® e o - et e

e B oo Bee B B B P S B ® o R el nan
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the increases system of equations:
0y ) dy A2
(?+”isan—.}m:+mz;-i- Ada= Az,

damet (144 s Zo ©9

Loss of stability occurs in such a case, when the determinant of
syster of equations (5.6) becomes zero. Hence, taking into account
the implicit dependence of functions ¢ and f on m,. and &; it is

possible to register the stall conditions of tracking [68]
oK, s df oK, \
(¢ ik sns) (1 + a5
a8 Oy 3R, 3} 0K,
lﬂ{i;xr:;g;%};;:ii@. 6.7

In the particular case of the absence of dynamic error (me=0)

relationship/ratio (5.7) is simplified and takes the form

. 5.8
EW:’BO. (5.8)

The direct use of relationship/ratio (5.7) for the practical

calculations is frequently connected with the bulky transformations.
Therefore to more conveniently use the graphic method of determining

the critical noise level.

Graphic method. Let us clarify the graphic method of determining

the critical noise level based on specific exampls.

........................................................................
.....................
...................................................

.....
------
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L .
5
:

Let there be the servo system of phase automatic frequency
control with one integrator in the feedback loop K(p)=K/p (see Fig.
3.5) and characteristic of the discriminator

F(x)=Asinax, (5.9)

On the system functions dynamic disturbance/perturbation
A(t)=\;t and white noise (t) with a spectral density of N,. It is
necessary to determine the critical value of spectral density N,. It

is necessary to determine the critical value '‘of spectral density Nﬁy
Page 169.

'The ;olution of problem let us begin from the calculation of o
coefficients Fo(Ms, &) ana Ki(m,,d’)  the transmissions of the
linearized system for ccnstant and random components. Following the
method of statistical linearization assuming that the following error
x(t) is distributed according to the 'law, close to the normal, we

have

V:Tn.rn.

Ko d) =5 jux)w(

X sin(ax)up[ 9‘—2-."‘—"-}4.:—

X

=-;:—.-sin(am,)exp(-a:i). y (5.10) |

X, ou,.az)a"‘”’-"'—Aacos(am,)exp( -2-) @.11)




......................................
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Further calculation requires the concrete definition of the
parameters of system. Let K=1 1ad/(Ves), A=) V, a=l rad-*, A,=0.3

rad/s.

Taking into account that ms=Kom: and by using
relationship/ratio (5.10), let us construct auxiliary family of

curves inpt-mp_(m,)' (Pig. 5.1) at the different values of dispersion

&

.....................

.....
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R d) v - 49,8%/rq )
' .10
a2 / b5 /.% 75~ .
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91 //; a/j:s,o(pﬁrl— ’
- L | KZ . @)
9 " G* 45 Q3 my,pu0 0 1 & pai’
Pig. 5.1. Fig. 5.2.

Fig. 5.1. Auxiliary graphs for calculating critical power of noise.
Key: (1. V. (2). rad.
Fig. 5.2. Determination of critical powe? of noise.
Key: (1). v/Hz. (2). rad.
' Page 170.

Conservative value of dynamic error, led to the output oi

discriminator, on the basis (5.1) is esqual

my (man &) =1 (5.12)

Equation (5.12) is graphically the horizontal line (Fig. 5.1)
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whose ordinar+ jn this case is equal to mp=(3 V. For the points of
interse~{..on oi the censtructed dependences with the straight line
let us find the appropriate values of coefficient K (s °:> in
formua (5.11). Taking into account that the second equation of
:ysten (5.4) in the case in guestion takes the form

e o
NQQ-M‘F!‘(;". ‘)v

lec us 6 . mine spectral density for each obtained vaiue K, (M @

and let us construct the gruph/diagram of dependence N,=f (03 (Fig.
5.2).

As can be seen from Fig. 5.2, with smalls of the Ievei of input
disturbance/perturbation the variance ¢f error of tracking is in
effect proportional to spectral density. In this case process x({t) is
developed in essence in the linear section of the characteristic of
discriminator. With an increase in the spectral density the
proportionality is broken and near Ny=Nyy the rate of the
build-up/growth of dispersicn.becomzs infinite, i.e., system loses
stability, is observed the disruption/separation of tracking. Thus,
the critical value of spéctral density in the example in question

comprises Npm224  V3/Hz.

It is interesting to consider, with what probability occurs the

disruption/separation of tracking in the system in question under the

.............
.............................
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effect on it of the noise whose spectral density is equal to

" critical. For this servo system it is possible to simulate/model in

the digital computer and by the Monte Cario method to determine the
prcbability of disrupting/separating the tracking for the preset time
of observation. The graph/diagram of the obtained dependence of the
probability of disruption/separ?tion on the spectral noise density

with the time of observation ihpS-%%' is.depicted in Fig. 5.3.
Page 171.

As can be seen from graph, the obtained estimation of the critical
‘power of noise determines sufficiently well conditions, with which m

the disruption/separation of tracking becomes dangerous.

Fig. 5.4 depicts the dependence of critical spectral density
Nw in the system in question on the value of dynamic
disturbance/perturbation A;. Curve is constructed with the help of

the graphic method oif analysis.

Analysis of the system of the second order. Let us consider one
additional example, which has larger practical value. Let the
feedback loop of regulating circuit have a gear ratio/transmission
factor .

x@)zﬁﬁ%&l, | (5.13)

[l R A TN T P A L N IR N Too. PO T T EPRE . R R
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and the characteristic of discriminator is approximated by the

dependence 101 \
Px)=Sxexp(— 27— (65.14)

Input dynamic disturbance/perturbation A(t) let us place egual

tO k(t) gk."’klto

Since the system possesses astaticism of the second order,

conservative value of following error is equal to zero.

-
~Q
-\~ -
/“a
g
~
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r /”‘ ﬁgkb'
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a¢ i 1 \\\.
o <
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0 7 Ve 2 m‘i 45 bs 4%

Fig. 5.3. Pig. 5.4.

Fig. 5.3. Dependence of probability of disruption/separation on ncise

level at power of close one to critical.

Fig. 5.4. Dependence of critical noise level on dynamic e

disturbance/perturbation and to first-order system.
Page 172.

For the gear ratio/transmission factor of discriminator on random

component we have © '
K, (mn ‘3”ﬁ” Jf (e —ms) F () X

—— s s e T R e tan - e —

Xexp [—f”—;’:i'z’ll drx=S(1 427y (.15

The variance of error of tracking in the linearized system on
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the basis (5.3) is equal to

14 XKy (ma DT 51
Al ¥ T &9

whence taking into account (5.15) we obtain

N. == " 4T 5 .
TP 5T ey

..........................

For determining the critical spectral density Nw it is

mecessary to find such values of N,, with which the derivative of

expression (5.17) on dispersion §1 would become zero. Calculations in

this case to more conveniently produce graphically. The results of

calculations are shown in Fig. 5.5, where are constructed the

Aependences of dimensionless spectral density Aﬂ==ﬁﬁ¢f]/zﬁﬂ48’on the

generalized parameter of system KST?,. In Pig. 5.5 is noticeable not

pronounced optimum, which is observed with KST?,~2.5. The

experimental check confirms the presence of optimum in the system

with astaticism of the second order, although at smaller value of

Kstx.

................................



.......................
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802
aos l/

ar 4z o5 ! 2 SKST?

Pig. 5.5. Critical spectral density in the system with astaticism of

the seccnd order.
Page 173.

Conclusions/outputs. The method of the analysis of nonlinear
_reguliting circuits examined.makes it possible to approximately é@b
consid. v noise level with which the mode/conditions of tracking
becomés unreliable. As showed the experimental checks, method gives
the correct estimation of order of magnitude 55@»vhich has the vital
importance with they are approximate the calculations of regulating

circuits.

The advantage of method is its comparative simplicity and the
possibility of method is its comparative simplicity and possibility
of the analysis of systems virtually with any filters and
discriminatory characieristics. When the fluctuating characteristic

of discriminator depends on disagreement/mismatch x, the method

o te e .« .
Lt 4t et v a4 . . o -
& aeaaRl gl A el at b pl ot ot e aaademisesdedobnmiiad a0
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presented can be used after the statistical averaging of

characteristic N,(x) according to formula (3.20).

Deficiencies/lacks in the method include its comparatively low
accuracy and impossibility to obtair the temporary/time and
statistical characteristics of the phenomenon of
disruption/separation. Therefore one ought not to use this method for
the determination of the thin effects, connected with the work of the
follower (for example, for determining the optimum parameters of
discriminator and filter in cases when optimum it is expressed
wveakly). Due to the errors, inherent in the method of statistical

- . . . : .
‘.FG;! linearization, in these cases can be allowed noticeable errors.

5.2. Determiration of critical stall conditions on the basis of the

equation of Portriagin. -

The determination of critical spectral density N« with the help
of the method of statistical linearization is frequently connected
with the cumbersome calculations. Therefore let us consider one
additional method [88] of determining the critical power of noise,
valid for the nonlinear systems of first order. At the basis of
method lies/rests the fact that the first approximation fo- the
probability of disruption/separation, found with Bubnov-Galerkin

method, under some conditions leads to the rzsults, which contradict

......................
o

oo .

R . ————— e
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the physical basis of phenomenon. For the first time to this is

converted attention in the work of I. A. Bol'shakov [26].

The probability of the absence of disruption/separation in

firgst-order fixed system satisfies the equation of Pontriagin

U . B(xy U
Wknd (o) g + S w6

moreover U(zy, 0)=0.

In accordance with Bubnov-Galerkin method (see § 4.2) let us
find first approximation for functions U(x,, t) in the form

Us{se. f)-_cv(t)v(x.).
Page 174. .

-

' sz,
Assuming/setting ?()=cot-x=, ve will obtain

. 1 x,
$i)=exp) = 3 SB(&)C‘”'T“O"'
q
+35 froomSea)
-y

Prom the physical considerations it is cliear that the function
v(t) must decrease in the time. This is possible only in such a case,

vhen is satisfied the condition

Sy S _
.%.S n(x.)ca"%"'dh)S foda—gtdse 619 \
g R )

.......................................... FON

T TR
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In this case it proves to be that the amount of the minimum
._power of noise, at which inequality (5.1%) still is fulfilled, is
very close to the critical, computed from the method statistical

linearization. Thus, the determination of the critical stall
conditions of tracking in the nonlinear first-order systems can be

reduced to the solution of the algebraic equation
’ KXy % ( Ry
jtawm'—é,—dx.--—.—jux.m-;-dx.. (5.20
- -7

To compute definite inﬁe;rals in (5.20), as a rule, is not
difficult; therefore the calculation of the critical stall conditions
of tracking on the basis of equation (5.20) can prove to be simpler
than the calculation according to the method of statistical

linearization.

Example. Let us consider servo system with the integrator in the
feedback locop (see Fig. 3.5). Stochastic differential equation of
this systea takes form (3.25). The input dynamic
disturhance/peiturbation A(t)= const, and the characteristic of the

discriminator

u)
Sx |%l <3,
"")'{ 0 ]x‘|>l.

Key: (1). with,

Let the spectral density of the white noise, led to the ocutput

---------------------------
......................

LI Y

.................
-------
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of discriminator, not depend on following error, i.e., N,(x) =N,.

Then under the done assumptions

!

and equation (5.20) takes the form
2 KW, = —SK. L @20

Pege 175.

Hence critical spectral noise density

8s s . —
"Ny == ;,-R—w.ax o . 5.22)

Calculation according to the method of statistical linearization

in this case gives N.,»085/k, which is close to (5.22).

Let us note that the method of determining the critical spectral
density examined is valid in cases when the fluctuating
characteristic of discriminator is not the constant (N.(x)t7é
const). Some examples of the.determination of critical stall

conditiors by the method presented are also in work [88].

5.3. The time characteristics cf the disruption/separation of

tracking. -

......................

..................

....................
.....

..............................................................
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In many practical cases it is necessary to know the
probabilistic characteristics of time interval, which passed from the
beginning of observation to the disruption/separation. Total
characteristic of time of disruption/separation is its density of
distribution W,,G"). Regarding V,,m‘“ indicates probability that in
the system with initial conditions x,, which occurred at
moment/torque t=0, the disruption/separation of tracking will occur
in the interval of time T—-%§.<t<T+At/2.

Bxamining the integral law of time ailocation to the

disruption/separation

r
L Py 1)-.-:} v, @d, (5.23)

let us note that A

a

Py =1 — I o & x)dx,  (5.29)

vhere w(x, t; x,} - the probability density of the transition of
random process of x(t) for time T from the phase state x, into the
state y. Punction w(x, t; x.).can be determined by the method of
solution of the corresponding boundary-value problem for the equation
of Fokker-Planck in the n-dimensional phase space . From (5.24) it
follows that the integral density of distribution of time to the

disruption/separation coincides with the sclution of boundary-value

ptoﬁlem for the equation of Pontriagin (2.78).
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Page 176.

The determination of the density of distribution of time to the
.é disruption/separation by the method of solution of the equation of
‘ Pokker-Planck or Pontriagin can it is carried out by the same methods
Ej . which were examined during the analysis of the probability of
? disrupting/separating the tracking. As a rule, these methods are very

labor-consuming. However, in many instances it suffices to know less

§ total characteristics. Frequently, for example, it is possible to be
§ bounded only to the determination of several first moments of time to
“v-. .
J -  the disruption/separation. . , =
& Mean time to the disruption/separation. For the first moment of

time to the disruption/separation it is possible to register -

;\;,(x.)ajm,;mdizjr PluT) g (5t25)

v

te a .

" . A .
3 Introducing the probability of tracking U(x,, T)=1-P(x,, T) and
3

computing integral in (5.25) in parts taking into account the fact

. . . . L .. - L et et et
- P LA L. . T T |
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thagiimP(xO, T)=1 we will obtain
T+

m, (g.)-_-;("U(x.. T)dT. (5.26)

Using the obtained relationship/ratio, let us form an equation
for the mean time to the disruption/separation, understanding under
the disruption/separation the first output of following error beyond
the limits of the aperture of discriminatory characteristic. Let the
equatioﬁ of Pontriagin for probability U(x,, T) of the absence of
disruption/separation for time T take the ferm

=2A¢( ')’_h'.;}. By (%) gy 6
wvhere x, - n-dimensional vector, which characterizes the initial
state of system Xy={Xu, % ..+%s). The coefficients of removal/drift
Ai(x)) :and diffusion By(m) do not depend on time, which is correct for
the systems, which have the constant parameters and which are located

under the stationary effects.
Page 177.

After integrating each term of equation (5.27) for by the

variable/alternating T from zero to and taking into account that

[ 24D a=vpn]--1

-~

on the basis (5.26) we will obtain differential equation for the mean

......................

..............

. . . * .t " et - . - -
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time to the disruption/separation

1 *m, (x, dm. (x)
= 23:,(.) T EA (x) el 4y =0,
i, j=i i=xl
(5.28)
BEquation (5.28) is for the first time obtained by L. S.

Pontriagin in work [35], in connection with which it they

occasionally refer to as second equation of Pontriagin. -

During the determination of mean time to the
disruption/separation equation (5.28) is supplemented by the boundary

conditions m, (X.)l;ea. =0, (5.29)
. | =

vhere G¥is regular part of the boundary of the region of tracking Q

in the phase space for t..e equations of Pontriagin (see § 2.6).

If following error x(t) is cae-dimensional Markov process, then

(5.28) it is converted intc the ordinary differential equation

TEO) A .>“"" +1=0 (30

- with the uniform boundary conditions
- my(ys) =my(ys) =0, (5.31)
vhere y,, 7, - bocundaries of the aperture of'discriminatory

characteristic.

-o..---~----'--.---..--_--...- ..........
. - . et e " at et et et At et et T e - "o P s Tt T T L T . R T
“‘ RS AL A R 2P R I I I PSR SR TIPS ot n e e et et e T et Tt Taty wTe*® "Mt "ea ata .
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Equation (5.30) belongs to the class of linear differential
equations with the variable coefficients. Its sclution is written out

in general form.

Actually/really, after designating y=dm,/dx,, we will obtain

d 2 ’
T F U F =0 (639

Let us introduce the new functions u and;V so, in order to

y=uv. In this case {5.32) take the form

L :‘: +8 d?; -{-2%((::; n+§-&5—,-o. (8.33)

Page 178.

Let us select v in such a way that it would be performed the

~

equality .
s G
hence we obtain
gum Ca=NAW, o (2)m2 g'g.?;‘dﬁ . (8.35)

From (5.33) taking into account {5.34) we ohtain equation for

determining the function u: .

du 2
vw-}-m-o.

.......
..........................
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Taking into account of expression (5.35), we find the solution of the

latter/last equation

Taking into account that y=dm,/dx,=uv, finally we will obtain
2

%
* |
my (xy) == — 2&3 Ui JWQ"”M.

Determining integration constant from boundary conditions
(5.31), let us register the resultant expression for the mean time of

reaching/achievement of boundaries v,, 7, by the one-dimensional

Markov process

n,(x.)={[3.e"“’ fﬂ‘%e’ (2) dzdx] ?e"’“’dx-—
o T

2 L/
(ot _2 vi0 4,0, f ~* 0 gel
[} [ 5e ]‘." }

1 £]

X [}e"’ ) dx]°'. (5.36)
T :

Moments/torques of higher orders. In the case of one-dimensional
Markov process comparatively eésily are vritten/recorded the
equations for the moments of time to the disruption/separation of the
order higher than first. Let the equation of Pontriagin for

probability P(x,, T) of achieving the boundaries v,, vy, for time T

take the form .7 ) .
S LA b Bl

.........................

l".q‘-‘ ....... LI SN T A et e e et . a c . T .
A . 3‘. LT N A N L i U R T RO S, I
v RN, DIPCAPAL IO TR T AR WAL S PR P el ol e Ml el o u_a”

.
';g
v




\' “a
3

* .

DOC = 83061010 PAGE §gﬁ

Page 179.

Differentiating it on time T and taking into account that the
density of distribution of time to the disruption/separation on the

basis (5.23) is equal to

v, D=2l (5.37)

we will obtain

W, (N LU (M) s
Let us introduce the characteristic function Bf time to the

disruption/separation of the tracking

- -

=]

. e .
00m~&0==S“ﬂ~03° dT. {6.39)
] {

Let us multiply each term of equation (5.38) on & ani let us
produce integration in accordance with (5.39). As a result we will

obtain : )
1 a8 dt .
'Q'BCﬂdjaz“Fﬂixdggjfﬁvo==0- (5.40)
It is known that the characteristic function 6(», x,) can be

represented by Maclaurin series:

0(v, &) =1 +§’!=§‘4’-uv)l. (5.41)
| - :

., .
......
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In this case mi(%)— the moment/torque of the k order of time to the
disruption/separation of tracking. Substituting expansion (5.41) in
equation (5.40) and equalizing coefficients with identical degrees
(j»), we will obtain the following recurrent equation for the

moment/torque of the k order
d* dm (xo) —_
7 Bl P+ A(x) S - () =0
k=1.2 ... (5. 42)

moreover m,(x,)=1. Equations (5.42) must have solutions under the
boundary conditions

mx(ys) = ma(ys) =0, . (5.43)

From (5.42) follows, in particular, equation (5.30' for the mean #a

time to the disruption/separation.
Page 180.
Digpersion of time to the disruption/separation. Equation for

the dispersion of time to the disruption/separation on the basis

(5.42) takes the form

§

4+ B(x) %‘M e $2+B sy (S )'=0, - (5.4

vhere

D (x)) = my (x,) —m; (%),

-----------------------------------------
...............................
....................
.....
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moreover

D) =B (1,)=0. (6.49)

Let us consider some examples of the calculation of the time

characteristics of the disruption/separation of tracking.

1, First-order system with "linear"” discriminator. tet the

follower have linear with slope/transconductance S the characteristic

-
()

of discriminator in the limits of aperture -y<x<y (see Pig. 3.1) and
filter in the feedback loop

b h:
i
‘s

Kip)= T-{%T' (5.46)

Stochastic equation, which describes the behavior of the

analyzed system, takes the form

T xRS+ D)=20+T G- KVFLR O, --
‘ — 1L x<L T (5.47)

where A(t) - input dynamic effect.

The example in question is completely realistic.
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Pig. 5.6. The functional diagram of the particular self-alignment: SM
- mixer; UPCh - amplifier of intermediate frequency; ChD - frequency
discriminator; FNCh - low-pass filter; RL - reactance tube; F -

" adjuctable/tuneable heterodyne.
age 181.

By equation (5.47) is described, for example, the behavior of the
_systeﬁ of frequency self-alicnment (Pig. 5.6) with filter {(5.46) when
the passband of UPCh already cof the staggering of frequency
discriminator. In this case the characteristic of discriminator
practiéal is linear in the limits of the passband Af of UPCh. If
detuning x between the signal frequencies and heterodyne.exceeds half
of band UPCh |x|>Af/2=vy, then ;ignal to the entrance of discriminator
does not pass and system is broken; therefore points ty can be

considered the absorbing boundaries.

Examining the case A(7) =A= const, on the basis (5.47) let us

- = - T -
" - . e LR N L T SRS « e -t ST A T .

L
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register equation for the mean time to the disruption/separation

Lo S (- F)EH1=0 64

morecover XS .
«=1HE g =xi=0, mx1=0.

Introducing the new variable/alternating
=g (5.49)
y=2=er

let us represent (5.48) in the form
L _“aﬂ:..‘_—ay aH1=0. (5.50)
A
mE="0w=0 L=—T—g"

Ya=7_;r'

Bquation (5.50) is a special case of equation (5.30), ir which

ore should assume

Blxm-mme, A(r)=—axy (5.51)

Page 182.

E; On the basis of (5.36), let us find expression for the mean time

to the dxsrupt1on/separatxon in the example

n,(x.

{re. jf[o (8 — @ (@] ¢ dx =

—1(% ®) il@m—@'(v.)l e"‘dx} I (@, ). (5:52)
“ .

..........
A ao o, o

- % aa = .‘_‘.A.J_L‘




i St Bkt T o I S T LA &40 T N T T . T W T, " .
LAsh Mt Vbl eSS Ll M I OS] SN S A T A ORI S T

'y

r-,r...r.v-ﬁ'- TR TS TN T TR T e T ey
g

AP

DOC = 83061010 PAGE 93‘-/’

Where . 90"'7%7(.?— T .);

"=y (1—17x)
= KN, '
TOFRS

With a small dynamic error A<<y{ 1+KS) we have
V.? ]\P(x) e*dx, (5.53)
- -

= f= =i

According tc formula (5.53) in Fig. 5.7 are constructed the

graph/diagrams of the dependence of dimensionless mean time to the
disruption/separation au, on generalized parameter V/Vo‘fo at the

different values of the initial error X=x,/y. -

Let us pass to determining the dispersion of time to the

disruption/separation.
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Fig. 5.7. Mean time to the disruption/separation in first-order

system.
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For this it is necessary to solve boundary-value problem for ordinary
differential aquation (5.44) with boundary conditions (5.45). The
solution of equation (5.44) can be found in general form with the
method which was used during the solution of equation (5.30). the

result of soluticn taking into account conditions (5.45) takes the

form n - 5 - z, i
D (x) == 3’ et S 9 () e* Vdydz —C e @ dz, (5.54)
L) T [{]
[ = (s) 1 W ¢ - |
D i1 Ts

r=2 58 dx a0 =2 (%) '

A Te " " A T
P A A S A T
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m,(x,) - mean time to the disruption/separation of tracking as the
function of the initial error x,. In the general case of m,(x,) it is

determined by dependence (5.36).

We will be bounded to the examinaticn of a special case of
symmetrical boundaries y,=-vy,=y with the low value of dynamic error
A<<y( 1+KS). With satisfaction of these conditions mean time to the

disruption/sepzaration is determined by expression (5.53); therefore

>

W= () () 69 @

Taking into account the concrete/specific/actual form of
coefficients (5.51) of initial equation, on the basis (5.54) and
(5.55) after some transformations we will obtain the following
expression for the dispersion of time to the disruption/separation

during the zero initial disagreement/mismatch:

2.117'!'; x .
O (O)= 2 S e"(c'me didx. (5.56)

The dependence of dimensionless dispersion a'@(0) on generalized

parameter 1/V2¢ is constructed according to formula (5.56) in Fig.

-y
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5.8. At the low values y/0<<1l expression (5.56) considerably is

simpilified

(0~ .&._ (-}-)‘ 85T
Page 184.

As showed numerical checking, latter/last formula gives the
possibility to calculate the dispersion of the time to the
disruption/separation with the accuracy not less than 20%, if

Y/ V .2-3 : 0'5;

The expressions obtained in this example .for the mean time and
the dispersion of time to the disruption/separation of tracking can
be used aiso for the approximate determination of the time
characteristics of disruption/separation in the nonlinear first-order

systems, if we preliminarily produce their lirearization.

wWhen the feedback loop of. control system has instead of (5.46)
operational gear ratio/transmission factcr K(p)=K/p, the obtained
relationships/ratios and graphs will remain in the force, if we

consider that a=KS, o02=KN,/4S, 7,=-7,-7.

2. First-order system with rectangular characteristic of

discriminator. Let us detarmine mean time to the
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e

disruption/separation of tracking in the system, which has the

discriminatory characteristic:

A B9 <5<,
[Fix)={—A npa0—7<x<0.
0 npi K>
Key: (1). with,

and the fluctuating characteristic N,(x)=N,= const. Such dependences
approximately occﬁr, for example, in the servo auto-selector when

strobe pulses are considerably longer than signal ones.

Let us consider the case when feedback loop consists of one

integrator: K(p)=K/p, byt A(t) =A,. ' 4!3

............ oo . am ey DR . e

» o L N e . 2" a P - B 'y |
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Pig. 5.8. Dispersion of the time milking of disruption/separation in

first--ordey system.
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In this case the equation for the mean time takes form (5.30), where

one should assume

B(rJen-y Ko Alrd=—KF ().

Using expression (5.36) of the general solution of

boundary-value problem (5.30)-(5.31) taking into account the fact

that

v =2(gE de= gt 1xy,

‘after some transformations we will obtain

o 9= - a5 €T — et ],




“u
..l

B4

I BRES

« e BUT VY eTe
I

DOC = 83061010 PAGE 3@0

In the particular case during zero initial disagreement/mismatch

(x,=0) the result takes the form
(0= - (€7 — 1 —a).
3. Mean time to phase skip [jump-over] in system of phase automati:
frequency controcl. The system of phase automatic frequency control
vhose functional diagram is depicted in Fig. 3.12, is described by
the following differential equation:
B =0,—K(p)|0ysine—K/N2OL 659

vhere ¢(t) - an instantaneous phase difference cf the
adjustable/tuneable generator and signal;.K(p) - the operational gear
ratio/transmission factor of filter; Qu—initial detuning of 4@;
frequencies; Q,— band of retention; K - gear ratio/transmission ‘
factor of the element/cell, which manages fregquency (reactance tube);
N, - the spectral density of the white noise, led to the output of

discriminator.
Let us consider the case when K(p)=n.
Page 186.

Actually this occurs in the absence of filter (n=1) or during the use

of the proportional-integrating filter K(p)= { + 27,

" T¥ T in the system

e et a
« -

- ta ®g Ty e
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wvith the very large band of retention. in the latter case of n=T,/T.

The determination of mean time to the first migration/jump of
phase to the assigned magnitude for FAPCh systems was produced in
works [17, 57, 77). Let us consider the case when the synchronized
generator is tuned to a frequency of received signal (Ry=0). For
determining the mean time to the first excess by the phase ¢ of

values t¢, it is necessary to solve the boundary-value problem

K'R.NQ d.fk'.' ° am, —
e Lo a0 san i b1=0, 65

m, (p,) =m, (—,) =0,

On the basis of general solution (5.36) let us register
expression for the mean time m;, during the zero initial

disagreement/mismatch ¢,=0:

*

", (O)g_x_m_tﬁ:_, }eo (cos g—~2os "’dx;iy. (S.GO)t )
H

where

4Q
. G:—.R'—%—ﬂ .,

Using an expansion of integrands in the series/row of the Bessel

functions, instead of (5.60) we will obtain [57]

...........................................




DOC = 83061010 PAGE ;g}y

m, O=gm~ [ 0 + 4.0 T8
'Y .

X‘iﬂ2k? +8 (_l)k[” (“)Ih(a)‘7<?p m, k) ’
LY 4]
G0
vhere
ey min—
t’("o m, k)= 1 —'—'——-—'1 l}‘p& k%m.

=)
| i —comy) Be k=

Page 187.

If it is necessary to determine mean time to the first an,
migration/jump of phase on +2x, then, setting in (5.61) ¢,=2x, we -

will obtain [17]

= (0. 5.62

In a number of cases the transition of phése beyond the limits
of tr can be considered as the disruption/separation of tracking.
Mean time before the onset of this event, as shown in [57], half the

value, determined by expression (5.62).
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Page 188.
Chapter 6.

ANALYSIS OF THE DISRUPTION OF TRACKING WITH THE KSLP OF ELECTRONIC
COMPUTERS. '

The use/application of analog and digital computer computational
technology makes it possible investigated tﬁe complex problems cannot
be analytically solved which at present. The methods of the study of
the disruption/separation of tracking with the help of the digital
and analog computers can be divided into two groups. Into the first
group enter the methods for statistical testing, which make it
possible to find the solution stochastic differential equations of
servo system. The application of these methods in the analog and
digital computers is stated in § 6.1, 6.2. Into another group enter
the methods of the numerical solution of the equations of
Fokker-Planck and Pontriagin, who describe the probabilistic

characteristics of servo systems (§ 6.3, 6.4).

6.1. Simulation of servo system in the analog computers.

.............................................
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The behavior of servo system, which is lccated under the action
of the determined %:(f) and random }{f) disturbances, is described

stochastic diiferential equation of the type

dsx de-tx d*-*x ,,
am =G s 5 00 B0, G0, 40 )
‘ (6.1)
The solution of this equation is random function x(t), which

characterizes change in the time of tracking error. it .is obvious
that by having sufficiently large group of the realizations of
process x{(t), by its corresponding working/treatment it is possible
to obtain the necessary statistical characteristics of process, for
example, the probability of disruption/separation for the preset Fﬁﬁ

time, the mean time to the disruption/separation, etc.

Page 189.

This method of the definition of characteristics in the
literature was called the method for statistical testing (Monte Carlo

method) [6].

ror the determination of the probability of the
disruption/separation of tracking for time {¢x is sufficient from

total Mach number of the realizations of process x(t) to isolate

L S T P PR Y ot T =, e A, - . e
P R LIPS I O A e el . D T S T L ] A T R o e TR S
LR T T D LI L B e e e s T T T r P A e L I SO S I SO I I N
.................
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those N realizations in which the following error witnin time ia
exceeded the allowed values ¢, or v,. Relation @Uﬁﬁ:p*gq) gives the
estimation of the probability of disrupting/separating the tracking.
With increase of M the estimation asymptotically approaches a true
value of the probability of disruption/separation. Thus, the task of
determining the probability of disruption/separation is reduced to
obtaining of the group of the realizaticns of process x{t) and its

cemparatively simple statistical processing.

One of the practical methods of obtaining the realizations x(t)
is the simul.  on of 2ifferential equation (6.1) in the analog
co;péter (AvM). Actually, gathering from the units of machine the
necessary integrodifferentiating components/links and nonlinear
devices/eguipmeﬁt and supplying the appropriate
disturbances/perturbations, we will obtain the analog model whose
behavior is described by equation (6.1). Observing the processes,
which occur in the model, it is possible to judge the solution of
equation (6.1). Are examined below only some special
features/peculiarities of the construction of anaiog models for the
solution of the problems about the disruption/separation of tracking.

In more detail general/common/total questions of analog simulation

are presentad, for example, in monograph [9].

Construction of model. During the creation of analog model it is

T e T e T T . T e e T T e TR TR T W T e AT e T e % e TR T T T T T T e T e e T Vg Wy T Wt et e " e Y,

U e N LT T D I A PO |
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convenient to proceed directly from the block diagram of the follower
(see Fig, 1.2). With such method of simulation to each element/cell
of block diagram is placed in the conformity its model, described by

the same equations.

The overwhelming majority of the cascades/stages of servo system
can be simulated/modelled on AVM with the help of the standard
operational amplifiers, included by active and reactive/jet feedback.
The models of the simpiest linear components/links, which are
frequently encountered in the regulating circuits; ané their gear

ratios/transmission factors are given in Table 6.1.

»

Page 190.
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............
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between input and output. (3). Schematic of model. (4). Designations.
(5). Inertia-free inverter-amplifier. (6). Summetor. (7). Integrator.

(8). Inertia composent/link. (9). Proportional-integrating filter.
(10). Differentiatocr.

Page 191.

The parameters of the elementary cascades/stages, entering the
model, are chosen in such a way that the coefficients of the
diffesrential equation of model would be preportional to the
appropriate coefficients of initial egquation (6.1). .

Let us pause.in more detail at the methodology of the

construction of analog model. Let us consider the following specific

problem.

Let us assume the analyzed regulating circuit (see Fig. 1.2)
consists of the nonlinear inertialess discriminator with
characteristic F(x), proporticnal-integrating filter Ky(p)= _:__t_:;'_ and
cont.rol device with the operational gear ratio/transmission factor
Ky(p)=Klp. At the input of discriminator functions regular
disturbance/perturbation A(t), at tﬁe output - broadband random

process t(t) with a spectral density in the region of the lower

frequencies of N,. S.ochastic dit.erential equation, which describes
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the behavior of the system in question, takes the form
: dF d —
Ty (1T %)—},‘-MF (x) =
=T-‘2-—§-+«%—*K§ «)"’KTn "':TE" 6.2

Using Table 6.1, let us find for each element/cell of the block
diagram (see Fig. 1.2) its analog model. Combining the models of
separate units in accordance with the block diagram and introducing
the necessary disturbances/perturbations in the form of
stresses/voltages U, and U;, we wvill obtain the common model of the
ring of automatic control (Fig. 6.1). The designation/purpose of the
separate retwork elements briefly is reduced to the following. The
device/eqﬁipment, assembled on the opefétional amplifier V1,
forms/shapes stress/voltage Ux proportional to following error
x( €)). The unit of nonlinearity BN-1 reproduces the characteristic of
discriminator P(x), undertaken with minus sign. Amplifier Y2 performs
the role of the summator, with the help of which into the diagram is
introduced noise stress/voltagglh(ﬂ- The proportional-integrating
filter is assembled on the basis of operationai amplifier ¥3,
integrator - on the basis of amplifier Y4. If the solved problem has
not zero initial conditions, then into the amplifiers Y3 and ¥4 must

be introduced the corresponding stresses/voltages.

Page 192.
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So that the obtained diaqgram would be adequate to initial
device/equipment, it is necessary to supply in congruence parameters
of both systems. Let us introduce the scale factors, which connect
‘stresses/voltages at the nodes of analog model with the processes in

the reference system:
U =M '1(0. U’=M.‘x(t)9

O,=M,-3(), U,=M,-F(x), (6.3)
U‘aMr((Q. Usg=M;-2(f).

Furthermore, let us introduce concept of "machine” time il
connected with time { of differential equation (6.2) by the scale
. factor Mo
1= (6.4)

Time f«' characterizes the reaction rate in the model. By the
appropriate selection of coefficient M; it is possible to ensure
that processes in the model would proceed more rapid than real ones

(Mi<1) or slower (Mi>1).

The junction/unit stresses/voltages of model (Fig. 6.1) are

connected as fcllows:

R, Rye Rse Pss 14
Uc’#U‘—T‘-.‘Uv U.:: k::'v"!"?’; »

' ____Ru 1 4 CyR 1 D T .
Ur=— t'+“‘c:.k““:.p. U, (6.5)

N :
0,=_mfu,(¢)ds_—._m
]

where p.;dﬁh.-differential operator in the machine time.

................................................
..........................................................
...................................................
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Pig. 6.1. Schematic of analég ncdel.
Page 193.

. Let us combine the led dependences into one equation

R, R Ry 1
UVe=g U —rroreta i X

Xitons v+ 20 ]- 69

Considering relationships (6.3)-(6.4), connecting machine and

initial variable/alternating, let us represent equation (6.6) in the

following form:

. R My Ry Ry M -l-
0=t 9 4O~ goramacatts 7

Cy.R,,
I+ /.4: R R
i +cuRu ? [ Ry Ry "t ]

From identity condition of equations (6.2) and (6.7) we obtain,
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that the parameters of analog model must satisfy the following

requirements:
RiMy Ry RepRe MMy K
L

Tl = RReReCalills —

©.8)

;:-:ﬁ-‘f:= 1, CyRy = MiT, CuuRoe= MiT.

As can bhe seen from (6.8), a number of cocefficients, to he
determined, exceeds a number of equations. This allows/assumes some

arbitrariness in the selection of the parameters of analog circuit.

et.’
oy
AV A
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g J’:.L-.

The number of the operational amplifiers, entering the model, ﬁ
can be abbreviated/reduced, if we combine the opei.tion of addition
with the inertia conversions as this shown, for examp'le, .in Fig. 6.2.
In this case input dynamic disturbance/perturbation is supplied into )
the model in the form of voltage 0:.' process A(t) proportional to

derivative.

B
Noise stress/voltage U‘(t‘), introduced into the analog model, must
have the statistical characteristics, identical to init-ial process
¢(t). If machine time /& differs from real ¢, then in accordance
with the value of scale factor M; should-be corrected spectiral noise

density Ug(th

."‘..--‘.
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The accuracy of the determination of the probability of
disruption/seraration during the simulation on AVM is comparatively
small and in essence it depends on the characteristics of the
utilized machine (zero drift of operational amplifiers) and the
stability of the generator of random stress/voltage. Usually in the
standard universal computers it is possible to determine the
threshold power of noise, with which the probability of
disruption/separation does not exceed assigned value, with an
accuvacy to 10-20%. For the practice of this in the majority of tﬁe
cases it is sufficient. If during the solution of problem is required
high accuracy, then it is necessary to take special.measures for the
stabilization of noise source and to use machines with a small zero

J&

drift of operational amplifiers.

-

SN a8
A e

oA,
PRIAERIN

’l

RIS DL T R SV N ‘. . “ . . - . * - -
st IR . - R . . -

a . L) S - .. . .« .

Ty T TR, T T T, T . SO S A ST T T Y ST L A Y e e | |



DOC = 83061011

* C”
”g Ry
: H-1
7 &
G| R -

Fig. 6.2. The simplified circuit of model.
Pnge 195.
6.2. Solution stochastic equations in the digital computers.

Similar to differential equations for the determined functions,.
stochastic differential equation can be solved by the means of
discrete/digital computer technology. To questions of the
use/application of electronic digital computers for solving the
differential equations is dedicated a whole series of the books. As
an example let us name monographs [3, 6]. Therefore in this work let
us pause only at the short characteristic of the most important
methods of solution and let us note the series/row of the special
features/peculiarities, connected with the numerical solution

stochastic equations.

The majority of the known methods of the numerical solution of

ordinary differential equations can be spread also to the solution of

L
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e the equations, which contain random functions. As shown in § 6.1, for
the definition of the characteristics of ﬁhe disruption/separation of
. tracking it is necessary to develop the sufficiently large group of

é: the realizations of the process being investigated. This can be done

repeated solution of problem on TsVM.

The methods of solving the ordinary differential equations,

g including stochastic, can be divided into two classes:

., 1. Finite-difference methods, based on the series expansion of
Taylor. They include [6] the methods of Euler, Runge-Kutta, Adams and

& | . »

the series/row of others.

2. Methods in which analyzed system of continuous action is

r~

substituted by equivalent discrete/digital system. The latter is

() :"n
P

described by equations in the finite differences which can be sovlved

[ L

2P

on TsVM. This class includes the methods of Boxer-Thaler,

Bergen-Ragazzini, Tsypkir, etc. [3].

Py T
.

]
> » » Y
. JPRCA AL

This classification is conditional, that as any method as a

result is reduced to the solution of the finite--difference eguations.

_1‘ ot l’ ]

In a number of cases the methods of the second class prove to be more

et
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.economically; however, their practical use requires a comparatively
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lﬁ} great preparatory work on the composition of the algorithm of
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solution for each specific problem. Furthermore, appear the
difficulties of the analysis of nonlinear closed systems, which makes
it necessary to artificially introduce into the feedback loop of the
system being investigated delay line at least to one clock space of

solution.
Page 196.

The methods of the first class are more universal. Taking into
account the noted special features/peculiarities, let us pause in
greater detail at the methods of solving the differential equations,

which rela:ce to the first class. - o2

Initial relationships/ratios. Let there be first-order ordinary

differential equation
= x.0, 130,
and is assigned the initial condition x(0)=x,. Let us find the
solution of this equation on interval 0<i<!&i in a finite number of
points 0<h<i<...<h<...<!s. POr this we will use the e.xpansion of
function x(t) in the Taylor series in the vicinity of point
s0=st)+ L g+ L5 0+ 69

Let us compute the first derivatives x{t) at point i¢
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fw-vmmk.

x"(h)m[ Hd) . 0G.0)

[(x -f)]xaw;

lnl
Substituting into expression (6.9) and assuming/setting them
x()=%(tis1), we will obtain recursion formula for calculating the

values of function x(t) at the moments of time t,<t,<...:

st =20+ 71 s 0+ | TEGRA 4

+ F{x (), ft)M] cess (6.10)

whera M mt.,, —i.

Retaining in this formula a sufficient number of terms, it is
possible to compute the unknown funétion x(t) with the necessary
accuracy. Depending on a quantity of terms of series/row (6.10),
utilized for calculation &“Qd.they distinguish several methods of
solution. The widest use received the following methods: Euler's
method, which considers two members of series/roé, by Euler-Cauchy (3

members) and Runge-Kutta (5 members of series/row and more).

Let us consider some of these methods in connection with the

solution stochastic differential equAations.

............
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Euler's method. As was shown in Chapter 2, stochastic
differential equation of the n-order by the corresponding replacement
of variable/alternating can be represented in the form of the system
of nonlinear stochastic differential first-order equations. Let us
rogister this system in the form

Lo fa (8 Lo o £ 40, KO, T (), 6.11)

where ti(¢{) = the random functions of time, k=1, 2, ..., n.

For the uniformity of recording let us represent t in the form _
of  variable/alternating sx.4=f and let us supplement to system (6.11) [
one additional differential equation

. d_fa‘_‘_‘_t‘_=g,

As a result the reference system of equations can be registered

in the form
Ly (T E)y k=1 Zam, (612)
where f,;.-l.m-cn-%-l.

Accordingly Euler's methods the value of functions at the end of
(i+1) space %+ are found through the values of functions in *he
beginning of this step X*m according to following formula [6]:

Xa oy = XngFHix Fots Xar s Zmd). (6:13)

wvhere Hmtﬂ'._-,-‘-t}:—- step of solution.
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Euler's method relates tc the simplest methods of solving the
differential equations. Its defi'ciency/lack is a comparatively lcw
accuracy whose increase by decreasing the step H is not always
possinle-due to tue loss of stability of solution. Of this

deficiency/lack is virtually deprived Runge-Kutta method.

Runge~Xutta method [6}. According to this method the solution of
system (6.12) on (i+l] step is lccated thrbugh the values of

functions Xu, X, ..» *mi at the previous space of integration for the

formulias

(O Xy (t4) = Xns 8 k=1,2 ..., m,

.
o'

504 Ay = -é- (Kg', 42K + 2K, 4= K,

"moreover coefficients Ky, Xy, K, K,,"are determined by the ~

expressions
Kny=Hfa (%111 Xyts 00e s Xoma)s
Kys=Hfs (x,;-l—-‘%#l x,¢+-l—(21'- .....x,;ﬁ-’%‘l‘-).
Kaa=Hf ( .¢+5-'-’, Xyt +5§’l.....x..i+%).
Kay=Hfx (%0 +Kigo Xyt b Kugs oo s Kt -+ Ky,

In the reference system of equations (6.12, implicitly enter

disturbauces/perturbations §(t), which are the random functions of

.....................................................
...............
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time. Entire temporary/time dependences in the digital computers are

discrete/digital selections. Therefore during the simulation on TsVM

of random processes it is necessary to manufacture this sequence of
random numbers {fJ, so that its statistical properties would be close

to the properties of initial process &(t).

Simulation of the uncorrelated sequences. Large role during the

sty
.

y analysis of the disruption/separation of tracking play the
E weakly-correlated random processes. For the simulation of such
processes on TsVM it suffices to manufaccure the sequence of

independent random numbers § distributed according to required law
w(&:). £

1t ic usually assumed *“hat $(t) is gaussian process. However, if
E process §(t) has broad band in comparison with the filter pass bané

) in the feedback loop of syste:, *hen the one-dimensional law of

E distribution w({) does not play the significant role. Under these

E conditions independent of.w({) the process is normalized by a filter.
Therefore during the simulation it suffices as selections & to use

the random numbers, distributed evenly. Since mathematical

expectation of process :(t) is usually equal to zero, random numbers
§ must be centralized. So that the : :quence of numbers {f} would be
adequate to initial random process $(t), it is necessary to ensure

the equality of the spectral densities of initial process f(t) and
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the process, been simulated in the machine.

Page 199.

Por the elongation/extent of one step of solution value §s
génerated by machine, remains constant. The spectrum of the sequence
of the square uncorrelated pulses with the random amplitudes and
fixed/recorded durations H taxes the form

Wl
N.=ﬂ_:1(l — cos al), (6.14)
vhere o — dispersion of value &.

in the range of lower frequencies spectiral density (6.14) is

equal to
N.-.:'?a: H. {6.15)
The widest use in TsVM find random-number transducers %Zi
distributed evenly on interval [0, 1]. The mathematical expectation

of the sequence of such numbers is egual to mx—..-=0.5.and dispersion
2
o, =1/12.

In order to simulate/model on the basis of numbers X% the
uncorrelated central noise £(t) with a spectral density of N, with
the selected space of solution H, it suffices to use the following

algorithms . N
b=y % (05, 6.16)
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Simulation of the correlated noise. With simulation of the
correlated noise {(t) with discrete/digital selection {§} it is
important to ensure the required law of distribution w(§), and the

required correlation function of numbers.

For the simulation of the sequence of numbers {fi}, distributed
according to thg.normal law, it is pussible tc use the central limit
theorem of the probability theory, after taking as § the sum of
independent random quantities %» distributed according to the
arbitrary law. Using a random-number transducer % with the uniform
law of distribution in interval [0, 1], it is possibie to obtain
numbers §: distribu%ed according to the law, clo%e to the normal, :if 4@;

we use the algorithm

Ry y?—(zn—%)«i-m

Page 201.

The sequence of numbers {§;), formed by algorithm (6.17), has a
mathematical expectation m, and a dispersion c:. In the majority of
the practical cases for obtaining the normally distributed values

% in expression (6.17) it suffices to sum up 5-7 random numbers ¥

The numbers, distributed according to the law, different from

.............
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the normal, can be obtained by the corresponding nonlinear ccnversion
of initial numbers ¥ [3, 6). In order to ensure the required law of
the correlation of the developed numbers, can be used the method .of

siiding addition [3].

Calculation of the probability of disrupting/separating the
tracking. Let us consider one of the possible methods of programming
for determining the probability of disrupting/separating the tracking
based on the example of regulating circuit (see Fig. 1.2) with the
operational gear ra»xo/transm1ss1on factor of feedback loop

K@= ST (6.18)

Let the discriminator be inertia-free nonlinear element/cell.

with known discriminatory F(x) and fluctuating N.(x) by
characteristics (noise §(t}, converted to the output of

discriminator, is broadband). At the entrance of system functions the
dynamic disturbance/perturbation A{(t), which is the known function of
time. The initial state of system is assigned: x(0)=x,,, x(0)=x,,,
Z(0)=x,,. By disruption/separation of tracking iz understood the
first.output of following error x{(t) beyond the limits v,, v, the

aperture of discriminatory characteristic, moreover y,<x,.<v,.

Cn the basis (6.18) and the block diagram of the follower (see

Fig. 1.2) let us compose stochastic differential equation relative to

the current following error x(t):
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al* T+ T +m) e+ 4 KF ()=
=mP g7 +T(+m) GotF —Ke0.

vhere m=T,/T.

Page 201.

This equation can be represented-in the form of system of

equations of first-or’-~r:

G w0,

=20,

L2 € oy Y M . ST »
+4(0— 550,

vhere
xO0=20, A=+ L R+ T
In order to determine one of the solutions stochastic system
(6.19), we will use Euler's method. Let us decompose the time of
to n of the equal intervals H whose length let us

ccordance with (6.13) the solution

observation /»
take ss the gpace of solution. In
of system (6.19) at (i+l) step is determined by the values of

variable/alternating at the previous i spcce:

v . ° N DT T e I
?" i T L A R A T R A P
oL L R N P N N AN Tl Sl TN S S SO S, SO a : = - -

- g
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Xy(d41) = Xy F HXyy,
-' Xyd41) = Xyt + H Xyt
H (l 4 m

Xa( 1) = Xy —F Tx8‘+’,}17"x3f+ T(6'20)

: +2r Flad =The+r ),
. b =t4-H, ]

wvhere §;=~ the random numbers, simulating effect §(t) in accordance

j with algorithm (6.16), Ai=A(t), i~ g, 1,2, ..., n—l.

In order to obtain M, solutions of system (6.19) and to
calculate the probability of disruption/separation, it is possible to
use the program, whose block diagram is depicted in Fig. 6.3. In the
unit of initial data are introduced all constants, entering in
(6.19). Mach numberér;nd N are used for calculating the totai number
of realizaticns of process x(t) and number of realizations, in which

occurred the disruption/separation of tracking.
Page 202.

On the basis of the assigned initial conditions x,,, X.s. X;, from
formulas (6.20) consecutively/serially are computed functions
Xuiety Xxitt» Xxi+lr After each calculation Zywy the result is equal with

the boundary values v, and.y,. If <X <t¥» calculations are

continued, otherwise is recorded the disruption/separation of
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tracking, to number N is adjoined one and is produced transition to
the calculation of nev realization. The calculation of a total number

of realizations is realized by an addition of one to Mach number

after each turning to the initial conditions of task.

- a
R i)

Lokt
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Fig. 6.3. Flowchart for"deéé;miniﬂg the probability of

disruption/separation.
Key: (1). Initial data. (2). Press/printing. (3). End/lead.
Page 203.

When M reaches the given number M,, the calculation of reazlizations




DOC = 83061011 pAGEj%

ceases and is counted the estimation of the probability of
disrupting/separating the tracking P*(!;) =N/M, After the
conclusion/output of the cbtained result for the press/printing the

process of solution is finished.

Analcgcusly are composed programs also for calculating other

statistical characteristics of disruption/separation.

The approximate estimate of number M,, required for guaranteeing
the assigned accuracy during the calculation of the probability of
disruption/separation by the Monte Carlo method, can be obtained with

the help of the asymptotic formula of De Moivre-Laplace: [ fax
. N

. > (P—Ap,<m<P+Ap,) ~

~Vlels/ M, Sy " A
vhere & (a<<N/My<p)—probability that the frequency of
disruptions/separations N/M,, found from M, to realizations,
lies/rests within the limits between a and B; #(x) - probability
integral (1.5); P - probability of disruption/separation; Ap,. Ap, -

error in the determination of the probability of

disruptior/separation.

If the probability of disruption/separation P prior to the

beginning of experiment is unknown even approximately, then with
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certain supply in the accuracy it is possible to assume P=0.5.

Representation about the number of realizations M,, required for
determining the probability of disruption/separation with the
assigned accuracy can be obtained from Fig. 6.4 which is constructed

as follows.

\
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Fig. 6.4. To the convergence of the method for statistical testing.

Page 204.

With selected number of starts M, (M,=100, 2006, .... 1500) was

realized the series of 10 statistically independent trials on M,
startings in each. In the course of each test was determined
estimation Px=N/M,, which was ncted in Fi., 6;4 by point. Produced
experiment makes it possible to judge the spread of estimations with

different sizes of samples M,.

Selection of the space of sclution. From the value of the space
of discretizaticn/digitization H in many respects depends the
accuracy of the solution of problem. juring the selection oi space it

is convenient to proceed from effective band width of the locked

systemn

AF.=-;;‘§@ 5‘ | Ks (o) [ de,

---------

~~~~~

YAt
AR

A al
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where K.(jo) — complex gear ratio/transmission factor of the

linearized locked regulating circuit.

Usually it is impossible to analytically determine the reguired
space of discretization/digitization,which would make it possible to
find the probability of disruption/separation with the assigned
accuracy. Therefore during the solution of such problems on TsVM
selection space can be produced in the following manner. To determine
the probability of disruption/separation with the selected initial
space H,, then the space to decrezase 2-3 times and to again determine
the probability of disruption/separation. 1f the obtained values of
probabilities differ little, then H, is accepted for further
solution. Otherwise tbhe fragmgntatién of space is continued until

probability is stabilized.
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Pig. 6.5. Bffect of the space of discretization/digitization on the
accuracy of the determination of the probability of

disruption/separatior in first-order system.
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L.et us give some considerations on the approximate selection of
the initial space H,. Use of relationship/ratio He=1/2aFs of
escape/ensuing from the theorem Kotelnikov, freguently gives
inadmissibly the value of space H,. The acceptable value :, strongly
depends on that, we differentiate or not process x(t). In such a
'? . case, when process x(t) is not differentiated, thLe frequency of

- (:‘E; discretization/digitization must several orders exceed value AF, As
an example on Pig. 6.5 are constructed the calculated with the help
of Tsve [OBM - digital computer] graphs of the prubability of
disruption/separafion in first-order servo system az the functions of )
dimensionless frequency &=1/2xHAF, The values of probabilities P are
calibrated with respect to precise values P, From the figure ore

can see that for determining the probability of disruption/separatiocn

with an accuracy to 10% should be taken the very low pitch:

Hp= 120 (6.21)

NTF‘:Q
1f process x{(t) is smooth as, for example, in the servo system

of the second order with the integrating filter, then for obtaining

...........................
.......................................

~~~~~~~~~~~~~~~
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the same accuracy it suffices to take

-1
Hyms S (6.22)
For the system of tracking with the proportional-integrating
filter K(p}=K{1+pT)/p(1+pT) the required space of
discretization/digitization can be within the limits from (6.21) to

(6.22) depending on value T,/T.

6.3. Solution of equations in the partial derivatives in the analog

o computers.

'l” Method of straight lines. At present for solving the ~

o boundary-value problems of mathematical physics were adopted

simulator. Are known the examples when with their aid were solved
equations in the partial derivatives with two, three and even four
independent variables. The simplest simulators are grid models from

the passive elements/cells for the solution of the problems of

thermal conductivity.

Page 206.

However, for the equations of Fukker-Planck or Pontriagin they are

not applied due to the presence of members with first-order -

derivative for the space coordinates. In this paragraph is described
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the method of straight lines (differential-difference method) for the
solution of the problems abcut the disruption/separztion of tracking
in the analog computers. In principle the method of straight lines
can be used, also, during the solution of the multidimensional
equations, the practical difficulties of solving which are connected
with the limited number of operational amplifiers in standard AVM.
Let us conside:r the use/application of a method of straight
lines {12, 29, 82] for the solution on AVM of the one-dimensional

equation of Pontriagin

P60 g lB s 62

with the boundary-value conditions

Plys ¢)=P(w #) =1, (6.24)
P(x, 0) =0, n<3<vs (6.25)

vhere P(x,t) - the probability'of disrupting/separating the tracking

for time t-with the initial following error :.

Let us divide the segment [y,, v,] into N intervals with a

length of Ax={y,~v,) /N each. At the internal nodes

sy +ids  (I=1,5, ..., N—1)

Let us replace c=2rivatives by coordinate x with the finite-difference

.......

PN R P P U 4 Py P P
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anaiogs:

OP‘(;. 9 L =Pt (;’A: Py_; (Q'

]

- (6.26)
PP (% | ooPuis -"2P'(. + Ps- ,
TS,

where Py(f) mP(x,, 2,

- Page 207.

Substituting (6.26) in (6.23), we will obtain the system first—~order

of ordinary differential equations with the constant coefficients

JP:“(Q =,A‘Pc+s (O_-é:hf (Q+

) +;B§L Pugy m’-—ﬂ’e)g! + Ps.y Q)r . - (8.27)

vhere Ai=A(x), Bi=B(x). integrating (6.27) on the time, we will obtain

the following system of cqna*ion3°
B8Py (s}
P‘(t) —‘J pITY U (Ax)l 7Y J $ey (‘) (‘Ax‘)' +
! TA
-_ +[2 Fogr Ha | Pess ()} d= (6.28)

System of equat1ons (6.28) is gathered on the AVM with the help
of N-1 integrators. Pig. 6.6 depicts the block diagram of obtaining
sclution in the i node/urit. To solution Pi{f) in the i node/unit is
placed into the conformity stress/voltage &i(¢):

st Pyll) =Muslf). (6.29)
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At end-points i=0 and i=N the solution is known: P, =Py=1. Therefore
in these nodes/units are supported constant stresses uy=uy={. Hence
is determined the scale factor M=1/U. For the economy of a number of
operational amplifiers in the diagram on Fig. 6.6 are not used the
inverters between the nodes. Therefore stresses/voltages u4; at the
nodes consecutively/serially change sign. In each node/unit stands
the integrator with three entrances. Amplification factors in each

entrance are equal to the appropriate coefficients of equation

(6.28). Initial conditicns are determined from expression (6.25)

@(0)w” -1,2,..., N—i. (6.30)

Sometimes it can seem tha. amplification factors for the set on

AVM. In that case it is expedient to change the scale (sce § G.1l).

- - - .
.....................
.......
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Pig. 6.6. Diagram of obtaining solution in the i node/unit.
Page 208.

The accuracy of the solution of boundary-value problem
‘ (6.23)-(6.25) on AVM is determined by the systematic erior in the 45?
method of straight lines and by the instrument error ip the
installation/setting up of the gear ratios/transmission factors of

integrators.

The systematic error in the method of straight lines depends on

the length of elementary interval Ax and error of the approximation

(]
2 a2 »

of derivatives in equa*ion (6.27). Previously we succeed in

TR R AR Y]
s

-
1.

evaluating these errors only in simplest cases [29]. For equation

{6.23) a priori estimations are not obtained.

A

3t

We will be bounded to the determination of upper limit for value
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Ax. Let us consider equation with the constant coefficients of

renoval/drift and diffusion

0P (2, §) _ 40P , B P
Without limiting generality, let us assume that ¥,=0, y,=1. The
use/application of Pourisr’'s method makes it possible to find in this

case the exact solution of equation (6.31):
[ _J

2 {1 == (= 1)® A
Pin =1 P R X

im[—'-ﬁ- (#n+5) ¢ exe (- 4 ) sin (e, (632

with which it is convenient to be congruent/equate approximate

solutions.

In order to obtain uniform boundary conditions, let us introduce
the probability of retaining/preserving/maintaining the tracking
U(x,t) =1-P(x,t). The replacement of the variable/alternating
t,=Bt/(Ax)? converts the system of differential equaiions (5.27) for

problem (6.31) to the following form:

Lol = @y ) = Ui )+ PVt ), (6:39

vhere
Pt ba gmp =g (634

The eigenvalues A of system of equations (6.33) are the roots of

....................................
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the characteristic polynomial N-1 of degree. In order to determine
them is.comprised the system of recurrent relationships/ratios, which

is solved by the method of z-conversions of Loran:

dgmm—1--2VPgcon g, i=1,2,.., N—i.  (6.39)

Page 209.

From (6.34) it follows that p+g=1l. Therefore, if p>0 and ¢2>0,
then p<1 and ¢<i. Thus, 0<pqgsl/4. In this case from (6.35) it follows
that all eigenvalues MA<0. But if interval Ax is selected
exaggerated, then either p<0 or g<0. As a result product pgq<0 and
eigenvalues j; become complex, which is impossible in the g%?
boundary-value problems for the equations of Fokker-Planck or
first—-order Pontriagin. Therefore during the use of a method of
straight lines for solving equation (6.31) must be satisfied the

condition

<t (6.36).

In the general case, with the arbitrary coefficients of A(x) and
B(x) in equation (6.23) it is impossible to find explicitly
eigenvalues A; Assuming that in the problems with the variable
coefficients the appearance of instability of approximate solution
carries local character, we consider that the conditicn of

convergence (6.36) must be performed at each point cutting off

............
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=
E‘.:: Y1<X<y,; 2
A
i . /18 (3
\ AxS min e ( 37)
E we<a<t A 9
<

As basis/base for assumption (6.37) serves also proved for a
series/row of the individual cases theorem [29]): for the convergence
of the method of straight lines for certain equation it is sufficient
¢. . =+ ance of net point method for the same equation. As it will be
shown irto § 6.4, condition (6.37) is sufficient for the convergence
of the methed of walls. From this condition we find lower limit for a
number of integrators, necessary during the solution of the

bcundary-value problem

ey a—n) [ A ()] -
Now> max =g (6.38)

During the practical use of a method of straight lines it is
necessary to investigate its convergence by a consecutive increase in
the number of divisions N of segment [y,, 7.]. In Table 6.2 for case
of A=2 and B=2 is illustrated the convergence of approximate
solutions P(x,t) to precise (6.32) with an increase in the 1umbef'of
separaticns N (is accepted linear interpolation of the solutions

between the nodes).

Page 210.

-

The instrument error is connected with the fact that on AVM
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inaccurately are displayed the factors of amplification of
integrators. If in equation (6.28) all coefficients are put out
absolutely accurately, then.EEy%a)nd. Inaccuracy leads to the
fact that the sum of coefficients in equation (6.28) is not equal to

zero; therefore steady~-state solution is excellent from one.

The practical use of a method of straight lines showed that
basic error is the systematic error, caused by a finite number of
nodes N. With increase of N increases the weight of the instrument

error.

Increase in the accuracy of the method of straight lines. In éﬂ?
certain cases of the available number of integrators it can prove to

be insufficiently for achievement of the required accuracy.

The first method of increasing the accuracy of solution lies in
the fact that the points of the separation of segment [v,, 7.1
distribute unevenly, congealing them in the region of maximum rate of

change P(x,t) - near the boundary ones, points ¥, 7..
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Table 6.2.

. Pisyumd (2
2 ¢
3 « | s 10 [ Toms
¢.01 2,069 | 9,028 | 0,09 ¢ 0,005 | 0,0009
. 0,62 | 0,14 0.077 | 0,064 | 0,026 | 0,0276
0,8 0,05 | 0,34 0,29 0,26 0,24 0,2482
0,19 | 0,55 0,87 0,56 9,56 0,5604
0320 0.79 0'“ 0.82 0.8‘ 008517
0,40 | 0,97 0,99 0,98 0,98 0,9831
.01 0,52 0,081 0,1} 0,077 | 0,059
0,02 ! 0,58 0,20 0,i8 0,16 6,163
0,06 | 0,67 0,39 0,41 0,38 0,3627
o.” o' ‘0 0.77 o.m " 0.63 0;6[ o'm
0,20 | 9,8 0,88 0,85 0,86 0,8655
0,40 | 0,98 1,00 0,97 0,98 0,9847

Key: (1). with. i2). Pfegis.e
Page 211.

During the irregular-spaced separation of #y1=%~—%-; the

derivatives on the coordinate are aporcoximated as follows:

u Rig-o=Besrs
L TS et orovr 2 ren i e

s
‘ _P‘ B gt , .
Ll VIPNPN T TN 3 TR ) (6,39)
PP | _ g Pigihiscs =P (he-y +h ) Prohians
9%, RegsRe gt (Boass 4 Beien)

[} . N .
The second methed consists of a precise approximation of

derivatives in compariscn with (6.26). In the i ncde/unit during the
calculation 3P/2x and 32P/3x?® we use values Pt not at three points,

but in five:

v . - P e m t A Te T *atan - s L. - N
e e T4 e ata e aTeTwmTAT®RT et ate . . LA R e O T
LI I e A e R R AT L
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9P ==-P¢+s+8pt+;-‘apt-s+Pt-a
0% : 124x i
o3
. (6400
PP | _ = Piys— Piog 16 (Pryy + Pe_y) — 0P,
o 12 (ax)? ‘

For the illustration of the advantage of the approzimation of
derivatives on five points (6.40) in comparison with the
approximation on three points (6.26) let us consider the foliowing
example. The coefficient of removal/drift A(x).=l6xe"’".‘rhis expressien
is a good approximation of the characteristic of frequency
discriminator. In this case the maximums of characteristic are
arranged/located at points x=*0.5, the absorbing boundaries are
placed at points x=%1.5, where restoring force composes 5% of the
maximum. The diffusion coefficient is placed equal to B=2. In Tabie !@%
6.3 it is shown, as depends on a number of nodes/units N an absolute
error in approximate solution (solutions are thained at the moment

of time t=4 at points x=1 and x=0),

---------------------
..................




. solution with N.

Page 212.

26~30.

................

------------

.........
.....
-------

with z=1 P=0.491, with x=0 P=0.296.

Coo000 _-;)Mmm POCPEUNOETS DPROANNERNONO PALSKYR UM N
J“Wﬁ, * ¢ 8 10 1 2
' 1 0,607 | 0,133 | 0,031 | 0,020 | 0.0:8
(6. 26)
0 0.744 0,182 0,114 0,04! 0.018
1} 0,003 |~90,02{ [-0,014 [~0,001 0,030
(6. 40) ' .
0 0,037 |—0,006 {0,002 |-—0,00% 0.0600
j4®

As the exact solution is accep.ed the result, obtained with N=850:

derivatives (§.26) and (6.40) shows that during the use of five
points is sufficient to have N=10-12. At the same time the use only

of three points increases the necessary number of integrators N to

Key: (1). Method of approximation. (2). Absclute error in approximate

The comparison of two methods of the approximation of
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In conclusion let us note that if the minimally necessary number
of integrators Nmm< found from (6.38), exceeds a number of
integrators available in AVM cr them is insufficient for achievement
of the assigned accuracy, then it is necessary to use digital
computers. For this system (6.27) of differential first-order
equations is solved by the methods of linear algebra. Furthermore,
the use/application of TsVM makes it possible to‘consider the case of
time-varying of coefficients A(x,t) and B(x,t) cf equation (6.23). In
this case system (6.27) is converted into the system of differential

M2 arrive at our numerical solution by employing known finite-difference)
equations with the variable coefficients. l methods (method of

Runge-Kutta, Adams, etc. [6]). Solution on AVM of equations with the

. ime-varying coefficients to in practice carry ocut difficultly. o
6.4. Solution of boundary-value problems in the digital computers.

The basic method of solution on TsVM of boundary-value prcblems

for the equations in the partial derivatives is difference method (4}

The solution to the stationary equation for two-and three-
dimensional problems is examired in work [32). Boundary-valae
problems for the unsteady one-dimensional equations of Fokker-

- Planck are placed in the standard difference diagrams for the
parabolic equation.

In this paragraph is exs~*=c2 the method of obtaining the
explicit difference diagrams, based on the approximation of

continuous Markov process with discrete/digital [90]. This method is




TR T TR

o~ "
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applied for the solution one- and two-dimensional unsteady problems.
Tc solve the equations of higher order is difficult due to the
existing limitations in the volume of working storage and operating

speec. of contemporary computers.
Page 213.

One-dimensicnal problem. Let us consider the equaticn, which
describazs difference diagram for solving the one-dimensional equation

of Pokker-Planck with the censtant coefficient of diffusion B:

dofst) .y 3 U= -‘;’-7,3; 6.41)

Bquations with the variable coefficient of B(x) are reduced to {§.41)
with the hzip 3f the described into § 2.4 replacementof coordinate

X.

uet us introduce the discrete model of the continuous Markov
przcess r(t), examined/considered in the intecval yx{ys - We
discretize many states of the Markov process x(t):

ximihy, i{ly, 1]
Jhere

lIimvilh, Iy=vaihe
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It is assumed that the end-points ¢, and vy, coincide with the
nodes/units of discrete/digital Markov chain. At the moments of time
Li=kA¢ the Markov process x(t) under the action of noise

disturbance/perturbation cbtains the increase
Axmx(i+Al)—x{t) =%h,

So that the discrete/digital Markov prccess would converge to

continuous, must be satisfied condition [18]
hy=VBVA, (6.42)

The propbability of increare Arwm+#iy let us designate through
p(xj, and increase bgm—hs— through cf(x). The evolution of

discrete/digital Markov chain is described by the equation of Markov

W t4A)=ple—h3W it —in )+
Fq+aIWir by 1), (6.43)

vhere W(x, ) =w(x, {)hs— probability of ihe stay in the node/unit
with coordinate x at "the moment of time t. For determining the
probability W(x, t) equation (6.43) is writtens/recorded in the

nodes/units of discrete/digital grid «: the moments of time ¢;

W= p s 4wy, (6.44)

vhere
W =W (ihe kAN, py=p (k) q0=g{ths).

PR P Py S Bren Casma®ren Keambetnaduind - el i e
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- The transition probebilities p and q are fcund from the
5 condition for rassage to the limit of difference equation (6.43) intc
e
i;_ the equation of Fokker-Planck (6.41) with At-+0. Values p and q it is
T expedient to represent in the form
e )
..: . 1
P (R)om 4 C R b () sy —~C(D) by (649)

Of both parts of equation (6.43) let us subtract W(x,t), let us

divide on At and let us take into account relationships/ratios (6.42)

T
= and (6.45). As a rezult we will obtain the difference equation
'1‘-F+AO-’VTxo%_F
’.. ) u
E +W(x-!-*-l'(x-#-hg_")ﬁ*:?w(z—m'(x-km_‘Lg
me LT AR :
2N . . y
. From comparison (6.46) with (6.41) we find
N ' '
1 A(2)
The obtained difference diagram is stable, if cvoefficients in

, equation {6.44) are on-negative [4i. This leads to the following
B conditica:
max 1A% s <1, . (649
" ] . Ti<s<yy
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The physical sense of (6.48) lies in the fact that the transition

probabilities p and q satisfy conditions 0<p<<l, Oy,

The solution of boundary-value prohlem is reduced to the
consecutive calculation of the probabilities of staztes WA of
discrete/digital Markov chain according-(6.44) on each temporary/time
layer fy=#A¢! for all nodes xmih,, vith exceptiorn of boundary ones, at

which is assigned the condition for the absorption

W’. = W:aa 0.

Page 215.

At the moment of time f{em( is known initial distribution

(2.40)

W:”O(x‘)h& el 41, I,—1]

The probability of disruption/separation P(f) is located by the
addition of the probabilities of the states Markov chain through the

region y<s<ysy

Ply=1— 3 W' (6.49)

=l 4!

Example. Let us solve boundary-value problem for equation {6.41)

with the linear coefficient of removal/drift A(x)=-Sx and the

U Sl W - _‘_Q_’..A‘.‘.—f

L W L R DR PP PN a» P snetle Py
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synmetrical boundaries y,=-7,=v. At zero time the following error is
equal to zero: w,(x)=8(x). By the replacement of variable/alternating

xmyz, (=8yty/8equation (6.41) is reduced to the form

ow, (%, ¢ d N, .
. L % -“""'TE’L'

where a=8Sy?/8. Segment -ysxsy is converted into the segment
~1/,8x,<Y/,. If.the calculation of Qifference diagram (6.44) is begun
directly from the temporary/time layer t,=At, then as a result of
extremely high rate of change in the sclution near point x=0 with
small t for achievement of a good accuracy it is necessary to take

low pitches &,

-~ .-. \.‘
. -‘ .
. 0 -~

R R, LRV . . o e .
. D, TR DV IR U T Y S A S YO P S ey . |
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wf.&.fr) N ask y /\{ 4 /

'0.1

/20,006 /A
. 3 . [1]] 6“
i 10°?
2
' Z

o .
g g{_w /
o, 0

d ‘N\.
g8z \ 0
TN TR A
Pig. 6.7. Fig. 6.8.

L o=
Pig. 6.7. Solutions of one~dimensional boundary-value problem for

-

eguation of Fokker-Planck.

Fig. 6.8 Probability of aschieving boundaries in linear first-order

system.

Page 216.

On the other hand, with small t solution (2.44) of problem without
taking into account boundary conditions does not manage considerably

to spread. Therefore it is possible to find similar t' that with the
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assigned error through the probability the representative point will
be found in the segment [-*/,, */,), and begin calculation from
moment/torque t=t'+At. Fig. 6.7 shows dependences found thus of
density of distribution w,{x,, t,) on coordinate x, at different
moments of time. The probability of disruption/separation at the
different values of parameter a is shown in Pig. 6.8. Since in the

course of time rate of change of the solution_.u(x_. ) is decreased,
then for the reduction in the volume of calculations it is
expedient in resolving the koundary-value problem to enlargen
space Ay and value @&, connected with the space with re-
lationship/ratio (6.42). In this case must not be broken
condition (6.48).

Two-dimensional problem. The presentation of the methods of
solving the two-dimensional boundary-value problems jet us begin
based on the example of control system with the integrator and the
integrating filter in the feedback loop. As it follows from (2.71),

the equation of Fokker-Planck in this case takes the form

S Lyt A del=1 5 65

vhere
Alr, pue— Q=M _ g g KM

For the convenience in (6.50) are introduced new in comparison with

(2.70) the duvsignations: x=x,, y=x,. Furthermore, it is accepced that

the dynamic disturbance/perturbation is changed with a constant
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velocity of dx/dt=A,, but spectral density does not depend on the

detuning: N,(x)=N,.

As shown in example 1 § 2.5, equation (6.50) is supplemented by

the boundary conditions

wis, 7 0,@.’& =2 @ (X, ¥ 0’..1. =0, .(6.5)
o —to<y<0

For obtaining the difference diagram let us introduce the
discrete/digital two-dimensional Markov process, which approximates
the continuous process £ x(t), y(t)}. Let us decompose the region of
. tracking 2(y,sxsy,, ~w<y<e) by the rectangular grid:

xymalho L€[1,, 1), [, mmY by [, /B0
pymihy, J==0, £1, £2,... :

Page 217.

Let us introduce discrete time {{+=&A7, k=0, 1, 2, ... and as the
tvo-dimensional discrete/digital Markov process let us take the
foliawing model. Since white n;)ise ¢(t) enters only into the secondl
equation of the system stochastic equations (2.70), the at the
morents of time /x random abrupt bias/displacement endures only
component. y(t): | .

Ay=y(’+Af)—y(t) =LA, (6.52)

Component x{t) smoother function. In the interval of time At
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according to the first equation of system (2.70) process x(t) obtains

the increase

1M

=&+ —x= [ye)dey a0t 6.5
It is here accepted that in the interval between moments/torques t
and t+At the value of component y is constant and equal to y(t+At).
So that the digital process y; would converge to continuous process
of y(t) with At+0 just as in the one-dimensional problem, must be

performed a specific ratio between values £k, and At:

hy=VBVA, (6.54)

The evolution of two-dimensional discrete/digital Markov chain

is described by the following equation of Markov:

- Vi g (A=
=p(x=AX, y—h)W (x—Ax, y—hy, O+
+qlx—Azx, y+h)W(x—Ax, y+hy, 0, (6.5

vhere W(x,'y,t)-w(x; ¥ t)hely—  the probability of the stay in the
.ode/unit with coordinates (x,y) at the moment of time t; p(x,y,) -
the probability of increase Ay;'+fiy; 9(% y)— the probability of
increase Ay=—Ry; During the numerical calculations equation (6.55)
is written/recorded in the nodes of network with coordinates

Ximihy, yi=jh, at the moments of time hHmkAL
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W:;l = Py g, J-:W:-:. gor T 0=, "“W:-!- o0 6:98)

where

W: =V ('”"' [y, kA1),
Po,3om 0 (B Thy), quy==q(hz [hy).

During the composition of equation (6.56) it was considered that the
representative point of discrete/digital Markov chain falls only into
the mesh points. For this must be performed the following
relationship/ratio between the increases in terms of all three

variable/aiternating

AamhyAe, (8.57)

The transition probabilities p and ¢ are determined from the
condition for the transition of difference equation {6.55) into the
equation of Fokker-Planck (6.50) with At-+0. For this we preliminarily
convert the first twvo members in equation (6.50)

ow , dw
wHiz™

_g:?.'_v(x. ¥ t+At)-;rc(z-Ax'. nh (6.59

vhere Az=yAt ~ increase in the direction, determined by the equation

of integral curves in plane y=const:

g dx
T5%
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' Substituting (6.58) in equation (6.50) and substituting
:? ( G%: derivatives on y by finite differences, we will cbtain that the
equation of Markov (6.55) with satisfaction of conditien (&,54)
passes in the equation of Fokker-Planck (6.50), if tranéition

probabilities are determined by the equalities

pix DA 2B b gtx, =g Ly,
: 6.59

Difference diagram (5.55) is stable with satisfaction of the

condition

A bl<, (6.60)
BLICT . .
<P ’

-f,

With the numerical solution of problem for obtaining the finite

number of nodes/units infinite with y region @ it is necessary to
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bound on certain-level y=:L, which is admissible in connection with
decrease w(x,y,t} with y#=, On lines y=tL is assignedé zero boundary

condition.
Page 219.

Thus, spaces on to the variable/alternating x, y and t are
connected with three conditions: (6.54), (6.57) and (6.60). The
solution of boundary-value problem consists of the calculation of the
probabilities of the states of two-dimensional Markov chain according

to formula (6.56) consecutively/serially for temporary/time layers
ta=RAT,

Difference equaticn (6.56) is obtained from (&.55) on the
assumption that the distaiice between the nodes along the axis x is
equal to product A,A! (6.57). In certain cases value #Ax is sc low
that the volume of working storage TsVM proves to be insufficient for
positioning/arranging the entire grid, considerzbly increases the
ccunt time. The use of larger/éoarser space fix >h,AL leads to the
fact that the representative point of diécrete/digital Markov chain
can not fall into the mesh points. Actually/really, if in difference
equation (6.55) function W(x, y, t+At) is computed &t nodes

Xx=iRy, y=jhy, then function W(x—yAt, yxh,, t) they are computed into

points (x—yA¢, y+h, t), not always coinciding with the mesh points.

...........
-------------------------

...... . . N . PR [ . - ..
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PR PR © 4 AP
.

DOC = 83061012 Pase BP9

The values of probability W at intermediate points are found out with
the help of interpolation on x. The condition of convergence (6.60)
of difference equation (6.55) does not depend on space 4, value of

which affects only the accuracy of interpolation.

Example. Let us consider the case of the linear discriminator:
A(x,y)»-ax~y, v,=-v,=0.5 under the initial condition '

w,(x,y)}=8(x)8(y).

TR R L T T e e e L e e e e L et
A S SN Tl i, L N T TR PPN I S . T T v A S T A P
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w(z.9,t)
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1 1 vqlo
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g
’I’;l;/ ﬂfﬂ!_ll‘{‘: Sjw Aru:ps:'l

.---~‘ 27/

Fig. 6.9. Solution of two-dimensional boandary-value problem for the

equation of PFokker-Planck.
Page 220. [

Just as in the one-dimencional problem, the nur sal solution
conveniently to begin from certain moment/torque of time t', up to
which the 8-function had time sufficiently to spread. Solution (2.44)
of problem in the unlimited spacé at the moment of time t' is
considered as the initial con@ition ‘or the pumerical calculaticn of
difference diagram from the moment/torque of time t'+At. Fig. 6.9
shows distribution w(x,y.t) at the moment of time t=1.5, found for
values of a=0.25, B=0.2. Solution is obtained when 4,=0;, ha=0,005,
At=0.05, t'=Jd.45, L=1. From the figure one can see that on boundaries

of x=+0.5, at points with a zero rate of y=0 distribution w{(x,y,t) is
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disruptive. Up to the moment/torque of time t=1.5 the provability of
the absence of disruption/ceparation U(t)=0.930. It is determired by
the addition of probabiiities !Vﬁ, according to all nodes (i, j),

which belong to region Q.

For the confirmation of the correctness of the method of solving
the boundary-value problem accepted for the tYp—dimensional equations
of Fokker-Planck the obtained results were equal with the results of
the digital simulation cf the system stochastic equations (2.70) by
the methods, presented into § 6.2. The comparison of the
probabilities of aisrupting/separating the tracking was conducted
both in the linear ones and in the nonlinear control systems. In all

cases is obtained a good coincidence of results.

Solution of the equation of Pontriagin. In this paragraph the
probability of disruption/separation was determined indirectly - by
t° . solution of boundary-value problem for the equation of
Fokker-Planck with the subsequent integration of probability density
for the region of tracking . During the research of
disruption/separation the probability distribution of following error
is not usually of interest. Therefore to more expediently solve the
equation of Pontriagin, since in this case is determined the

dependence of the probability of disruption/separation P(x,, Y., t)

on the initial conditions {x,, Y-
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Let us consider based on the example of control system with the

of P(x,, Yo, t) for time t, if at the initial moment t=0 following

error has components §x,, ¥.4:

‘ d B P
(o e D gy 5 + Ak 1) ity 57 65D

Boundary conditions for equation (6.61) are obtained in the example,

xamined into § 2.6,

wvhere the regular part of boundary G*form the straigb: lines x,=v,,
~o<y,<0 and x,=7,, 0<y,<». Initial condition takes the form
- 77 )
P(xy yo t)=0 npu (xa ) =0—G%  (6.63)
Rey: (1). with.

Page 221.
At the moment of time t=0+0 at points (vy,, 0), {7,. G} the

probability of disrupzion/separation is egual to

Pt 0. 040=5. - (684

......

....................................

integrator and integrating filter (2.70) the solution of the equation

of Pontriagin relative to the probability of achieving the boundaries




..................................
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This is explained by the fact that at zero time rate y with
rrobability P=1/2 can become either positive or negative. Therefore
= the representative point, which had at zero time of coordinate (7v,,
: 0) or (v,, 0), at the subsequent moment of time will leave beyond the
boundaries of the region @ with probability P=1/2. Expression (6.64)
should be taken as the initial condition for the nodes/units of

difference diagram (vy,, 0) and (y,, 0).

In order to use the difference diagram of tie previous section,

by the replacement

P(x,, ép H=! —eTy (%0 Yo ©) (6.65)

let us lead equation (§.61) to form (6.50)

.1 Y LIRS T _2‘.’..%; (6.66)

Equation (6§.66) describes Markov process with the components {}.,

y.}, which satisfy the unstable system stochastic equations

~ ﬁx-!.:g—y.'

t

' A ! 6.6
e Keg=hy Ly g Kyme| O

Approximating continuous Markov prccess £x,, Y. 3

L. A T T T N W T S Y T S T L T U LR Y.
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discrete/digital, we will obtain the difference eguation

-~

) ?(x.' y.y t+Ai)=
s P (Bg =A%, ffy— hy) P (%, — b, Yo—hy )+
+ gl —Aax, gt hy) 9 (5, =A%, y,+hy, ). (5.58)

In this case

qqqqq

------
‘‘‘‘‘‘‘‘‘‘‘‘‘

‘l
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Page 222.

Difference equation (6.68) is stable with satisfaction of

condition (6.60). Boundary conditions escape/ensue from comparison

(6.65) with (6.€62) and (6.€3):

e e O, ™0 (®:61)
o(te b 0)=1 PN (2 Jo) EQC".

Key: (1). with.

For the proof of assumption (6.64) 12t us register difference

- ' egibl
equation (6.68) at the moment of time t-A%at point x,=v,, y.=0:

(V0.8 =p (vi—hy) @ (u—hy,0) +
~ +alvn by) @ (ika0).
ST T ) illegibl
Since according to (6.69) q(y.,—h,.O)-O,o(y;,h,,O)-E t}?gxi‘, aegerture qlx,,

- ——

Y.), we will obtain!___ )

900 0, 80 =AMy,

Passing to the limit with At-+0, which involves h:-#b.let us find
1
fime(Y,. 0, M) =g
1 (1. O, 3

The obtained result coincides with {(6.64).
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As the illustration Fig. 6.10 shows solution P(x,, y,, t) at the
§ moment of Lime ¢=1.5 for A(x,, y,)=-0.25x,~y,, B=0.2, v,=-v,=0.5. In
i contrast to the equation of fokera-Planck during the solution of
boundary-valus problem for the equation of Pontriagin (6.61) does not
succeed in finding the analytical solution, valid with small t.
Therefore for achievement of identical accuracy it is necessary to
take more fine pitches. Furthermore, region @ is limited at the level
of the high values L. All this causes an increase in the necessary
volume of working storage of TsVM and rount time. In given in Fig.
6.9 and 6.10 examples the time of solution of problem in the machine
"BEEM-4" is approximately/exemplarily 5-10 min.

The systems of the second order with the proportional filters.
The method of solving the boundary-value problems presented can be
used alsc for the analysis of the sys:ems of control, in which in the i
- feedbsck loocp are correcting terms. In § 2.2 are described two
methods of the introduction of multidimensional Markov process for
such systems. During calculations on TsVM it is expedient to use thé
seccnd methed using which in the system stochastic equations (2.26)
white noise enters oaly intc one equaticn and in case (2.70)

exarined.

Page 223.
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In this case the equation of Fokker-Planck is simpler, which

facilitates the composition of difference diagranm.

As an example let us consider system with the integrator and
proportional-integrating fiiter. The system stochastic equations
(2.26) is analogous (2.70). Difference lies in the fact that the
region of the trackings @ in the phase space (z,, z,) is limited by
the inclined lines -

Z+Tizmyy, 214 Tizgmyy, (6.78)
which form boundary of G (see Fig. 2.3). The condition for absorption
(2.75) is assigned therefore on the entire boundary of G of region Q.
As the illustration Fig. 6.11 shows solution w(z,, z,, t) at the
moment of time t=1.5 for the case A(t)=0, A(z,,

z,)=~0.25(z,+7,2,)-2,, B=0.2, v,=-v,=0.5, n=T,/T=0.5.

Further cbservations. The solution of problems with the

coefficient of diffusion B(x) depending on following error x leads to

the nonuniform grids.
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Fig. 6.10. Solution of two-dimensional boundary-valuz problem for the

equataon of Pontriagin.
Page 224.

In some cases (see § 2.4) by the replacement of variable/alternating
it is possible to give task tc case of B(x)=const. But if the
coefficient of diffusion B is constant, but the coefficient of
removal/drift A(x, t) depends on time, then grid remains uniform, and
the transition probabilities p and q kecome the functions of time,

The latter fact virtually does not complicate the solution of

problem.
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it is in principl~ possible to compose difference diagrams,
als: , £or the ¢>slution of three-dimensional unsteady problems.
iwever, th~ existing limitat‘ons in the volume of the working
storage. . ontemporary TsVM considerably narrow parametric domain in

which v.i be solved three-dimensional task.

!

Fig. 6.11. Solution of two-dimensional boundary-value problem for the

system with proportional«integrating filter.
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CONCI.USION.

In the present monoéraph is sxamined the series/row of the
methods of the anzlysis of the disruption/separation of tracking,
mos£ frequently used iﬂ the practice. This makes it possible to do
some conclusions about the possikilities of one or the other mechod
and advisability of its use/application under the specific

conditions.
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The greatest possibilities for the analysis of the
disruption/separation of tracking possesses the method for
statistical testing (Monte Carlo method)}. With its aid it is possibkle

N to determine the characteristics of disruption/separation for the

- very broad class of regulating circuits. In this case the
mathematical model of system can be constructed taking into account
many thin special features/peculiarities of the work of

concrete/specific/actual device/equipment.

2n essential deficiency/lack in the method for statistical
65} testing is the need of applying the computers. This raises in price
.

: research and does not give the possikility to obtain analytical

dependences.

o, P
PRI S . .
R A e el s

The Monte Carlo method sufficiently successfully is realized
both on the analog ones and in the digital computers. The latter,
however, ensure the considerably high accuracy of the obtained
results. A method for statistical testing it is difficult to use in
fz cases when it is necessary to investigate the work of regulating
circuit during the long time of observation. It is'inconvenient also
for the analysis of systems with the very smali probabilities of
disruvpting/separating the tracking RgiO"*iO‘*, since in this case

appears the need for carrying out a large number of

,~%-»  launchings/startings of machine.
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Among the analytical methods the greatest accuracy possess the
mechods, which are based on the theory of Markov processes.
Unfortunately, their use/application is significantly limited to the
order of the analyzed system. Most successfully they are used for the
analysis of disruption/separation in first-order systems. In this
case for the fixed systems it is expedient to apply the method, which
is based on the relationship/ratio of Kramers, for the time-dependent
systems - Bubnov-Galerkin method or the method of the compensating
sources. With the complication of the conditions for the work of

system increases the labor expense for the solution of problem.

Page 226.
Thus, if Kramers process gives sufficientiy simple calculated
correlations, then Bubnov-Galerkin method leads to the simple results

only in the case of the sufficiently high level of the noise effect

vhen for determining the probability of disruption/separation it

[ suffices to be bounded to the first or second approximation/appreach.
On a small noise level it is necessary to seek higher
approximations/approaches, that it is possible to do with the help of

electronic computational engineering. In a number of cases

Bubnov-Galerkin method successfully is combined with the asymptotic
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metnod which makes 1t possible sufficient simply to determine the

higr eigenvalues of selution.

The method of the compensating sources makes it possible to find
the probability of disruption/separation in the systems, subjected to
complicated dynamic effects; however, it fequires comparatively
labor-consuming calculations of definite integrals. In cases when
discriminatory characteristic can be approximated by the
piecewise-linear dependence with a small number of salient points (on
the order of two-three), all calculat}ons can be carried out by hand.
With the complicated characteristics for the calculation it is .
necessary to use a computer. In these cases the method of the
compensating sources usually loses its advantages in compariscn with
the method for statistical testing. Furthermore, one should also
consider that the latter/last method requires smaller preparatory

work in constructing a program of solution.

For the analysis of the systems of the second order to apply the
theory of Markov processes somevhat more difficult. The sufficiently
vell analytical methods of solvina the equations of Fokker-Planck are
developed only for the stationary regulating circuits. However, in
these cases it is possible to determine the probability of
disruption/separation not in any parameters of servo system.

Successfully yield to analysis systems with the high or small fading.
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In the intermediate cases it is necessary to introduce in the
calculated relationships/ratios of correction in the form of the

coefficients, determined experimentally (see § 3.2).

The proximate analysis of the time-dependent systems of the
second order can be carried out with the help of the method of the
compensating sources. Errors in this method substantially increase in

comparison with the analysis of first-order systems.
Page 227.

The statistical characteristics of the servo systems of the '!?
first and second orders with the very high accuracy can be calculated
by the method of solution of the corresponding equations of

Fokker-Planck and Pontriagin on the electronic coiputers.

For the analysis of systems of higher than the second order to
apply the theory of Markov processes is very difficult and at present

this is virtually not Jone.

By nature and formulation of the problem to the analysis of
disruption/separation are close the questions, decided in the thecry
of ejections. Therefore sometimes for the analysis of the

disruption/separation of tracking it is possible to use the results,

....................................................
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obtained in the theory of ejections. Most successfuliy this can be
done when the system of tracking in the limits of the aperture of
discriminator is considered linear, and following error is the
differentiated random function of time. The order of servo system in

this case does not play the significant role.

Connecting the analysis of the disruption/separation of tracking
with the theory of ejections, it must be noted that many questions of
the theory of ejections comparatively easily are solved, if is

determined the probability of the first reaching/achievement of

I Y R S R

. threshold level. So, if for the stationary random process of x(t) is
' ( ‘gb known probability that x(t) in the time interval of observation at
least one time will leave for the level 4, then by simple
calculations it is possible to find, in particular, such
characteristics of the ejections of process x(t) above the level vy as
E the frequency of ejections, the distribution of the durations of

ejections and intervals between them, the distribution of the

greatest values, attained by process of x(t) in the time interval of

observation and the like [33].

The approximate estimate of the quality of the work of servo
‘systems under the conditions for noise effect they can give also the
charecteristics, less complete than the probability of

,~ -+ disruption/separation for the preset time of cbservation. They

s oL PPN . . P T I N Y
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include, for example, mean time and the dispersion of time to the
disruption/separation, the critical power of noise at which the
disruption/separation it is possible to virtually yet not be
considered the like. The time characteristics of
disruption/separation (mean time, dispersion) with the sufficiently
high accuracy comparatively simply are determined for first-order
servo systems. For the systens of higher order their calculation is
connected with the solution of partial differential equations. The
critical power of noise is determined comparatively simply; however,

it characterizes the phenomenon of disruption/separation very

approximately.
. 1. Baxyr TL A. & 29. Bon crarncTavecxoft HN PaaNOAO-
Page 228 Kaum, Plu-o,o «Comercxoe . poa'lm. 7.2 TEOPuR P

2. Byauxosxny B. H. Onoxryaunomssie npoueccs » pasHonpy-
euHKX gcrpokfnx. Han-no «Cosercxoe panuos, 1951,

3. buxos 8. B. Linpponoe MoserHpoBaHNe B CTATHCTHYECKOR pa-

REFERENCES. auorexime, Has-s0 «Cosercxoe paano», 1971,

4. Basos B, dopcafit [Ax. Paqocrnbie Merofn pewnus
Anddepenunaasunix ypaswennfi 3 wactusx npoussosusix. Hag-se wio-
crpakuoft antepatyvps, 1963,

8. FTnuxmaan U, H, Cxopoxox A B. Beczenne s teophio eay-
waftix npodeccos. Haa-no <Hayxas, 1965,

6. Karau B. M, Tep-Muxasanu T. M. Pcutenric Huxenep.
T;lexd 3a28% ita WPPOBHX BHYHCANTEAHHX MauiHHaX. H3p-po «Siepruss,

7. Kasaxos H. E, Hocrynos B, I. Crarucruyeokan auueNH-
Xa NeARHeAHHX asTOMATAMECKEX CneTen. Ouamarrhi, 1962

8. 1e6exes B. JI. Caxyvafiunie npostecchl B MEXTPHUECKHX H Me-
XaNKYECKRX cHeTeMax, $uamatris, 1956,

9. Jlenun JI. Meroau peltenss TEXMHYECKHX 38f&¥ C HCNOALIOBE-
NKEM SHSAOTORMX BUSHCAHTEASNMX Mawuy, H3x-80 «Mup», 1966

16 Tonwnnr Ax. X, Barrun P. T. Cayvafunie npouccess s 3a-
fgg': sBTOMATHCECKOrO ynpasaexnn. Hax-so uHocipankoft aureparypu,

i, Muazazon L. BeeXenne B CraTMCTHYECKYIO TEOPHIO CBRIM.
Hix-s0 «Cozercxoe paauo», 1962, 1. 2.

12 MuxanaC. T, Cucanarn X. JI. TIpuSanxennsie Mevosn
pcmeixggs Anddepenunaniiux ¥ HATETPaALHLX ypasHennft, Han-so «Hay- -
u" .

I13. Moncees H. H. Ackmnrorsuecxue METoIn HeanHeAn R Mexa-
anxx. H3z-s0 <Hayxas, 1969,

14, Crpearounoniux P. JI. Usbpanunte sonpocu reopin Gaoxrya. }
wuh s paaworexuuxe, Hax-so «Coserckoe paguo», 1961, .

16, Crpatronosnys P, JI, ¥YcrosHbe MapKOBCKHE fLDOUECCH H HX
PPNMEHERNE X TEOPHN ONTHMAAMHOTO ynpasaenun. Han MILY, 1966,

.............................................
.......................................




T a® LYt et L -

DOC = 83061013 PAGE 7
Paﬂe, 229. -Bg

16. Tuxouos B, K. Crarucrunecxan pagrorexunxa. Haz-3o «Co-
sercxoe pazuow, 1968,

17. Tunxonos .B. H. Bufpocst cayvaRusx npoueccos. Haa-so
eHayxzs, 1970,

18, Qeanep B, Beesenue 3 Teopmo BepoATHOCTER H ee npHAO-
xoukn, 7. 1. Haz-ro eMup», 1964. .

49. Xesea 3. M. Meroan onTRMaABNHX CTRTHCTHUESKHX pemse-
s;g& M 3822%8 onTHMAaARHOrO ynpasderna. Haz-zo «Covercxoe pasnos,
20. Yamipacexap C. Croxacravecxue upobsesd b Qrsnxe

scrposcuns, Hax-po anccrpannnd anveparyps, 1947,

21, Avnanvos M. H, Txonos B. . Bawanne dawoxnyaunt
; a8 p0OTY ABTOARABHOMEDE. «ABTOMATHKA K TeneMexainkas, 1958, Ny 4.

2 Aaspees I, A. O subpocax aecnuuomgnoro clysafsioro
apouecca, «Hasectnn vysom», Panscduanxa, 1967, M 8.

23. Bepuitefs H. O ¢dmoktyausax s6ausn nepHonmueckoro
Asxxenns asroxoneSareasnol cucremu. JJAH CCCP, 1938, awn. 1.

24. Doob J. L. The elementary Gaussian processes. Ann. Math.
Stat., 1944, M 185, .

25. Koanovopos A H. 06 anaantiecxnx McToasx » TeopwK
seponteocter. YMH, 1938, aun. 5. (Mepenoa craten Uber die analyti-
:lcgian M:g;c),den in der Wahrscheinlichkeit srechaung. Math. Anc.,

W V. .

26. Koamoropos & H, Jiconrosny M. A. Zur Berechnung
der mittieren Brownischen Flache., Phys. Z, d. Sov. Un., 1933, M 4,

27. Kramers H. A, Brownlan motion in a lield of force and
the diffusion model of chemieal reactions. Physica, 1940, v. ViI, Ns 4.

28, Kyaneuon[LU.Crpavonosna P, JI, Tuxonos B. U,
Koppeanusiomisic dyixunn s reopin Gpeynonckory asixcins, OG6eo-
wmenne ypanicins Qoxxepa — fTanuka. JKITO, 1954, 1, 26, man. 2.

29, JieGenen B, K. Ypanucune u cxoansoctt aimepenunaasio-
pasiiocTHoro merona (Mcroaa npassix). eBectuuk Mockorcxoro yuuscp-
meaaa. Cepun PHINKO-MBTEMATHYECKHX M ecTCCTDCHUBX nayK. 1955,

30. fle6exer B. JI. O cocranacuun ypaencunft ®oxxepa — [Taan-
xa — Koaxcroposa. «oxaaas HTK no #rorax HUP 3s 19661967 rr.s.
Cexums pazioTexnuueckas, NOACEKUHK CHCTEM CBA3H, caytaliwx npo-
ucccca W ynpasaenus. Hax M3OH, 1967, :
+ 31, TeGenes B. JI. 06 oanoRt m0oa%oMuCCTH ﬁomenua pao-
uewus Poxxepa — slnaaxa. «Norraast HTK no wroram HUP aa |
1969.r7 ~, CexuH® Da.0TEXHUYECKSN, NOJCEKUHA CTATHCTHYECKOR PaaKoO-
Texsimn. Hax, M3, 1969 :

32, Mepxaunrep K. Im. Uncacuuufi anaans setuncfunx ch-
CTEM YNPABACHNHR ¢ OMOUILIO ypavuciiis Doxkepa ~ [Taxixa — Koavo-
roposa, «Tpyant Il mexaynapomiorc xourpecca MOAK. Ontusmaaiue
cHeremt, CTatHCTHIeoxne seroani», Haz.oo <Haykas, 1965

33, O6peaxos I. B. O 53aHMOCBASH 1EKOTOPHIX XAPAKTEPHCTHK
snBpocos caywafuux npoucccos. «Tpyaw 11 Bcecoiosnoro cumMnoanyua.
Meroan ngiencrann:uuu K aNNapatypHHf SHAAH3 CAYYRAILX npoUeccos
R nonefd», Hosocubupex, 1969,

O4. [Tucxynon K. C. Kpaesue 3azaun ann ypastieHuft saauntu-
g«gapMmmm THna, eMaresmatnueckud cOopink», 1940, 1. 7(49),

3. Mowrparun JI, Asapounos A, Burr A O cratnernue-

oxOM sgauummuuu AHHEMKIeckHX cHeTeN. XKOTO, 1933, 1. 3, M 3.
Putos C. M. O6 orHOCKTEIMHOM BpEMEHH NpeSHEANKA HecTa-

:lxgggaﬁo;o‘ caydefiuoro fipouecca. <Paarorexuika H SMIEXTPOHHKAD,

37.Crpastouornx P. JI, Jlauna [1. C. BoaneRcrshe iuymos
K& TeHEepaTOp & AecTkuM BOMGymaeHue, «Hasectun sysos», Paauodu-
anxa, 1959, N 1. .

38 Tsf M. Jl. Yenosus conpumensa AAA NIOTHOCTHK BEPOATHOCTH
nepexoZss MUOroMepHOTo MaPKORCKOro npoitecca. <Hazettun sysoss, Pa-
Axoduauxs, 1965, X 4.

- .

|

|

........

A A AT Rl A Nl N S M A S S A L IS A ARRAAC I e S A et o et ot sa A Sateondbnall s LA S Mg




DOC = 83061013 paczyg

Page 230.

N, Tuxonos B. U Cneunaxsinsie caysan NpHMEHEHRS yDasHenus
?&ﬁue a — [lranxa — Koauoroposa. «PaanoTexsiXa H 3AEKTPOiHNKa,

10, ®eanep B. {lapabosnvecxe ZuPDepMuHaLHNE YPaduehus
I‘B%m7 emnl N’yzowxe HK nosyrpynnul npecSpaiosarHA. «MateMarHias,

[} ‘l'. [ (]

41, Ouxepa I K exrHoR TeOpHR Xpaesuz 3sasd A1R SIAATH
_u-;ug:ﬁgamecxnx ypasHeHn® sToporo nopsaxa, eMaremarnxas, 1963
L 2 A

42. Xasea 3. M. Onpeaencnue ahOTHOCTH PACRPEICACHHA BEPOAT.
RnocTeh AAR CAYNARNMX MPOUECCOB B CHCTEMAX C HEARHEAHOCTRMHK Kycos-
:&a‘ma’;ﬁg.om ™na. «Hasectun AH CCCP», Suepreriixa K 2nToMaThaa,

4 Ye pxacos U 1. O npeoBpazosannu. xudpdy3nonkoro npouee.
a3 iluepomﬁ. «Teopus sepomTHOCTEA N ee npuMeHeHus», 1957,
"R, .

B, Jlureparypa no anaausy cpusa cxemcins !

4. Bacuases A M. [Ipumenente teopnn GpoyHOBCKOro KpHie:
NN K NCCACAOBRHHIO nouex:{mnnunoc-m HMNYABCHMX PRAHOTEXHHYE:
eXHX caeanmux ycrpoficrs. HIBILL, <Paguorexsinxa M «3/eXTpoHiKa,
1959, ™ 1, 2 (28, 31).
45. Tnxoxos B. HU. Bannune wyncs ua psoty cxexs AIMY
«ABTOMATHKE K TeAeMexaHMxa», 1959, M @ (5l, 115).
46. Goxsmwaxonr H. A, Hann3 CpHBa CAEXKSHHE B CHCTeNst
ABTOMATRYECKOIO PETYAHPOBAHHK NOA BAKSHAEM GAXKTYAUHOHHOR NOws
XN, cAsTOMATHKA M TeneMexaHmka», 1959, MNe 12 (31, 125, 133, IM).
47. Taxonon B, H. PaGora QAITY npu Haakuun wysos. <Aste
MATHXa X TeneMexsHuxa», 1980, M 3 (31, U166, 117, 118).
J " 48, Bapper Ix. 9, [Ipumenenne ypasuenuRt Koamoroposa am|
NCCACSOBEHNR CHCTEM ARTOMATHUECKOTO YIPABJCHAA €O €A annuunﬂ
EoINYymenHR A, <Tpyaw | memaysapoanoro xourpecca HOAK, Cram:
eTHNecKNe METOAM Hecaepnosanus», Han-so AH CCCP, 1961 (31).
. 49. Pyrna Ox, [I,Ban-BaasxeaO6ypr M, M. Craticrnve;
EXHR AHBARS CHCTEM SBTOMBTHNECKOrO CONPOBOXAeHHN. «Tpyan I mex:
ayncporioro xoHrpecca MOQAK. Crarkcrnuecke Metonn Hccnenoss:
mz». Haa-20 AH CCCP, 1961 (31, 130).
80. Tanaz L. C,Crparononnw P, JI. K reopun daoxrys
RHOHHMIX MEPEX0N0B DEIAMNHEIX CHCTEM H3 0ZHOFO CTAUKOHAPHOrO C04
cronuMr 3 apyroe, «Bectank Mocxoscxoro yHusepcHreras, Ouana
sctpoHounn, 1962, 1. 3, M | (31).
§l. Frazier J. P, Page J. Phase—lock Loop Frequency
Acquisition Study. IRE Trans. on Space Electronicz and Telemetry
! VSET-8, IX, M 3 (32, 115).
82. Tuxoros B. U, Xypasxes A. I, O patore gyemoﬁai
?:;?x m;alast)mn npx Gomelunx wyMax. <Paamorexnuxa», 1962, M §
L] . P
83. Tuxonon B. ¥, Heawwmens K. B, Crarucrnuecxax ansaus
7:6)0Al'i'-l. «Paxnorexinka N saexrponnxa», 1963, M 2 (31, 32, 11§
b4. Heaumes K. B. Bosaeficrsue sHommero wyms Ha OATI\#
«AsroMaTnEa u TeneMexainxa», 1963, M 7 (29, 31, 115).

¢ B xpyraMx cxo0xax ykadansl CTPRHNUM KRHTH, HE KOTOPMX 1iM]
107TCT CCMAKN N8 UNTHDYSMYID ANTEPAT;DY.

. . L N S . PR —_— . . RSN LI - -
Sy TN PP T IO Y W S LY PRI PO PO S e S P T L




"L Y
...................................

DOC = 83061013 PAGE 397

Page 231.

5. Beaoycors H. B, NeGenen B, /1. Cpus caamenun s c-
cTeXZ aBTOMATHWECKOA nOACTPORAXH wacTOTH. <PazMoTexnuxas, 1963,
Ne 10 (28, 31, 81, 88).

5. JTapbkos B. A, Tuxonos B. H. 3xcnepumenrassuoe
uceaenosanie paborut DAY npu Haauusn wyMos. «DAcKTPoCBAILS,
1963, Ne 11 (28, 32, 121),

57. Butep6u A Hccnegosanue annaxuku cucrex ©AMY 3 npu.
CYTCTBHH WIyMOB € NOMOWbLIO ypasuenns Qoxxepa— lIrauxa. THUIP,
1953, . 51, M 12 (32, 37, 41, 186, 187),

58. Rowbotham J.R,Sanneman R. W. Unlock characteris-
tics of the Optimum Type Il Phase— Loked Loop. IEE Transactions,
1964, v. ANE-11, M 1 (32).

59, Caemunnxon A, A, O6 omioR 3anaue TEOPHI HAACKUOCTH.
eHasectis AH CCCP», Texuuucckan xuGepucinka, 1964, Ne 3 (130).

60. Tuxonos B, Y. Baunnue daokryaunit ua tounocrs padors
ycrpoficrs cunxporksauns. YOH, 1964, Mo 4 (28, 31).

6. Yasanoscxuid [Q. B, Meroa H Texuuxa IXCHEPKNEHTIABHO.
FO NCCACIOBMHNR RoMexoycTelAuumocTH ccTems ALY, wlapectun »y-
aos», Paanorexnnxa, 1965, M 1 (32).

62. Tlepasuesn C. 8. Cpup crexzunn 20 BpEMEHHOM asTOCEACK-
Jope. «Paaxorexnnxa w snexrpounka», (965, Ne 8 (28, 31, 37, 41, 7§,
81, 98, 101, {11, 113).

63. Huxutua H. IL Cpun cremenns s cxeme ®AIY, ¢Antona-
THKA # TejseMexaunxa», J965, Ne 4 (31, 114, 115).

64. Tuxonos B, U, Wlaxtapuu B. U. Cramucruyecxus xa-
PIXTEPHCTHKK $230BOR aBTONOACTPOAKH HACTOTHl, €ABYOMATHKA K Te-

. Aemexanuxa», 1965, M 9 (31, 116, 120, 121).
65. 3apuuxui B, C. Onpegenesiiie B2pORTHOCTH HazewHoR pa-
' 6OTM CHCTEMM B TeqeHHE 32RaHHOTO NPOMexyTXa mpemenH, «Hasecrun
AH CCCP», Texunyeckag xuGepuernxa, 1966, M 1 (130, 152).

66. Cunt B, Cucrema QAIY c PpuabTpoM: wacToTa nepecxaxnsa-
ks nepuonos, THNIP, 1966, 1. 54, Me 2, § (32).

62.06peaxon [, B, Mepsaucs C. B. Cpus cacxenns s cx-
CTeMe C ACTATAIMOM noa;;ro NopAAXa. €ABTOMETMAR N TEAEMEXBHHKA?D,
1966, v 3 (31, 78, 81, 103, 108). .

63. Curasnoe I T, Amyrnun E. A, Ouenxa ycnosnit cpusa
CAGKEHNR B HOAHHEAHMX CHCTEMEX ABTOMATHYECKOTO DEryAHPOBEHHA,
<ABTOMATHKA H TeaeMexaHHka», 1966, M 4 (30, 31, 166, 168).

6, dlaxtapku B, H. O dunsrpyromed cnocoSHOCTH cHCTEME
QATY. aexrpocanass, 1966, M 4 (31, 32, 115, 166).

70. Wlaxruasasu B, B, Onpezeneune seposTHOCTH COLBA CHi-
i&onuamuu » cucteme QAIIM, «Paarortexunxs # saextponika», 1966,

10 (28, 31 120).

7. beaoycosa H. B, {Ipuanxennniil pacuer mepeatnocta cpu-
B3 NIPH NPOH3BOALIIOM NONONEHHH TpMi¥UN o0azcTH caexcnnn. «llo-
xasan HTK no uroram HUP aa | 1967 rr.» Cexums paaiorexun-
%CCKAA, NOACEXUHA CHCTEM CHAJK, CAyHafmibiX NDOUCCCOB W YNPADACHHS.
Haa. M3H, 1967 (28, 31, 81).

72. O6peaxos I. B. K onpeneneitnio sepostiiocTs npeouiuscima
YPOBHR C NOMOWISI0 ypasHeina Qoxxepa — [Taauxa, e¢Qoxaaan HTK
no urorax HUP ea 1966—1967 rr.» Cexuns panHOTCXHHUECKAN, fOACCK-
UKA CHCTEM CBAIN, CAywaRuMX npouescos ¥ ynpasaenns. Han. M3H,
1967 7&146, 148).

Coewnnxon A, A Onpenenenne 3eDCATHOCTR ROCTHXEHNR
TpaREL 3AZAKHOR OGAACTN NOPuaAMiiOR cayyrAnolt dyuxuuel ¢ apobio-

...........
. N

o e e L ‘e e . te t, . . . PR . B
onintioatead S 0. o Lt C NN Y SO T N G Y Benads b PR N s n o
e dncadhs (%
2 Sandhe U ST Y

PPN W P



TN A ST W TR g TR TR L T T Wie e e TR T T W T T T e T T TN T T T e T TR e e,
LA v e e e Ye P N T e T e R S e, e e, e R N A I S S SO - -~

DOC = 83061013 PAGE #OO

Page 232.

paunonsasioR cnexrpas:nof axornoctao. Pedepar noxaszon ! Bee.
COIOJION0 CHMMIO3HYMA MO CTATHCTHYECKHM NpPOGACMEM B TeXnuueckof
2 xubepueruxe, 4. 2, Mockna, 1967 (146).

. 4. 3apnuxuf B, C, Onpescaeniie BEpOATHOCTH (1eAOCTHIKEHHN
CAHOMEDHMY MADXKOBCKHM npoucccoM GUKCHPOBAIMNX rpasint, <Hape-

: CcTHR CCCP», Texuuuecxasx xuGepHernxa, 1967, M 2 (130),
; 75, 3apunxui B, C, beprep JO. C, Unnerapund B. 5.
, O Xcroxe onpenexcHiln BEPOATIOCTH CPHBA CAEKCIHS B PAAHORRABHO-
UMX YCTPOACTSAX. «PajivoTexHuxa ¥ snexrponsxa», 1967, MNe 2 (28,

; 78. RowbothamJ. R, Sanneman R, W. Random Characte-
. rictics of the Tyge Il Phase — Locked Loop., IEEE Transaction, 1967,
v. AES-3, Me 4 (32, 115).
7Ti. Waxruasasan B. B, Araaros 10. & Cpus cunxponn.
saunn » cucreme QAINY. «Anexrpocanses, 1967, M 6 (31, 118, '“li
78 Wicsrapna b, H. Cratecranccxan amiannka cieremu AN
APE NEANYM [POROPUIONBAIO- HHTEIPNDYIOWETO QUALTPE. SABTOMATN:
Xa X Teaemexanuxa», 1967, M 10 m? 120).°
7 Huxyrnn H. [T, Yepassuuen B, A, O seponriioctu Muo-
POXpaTEMX refecxoxod Gadu 3 cxene $a3lonol aBTONOXCTPORKN YRCTO-
™., 8 ¢6. «[loMexOyCTORYNBOCTE X HRAEXIUOCTS DAAHOTOXTIMYECKKX
chpolcn it CHCTEM AaBTOMATHWECKOTO YynpasaeHus», Tpyam YIIH, 168

s sepaaoscx, 1968 (118, 121).
! 60. Ulsaxrapan B. M. Ausana acHMRIOTMUECKMX 3HayenHR CTa-
5 TRCTENECKNX XapuktepacTnk cHcTeMsl QATIYH, «Paagnortexinxa H 3xex-
TpoHNxay, 1968, M 2 ?l. 118). Z)
- 8. O6peaxos I'. B. Bepoamiocrs ZOCTHXCHNR PPRHHUN B HEAR- =
: weflunix cucroMax a rysupcoanun, <Haovccrus AH CCCP», Texuu.
“acxan xxoep;:mm."l%e& M 3 (146, 148, 163).
b 82. Pasewnr B. I Anaans MapxoBcxux caywsfnmx npoueccos
D XuNefrtNx ¥ HesNHOAHHIX CHCTEMAX C AIOMOILBIO AHRAOTOBAHX BHYHCAN.
i TexsiMx MominM. cHssecrxs ay3os», Paanoduanxa, 1968, M3 (32, 206).

8. Waxrapun B, Y. Baumine xapaxrepucTHin $asosoro nerex.
TOpE KR cnrmmtc%p zunamnky cucremst QAIIM. «Astomaruxs u
) Tesemexanngay, 1968, M 9 (116). .
3 8. O6pesxos I. B, Passsxr 3, [l Cpus zaemennt » ne-
: ARNERHMX cuCTeMAX, DPAGOTEOWES B aecrawcouagzou pexuue. <Asro.
; MaTHKS N TeneMexailxa», 1968, Mz 10 (31, 146, 1564, 163).
t 8. Mazopexnfh JI. C, Curszos I. I, Auaans uessnefniol
i AMTYAMCROR CACKSUINR CHCTEMM ¢ ORNIH ITErPATOPOM MSTOROM ycpen-
;:l;ug agulm:'rmx ypasnouuR, ¢AsroMATHKS N TeaeMexauuxa», 1969,
. Sapunxxih B. C,Caemnnxos A. A, O rpannsumz yeso-
nax pemenns ypasuenwn Ookxxepa — [laaixe 3 ~a33auax 6 cpmise cae-
) XeXNS B HOARNCANMX CHCTEMAX. «ABTOMATHKA H 7C/eMexansxa», 1849,
: M 12 (69, 63).

87. O3pesxon I. B, Paaeaur B. [l K sazave o cpuise cie
MENR, CARTOMATHXR W TeAeMEXInuKas, 1069, Ny 12 (59).

88, OGpesxos 7. B. Cpus cacmenun B CHCTEME ¢ HOMRHOAHMM
dumrpon, <loxaszx HTK no wroraw HUP sa 1988-~1989 sr.o. Coxe
UNK PAANOTEXMNNECXES, ROACEKUNN CTATHCTHUECKOR pasKovexsiuky. Haz,
M3K, 1969 (32, 173, 178).

8. Aprexbes B. M. {Tpubanxennuifi MeT0R pewanng ypasheaus
w‘—mam Teancu £0KAaz0s pecnyOANKANCKOR NSYI10-TEXHN-

xoudeponman. Mxncx, 1969 (33). -

..........




)
..........

DOC = 83061013 PAGE AjO/

Page 233.

90. Pasewnr B. I OnpezcAennc BepoSTINCTH ROCTHXEHHA &Pa-
naybl ABYMEpPHLIM MapKODC:Hi npoucccoM, <Hasectia py3ons, Pagwo-
dusnxa, 1970, M 8 (32, 212). )

B. JinTeparypa 0o ANAARIY XAPRKTEPNCTNK AUCKPHMMHATOPOS

9l. Kpusnuxud B. X. Arrovarnueckue cHCTeMi PSOHOTEXHHYe.

CXHX ggcrl&ckm. Focsneprouanar, 1962
.Muzauwen B. H. Oapenencune spemesiiro nonomenwus wu-
nyAsCOB TipK HaawaHR nomcx. Han-so «Coberckoe paguos, 1552,

9. Xiaapuuos 0. M, Koaoxcucxuh 0. A. Auaaus no-
MEXOYCTOAWHBOCTH HCXOTODMX THIOB RPCMCHIIEIX AHCKDHMMIATOPOS.
<Hasecrun ayaon», Pagorexiuxs, 1259,

M Murnwes 5. H O npoxoxaoknk umnyascuoro curiana X
$AOXTYSUNOINIOA NOMEXH WCpPe3 OrPaINWKTEAD M HHTCrpaTOp. <Pagxo-
Texunxa», 1959, M 10,

9. Koaomencxuf 10. A, K wonpocy o pansiun dmoxTyanuon-
NMX NOMAX (IR TOWHOCTS ONPCASACHHN BPCMEINIOrD MOAOMEHHN CHFIAAL.
NWX NMayascos, edsvects sysos», Paaorexiiuxa, 1962, M 2,

96. O6peaxon I, B. [laotnocrs sepontiioctn oruGaniedt curua-
A% N UIYMB H#8 BLIXOAC CTPOSHDPYCMOrD NKKOBOrO ACTUKTOPA. <H3secTHs
ay308», Paguosaextpounxa, 1967, M 8.

' 97. O6peaxon I B. Aiaans oHOR cxeMu BpEMEHHOrO AMCKDH-
MNHATOp2, 4HIDeCTHA BY308», PanHomcxTpoika, 1968, M 8.
Tuxonoa B, U, AMuauros M. H, Boaaekcrane dpacxrya.
nnk 1a :‘gmmk xerexrop, «Pzanotexuuxss, 1957, M 2.

99. Boasmaxon . A, TIpoxoxncive peryaspiusz i caynafisx

CATRANOR Wepes GABLIA ACTCKTOD KOMMYTANHOMIOTO THAZ, <BecThux
OBOKONO yHNBApCHTETA», ©HIlKa, 1958, N 6.

100. Bexxxn A, [1. [dehcraue daoxryauno:mo? nOMEXK Ha AN
CXPHMRHURTOD % CXCTEMY 8BTOMATIHEOKOA NOACTPOAXK 42CTOTH. <Pagmuo-
TeXlHKa>, '] A

10, Beaoycora H. B. Mlpoxoxacune CHrana ¥ wyMa uepes
wucioTHMR Aerextop. «H3secta pyzops, Paaworexuuxa, 1965, M 4.

- 102. Zasuwzos JO. M. Cosmectiipe npoxoxaeine cHrHans uy.
Ka scpes AXPDEPEHUNRALILE ¥ACTOTHLE RHCKPHKHHATOPM, <PagHotex-
HAKL, 4, 0, 11967, M 2; . 2, 1968, Nb 10. i

103. Boaxsmaxos K. A Boszeicreie curnans ¥ dawoKxTyauHou-
géw'nouexn I8 MACTOTHMA AHCKPHMHIATOP. €IaCKTPOCEA3W», 1958,

404, Yanypekiia 8, B, K anaansy acficTsus myma ¢ npoianoass
HBM JUCPTCTHISCKIM CNCKTPON HA YICTONILI ANCKpUMHIIaTOp, <Ranio-
vexuuxas, {969, & 1,
106. Escnxon O, A [lposomacnite $anxrynpyoero cirnana
N NOMEXKN C NPOMIBOALHBIM 3iCNIETHUECKIM CTIEKTPOX ¥eped YactoTHHE
nctrunuampu. <Hasectis pysoe», Paaxosacxrpouuxa, 1970, M 5.
08. bexoycoa H. B. Xapaxvepucruxs Hopmupyowero ycrpoft
. Ctaa, eoﬁeﬁmlmem norapgsgguuumne yeuaureak, «llokaaaw HTK no
xToraM P sa 1963—| rr.e, Cexuns psaxoT2xiNXecKad, QOACEX.
uns craracranecxof paanorexumxa. Hag M3H, 1366,

pages 234-~239.

No typing.

....................................

o S T e Te _'._.' =% -‘_ '_‘._._. . _'." ..
At Bt B A i B0 & s * 8 % i ) RPN W Sa‘an"e "altala -ln"\n A I

BandiredrendosAenArr S Sosn S tadeie S aed d ot Sttt Lo ® 2 s o na et




