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DYNAMICS OF A HIGH CURRENT ELECTRON RING
IN A CONVENTIONAL BETATRON ACCELERATOR

I. Introduction

Over the last few years, there is increasing interest on the development
of ultra-high current accelerators. Currently, several laboratoriesl—l7 are

engaged in studies that are aimed to assess the feasibility of developing such

accelerators.

1,2 3—17 is

Induction acceleration, either in linear or cyclic geometries,
presently the most popular approach among the various accelerating schemes.
Although the beam dynamics 1is relative simple in linear devices, their long
length and high cost make them unattractive, when high energies are desired.
For this reason, progressively more attention is focused on cyclic induction
accelerators.

So far three different cyclic induction accelerators have been proposed:
the conventional beCaCron,la’19 the modified betatron®~!® and the
stellacron.l7 The modified betatron includes in addition to the time varying
betatron magnetic field that is r;sponsible for the acceleration, a strong
toroidal magnetic field that substantially improves the stability of the
conventional betatron. In the stellatron, the addition of a stellarator field
to the modified betatron substantially reduces the displacement of the orbit
that {s due to emergy mismatch.

The dynamics of a high current electron ring confined in a modified
betatron configuration has been studied extensively over the last two
yearl.lz'ls As a result of the finite v/Y of the electron ring a host of new

phenomena either surfaced or became more pronounced. In this paper, we

analyze and discuss the dynamics of a finite v/Y electron ring confined in a

Manuscript approved May 12, 1983.




conventional betatron. The present work includes both analytical and

computational studies for "cold” and "hot” electron rings. The results

indicate that, in contrast with the modified betatrom, the equilibrium in a
conventional betatron is incompatible with either large thermal energy spread
of emittance. In addition, it was found that for a "hot” ring, i.e., a ring

with toroidal thermal energy spread, the radial (sr) component of the rms

emittance oscillates in time, while the vertical component (ez) remains
- constant. Finally, the energy mismatch and the diffusion of the self magnetic
field, as in the modified betatron, impose stringent constraints on the

accelerator.




Il Transverse Dvnamics
a. Macroscopic (beam) motion without toroidal corrections

In this sub-section we study the dynamics of a high current electron beam,
i?cluding the effect of surrounding conducting walls. However, toroidal
correction associated with the fields are neglected. These corrections are
considered in sub-section c.

Consider a pencil-like electron beam inside a straight, perfectly
conducting cylindrical pipe of circular cross-section as shown in Fig. 1. The
center of the beam is located at a distance Ar, Az from the center of the
minor cross-section of the pipe. As a result of the induced charges on the
wall, the center of the beam will experience a radial, outward directed force,

which for small displacements, {.e., Ar, 4z <K a is given by

2 2 N2, n -
FE = 27e no(rb/a) {Arer + Azez}, (1)

where a is the cylinder radius and n, the uniform beam density.
Similarly, as a result of the induced current on the wall, the center of

the beam will experience a radial force that is directed toward the opposite

direction than Fp and is given by

Eo-- soz F. (2)
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In addition to the wall forces, the ring experiences the effect of the

external fields, which are assumed to varv as

Bz(r,t) = Boz(t) {1 -n (¢ - ro)/ro}, (3a)
Br(r,t) = - Boz(t) nz/ro, (3b)
and
1 & 3Bz
Ea (r,t) = - e g r'dr’ T (r', t). (3¢)

In the above equations Bz(r,t) is the axial and Br(r,t) is the radial

component of the betatron field, Ee(r,t) is the induced electric field and n
is the external field index.

Using the induced fields of Egs. (1) and (2), and the external field of
Eqs. (3a) and (3b), the equations describing the temporal linear evolution of

tke beam's center, for time independent applied fields, are:

v 7] <8P >
Ar + w 2 Ar = (—25)-———2-, (4a)
T Y Y mr
o o o
and
A; + Ezz Az = o, (4b)
£, 2 2
vhere .2 = (2 /)Xl -n-n 29, 8%2=(_/y)%n -0 —D (5)
T oz’ 'o s a2 ' Tz oz’ 'o s a2 ’
GYO B°<GP
noz = eBoz/mc, Y - Y ot and SPe is the difference between the canonical




angular momentum of an electron at (r,z) and its corresponding value at the
equilibriuﬁ orbit (ro,o). The average is over initial coordinates and
velocities. Equations (4) and (5) do not include the self electric and self
magnetic fields, because both these fields are zero at the center of a

straight beam.

In Eq. (4a), 570 = B°<6Pe>/mr°c indicates the energy mismatch, i.e., the
difference between the energy of the reference electron {moving along the axis
of the beam) and the energy required for the same electron to move on the
equilibrium orbit (ro,o). The solution of Eqs. (4), for time independent

fields, is

where cj are constants and

The first term on the RHS of Eq. (6) gives the displacement of the center

of the orbit from the center of the surrounding cylindrical pipe and can be




written as

ar <§P la>/~ro (SYO/YO)
T 7, 25,7 2 RN (9)
o (Qoz/Yo) (l = n - n Ty /a )mo Bo (1-n-g Ty /a“)

The displacement of the orbit's center because of the energy mismatch
{mposes very stringent constraints on the injector. This becomes apparent
when we consider some limiting cases. For example, when n=1/2 and

nsrbz/az<<1, Eq. (9) is reduced to

At°

- =2 (GYO/YO). (10)

Equation (10) predicts that for a major radius r_ = 100 cm, the

o
ratio GYO/YO should be less than 1% in order that the displacement of the
orbit to be less than 2 cm. The condition SYO/YO < 1% requires that the
uncertainty in energy should be less than 35 KeV, when the energy of the
iniected beam is 3 MeV. \

For the initial conditions Ar = Ar(o) and Az(o) = Af(o) = Az(o0) =‘o, Egs.

(6) and (7) give
ar(t) = ar_ + (r(o) - ar ) cos (u_t), (11a)
and

Az(t) = o, (11b)

i.e., the center of the beam oscillates along the radial direction

around Aro.




Equations (11) are in good agreement with the results of computer
simulation shown in Fig. 2. The values of the various parameters are listed
in Table I. The center of the ring perform sinusoidal oscillations around the
equilibrium position that is located 99 cm from the major
axis (Aro = -1 em) with a frequency ;r given by Eq. (5), which gives a period
of about 28 nsec, in agreement with the computer results. Such a pure radial
motion cannot occur in a Modified Betatron configuration, because the toroidal
magnetic field couples the r and z aotionms.

The orbit of the beam's center is not always a straight line. For

example, when Ar(o) and 2z(0) * o but ar{o) = az(o0) = o
&r = Ar  + (ar(o) - Ato) cos w_t,

and

which for :’: = Gz gives an ellipse as shown in Fig. 3.

The linearized Eqs. (1) and (2) are based on the assumption
that Ar/a and Az/a << 1. 1If this assumption is not satisfied, it is shown in
the Appendix A that for an arbitrary minor radius beam of uniform charge and

current density the fields at the center of the straight beam are given by
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Table 1

Conventional Betatron Parameters

Run No. CONVBETA 0O

Initial 3eam Energy v = 7.85 (3.5 MeV)
Beam Current I (XA) = 5
Major Radius r, (cm) = 100
Initial Beam minor raduis ry (cm) = 8
Torus minor radius a (cm) = 16 .
Initial beam center position ry (cm) = 104
Betatron Magn. Field at r,, z = o, B, (G) = 143.5
Initial emittance € (rad - cm) = 0.400 (unnormalized)
Initial temperature spread (half width) A%— = 0.0
o

External field index n = 0.447

Self field index ng = 0.16

10
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E(3) % - —t (12a)
P a (1 -4°7.2)
a
and
\ 2 ]el N.B 2 Ie] N3 @ -
B¢ (3) = - 2~ Lo A : - - _ 170 z (%)22 l’ (12b)
a (1 -4 /aZ) 2 =1

provided that the beam does not touch the perfectly conducting wall. 1In Egs.

ol
(12), AZ = Ar© + Azz, Nz is the number of electrons per unit length in the

beam and ao =V

o/c’

Since for a completely non-neutral beam the electric field force is
greater than the magnetic force, the beam density does not remain uniform
whenever a section of the beam is near a conducting wall, but rather develops
a peak at its outer edge facing the wall.

As a consequence of the beam density profile distortion the
ratio A/a increases leading to la;ger amplitude oscillation that could result
in substantial particle losses, as shown in Fig. 4. In this rum at t°= o the
surface of the beam is more than one centimeter away from the wall and the
beam center was arranged to move toward the equilibrium position. However,
the wall forces reversed the direction of motion and most of the beam was lost
in a short period of time, Therefore, in order to avoid the non-linearities
of image forces, it is necessary to keep the electrons far away from the

wall. Typically, the ratio (4 + rb)/a < 0.5, where ry is the beam radius.

12
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Fig. 4. Snap-shots of the electron ring minor cross-section. The non-
linear image forces can have a detrimental effect on the beam when

the beam surface is very near the wall. The various parameters for

this computer run are listed in Table II.
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Table II

Conventional 3Betatron

Run No. CONVBETA 08

Initial Beam Energy Y, = 7.85 (3.5 MeV)

Beam Current I (KA) = 5

Major Radius r, (cm) = 100

Initial Beam minor radius ry (cm) = 8

Torus minor radius a (cm) = 16 ‘

Initial beam center position ry (cm) = 107

Betatron Magn. Field at r_, z = o By, (G) = 136.1
Initial emittance € (rad - cm) = 0.200 (unnormalized)
Initial temperature spread (half width) A% =0
External field index n = 0.447

Self field index ng = 0.18

14




b. Individual Particle

oA 2
6r+wf_ <Sr=—§— %,
o ‘o

and
6; + wz §z = o,
z

-

where w

r'(ﬂ

2 ~2
oz/ o ns)’ w, = (Qoz/y

o

o

= 3 -
and Ay = v - <y> (Veo YO/CZ) (Ve <Ve>) i.e.,
the toroidal energy spread in the beam.

For time independent fields the solution of

and

~

§z = §z(o0) cos wz: --ﬁf&gl

-~

w
z

15

Sr = Gro + [8r(o) - Grol cosmrt +

Motion

In the system of coordinates shown in Fig. 5, the equations describing the

motion of individual electrons in a constant radius beam are

(13a)
(13b)

2

)* (n - ns),

Eqs. (13) is

Eéiﬂl sin; t, (l4a)

- r
r
stn w_t, (14b)
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where Sro = (cz/rowz) (AY/YO) and S5r(o), 6z(0), ér(o), 8z(o) are the initial

position and velocity components of the particle.

-

For n = 1/2 the two frequencies are equal, 1i.e., w, =L, *w and the rms

beam emittances become

-~ b . .
e = 36 resr2e)y <ar2(e)> - <or(e) 65(t)>Y)
r Vg

’i

73 {<6r2(o)> <6£2(o)> + <6r°2> [w2<6r2(o)>sin2wt
88

+ <6§2(o)> (cos wt -1)2]}, (15a)
and
e’ - é%g {<s2%(0)> <62%(0)>}. (15b)

Equations (15) are based on the assumption that at t = o the beam is in a
K - V distribution?? and
thus <sr(o)>-<5£(o)>-<aro 6r(0)>=<8r(0) 6r(0)>=<8z(0)>=<52(0)=<8z(0)5z(0)>=0.

In addition, for such a distribution, it is easy to show that

<6r2(0)> = <622(0)> = rbz/4 (16)

17




o2 52 2 ~* Ty
<3r"(o0)> = <3z7(0)> = Vl (0)/4 — . . (17)
Substituting Eqs. (16) and (17) into Eqs. (1l5), we obtain
“a 8<5r°2>
e =€ [1 t— (1 - cos wt)]}, (18a)
r
b
and
~2 2
€, e, (18b)
where
€=r, VL(°)/Veo' (19)
and
2 2
w (Qoz/Yo) (1 - ns) . (20)

Intense electron rings with thermal energy spread have been simulated
numerically. For the run shown in Fig. 6 the various parameters are listed in
Table III. Figures 6a, 6b and 6¢c give the variation of y with radial
distance, the configuration space and the phase spaces for three different
timegs. It is observed that the ring envelope varies sinusoidally with a peak
radial amplitude that is almost twice of its initial value. This {is
consistent with Eq. (l4a), which predicts that thermal effects will increase

the radial excursions of the electrons by 2Aro. For r, = 100

18
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Fig. 6. Radial profile of Yy, configuration space and phase space at t = o

(a); ¢t = 8 (b); and t = 40 nsec (c), for a half-width axial energy

spread of 1%7. The variation of the rms emittance is shown in (d).

The various parameters for this run are listed in Table III.
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Fig. 6 (Cont'd).

(e)

Emittance vs Time
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Radial profile of Y, configuration space and phase space at
t =0 (a); t = 8 (b); and t = 40 nsec (¢), for a half-width
axial energy spread of 1%. The variation of the rms
emittance is shown in (d)., The various parameters for this
run are listed in Table III.
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Table III

Conventional Betatron

Run No. CONVBETA 04

Inirial Beam Energy Yo = 7.85 (3.5 MeV)
Beam Current I (KA) = 10
Major Radius r, (cm) = 100
Initial Beam minor radius Ty (cm) = 8
Torus minor radius a (cm) = 16
Initial beam center position ry (cm) = 100
Betatron Magn. Field at r,, z = o, B, (G) = 153.7
Initial emittance € (rad - cm) = 0.320 (unnormalized)
Initial temperature spread (half width) A%— = 1%
o

External field index n = 0.45

Self field index ng = 0.289

21




cm, n = 0,45, ng = 0.29 and a fractional thermal half width § = 135, the
additional radial excursion will be 2Ar° = 2ro 5/(1-n-ns) =8 cm, i{.e., equal
to the initial beam radius. In contrast, in a high current modified betatron
ng can be considerably greater than unity and thus the radial excursions can
be substantially smaller.12

The variation of the rms emittance as a function of time is shown in Fig.
6d. 1In accordance with Eq. (18b), the ;z remains approximately constant in
time. However, ;r oscillates with a period that is about 38 nsec. For the
parameters of the present run Eq. (20) predicts a period of about 40 nsec.

The small difference is probably related to toroidal effects. In addition to
the period, the shape of the oscillations predicted by Eq. (18a) is very
similar to that of Fig. 6d. Moreover, Eq. (18a) predicts a peak amplitude
that is about 700 mrad-cm, which is slightly higher than the first peak of
Fig. 6d.

The oscillations of ;r are reduced practically to zero when 6§ = o. This is
shown in Fig. 7a. With the excep;ion of parallel thermal energy spread the
parameters of this run are identical to those of the previous run and-are
listed in Table IV. In these runs it is important to avoid to introduce an
artificial energy spread as for example by using, at t = o, a cylindrical K-V
distribution to load the electrons in the code. 1In such a case the electrons
quickly acquire an "energy spread” during the run. This “"thermalization” is
due to the fact that a cylindrical K-V distribution 1is not suitable for high
current electron rings that have large aspect ratio rb/ro’ as may be seen as

follows: For a uniform density ring that is located inside a conducting torus

with its minor axis lying along the minor axis of the torus, the difference in

22




Fig. 7.

Emittance vs Time

2.
bl
R
-
e e —
c&-
=
_.‘
-
Es.
v N
€l
8-
i
i
o+ . v -_—
° 10 20 0 «0 50
Time <ns>
(a)
= KINETIC ENERGY
[~
&, /\
] ;
i \ ~
by \ LN
l ! | a)
/ \ : SN
o) ! \ \ ; \
£ L \ o ‘
5 [ / \ \v/ \ \
! / / A i
f i \\
i t
N v
H ]
. !
8 o
< '
3 10 2 30 9 0
TIME (-sec! )
i
(5

~

(a) Variation of the rms emittance €. €, and (Er + Ez)/Z for zero

energy spread; (b) temporal variation of Y.

for this run are listed in Table 1IV.
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Table IV

Conventional Betatron
Run No. CONVBETA 05

Initial Beam Energy Yo = 7.85 (3.5 MeV)

Beam Current I (KA) = 10

Major Radius r, (cm) = 100

Initial Beam miror radius ry (cm) = 8

Torus minor radius a (cm) = 16

Initial beam center position ry (cm) = 100

Betatron Magn. Field at r,, z = o, B , (G) = 153.7

Initial emittance € (rad - cm) = 0,320

Initial temperature spread (full width) é%— = 0,0
)

External field index n = 0.45

Self field index ng = 0.289

24




the potential energy between the outer and inner edge of a ring, along the

midplane ( z = o), is given by

; T
- . . b -

3% = —|§L Poue = tn. = (e, ) M- - 250 (21)
ac” o b 4a”

For a/rb = 2, rb/ro = 0.008, v = 0.5, Eq. (21) gives A% = -4%k. Of course for
a cylindrical X-V distribution, A2 = 0. Thus, a ring that has been
incorrectly loaded, it tries to attain a more physical distribution, but in
the absense of dissipation this can be achieved only temporarily. In the
process a spread in Y is developed, which is equivelant to temperature.
Often, the electron ring develops transverse oscillations. These
oscillations generate a toroidal electric field that modifies the kinetic

energy of the gyrating electrons according to the equation

dA
ne? = - fe] V& Jef(vy, ) (0. (22)

The change in Y can be obtained by integrating Eq. (22). Assuming’ that

the beam is located at the center of the torus, Ae is given

Ag = 21/ ) o+ an (a/rb)]. (23)
For Yz>>l the result is
T
Y- vy, = v (2, (26)
r
bin
25




where Yf' Yin are the final, initial values of y and Tof? rbin are the final,
initial values of the ring radius. The variation of v as a function of time
for the run of Table IV is shown in Fig. 7b. Eaguation (24) predicts

» a Ye <V, =z 0.2, which is in good agreement with the numerical results.
Combining Eqs. (17), (19) and (20), and assuming that ng << 1/2 and n =

1/2, we obtain the maximum emittance that is allowed in a betatron of major

radius , and is

The maximum emittance that can be accomodated in a emittance dominated beam

confined in a modified betatron is considerably greater and is given by

2

2 b, 2
< (rb /ro ) (Boe/ZBoz) .

smb

smb Boe

The ratio of the two emittances is = = T B
b 270z

and in general it is much

greater than unity.

c. Toroidal Correctionss’lz’14

The cause of these effects is the finite curvature of the electron beam
orbit. For relatively large aspect ratio ro/rb >> 1 beams, the toroidal
effects become important when \J/Yo exceeds a few percent. The toroidal
corrections have been discussed extensively in relation to the Modified

Betatron. The fields at the center of a uniform charge and current density

26




4

electron ring inside a perfectly conducting toroidal chamber of circular

cross-section are

2 2 2
r r r
b Ar 1 b a - b az °
= =27 e —— — —— — —— — 2
E ind -w'elnoro[( 2 r + 2 2 in r ) er+ 2 r ez]’ (25)
a o ro b a o
.and
r 2 r 2 r 2
b Az ° b Ar b a., °
= =27 — — - — - i —_— 4
5 ind 'T,einosoro [ 2 r er ( 2 r 2 ! *+ in r 2 ez]’ (26)
a a o 21:'o b

where n, is the ambient density, Bo = vo/c. vo is the azimuthal velocity

defined by

roﬂoz/Y°

o T+ Z(v/Yo)(f72 + in a/rb)’

v (27)

and the displacement Ar,Az of the ring from the center of the torus has been

assumed to be much less than a.

Using the fields of Eqs. (21) and (22), it can be shown that the center of

the beam is described by the equations

- 2 8y
2 c o
Ar + wr Ar -l'-_ Y_’ (28)
o o
and
- 2
Az + w, Az = o, (29)

27




where

2 2 .2 2,32 2
o (Roz/vo) Z ng - 2v ¢ /Yo a (Roz/vo) !, (30)
2 ., 2 L, 2,032 2
* w, (QOZ/YO) [ng 2ve /Yo a (QOZ/YO) J, (31)

and

= {1+ (2v/v) [0.5 + 22 (a/_)H17L
b

According to Eqs. (24) and (26), the equilibrium position of the orbit is
displaced from the center of the minor cross-section of the torus, whenever
the energy mismatch Syo is not zero. The displacement is

2 2
ar "y /v ) 1,87,/ (v 7D

r. T T2 2 . 2, 2.
o r°w {1l = n/g = 2v r, /Yoa (Yo 1]

The above equation predicts that
for 610/10 = 17, Y, " S, ro/a =7, n - 1/2, v/Yo = 0,059, {.e., for I = 5 KA,
the ratio Atolro = 0.05, which for ry = 110 cm gives a

displacement Aro = 5.5 cm.

An interesting manifestation of toroidal effects is in the value of
betatron magnetic field required to confine the rotating beam at a specific

radius. When the axis of the beam lies along the axis of the torus, i.e.,

p—




when dr = 3z = o, it can be shown from Eqs. (25) and (26) that the external

magnetic field required for the beam to rotate with a radius r, is

= § \
oz = By 11+ 29/v (0.5 + 1 a/r))}, (32)
where B, is the magnetic field necessary for a single particle of the same
kinetic energy to rotate with a radius Tye
For the run of Table IV the single particle magnetic field is 134G, about
20G lower than that used in the simulation. Equation (32) predicts that the
required field B , is 157.8G, approximately 4G higher than that of Table IV.
The difference is related to the fact that Eq. (32) was derived under the

assumption that the ratio Ty/a <<1, which is not satisfied.
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III. Self Magnetic Field Diffusion

To allow the external accelerating magnetic field to penetrate inside the
torus, the vacuum chamber 1is constructed from materials with finite
conductivity. As a result, the self magnetic fileld diffuses out the chaamber
for times comparable with the magnetic diffusion time tpe. The inductive
electric field generated by the changing flux acts to slow down the beam. In
addition, the hoop forces increase and the induced magnetic field components
(image fields) go to zero at the end of the diffusion. However, the induced
electric field components (image fields) remain the same. Although these two
effects change the equilibrium position of the beam in the opposite direction,
in general they do not balance each other and thus the equilibrium can be

lost. This difficulty can be avoiding by compensating for the diffusion of

the field with external circuits.

However, it is very unlikely that the compensation can be perfect.
Therefore, in practical situations it is desirable to know the maximum
permissible error in the compensation that will not result in the loss” of the
equilibrium.

Consider a electron ring, which for t((tD is inside a finite conductivity
toroidal chamber with its minor axis lying along the minor axis of torus, as
shown in Fig. 8. 1Initially, the magnetic boundary coincides with the electric
boundary and has a radius equal to a. As a result of the incomplete
compensation the magnetic boundary moves, at t ~ tp to a new radius a', but

the electric boundary remainsg at its initial position. The reduction

in Y associated with the shift of the magnetic boundary can be computed from
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£q. (22) and is ziven by

2 2, a.

Ay = =2v 357 in () . (33)
In addition to the reduction of v, the hoop forces will increase and therefore
the equilibrium position of the ring will move a distance 4r from the center
of the torus, which was the initial equilibrium position. This distance can
be computed from the radial balance equation using the fields of Eqs. (25) and

(26) and the reduction of Y given by Eq. (33). The result is

Ar _ _v/y _in (a'/a)
r

2

o [l-n- (nsrbz/aZ) (1+ 2¥° 5a/a)]

where 8a = a'~-a.

In order to keep the displacement Ar <<a it is necessary to avoid the

singularity of the denominator,i.e.,
(n_r 2/ 2)'(1 + 2Y2 Sa/a) << 1l-n.
s b'a

For 8a/a = 10Z, Yy =7, n = ns- 1/2, the above relation gives

The corresponding displacement of the equilibrium position for a = 15 cm, r, =
100 cm and v = 0.59 is 1.6 cm. Therefore, the shift in the equilibrium
position during diffusion is manageable, provided that the compensation is

better than 90%.
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IV Conclusions

The main conclusions that may be drawn from the present studies are: Like
the modified betatron, the conventional betatron is sensitive to the energy
mismatch and the diffusion of the self magnetic field. However, in contrast
to the modified betatron, the conventional betatron cannot accomodate large
thermal energy spread and large emittance. These advantages of the modified
betatron, together with its superior scability21‘23 properties make it a more
appropriate accelerator when intense beams are desired.

Finally, it is necessary to keep the ratio Th/a << 1, in both devices, in

order to avoid very unpleasant surprises, in particular in the high current

regime.
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Appendix A

Consider a straight electron beam of radius Ty inside a cylindrical,
conducting pipe of radius a as shown in Fig. 5. The total vector potential
KT = Xp + Kh, where Kp is the particular and Xh is the homogeneous solution
.of the wave equation.

When the displacement current is neglected, the particular solution

E . for p 2 Ty is
B o, 00 - ) wm|? - §(0)]e,, (a-1)
where
|5 = B(e)| = [p? + a%(t) - 208(t) cos (9 - a(e))]V/?
and 1(t) = - |e| n, v, nrb2 is the beam current.

Similarly, the homogeneous solution is

£ oGo,0,0) =] a0 (/)% e +cc., (a-2)
g

=0

where the coefficients are to be determined from the boundary conditions. For

a perfect conductor Ap =0 at p = a and Eqs. (A-1) and (A-2) give

a = (I/c)ina
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a, = - (1/c) v (azadt 713, 4 a g 2ee

£

The magnetic field at the center of the beam is

3 20 =
B¢ (a, a) = - 3%3 = - %% ) (gp“z !
2=1
21 A

Zquation (A-3) was derived without any assumption about the beam
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radius.
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