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o ABSTRACT

-
This paper describes a study aimed at segmenting a high resolution

black and white image of Sunnyvale, California. In this study regions
vere classified as belonging to any one of nine classes, residential,
commercial/industrial, mobile home, water, dry land, runway/taxiway, air-
craft parking, multilane highway, and vehicle parking. The classes were
selected so that they directly relate to the Defense Mapping Agency's
I.‘ Mapping, Charting and Geodesy tangible features. To attack the problem
a statistical segmentation procedure was devised. The primitive operators
used to drive the segmentation are texture measures derived from cooccur-
“ rence matrices. The segmentation procedure considers three kinds of
regions at each level of the segmentation, uniform, boundary and unspeci-
fied. At every level the procedure differentiates uniform regions from
boundary and unspecified regions. It then assigns a class label to the
uniform regions. The boundary and unspecified regions are split to form
ﬂj higher level regions. The methodologies involved are mathematically
. developed as a series of hypothesis tests. While only a ome level seg-
- mentation was performed studies are described which show the capabilities
- of each of these hypothesis tests. In particular an 83X correct classi-
fication was obtained in testing ;h labeling procedure. These studies
indicate that the proposed procedure ;h uld be useful for land use classi-

fications as well as other problems.
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1. INTRODUCTION

This paper describes a study aimed at segmenting a high resolution black
and white (B/W) digital image of Sunnyvale, California. This scene con-
tained a total of 47 Defense Mapping Agency's Mapping, Charting and Geodesy
(M, C & G) tangible features. The objective of the study was to segment
the scene into regions which correspond to as many of these 47 M, C 6§ G
features as possible. Figure 1 shows a facsimile of the image. Table 1
shows the 9 land use classes considered in this study and their correspondence
to the M, C & G features. Clearly the classes chosen do not give as detailed
an image segmentation as required. The rationale for the choice of these
classes is given in Section 4. Methods for achieving a more detailed seg-
mentation using the methods presented in this paper are described in Section 3.

The time constraints of the study necessitated that readily available tech-
niques be employed. Yet it was desired to have the methods used be as
general as possible. For these reasons téxture analysis methods were utilized.
In particular, the spatial gray level dependence method (éGLDM) was selected
because two comparison studies [1,2] have shown it to be superior, real
world studies have demonstrated its.capabilities [3,4,5,6,7,8,9], and per-
ceptual psychology studies [10,11] have shown it to match a level of human
perception.

In selecting the segmentation procedure the desire for generality

led to the consideration of split, merge, and split and merge types of
procedures [12,13]). A split type approach was the one selected. This
procedure used texture -eaeureé extracted from a region R to determine
Jhcther or not R is composed entirely of one of K known classes. If R

contains one of these classes then it is approprictely labeled. 1f not,
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N CLASS NAME M,C & G TANGIBLE FEATURE NAME

( ¢ 1. Residential Area Houses (Single Family)

e Apartment /Hotel*

e 2. Mobile Home Area Mobile Homes

';g 3. Vehicle Parking Area Vehicle Parking Area
Vehicle Storage/Motor Pool

:é 4. Aircraft Parking Area Aircraft Parking Area/Apron

- 5. Runway Runway/Taxiway

- . Heliport

\ 6. Water ) . Salt Pan/Evaporators *
Lake/Pond Reservoir

7. Dry Land Mineral Pile

Dry Land (Bare/Barren Soil/

" Non=-Cultimated

N Levee/Embankment /Fill

i Crop (Cultivated)

;} Deciduous Woodland

A

™ 8. Multilane Highway Multilane, Divided Highway

(Gross Median)
Multilane Highway
Cloverleaf/Interchange

A

oy )
)

g8y
a2 2.2 &

9. Commercial/Industrial Fabrication Industry Building
Scrap Yard
Industrial Building
Industrial Conveyor
. Industrial Rotating Cranc
2 . Commercial Building
Apartment /Hotel*
Barracks
Governmental Administration Bldg.
- Military Admin/Operations Bldg.
=y School Building
RR Station/Depot
Airport/Airbase Control Tower
S Hangar
Aerospace Assembly Building

')
a

' S NORCINL
RATATREAD

TR

= Engine Test Cell

X ~ Wind Tunnel

- /" Warehouse

s .. Greenhouse

;; Drive~In Theater Screen

Table 1. A 1ist of nine classes and the M,C & G tangidble features
combined together to compose each class. Note that a region
containing the M,C & C Apartment/Hotel feature(*) is placed in
one of two classes based upon the appearance of this region.




then R is split. The inferences regarding R are based on a series of
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hypothesis tests. As such the procedure is related to the uniformity

predicate of Pavlidis [12]).

Experiments were performed which indicate the capabilities of the
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segmentation procédute. The purpose of one of the experiments was to

w

determine whether texture measures could be used to accurately classify
a region into urban land use classes. For this study the nine classes
in Table 1 were used. The capability of the texture measures is evidenced
by a training result of 90% overall correct classification. A worst case
segmentation of the scene was conducted with a 852 overall correct classi-
fication. Other experiments were performed to evaluate the mechanisms used
in making the decision to split. One dealt with demonstrating the ability
to identify regions containing one or more "unknown" or "unspecified"
classes. Another dealt with identifying regions containing two or more
"known" classes, i.e., "boundary" regions.

These experiments indicate the proposed legment;gion procedure is
feasible and could be useful in segmenting high resolution urban scenes.
Further its generality is such that it would seemingly be applicable to

a variety of problems.
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2. TEXTURE ANALYSIS METHODOLOGIES

2.1 Texture Analysis and Land Use Classigication

Many different texture analysis operators have been applied to the
land use classification problem. In this section a brief review of the
literature will be given in order to indicate the texture analysis methods
which have been employed and the results each has yilelded. Generally
speaking, texture operators have been used successfully on a variety
of land use problems.

One of the first attempts to use texture ;nalysis methods for land use
classification was made by lLendaris and Stanley [14]. They employed the
power spectral method (PSM) to analyze a high resolution B/W aerial photo-
graph. The two classes considered were gross manmade and nothing manmade.
A 98.8% correct classification was obtained in detecting natural areas.

Galloway [15]) used the gray level run length method (GLRLM) to
classify 54 high resolution B/W serial photographs. The classes considered
were orchard, wood, urban, suburb, lake, marsh, swamp, railroad and scrub.
The percentage of correct classification obtained for each class ranged from
83% to 100%.

Hsu [16] applied a different texture algorithm in the analysis of
7 B/W aerial photographs. This method involved the calculation of 17
texture measures from 3 x 3 or 5 x 5 windows. The classes considered were
vegetation, soil, pavement, composite field 1 and 2, and composite. The
best probability of correct classification obtained was 84.32.

Mitchell and Carlton [17] made use of the max-min method to find roads,
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grasslands and forests in B/W aerial photographs. Basically, the max-min
method involves locating local gray level extrema along a scan line of
the picture. The number of extrema of strength T or greater is a measure
used in making the.classifications.

A study using the SGLDM was performed by Haralick et al. [4]. The
data source for the study was 1:20,000 scale B/W aerial photographs. The
classes considered were old residential, new residential, lake, swamp, marsh,
urban, rail and woodlands. A total of 170 samples were considered. The
study yielded an 82.3% overall correct classification. |

The above studies all involved reasonably high resolution B/W photo-
graphy. However, texture analysis has proved useful in much coarser resol-
ution imagery such as the 1.1 acre ground resolution data of Landsat. The
texture operators applied tothese data were used in conjunction with the
multispectral information to yield improved classification accuracies (4,18].
Texture operators have also proved useful on higher resolution multispectral
scanner (MSS) data such as aircraft MSS [19,20,21].

The studies of particular interest are those involving high

resolution B/W imagery. Iheae'lt041es can be categorized as those where

‘selected samples were classified and those where a segmentation of a scene

vas attempted. Haralick et al. [4) and Galloway [15) both classified
pure samples from a selected number of classes. Neither involved the
consideration of regions composed of combinations of two or more classes.
On the other hand lendaris and Stanley [14), Hsu [16], and Mitchell and
Carliton [17] all attempted & segmentation. Consequently, they had to
Elnssify regions composed of combinations of classes. However the number
and types of classes considered in thesé studies do.not seenm suitadble for

urban scene analysis. Also these studies had no provision for considering




.. algorithm. This belief is based upon the many simple textures which

more than one fixed primitive region size, i.e., no splitting or merging
type procedure was attempted.
2.2 The SGLOM Algorithm

To defend the selection of the SGLDM, recall that this algorithm has
proven useful o; a variety of real world problems ranging from the analysis
of human radiographs to land use classifications (1,2,3,4,5,6,7,8,13,18,
19,22]. (A complete survey of texture analysis is presented in reference 23.)
Next, two comparison studies have shown the SGLDM to be a superior algorithm.
One of these studies [8] compared the relative merits of four algorithms,
SGLDM, GLRLM, PSM and the gray level differenc; method (GLDM), to do terrain
type classification. The SGLDM texture measures gave the best overall class-
ification accuracy. The other comparison study [9] evaluated the amount
of texture-context information contained in the intermediate matrices of #
these same four algorithms. Here again the cooccurrence matrices used
by the SGLDM algorithm were judged to be the best. Further it is worth
noting that Mitchell et al. [17) made a preliminary comparison of the
max-min method to the SGLDM. The comparison was based on the probability
of correct classification obtained by applying both the max-min and the
SGLDM (with the energy, entropy,.éorrelation. local homogeneity, inertia
as texture measures) to a set of texture data. The results indicated
tha; the tvo methods performed sbout equally well. This comparison to-
gether with the fact that the max-min method is computationally less
complex than the SGLDM would seemingly make it a desirable alternative.

Bowever, it is believed that the max-min method is an innately weaker

cannot be discriminated by the max-min algorithm. For example, Figure 2

shows two visually distinct texture pairs neither of which can be dis-

criminated by the max-min algorithm.
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Hsu's method [16], while not having been directly compared to the
SGLDM, only seem appropriate for a bottom-up approach tc segmentation.
Such approaches require the incorporation of world knowledge into the
analysis process in order to idenitfy structures such as commercial
building, parking lots, homes, etc. Incorporating such information has
proved to be a difficult task one which is not generally well understood.

Finally, the Julesz conjecture [10,11] supports the use of cooccurrence
matrices. It should be noted that recently a number of counterexamples
to the Julesz éinjectgre have been reported [24.25,26,27,28]. However
[29) indicates that these counterexamples can be discriminated. Hence,
at present there is no known example of a visually distinct texture pair
which caunot be discriminated by the cooccurrence matrices.

2.3 Statistical and Stwetural Texture Analysis

The desire has been to use cooccurrence matrices not only to dis-
criminate texture patterns but also to be able to use them to characterize
the structure in textures. In response to this motivation a model for
texture was formulated based on mathematical tiling theory [30]. Later
it will be shown that this model applies to the urban land use data.

The system which is being develgped to measure image structure using the
cooccurrence matrices is called the SSA(statistical structural analysis

system).

Definition 1: A tile T 1s a closed topological disk.

Deginition 2: A function o:Ez -+ g2 is called an <{sometwy or

ey g
i N

et e e
JACNERINUEA N

congiwuence transformation if it maps the Euclidean plane onto itself and

‘

s

if the function preserves distance. That is, if x and Yy are points in £2
then ||x - y|| = |lo) - o ]].

A cooccurrence matrix §(5,T) = [8(1,5,6,T)] is a matrix of estimated
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second-order probabilities where each element (1,§,8,T) is the estimated
probability of going from gray level i to gray level § given the displacement

g! vector § = (Ax,4y) and T, the region size and shape used to estimate the




eTT———— b aoudll DA AEL SRR s Syl dnd TT T TR v T e TE TN . . - - ‘

g .
probabilities. In this context T is a tile such that s(i,§,6,T) is estima-
ted from the restriction of the picture function g(x)to o(T) where o is a
][ translation isometry. Computationally S(§,T) is determined using the equation
’:: . R = 48
-( 6i,§,6,7) = Uzl x x#s e °”;' g(x) = 1, g(x+f) = 3}

vhere N = 0{5_| x, x+§ ¢ T} where 0 denotes the order of the set, i.e.,
the number of elements.

In what follows it is frequently convenient to consider & = (Ax,Ay)
not in a cartesian form but rather in a polar fofﬁ 6 = (d,8) where
d = max [Ax,Ay) and 6 = arc tan (Ay/Ax). 1In polar form d is called the
intersample spacing distance and 6 is called the angular orientation.

In this study &ix measures are computed from each matrix S(§,T).

These are:

1. Inertia
L-1 L-1

16 =) 1 (-2 e1,1,81
i=0 j=0

2. Cluster Shade

51 ’1 3
A(GOT) b g E (1 + J - Ui - uj) '(10306.1')
1=0 §=0

3. Cluster Prominence

-1 1-1
3(607) - { f 1+ j- ui - Vj)l‘ .(1010601)
=0 §=0

4. local Homogeneity
1 1~1

1
=0 J=0 1 4 (1-3)°

L(6,T) = s(4,3,6,T)

a0

) e . PO . <o a . PP . L A aa L a el A g 4 " PP TR I UL WP P S P VALY WU S UL S .
B e B B B e, e ‘L

PRIV P



rd

i .._.<.

5 R s

PRI

A'.-.‘. e s fet
)

- -
;T

.
Attt

Chi g i i i P
. L ‘e ‘e

) A e » T2
0. .

.

» .

5. Energy
E(G.T) Ld 2 I [S(i,j,G,T)]
i=0 3§=0
6. Entropy
1-1 1-1
H(S,T) =-] ] 8(1,3,8,T)log (8(i,3,6,T)
i=0 j=0

where
-1 1-1

we=1 1] s(4,3,6,1
i=0 §=0
I-1 -1
uy = Y 1 3s4,3,6,7)
i=0 =0
and vhere L is the number of gray levels in the processed image.
2.4 Comments on the Texture Measunres
There are two places where a loss of important texture-context in-
formation can occur. The first is in going from a digital image to the
cooccurten;e matrices. Results reported in [2,29] together with the fact
that there is no known visually distinct texture pair which cannot be
discriminated by the cootcurrence matrices suggest that little texture
information loss occurs here. Th; other place & possible loss can occur
is in the transition from the matrices to the set of texture measures. It
wvas reported in [2] that the usual set of texture measures used with the
cooccurrence matrices namely, the energy, entropy, correlation, local

homogeneity and inertia measures, do not contain all the important texture-

context information. For example, Figure 3 shows a texture pair which can

‘wasily be discriminated using information in the cooccurrence mstrices

but wvhich cannot be discriminated based on the values of the usual five

texture measures computed from these matrices.

11




Figure 3. A visually distinct texture pair which can easily be digcriminated
based on information contained in the cooccurrence matrices but
which cannot be discriminated based on the values of the energy,
entropy, correlation, local hemogeneity and inertia measures com-
puted from these matrices.
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Recent studies [30,31) have addressed this problem and have resulted in
the definition of two new measures and an explanation of the utility of
the inertia measure. The two new measures, the cluster shade and cluster
prqpinence, are believed to gauge the perceptual concepts of uniformity
and proximity [10,32). Further it was shown that the inertia measure can
be used to gauge the qualities of texture periodicity [33,34) and the
texture gradient [35]). Since the inertia, cluster shade and cluster
prominence are known not to be sufficient, in that a visually distinct
texture pair exists which cannot be discriminated by these measures, it was de-
cided to also include the energy, entropy and local homogeneity in the
measurement set used in this study.

To see how a texture measure computed from the cooccurrence matrices
can be used to determine a visual quality of a pattern comsider the
following example involving periodicity detection. For simplicity consider
a periodic texture composed of small black squares appearing on a white
background. Assume that the horizontal distance between the center of
one black square to the center immediately to the right is L. Further
assume that this texture covers the whole plane. It can be shown [31]
that the inertis measure, 1(6,T), for large enough T computed from this

texture has the following properties:

. 1) 1(6,T) = 0 for 6 = (2,0°),

i1) 1(6,T) > 0 for § = (4,0°), d = 1,2,...,2~1, and
111) I(Gn.O') - I(Gnm.O') for 6n = (n,0°), Gnm = (ad+n,0°) and

n,m= 1,2,....

4

* Consequently to find £ one looks fot'the intersample spacing distance

which gives the minimum horizontal inertia value, and checks for periodicity
in 1(6,T). The number £ then gives the period of the texture in direction
6.

13
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The importance of this periodicity detection is that it can be used
to identify a special type of unit pattern, the period parallelogram unit
pattern [31]). The utility of the period parallelogram unit pattern stems
from the fact that any periodic texture can be decomposed into a period
parallelogram unit pattern. Further only two vectors, a and b shown in
Figure 4, specify not only the size and shape of the period parallelogram
unit pattern but the placement rules as well. Section 4.4 shows the im-
portance of the period parallelogram unit pattern in the segmentation of

urban scenes.

14
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Figure 4. A period parallelogram unit pattern requires only two vectors
a and b to specify both the size and shape of the unit pattern
as vell as the placement rules to arrange this patterm.
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3. FRAMEWORK FOR IMAGE SEGMENTATION

The proposed segmentation procedure is an early vision system.
Classically such procedures have been based upon detecting edges or de-
tecting uniformity by examining the histogram of the gray levels [36].
The cooccurrence matrices contain edge information as well as the first-
order probabilities of the gray levels. Hence measures computed from
cooccurrence matrices would appear to be useful early vision operators.

Further it is desirable to have a negnenta;ion procedure that would
allow one to move back and forth between segnenﬁation levels, verifying
and reinforcing classifications without the need for semantic informa-
tion. It 4is believed that texture operators provide a means for doing
this. A texture pattern is made up of unit patterns and placement rules
[31]. One can consider a commercial block as a unit pattern. The struc-
tures such as buildings and parking lots can be considered_nicropatterns
of this unit pattern. Cast in this framework, the problem becomes one
of analyzing macro and micropatterns of texture. An advantage of this
approach 4is that one can use unifg;n data structures and analysis pro-
cedures in considering different levels of detail. This should provide
for a better structured segmentation method.

There are basically two approaches to image segmentation. These are
boundary detection and region formation [12,37,38]. Of these, region forma-
tion approaches are best suited for use with texture operators since texture
operators, inherently, characterize the qualities of a region. Region

" ‘formation approsches can utilize either split, merge, or split and merge

techniques. A merge procedure is a bottom-up approach where small regions

are combined based upon some uniformity criterion. Unfortunately, the

statistical characterization of these small regions is less reliabdble
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than that of larger ones. Further in complicated scenes, such as urban
scenes, these small regions could belong to anyone of a large number of
primitive classes such as grass, concrete, car, tree, etc. Combining
these primitives to form more meaningful groups, i.e., commercial area,
residential area, etc., would require a substantial reliance on semantic

information.

As an example, one might decide to analyze a commercial area by first
detecting edges and then linking them together to form structures of the
scene. One could then perhaps consult a model ;o determine that these
structures comprise a commercial area. A problem with this approach is that
each of these subproblems is itself difficult and error prome.

A top-down procedure, such as a split procedure, seems to be best
suited for use with texture operators since classification accuracies
obtainable using texture analysis methods usually decrease as a function
of region size. Therefore it is appropriate to use as large a region as
possible and divide it as necessary. Further for an early vision system,
& split procedure seems most appropriate since it begins with a few broad
classes, i.e., commercial area, residential area, instead of a building,
street or tree. Because of the n;;ure of the texture algorithm as these
large regions are split the texture measures couputed from the smaller
areas become more sensitive to finer detail. Consequently, classes
whose differentiation depends on finer detail can be handled later at
some higher level using smaller region size and perhaps contextual infor-

mation. However, there are problems associated with initially considering

8 large region size. For example with large regions, it is likely that
a mixture of patterns will be present. These problems are addressed in

Bection 3.2.
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The basic steps involved in the proposed segmentetion process are
illustrated in Figure 5. At the first level of the segmentation the scene
is initially divided into R1 regions such that these regions cover the image.
The size of the Rl regions has been determined during the training phase
wvhen the classes at level 1 wvere selected. Next the appropriate texture
measures are computed from the Rl tegions. These measures are also determin-
ed during the training phase when the Kl classes are selected for level
1. Each of the Rl regions is examined to determine if it is uniform and
should be labeled with one of the K1 class labels., I1f the region cannot
be labeled, i.e. if it is a boundary region or it contains one or more
unspecified classes, then it is passed unlabeled to the level 2 stage of L
processing where a new set of classes, K2, is considered. The process

should stop when all the regions are labeled. Figure 6 indicates the |

recursive nature of the process. Section 3.2 explains how the labeling
decisions are made.

Several comments are in order. In this study only one level of seg-
mentation was performed where the classes were labeled and the splitting
criteria tested. However the formulation of the segmentation procedure

will be presented in complete generality. Also the segmentation process

will ultimately need to be extended to provide for a global optimization.
This extension can be readily added to the methods presented.
3.1 Motivating the Statistical Segmentation Strategy

Region growing methods necessarily utilize clustering techniques
[36,37,38,39]. Typically each subregion of the scene is characterized

- by a measurement vector x = [xl,xz,...,xn]t. vhere X, denotes the value

of messurement i. Such a vector is a point in n-dimensional Euclidean

[ahde B A A S fan . & Aonstseonsued, o
-

space, ", Intuitively, measurement vectors computed from visually similar
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Figure 5. A flowchart of the basic steps involved in the proposed
segmentation procedure.
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regions should lie 'close" together in E” while measurement vectors com-
puted from visually dissimilar regions should lie "farther" apart. Con-
sequently, measurement vectors computed from regions containing the same
class should form a cluster in E".

The proposed segmentation procedure attempts to incorporate the useful
attributes of both supervised and unsupervised clustering approaches
{39,40]. 1t utilizes some knowledge of the scene by allowing one to
select the claséés to be considered at each level of proce;;ing. This
is accomplished by selecting a training set for each class at each level
where it is to be considered. Thus neasuremeni selection can be perform-
ed so that only the best measures need be used in doing the segmentation,
a mode of operation allowed only by supervised procedures. The proposed
procedure provides the flexibility to determine whether a region is com-
posed in part or entirely of a class different from the K preselected
classes it has been taught to recognize, a capability usually only found
in unsupervised procedures. This capability to detect such “unspeci-
fied" regions is an important part of the segmentation process. The
procedure also provides a mechanism for identifying regions composed of
two or more of the K preselected classes, i.e., "boundary" regions.

These capabilities enable it to split such unspecified and boundary
regions and to examine the resulting smaller regions using different
classes and different level of detail.

The proposed segmentation approach would seem somewhat similar to that

presented by Chen and Pavlidis [41,42]. In this case, however, a more

sophisticated multivariate formulation for the decision making is developed.

3.2 Formalizing the Concepts
To formalize the above concepts a number of definitions are useful.

Degdinition 3. At a particular level of the segmentation process a
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region R is said to be wnifoam 1f it is composed entirely of only one
of the K classes the procedure has been trained to recognize at that
level.
Deginition 4. At a particular level a region R 1s said to be a boundary
region 1if it is ;omposed of two or more of the K classes the procedure
has been trained to recognize at that level.
Deginition 5. At a particular level a region R is said to be an unspecd-
gied if any part of R contains a class unknown to the procedure at that
level, i.e., something other than one of K classes.
The segmentation procedure requires that g;ven a region R, the follow-
ing decisions be made.
i) Determine if R is either an unspecified region or a
boundary region. If it is either then split R to
form higher level regions.
ii) Determine if R is a uniform region. If so, label R with
one of the K possible class labels.
The capability to call R an unspecified region provides the procedure
the ability to recognize an "unusual looking" region and not to force
it into one of K known clas;es.
The required decisions can be stated as a series of hypothesis tests.
For simplicity consider only two classes, wy and Wy » Given a region R,
one can define the following hypotheses.
Boz R is composed entirely of class Wy«
le R is composed entirely of class Wy
82: R is a mixture of both Wy and Wy
33: R is composed of something other than ¥y and/or w

2°
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Note that for hypothesis B3,1f any part of R contains something other
than wy and/or wy then R is considered as not containing eithe: wy or
wye

Determination of the uniformity of a region involves two tests. R is
uniform if either hypothesis Bo or Hl is accepted in Tests 1 and 2. 1If R
is uniform then Test 3 resolves the labeling.

TEST 1: H, versus H or Hl, to differentiate uniform regions

from unspecified regionms.

TEST 2: B2

from boundary regions.

versus Ho or Hl’ to differentiate uniform regions

TEST 3: Ho versus Hl, to assign a class label to an uniform

region.
Methods have been developed for performing these tests. In developing
these methods an assumption was made concerning the nature of the pro-
bability density functions. The assumption not only aids in developing
the tests but also allows a parametric approach be taken.
Assumption 1. Let wy be one of a possible K classes for a lewel.
It 1s assumed that f(gle) is normal, N(y, }ZJ). with mean by and convariance,

21.

3.3 The Multiclass Formulations of the Hypotheses Tests
The formulations for hypothesis Tests 1,2 and 3 given sbove can be
easily generalized to cases when more than two classes are involved. This
straightforward generalization requires one to consider density functions
f(;le). J=1,...,K all of which exist in the same pattern space.
. Bowever, rather than using this straightforward formulation a modification will
be used; one which affects the way each test will be conducted.

The motivation for the modification is based on the fact that the
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number of training samples available limit the number of measurements that
can be used. This fact stems from the Hughes' peaking phenowmena [43] and
Foley [44] suggests that there be at least 10 training samples available
for each class for each measurement used. This restriction poses a problem
in situations whére there is a class with significantly fewer training
samples than the other classes. In typical multiclass procedures the
number of training samples available for such a class determines the maxi-
mum number of measurements which can be used to define all the classes.
Usually in an image analysis problem the quality of the measurements
are such that a measure is useful in discriminating only a few of the
classes. Consequently, a number of measures are required. Therefore
a restriction on the number of measurements imposed by a single
class would seemingly adversely effect overall performance. A better
approach would be to subdivide the problem into a number of independent
decisions wnere the effect of the restriction on the pumber of measurements
will be minimized. A pairwise approach to each test accomplishes this

objective.

To describe the pairwise methods used to implement the hypothesis
tests the following notation will be used. Llet fjk(zjkluﬁ) be the class
conditional density function of class wJ for the class pair decision in-
.volving w, and w,. Assume fjk(zjk,”j) is normal, N(gj.k.r ,k)' To aid in
understanding the notation, the subscript jk on f and x is used to indicate
the density functions and measurement vector involved in the class pair
wys Wy decision. The subscript j,k on p and I is an ordered pair where

" 3 indicates the class wy of uhichlghund I are the mean vector and covariance

matrix and k denotes the other class, W involved in the class pair decision.
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-.d,, degrees of freedom, a = Prob (t2 <X .. ),andd
R a’djl

To determine the measurement subset which defines the components of
Ejk for each class pair a measurement selection procedure is used. The
algorithm used in the study is a forward sequential search (FSS) algorithm
which independently selects a subset of the available measurements to use
in making each class pair decision. At the mth iteration the algorithm
augments the subset selected at the (m—l)St iteration with another measure.
This measure is the one which when combined with subset selected at the
(m-l)St iteration gives best probability of correct classification.

3.3.1 TEST 1: Differemtiating Uniform from Unispecified Regioms
A region R is unspecified if either R is composed entirely of a

new class, i.e., not one of the K possible; or it is composed of a com-
bination of two or more new classes; or it is composed of a combination
of one or more new classes with one or more of the K classes. In any
event the distribution of x computed from unspecified regions should be
different from the distributions defining the K classes. Consequently,
this hypothesis test becomes merely a matter of determining whether x
is a member of any of the populatioﬁs of the K classes.
A standard mechanism for performing such a test is to use the

Chi-squared test. In a pairwise form of this test, R is considered to

be an uniform region if for at least one class wy

¢ - @y, - b,y T T ) S "czaad1,
L=1,...,K, £ ¢4 3. Otheiwvise consider R an unspecified region. Here
x:;d . = 100 a percentage point of the Chi-squared distribution with
a 2 ) 4s the dimensionality
of zjl (45). Reference 46 gives an application of such testing to tex-
ture analysis.
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It should be noted that since the dimensionality of zjl may vary

f;om class pair to class pair, one needs a method for relating tz, a and

xa;djz' The interrelationship is given by
4 -~
j . ;j;/‘ £20=1)
1 - exp(-—5) — for d even
27 ja 2 lgayn it
d, . -1)/2
o= I f(t)dv = 21 [ exp(-% r®)dr - exp(-% T°) } — ]
T 2 i=1 (21)!
(v} 0
\
for dj< odd
where
2
() = —L——
@n7z, "3
and dV is differential of volume. Note that in the above x:.d = Tz.

’jz

3.2.2 TEST 2: Differentiating Uniform from Boundary Regions

A boundary region R can be composed of combinations of 2 classes,
3 classes,...,K classes. It can be argued that as the number of classes
contained in a boundary region increases the more dissimilar the measures
computed from this region will be from any of the K known classes. Con-
sequently the greater the probability that such boundary regions will be
detected as - ynspecified regions by Test 1. The more difficult problem
is in differentiating uniform region from boundary regions containing
only two classes. This differentiation is particularly important since
as the region size gets smaller with increasing levels the basic test
differentiating uniform regions from boundary regions is that involving
boundary regions composed of only f;o classes. Therefore, the objective

of Test 2 is differentiating uniform regions from such boundary regions.

26

PR S TP ST Y e . NP U




T Ty

To develop this test let bjk denote a boundary region R composed of

and W, Let X be a measurement vector computed from R. Assume that

“3

x= q§1 + (1—8)52 where X is the measurement vector computed from the

1008 percent of -R which contains only class and x, be the wmeasurement

“

vector computed from the 100(1-8) per cent of R which contains only class

Further assume that for bjk boundary regions 8 is uniformly dis-

wj.
tributed 0 < B < 1.

r

Under the above assumption it can be shown that ’r

£ &y lby) = ffjk__jk.B)dB

vhere fjk(gjk) is the density function of x,, computed from b, boundary

=~k Jjk

regions and further where

£ & 5oB) = Ny L (8), I L (8)),

Ej’k(e) - BLJ’k + (1 - B) 'Ekbj'
and

2 2
zj.k(e) = B zj.k + (l - B) xk’j‘

Given the sbove the obvious pairwise test is to call R uniform if there

exist at least one k such that

jk(—jklwk) Plu) > £, (x ML P(byy)

for = 1,...,K, 3 ¥ k where P(b,, ) denotes the a priori probability

Jk
of occurrence of boundary regions composed of ”j and Wy e Othervise

i call R a boundary region.

The development of the above test requires the estimation of the

s priori probabilities, P(b,,). These are difficult to estimate and their

3k
values can affect the test results. In addition, this test is computa-
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tionally complex since it requires (gi) numerical integrations to evalu-
ate the density functions fjk(zjk)'
Because this test is computationally complex and, moreover, yields

only approximate decision surfaces, it was decided to use this test only to

provide intuition into developing a simplier test; one which does not
Tequire the evaluations of the density functions, fjk(ﬁjk)‘ The simpler

test is call R uniform. if there exists at least ene k such that

£ k(x klw ) <r
fjk(zjklwk)
for § = 1,...,K  j§ ¥ k and r, a preselected number, 0 < ¢ < 1,

Otherwise call R an boundary region. This test is referred to as

the "ratioing" test.

3.3.3 TEST 3: Labeling Uniform Regions

A pairwise Bayesian classification scheme will be used to label the
uniform regions. Such a procedure-is an optinmal ct£ategy for minimizing
the average misclassification error for each pairwise problem [47]. The
pairwise method involves solving K (K - 1)/2 geparate subproblems each
involving a class pair instead of ‘one K class problem directly. In the
procedure used in this study the class conditional density functions
fjk(gjkle) used in making each class pair decision are assumed to be
normal. Further the a priori probabilities of the classes are assumed
to be equal. The results of each class pair decision are tallied using a

polling function. The measurement vector is assigned to the class vhich

. Tejected the vector the fewest number of times.

For a more complete description of thesc tests the reader is

referred to [48).
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4. SELECTION OF SCENE DEPENDENT PARAMETERS

In any segmentation method there are certain scene dependent para-
meters which must be input into the algorithm. For each level to be con-
sidered in the proposed segmentation algorithm the following must be
specified:

a) the K classes, Wy sWigseeoty, tO be considered,

b) the size of the regions, R to be used,

c) the number of displacement vectors to be used in the computing
the cooccurrence matrices and

!?I d) a method for selecting the training samples from the image.
In this study only one level was considered and hence only one set

of parameters had to be selected. However, similar reasoning to that

presented should be applicable to any level. The level selected for this
study should be considered as a low level in the pyramid data structure,
see Figure 6, because of the region size used and also because of the amount
of detail present in the classes.
4.1 Selection of the Classes for Segmentation

Three criteria were established for selecting the classes.

1) The classes should correspond as directly as possible to the
M, C & G tangible features.

g 2) Each class should comprise a large enough region of the image that
an adequate training set can be selected.
3) The classes were chosen such that if & represents the regions of

the image labeled class wj,then




........................

v w
=1
should be the whole scene. Further
Barkey sy
Criterion 1,2 and'3 led to the selection of the classes in Table 1.

An important point that should be made concerning the runway, vehicle
parking, aircraft parking and multilane highway classes is that all these
classes are composed of the same micropatterns, namely, a large paved
area surrounded by dry land. This might lead one to think that it would
be difficult for texture analysis methods to discriminate them. However,
one should note that there are clues that can be used by the textural
analyzer. A vehicle parking area can be discriminated from the other
classes because of the presence of cars parked in a regular fashion. 1If
no cars are present the stripes used to delineate the parking places can be
used to mske the determination. However, if neither of these signs are
present and only a concrete slab is visible then the discrimination would
not be possible based solely on textural information. Similarly with the
aircraft parking area, if planes are not present and parked in a regular
fashion then textural information c;nnot be used by itself to discriminate
this class. Runways and multilane highways can be discriminated because of
the difference in the width of the paved area comprising them. BRighways,
even those with several lanes, are not usually as wide as runwvays or
taxivays at airports. Also, the natural wear marks, i.e., tire marks,

01l marks etc., are different. All fhese indicators can be detected by
texture algorithms. )

The dry land class represents a combination of five reasonably diverse

M, C & C tangible features. Many of these M, C & C features made up such
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a small area of the image that they could not be considered as separate

i classes. For example, there were only two small mineral piles and while

%!‘ there were 19 sited occurrences of deciduous woodland, the total area occupied
was very small. Similarly, the total area of crop (cultivated) land in the
scene was very smill and seemed inadequate for obtaining a satisfactory

training set. Finally, while there was a reasonsbly significant amount of

levee, a decision was made not to consider levee/embankment/ fill as a
separate class. Given that the mineral pile, deciduous woodland, crop
(cultivated) land and levee/embankment/fill features would not be treated
as separate classes, it remained to determine with which class each should
be merged. The most obvious selection seemed dry land.

The most diverse class is the commercial/industrial class. It is

composed of a total of twenty different M, C & G features. Each feature

comprising this class did not seem to occupy enough area of the image to
be considered a separate class. These twenty features were all combined
into one class because no smaller groupings of them could be found which
resulted in more homogeneous visual classes and which, at the same time,
provided an adequate set of training samples.

Ten of the 47 M, C & G features appearing in the image defy categoriza-
tion in the nine class scheme chosen. Most of these features represent
“small" objects which usually occur as stand alone entities. Examples
are mine shaft structure, display sign, radio/TIV antenna, power trans-
mission line etc. features. Because these features occurred so infre-
quently snd comprised such a small area of the image, they were not con-
_gidcted in the segmentation.

4.2 Selection of the Region Size
For each level of segmentation there is a strong interrelationship

between the size of the region R and the classes Wyse ooty which can be
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considered. For each class wj the training samples for this class must

be entirely composed of ”j‘ The larger R the more difficult it is to find
such training samples. Consequently the larger R the fewer the number, K,
of classes that can be considered since each class must occupy a larger area
of the scene. .

The commercial/industrial class effectively established a lower bound
on the region size that could be used since the "unit pattern' of the
commercial/industrial class is substantially larger than the unit patterns
of the other classes considered. For example, see Figures 7 and 8.

The region size selected, was 145 x 145. Ii was a compromise between
two opposing requirements. First, one would like the size of R to be as
small as possible so that a fine segmentation, i.e., the boundaries between
classes can be accurately determined. Unfortunately as should be clear
from Figures 7 and 8 the smaller the region size the greater the probability
of misclassification. The second requirement, to have each region be labeled
as accurately as possible, forces larger region sizes to be used. The size
chosen was estimated by overlaying various region sizes on the image and
selecting the size which appeared to be larger than the largest of the unit
patterns for the various classes considered.

4.3 Selection of the Trhaining Samples

Ground truth information was provided which subdivided the scene
into areas corresponding to the M, C & G features. These data were translated
into the nine class form using the correspondences provided in Table 1.

Figure 9 shows examples of the training samples selected. Note each

graining sample is 145 x 145,
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Examples of (a) a 50 x 50 region, (b) a2 100 x 100 region,
(c) a 145 x 145 region and (d) a 200 x 200 region of a
commercial/industrial area.
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Examples of (a) a 50 x 50 region, (b) a 100 x 100 region,
(c) & 145 x 145 region and (d) a 200 x 200 region of a
sobile home area.
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To "effectively" increase the total number of training samples, over-
lapping was permitted, i.e., Sif)Si was not required to be ¢ where Sg is
sample n of class “j and Si is sample m of class wj' If 521151 ¢ ¢ then
the area of the intersection was alway less than half the area of Sg or
Si, i.e., 145 x 145. An example of the overlapping is shown in Figure 10.
The fact that the training sample regions overlap might seem at first
glance, a bit disquieting. However, overlapping is desirable because one
can not always be assured how the grid cells will be located in the testing
phase of a study. Obviously in the cases where sufficient data is avail-
able for training, no overlapping is required. ‘

4.4 Selection of the Displacement Vectons

Recall the displacement vector § is a parameter in the algorithm.

For each value of § a cooccurrence matrix, S(6,T), is computed. Each
displacement vector, § = (d,6), has two components d and 6 where d is

the intersample spacing distance and 6 is the directional orinetation.

The 6 parameter provides directional sensitivity and investigators have
usually assumed that only four values of 6 were needed, 6 = 0°, 45°, 90°,
135° [1,2,3,4,5,7,8,22]. Also, previous work [6,7) usually involved at
most two values of d namely, d = 1,2 for a total of eight different values
of 6.

Recent work [1,2,9,30,31] however, has indicated that the discriminatory
power can be improved by considering more values of 6. However, from a
practical point of view the number of values must be limited. The problem
then is to select a relatively few 6 values which will allow good discrimi-
qation. Since there is little theor& on the subject, of selecting the
6 values, a heuristic method was employed.

First the values of 6 were selected. This was done by determining

the orientations of the majority of the streets appearing in the scene.
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- Figure 10 . 1Illustrates how the training samples were
- overlapped to get more training data for
- - the mobile home class.
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1t should be observed that most manmade urban structures tend to be
aligned with the streets. Thus, the orientations of the streets are
important. Note that the lower half and the upper right part of the
Figure 1 have streets which are aligned in the 75° and 165° directions.
The upper left part of the image has streets aligned in the 0° and 90°
directions. Finally, the airport has runways aligned in the 19° and
109° directions. Hence, the 0's considered were 0°, 19°, 75°, 90°,
109°, and 165°. Obviously using such scene specific information as the
orientation of the streets tends to limit the generality of the segmenta-
tion results.

The other component of the period parallelogram in the texture model

besides the directions are the magnitudes. In order to determine if urban

land use data fit this texture model representative areas from each of the
nine classes were examined. Figure 11 shows a representative area selected
for the residential class. From each of the representative areas the

texture measures were computed for d = 1, ...,80 and for & values which
reflected the major structural character of the pattern. Usually only

two © values were considered for each of the representative regions and these
© values were usually 90° apart. This reflects the geometry of manmade
structures.

Plots were generated showing the variation in the measurement

values as a function of 4 for a given 6. Examples of two such plots for
the inertia measure are shown in Figure 12. A comparison of these plots
) -

re ) for the nine representative regions allows determination of those d

values which provide good discrimination. Consider, for example, the
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shown in Figure 11. (a) The inertia value computed from

the residential area along the 8 = 165° direction.
(b) The inertia values computed from the mobile home area
along the ¢ = 0° direction.
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plots in Figure 12(a) and 12(b). Observe that there is a significant
difference in the inertia measure values of d between 16 through 22.
Consequently, d values of 16 and 20 should provide good discrimination.
Note d values of 17,18 and 19 would also provide good discrimination
between these twé classes. Similar consideration of all the plots
resulted in the selection of eight values of d, d = 1,2,4,6,8,12,16,20.
Hence the total number of & values considered initially was 48, eight d
values and six 6 values.

There are some interesting observations which can be made about the
plots in Figure 12. First, note that the localzninimum occurring at d = 74
in Figure 12(a) corresponds to the distance between the streets in
Figure 11(a). Further the local minimum occurring at d = 38 corresponds
to the distance from the center of a street to the back property line of

8 residential lot. Plots of the inertia measure in the 75° direction

é;: show that the inertia measure can also be used to gauge the width of the
lots. Hence the inertia measure can determine the average lot size in

the subdivision pictured, i.e., the period parallelogram unit pattern

.§§ of the residential area. Such information could theoretically be used to
deternine the area which has to be.searched for objects such as cars,

; driveways, etc. Similarly plots in Figure 12(b) show that the inertia

: measure can be used to gauge structural information from the mobile home

area of Figure 11(b).

The last example which shows how structural information can be
gauged is the vehicle parking area ’hown in Figure 13. Figure 14 shows
-‘the basic structure of this area t;d gives the number of pixels between
the various elements of the scene. Figure 15 shows plots of both the local
homogeneity measure and the inertis measure computed along the 6 = 75°

direction. Note that the local homogeneity measure can be used to determine

41.
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Figure 13,

An example of vehicle parking area.
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Figure 31;. The structure of vehicle parking area. Also given is
the number of pixels between elements of the scene.
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é the distance between the rows in the parking lot while the inertia measure
: cannot. Further it is interesting to note that the power spectrum cannot
I be used to detect this structure either since the power spectrum and inertia

measure are essentially equivalent [2,31].

Given the fact that the texture measures gauge visually perceivable
qualities of patterns the process described above for selecting the &
values allows one to incorporate the visual differences among the classes

into the segmentation process.

- 'r'
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5. A ONE LEVEL SEGMENTATION OF THE SCENE

In this section studies are described which

1) evaluate the capabilities of the texture measures
to characterize the land use classes;

11) wvaluate the capabilities of the pairwise classification
procedure tc label the uniform regions, i.e. ones which con-
tain only one land use class; and

i11i) estimate the performance of the proposed seg-
mentation procedure.

These studies resulted in a one level segmentation of the scene. Note

the capabilities of Chi-Squared test and ratioing tests used in differentiat-

ing uniform regions from those which should be split are given in Section 6.

5.1 Capabilities of the Texture Measures to Charactenize Land Use Classes
The best method for evaluating the capabilities of the texture measures

is to determine how well they can discriminate the land use classes. .

Commonly the training results are used to estimate this discriminatory

power. To acquire the training results requires

1) the extraction of the texture measures from the
training samples;

1i) wmeasurement selection to obtain the measures that
should be used to make each class pair decision;

11i) estimation of the necessary mean vector and covariance
matrices; and

iv) the application of the pairwise classification pro-
cedure to the texture measures extracted from the training
samples.
The maximun number of measurements which could be used to make each class
pair decision was derived using the Foley criterion [44] with a minimum
of 8 samples in each class for each measure used. The measurement sele-

tion method was a forward sequential search procedure [5]. It is worth

observing that 3 of the 5 measures selected in the residential/mobile home
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class pair decision involved d values of 16 and 20. Note that this agrees
with the observations concerning the plots of Figure 12.

The training results for this study are given in Table 2. The
percentage of overall correct classification obtained was 90X. This
figure was computed by dividing the total number of correctly classified
regions by the total number of training samples.

A few observations concerning the training results should be made.
First, it should be noted that the commercial/industrial class and the dry
land class represent the two most heterogeneous classes. That is, there
are a number of visually dissimilar areas comprising each of these classes.
Consider, for example, the dry land class. This class is composed of grass
land, mixture of grass and trees, cultivated areas with prominent rows and
areas of exposed so0il with little or no grass. Similarly, the commercial/
industrial class is composed of such heterogeneous possibilities as a
drive-in theater screen, wind tunnels, apartments and railroad station/depot.
The heterogenous make up of these classes shows itself in the training results
from the fact that members of most of the other seven classes were misclassi-
fied into one or both of these classes.

Another point of interest about the training results is that the
majority of the incorrect classifications were graceful misses. That is,
in the majority of instances when a misclassification occurred the class
in which the sample was incorrectly placed was a good second choice for
placing that sample. Consider for example the residential samples that

vere misclassified. These samples were all labeled commercial/industrial.

Residential areas look more like commercial/industrial areas than any

of the rest of the classes. Further consider the misclassified mobile

home samples. These samples vere placed in the residential or commercial/

industrial classes. Again, both of these classes represent better alternatives
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COMPUTER CLASSIFICATION
PERCENT
RES| COM| MH|VPK| DL|WTR| Rw|APK]MHw| TOTAL | CORRECT
REs] 78] 5| o} o of o]l of of of 83]93.982
z |coM| 2]297] 1] 1] 18] O o} Of 9| 328 |90.552
o
E MH 2] 3] 36| O] O Of of o] O} 41 |s87.802
2 jvek| 1| 6| o] 18] of o] of ol o] 25|72.002
3
< DL 2| 13} 2} 0]322] 1} 3] O 10| 353 |91.222
-l
: WIR| O] O] O] © 84] O] O] O] 85 ]98.822
Pl o o o o] 70 o© 78 | 89.74%
&
$ jark| O o O Ol Of 18] Of 21 |85.712
MHW| O| 13] 1] O] 8] O] o] O] 99| 121 {81.822
YoraL| g513%1| 40f 19]|356] 85] 73] 18{118}1135
OVERALL PERCENTAGE CORRECT CLASSIFICATION 90.04%
RES - Residential
COM - Commercial/Industrial
MH - Mobil Home
VPK -~ Vehicle Parking Area
DL - Dry lLand
WIR - Water
RW - Runway/Taxiway
APK - Aircraft Parking
MHW - Multilane Highway
Table 2. The results obtained by classifying the

training samples.

The training results
gave an 90X overall correct classification.
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than any of the other classes. Also the vast majority of the misclassified
vehicle parking area samples were called commercial/industrial area samples.
Note that many of the commercial/industrial samples have large parking areas
contained in them.

Also consideé the confusion between the commercial/industrial class
and the dry land class. As was stated earlier both the commercial/indus-

trial and dry land classes are heterogeneous in structure. Further, almost

every class has samples which are misclassified into one of these two classes.

The confusion between these two classes seems to be based on a similar
structure. Many of the commercial/industrial trgining samples have one or
more buildings surrounded by a large grassy area. Evidentially, the methods
employed have trouble discriminating areas of bare soil surrounded by grass
from dbuildings surrounded by grass.

Finally both the dry land class and commercial/industrial class are
confused with the multilane highway class. To explain this confusion it
should be observed that a 145 x 145 sample of multilane highway must contain
things other than a multilane highway. In the majority of the training
samples of multilane highway the other objects in the 145 x 145 areas
were either commercial/industrial sreas and/or dry land.

These results are encouraging. Even though some misses occur
they indicate that texture measures can be used to characterize compli-

cated land use classes.
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5.2 Capabilities of the Painwise Classification Procedure

A procedure which seems appropriate for evaluating the classification
scheme is to partition the image into regions as though & segmentation were
to be performed and then classify only those regions which are uniform.
In this case the regions are created by overlaying a 145 x 145 square grid
on the image as shown in Figure 16. The resulting 1156 regions include
680 which have more than 90% of their area composed of one of the nineﬁ
classes. In the study the definition of uniformity was relaxed to assure
an adequate number of samples.

The results of applying the pairwise classification scheme to the 680
regions are shown in Table 3. Ubserve that these results are comparable
to the training results given in Table 2 with the most significant difference
being only 8% below tne training results. In making this comparison it is
important to point out that seldom if ever did a training sample coincide
with one of the 680 regions considered. Further it should be observed
that three classes, namely, vehicle parking, runway/taxiway and aircraft
parking, have higher percentages of correct classification than those achieved
during training. This anomaly can be explained for the vehicle parking
and aircraft parking classes by noting in Table 3 the small number of samples
representing these two classes. To explain the discrepency for the runway/
taxivay class note the fact that the positioning of the paved runway area
within the 145 x 145 sample region will affect the values of the texture
measures. Ideally one would like the runway to pass through the center
of the region. However to adequately train the procedure to recognize

this class, samples reflecting less than ideal conditions were included.
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l - COMPUTER CLASSIFICATION I
RES| coM/ MH | VPKI DL | WTR| RW | APK] MHW] TOTAL | CORRECT
res|2s | s o] o o] oflo| of 33 |er.02
= fcoM| shas| 1] 0of 6] 0] 5] o] sf174 |85.06% |
lmlolole[ololo]ofo] 3] 7 [es.7 (
Sijvkjoj1jo]5]0]0]0] 0| O 6 |s3.0z ‘
g pL | 2(30] 1| op32]|2|e6l 2] 4l279 |83.2% ]
::» WIR| 0] 1] 0] 0| 4(88] 2] 0| O 95 [92.6%
; swlololo]o 0Js0] 0] of 41 l97.6%
Y fapkl 0] 0ol o]Jojo]Jojo}ls] o s hoo.x
mw] o]J 6] oJo]lajo]o]| o] 33] 40 |82.5%
vora{35 P91 ] 8| 5 R4 |90 53] 7| 46| 680
OVERALL PERCENTAGE CORRECT CLASSIFICATION 86,0%
RES - Residential
coM - Cmrcial/}ndustrinl

MH - Mobil Home

UPK -~ Vehicle Psrking Area
DL -~ Dry Land

WIR ~ WVater

RW - Runway/Taxiway

APK -~ Aircraft Parking
MHW ~ Multilane Righway

Table 3. The results obtained by lpplying the pairwige classification
scheme to 680 uniform regions of the image.
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Consequently the difference in classification accuracies is attributable

to the good runway sample region alignment occurring just by chance in
this study.

Finally it should be observed that the misclassifications shown in
Table 3 are vety:similar to those given in Table 2. The only exception
being the five commercial/industrial samples which were misclassified in
runway/taxiwvay class. To explain this note that four of five areas mis-
classified in this manner involved large hangars. According to Table 1
hangars are a part of the commercial/industrial class. Yet the large han-
gars involved in misclassifications look nothing like the commercial/indus-
tiral samples included in the training set for this class. This fact

together with the visual similarity of regions containing hangars to those

containing a runway explains the confusion. This can be observed from Figure 17.

5.3 A Segmentation of the Scene

Practically speaking in any automatic segmentation procedure there is
a level, say level i, at which a labeling of every remaining region must
be forced. Usually the percentage of the regions which are unspeci-
fied and boundary decreases with increasing i since the smaller the regions
R, the more of them that will fall into areas composed of a single class.
Admittedly there are mitigating factors, but a reasonable estimate of the
lower bound on the performance of a segmentation can be derived by forcing
a label on the regions at the lowest possible level, level 1. This follows
from the fact that the percentage of unspecified and boundary regions

will be maximum at this level. Suc? a lower bound will be estimated in

P
. this section. The data used to establish this lower bound are the 1156

145 x 145 regions shown in Figure 16.
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Figure 17. The visual similarity between a region containing
8 large hangar and one containing a portion of a
runway/taxivay. (a) The region containing the
hangar. (b) The region containing a runway/taxiway.
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In forcing a label on these regions, a difficulty that is immediately
encountered relates to establishing ground truth. For example, it is
possible for some of these regions to contain multiple land use classes.
To avoid any possible ambiguity rules were formulated for scorimg the
segmentation. Lét R be a 145 x 145 square in question. Further let
”j represent class j and A(wj) represent the area of R occupied by class
”j' Then the scoring rules are as follows:

1. If R contains n classes, say Wyseoesl s and if A(wj) > A(uk)
for all k such that 1 <k <n, k ¥ j; then the correct labeling
of R is assumed to be Wy

2. 1f R contains n classes, say Wyseoesl s and if there are m classes,
BaY WysWaseesslins such that A(wl) =...=A(wn) and further that
A(wj) >A(w), 1 < <m m<k<n, then the correct Jabeling

is assumed to be anyone of the » 13 <

“3

The results obtained by pairwise classification procedure to label
all the 1156 regions is given in Table 4. In examining these results it
is again important to note that seldom if ever did a training sample
coincide with one of the regions shown in Figure 16. The overall per-
centage of correct classification is about 83%.

As will be observed six of the nine classes have good classification
accuracies, ones which compare favorably to those obtained when only uniform
regions are considered (Table 3). However, three of the classes, namely,
mobile home, vehicle parking and aircraft parking, do mot. 7To explain
these low classification accuracies it is important to note that when only

-uniform regions are considered these classes have high probabilities of

correct classification. Given that each of these classes compose only a

55

......

- - . -~ .. Vool IS R RSN .
A WA e ke At s ataladedntadedatae ot . -a o m



% | RO

e a AT A M A

S, AN L
. . LS L A
(A JoA s RS

P
Tele ¥
“4LS

1IN

IR N P h-Ad
L I R Ik
)

COMPUTER CLASSIFICATION
PERCENY
RES{COM| MH|VPK| DLIWIR| Rw]APK|MHw] TOTAL [CORRECY
RES| 43} 191 ol o] o] o] o] o] 4 66 | 65.2%
g [COM| 6]298] 1| 0| 9] o] 5| 1f14 | 334 |89.2%
g of s| éfo| o] of of o] 1| 12]50.02
2 |vek| 0] 13| o] 8 0 o] 1| 22|36.4%
§ oL | 2| 44| 1| o [378] 2| 12| 610 | 455 [83.1%
gmosoo 6] 88] 7| 1| o [ 105 |83.8%
gnwoooo 1] o] e8] ol o] 69 ]9s.6x
S Iark] of 1] ojo] 3] o] 6] 9f o] 19 |47.4%
pe| of of o1 ] 1] o ofe2 | 74 |83.82
vorar| 51|392] 8] 9 |398] 90| 99] 17|92 |1156
OVERALL PERCENTAGE CORRECT CLASSIFICATION 83.4%2
RES -~ Residential
COM ~ Commercial/Industrial
MH -~ Mobil Home
UPK - Vehicle Parking Area
DL ~ Dry Land '
WIR -~ Water
RW - Runvay/Taxiway
APK -~ Aircraft Parking
MHW -~ Multilane Highway
Table 4. The results obtained vhen the image was

segmented. It should be noted that few

41f any of the regions used in the segmentation
exactly corresponded to the regions comprising
the training set.
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small percentage of the whole scene the obvious explanation for these poor
results is that most of the regions misclassified were actually boundary
regions. An examination of the data proves this explanation to be correct.

The percentage of correct classification of the other classes seemed
acceptable. As will be observed the algorithm failed gracefully on a
majority of the misclassified samples. Consider the residential class.

The majority of the misclassified residential samples were labeled as
commercial/indust{;al. Clearly if a residential area is to ye missed,

the commercial/industrial class is the one which.nost closel;.resenbles the
residential class.

The vast majority of the misclassified commercial/industrial samples
were called either residential, dry land or multilane highway. Similarly, the
vast majority of the misélassified dry land samples were called commercial/
industrial.

This leads one to the water class. As will be observed from Table 4
some water samples are mislabeled as commercial/industrial, dry land,
runvay and aircraft parking. These are clearly very bad misses. Bowever,
there 1s a mitigating factor. All the water samples which were mis-
classified into either the commercial/industrial class, the runway/taxiway
class, or the aircraft parking class contaiped & levee, i.e., an umspeci-
fied class, since none of the training samples for any of the classes
contained s levee. Finally some of the confusion between the water class
and the dry land class seems to be caused by mixtures of dry land and water.
Water samples which contained only reasonably small areas of dry land
Were consistently called dry land by the algorithm.

The runway class was very accurately classified with only two of the

68 sanmples being misclassified as dry land. The multilane highway class
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had samples misclassified as commercial/industrial, residential and mobile

home. It is interesting to note that each of the multilane highway training
samples contained areas from these three classes and dry land. However, only

the commercial/industrial, residential and mobile home areas contained

structures which could markedly affect the texture measures ability to detect

the presence of a major road.
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6. EVALUATING THE SPLITTING CRITERIA

Recall that the splitting criteria involves two tests, the Chi-Squared

test and the ratioing test. The Chi-squared test was formulated primarily to

differentiate uniform regions from unspecified regions whereas ratioing
was primarily forsulated to differentiate uniform regions from boundary
regions. In this section studies aimed at evaluating these tests will be
briefly described.
6.1 Evaluating the Capabilities of Chi-Squared Test

The data used to evaluate Chi-Squared test were taken from a square
area in the extreme upper right hand corner of the image. This area
contained 144 regions and comprised the last 12 elements of the first
12 rows of the grid given in Figure 16. This area was selected because
it contained a levee and a land/water boundary. The levee is of interest
because while being a part of the dry land class any 145 x 145 region con-
taining a levee must necessarily contain water. Also the training set
for the dry land class contained no levee samples. Hence the segmenta-
tion procedure should call such regions unspecified. The presence
of the land/water boundary could be used to determine whether Chi-squared
test could be used to find boundary regions.

The results of applying a simplified version of the Chi-squared test
to the 144 regions is summarized in Table 5. The first row of this
table shows how the 53 verified unspecified regions were bandled by
the segmentation procedure. Observe that 44 (83%) of these were correctly

ddentified as being unspecified by the Chi-squared test. Of the 9

.xegions which were mistakenly judged as being uniform, 7 of these were ®

correctly classified by the pairwige classifier.
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COMPUTER RESULTS
Segions tdentified as
l=Uniforma by the
l=Unspecified or pairviee classifier Total
l=Boundary regions as nusber of
1centified by regions
o Correctly | Incorrectly
Chi-Squared test classified | classified
1-Unspecified regions 44 | 4 83
[
W
[ 4
8
Wt | 1~Boundsry repions ] ” 2 30
-
L .
o
o s 1=Unifore
- regions
W g £ | correctly e 8% 0 6!
" 'c":'i i classiffied
ARY
Wiegs 1-Unif.
> e=8 o
- w regions
; 55 incorrectly (o] (o] (o] 0
i<s classified

»
Table 5: A summary of the results obtained by applying the simplified
form of the Chi-squared test to the 144 regions contained in
a8 square area in the extremé upper right hand side of the scene.
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The second row of Table S shows how the verified boundary regions
wvere handled. Observe that the Chi-squared test correctly identified 11 (37%)
of the 30 regions as boundary regions. Of the 19 regions which were not
didentified as boundary regions by the Chi-squared test, 17 (892) of these
vere labeled by the pairwise classifier as belonging to one of their major
constituent classes. Therefore, only 2 out of 30 samples can be viéwed
as incorrectly labeled. It should be noted that the Chi-squared test is
specifically derived to differentiate unspecified regions from uniform
regions and the correct differentiation of boundary regions from uniform
regions is really a secondary consideration fo£-this test.

The third row corresponds to those verified uniform which were correct-
ly labeled as being a member of one of K classes by the Chi-squared test. The
fourth row corresponds to thos. verified uniform which were incorrectly
labeled by the Chi-squared test. Observe that only 6 (10X) of the correctly
labeled uniform regions were called unspecified by the test.

6.2 Evaluating the Capabilities of the Ratioing Test

The results acquired by applying the simplified version of the ratioing
test to the 102 regions is given in Table 6. Also shown is the results
of applying the the Chi-squared teft with a = ,95 and the pairwise classi-
fication procedure to these same 102 samples. The first row shows how
the 65 verified boundary regions were handled. Observe that the
ratioing test alone could identify 27 of these regions. In all the
ratioing test identified 40 of the 65 regions. The Chi-squared test
aided by detecting 10 more. Thus in combination the two tests detected
77X of boundary regions.

. The second and third rows show how verified uniform regions, both
those which were correctly and incorrectly classified by the pairvise

classifier vere treated. Observe that the ratioing test mistakenly called
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i_ COMPUTER RESULTS
-~ Regions identified as
W l=-Boundary regions l-Uniform by the
e . . L. pairwvise classifier Tots)
smber of
. dentified [Identiffed [ldentified |Totsl Correctly llncorrectly|regions
¥ y Chi- by ratioing by both Chidnumber of |clessified jclassified
uared test uared snd|l-Boundary
est atioing regions
: tests identified
m .
W | 1-Soundary regions 10 27 13 50 3 2 65
«
©
(L] 1-Dniform
a regions
H correctly
8 E ‘5 clessified n 4 3 10 1] 0 29
s -
ol +s8
w|t 5 ‘E 1=Uniforn
“| g 3 t regions
&1 &= 2 [tncerrectly
W] ZT3 [classtfied ! 3 2 6 o 2 8
>| 53z
A e

Tsble 6: A summary of the results obtained by applying the simplified forms

of the ratioing test and the Chi-squared test to 102 regions.
Note that the table also indicates the classification tesults

obtained by the pairwise classifier for the 102 regioms.
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7 (24%) of these regions boundary region. Further the Chi-squared test
incorrectly labeled an additional 11 (38%). The poor performance of the
Chi-squared test in this case is probably a result of a suboptimal choice
of a.

On the third row observe that of the 8 incorrectly labeled uniforms by

the classifier 6 (75%) regions were identified as boundary regions.
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7. SUMMARY AND CONCLUSIONS

This paper described a study aimed at segmenting a high resolution
urban scene. 7To accomplish this objective a statistical segmentation
procedure was developed; one whose primitive operators were SGLDM texture
measures. The procedure is an early vision system based on a split type
algorithm. It considers three types of regions at each level of the seg-
msentation, uniform, boundary and unspecified. The procedure is based
on three hypothesis tests. Experiments were performed which indicate
the utility of the methodologies employed. In particular a training re-
sult of 90Z overall correct classification for the nine classes considered
confirms the ability of the texture algorithm to characterize land use
classes. Further an approximate lower bound of 832X correct classification
was established on the performance of the segmentation procedure in inde-
pendent testing samples. Finally the performance of the tests associated
with the decision to split a region were evaluated. -The results show
that these tests performed well in making a split decision. The results
obtained substantiate the use of texture operators to segment complicated
urban scenes.

As stated previously the segmentation procedure was not completely
dmplemented in that multiple levels could not be considered. A further
study 1is required to consider this case. Also, methods to incorporate
more world knowledge need be investigated. Finally methods for improving

the measurement selection algorithm should be studied since the algorithm

used considers only the ability of a measure to correctly classify

hniforn regions.
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