AD-A133 272	USAF ADVANCE TECHNOLOGY H CHICAGO ILL AFWAL-TR-82-	D TERRESTRIAL ANDBOOK(U) IN: E J DANIELS 2019-VOL-2 F3:	ENERGY STUDY STITUTE OF GAS ET AL. APR 83 3615-80-C-204	VOLUME 2 5 TECHNOLOGY 1 F/G 10/1	1/ 2 NL	
	F					

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MARCHI ALRONAUTI

AFWAL-TR-82-2019 VOLUME II

AD-A133272

USAF ADVANCED TERRESTRIAL ENERGY STUDY

VOLUME II: TECHNOLOGY HANDBOOK

Institute of Gas Technology 3424 S. State Street Chicago, Illinois 60616

APRIL 1983

FINAL REPORT SEPTEMBER 1980-SEPTEMBER 1982

Approved for public release; distribution unlimited

MC FILE COPY

AERO PROPULSION LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

DTIC OCT 0 4 1983

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign mations.

This technical report has been reviewed and is approved for publication.

DOUGLAS M. ALLEN Project Engineer

FOR THE COMMANDER

WAMES D. REAMS

Chief, Aerospace Power Division Aero Propulsion Laboratory

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notifyAFWAL/POOC-L W-PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

Bult. Berthand

PAUL R. BERTHEAUD Chief, Energy Conversion Branch Aerospace Power Division Aero Propulsion Laboratory

CURI : Y CL SSIFICATION OF TH		READ INSTRUCTIONS
	CUMENTATION PAGE	BEFORE COMPLETING FORM
REPORT NUMBER	2 GOVT ACCESSION	NO. 3 RECIPIENT'S CATALOG NUMBER
AFWAL-TR-92-2019, Vol	. II AD-A13327	22
TITLE (and Subtitio)		S TYPE OF REPORT & PERIOD COVERED
		Final Report for Period
USAF ADVANCED TERRE	ESTRIAL ENERGY STUDY	September 1980-September 19
Volume II: TECHNOI	LOGY HANDBOOK	FERFORMING ORG. REPORT NUMBER 61045
AUTHOR(+)		8. CONTRACTOR GRANT NUMBER(+)
E. J. Danie	els	
B. D. Yudov	a la	F33615-80-C-2041
T. D. Donal	kowski	
PERFORMING ORGANIZATION	NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT TASK AREA & WORK UNIT NUMBERS
Institute o	of Gas Technology	3145 24 12
3424 S. Sta	ate Street, Chicago, IL 606	516 5145 24 12
CONTROLLING OFFICE NAME		12. REPORT DATE
Aero Propulsion Laborator		April 1983
AF Wright Aeronautical La Air Force Systems Command		13. NUMBER OF PAGES
Wright-Patterson AFB, Ohi	Lo 4 54 3 3	159
MONITORING AGENCY NAME	ADDRESS(If different from Controlling Offi	
		Unclassified
,		15 DECLASSIFICATION / DOWNGRADING SCHEDULE
DISTRIBUTION STATEMENT (release; distribution unl	.imited
Approved for public		
Approved for public Distribution statement (Supplementary notes	release; distribution unl	ni fræn Roport)

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

> / Technical Report: Final Report, Volume I, Project Summary;

🗇 Technical Report: Final Report, Volume II, Technology Handbook

 $\langle \mathbb{C}^{N}$ Technical Report: Final Report. Volume III, Parameter Survey γ

(11) Technical Report: Final Report, Volume IV, Analysis, Data, Bibliography,

TABLE OF CONTENTS

	Page
INTRODUCTION	1
PARAMETER DEFINITIONS AND GENERAL ASSUMPTIONS	5
General Requirements	5
Parameter Definitions	5
TECHNOLOGY DESCRIPTIONS	13
Diesels	13
Gas Turbines,	31
Stirlings	49
Organic Rankine Cycle	67
Fuel Cells	83
Photovoltaic Energy Conversion System	102
Wind Turbines	119
Batteries	133
Thermal Energy Storage System	141
CONCLUSIONS	159

والمراجع والمحيط

INTRODUCTION

A variety of energy systems undergoing research and development may provide the Air Force such benefits as reduced costs, greater reliability, and greater flexibility than conventional commercially available energy systems. This effort was funded to develop a data base of the key parameters of selected systems to serve as input to a multiple-criteria decision computer model that identifies the most appropriate energy technology for different Air Force needs. These data will also serve as an informational base for the Air Force's Civil Engineering and R&D communities.

The specific objective of this project was to describe a selected set of energy systems by a particular set of technical and economic parameters over the 1980-2000 time frame. To meet this objective, estimates of the performance parameters were developed for the years 1980, 1985, 1990, and 2000 at the following full-load power output ratings: 1.5, 5.0, 20.0, 30.0, 60.0, 100.0, 250.0, 500.0, 750.0, 1000, and 5000.0 kW.

This volume presents estimated parameter values for each of the technologies in the 1990 time frame to indicate the performance of each technology relative to other similar technologies. For each of the energy conversion technologies, the estimated parameter values are based on continuous duty (that is, operating 7884 hours per year) at design conditions with design performance for new equipment. Obviously, actual operating conditions will vary considerably depending on the application, the location, the age of the equipment, and other factors. The data developed in this study do not account for variances between actual operating conditions and design conditions.

Obviously, any broad data base has limitations, and this one is no exception. Primarily, the limitations result from the fact that the data represent a wide range of conditions and applications and as such could result in error if the data are taken at value for any unique, specific application. Recognizing this limitation, the expected errors of the predicted data were calculated and are included in Volume IV of this report. The expected errors represent the range of parameter values that can be expected at each output level, and to a great extent the ranges are the result of the need for a broad-based data base rather than a need for specific information for a single, unique application. Consequently, this data base should provide the

capability to screen technologies on a preliminary basis to identify the most appropriate technologies for selected applications relative to the other technologies.

The following energy conversion technologies are characterized in this data base:

- Gas turbines
 - Open cycle, nonrecuperative (nonregenerative)
 - Close cycle
 - Open cycle, recuperative (regenerative)
- Diesels
 - Turbocompounded
 - Turbocharged
 - Adiabatic
- Stirlings
 - Free piston
 - Kinematic
- Organic Rankine Cycles
- Fuel Cells
 - Phosphoric acid
 - Solid Polymer Electrolyte (SPE)
 - Molten carbonate
- Photovoltaics
 - Flat plate
 - Actively cooled
 - Photochemical
- Wind Turbines
 - Vertical axis
 - Horizontal axis.

The following energy storage technologies are characterized in this data base:

- Batteries
 - Zn/Cl₂
 - Zn/Br_2
 - Ni/Fe
 - Li-A1/FeS2
 - Na/S
 - Advanced sealed lead-acids
 - Redox Cr-Fe
- Thermal Energy Storage Devices
 - CaCl₂ 6H₂O, calcium chloride hexahydrate
 - Na_2SO_4 · 10 H₂0, sodium sulfate decahydrate (Glauber's salt)
 - $Na_2S_2O_3 \cdot SH_2O_1$, sodium thiosulfate pentahydrate
 - Olivine ceramic brick
 - Magnesite ceramic brick
 - Form-stable polyethylene

PARAMETER DEFINITIONS AND GENERAL ASSUMPTIONS

The data contained herein are to be used for a preliminary screening of technologies for certain applications. The user must recognize that the estimated parameter values were developed based on "average" or "generic" systems. For some technologies, such as wind turbine systems and photovoltaic systems, the site location will affect certain parameter values.

General Requirements

To minimize the ambiguity of estimated parameter values included in the data base, definitions and assumptions were adopted regarding the general requirements and/or applications of each energy technology.

For energy conversion technologies (that is, all of the technologies except batteries and thermal energy storage devices), each system is defined to include the technology and necessary balance-of-plant components (R.O.P.) to produce utility-quality power on a continous stand-alone basis (operating 90% of each year at the required power output level) from a designated primary energy source. Certain energy conversion technologies can use different primary energy forms. For example, Stirling systems can be fueled by diesel or residual oil.

For energy storage technologies, the following requirements are assumed:

- <u>Batteries.</u> Batteries will supply DC power as output. To develop the life-cycle cost and the annual cost of electricity required for charging, a complete charge/discharge cycle is assumed to occur twice per day with a total charge time of 8 hours and a total discharge time of 16 hours. The batteries will operate 365 days per year in a load-leveling mode.
- <u>Thermal Energy Storage</u>. The thermal energy storage devices are assumed to be used for space-heating applications with a continuous diurnal cycle (365 days per year of operation) with a discharge time of 10 hours.

Parameter Definitions

<u>Type.</u> This parameter value is either mobile, transportable, or fixed and refers to the complete energy system, not just the component technology. Mobile, transportable, and fixed are defined as follows:

• A system is mobile if 1) it is transportable by truck or aircraft and 2) can be assembled or dismantled within 8 hours with no prior site preparation. A system is transportable by truck if the system itself or the largest component of the system can be broken down and does not exceed the dimensions of 10 feet wide by 13 feet high by 60 feet long. For air

PREVIOUS PAGE

IS BLANK

 \mathbf{O}

transportability, the system or largest component of the system cannot exceed 16 feet wide by 9 feet high by 100 feet long, nor can it exceed a weight limit of 350 pounds per square foot floor loading.

- A system is <u>transportable</u> if 1) it is transportable by aircraft subject to the same limitations as mobile and 2) can be set up or removed within 1 week with only minor site preparation.
- A system that is neither mobile nor transportable is fixed.

<u>Fuel Capability.</u> Fuel capability indicates the fuels that can provide the primary energy source for each system. Primary fuels for the purpose of this study include —

- JP-4
- Diesel (DF-1 or DF-2)
- Electricity
- Natural gas
- Solar
- Wind
- Thermal (heat).

Systems that have multifuel capabilities are denoted "multi."

<u>System Acquisition Cost.</u> This is the estimated total installed cost of the energy system excluding land procurement (in 1980 dollars).

<u>Annual Operating and Maintenance Cost.</u> This is the estimated annual cost of operating the energy system (in 1980 dollars). It includes all operating and maintenance expenses except for fuel costs.

System Efficiency:

 Gas Turbines, Diesels, Stirlings, Organic Rankine Cycles, Fuel Cells. The system efficiency is —

power output + primary fuel energy input rate

It represents full-load efficiency of new equipment based on higher heating value of the designated fuel, but does not include the energy content of by-product energy recovery unless specifically noted. Efficiency is measured in percent.

<u>Photovoltaics</u>. System .iciency equals —

(Daily energy productivity) * Daily insolation X Collector area in plane of per kW collector

where -

- Daily energy productivity is 24 kWhr per continuous kW installed capacity. (A one kW system is sized to produce 24 kWhr per day.)
- Daily insolation in the plane of the photovoltaic collector is 1204 Btu/ft² day for flat-plate systems, and 1109 Btu/ft² day for actively cooled systems.
- Collector area per kW is 783.5 ft^2 for flat-plate systems and 1078 ft^2 for actively cooled photovoltaic systems.
- Wind Turbines. System efficiency equals —

[System output (kW) at a mean wind speed of 8.1 mph] ‡ [Power in wind at 8.1 mph average wind speed]

Batteries. System efficiency equals —

[System energy output] + [System energy input]

Input and output energy is DC power. The AC-to-DC charger efficiency of 90% is reflected in the amount of electricity required to charge the battery system.

Thermal Energy Storage. System efficiency equals —

[System thermal energy output] + [Energy required for charging]

Fuel Consumption:

- <u>Gas Turbines, Diesels, Stirlings, Organic Rankine Cycles, Fuel Cells.</u> For energy conversion technologies, fuel consumption is the calculated rate of fuel consumption of the designated fuel divided by the system at its designated output during continuous operation. Fuel consumption is measured in gallons per hour, except for systems fueled by natural gas, which is measured in Btu per hour.
- <u>Photovoltaics and Wind Turbines.</u> These systems have zero fuel consumption.
- Electricity Required for Charging (Batteries). Electricity required for charging is the calculated energy requirement of electricity to obtain l kWhr of energy output. Direct current electricity required for charging is measured as kWhrin (into the battery) per kWhrout (delivered to load). The AC-to-DC charger efficiency of 90% is reflected in the amount of electricity required to charge the battery system.
- <u>Annual Energy Required for Charging (Thermal Energy Storage)</u>. This is the annual consumption of the designated fuel over its duty cycle of one charging and one discharging period per day (measured in Btu).

<u>Designated Fuel.</u> The fuel on which fuel consumption, annual fuel costs, and life-cycle costs are based.

Annual Fuel Cost:

- Gas Turbines, Diesels, Stirlings, Organic Rankine Cycles, Fuel Cells, Batteries. This is the calculated annual cost of designated fuel: the product of the designated fuel price times the annual fuel consumption of the energy system. Fuels, prices, and energy content are in Table 1. The prices are defined as the worldwide, standard price of fuel from the DFSC stock fund. The prices quoted are based on the average contract prices of fuels in stock plus the average transportation costs to users. Electricity is not included in the DFSC stock fund as a fuel. Electricity costs are subject to regional variations in cost. The cost of electricity in Table 1 is consistent with the U.S. Industrial Price Average for February 1980. Note that the prices in Table 1 are expressed in 1980 dollars with no escalation.
- <u>Photovoltaics, Wind Turbines.</u> The costs of "fuel" for solar and wind powered systems are maintained at zero.
- Thermal Energy Storage: CaCl₂ 6H₂O, Na₂SO₄ 10 H₂O, Na₂S₂O₂ 5H₂O, Form-Stable Polyethylene. For those thermal energy storage devices where heat is the primary energy, the cost of that heat is assumed to be zero as the cost is implicitly included in the cost of energy from the energy conversion system.

Table 1. FUEL PRICE AND ENERGY CONTENT

	1980	Fuel P Dollars/		Btu	Fnergy Content,
Fuel	1980	1985	1990	2000	Btu/U.S. Gallon
JP-4	8.55	8.82	8.82	8.82	127,500 to 135,714
Diesel	8.40	8.62	8.62	8.62	138,095 to 145,238
Electricity*	1.58	2.79	2.79	2.79	Not Applicable
Natural Gas	2.39	2.47	2.47	2.47	911 to 1012 Btu/SCF

Note: These prices are the cost of fuel into an energy system, not the cost of energy delivered from the system.

* Fuel price in cents per kWhr.

Life-Cycle Cost. The life-cycle cost is the calculated cost of acquiring, operating (including fuel use), and maintaining the energy system at continuous operation at its output level for 20 years. The life-cycle cost is the present value (as of the first year of system operation) of the sum of all system-resultant costs incurred over a 20-year evaluation period. A 20-year. common evaluation period is required to facilitate a direct and valid comparison of the large number of energy conversion systems being considered in this study given their varying service lives, maintenance intervals, and other factors which will affect the amount and timing of system costs. The term "present value" refers to a cash flow that has been adjusted to reflect the interest that could be earned, or must be paid between the time the flow actually occurs and a specified "present" time. A 10% discount rate was used for calculations that reflect the opportunity cost of diverting financial resources from the private to the public sector. This rate is the standard discount rate to be used in evaluating time-distributed costs and benefits for Federal investments, as established in the Office of Management and Budget (OMB) Circular No. A-94. Taxes and depreciation (a noncash expense for offsetting taxes) are, of course, not applicable to Department of Defense cost analyses. Life-cycle-costs are in 1980 dollars per unit of energy output with no real excalation for fuel costs.

The life-cycle cost (LCC) of each system was calculated using the following equation:

LCC = PV (TIC) + PV (AOC) + PV (EMC) + PV (AFC) + PV (FRC)

where 🗕

- PV = The present value operator (equals 1.0 for TIC, 8.513 for AOC, and 20 for the AFC; dependent on energy conversion technology for EMC and FRC).
- TIC = The total installed cost of the energy conversion system including the acquisition cost, the cost of balance of system components, and installation, excluding the cost of land
- AOC = The annual operating and maintenance costs, exclusive of fuel, over the 20-year evaluation period
- AFC = The annual fuel costs over the 20-year evaluation period (in 1980 dollars with no real escalation)
- EMC = any extraordinary (above the normal AOC) maintenance cost which may occur over the 20-year evaluation period (e.g., major overhauls of the

*

system to extend expected system life to 20 years; or battery replacements)

FRC = the future replacement cost of any components of the energy conversion system, if required during the 20-year evaluation period

<u>Start-up Time (Gas Turbines, Diesels, Organic Rankine Cycles, Fuel Cells,</u> <u>Photovoltaics, Wind Turbines).</u> The start-up time is the elapsed time, in minutes, for the system to achieve full output from a "ready to start" or "cold start" condition.

<u>Shutdown Time (Gas Turbines, Diesels, Organic Rankine Cycles, Fuel Cells,</u> <u>Photovoltaics, Wind Turbines).</u> The shutdown time is the elapsed time, in minutes to bring a system from a full output condition to an off or standby mode.

<u>Charge Time (Batteries, Thermal Energy Storage)</u>. The charge time is the nominal elapsed time in minutes for the energy storage system to be fully charged. Faster and slower discharge times are possible.

<u>Discharge Time (Batteries, Thermal Energy Storage)</u>. The discharge time is the nominal elapsed time in minutes for the energy storage system to be fully discharged. Faster and slower discharger times are possible.

<u>Volume</u>. This is the volume of the envelope of the installed energy system measured in cubic feet.

Area. This is the land or surface area required for the installed energy system measured in square feet.

<u>Weight.</u> This is the total weight of the complete energy system measured in pounds.

Oualitative Parameters

The qualitative parameters of reliability, environmental constraints, locational constraints, and operational constraints were evaluated in terms of factors that impact the parameters.

<u>Reliability.</u> This is a qualitative parameter that indicates the potential for unanticipated outages of the energy system. Reliability is evaluated in terms of the following factors: moving parts, operating temperature, modularity (redundancy), stress levels, corrosion, and others. Reliability is measured on an ordinal scale:

- 1. High potential unreliability
- 2. Moderate potential unreliability
- 3. Average
- 4. Moderate reliability
- 5. High reliability.

<u>Environmental Constraints.</u> This is a qualitative parameter that indicates the potential for environmental insult resulting from implementation of the energy system. This parameter is evaluated in terms of the following factors: thermal discharge, air pollution including CO, NO_x , SO_x , HC, particulates, and others; noise; odor; solid waste; and chemical waste. Environmental constraints are measured on an ordinal scale:

1. Extreme potential environmental constraint

- 2. High potential environmental constraint
- 3. Average potential environmental constraint
- 4. Moderate potential environmental constraint
- 5. Minimum potential environmental constraint

Locational Constraints. This is a qualitative parameter that indicates the potential for locational constraints that could limit the applicability of the energy systems. This parameter is evaluated in terms of the following factors: water requirements, manning requirements, fuel availability, fuel storage, and others (such as solar or wind). Locational constraints are measured on an ordinal scale:

- 1. Extreme potential locational constraints
- 2. High potential locational constraints
- 3. Average locational constraints
- 4. Moderate locational constraints
- 5. Minimum locational constraints

<u>Operational Constraints.</u> This is a qualitative parameter that indicates the turn-down and load-following capabilities of the system relative to operating efficiency. This parameter is evaluated in terms of part-load

capability, overload capability, and load-following capability. Operational constraints are measured on an ordinal scale as follows:

- 1. No turn-down capability
- 2. Turn-down capability with high efficiency penalty
- 3. Average turn-down capability
- 4. Moderate turn-down capability; moderate efficiency penalty
- 5. Excellent turn-down capability; minor efficiency penalty.

Some of the above parameters were graphed to show trends versus size. So that future technologies could be compared, 1990 values were used in all of these figures. The abbreviation NCA in the tables means Not Commercially Available in that time frame.

TECHNOLOGY DESCRIPTIONS

Diesels

There are three diesel systems of interest in this study: turbocharged, turbocompounded, and adiabatic (Figure 1). Diesels produce shaft power, which is then converted to AC power by an AC generator. Turbocompounded diesels should be more efficient than turbocharged diesels because of the additional shaft power derived from the exhaust-gas driven turbine. Adiabatic diesels operate at higher pressures and temperatures than the turbocompounded and turbocharged systems. (The adiabatic is not cooled.) Because of the higher pressure and temperature operation, overall system efficiency is expected to be greater for the adiabatic diesel than for the turbocompounded. The system may also be lighter and more reliable by the elimination of the cooling system.

Diesel generators are typically used as back-up systems for utilitysupplied power or in remote locations without a utility power grid. They operate in continuous or intermittent service. As previously mentioned, the data presented here are for continuous operation (365 days per year at 24 hours per day less 10% of that time for scheduled maintenance) producing utility-quality power.

<u>Technology Status</u>. Turbocompounded diesels will be commercially available in capacities greater or equal to 100.0 kW starting in 1985. Turbocharged diesels are current technology and are currently commercially available in capacities greater or equal to 5.0 kW. Adiabatic diesels will be commercially available in capacities greater or equal to 125.0 kW starting in 1990. The major constraint of the adiabatic diesel is the need to develop composite ceramic/metal structures consistent with the 1800°F operating temperature.

.

.

A82010161

Figure 1. DIESEL SYSTEMS

<u>Type</u>. Most diesels are mobile up to the megawatt sizes, which are transportable (Table 2).

 Table 2.
 DIESEL TYPE (Mobile or Transportable)

POWER OUTPUT Level, KW	YEAR	TURBO- COMPOUNDED	TURBO- CHARGED	ADIABATIC
1.5	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA NCA	NCA	NCA
5.0	1980	NCA	M	NCA
	1985	NCA	M	NCA NCA
	1990	NCA	M	
20.0	2000 1980	NCA	M	NCA NCA
20.0	1980	NCA	M	NCA
1	1985	NCA	M	NCA
	2000	NCA	M	NCA
30.0	1980	NCA	M	NCA
30.0	1985	NCA	M	NCA
	1990	NCA	M	NCA
	2000	NCA	M	NCA
60.0	1980	NCA	M	NCA
	1985	NCA	M	NCA
	1990	NCA	M	NCA
	2000	NCA	M	NCA
100.0	1980	NCA	M	NCA
	1985	м	M	NCA
	1990	M	м	NCA
	2000	M	M	NCA
230.0	1980	NCA	M	NCA
	1985	M	M	NCA
Ĩ	1990	M	M	M
1	2000	м	M	M
500.0	1980	NCA	M	NCA
	1985	м	M	NCA
	1990	M	м	M
	2000	M	м	M
750.0	1980	NCA	M	NCA
	1985	м	M	NCA
	1990	M	M	М
J	2000	M	м	м
1000.0	1980	NCA	Т	NCA
	1985	Т	Т	NCA
	1990	Т	Т	Т
	2000	T	T	T
5000.0	1980	NCA	T	NCA
	1985	Т	T	NCA
	1990	T	T	т
	2000	T	T	Т

System Acquisition Cost. Diesel "System Acquisition Cost" parameter values are presented in Table 3 and in Figure 2 in 1980 dollars as a function of size.

Table 3. DIESEL SYSTEM ACQUISITION COST (1980 DOLLARS)

POWER OUTPUT Level, KH	YEAR	TURBO- COMPOUNDED	TURBO- CHARGED	ADIAB ATIC
1.5	1980	NCA	NCA	NCA
5.0	1985 1990 2000 1980 1985 1990	NCA NCA NCA NCA NCA NCA	NCA NCA NCA 4.82E03 4.82E03 5.30E03	NCA NCA NCA NCA NCA NCA
20.0	2000 1980 1985	NCA NCA NCA	5.30E03 2.32E04 2.32E04	NCA NCA NCA NCA
30.0	1990 2000 1980 1985 1985	NCA NCA NCA NCA NCA	2.55E04 2.55E04 3.88E04 3.88E04 4.27E04	NCA NCA NCA NCA
60.0	2000 1980 1985 1990	NCA NCA NCA NCA	4.27E04 1.01E05 1.01E05 1.11E05	NCA NCA NCA NCA
100.0	2000 1980 1985 1990	NCA NCA 3.55E05 3.91E05	1.11E05 2.22E05 2.22E05 2.44E05	NCA NCA NCA NCA
230.0	2000 1980 1985 1990	3.91E05 NCA 7.68E05 8.45E05	2.44E05 4.80E05 4.80E05 5.28E05	NCA NCA NCA 7.61EU5
500.0	2000 1980 1985 1990	8.45E05 NCA 1.35E06 1.49E06	5.28EU5 8.46E05 8.46E05 9.31E05	7.61E05 NCA NCA 1.34E06
750.0	2000 1980 1985 1990	1.49E06 NCA 1.87E06 2.06E06	9.31E05 1.17E06 1.17E06 1.29E06	1.34E06 NCA NCA 1.83E06
1000.0	2000 1980 1985 1990	2.06E06 NCA 2.35E06 2.59E06	1.29E06 1.47E06 1.47E06 1.62E06	1.83E06 NCA NCA 2.33E06
5000 .0	2000 1980 1985 1990	2.59E06 NCA 7.52E06 8.27E06	1.62E06 4.70E06 4.70E06 5.17E06	2.33E06 NCA NCA 7.45E06
	2000	8.27E06	5. LZE06	7.45E06

Figure 2. DIESEL SYSTEM ACQUISITION COST

<u>Annual Operations and Maintenance Costs</u>. Diesel "Annual Operations and Maintenance Costs" parameter values are presented in Table 4 and in Figure 3.

	POWER OUTPUT LEVEL, KW	YEAR	TURBO- COMPOUNDED	TURBO- CHARGED	ADIABATIC
I	1.5	1980	NCA	NCA	NCA
	5.0	1985 1990 2000 1980 1985 1990	NCA NCA NCA NCA NCA NCA	NCA NCA NCA 1.21E02 1.21E02 1.33E02	NCA NCA NCA NCA NCA NCA
ļ	20.0	2000 1980 1985	NCA NCA NCA NCA	1.33E02 3.78E02 3.78E02 4.16E02	NCA NCA NCA
	30.0	1990 2000 1980 1985 1985	NCA NCA NCA NCA	4.16E02 5.47E02 5.47E02 6.02E02	NCA NCA NCA NCA NCA
	60.0	2000 1980 1985 1990	NCA NCA NCA NCA	6.02E02 1.10E03 1.10E03 1.21E03	NCA NCA NCA NCA
	100.0	2000 1980 1985 1990	NCA NCA 3.25E03 3.58E03	1.21E03 2.03E03 2.03E03 2.23E03	NCA NCA NCA NCA
	250.0	2000 1980 1985 1990	3.58E03 NCA 5.84E03 6.42E03	2.23E03 3.65E03 3.65E03 4.01E03	NCA NCA NCA 5,78E03
	500.0	2000 1980 1985 1990	6.41E03 NCA 1.13E04 1.24E04	4.01E03 7.08E03 7.08E03 7.79E03	5.78E03 NCA NCA 1.12E04
	750.0	2000 1980 1985 1990	1.24E04 NCA 1.85E04 2.03E04	7.79E03 1.16E04 1.16E04 1.27E04	1.12E04 NCA NCA 1.80E04
	1000.0	2000 1980 1985	2.03E04 NCA 2.74E04	1.27E04 1.27E04 1.71E04 1.71E04 1.88E04	1.80E04 NCA NCA
	5000.0	1990 2000 1980 1985	3.01E04 3.01E04 NCA 2.95E05	1.88E04 1.84E05 1.84E05	2.71E04 2.71E04 NCA NCA 2.92E05
l		1990 2000	3.24E05 3.24E05	2.03E05 2.03E05	2.92E05

Table 4. DIESEL ANNUAL OPERATIONS AND
MAINTENANCE COST (1980 DOLLARS)

System Efficiency. Diesel system efficiency tends to increase as the system power level (size) increases (Table 5 and Figure 4).

· · · · ·

11

Table 5. DIESEL SYSTEM EFFICIENCY (%)

POWER OUTPUT Level, KW	YEAR	TURBO- COMPOUNDED	TURBO- CHARGED	ADIABATIC
1.5	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
5.0	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
	1980	NCA	26.9	NCA
	1985	NCA	29.6	NCA
20.0	1990 2000 1980 1985 1990	NCA NCA NCA NCA	31.1 31.1 29.0 32.0 33.6	NCA NCA NCA NCA NCA
30.0	2000 1980 1985 1990	NCA NCA NCA NCA	33.6 29.5 32.5 34.1	NCA NCA NCA NCA NCA
60.0	2000	NCA	34.1	NCA
	1980	NCA	30.6	NCA
	1985	NCA	33.7	NCA
	1990	NCA	35.4	NCA
100.0	2000	NCA	35.4	NCA
	1980	NCA	31.3	NCA
	1985	40.7	34.5	NCA
	1990	42.7	36.2	46.2
250.0	2000	42.7	36.2	46.2
	1980	NCA	32.7	NCA
	1985	42.5	36.0	NCA
	1990	44.6	37.8	47.8
500.J	2000	44.6	37.8	47.8
	1980	NCA	33.7	NCA
	1985	43.8	37.1	NCA
	1990	46.0	39.0	48.0
750.0	2000 1980 1985 1990	46.0 NCA 44.6	39.0 34.3 37.8	48.0 NCA NCA
1000.0	2000 1980 1985	46.8 46.8 NCA 45.1	39.7 39.7 34.7 38.2	48.7 48.7 NCA NCA
5000.0	1990	47.3	40.1	49.1
	2000	47.3	40.1	49.1
	1980	NCA	37.0	NCA
	1985	48.1	40.8	NCA
	1990	50.5	42.8	51.8
	2000	50.5	42.8	51.8

<u>Fuel Consumption</u>. Diesel "Fuel Consumption" parameters values are presented in Table 6 and Figure 5. Typically, diesels are fueled with DF-1 or DF-2, but some manufacturers in Europe (for example, Stal Laval) are developing diesels for residual fuel. Because of the price differential this would tend to decrease the life-cycle cost of diesel systems. (Residual is about \$5.85/million Btu; DF-1 and DF-2 are about \$8.62/million Btu.)

IADIE O. DIESEL FUEL CONSUMPTION	Table	6.	DIESEL	FUEL	CONSUMPTION
----------------------------------	-------	----	--------	------	-------------

30.0 1980 NCA 2.45 NCA 1985 NCA 2.24 NCA 1990 NCA 2.12 NCA 2000 NCA 2.12 NCA 2000 NCA 2.12 NCA 60.0 1980 NCA 4.74 NCA 1985 NCA 4.29 NCA 1990 NCA 4.09 NCA 1990 NCA 4.09 NCA 2000 NCA 4.09 NCA 2000 NCA 4.09 NCA 1990 S.65 6.66 NCA 1990 S.65 6.66 NCA 2000 S.65 6.66 NCA 1990 14.1 15.9 12. 2000 14.1 15.9 12. 2000 14.1 15.9 12. 2000 14.1 15.9 12. 2000 1980 NCA 35.7 <th></th> <th></th> <th>- gal/hr</th> <th>1</th> <th>1</th>			- gal/hr	1	1	
1.5 1980 1985 NCA NCA NCA NCA NCA NCA NCA NCA NCA NCA NCA NCA NCA 1990 NCA 1985 NCA 0.41 NCA NCA NCA NCA NCA NCA 5.0 1980 NCA 1985 NCA 0.39 NCA NCA NCA NCA NCA NCA 2000 NCA 0.00 NCA 0.39 NCA NCA NCA NCA NCA NCA 20.0 1980 NCA 1985 NCA 1.43 NCA NCA NCA NCA 20.0 1980 NCA 1.43 NCA NCA NCA NCA NCA NCA 30.0 1980 NCA 1985 NCA 2.12 NCA NCA NCA 2.45 30.0 1980 NCA 2.12 NCA NCA NCA 2.12 NCA NCA 1990 NCA 2.12 NCA 2.12 NCA 2.12 NCA 1.985 100.0 1980 NCA 4.09 NCA 4.09 NCA 1.985 100.0 1980 NCA 1.43 NCA 4.09 NCA 1.985 100.0 1980 NCA 1.43 NCA 1.43 NCA 1.985 100.0 1980 NCA 1.43 1.4.		ADIABATIC	TURBO- CHARGED	TURBO- COMPOUNDED	YEAR	POWER OUTPUT Level, kw
1990 NCA NCA NCA NCA 2000 NCA NCA NCA NCA 5.0 1980 NCA 0.45 NCA 1985 NCA 0.41 NCA 1990 NCA 0.39 NCA 1990 NCA 0.39 NCA 20.0 1980 NCA 1.66 1985 NCA 1.51 NCA 1990 NCA 1.43 NCA 1990 NCA 1.43 NCA 1990 NCA 1.43 NCA 1990 NCA 1.43 NCA 1990 NCA 2.45 NCA 1990 NCA 2.12 NCA 1990 NCA 2.12 NCA 1990 NCA 4.74 NCA 1990 NCA 4.09 NCA 1990 NCA 4.09 NCA 100.0 1980 NCA 1.09<				NCA		1.5
2000 NCA 0.39 NCA 20.0 1980 NCA 1.66 NCA 1985 NCA 1.51 NCA 1990 NCA 1.43 NCA 1990 NCA 1.43 NCA 2000 NCA 1.43 NCA 30.0 1980 NCA 2.45 NCA 1990 NCA 2.12 NCA 1.43 1990 NCA 2.12 NCA 1.985 1990 NCA 2.12 NCA 1.990 1990 NCA 2.12 NCA 1.990 1990 NCA 4.74 NCA 1.990 100.0 1980 NCA 4.09 NCA 1990 NCA 4.09 NCA 1.99 100.0 1980 NCA 1.99 NCA 1990 5.65 6.66 NCA 1990 14.1 15.9 12. 2000	A A A	NCA NCA NCA	NCA NCA 0.45 0.41	NCA NCA NCA NCA	1990 2000 1980 1985	5.0
2000 NCA 1.43 NCA 30.0 1980 NCA 2.45 NCA 1985 NCA 2.45 NCA 1985 NCA 2.24 NCA 1990 NCA 2.12 NCA 2000 NCA 2.12 NCA 2000 NCA 2.12 NCA 60.0 1980 NCA 4.74 NCA 1990 NCA 4.29 NCA 1990 NCA 4.09 NCA 100.0 1980 NCA 7.71 NCA 100.0 1980 NCA 7.71 NCA 100.0 1980 NCA 18.5 NCA 1990 5.65 6.66 NCA 1985 14.8 16.7 NCA 1985 14.8 16.7 NCA 1980 NCA 35.7 NCA 1980 NCA 35.7 NCA 1980	A A A	NCA NCA NCA	0.39 1.66 1.51	NCA NCA NCA	2000 1980 1985	20.0
2000 NCA 2.12 NCA 60.0 1980 NCA 4.74 NCA 1985 NCA 4.29 NCA 1990 NCA 4.09 NCA 2000 NCA 4.09 NCA 1990 NCA 4.09 NCA 100.0 1980 NCA 7.71 NCA 1995 5.93 6.99 NCA 1990 5.65 6.66 NCA 2000 5.65 6.66 NCA 2000 5.65 6.66 NCA 1990 14.1 15.9 12. 2000 14.1 15.9 12. 2000 14.1 15.9 12. 500.0 1980 NCA 35.7 1990 26.3 30.9 25. 2000 26.3 30.9 25. 750.0 1980 NCA 52.8 NCA 1985 40.5 47.8	A A A	NCA NCA NCA	1.43 2.45 2.24	NCA NCA NCA	2000 1980 1985	30.0
2000 NCA 4.09 NCA 100.0 1980 NCA 7.71 NCA 1985 5.93 6.99 NCA 1990 5.65 6.66 NCA 2000 5.65 6.66 NCA 2000 5.65 6.66 NCA 1980 NCA 18.5 NCA 1980 NCA 18.5 NCA 1990 14.1 15.9 12. 2000 14.1 15.9 12. 2000 14.1 15.9 12. 500.0 1980 NCA 35.7 NCA 1995 28.4 32.5 NCA 1990 25. 2000 26.3 30.9 25. 2000 26.3 30.9 25. 750.0 1980 NCA 52.8 NCA 1985 40.5 47.8 NCA	A A A	NCA NCA NCA	2.12 4.74 4.29	NCA NCA NCA	2000 1980 1985	60.0
2000 5.65 6.66 NCA 230.0 1980 NCA 18.5 NCA 1985 14.8 16.7 NCA 1985 14.8 16.7 NCA 1990 14.1 15.9 12. 2000 14.1 15.9 12. 500.0 1980 NCA 35.7 NCA 1985 28.4 32.5 NCA 1990 25. 750.0 1980 NCA 52.8 NCA 19.2 750.0 1980 NCA 52.8 NCA 19.2 750.0 1980 NCA 52.8 NCA 19.5 10.9	A A A	NCA NCA NCA	4.09 7.71 6.99	NCA 5.93	2000 1980 1985	100.0
2000 14.1 15.9 12. 500.0 1980 NCA 35.7 NCA 1985 28.4 32.5 NCA 1990 26.3 30.9 25. 2000 26.3 30.9 25. 750.0 1980 NCA 52.8 NCA 1985 40.5 47.8 NCA	A A A	NCA NCA	18.5 16.7	5.65 NCA 14.8	2000 1980 1985	250.0
750.0 2000 26,3 30.9 25. 750.0 1980 NCA 52.8 NCA 1985 40.5 47.8 NCA	.7 A A	12.7 NCA	15.9 35.7 32.5 30.9	14.1 NCA 28.4	2000 1980 1985	500.0
	.1 A A	25.1 NCA	52.8 47.8 45.6	26.3 NCA	2000 1980	750.0
2000 38.7 45.6 37. 1000.0 1980 NCA 69.6 NCA 1985 53.5 63.2 NCA 1990 50.9 60.1 49.	A A .l	NCA 49.1	69.6 63.2 60.1	38.7 NCA 53.5	2000 1980 1985	1000.0
5000.0 1980 NCA 326 NCA 1985 251 295 NCA 1990 239 283 233	A A 3		326 295 283	NCA 251 239	1980 1985 1990	5000.0

Figure 5. DIESEL FUEL CONSUMPTION

<u>Annual Fuel Cost</u>. Diesel "Annual Fuel Cost" parameter values, based on 1980 dollars and no real escalation, are presented in Table 7 and in Figure 6.

Table 7. DIESEL ANNUAL FUEL COST (1980 DOLLARS)

POWER OUTPUT Level, Kw	YEAR	TURBO- COMPOUNDED	TURBO- CHARGED	ADİABATIC
1.5	1980	NCA	NCA	NCA
5.0	1985 1990 2000 1980 1985 1990	NCA NCA NCA NCA NCA NCA	NCA NCA 4.20E03 3.92E03 3.73E03	NCA NCA NCA NCA NCA NCA
20.0	2000 1980 1985	NCA NCA NCA NCA	3.73E03 1.56E04 1.45E04 1.38E04	NCA NCA NCA
30.0	1990 2000 1980 1985 1990	NCA NCA NCA NCA	1. 38E04 2. 30E04 2. 15E04 2. 04E04	NCA NCA NCA NCA NCA
60.0	2000	NCA	2.04E04	NCA
	1980	NCA	4.44E04	NCA
	1985	NCA	4.13E04	NCA
	1990	NCA	3.93E04	NCA
100.0	2000	NCA	3.93E04	NCA
	1980	NCA	7.22E04	NCA
	1985	5.70E04	6.72E04	NCA
	1990	5.43E04	6.41E04	NCA
250.0	2000	5.43E04	6.41E04	NCA
	1980	NCA	1.73E05	NCA
	1985	1.42E05	1.61E05	NCA
	1990	1.36E05	1.53E05	1.22E05
500.J	2000	1.36E05	1.53E05	1.22E05
	1980	NCA	3.35E05	NCA
	1985	2.73E05	3.13E05	NCA
	1990	2.53E05	2.97E05	2.41E05
750.0	2000	2.53E05	2.97E05	2.41E05
	1980	NCA	4.95E05	NCA
	1985	3.90E05	4.60E05	NCA
	1990	3.72E05	4.39E05	5.58E05
1000.0	2000	3.72E05	4.39E05	3.58E05
	1980	NCA	6.52E05	NCA
	1985	5.15E05	6.08E05	NCA
	1990	4.90E05	5.78E05	4.72E05
5000.0	2000	4.90E05	5.78E05	4.72E05
	1980	NCA	3.06E06	NCA
	1985	2.41E06	2.84E06	NCA
	1990	2.30E06	2.72E06	2.24E06
	2000	2.30E06	2.72E06	2.24E06

Figure 6. DIESEL ANNUAL FUEL COST

Life-Cycle Cost. Diesel "Life-Cycle Cost" parameter values are presented in Table 8 and Figure 7.

.

Table 8. DIESEL LIFE-CYCLE COSTS (1980 cents/kW)

POWER OUTPUT Level, KW	YEAR	TURBO- Compounded	TURBO- CHARGEI)	ADIABATIC
1.5	1980	NCA	NCA NCA	NCA
5.0	1985 1990 2000 1980 1985 1990	NCA NCA NCA NCA NCA NCA	NCA NCA 5.28 4.97 4.84	NCA NCA NCA NCA NCA NCA
20.0	2000	NCA	4.84	NCA
	1980	NCA	5.05	NCA
	1985	NCA	4.75	NCA
	1990	NCA	4.65	NCA
30.0	2000	NCA	4.65	NCA
	1980	NCA	5.06	NCA
	1985	NCA	4.79	NCA
	1990	NCA	4.68	NCA
60.0	2000 1980 1985 1990	NCA NCA NCA NCA	4.68 5.16 4.88 4.82 4.82	NCA NCA NCA NCA
100.0	2000 1980 1985 1990 2000	NCA NCA 5.50 5.60 5.60	5.42 5.15 5.13 5.13	NCA NCA NCA NCA NCA
250.0	1980	NCA	5-03	NCA
	1985	5.14	4-77	NCA
	1990	5.22	4-73	4,69
	2000	5.22	4-73	4,69
500.0	1980	NCA	4.77	NCA
	1985	4.78	4.53	NCA
	1990	4.76	4.47	4.42
	2000	4.76	4.47	4.42
750.0	1980	NCA	4.64	NCA
	1985	4.52	4.38	NCA
	1990	4.57	4.34	4.25
	2000	4.57	4.34	4.25
1000.0	1980 1985 1990 2000	NCA 4.42 4.45 4.45	4.54 4.31 4.25 4.25 4.10	NCA NCA 4.17 4.17
5000.0	1980	NCA	4.10	NCA
	1985	3.87	3.86	NCA
	1990	3.88	3.81	3.68
	2000	3.88	3.81	3.68

-

Figure 7. DIESEL LIFE-CYCLE COST

System Volume. Diesel "System Volume" parameter values are presented in Table 9 below.

.

Table 9. DIESEL SYSTEM VOLUME (CUBIC FEET)

POWER OUTPUT Level, KM	YEAR	TURBO- COMPOUNDED	TURBO- CHARGED	ADIABATIC
1.5	1980	NCA	NCA	NCA
5.0	1985 1990 2000 1980 1985 1990	NCA NCA NCA NCA NCA	NCA NCA 1.55E01 1.55E01 1.55E01	NCA NCA NCA NCA NCA NCA
20.0	2000 1980 1985 1990	NCA NCA NCA NCA	1.55E01 4.02E01 4.02E01 4.02E01	NCA NCA NCA
30.0	2000 1980 1985 1990	NCA NCA NCA NCA	4.02E01 5.24E01 5.24E01 5.24E01 5.24E01	NCA NCA NCA NCA
60.0	2000 1980 1985 1990	NCA NCA NCA NCA	5.24E01 8.11E01 8.11E01 8.11E01 8.11E01	NCA NCA NCA NCA
100.0	2000 1980 1985	NCA NCA 1.11E02 1.11E02	8.11E01 1.11E02 1.11E02 1.11E02	NCA NCA NCA NCA
250.0	1990 2000 1980 1985	1.11E02 NCA 1.91E02 1.91E02	1.11E02 1.91E02 1.91E02 1.91E02 1.91E02	NCA NCA NCA NCA
500.0	1990 2000 1980 1985	1.91E02 1.91E02 NCA 2.93E02 2.93E02	1.91E02 1.91E02 2.93E02 2.93E02 2.93E02	1.72E02 1.72E02 NCA NCA 2.63E02
750.0	1990 2000 1980 1985 1990	2.93E02 NCA 3.87E02 3.87E02	2.93E02 3.87E02 3.87E02 3.87E02 3.87E02	2.63E02 NCA NCA 3.48E02
1000.0	2000 1980 1985 1990	3.87E02 NCA 4.81E02 4.81E02	3.87E02 4.81E02 4.81E01 4.81E02	3.48E02 NCA NCA 4.33E02
5000.0	2000 1980 1985	4.81E02 NCA 2.57E03 2.57E03	4.81E02 2.57E03 2.57E03	4.33E02 NCA NCA
	1990 2000	2.57E03 2.57E03	2.57E03 2.57E03	2.31E03 2.31E03

System Weight. Diesel "System Weight" parameter values are presented in Table 10.

.

•

POWER OUTPUT Level, KM	YEAR	TURBO- COMPOUNDED	TURBO- CHARGED	ADIABATIC	
1.5	1980	NCA	NCA	NCA	4
	1985	NCA	NCA	NCA	
	1990	NCA	NCA	NCA	ĺ
	2000	NCA	NCA	NCA	1
5.0	1980	NCA	9.84E02	NCA	1
	1985	NCA	9.84E02	NCA	I
	1990	NCA	9.84E02	NCA	ļ
20.0	2000	NCA NCA	9.84E02	NCA	ł
20.0	1980	NCA	2.03E03 2.03E03	NCA	1
	1985	NCA	2.03E03	NCA	
1	2000	NCA	2.03E03	NCA	ł
30.0	1980	NCA	2.65E03	NCA NCA	I
	1985	NCA	2.65E03	NCA	L
	1990	NCA	2.65E03	NCA	ſ
	2000	NCA	2.65E03	NCA	Ĺ
60.0	1980	NCA	4.10E03	NCA	l
£	1985	NCA	4.10E03	NCA	ſ
I	1990	NCA	4.10E03	NCA	
	2000	NCA	4.10E03	NCA	ſ
100.0	1980	NCA	5.61E03	NCA	l
1	1985	5.61E03	5.61E03	NCA	Ļ
l I	1990	5.61E03	5.61E03	NCA	
	2000	5.61E03	5.61E03	NCA	ļ
250.0	1980	NCA	9.74E03	NCA	
	1985	9.74E03 9.74E03	9.74E03 9.74E03	NCA	ł
	1990 2000	9.74E03	9.74E03	8.78E03	l
500.0	1980	NCA	1.51E04	8.78E03	
200.0	1985	1.51E04	1.51E04	NCA NCA	
	1990	1.5LEO4	1.51E04	1.36E04	
	2000	1.51EO4	1.51E04	1.36E04	
750.0	1980	NCA	2.01E04	NCA	
6 1	1985	2.01E04	2.01E04	NCA	
	1990	2.01EO4	2.01E04	1.81E04	
	2000	2.01E04	2.01EO4	1.81E04	
1000.0	1980	NCA	2.52E04	NCA	
	1985	2.52E04	2.52E04	NCA	
	1990	2.52E04	2.52E04	2.27E04	
1000 A	2000	2.52E04	2.52E04	2.27E04	
5000.0	1980	NCA	1.38E05	NCA	
	1985	1.38E05	1.38E05	NCA	
	1990	1.38E05	1.38E05	1.24E05	
	2000	1.38E05	1.38E05	1.24E05	

Table 10. DIESEL SYSTEM WEIGHT (POUNDS)

<u>Fuel Requirements and Capabilities</u>. Diesels are primarily fueled with DF-1 or DF-2, although some have the capability for residual or DF-A. The designated fuel is "Diesel."

<u>Start-up Time</u>. Diesel "Start-up Time" ranges from 1 to 3 minutes A typical value is 2 minutes.

Shutdown Time. Diesel "Shutdown Time" is 2 seconds.

<u>Reliability</u>. Diesel "reliability" has an ordinal score of 3 indicating average reliability because diesel systems contain numerous moving parts, operate at moderately high temperatures, and cycle thermally.

Environmental Constraints. Diesels have an ordinal score of 4 for "Environmental Constraints," which indicates moderate potential environmental insult because of toxic exhaust emissions, noise during operation, and discharge of significant thermal energy.

Location Constraints. Diesels have an ordinal score of 3 indicating average locational constraints because of fuel availability, delivery, and storage requirements.

<u>Operation Constraints</u>. Diesels have an ordinal score of 4 indicating moderate turn-down capability with moderate efficiency penalty. Efficiency and lifetimes are adversely affected by changing loads.
Gas Turbines

There are three gas turbine systems of interest in this study: opencycle nonrecuperative, open-cycle recuperative, and closed cycles (Figure 8). Gas turbines produce shaft power, which is then converted to AC power by an AC generator. Because the closed-cycle system uses a working fluid rather than combustion products, it can be operated on alternative primary fuels, including residual oil.

<u>Technology Status</u>. Regenerative open-cycle gas turbine systems will be commercially available in capacities of 1000.0 kW and 500.0 kW starting in 1985. They will be commercially available in capacities greater or equal to 100.0 kW starting in 1990. Closed-cycle gas turbine systems will be commercially available in capacities greater or equal to 1000.0 kW in 1985. Nonregenerative open-cycle gas turbines are commercially available in capacities greater or equal to 500.0 kW. They will be commercially available at capacities of 100.0 and 250.0 kW in 1990. They will be commercially available at a capacity of 60.0 kW in 2000.

Development of the closed-cycle gas turbine is constrained by the need for an effective high-temperature heat exchanger.

Scaling down the turbines is a question of the capability to competitively produce high speed rotating equipment that would provide less flow resistance relative to the larger turbine/turbocompressor rotors. For small machines the rotors would have to be of the radial (rather than axial) type.

CLOSED CYCLE

A82010162

Figure 8. GAS TURBINE SYSTEMS

<u>Type</u>. Gas turbine systems are generally mobile at size below 750 kW and transportable in the megawatt sizes (Table 11).

POWER OUTPUT Level, Kw	YEAR	RECENERATIVE OPEN-CYCLE	CYCLE	NON-RECENERATIVE OPEN-CYCLE
1.5	1980 1985	NCA NCA	NCA NCA	NCA NCA
5.0	1990 2000 1980 1985 1990	NCA NCA NCA NCA NCA	NCA NCA NCA NCA	NCA NCA NCA NCA NCA
20.0	2000 1980 1985 1990	NCA NCA NCA NCA	NCA NCA NCA NCA	NCA NCA NCA NCA
30.0	2000 1980 1985 1990	NCA NCA NCA NCA	NCA NCA NCA NCA	NCA NCA NCA NCA
60.0	2000 1980 1985	NCA NCA NCA NCA	NCA NCA NCA	NCA NCA NCA
100.0	1990 2000 1980 1985	NCA NCA NCA	NCA NCA NCA NCA	NCA M NCA NCA
250.0	1990 2000 1980 1985	M M NCA NCA	NCA NCA NCA NCA	M M NCA NCA
500.0	1990 2000 1980 1985	M M NCA NCA M	NCA NCA NCA NCA NCA	M M M M
730.0	1990 2000 1980 1985	M NCA NCA T	NCA NCA NCA NCA	M M M M
1000.0	1990 2000 1980 1985	T NCA T	NCA NCA T	M T T
5000.0	1990 2000 1980 1985	T T T	T T NCA T	T T T T
	1990 2000	T T	T T	T T

Table 11. GAS TURBINE SYSTEM TYPE (Mobile, Transportable)

<u>System Acquisition Cost</u>. Gas turbine "System Acquisition Cost" parameter values are presented in Table 12 and in Figure 9 in 1980 dollars as a function of size.

.

-

POWER OUTPUT Level, KW	YEAR	RECENERATIVE OPEN-CYCLE	CYCLE	NON-REGENERATIVE OPEN-CYCLE
1.5	1980	NCA	NCA	NCA NCA
	1985 1990	NCA NCA	NCA NCA	NCA
	2000	NCA	NCA	NCA
5.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
20.0	2000 1980	NCA NCA	NCA NCA	NCA NCA
20.0	1980	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
30.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA NCA
	1990	NCA NCA	NCA	NCA
60.0	2000 1980	NCA	NCA NCA	NCA
00.0	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	4.11E04
100.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	6.36E04 6.36E04	NCA	6.06E04
250.0	2000 1980	NCA	NCA NCA	6.06E04 NCA
10.0	1985	NCA	NCA	NCA
	1990	1.28E05	NCA	1.22E05
	2000	1.28E05	NCA	1.22E05
500.0	1980	NCA	NCA	2.06E05
	1985	NCA	NCA	2.06E05
	1990	2.16E05	NCA NCA	2.06E05
750.0	2000 1980	2.16E05 NCA	NCA	2.06E05 2.81E05
730.0	1985	NCA	NCA	2.81E05
	1990	2.95E05	NCA	2.81E05
	2000	2.95805	NCA	2.81E05
1000.0	1980	NCA	NCA	3.50E05
	1985	3.68E05	3.85E05	3.50E05
	1990	3.68E05 3.68E05	3.85E05 3.85E05	3.50E05 3.50E05
5000.0	2000 1980	1.26E06	NCA	1.20E06
1000.0	1985	1.26E06	1.32E06	1.20E06
	1990	1.26E06	1.32206	1.20E06
	2000	1.26E06	1.32E06	1.20E06

Table 12. GAS TURBINE SYSTEM ACQUISITION COST (1980 DOLLARS)

.

Figure 9. GAS TURBINE SYSTEM ACQUISITION COST

<u>Annual Operations and Maintenance Costs</u>. Gas turbine "Annual Operations and Maintenance Costs" parameter values are presented in Table 13 and in Figure 10.

POWER OUTPUT Level, KW	YEAR	REGENERATIVE OPEN-CYCLE	CYCLE CYCLE	NON-REGENERATIVE OPEN-CYCLE
1.5	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA NCA
	1990	NCA	NCA NCA	NCA
	2000	NCA	NCA	NCA
5.0	1980	NCA NCA	NCA	NCA
	1985 1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
20.0	1980	NCA	NCA	NCA
20.0	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
30.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA NCA
60.0	1980	NCA	NCA	NCA NCA
	1985	NCA	NCA	
	1990 2000	NCA NCA	NCA NCA	NCA
100.0	1980	NCA	NCA	2.05E03
100.0	1980	NCA	NCA	NCA NCA
	1990	3.18E03	NCA	3.03E03
	2000	3.18E03	NCA	J.0 JE0 J
250.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	6.40EO3	NCA	6.09E03
	2000	6.40EO3	NCA	6.09E03
500.0	1980	NCA	NCA	1.03E04
	1985	NCA	NCA	1.03E04
	1990	1.08E04	NCA	1.03E04
	2000	1.08E04	NCA	1.03E04
750.0	1980	NCA	NCA NCA	1.41EO4
	1985 1990	NCA 1.48E04	NCA	1.41E04 1.41E04
	2000	1.48E04	NCA	1.41E04
1000.0	1980	NCA	NCA	1.75E04
	1985	1.85E04	1.93604	1.75E04
	1990	1.85EO4	1.93E04	1.75E04
	2000	1.85E04	1.93EO4	1.75E04
5000.0	1980	6.08E04	NCA	5.97EO4
	1985	6.08E04	6.37EO4	5.97E04
	1990	6.08E04	6.37EO4	5.97E04
	2000	6.U8E04	6.37E04	5.97E04

Table 13. GAS TURBINE ANNUAL OPERATIONS AND MAINTENANCE COSTS (1980 DOLLARS)

<u>System Efficiency</u>. Gas turbine "System Efficiency" parameter values are presented in Table 14 and in Figure 11. The efficiency of the open-cycle, regenerative system is greater than that of the nonregenerative open-cycle system because of the use of the turbine exhaust gas for combustion air preheat. Closed-cycle gas turbines have efficiency values between those of the regenerative and nonregenerative open-cycle gas turbine systems. Efficiency values for small regenerative systems (1.5 kW to 5.0 kW) are less reliable because of greater data variation in this size range.

POMER OUTPUT Level, Kn	YEAR	REGENERATIVE OPEN-CYCLE	CYCLE CYCLE	NON-RECENERATIVE OPEN-CYCLE
1.5	1980	NCA	NCA	NCA
	1985	NCA	NCA NCA	NCA NCA
	19 90 2000	NCA NCA	NCA	NCA
5.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
20.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
30.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
50.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
1.0.0	2000	NCA	NCA	20.5
100.0	1980 1985	NCA	NCA	NCA
	1985	NCA 42.3	NCA NCA	NCA
	2000	42.3	NCA	22.5
250.0	1980	NCA	NCA	22.5 NCA
-30.0	1985	NCA	NCA	NCA
	1990	42.3	NCA	25.3
	2000	42.3	NCA	25.3
500.J	1980	NCA	NCA	23.5
	1985	NCA	NCA	21.1
	1990	42.3	NCA	27.4
	2000	42.3	NCA	27.4
750.0	1990	NCA	NCA	22.1
	1985	NCA	NCA	22.1
	1990	42.3	NCA	27.5
	2000	42.3	NCA	27.5
1000.0	1980	NCA 26 6	NCA	22.7
	1985 1990	36.6	33.3	22.7
	2000	42.3	33.3 41.7	27.2
5000.0	1980	36.6		27.2
,000.0	1985	36.6	NCA 34,4	25.7
	1990	42.3	34.4	25.7 29.4
	2000	42.3	43.2	29.4

Table 14. GAS TURBINE SYSTEM EFFICIENCY (%)

<u>Fuel Consumption</u>. Gas turbine "Fuel Consumption" parameter values are presented in Table 15 and in Figure 12.

1983 4 1 1 1 1 2 2 3

Pomer output Level, KM	YEAR	REGENERATIVE BE OPEN-CYCLE n Jul	gal/hr CIOSED CACIE	NON-REGENERATIVE
1.5	1980 1985	NCA NCA	NCA NCA	NCA NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
5.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
10.0	2000	NCA NCA	NCA	NCA
20.0	1980 1985	NCA	NCA	NCA NCA
	1990	NCA	NCA NCA	NCA
	2000	NCA	NCA	NCA
30.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
60.0	1980	NCA	NCA	NCA
	1985	NCA NCA	NCA	NCA
	1990 2000	NCA	NCA	NCA
100.0	1980	NCA	NCA NCA	9.99E05 NCA
100.0	1985	NCA	NCA	NCA
	1990	8.07E05	NCA	1.52106
	2000	8.07E05	NCA	1.52506
250.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	2.02E06	NCA	3. 37E06
500.0	2000	2.02E06 NCA	NCA	3.37E06
100.0	1980 1985	NCA NCA	NCA NCA	8.09296
	1985	4.03E06	NCA	8.09E06 6.23E06
	2000	4.03E06	NCA	6.23E06
750.0	1980	NCA	NCA	1.16E07
	1985	NCA	NCA	1.16E07
	1990	6.05206	NCA	9.31E06
	2000	6.05E06	NCA	9.31E06
.000.0	1980	NCA	NCA	1.51E07
	1985	9.32E06	68.9	1.51E07
	1990 2000	8.07E06	68.9	1.26E07 1.26E07
000.0	1980	8.07E06. 4.67E07	55.0 NCA	6.65E07
	1985	4.67E07	333	6.65E07
1	1990	4.03E07	333	5.81E07
	2000	4.03E07	266	5.81E07

Table 15. GAS TURBINE FUEL CONSUMPTION

40

•

Figure 12. GAS TURBINE FUEL CONSUMPTION

<u>Annual Fuel Cost</u>. Gas turbine "Annual Fuel Cost" parameter values are presented in Table 16 and in Figure 13.

POWER OUTPUT	YEAR	REGENE RATIVE	CYCLE	NON-KEGENERATIVE
Level, KW		OPEN-CYCLE	CYCLE	UPEN-CYCLE
1.5	1980	NCA	NCA	NCA
5.0	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
20.0	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
30.0	1990 2000 1980 1985	NCA NCA NCA NCA NCA	NCA NCA NCA NCA NCA	NCA NCA NCA NCA
60.0	1990 2000 1980 1985 1990	NCA NCA NCA NCA	NCA NCA NCA NCA NCA	NCA NCA NCA NCA
100.0	2000 1980 1985 1990	NCA NCA NCA 1.57E04	NCA NCA NCA NCA	NCA 1.95E04 NCA NCA 2.96E04
250.0	2000	1.57E04	NCA	2.96E04
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	3.93E04	NCA	6.57E04
500.0	2000	3.93E04	NCA	6.57E04
	1980	NCA	NCA	8.29E04
	1985	NCA	NCA	1.58E05
	1990	7.85E04	NCA	1.21E05
750.0	2000 1980 1985	7.85E04 NCA NCA	NCA NCA NCA NCA	1.21E05 1.19E05 2.26E05
1000.0	1990 2000 1980 1985	1.18E05 1.18E05 NCA 1.82E05	NCA NCA 4.73E05	1.81E05 1.81E05 1.55E05 2.94E05
5000 .0	1990	1.57E05	4.73E05	2.45E05
	2000	1.57E05	3.77E05	2.45E05
	1980	4.78E05	NCA	6.81E05
	1985	9.98E05	2.29E06	1.29E06
ł	1990	7.85E05	2.29E06	1.13E06
	2000	7.85E05	1.83E06	1.13E06

Table 16. GAS TURBINE ANNUAL FUEL COST (1980 DOLLARS)

Figure 13. GAS TURBINE ANNUAL FUEL COST

<u>Life-Cycle Cost</u>. Gas turbine "Life-Cycle Cost" parameter values are presented in Table 17 and in Figure 14.

Table 17. GAS TURBINE LIFE-CYCLE COST (1980 cents/kW)

POWER OUTPUT	YEAR	REGENERATIVE	CYCLE	NON-REGERERATIVE
Level, KW		OPEN-CYCLE	CYCLE	OPEN-CYCLE
1.5	1980	NCA	NCA	NCA
5.0	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	NCA	NCA	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
20.0	2000	NCA	NCA	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
30.0	2000 1980 1 985	NCA NCA NCA NCA	NCA NCA NCA	NCA NCA NCA NCA
60.0	1990 2000 1980 1985	NCA NCA NCA	NCA NCA NCA NCA	NCA NCA NCA
100.0	1990	NCA	NCA	NCA
	2000	NCA	NCA	2.37
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
250.0	1990	1.42	NCA	2.15
	2000	1.42	NCA	2.15
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
500.J	1990	1.31	NCA	1.86
	2000	1.31	NCA	1.86
	1980	NCA	NCA	1.27
	1985	NCA	NCA	2.08
750.0	1990	1.24	NCA	1.68
	2000	1.24	NCA	1.68
	1980	NCA	NCA	1.20
	1985	NCA	NCA	1.97
	1990	1.21	NCA	1.64
1000.0	2000	1.21	NCA	1.64
	1980	NCA	NCA	1.15
	1985	1.32	2.90	1.90
5000 .0	1990	1.18	2.90	1.64
	2000	1.18	2.38	1.64
	1980	0.74	NCA	0.95
	1985	1.21	2.71	1.61
	1990	1.07	2.71	1.44
	2000	1.07	2.21	1.44

System Volume. Gas turbine "System Volume" parameter values are presented in Table 18.

Table 18. GAS TURBINE SYSTEM VOLUME (CUBIC FEET)

	POWER OUTPUT Level, Ku	YEAR	REGENERATIVE OPEN-CYCLE	CYCLE CYCLE	NON-REGENERATIVE OPEN-CYCLE
	1.5	1980	NCA	NCA	NCA
	5.0	1985 1990 2000 1980 1985 1990	NCA NCA NCA NCA NCA NCA	NCA NCA NCA NCA NCA NCA	NCA NCA NCA NCA NCA NCA
	20.0	2000 1980 1985 1990	NCA NCA NCA NCA	NCA NCA NCA NCA	NCA NCA NCA
	30.0	2000 1980 1985 1990	NCA NCA NCA NCA	NCA NCA NCA NCA	NCA NCA NCA NCA
	60.0	2000 1980 1985	NCA NCA NCA NCA	NCA NCA NCA	NCA NCA NCA
	100.0	1990 2000 1980 1985	NCA NCA NCA	NCA NCA NCA NCA	NCA 3.58E01 NCA NCA
ļ	250.0	1990 2000 1980 1985	4.86E01 4.86E01 NCA NCA	NCA NCA NCA NCA	4.5E01 4.5E01 NCA NCA
	500.0	1990 2000 1980 1985 1990	1.12E02 1.12E02 NCA NCA 1.30E02	NCA NCA NCA NCA NCA	8.45E01 8.45E01 1.14E02 1.14E02 1.14E02
	750.0	2000 1980 1985 1990	1.30E02 NCA NCA	NCA NCA NCA NCA	1.14E02 1.42E02 1.42E02
1	.000.0	2000 1980 1985	1.65E02 1.65E02 NCA 1.72E02	NCA NCA 1.189E02	1.42E02 1.42E02 1.46E02 1.46E02
5	000.0	1990 2000 1980 1985	1.72E02 1.72E02 2.08E02 2.08E02	1.89E02 1.89E02 NCA 2.29E02	1.46E02 1.46E02 1.73E02 1.73E02
L		1990 2000	2.08E02 2.08E02	2.29E02 2.29E02	1.73£02 1.73E02

System Weight. Gas turbine "System Weight" parameter values are presented in Table 19.

Table 19. GAS TURBINE SYSTEM WEIGHT (POUNDS)

POWER OUTPUT Level, KW	YEAR	REGENERATIVE OPEN-CYCLE	CYCLE CYCLE	NON-REGENERATIVE OPEN-CYCLE
1.5	1980 1985	NCA NCA	NCA NCA	NCA NCA
5.0	1985 1990 2000 1980 1985 1990	NCA NCA NCA NCA NCA	NCA NCA NCA NCA NCA	NCA NCA NCA NCA NCA
20.0	2000 1980 1985	NCA NCA NCA	NCA NCA NCA	NCA NCA NCA
30.0	1990 2000 1980 1985 1990	NCA NCA NCA NCA NCA	NCA NCA NCA NCA NCA	NCA NCA NCA NCA NCA
60.0	2000 1980 1985 1990	NCA NCA NCA NCA	NCA NCA NCA NCA	NCA NCA NCA NCA
100.0	2000 1980 1985	NCA NCA NCA	NCA NCA NCA	173 NCA NCA
250.0	1990 2000 1980 1985	318 318 NCA NCA	NCA NCA NCA NCA	289 289 NCA NCA
500.0	1990 2000 1980 1985 1990	795 795 NCA NCA 1600	NCA NCA NCA NCA NCA	723 723 1.45E03 1.45E03 1.45E03
750.0	2000 1980 1985 1990	1600 NCA NCA 2390	NCA NCA NCA NCA	1.45E03 2.17E03 2.17E03 2.17E03 2.17E03
1000.0	2000 1980 1985	2390 NCA 3180 3180	NCA NCA 3.61EO3	2.17E03 2.89E03 2.89E03
500 0 .0	1990 2000 1980 1985 1990	3180 1.60E04 1.60E04 1.60E04	3.61E03 3.61E03 NCA 1.81E04 1.81E04	2.89E03 2.89E03 1.45E04 1.45E04 1.45E04
	2000	1.60E04	1.81E04	1.45EO4

<u>Fuel Requirements and Capabilities</u>. Regenerative open-cycle gas turbines use natural gas as their designated fuel. To the extent that they may use liquid and gaseous fuels, the regenerative open-cycle gas turbine has multifuel capability. Nonregenerative open-cycle gas turbines use natural gas as their designated fuel. To the extent that they may use liquid and gaseous fuels, the nonregenerative open-cycle gas turbine has multi-fuel capability. Roth regenerative and nonregenerative open-cycle gas turbines have stringent fuel purity requirements. Closed-cycle gas turbines use residual fuel oil as their designated fuel; they have multi-fuel capability, including solid fuels.

Start-up Time. Gas turbine start-up time is 1 minute.

Shutdown Time. Gas turbine shutdown time is 2 minutes.

<u>Reliability</u>. Gas turbine "reliability" has an ordinal score of 3 indicating average reliability. Gas turbines have comparable reliability to diesels because they too have numerous moving parts and cycle thermally.

Environmental Constraints. Gas turbines have an ordinal score of 4 for "Environmental Constraints" indicating moderate potential environmental insult. Gas turbines have environmental constraints comparable to diesels. Major insults are NO, emissions in exhaust and noise from expanding hot gases.

<u>Location Constraints</u>. Gas turbines have an ordinal score of 3 indicating average locational constraints. Gas turbines have location constraints comparable to diesels because of similar fuel availability, delivery, and storage requirements.

<u>Operation Constraints</u>. Gas turbines have an ordinal score of 4 indicating moderate turn-down capability with moderate efficiency penalty. Gas turbines have operation constraints comparable to diesels. Gas turbine efficiency is lower at part loads, and emissions are increased.

Stirlings

There are two types of Stirling engines of interest in this study: the free-piston and the kinematic. The differences in the two technologies do not affect the system configuration (Figure 15). The primary difference between the free-piston Stirling and the kinematic Stirling is that the stroke of the pistons in the kinematic design is controlled through a mechanical linkage whereas the stroke in the free-piston is controlled by the working fluid in the cylinder. Stirlings produce shaft power, which is then converted to AC power by an AC generator.

<u>Technology Status</u>. Free-piston Stirlings are expected to be commercially available at capacities of 1.5 and 5.0 kW in 1990. They are expected to be commercially available at a capacity of 20.0 kW in 2000. Kinematic Stirlings are expected to be commercially available up to 500.0 kW in 1990 and commercially available at capacities of 750.0 and 1000.0 kW in 2000.

The primary factors delaying the commercialization of either the kinematic or free-piston Stirling for the stationary engine market are development of an efficient and cost-effective burner/heater head combination and development of effective and reliable piston (displacer) rod seals to prevent oil penetration to hot areas and to minimize working fluid (He or H₂) losses.

Figure 15. STIRLING SYSTEMS

Type. Stirling system "Type" parameter values are presented in Table 20. Stirling systems below 250 kW are mobile.

Table 20. STIRLING SYSTEM TYPE (Mobile, Transportable)

POWER OUTPUT Level, KW	YEAR	FREE	KINEMATIC
1.5	1980	NCA	NCA
	1985	NCA	NCA
5.0	1990	M	M
	2000	M	M
	1980	NCA	NCA
	1985	NCA	NCA
	1990	M	M
20.0	2000 1980 1985 1990	M NCA NCA	M NCA NCA
30.0	2000 1980 1985 1990	NCA M NCA NCA NCA	M M NCA NCA M
60.0	2000	NCA	M
	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	M
100.0	2000 1980 1985 1990	NCA NCA NCA	M NCA NCA M
250.0	2000	NCA	M
	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	T
500.0	2000	NCA	M
	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	T
750.0	2000	NCA	M
	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	NCA
1000.0	2000	NCA	T
	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	NCA
500 0 .0	2000	NCA	T
	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	NCA
	2000	NCA	NCA

<u>System Acquisition Cost</u>. Stirling "System Acquisition Cost" parameter values are presented in Table 21 and in Figure 16. There is no differentation in free-piston and kinematic Stirling system costs becase technology development is too preliminary to identify significant cost differences. For both engine types the costs of generators, combustor/heat exchanges, and regenerators are expected to be about the same. The main difference is the mechanical linkage of the kinematic Stirling versus the free-piston's lack of a mechanical linkage.

POWER OUTPUT Level, Ku	YEAR	FREE PISTON	KINEMATIC	
1.5	1980	NCA	NCA	
	1985	NCA	NCA	
	1990	1.35E03 1.35E03	1.35E03	
5.0	2000 1980	NCA	1.35E03 NCA	
	1985	NCA	NCA	
	1990	4.50E0)	4.50E03	
	2000	4.50E03	4.50E03	
20.0	1980	NCA	NCA	
	1985	NCA	NCA	
	1990	NCA	1.20E04	
	2000	1.20E04	1.20E04	
30.0	1980	NCA	NCA	
	1985	NCA	NCA	
	1990	NCA NCA	1.65E04	
	2000	NCA	1.65EO4	
60.0	1980	NCA	NCA	
	1985	NCA	NCA	
	1990	NCA	3.00E04	
100.0	2000	NCA	3.00E04	
100.0	1980 1985	NCA	NCA NCA	
	1990	NCA	5.00E04	
	2000	NCA	5.00E04	
250.0	1980	NCA	NCA	
	1985	NCA	NCA	
	1990	NCA	1.25E05	
	2000	NCA	1.25E05	
500.0	1980	NCA	NCA	
	1985	NCA	NCA	
	1990	NCA NCA	2.21E05	
	2000	NCA	2.21E05	
750.0	1980	NCA	NCA	
	1985	NCA	NCA NCA	
	1990	NCA		
1000.0	2000 1980	NCA	3.31E05 NCA	
1000.0	1985	NCA	NCA	
	1990	NCA	NCA	
	2000	NCA	4.41E05	
5000.0	1980	NCA	NCA	
	1985	NCA	NCA	
	1990	NCA	NCA	
	2000	NCA	NCA_	

Table 21. STIRLING SYSTEM ACQUISITION COST (1980 DOLLARS)

.

.

Figure 16. STIRLING SYSTEM ACQUISITION COST

Annual Operations and Maintenance Costs. Stirling "Annual Operations and Maintenance Costs" parameter values are presented in Table 22 and in Figure 17.

Table 22. STIRLING ANNUAL OPERATIONS AND MAINTENANCE COSTS (1980 DOLLARS)

8	1		
POWER OUTPUT Level, KW	YEAR	FREE	KINEMATIC
1.5	1980	NCA	NCA
	1985 1990	NCA 6.75E01	NCA 6.75E01
5.0	2000 1980	6.75E01 NCA	6.75E01 NCA
	1985	NCA	NCA
	1990 2000	2.25E02 2.25E02	2.25EO2 2.25EO2
20.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	6.00E02
30.0	2000 1980	6.00E02 NCA	6.00E02 NCA
50.0	1985	NCA	NCA
	1990	NCA	8.25E02
	2000	NCA	8.25E02
60.0	1980	NCA NCA	NCA
	1985 1990	NCA	NCA 1.50E03
	2000	NCA	1.50E03
100.0	1980	NCA	NCA
	1985	NCA NCA	NCA
	1990	NCA	2.50E03
250.0	2000 1980	NCA	2.50E03 NCA
	1985	NCA	NCA
	1990	NCA	6.25E03
	2000	NCA NCA	6.25E03
500.0	1980 1985	NCA	NCA NCA
· ·	1985	NCA	1.11E04
	2000	NCA	1.11E04
750.0	1980	NCA	NCA
	1985	NCA NCA	NCA
	1990 2000	NCA	NCA 1.66E04
1000.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA NCA	NCA
5000 0	2000	NCA	2.21E04
5000.0	1980 1985	NCA	NCA NCA
	1990	NCA	NCA
	2000	NCA	NCA

<u>System Efficiency</u>. Stirling "System Efficiency" parameter values are presented in Table 23 and Figure 18. There is no differentiation in the efficiency of Stirling systems with size and time for several reasons. Technology development is too preliminary to identify significant efficiency differences. Efficiency differences are driven primarily by friction in hearings and heat transfer to the working fluid. Small systems have relatively high frictional losses and also have losses from clearances around power and displace pistons; however, favorable surface-to-volume relationships permit effective heat transfer and therefore high efficiency. Larger systems have relatively low frictional losses and low losses from clearances around power and displacer pistons; however, unfavorable surface-to-volume ratios do not permit effective heat transfer, thus limiting efficiency. Frictional losses and heat transfer limitations tend to cancel each other out as systems grow in size, resulting in approximately constant efficiencies versus size.

Table 23	. STIRLING	SYSTEM	EFFICIENCY	(%)
----------	------------	--------	------------	-----

POWER OUTPUT Level, Kw	YEAR	FREE PISTON	KINEMATIC
1.5	1980	NCA NCA	NCA NCA
	1985	36.5	35.0
	2000	36.5	35.0
5.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	36.5	35.0
	2000	36.5	35.0
20.0	1980	NCA NCA	NCA NCA
	1990	NCA	35.0
	2000	36.5	35.0
30.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA NCA	35.0
	2000	NCA	35.0
60.0	1980 1985	NCA	NCA NCA
	1990	NCA	35.0
	2000	NCA	35.0
100.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	35.0
	2000	NCA NCA	35.0 NCA
230.0	1980	HCA	NCA
	1985 1990	HCA	35.0
	2000	NCA	35.0
500.0	1980	IICA	HCA
	1985	IICA	IICA
	1990	NCA NCA	35.0 35.0
	2000	NCA	
730.0	1980	HCA	NCA NCA
	1990	NCA	HCA
	2000	HCA	35.0
1000.0	1980	HCA	HCA .
	1985	NCA	HCA
	1990	NCA NCA	HCA
	2000	HCA	35.0
5000.0	1980	HCA	NCA NCA
1	1985	NCA	NCA
	2000	NL A	NU A

<u>Fuel Consumption</u>. Stirling "Fuel Consumption" parameter values are presented in Table 24 and in Figure 19.

.

e	
POWER OUTPUT LEVEL, KW YEAR FREE PISTON KINEMATIC	
1.5 1980 NCA NCA	
1985 NCA NCA 1990 0.10 0.1	•
1990 0.10 0.1 2000 0.10 0.1	
5.0 1980 NCA NCA	0
1985 NCA NCA	
1990 0.33 0.3	4
2000 0.33 0.3	
20.0 1980 NCA NCA	
1985 NCA NCA	_
1990 NCA 1.3	
2000 1.32 1.3	8
30.0 1980 NCA NCA 1985 NCA NCA	
1985 NCA 2.0	7
2000 NCA 2.0	
60.0 1980 NCA NCA	
1985 NCA NCA	
1990 NCA 4.1	
2000 NCA 4.1	3
1J0.0 1980 NCA NCA NCA	
1703	٥
1990	-
2000 NCA 6.8 250.0 1980 NCA NCA	,
1985 NCA NCA	
1990 NCA 17.	3
2000 NCA 17.	
500.0 1980 NCA NCA	I
1985 NCA NCA	,
1990 NGA 34. 1990 NGA 34.	
2000	•
1985 NCA NCA 1990 NCA NCA	
2000 NCA 49.	2
1000.0 1980 NCA NCA	
1985 NCA NCA	
1990 NCA NCA	
2000 NCA 65.	5
3000.0 1900 NCA	
1990 NCA NCA 2000 NCA NCA	

Figure 19. STIRLING FUEL CONSUMPTION

Annual Fuel Cost. Stirling "Annual Fuel Cost" parameter values (based on 1980 dollars and no real escalation) are in Table 25 and in Figure 20.

Table 25. STIRLING ANNUAL FUEL COST (1980 DOLLARS)

POWER OUTPUT LEVEL, KW	YEAR	FREE PISTON	KINEMATIC
1.5	1980	NCA	NCA
	1985	NCA	NCA
	1990	9.57EU2	9.91E02
5.0	2000 1980	9.57E02	9.91E02
3.0	1985	NCA NCA	NCA
	1990	3. 16E03	NCA 3.31E03
	2000	3.16E03	3.31E03
20.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	1.33E04
	2000	1.27EO4	1.33E04
30.0	1980	NCA	NCA
·	1985	NCA	NCA
	1990	NCA NCA	1.99E04
60.0	2000 1980	NCA	1.99E04
00.0	1985	NCA	NCA
	1990	NCA	NCA 3.97E04
	2000	NCA	3.97E04
100.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	6.63E04
	2000	NCA	6.63E04
250.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA NCA	1.66E05
100 3	2000	NCA	1.66E05
500.J	1980 1985	NCA	NCA
	1985	NCA	NCA 3.311:05
	2000	NCA	3. 31E05
730.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	NCA
j i	2000	NCA	3.37505
1000.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA NCA	NCA
	2000	NCA NCA	4.50E05
5000.0	1980	NCA	NCA
	1985 1990	NCA	NCA
	2000	NCA	NCA NCA

Figure 20. STIRLING ANNUAL FUEL COST

Life-Cycle Cost. Stirling "Life-Cycle Cost" parameter values are in Table 26 and in Figure 21.

.

Table 26. STIRLING LIFE-CYCLE COST (1980 cents/kW)

1		l .	
POWER OUTPUT LEVEL, KW	YEAR	FREE P I STON	KINEMATIC
1.5	1980	NCA	NCA
5.0	1985 1990 2000 1980 1985 1990	NCA 4.26 4.26 NCA NCA 4.23	NCA 4.38 4.38 NCA NCA 4.39
20.0	2000 1980 1985 1990	4.23 NCA NCA	4.39 NCA NCA 4.13
30.0	2000 1980 1985 1990	NCA 3.97 NCA NCA NCA	4.13 NCA NCA 4.08
60.0	2000 1980 1985 1990	NCA NCA NCA NCA	4.08 NCA NCA 4.03
100.0	2000 1980 1985 1990	NCA NCA NCA NCA	4.03 NCA NCA 4.03
230.0	2000 1980 1985 1990	NCA NCA NCA NCA	4.03 NCA NCA 4.04
500.0	2000 1980 1985	NCA NCA NCA NCA	4.04 NCA NCA 3.97
750.0	1990 2000 1980 1985 1990	NCA NCA NCA NCA	3.97 NCA NCA NCA
1000.0	2000 1980 1935 1990	NGA NCA NCA NCA	2.83 NCA NCA NCA
5009.0	2000 1980 1985 1990	NCA NCA NCA NCA	2.83 NCA NCA NCA
	2000	NCA	NCA NCA

Figure 21. STIRLING LIFE-CYCLE COST

System Volume. Stirling "System Volume" parameter values are presented in Table 27. There is no differentiation in the volume of Stirling systems because the regenerator determines the dimensions of the system envelope.

Table 27. STIRLING SYSTEM VOLUME (CUBIC FEET)

POWER OUTPUT LEVEL, KW	YEAR	FREE PISTON	KINEMATI C
1.5	1980	NCA	NCA
	1985 1990	NCA 7.05	NCA 7.05
	2000	7.05	7.05
5.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	1.71E01	1.71E01
	2000	1.71E01	1.71E01
20.0	1980	NCA	NCA
	1985	NCA	NCA 4.42E01
	1990 2000	NCA 4.42E01	4.42E01 4.42E01
30.0	1980	NCA	NCA
30.0	1985	NCA	NCA
	1990	NCA	5.76E01
	2000	NCA	5.76E01
60.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA NCA	8.92E01
1 10 0	2000	NCA	8.92E01 NCA
100.0	1980 1985	NCA	NCA NCA
	1985	NCA	1.22E02
	2000	NCA	1.22E02
230.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	2.10E02
	2000	NCA NCA	2.10E02
500.0	1980	NCA	NCA
	1985	NCA	NCA 3.22E02
	1990 2000	NCA	3.22E02
750.0	1980	NCA	NCA
120.0	1985	NCA	NCA
	1990	NCA	NCA
	2000	NCA	4.26E02
1000.0	1980	NCA NCA	NCA
	1985	NCA	NCA
	1990 2000	NCA	NCA 5.29E02
5000.0	1980	NCA	NCA
5000.0	1985	NCA	NCA
	1990	NCA	NCA
	2000	NCA	NCA

System Weight. Stirling "System Weight" parameter values are presented in Table 28. Free-piston Stirlings systems are much lighter than kinematic Stirling systems because of mechanical simplicity.

Table 28. STIRLING SYSTEM WEIGHT (POUNDS)

	POWER OUTPUT LEVEL, KW	YEAR	FREE PISTON	INEMATIC
ĺ	PO	YE.	FREE	KIN
	1.5	1980	NCA	NCA
		1985	NCA	NCA
		1990	1.08E02	2.15E02
		2000	1.08E02	2.15E02
1	5.0	1980	NCA	NCA
		1985 1990	NCA 2.96E02	NCA 5 DOROD
		2000	2.96E02 2.96E02	5.92E02 5.92E02
1	20.0	1980	NCA	NCA
	20.0	1985	NCA	NCA
		1990	NCA	1.49E03
		2000	7.45E02	1.49603
	30.0	1980	NCA	NCA
1		1985	NCA	NCA
		1990	NCA	2.07E03
		2000	NCA	2.07E03
	60.0	1980	NCA	NCA
		1985	NCA	NCA
		1990	NCA	3.59E03
1		2000	NCA	3.59E03
	100.0	1980	NCA	NCA
		1985	NCA	NCA
		1990	NCA	5.42EO3
		2000	NCA	5.42E03
1	250.0	1980	NCA	NCA
		1985	NCA	NCA
i		1990	NCA	1.14E04
		2000	NCA NCA	1.14EO4
	500.0	1980	NCA	NCA
		1985	NCA	NCA
		1990	NCA	2.03E04 2.03E04
		2000	NCA	
	750.0	1980	NCA	NCA
		1985	NCA	NCA NCA
		1990 2000	NCA	2.87E04
	1000.0	1980	NCA	NCA
	1000.0	1985	NCA	NCA
		1990	NCA	NCA
		2000	NCA	3.69E04
	5000.0	1980	NCA	NCA
		1985	NCA	NCA
		1990	NCA	NCA
		2000	NCA	NCA

<u>Fuel Requirements and Capabilities</u>. The designated fuel for Stirling systems is diesel. Because they are external combustion systems, Stirlings have multi-fuel capabilities. However, the capability to utilize gaseous, liquid, and solid fuels of course depends on the availability of an appropriate combustor. To date, limited work has been done on development of either gaseous or solid fuel combustors for Stirling engines.

<u>Start-up Time</u>. Stirling "Start-up Time" is 15 seconds. Shutdown Time. Stirling "Shutdown Time" is 5 seconds.

<u>Reliability</u>. Stirling "Reliability" has an ordinal score of 4 indicating moderate reliability. Stirlings are more reliable than diesels because of fewer moving parts.

Environmental Constraints. Stirlings have an ordinal score of 5 for "Environmental Constraints," indicating minimum potential environmental insults. Stirlings have less environmental constraints than diesels because of lower levels of air emissions.

Location Constraints. Stirlings have an ordinal score of 4 indicating moderate location constraints. Stirlings have less location constraints than diesels because of potentially better fuel availability due to multifuel capability and less operational noise.

<u>Operation Constraints</u>. Stirlings have an ordinal score of 5 indicating excellent turn-down capability with minor efficiency penalty relative to diesels.
Organic Rankine Cycle

The Organic Rankine Cycle (ORC) is a modification of the widely used steam cycle. However, whereas the conventional steam rankine cycle uses water as a working fluid, the organic rankine cycle uses an organic chemical as a working fluid. For operating temperatures less than 750°F, organic fluids with high molecular weight provide high cycle efficiency with less complex and costly expanders than are required when water is used as the working fluid. The ORC configuration is shown in Figure 22. ORC's produce shaft power, which is then converted to AC power by an AC generator.

Technology Status. ORC's are commercially available in all capacities.

Figure 2.2. ORGANIC RANKINE CYCLE SYSTEMS

Type. Organic Rankine Cycle system "Type" parameter values are presented in Table 29. At capacities less than 250 kW, ORC's are mobile.

System Acquisition Cost. Organic Rankine Cycle "System Acquisition Cost" parameter values are presented in Table 30 and in Figure 23.

(Mobile, Transportable, Fixed)

Table 29. ORC SYSTEM TYPE Table 30. ORC SYSTEM ACQUISITION COST (1980 dollars)

POWER OUTPUT LEVEL, KW	YEAR				
1.5	1980		M		
	1985 1990		M M		
i i	2000		M		
5.0	1980		M		
	1985		M		
	1990		M		
	2000		M		
20.0	1980		M		ł
	1985 1990		М		l
	2000		M		l
30.0	1980		M		l
	1985		M		ł
	1990				l
(0.0	2000		M		ł
60.0	1980 1985		M		
	1985		M		ļ
	2000		M	•	
100.0	1980		м		l
	1985		M		l
	1990		M		Į
	2000		M T		ł
250.0	1980		τ		l
	1985 1990		м		l
	2000		M		l
500.0	1980		τ		
	1985		Т		ł
ľ	1990		Т		1
	2000		M		I
750.0	1980 1985		T T	1	ĺ
I	1985				I
1	2000		Ť	}	
1000.0	1980		Ť		ſ
	1985		Т	ł	ſ
	1990		T		ł
	2000		T		ł
5000.0	1980		F	{	ł
I	1985	4	T T	1	ł
	2000		τ		ł

POWER OUTPUT LEVEL, KW	YEAR		
1.5	1980	1.76E03	
	1985 1990	1.76E03 1.76E03	
	2000	1.76E03	
5.0	1980	4.40E03	{
	1985	4.40E03	{ }
	1990	4.40E03	1
	2000	4.40E03	()
20.0	1980	1.27EO4	
	1985	1.27E04	
	1990	1.27E04	!
30.0	2000 1980	1.27E04 1.74E04	()
0.0	1985	1.74E04	
	1990	1.74E04	
	2000	1.74E04	
60.0	1980	3.03E04	
	1985	3.03E04	
	1990	3.03E04	
	2000	3.03E04	
100.0	1980	4.65E04	
	1985	4.65E04	
	1990	4.65E04	
250.0	2000 1980	4.65E04	
130.0	1985	1.07E05	1 1
	1990	1.07E05	1
	2000	1.07E05	
500.0	1980	2.13E05	} }
	1985	2.13E05	1 1
	1990	2.13E05	
	2000	2.13E05	1 1
750.0	1980	3.27E05	1
	1985	3.27E05	
	1990 2000	3.27E05 3.27E05	
1000.0	1980	4.49E05	
200010	1985	4.49E05	
	1990	4.49E05	1
	2000	4.49E05	
5000.0	1980	2.47E06	{ }
	1985	2.97E06	}]
	1990	2.97E06	
	2000	 2.97E06	

Figure 23. ORC SYSTEM ACQUISITION COST

Annual Operations and Maintenance Costs. ORC "Annual Operations and Maintenance Costs" parameter values are presented in Table 31 and in Figure 24.

POWER OUTPUT Level, KW	~			
POW	YEAR			
1.5	1980		2.94E02	
	1985		2.94E02	
1	1990		2.94E02	
	2000		2.94E02	
5.0	1980		1.10E03	
	1985		1.10E03	
1	1990 2000		1.10E03	
20.0	1980		1.10E03	
	1985		1.27E03 1.27E03	
	1990		1.27E03	
	2000		1.27E03	
30.0	1980		1.74E03	1 1
	1985		1.74E03	
(1990		1.74E01	
60.0	2000		1.74E03	
60.0	1980 1985		3.03 EO	}
	1990		3.03E03	
	2000		3.03E03 3.03E03	
100.0	1980		4.65E03	[[
	1985		4.65E03	
l	1990		4.65E03	1
{	2000		4.65E02	
250.0	1980		1.07E04	1
	1985		1.07E04	
	1990		1.07E04 1.07E04	
500.0	2000 1980		2.13E04	i l
300.0	1985		2.13E04	1
	1990	ļ ,	2.13E04	
	2000		2.13E04	
750.0	1980		3.27E04	}
[.	1985		3.27E04	
E ·	1990		3.27E04	
	2000		3.27E04	! {
1000.0	1980		4.49E04	
	1985 1 99 0		4.49204	
	2000		4.49E04	1
5000.0	1980		2.97E05	
	1985		2.97E05	
T ·	1990		2.97E05	
	2000		2.97E05	

Table 3].ORGANIC RANKINE CYCLE ANNUAL OPERATIONS
AND MAINTENANCE COSTS (1980 DOLLARS)

<u>System Efficiency</u>. ORC "System Efficiency" parameter values are presented in Table 32 and in Figure 25. Efficiency value of the 1.5 kW size should be used with caution because it is of the same magnitude as the standard deviation.

Table 32. ORGANIC RANKINE CYCLE SYSTEM EFFICIENCY (%)

ł	1		
POWER OUTPUT LEVEL, KW	YEAR		
1.5	1980	1.46	
	1985	1.58	
	1990	1.69	
	2000	1.69	
5.0	1980	5.79	
	1985 1990	6.25 6.69	
	2000	6.69	
20.0	1980	10.78	
	1985	11.75	
	1990	12.58	
	2000	12.58	
30.0	1980	12.24	
	1985	13.34	
	1990	14.27	
60.0	2000 1980	14.27	
80.0	1985	16.20	
	1990	17.17	
	2000	17.17	
100.0	1980	1.66E01	
	1985	1.83E01	
1	1990	1.94E01	
	2000	1.94E01	
250.0	1980	1.99E01	
	1985	2.18E01 2.31E01	
	1990 2000	2.31E01 2.31E01	
500.0	1980	 2.24E01	
500.0	1985	2.49E01	
	1990	2.64E01	
	2000	2.64E01	
750.0	1980	2.38E01	
	1985	2.67E01	
	1990	2.83E01	
1000 0	2000	2.83E01 2.49E01	
1000.0	1980 1985	2.79E01	
	1985	2.93E01	
	2000	2.93E01	
5000.0	1980	3.06E01	
	1985	3.46E01	
	1990	3.63E01	
L	2000	3.63E01	

Figure 25. ORC SYSTEM EFFICIENCY

Fuel Consumption. ORC "Fuel Consumption" parameter values are presented in Table 33 and in Figure 26.

Table 33. ORGANIC RANKINE CYCLE FUEL CONSUMPTION

l		l	1	gal/hr	1
	POWER OUTPUT LEVEL, KN	YEAR			
ſ	1.5	1980		2.47	
	5.0	1985 1990 2000 1980 1985 1990		2.29 2.14 2.14 2.08 1.92 1.80	
	20.0	2000 1980 1985		1.80 4.47 4.11	
	30.0	1990 2000 1980 1985		3.84 3.84 5.91 5.43	
	60.0	1990 2000 1980 1985		5.07 5.07 9.86 8.93	
	100.0	1990 2000 1980 1985 1990		8.42 8.42 14.4 13.2 12.5	
	250.0	2000 1980 1985 1990		12.5 30.3 27.7 26.1	
	500. 0	2000 1980 1985 1990		26.1 53.9 48.3 45.7	
	730.0	2000 1980 1985 1990		45.7 72.3 64.4 60.8	
	1000.0	2000 1980 1985 1990		60.8 92.1 82.2 78.2	
	5000.0	2000 1980 1985 1990		78.2 375 332 316	
		2000	<u> </u>	316	

Annual Fuel Cost. ORC "Annual Fuel Cost" parameter values are presented in Table 34 and in Figure 27.

POWER OUTPUT Level, KW	YEAR		
1.5	1980 1985	2.32E04	
5.0	1990 2000 1980 1985 1990	2.20E04 2.06E04 2.06E04 1.95E04 1.85E04 1.85E04	
20.0	2000 1980 1985	1.73E04 1.73E04 4.19E04 3.95E04	
30.0	1990 2000 1980 1985	3. 69E04 3. 69E04 5. 54E04 5. 22E04	
60.0	1990 2000 1980 1985 1990	4.88E04 4.88E04 9.24E04 8.59E04	
100.0	2000 1980 1985 1990	8.10E04 8.10E04 1.36E05 1.27E05	
250.0	2000 1980 1985 1990	1.20E05 1.20E05 2.84E05 2.66E05 2.51E05	
500.0	2000 1980 1985	2.51E05 2.51E05 5.05E05 4.65E05	
750.0	1990 2000 1980 1985	4.40E05 4.40E05 4.92E05 4.42E05	
1000.0	1990 2000 1980 1985	4.17E05 4.17E05 6.26E05 5.64E05	
5000.0	1990 2000 1980 1985	5.37E05 5.37E05 2.55E06 2.28E06	
	1990 2000	2.17E06 2.17E06)

Table 34. ORGANIC RANKINE CYCLE ANNUAL FUEL COST (1980 DOLLARS)

Figure 27. ORC ANNUAL FUEL COST

<u>Life-Cycle Cost</u>. ORC "Life-Cycle Cost" parameter values (based no 1980 dollars and no real escalation) are presented in Table 35 and in Figure 28.

Table 35. ORGANIC RANKINE CYCLE LIFE CYCLE COST (1980 cents/kW)

1	1			1
			1	1
POWER OUTPUT Level, KW				
N N				
VEI	YEAR			
PO	YE			
1.5	1980		85.3	T
	1985		81.0	
	1990		75.9	
	2000		75.9	
5.0	1980		22.8	
	1985 1990		20.4	
	2000		20.4	
20.0	1980		12.1	1
	1985		11.4	
	1990		10.7	
	2000		10.7	1
30.0	1980		10.7	1
	1985		10.1	
	1990		9.46 9.46	1
60.0	2000 1980		8.91	
00.0	1985		8.32	1
	1990		7.88	
	2000		7.88	
100.0	1980		7.89	
	1985		7.40	
	1990		7.02	
	2000		7.02	
250.0	1980		6.64	
	1985		6.25 5.92	
	1990 2000		5.92	
500.0	1980		5.95	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1985		5.52	
	1990		5.25	
	2000		5.25	
750.0	1980		4.05	
	1985		3.69	
	1990		3.51 3.51	
1000 0	2000		3.91	
1000.0	1980 1985	l i	3.57	
	1985		3.43	
	2000		3.43	
5000.0	1980		3.45	
	1985		3.16	
	1990		3.04	ļ
	2000		3.04	

Figure 28. ORC LIFE-CYCLE COST

<u>System Volume</u>. ORC "System Volume" parameter values are presented in Table 36. ORC's are large-volume systems because of heat exchanger size.

Table 36. ORGANIC RANKINE CYCLE SYSTEM VOLUME (CUBIC FEET)

5			
Ĩ.			
52			
POWER OU tput Level, KW			
	¥ K		
PO	YEAR		1
			÷
1.5	1980	144	1
	1985	144	
	1990	144	
5.0	2000 1980	144	
2.0	1985	144	
	1990	144	
	2000	144	
20.0	1980	144	
	1985	144	1
	1990	144	
	2000	144	1
30.0	1980	192	1
	1985	192	
	1990	192	1
	2000	192	
60.0	1980	400	
	1985	400	
	1990	400	
100.0	2000 1980	400 720	1
100.0	1985	720	
	1990	720	
	2000	720	ł
250.0	1980	1408	
	1985	1408	
	1990	1408	l I
	2000	1408	i i
500.0	1980	2880	
	1985	2880	
	1990	2880	
	2000	2880	1
750.0	1980	2880	[
	1985	2880	
	1990	2880	1
1000.0	2000 1980	2880 2880	
1000.0	1980	2880	
	1990	2880	
	2000	2880	J
5000.0	1980	5760	
	1985	5760	
	1990	5760	1
	2000	5760	

80

System Weight. ORC "System Weight" parameter values are presented in Table 37.

Table 37. ORGANIC RANKINE CYCLE SYSTEM WEIGHT (POUNDS)

ł				ı
POWER OUTPUT LEVEL, KM	YEAR			
1.5	1980		3300	
5.0	1985 1990 2000 1980 1985 1990		3300 3300 3300 5720 5720 5720	
20.0	2000 1980 1985 1990		5720 4200 4200 4200	
30.0	2000 1980 1985		4200 5400 5400 5400	
60.0	1990 2000 1980 1985		5400 12E03 12E03	
100.0	1990 2000 1980 1985		12E03 12E03 44E03 44E03	
250.0	1990 2000 1980 1985		44E03 44E03 44E03 44E03	
500.J	1990 2000 1980 1935		44E03 44E03 60.5E03 60.5E03	
750.0	1990 2000 1980 1985		60.5E03 60.5E03 77E03 77E03 77E03	
1000.0	1990 2000 1980 1985		77E03 77E03 132E03 132E03 132E03	
5000.0	1990 2000 1980 1985		132E03 500E03 500E03	
	1990 2000		500E03 500E03	

<u>Fuel Requirements and Capabilities</u>. ORC systems have multi-fuel capabilities. For system capacities less than 750.0 kW the designated fuel is "Diesel." For system capacities greater or equal to 750.0 kW the designated fuel is "Resid." Because ORC's are external combustion systems, they may also use fuel sources such as solar thermal or waste heat. The cost and efficiency of the ORC system can vary greatly depending on the heat source (which affects the heat exchanger requirements) and the quality and quantity of the heat (which affects the operating temperature of the cycle). To the extent that thermal energy is available at less than the cost of the designated fuel for specific ORC applications, the life-cycle costs could be lower than those estimated in this study. The trade-off becomes one of capital cost versus fuel cost.

<u>Start-up Time</u>. ORC "Start-up Time" is 30 minutes. Shutdown Time. ORC "Shutdown Time" is 30 minutes.

<u>Reliability</u>. ORC "Reliability" has an ordinal score of 2 indicating moderate potential unreliability. ORC's are somewhat less reliable than diesels because of numerous moving parts and temperature swings in the heat recovery system (thermal cycling).

Environmental Constraints. ORC have an ordinal score of 4 for "Environmental Constraints" indicating moderate potential environmental insults. This is comparable to diesels.

Location Constraints. ORC's have an ordinal score of 5 indicating minimum locational constraints. ORC's have significantly less locational constraints than diesels because of potentially better fuel availability and lesser manning requirements.

<u>Operation Constraints</u>. ORC's have an ordinal score of 2 indicating poor turn-down capability with large efficiency penalty. Diesels have better operational constraints. ORC's have reduced efficiencies at part load, and back-up heat sinks are required for heat recovery.

Fuel Cells

There are three types of fuel cells of interest in this study: the solid polymer electrolyte (SPE) fuel cell, the phosphoric acid fuel cell, and the molten carbonate fuel cell. The conceptual system configuration in Figure 29 is not affected by type of fuel cell. The conceptual configuration includes a fuel processor (such as a methanol reformer, or a JP-4 reformer) to convert a hydrocarbon fuel to a hydrogen-rich gas. The hydrogen and oxygen (from the air input) react electrochemically to produce DC power and waste heat. The DC power is transformed to AC with a power conditioner (inverter).

<u>Technology Status</u>. Phosphoric acid fuel cells are expected to be commercially available in the capacity range of 1.5 to 100.0 kW starting in 1985. They are expected to be commercially available in the capacity range of 250.0 to 5000.0 kW starting in 1990. Molten carbonate fuel cells are expected to be commercially available at capacities of 250.0 and 500.0 kW starting in 1990. They are expected to be commercially available in the capacity range of 750.0 to 5000.0 kW starting in 2000. Solid polymer electrolyte fuel cells are expected to be commercially available in the capacity range of advanced to be commercially available in the capacity range of 1.5 to 30.0 kW starting in 2000. The primary factor delaying earlier implementation of advanced fuel cell technology is that the limited available R&D funds are being used to support the phosphoric acid fuel cell commercialization.

والمتحد والمتحد والمتحد والمتحد والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية

Figure 29. FUEL CELL SYSTEMS

Type. Fuel cell system "Type" parameter values are in Table 38. Below 100 kW, fuel cell systems are mobile; above 250 kW, they are fixed.

POWER OUTPUT Level, Kw	YEAR	PHOSPHORIC ACID	MOLTEN CARBONATE	SOLID Polymer
1.5	1980 1985	NCA	NCA NCA	NCA
	1990	м м	NCA '	NCA NCA
	2000	M	NCA	MCA
5.0	1980	NCA	NCA	NCA
	1985	M	NCA	NCA
	1990	м	NCA	NCA
20.0	2000 1980	M	NCA NCA	M I
20.0	1985	NCA M	NCA	NCA NCA
	1990	M	NCA	NCA
	2000	M	NCA	M
30.0	1980	NCA	NCA	NCA
	1985	м	NCA	NCA
	1990	M	NCA	NCA
60.0	2000 1980	M NCA	NCA NCA	M
00.0	1985	MCA	NCA	NCA NCA
	1990	M	NCA	NCA
	2000	M	NCA	NCA
100.0	1980	NCA	NCA	NCA
	1985	т	NCA	NCA
	1990	T	NCA	NCA
370.0	2000	T NCA	NCA	NCA
250.0	1980 1985	NCA	NCA NCA	NCA NCA
	1990	T	T	NCA
	2000	т	Ť	NCA
500.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	F	F	NCA
	2000	F	F	NCA
750.0	1980	NCA NCA	NCA NCA	NCA
	1985 1990	F	NCA	NCA NCA
	2000	F	F	NCA
1000.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
•	1990	F	NCA	NCA
	2000	F	F	NCA
5000 .0	1980	NCA	NCA	NCA
	1985 1990	NCA	NCA	NCA
	2000	F	NCA E	NCA NCA

Table 38. FUEL CELL SYSTEM TYPE (Mobile, Transportable, Fixed)

System Acquisition Cost. Fuel cell "System Acquisition Cost" parameter values are presented in Table 39 and in Figure 30.

Table 39.	FUEL CELL	SYSTEM ACQUISITION	COST
	(1980	DOLLARS)	

POMER OUTPUT	YEAR	PHOSPHORIC	MOLTEN	SOL ID
Level, KM		Acid	CARBONATE	POLYHER
1.5	1980	NCA	NCA	NCA
5.0	1985	2.25E03	NCA	NCA
	1990	1.50E03	NCA	NCA
	2000	9.00E02	NCA	1.28E03
	1980	NCA	NCA	NCA
	1985	7.50E03	NCA	NCA
	1990	5.00E03	NCA	NCA
	2000	3.00E03	NCA	4.25E03
20.0	1980	NCA	NCA	NCA
	1985	3.00E04	NCA	NCA
	1990	2.00E04	NCA	NCA
	2000	1.20E04	NCA	1.70E04
30.0	1980	NCA	NCA	NCA
	1985	4.50E04	NCA	NCA
	1990	3.00E04	NCA	NCA
	2000	1.80E04	NCA	2.55E04
60.0	1980	NCA	NCA	NCA
	1985	9.00E04	NCA	NCA
	1990	6.00E04	NCA	NCA
	2000	3.60E04	NCA	NCA
100.0	1980	NCA	NCA	NCA
	1985	1.50E05	NCA	NCA
	1990	1.00E05	NCA	NCA
	2000	6.0E04	NCA	NCA
250.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	2.25E05	2.50E05	NCA
500.J	2000	1.25E05	1.25E05	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	2.50E05	3.00E05	NCA
750.0	2000	2.00E05	2.00E05	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	3.75E05	NCA	NCA
1000.0	2000	3.00E05	3.00E05	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	5.00E05	NCA	NCA
5000.0	2000	4.00E05	4.00E05	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	2.50E06	NCA	NCA
L	2000	2.0E06	2.00E06	NCA

Figure 30. FUEL CELL SYSTEM ACQUISITION COST

Annual Operations and Maintenance Costs. Fuel cell "Annual Operations and Maintenance Costs" parameter values are presented in Table 40 and in Figure 31.

.

Table 40. FUEL CELL ANNUAL OPERATIONS AND MAINTENANCE COSTS (1980 DOLLARS)

POWER OUTPUT	YEAR	PHOSPHORIC	MOLTEN	SOL ID
LEVEL, KW		ACID	CARBONATE	POLYMER
1.5	1980 1985	NCA	NCA	NCA
5.0	1990 2000 1980 1985	2.25E02 1.50E02 9.00E01 NCA 7.50E02	NCA NCA NCA NCA NCA	NCA NCA 1.28EO2 NCA NCA
20.0	1990	5.00E02	NCA	NCA
	2000	3.00E02	NCA	4.25EO2
	1980	NCA	NCA	NCA
	1985	3.00E03	NCA	NCA
	1990	2.00E03	NCA	NCA
30.0	2000	1.20E03	NCA	1.70E03
	1980	NCA	NCA	NCA
	1985	4.50E03	NCA	NCA
	1990	3.00E03	NCA	NCA
60.0	2000	1.80E03	NCA	2.55E03
	1980	NCA	NCA	NCA
	1985	9.00E03	NCA	NCA
	1990	6.00E03	NCA	NCA
100.0	2000	3.60E03	NCA	NCA
	1980	NCA	NCA	NCA
	1985	1.50E04	NCA	NCA
	1990	1.00E04	NCA	NCA
250.0	2000	6.00E03	NCA	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	2.25E04	2.50E04	NCA
500.0	2000	1.25E04	1.25E04	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	2.50E04	3.00E04	NCA
750.0	2000 1980 1985	2. JOE04 2. 00E04 NCA NCA 3. 75E04	2.00E04 NCA NCA NCA	NCA NCA NCA NCA
1000.0	1990 2000 1980 1985	3.00E04 NCA NCA	3.00E04 NCA NCA	NCA NCA NCA
5000.0	1990 2000 1980 1985	5.00E04 4.00E04 NCA NCA 2.50E05	NCA 4.00E04 NCA NCA NCA	NCA NCA NCA NCA NCA
	1990 2000	2.00E05	2.00E05	NCA

Also, and the second

Figure 31. FUEL CELL ANNUAL OPERATIONS AND MAINTENANCE COSTS

<u>System Efficiency</u>. Fuel cell "System Efficiency" parameter values are presented in Table 41 and in Figure 32. The overall efficiency (thermal and electrical) of each of the fuel cell types can be affected by the capability to utilize the waste heat from the system. Molten carbonate fuel cells operate at temperatures greater than phosphoric acid fuel cells (about 900 to 1400°F compared to 150 to 400°F). This permits a bottoming cycle to be used with the molten carbonate fuel cell for further electrical production. The solid polymer electrolyte fuel cell operates at lower temperatures than the phosphoric acid fuel cell and provides the least opportunities for waste heat utilization.

Table 41.	FUEL	CELL	SYSTEM	EFFICIENCY	(%)

PONER OUTPUT LEVEL, KV	YEAR	PHOSPHORIC ACID	NOLTEN CARBONATE	N BRY LOS	
1.5	1980	NCA	NCA	NLA I	
	1985	35	NCA NCA	NCA	
1	2000	38 40	NCA	NCA 50	
5.0	1980	NCA	NCA	NCA	
	1985	35	NCA	NCA	
	1990	38	NCA	NCA	
	2000	40	NCA	50	
20.0	1980	NCA	NCA NCA	NCA	
	1985	35 38	MCA	NCA	
	2000	40	NCA	NCA 50	
30.0	1980	NCA	NCA	NCA	
	1985	35	NCA	HCA	
	1990	40	NCA	NCA	
	2000	42	NCA	50	
60.0	1980	NCA	NCA	NCA	
	1985	35	NCA NCA	NCA	
	1990	40 42	NCA	NCA NCA	
100.0	1980	NCA	NCA	NCA	
100.0	1985	38	NCA	NCA	
1	1990	40	NCA	NCA	
	2000	45	NCA	NCA	
230.0	1980	NCA	NCA	NCA	
	1985	NCA	NCA	NCA	
	1990	40	45	NCA	i i
	2000	45	50	NCA	
500.0	1980	NCA NCA	NCA NCA	NCA NCA	
	1985	40	48	NCA	
	2000	45	52	NCA	
750.0	1980	NCA	HCA	NCA	
	1985	NCA	NCA	NCA	
	1990	40	NCA	NCA	
	2000	45	52	NCA	
1000.0	1980	NCA NCA	NCA NCA	NCA	
	1985	40	HCA	NCA NCA	
	2000	45	52	NCA	ł
5000.0	1980	NCA	NCA	HCA	
	1985	NCA	NCA	NCA	
	1990	40	NCA	NCA	
	2000	45	52	NCA	

Figure 32. FUEL CELL SYSTEM EFFICIENCY

<u>Fuel Consumption</u>. Fuel cell "Fuel Consumption" parameter values are presented in Table 42 and in Figure 33.

• .

Table 42. FUEL CELL FUEL CONSUMPTION

			gal/hr	
POWER OUTPUT	YEAR	PHOSPHORIC	MOLTEN	SOL ID
Level, KM		ACID	CARBONATE	POLYMER
1.5	1980	NCA	NCA	NLA
5.0	1985	0.11	NCA	NCA
	1990	0.10	NCA	NCA
	2000	0.10	NCA	0.08
	1980	NCA	NCA	NCA
	1985	0.37	NCA	NCA
	1990	U.34	NCA	NCA
20.0	2000	0.32	NCA	0.26
	1980	NCA	NCA	NCA
	1985	1.47	NCA	NCA
30.0	1990 2000 1980 1985	1.36 1.30 NCA 2.22	NCA NCA NCA NCA NCA	NCA 1.04 NCA NCA
60.0	1990 2000 1980 1985 1990	2.04 1.95 NCA 4.43	NCA NCA NCA NCA	NCA 1.56 NCA NCA
100.0	2000 1980 1985 1990	4.09 3.91 NCA 6.82 6.49	NCA NCA NCA NCA	NCA NCA NCA NCA
230.0	2000	5.76	NCA	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	16.2	14.5	NCA
500.0	2000	14.4	13.0	NCA
	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	32.4	27.0	NCA
750.0	2000 1980 1985	28.7 NCA NCA 48.6	25.0 NCA NCA NCA	NCA NCA NCA NCA
1000.0	1990	43.1	37.5	NCA
	2000	NCA	NCA	NCA
	1980	NCA	NCA	NCA
	1985	65.2	NCA	NCA
5000.0	1990	57.4	49.9	NCA
	2000	NCA	NCA	NCA
	1980	NCA	NCA	NCA
	1985	324	NCA	NCA
	1990 2000	287	250	NCA NCA

1

۱

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

Figure 33. FUEL CELL FUEL CONSUMPTION

<u>Annual Fuel Cost</u>. Fuel cell "Annual Fuel Cost" parameter values (based on 1980 dollars and no real escalation) are presented in Table 43 and in Figure 34.

Table 43. FUEL CELL ANNUAL FUEL COST (1980 DOLLARS)

	POWER OUTPUT Level, Kw	YEAR	PHOSPHORIC ACID	MOLTEN Carbonate	SOLID SOLID
	1.5	1980	NCA	NCA	NCA
ł	1	1985 1990	1.01E03 9.35E02	NCA NCA '	NCA
		2000	9.35E02 8.91E02	NCA	NCA 7.12E02
Ĩ	5.0	1980	NCA	NCA	NCA
1		1985	3.38E03	NCA	NCA
Ł		1990	3.11E03	NCA	NCA
L	20.0	2000 1980	2.97E03 NCA	NCA NCA	2.37EO3 NCA
	20.0	1985	1,35E04	NCA	NCA
		1990	1.24Eo4	NCA	NCA
I		2000	1.19E04	NCA	9.53EO3
ł	30.0	1980	NCA	NCA	NCA
ł		1985	2.03E04 1.87E04	NCA NCA	NCA NCA
		1990 2000	1.79E04	NCA	1.43604
	60.0	1980	NCA	NCA	NCA
1		1985	4.06E04	NCA	NCA
ł		1990	3.74E04	NCA	NCA I
I		2000	3.58E04	NCA	NCA
ł	100.0	1980	NCA	NCA NCA	NCA NCA
ſ		1985 1990	6.24E04 5.94E04	NCA	NCA
		2000	5.27E04	NCA	NCA
ł	250.0	1980	NCA	NCA	NCA
1		1985	NCA	NCA	NCA
		1990	1.48E05	1.32E05	NCA
ſ		2000	1.31EOS	1.19E05	NCA
	500.0	1980	NCA NCA	NCA	NCA NCA
		1985 1990	2.96E05	NCA 2.47E05	NCA
1		2000	2.63E05	2.28E05	NCA
	750.0	1980	NCA	NCA	NCA
		1985	NCA	NCA	NCA
		1990	4.45E05	NCA	NCA
	1000 0	2000	3.94E05 NCA	3.43E05	NCA NCA
	1000.0	1980	NCA	NCA	NCA
		1990	5.97805	NCA	NCA
		2000	5.25E05	4.57E05	NCA
	5000.0	1980	NCA	NCA	NCA
		1985	NCA 2.96E06	NCA NCA	NCA NCA
		1990	2.98E06 2.63E06	2.28E06	NCA

Figure 34. FUEL CELL ANNUAL FUEL COST

<u>Life-Cycle Cost</u>. Fuel cell "Life-Cycle Cost" parameter values are presented in Table 44 in Figure 35. The life-cycle cost includes the cost of replacing the fuel cell stack every 5 years over the 20 year operating life of the system.

POWER OUTPUT LEVEL, KW	YEAR	PHOSPHORIC ACID	MOLTEN Carbonate	SOL ID POLYMER
1.5	1980	NCA	NCA	NCA
	1985	5.40	NCA	NCA
	1990 2000	4.56	NCA '	NCA 3.56
5.0	1980	3.91 NCA	NCA	NCA
	1985	5.41	NCA	NCA
	1990	4.53	NCA	NCA
	2000	3.91	NCA	3.56
20.0	1980	NCA	NCA	NCA
	1985	5.41	NCA	NCA
	1990	4.52	NCA	NCA
	2000	3.92	NCA	3.57
30.0	1980	NCA 5.41	NCA NCA	NCA
	1985 1990	4.54	NCA	NCA NCA
	2000	3.93	NCA	3.57
60.0	1980	NCA	NCA	NCA
	1985	5.41	NCA	NCA
	1990	4.54	NCA	NCA
	2000	3.93	NCA	NCA
100.0	1980	NCA	NCA	NCA
	1985	5.13	NCA	NCA
	1990	4.38	NCA	NCA
	2000	3.55	NCA	NCA
250.0	1980	NCA NCA	NCA NCA	NCA
	1985	NCA 4.25	NCA 4.02	NCA
	1990 2000	3.42	3.16	NCA NCA
500.O	1980	NCA	NCA	NCA
20010	1985	NCA	NCA	NCA
	1990	3.78	3.37	NCA
	2000	3.31	2.93	NCA
750.0	1960	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	3.79 3.31	NCA 2.94	NCA
1000 0	2000	NCA		NCA
1000.0	1980 1985	NCA	NCA NCA	NCA NCA
	1985	3.81	NCA	NCA
	2000	3.31	2.93	NCA
5000.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	3.43	NCA	NCA
	2000	3.31	2.93	NCA

Table 44. FUEL CELL LIFE CYCLE COST, 0% FUEL ESCALATION (1980 CENTS/kWh)

Figure 35. FUEL CELL LIFE-CYCLE COST, 0% FUEL ESCALATION

97

جامعيا بالمحاور بالاردان

System Volume. Fuel cell "System Volume" parameter values are presented in Table 45.

POWER OUTPUT Level, KW	YEAR	PHOSPHORIC ACID	MOLTEN CARBONATE	SOLID POLYMER	
1.5 5.0	1980 1985 1990 2000 1980	NCA 3.6 3.0 3.0 NCA	NCA NCA NCA NCA NCA	NCÀ NCA NCA 3.0 NCA	
20.0	1985 1990 2000 1980 1985 1990	12.0 10.0 10.0 NCA 45 40	NCA NCA NCA NCA NCA NCA	NCA NCA 10.0 NCA NCA NCA	
30.0	2000 1980 1985 1990	40 NCA 210 180	NCA NCA NCA NCA	40.0 NCA NCA NCA	
60.0	2000 1980 1985 1990	180 180 NCA 420 340	NCA NCA NCA NCA	180 NCA NCA NCA	
100.0	2000 1980 1985 1990	340 340 NCA 700 650	NCA NCA NCA	NCA NCA NCA NCA	
250.0	2000 1980 1985 1990	650 NCA NCA 2000	NCA NCA NCA 2000	NCA NCA NCA NCA	
500.J	2000 1980 1985 1990	2000 NCA NCA 4.0E03	2000 NCA NCA 4.0E03	NCA NCA NCA NCA	
750.0	2000 1980 1985 1990	4.0EU3 NCA NCA 6.0E03	4.0E03 NCA NCA NCA	NCA NCA NCA NCA	1
1000.0	2000 1980 1985 1990	6.0E03 NCA NCA 1.0E04	6.0E03 NCA NCA NCA	NCA NCA NCA NCA	
5000.0	2000 1980 1985 1990 2000	1.0E04 NCA NCA 1.25E05 1.25E05	1.0E04 NCA NCA NCA 1.25E05	NCA NCA NCA NCA NCA	

Table 45. FUEL CELL SYSTEM VOLUME (CUBIC FEET)

System Weight. Fuel cell "System Weight" parameter values are presented in Table 46.

POWER OUTPUT LEVEL, KN PHOSPHORIC ACID MOLTEN CARBONATE SOLID POLYMER YEAR 1980 1.5 NCA NCA NCA 2.5E02 1985 NCA NCA 1990 2.0E02 NCA NCA 2.0E02 2000 2.0E02 NCA 1980 5.0 NCA 8.75E02 7.0 E02 NCA NCA NCA 1985 NCA NCA 1990 NCA 7.0E02 7.0 EO2 2000 NCA 20.0 1980 NCA NCA NCA 3.5EO3 NCA 1985 NCA NCA 2.8E03 NCA 1990 2.8E03 2.8E03 NCA 2000 NCA 5.2E03 NCA 30.0 1980 NCA 1985 NCA NCA 4.2E03 1990 NCA NCA 4.2E03 2000 NCA 4.2E03 NCA 60.0 1980 NCA NCA 1.0E04 NCA 1985 NCA 8.0E03 1990 NCA NCA 8.0E03 2000 NCA NCA NCA NCA 100.0 1980 NCA 1.8E04 NCA 1985 NCA 1.36E04 NCA 1990 NCA 2000 1.36E04 NCA NCA 250.0 1980 NCA NCA NCA NCA NCA 1985 NÇA 3.4E04 1990 3.4EO4 NCA 3.4E04 2000 3.4E04 NCA 500.0 1980 NCA NCA NCA NCA NCA 1985 NCA 7.2E04 7.2E04 NCA 1990

7.2E04

NCA

NCA

1.2E05

1.2E05

NCA

NCA

1.6E05

1.6E05

NCA

NCA

8.0E05

8.0E05

7.2E04

NCA

NCA

NCA

1.2E05

NCA NCA

NCA

1.6E05

NCA NCA

NCA

8.0E05

2000

1980

1985

1990

2000

1980

1985

1990

2000

1980

1985

1990

2000

750.0

1000.0

5000.0

NCA

NCA

NCA

NCA

NCA

NCA

NCA NCA

NCA

NCA

NCA NCA

NCA

Table 46. FUEL CELL SYSTEM WEIGHT (POUNDS)

<u>Fuel Requirements and Capabilities</u>. The designated fuel is JP-4. Since fuel cells actually run on the hydrogen component of the fuel, they may have multi-fuel capabilities, at least as consistent with the fuel processor technology that is available to convert the fuel into a form suitable for fuel cell use. The fuel cell is not sensitive to the type of fuel assuming the fuel produced by the fuel processor does not contain impurities which can affect the operation of the fuel cell. Fuel cells are affected to various degrees by impurities such as CO, H_2S , SO_2 , Cl_2 , NO_x , and NH_3 . Molten carbonate cells are expected to require sulfur removal down to 1 ppm. Phosphoric acid fuel cells require CO concentrations of less than 4% and usually require a shift reactor to convert CO from the fuel processor and H_2O to CO_2 and H_2 .

Fuel specifications are very restrictive because unless impurity levels are very low, the catalyst in the fuel processor may be ruined.

Only fuel processors for methanol are current technology. Fuel processors for JP-4 and diesel are under development. Although methanol is not a logistic fuel, it may be a preferred fuel cell fuel because it reduces fuel processor complexity.

Start-up Time. Phosphoric acid fuel cell "Start-up Time" is 40 minutes at 1.5 and 5.0 kW, 45 minutes at 20.0 kW, 60 minutes at 30.0 and 60.0 kW, 120 minutes at 100.0 and 250.0 kW, 150 minutes at 500.0 and 750.0 kW, and 180 minutes at 1000.0 and 5000.0 kW. Molten carbonate fuel cell "Start-up Time" is 180 minutes at 250.0 and 500.0 kW, and 200 minutes at 750.0, 1000.0, and 5000.0 kW. Solid polymer electrolyte fuel cell "start-up time" is 40 minutes. Small capacity fuel cells using methanol fuel can have shorter start-up times because the fuel processor is not massive and may be brought up to the low reforming temperature quickly with increased fuel consumption. JP-4 fuel processors, technically known as "reformers," have longer start-up times because they operate at high temperatures, and start-up operations must be slow and carefully sequenced to avoid thermal shock of catalyst support structure, carbon formation, and potential catalyst inactivations.

Shutdown Time. Phosphoric acid fuel cell "Shutdown Time" is 30 minutes for capacities of 1.5 kW to 100 kW, 60 minutes at 250.0 kW, 90 minutes at capacities of 500.0 and 750.0 kW, 120 minutes at 1000.0 kW, and 150 minutes at 5000.0 kW. Molten carbonate fuel cell "shutdown time" is 150 minutes at
250.0 kW, 180 minutes at 500.0 and 750.0 kW, 200 minutes at 1000.0 kW, and 240 minutes at 5000.0 kW. Solid polymer electrolyte fuel cell "shutdown time" is 30 minutes.

<u>Reliability</u>. Fuel cell "Reliability" has an ordinal score of 4 indicating moderate reliability. Fuel cells are somewhat more reliable than diesels, mainly because of fewer moving parts.

<u>Environmental Constraints</u>. Fuel cells have an ordinal score of 5 indicating minimum potential environmental constraints. Fuel cells have less environmental constraints than diesels. Noise may be minor constraint.

Location Constraints. Fuel cells have an ordinal score of 4 indicating moderate locational constraints. Fuel cells have less locational constraints than diesels, although they still may have fuel availability and delivery problems.

<u>Operation Constraints</u>. Fuel cells have an ordinal score of 3 indicating average turn-down capability. Diesels have somewhat less operational constraints. Fuel cells have very limited overload capability.

Photovoltaic Energy Conversion Systems

Three types of photovoltaic energy conversion systems were considered: passively cooled flat plate, photoelectrochemical, and actively cooled. The three systems are diagramed schematically in Figure 36. A photovoltaic system consists of modules, which are integrated arrays of cells; structures to support and interconnect modules; and balance of system components (controls, batteries, inverters) to produce an entity capable of serving a load. Passive and active designs were based on performance characteristics as reported in the data base for single-crystal silicon photovoltaic cells applied to flat-plate and concentrating arrays since they are the primary commercially available photovoltaic technology. Actively cooled photovoltaic systems are interpreted as defining concentrating collectors that require active cooling of photovoltaic cells to maintain efficient photovoltaic solar energy conversion performance. Flat-plate and photoelectrochemical photovoltaic systems differ

ACTIVELY COOLED (Concentrators)

A82010155

Figure 36. PHOTOVOLTAIC SYSTEMS

from actively cooled, concentrating photovoltaic systems in two ways. The first difference is that flat-plate and photoelectrochemical systems utilize the total insolation — that is, the direct or specular component of sunlight plus indirect or diffuse sunlight. In the most general case, photoelectrochemical systems may be employed with sunlight concentration. Concentrating photovoltaic systems accept only the direct component of sunlight. In addition, because of the use of concentrating optics they must track the sun in at least one axis to keep the sun's image properly focused upon the photovoltaic cells. Flat-plate and photoelectrochemical systems are generally fixed and do not need to track the sun, although sun tracking systems may be employed. Because energy production of photovoltaic systems is dependent on the amount of solar energy falling on the collector, actively cooled systems suffer somewhat lower performance than fixed, flat-plate photovoltaic systems because the direct component of insolation is always less than the total insolation. However, this deficiency is substantially overcome by tracking the sun so that insolation availability is substantially similar for both fixed and tracking systems. The second difference is that flat-plate and photoelectrochemical systems operate near ambient temperatures, while concentrating photovoltaics are actively cooled to maintain cell temperature at efficient operating conditions. Hence, concentrating systems are able to provide low-temperature thermal energy (<180°F) for other uses such as domestic hot i ler or space heating.

Photovoltaic energy systems require batteries as a means of electrical energy storage because of the realities of the day/night cycle and the transient nature of daytime solar availability due to the movement of the sun in the sky and the presence of clouds. Inverters are necessary to convert the DC output of photovoltaic systems and batteries to utility-quality AC power.

Sizing photovoltaic arrays — that is, the determination of array area and battery capacity to produce continuous power output — is complicated by the fact that photovoltaic systems are quite sensitive to site. In a high insolation site such as in the Southwest, a considerably smaller array is required than in a Midwest or Neareast location. The design method used is not directly applicable to concentrating systems, but was modified as necessary to size these systems with reascable accuracy. The design method predicted the required array size to produce a continuous 1 kW_output. Note that characteristic data for photovoltaic energy conversion systems are frequently

reported on a peak kilowatt (kW_p) basis. This is not the same as the average kilowatt basis describing conventional energy conversion systems such as diesels. Although this is the conventional method of reporting the performance of photovoltaic technologies, it is thus difficult to compare different energy technologies on the same basis. Photovoltaic conversion device performance is established under "peak insolation" conditions of one kilowatt per square meter. Because photovoltaic systems are modular, system size for larger outputs is a linear function of the desired power requirement. (For example, a 5000 kW_e system is 5000 times the size of a 1 kW system.) Designs were prepared for continuous power systems for Albuquerque and Madison insolation to bracket insolation regimes. A linear interpolation was performed on the resulting photovoltaic array area and battery capacity to an average site because the data base developed in this study can only accept parameters of one representative case.

Battery storage capacity was sized such that no energy was wasted during the design month, and all array output may thus be applied to the load. Leadacid battery technology with characteristic parameters as reported in the data base was used as the means of electrical energy storage.

The results of the photovoltaic array sizing analysis has some implications that should be recognized. Photovoltaic systems for continuous duty are designed to produce power outputs of the desired value, but the data base user must realize that even with the presence of energy storage in the system inherent statistical variations in insolation availability may lead to occasional power outages. Outages are most likely to occur (albeit infrequently) during the low-insolation winter months. Because the photovoltaic system is considerably oversized to guarantee continuous power output under worst-month insolation conditions, significantly greater annual power output (> 8760 kWH_e/ year) is possible if a load and/or energy storage exists to make use of the system output.

Flat-Plate Photovoltaic System Design

Assumptions and data input values for this design are summarized below:

- Sites considered Albuquerque, New Mexico, and Madison, Wisconsin
- Photovoltaic system sized for worst-month insolation on tilted collector surface

- Collector tilted at local latitude and facing due south
- National average daily December insolation on south-facing collector at 45° tilt angle — 1204 Btu/ft² day
- Reported photovoltaic array efficiency at 82.4°F for single-crystal, flatplate collector - 10.6%
- Assumed power conditioning system efficiency 90%
- Reported battery efficiency (lead-acid technology) 79%
- Reported allowable battery depth of discharge 80%
- Average daily total insolation on tilted collector:
 - a. Madison 987.7 Btu/ft² day
 - b. Albuquerque 1906.4 Btu/ft^2 day
- Flat-plate collector tilt angle:
 - a. Madison 45°
 - b. Albuquerque 35°

The results of the analyses are as follows:

- Madison flat-plate photovoltaic array area 888 ft²/kW
- Madison required battery storage capacity 25.4 kWh_a/kW
- Albuquerque flat-plate photovoltaic array area 444 ft²/kW
- Albuquerque required battery storage capacity 22.9 kWh_p/kW

Actively Cooled (Concentrating) Photovoltaic System Design

Assumptions and data input values are summarized below:

- Photovoltaic system sized to worst month insolation in plane of collector
- Photovoltaic collector is assumed to be oriented east-west and tracking about a horizontal axis
- National average winter insolation in plane of collector -1109 Btu/ft² day
- Reported concentrating photovoltaic array efficiency 9.1%
- Average daily insolation in plane of collector:
 - a) Madison -1078.3 Btu/ft² day (November)
 - b) Albuquerque 1842.8 Btu/ft² day (February)

The results of the analyses are as follows:

- Madison concentrating photovoltaic array area 1097 ft²/kW
- Madison required battery storage capacity 25.4 kWh/kW
- Alhuquerque concentrating photovoltaic array area 634.1 ft²/kW
- Albuquerque required battery storage capacity 24.1 kWh/kW

The generic design of flat-plate and concentrating photovoltaic energy conversion system was determined by linear interpolation on the primary independent variable characterizing such systems — the average insolation in the worst month. The results are as follows:

- Generic flat-plate photovoltaic array area 783.5 ft²/kW
- Generic required battery storage capacity for flat-plate photovoltaic systems — 24.8 kWb_/kW
- Generic concentrating photovoltaic array area 1078 ft²/kW
- Generic required battery storage capacity for concentrating photovoltaic systems — 26.0 kWh/kW

Therefore, the parameters for the photovoltaic system as reported in the data hase are based on the above array and storage requirements for a 1 kW continuous system because the photovoltaic systems are modular.

<u>Technology Status</u>. Flat-plate photovoltaic systems are currently available in capacities of 1.5 to 100.0 kW. In 1985, flat-plate photovoltaic systems are expected to be available in capacities up to and including 500.0 kW. In 1990 flat-plate photovoltaic systems are expected to be available in capacities up to and including 750.0 kW. In 2000, flat-plate photovoltaics are expected to be available in all capacities.

Actively cooled photovoltaic systems are currently available in capacities of 1.5 to 30.0 kW. In 1985 they are expected to be available at capacities up to and including 250.0 kW. In 1990 actively cooled photovoltaic systems are expected to be available in capacities through 750.0 kW. In 2000 they are expected to be available in capacities through 1000.0 kW. Photochemical photovoltaic systems are expected to be available at capacities of 1.5 to 30.0 kW in 2000. Current research efforts are focusing on reducing the cost of producing photovoltaics. <u>Type</u>. Photovoltaic system "Type" parameter values are presented in Table 47. At the output levels considered, most continuous duty photovoltaic systems will be fixed.

POWER OUTPUT LEVEL, KW	YEAR	FLAT PLATE	ACTIVELY COOLED	РИОТОСНЕМІ САL
1.5	1980 1985	T	F F	NCA NCA
5.0	1990 2000 1980 1985 1990	M M F F	r F F F F	NCA T NCA NCA NCA
20.0	2000 1980 1985 1990	F F F	F F F	F NCA NCA NCA
30.0	2000 1980 1985 1990	F F F	F F F	F NCA NCA NCA
60.0	2000 1980 1985	F F F	F F NCA F	F NCA NCA
130.0	1990 2000 1980 1985	F F F	F F NCA F	NCA NCA NCA NCA NCA
250.0	1990 2000 1980 1985	F F NCA F	F F NCA F F	NCA NCA NCA NCA
500.0	1990 2000 1980 1985	F NCA F	F NCA NCA F	NCA NCA NCA NCA
750.0	1990 2000 1960 1985	F NCA NCA	F NCA NCA F	NCA NCA NCA NCA NCA
1000.0	1990 2000 1980 1985	F F NCA NCA	F NCA NCA	NCA NCA NCA NCA
5000.0	1990 2000 1980 1985	F F NCA NCA	NCA F NCA NCA	NCA NCA NCA NCA
	1990 2000	NCA F	NCA NCA	NCA

Table 47. PHOTOVOLTAIC SYSTEM TYPE (Mobile, Transportable, Fixed)

107

.

<u>System Acquisition Cost</u>. Photovoltaic "System Acquisition Cost" parameter values are presentd in Table 48 and in Figure 37.

POMER OUTPUT LEVEL, KW	YEAR	FLAT PLATE	ACTIVEL) COOLED	Рнотосныясат
1.5	1980	2.84E05	4.15E05	NCA
	1985 1990	2.45E05	3.57E05	NCA
	2000	2.07E05 2.07E05	3.03E05 3.03E05	NCA 2.07E05
5.0	1980	2.07E05 9.48E05	1.38E06	NCA
	1985	8.15E05	1.19E06	NCA
	1990	6.92E05	1.01E06	NCA
	2000	6.92E05	1.01E06	6.92E05
20.0	1980	3.79E06	5.54E06	NCA
	1985	3.26E06	4.76E06	NCA
	1990	2.77E06	4.04E06	NCA
10.0	2000	2.77E06	4.04E06	2.77E06
30.0	1980 1985	5.69E06 4.89E06	8.31E06 7.15E06	NCA
	1990	4.10E06	5.98E06	NCA NCA
	2000	4.10E06	5.98E06	4.10E06
60.0	1980	1.14E07	NCA	NCA
	1985	9.81E06	1.43E07	NCA
	1990	8.32E06	1.20E07	NCA
	2000	8.32E06	1.20E07	NCA (
100.0	1980	1.90E07	NCA	NCA
1	1985	1.63E07	2.38E07	NCA
	1990 2000	1.37E07	1.99E07 1.99E07	NCA NCA
230.0	1980	1.37E07	1,99E07 NCA	NCA
190.0	1985	4.08E07	5.95E07	NCA
	1990	3.41E07	4.98E07	NCA
	2000	3.41E07	4.98E07	NCA
500.0	1980	NCA	NCA	NCA
	1985	8.15E07	NCA	NCA
	1990	6.83E07	1.01E08	NCA
	2000	6.83E07	1.01E08	NCA
750.0	1980	NCA	NCA	NCA NCA
	1985 1990	NCA	NCA 1.50E08	NCA
	2000	1.04E08	1.50E08	NCA
1000.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	1.37E08	NCA	NCA
	2000	1.37E08	1.99E08	NCA
5000.0	1980	NCA	NCA	NCA NCA
	1985	NCA	NCA	NCA
	1990 2000	NCA 6.83E08	NCA	NCA

Table 48. PHOTOVOLTAIC SYSTEM ACQUISITION COST (1980 DOLLARS)

Figure 37. PHOTOVOLTAIC SYSTEM ACQUISITION COST

Annual Operations and Maintenance Cost. Photovoltaic "Annual Operations

and Maintenance Cost" parameter values are in Table 49 and in Figure 38.

POMER OUTPUT Level, KM	YEAR	FLAT PLATE	ACTIVELY COOLED	Рнотоснеятсас
1.5 5.0	1980 1985 1990 2000 1980 1985 1990	1.81E04 1.54E04 1.32E04 1.32E04 6.05E04 5.14E04	2.60E04 2.22E04 1.89E04 1.89E04 8.66E04 7.39E04	NCA NCA NCA 1.32E04 NCA NCA NCA
20.0	2000 1980 1985 1990	4.40E04 4.40E04 2.42E05 2.06E05 1.76E05	6.31E04 6.31E04 3.47E05 2.96E05	4.40E04 NCA NCA NCA
30.0	2000 1980 1985 1990	1.76E05 3.63E05 3.08E05 2.61E05	2.52E05 2.52E05 5.21E05 4.44E05 3.74E05	1.76E05 NCA NCA NCA
60.0	2000 1980 1985 1990	2.61E05 7.28E05 6.19E05 5.29E05	3.74E05 NCA 8.88E05 7.50E05	2.61EO5 NCA NCA NCA
100.0	2000 1980 1985 1990	5.29E05 1.21E06 1.03E06 8.72E05	7.50E05 NCA 1.48E06 1.24E06	NCA NCA NCA NCA
250.0	2000 1980 1985 1990	8.72E05 NCA 2.57E06 2.17E06	1.24E06 NCA 3.70E06 3.11E06	NCA NCA NCA NCA
500.0	2000 1980 1985 1990	2.17E06 NCA 5.14E06 4.35E06		NCA NCA NCA NCA
750.0	2000 1980 1985 1990	4.35E06 NCA NCA 6.62E06		NCA NCA NCA NCA
1000.0	2000 1980 1985 1990	6.62E06 NCA NCA 8.72E06	NCA NCA NCA	NCA NCA NCA NCA NCA
5000.0	2000 1980 1985 1990 2000	8.72E06 NCA NCA NCA 4.35E07	NCA NCA NCA	NCA NCA NCA NCA

Table 49. PHOTOVOLTAIC ANNUAL OPERATIONS AND MAINTENANCE COST (1980 DOLLARS)

Figure 38. PHOTOVOLTAIC ANNUAL OPERATIONS AND MAINTENANCE COST

<u>System Efficiency</u>. Photovoltaic "System Efficiency" parameter values are presented in Table 50 and in Figure 39. Photovoltaic system efficiency is defined as —

[(Monthly average system energy output per square foot of array) + (Monthly average insolation in plane of array)] where insolation is for the month with the lowest insolation value.

POWER OUTPUT LEVEL, KW	YEAR	FLAT Plate	ACT1VELY COOLED	Рнотоснемі саі.
1.5	1980	8.7	6.9	NCA
5.0	1985 1990 2000 1980 1985 1990	9.5 11.4 13.3 8.7 9.5 11.4	7.5 9.0 10.5 6.9 7.5 9.0	NCA NCA 9.5 NCA NCA NCA
20.0	2000 1980 1985 1990	13.3 8.7 9.5 11.4	10.5 6.9 7.5 9.0	9.5 NCA NCA NCA
30.0	2000 1980 1985 1990	13.3 8.7 9.5	10.5 6.9 7.5	9.5 NCA NCA NCA
60.0	2000 1980 1985 1990	11.4 13.3 8.7 9.5 11.4	9.0 10.5 NCA 7.5	9.5 NCA NCA NCA
100.0	2000 1980 1985 1990	13.3 8.7 9.5	9.0 10.5 NCA 7.5	NCA NCA NCA NCA
250.0	2000 1980 1985	11.4 13.3 NCA 9.5	9.0 10.5 NCA 7.5	NCA NCA NCA
500.J	1990 2000 1980 1985 1990	11.4 13.3 NCA 9.5 11.4	9.0 10.5 NCA NCA 9.0	NCA NCA NCA NCA NCA
750.0	2000 1980 1985 1990	13.3 NCA NCA 11.4	10.5 NCA NCA 9.0	NCA NCA NCA NCA
1000.0	2000 1980 1985	13.3 NCA NCA	10.5 NCA NCA	NCA NCA NCA NCA
5000.0	1990 2000 1980 1985 1990	11.4 13.3 NCA NCA NCA	NCA 10.5 NCA NCA NCA	NCA NCA NCA NCA
	2000	13.3	NCA	NCA

Table 50. PHOTOVOLTAIC SYSTEM EFFICIENCY (%)

Figure 39. PHOTOVOLTAIC SYSTEM EFFICIENCY

<u>Fuel Consumption</u>. Recause photovoltaic power systems use only sunlight as their "fuel" source, fuel consumption is zero for all system capacities.

Annual Fuel Cost. Annual fuel cost for photovoltaic power systems is zero dollars per year.

Life-Cycle Cost. Photovoltaic power system "Life-Cycle Cost" parameter values are presented in Table 51 and in Figure 40. Because fuel cost is zero, photovoltaic power systems are not sensitive to fuel cost escalation rates. Life-cycle costs are based on two replacements of the lead-acid battery storage subsystem during the 20 year economic analysis period and one replacement of the inverter. Replacement costs include installation at 25% of off-the-shelf equipment costs. The batteries and inverter installed when the photovoltaic power system is initially installed have an installation cost of 50% of the off-the-shelf equipment costs. Battery costs are based on leadacid battery costs in the year in which system is installed.

POWER OUTPUT LEVEL, KW	YEAR	alv 1.4 LV 1.4	4.1 TV & L) 4.1 TV & L)	PlatoCHERICAL
1.5	1980	185.2	264.0	ALC: N
	1985	159.0	230.9	NCA .
	1990	135.0	196.1	NLA
5.0	2000	115.0	196.1	135.0
0.1	1980	185.6	268.5	NCA
	1990	158.9	230.7	NLA NCA
	2000	135.3	196.2	135.0
20.0	1980	185.7	269.3	NCA NCA
	1985	159.0	210.8	NCA
	1990	135.3	146.1	NLA
	2000	135.3	140.1	135.1
30.0	1950	185.6	264.4	NCA
	1985	158.6	2 \$1.1	NCA
	1440	130. h	1.41.	NCA
	2000	11316	193.7	141.6
-u.u	1980	18518	NLA	NI.A
	1985	158.9	231.4	NCA
	1990 2000	131.8	194.3	NCA NCA
100.0	1980	1:328	NCA	NCA
130.0	1985	133.0	230.8	NLA
	1990	130	193.2	NLA
	2000	1 1	193.2	NCA
250.0	1980	NCA	NCA	NCA
	1985	158.9	230.8	NCA
	1990	133.8	193.5	NCA
	2000	133.8	193.5	NCA
500.0	1980	NCA	NCA	NCA
	1985	158.9	NCA	NCA NCA
	1990 2000	133.6	196.2 196.2	NCA
730.0	1980	NCA	NCA	NCA
730.0	1985	NCA	NCA	NCA
	1990	134.0	194.4	NCA
	2000	134.0	194.4	NCA
1000.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	134.0	NCA	NCA
	2000	1 14.0	193.2	NCA
5000.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA NCA
Į	1990	NCA 133.6	NCA NCA	NLA VI V
	2000		_ מימ	NI 1

Table 51. PHOTOVOLTAIC POWER SYSTEM LIFE CYCLE COST (1980 CENTS/kWh)

Figure 40. PHOTOVOLTAIC LIFE CYCLE COST

System Volume. Photovoltaic power "System Volume" parameter values are presented in Table 52.

Table 52. PHOTOVOLTAIC POWER SYSTEM VOLUME (Cubic Feet)

PONER OUTPUT LEVEL, KN	YEAR	FLAT PLATE	ACTIVELY COOLED	PHOTOCHENII CAL
1.5	1980	1.96E05	2.94E05	NCA
	1985	1.96E05	2.94E05	NCA
	1990	1.96E05	2.94E05	NCA
	2000	1.96E05	2.94E05	1.96E05
5.0	1980	6.53E05	9.80E05	NCA
1	1985	6.53E05	9.80E05	NCA
	1990	6.53E05-	9.80E05	NCA
	2000	6.53E05	9.80E05	6.53E05
20.0	1980	2.61E06	3.92E05	NCA
	1985	2.61E06	3.92E05	NCA
	1990	2.61E06	b.92E05	NCA
	2000	2.61E06	B.92E05	2.61E06
30.0	1980	3.92E06	5.88£06	NCA
	1985	3.92E06	5.88E06	NCA
	1990	3.92E06	5.88E06	NCA
	2000	3.92E06	5.88E06	3.92E06
60.0	1980	7.84E06	NCA	NCA
	1985	7.84E06	1.18E07	NCA
	1990	7.84E06	1.18E07	NCA
	2000	7.84E06	1.18E07	NCA
100.0	1980	1.31E07	NCA	NCA
	1985	1.31E07	1.96EU7	NCA
	1990	1.31E07	1.96E07	NCA
	2000	1.31E07	1.96E07	NCA
250.0	1980	NCA	NCA	NCA
	1985	3.26E07	4.96E07	NCA
	1990	3.26E07	4.96E07	NCA
	2000	3.26E07	4.96E07	NCA
500.0	1980	NCA	NCA	NCA
	1985	n.53E07	NCA	NCA
	1990	6.53EU7	9.80E07	NCA
	2000	6.53E07	9.80E07	NCA
750.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	9.79E07	1.47608	NCA
	2000	9.79E07	1.47E08	NCA
1000.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	1.31E08	NCA	NCA
	2000	1.31E08	.96E08	NCA
5000.0	1980	NCA	NCA	NCA
	1985	NCA	NCA	NCA
	1990	NCA	NCA	NCA
	2000	6.53E08	NCA	NCA

System Weight. Photovoltaic power "System Weight" parameter values are presented in Table 53.

Table 53. PHOTOVOLTAIC POWER SYSTEM WEIGHT (POUNDS)

1		J	•		J
	POWER OUTPUT Level, KW	YEAR	FLAT PLATE	ACT IVELY COOLED	PHOTOCHEMICAL
Γ	1.5	1980	8.46E03	2.45E04	NCA
	5.0	1985 1990 2000 1980 1985 1990	7.88E03 7.66E03 7.58E03 2.82E04 2.63E04 2.55E04	2.38E04 2.36E04 2.35E04 8.16E04 7.93E04 7.87E04	NCA NCA 7.58EO NCA NCA NCA
	20.0	2000 1980 1985 1990	2.53E04 1.13E05 1.05E05	7.87E04 7.83E04 3.26E05 3.17Ė05 3.15E05	2.53E04 NCA NCA NCA
	30.0	2000 1980 1985 1985	1.02E05 1.01E05 1.68E05 1.57E05	3.13E05 4.89E05 4.76E05 4.73E05	NCA NCA NCA NCA
	60.0	2000 1980 1985 1990	1.53E05 1.52E05 3.37E05 3.14E05	4.70E05 NCA 9.52E05 9.46E05	1.52E05 NCA NCA NCA
	100.0	2000 1980 1985 1990	3.06E05 3.04E05 5.61E05 5.25E05	9.40E05 NCA 1.59E06 1.58E06	NCA NCA NCA NCA
	230.0	2000 1980 1985	5.10E05 5.05E05 NCA 1.31E06	1.57E06 NCA 3.98E06	NCA NCA NCA NCA
	500.J	1990 2000 1980 1985	1.28E06 1.26E06 NCA 2.62E06	3.95E06 3.93E06 NCA NCA	NCA NCA NCA
	750.0	1990 2000 1980 1985 1990	2.54E06 2.52E05 NCA NCA 3.84E06	7.90E06 7.86E06 NCA NCA 1.18E07	NCA NCA NCA NCA NCA
	1000.0	2000 1980 1985 1990	3.78E06 NCA NCA 5.10E06	L. 18E07 NCA NCA NCA	NCA NCA NCA NCA
	5000 .0	2000 1980 1985 1990	5.05E06 NCA NCA NCA	1.57E07 NCA NCA NCA	NCA NCA NCA NCA
		2000	2.52E07		NCA

<u>Fuel Requirements and Capabilities</u>. Photovoltaic power systems use no fuel. They are "fueled" by sunlight. In sunny areas system size may be reduced, and system life-cycle cost correspondingly reduced. In areas with little sun, system size may have to be increased to insure acceptable performance, and system life-cycle costs will be increased.

<u>Start-up Time</u>. Photovoltaic power system "Start-up Time" is 5 minutes and assumes motor starting loads are present. In cases where minimal motor starting loads are present, start-up times will be less than 5 minutes.

Shutdown Time. Photovoltaic power system "Shutdown Time" is one minute.

<u>Reliability</u>. Photovoltaic power system "Reliability" has an ordinal score of 3 indicating average reliability. Photovoltaic power systems have comparable reliability to diesels. Solar availability strongly influences system reliability.

Environmental Constraints. Photovoltaic power systems have an ordinal score of 5 for "Environmental Constraints" indicating minimum potential environmental constraints. Photovoltaic power systems have less environmental constraints than diesels.

Location Constraints. Photovoltaic power systems have an ordinal score of 3 indicating average location constraints. Photovoltaic power systems have a comparable locational constraint rating to diesels. Systems will not perform well at high latitudes with short winter days.

<u>Operation Constraints</u>. Photovoltaic power systems have an ordinal score of 2 indicating poor turn-down capability with large efficiency penalty. Diesels have better operational constraints. Photovoltaic systems have no overload capability.

Wind Turbines

There are two types of wind turbines of interest in this study: horizontal axis and vertical axis. The only real difference between the two is the orientation of the turbine shaft and, therefore, vertical-axis wind turbines do not have to track the wind direction. The system configuration is presented in Figure 41. Because of the general requirement for continuous AC power output, wind systems include battery storage.

Because the wind systems are dependent upon a number of locational factors (the distribution of wind speed) and machine design factors (cut-in speed and rated wind speed), a continuous AC power output system of 10 kW requires a wind turbine with a rated capacity of greater than 10 kW. To appropriately identify the required wind turbine rated capacity for the system output requirements, capacity factors were calculated.

The capacity factor (CF) of the wind turbine is the ratio of the average wind turbine energy output in a specific wind speed regime to the rated energy output as if wind speed is always at the speed at which the wind turbine is rated. The capacity factor is dependent on the following parameters:

- SI Ξ Cut-in speed of the wind machine defined as the wind speed at which the wind machine begins to produce useful power
- SR = Rated wind speed defined as the wind speed at which the wind machine produces its rated power output

SA ≡ The time weighted average of the wind speed during a month at the site. This procedure assumes that wind follows a Rayleigh distribution with parameters "g" = 1 and "c" = 2. The mean wind speed for system design should be for the worst month of the year at the site under consideration to ensure that the system will meet the general requirements of continuous power output.

To determine the capacity factors for the wind turbines, the cut-in speed (SI) and the rated wind speed (SR) were obtained from the literature search and the surveys on the wind systems. The mean wind speed (SA) is assumed to be 8.1 mph, which is the mean (standard deviation of 1.7 mph) of monthly mean wind speeds for 70 nationwide sites for the month of August. August generally has the lowest mean wind speeds.

Given the capacity factor of the wind machine, the rated capacity of the wind machine at continuous power output levels can be calculated with the following assumptions:

- 1) n_h is assumed at 79%
- 2) n_T is assumed at 90%
- 3) One day's electrical energy storage is assumed for 80% depth of discharge of batteries regardless of mean wind speed. Thus, a 10-kW continuous system requires 240 kWh of storage or 300 kWh of batteries.
- 4) x = 0.5; 50% of the wind machine output goes directly to load, and 50% goes to storage and then to load.

With a value of SA of 8.1 mph, the rated capacity of the wind turbine is 15.54 times its continuous power output rating (a wind turbine for 100 kW continuous power output is rated at 1,554 kW).

Note that the capacity factor (CF) is quite sensitive to the mean wind speed. For example, cases assuming a cut-in wind speed of 7.5 mph and a rated wind speed of 23.0 mph and four mean wind speeds of 8.1, 10, 12, and 15 mph were calculated (tabulated below). Consequently, the parameter values estimated for the wind systems are likely to be overestimated if the mean wind speed is greater than 8.1 mph and underestimated if the mean wind speed is less than 8.1 mph.

Mean Wind Speed,	Rated Capacity of Wind Machine Required for 10 kW Continuous, 		
8.1	155		
10	69		
12	44		
15	29		

<u>Technology Status</u>. Vertical axis wind turbines are currently available in capacities of 1.5 to 5.0 kW. In 1985 they are expected to be available in capacities through 30.0 kW. In 1990 they are expected to be available in capacities through 60.0 kW. In 2000 they are expected to be available in capacities through 100.0 kW.

Horizontal axis wind turbines are currently available in capacities of 1.5 to 250.0 kW. In 1985 they will be available in capacities through 750.0 kW. In 1990 they will be available in capacities through 1000.0 kW.

The primary reasons for the lag in the availability of larger capacity machines is the lack of an extensive market which would be required to minimize the manufacturing costs. <u>Type</u>. Wind turbine systems "Type" parameter values are presented in Table 54. All wind turbine systems are fixed.

<u>System Acquisition Cost</u>. Wind turbine "System Acquisition Cost" parameter values are presented in Table 55 and in Figure 42.

Table 54. WIND TURBINE SYSTEM TYPE (Fixed)

Table 55.WIND TURBINE SYSTEMACQUISITION COST (1980 dollars)

POWER OUTPUT Level, KW	YEAR	VERTICAL AXIS	HOR I ZOFITAL AXIS
1.5	1980	F	F
	1985 1990	F	F
	2000	P	F
5.0	1980	F	F
	1985	F	F
	1990	F	F
	2000	F	F
20.0	1980	NCA	F
	1985	F	F
	1990	F	F
	2000	F	F
30.0	1980	NCA	F
	1985	F	F
	1990 2000	F	F
60.0	1980	F	F
	1985	NCA	F
	1990	F	F
	2000	F	F
100.0	1980	NCA	F
	1985	NCA	F
	1990	NCA	F
1	2000	F	F
250.0	1980	NCA	F
	1985	NCA	F F
	1990	NCA NCA	Ē
500.0	2000 1980	NCA	NCA
500.0	1980	NCA	F
	1990	NCA	F
	2000	NCA	F
750.0	1980	NCA	NCA
	1985	NCA	F
	1990	NCA	F
	2000	NCA	F
1000.0	1980	NCA	NCA
	1985	NCA NCA	NCA F
	1990 2000	NCA	
5000.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA	NCA
	2000	NCA	NCA

POWER OUTPUT LEVEL, KW	YEAR	VERTICAI. AXIS	INTELAURIAL ANIS
1.5	1980 1985		3.54E04
	1985		3.36E04 3.17E04
	2000	3.17E04	B. 17E04
5.0	1980	7.41E04	7.41E04
	1985	7.04E04	7.04E04
	1990	6.67E04	6.67E04
	2000	6.67EO4	6.67E04
20.0	1980	NCA	2.00E05
	1985	1.90E05	1.90E05
	1990	1.80E05	1.80E05
30.0	2000 1980	1.80E05	1.80E05
30.0	1980	NCA 2.61E05	2.75E05 2.61E05
	1990	2.61205 2.48E05	2.48E05
	2000	2.48E05	2.48E05
60.0	1980	NCA	F · · · · ·
	1985	NCA	4.86EU5 4.62EO5
	1990	4.37E05	4.37E05
	2000	4.37E05	4. 37E05
100.0	1980	NCA	
	1985	NCA	7.55E05 7.17E05
	1990	NCA	6.49E05
	2000	6.49E05	6.49EU5
250.0	1980	NCA	1.72E06
	1985	NCA	1.63E06
	1990 2000	NCA NCA	1.55E06
500.0	1980	NCA	1.55E06 NCA
500.0	1985	NCA	3.26E06
	1990	NCA	3.10E06
	2000	NCA	B. 10E06
750.0	1980	NCA	NCA
	1985	NCA	4.89E06
	1990	NCA	4.65E06
	2000	NCA	4.65E06
1000.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA NCA	6.20E06
5000.0	2000 1980	NCA	5.20E06 NCA
1000.0	1985	NCA NCA	NCA
	1990	NCA	NCA
	2000	NCA	NCA

4

Figure 42. WIND TURBINE SYSTEM ACQUISITION COST

Annual Operations and Maintenance Cost. Wind turbine "Annual Operations and Maintenance Cost" parameter values are presented in Table 56 and in Figure 43.

Table 56. WIND TURBINE ANNUAL OPERATIONS AND MAINTENANCE COSTS (1980 DOLLARS)

1	ĺ			
POWER OU tput Level , kw	YEAR	VERTIGAL AATS	Her LECHTAL ANIS	
1.5	1980	1.81E03	1.81E03	1
	1985	1.42E03	1.42E03	L
	1990	1.38E03	1.38E03	l
	2000	1.38E03	1.38E03	ſ
5.0	1980	5.15E03	5.15E03	ł
	1985 1990	3.91E03	3.91E03	I
l 1	2000	3.83E03	3.83E03	l
20.0	1980	3.83E03 NCA	3.83E03	
20.0	1985	1.38E04	1.87E04	ł
	1990	1.36E04	1.38E04	ł
	2000	1.36E04	1.36E04 1.36E04	I
30.0	1980	NCA	2.76E04	I
	1985	2.02E04	2.02E04	ł
	1990	1.99E04	1.99604	ł
	2000	1.99EO4	1.99E04	I
60.0	1980	NCA	5.38E04	I
	1985	NCA	3.94E04	I
	1990	3.88E04	3.88E04	I
	2000	3.88EO4	3.88E04	Į
100.0	1980	NCA	8.86EO4	I
	1985 1990	NCA NCA	6.48E04	ł
	2000	6.29E04	6.29E04 6.29E04	1
250.0	1980	NCA	2.18E05	
1 2000	1985	NCA	1.60E05	
1	1990	NCA	1.56E05	I
	2000	NCA	1.56E05	1
500.0	1980	NCA	NCA	1
	1985	NCA	3.19E05	ł
	1990	NCA	3.11E05	
	2000	NCA	3.11E05	
750.0	1980	NCA	NCA	
	1985	NCA	4.79E05	
l.	1990	NCA	4.67E05	ļ
	2000	NCA NCA	4.67E05	
1000.0	1980	NCA NCA	NCA	
	1985 1990	NCA	6.23E05	
	2000	NCA	6.23E05	
5000.0	1980	NCA	NCA	
10000.0	1985	NCA	NCA	
	1990	NCA	NCA	
	2000	NCA	NCA	

<u>System Efficiency</u>. Wind turbine "System Efficiency" parameter values are presented in Table 57 and in Figure 44. Wind turbine system efficiency is defined as —

(Actual system continuous output at mean wind speed of 8.1 mph) * (Power in wind at 8.1 mph mean wind speed)

where the power in wind takes into account the wind speed distribution.

POWER OUTPUT LEVEL, KW HORIZONTAL AXIS VERTICÁL AXIS YEAR 1.5 1980 26.5 26.9 1985 26.5 26.9 1990 26.5 26.5 29.9 26.9 26.9 31.1 2000 5.0 1980 1985 29.9 31.1 1990 29.9 31.1 2000 29.9 31.1 20.0 1980 NCA 36.7 1985 36.4 36.7 1990 36.4 36.7 2000 36.4 36.7 30.0 1980 NCA 38.5 1985 38.1 38.5 1990 38.1 38.5 2000 38,1 NCA 38.5 60.0 1980 41.8 1985 NCA 41.8 1990 41.3 41.8 2000 41.3 NCA 41.8 100.0 1980 44.4 1985 NCA 44.4 1990 NCA 44.4 2000 44.4 43.9 NCA 250.0 1980 1985 NCA 49.6 NCA 1990 49.6 2000 NCA NCA 49.6 NCA 500.0 1980 NCA 1985 49.6 1990 NCA 49.6 2000 NCA NCA 49.6 NCA 1980 750.0 NCA 1985 49.6 NCA 1990 49.6 2000 NCA NCA 49.6 NCA 1000.0 1980 NCA NCA 1985 NCA 1990 49.6 2000 NCA NCA 49.6 NCA 5000.0 1980 NCA NCA 1985 NCA 1990 NCA 2000

Table 57. WIND TURBINE SYSTEM EFFICIENCY (%)

Figure 44. WIND TURBINE SYSTEM EFFICIENCY

<u>Fuel Consumption</u>. Because wind turbine systems use only the wind as their "fuel" source, fuel consumption is zero for all system capacities.

Annual Fuel Cost. Annual fuel cost for wind turbine systems is zero dollars per year.

Life-Cycle Cost. Wind turbine "Life-Cycle Cost" parameter values are presented in Table 58 and in Figure 45. Recause fuel cost is zero, wind turbines are not sensitive to fuel cost escalation rates. Life-cycle costs are based on two replacements of the lead-acid battery storage subsystem during the 20 year economic analysis period and one replacement of the inverter. Replacement costs include installation at 25% of off-the-shelf equipment costs. The batteries and inverter installed when the wind turbine system is initially installed have an installation cost of 50% of off-the-shelf equipment costs. Rattery costs are based on lead-acid battery costs in the year in which system is installed.

Table 58.	WIND (TURBINE	LIFE	CYCLE	COST
	(1980	CENTS/k	Wh)		

1. 1			
PONER OUTPUT LEVEL, KN		۶	₩F121-4TAL WES
	Ę	VERT IA AL Vais	s 15
23	YEAR	VER	WIS NUS
1.5	1980	21.5	21.5
	1985	19.3	19.3
	1990	18.4	18.4
5.0	2000	18.4	18.4
ט.ר	1985	15.0	15.0
	1990	13.2	12.6
	2000	12.6	12.6
20.0	1980	NLA	11.4
	1985	9.75	9.75
	1990	9.38	9.38
	2000	9.38	9.38
30.0	1980	NCA	10.8
	1985	9.15	9.15
	1990	8.82	8.82
	2000	8.82	8.82
60.0	1980	NCA	9.98
	1985	NCA	8.43 8.11
	2000	8.11 8.11	8.11
1.00.0	1980	NCA	9.57
100.0	1985	WCA	8.05
·	1990	NCA	7.51
	2000	7.52	7.51
250.0	1980	IICA	9.07
	1985	NCA	7.59
	1990	IICA	7.30
	2000	NCA	7.30
500.0	1980	NCA	NCA
	1985	NCA	7.58
	1990	IICA NCA	7.29
	2000	NCA	HCA
750.0	1985	HCA	7.58
	1990	NCA	7.29
	2000	NCA	7.29
1000.0	1980	NCA	NCA
	1985	ИСА	NCA
	1990	NCA	7.29
	2000	NCA .	7.29
5000.0	1980	NCA	NCA
	1985	NCA	NCA
	1990	NCA NCA	NCA NCA
L	1 2000	NLA	1

Figure 45. WIND TURBINE LIFE-CYCLE COST

<u>System Volume</u>. Wind turbine "System Volume" parameter values are presented in Table 59.

Ŧ

Table 59. WIND TURBINE SYSTEM VOLUME (CUBIC FEET)

1			1	
	POWER OUTPUT LEVEL, KW	YEAR	VERTICAL AXIS	4-61 zeeffal AXIS
	1.5	1980	1.98E02	3.96E02
	5.0	1985 1990 2000 1980 1985	1.98E02 1.98E02 1.98E02 1.98E02 7.00E02 7.00E02	3.96E02 3.96E02 3.96E02 1.40E03 1.40E03
	20.0	1990 2000 1980 1985 1990	7.00E02 7.00E02 NCA 5.15E02	1.40E03 1.40E03 1.03E04 1.03E04
	30.0	2000 1980 1985 1990	5.15E02 5.15E02 NCA 9.26E02 9.26E02	1.03E04 1.03E04 1.85E04 1.85E04 1.85E04 1.85E04
	60.0	2000 1980 1985 1990	9.26E02 NCA NCA 2.51E03	1.85E04 5.02E04 5.02E04 5.02E04 5.02E04
	100.0	2000 1980 1985 1990	2.51E03 NCA NCA NCA	5.02E04 1.04E05 1.04E05 1.04E05
	250.0	2000 1980 1985 1990	5.02E04 NCA NCA NCA	1.04E05 3.88E05 3.88E05 3.88E05 3.88E05
	500.0	2000 1980 1985 1990	NCA NCA NCA NCA	3.88E05 NCA 7.76E05 7.76E05
	750.0	2000 1980 1985 1990	NCA NCA NCA NCA	7.76E05 NCA .16E06 .16E06
	1000.0	2000 1980 1985 1990	NCA NCA NCA NCA	1.16E06 NCA NCA 1.04E06
	5000.0	2000 1980 1985 1990	NCA NCA NCA	1.04E06 NCA NCA NCA
••		2000	NCA	NCA

System Weight. Wind turbine "System Weight" parameter values are presented in Table 60. Values for system sizes above 750 kW should be used with caution because of large variation in data in this range.

Table 60. WIND TURBINE SYSTEM WEIGHT (POUNDS)

DOURD ANTPHIT	LEVEL, KW	YEAR		VERTICAL AXIS	Hok I ZosiTAI. AXI S	
	1.5	1980 1985 1990 2000 1980 1985		9.53E03 8.79E03 8.50E03 8.40E03 2.95E04 2.72E04	9.53E03 8.79E03 8.50E03 8.40E03 2.95E04 2.72E04	
	20.0	1990 2000 1980 1985 1990		2.63E04 2.6CE04 NCA 9.11E04 8.81E04	2.63E04 2.60E04 9.88E04 9.11E04 8.81E04 8.71E04	
	30.0	2000 1980 1985		8.71E04 NCA 1.31E05	1.42E05 1.31E05 1.27E05	
	60.0	1990 2000 1980 1985 1990		1.27E05 1.26E05 NCA NCA 2.39E05	1.27E05 1.26E05 2.68E05 2.47E05 2.39E05	
	100.0	2000 1980 1985 1990		2.36E05 NCA NCA NCA	2.36E05 4.29E05 3.95E05 3.82E05	
	250.0	2000 1980 1985 1990		3.78E05 NCA NCA NCA	3.78E05 1.01E06 9.31E05 9.00E05	
	500.0	2000 1980 1985 1990		NCA NCA NCA NCA	8.90E05 NCA 1.86E06 1.80E06	
	750.0	2000 1980 1985 1990		NCA NCA NCA NCA NCA	1.78E06 NCA 2.79E06 2.70E06	
	1000.0	2000 1980 1985		NCA NCA	2.67E06 NCA NCA 3.82E06	
	5000.0	1990 2000 1980 1985 1990 2000		NCA NCA NCA NCA NCA	3. 78E06 NCA NCA NCA NCA	

<u>Fuel Requirements and Capabilities</u>. Wind turbine systems use no fuel; they are "fueled" by wind. In areas of high average wind speeds, system size may be reduced, and system life-cycle cost correspondingly reduced. In areas with low average wind speeds, system size may have to be increased to ensure acceptable performance and system life-cycle costs will be increased.

<u>Start-up Time</u>. Wind turbine start-up time is estimated at 10 seconds at 1.5 and 5.0 kW capacities, 1 minute at 20.0 and 30.0 kW capacities, 2 minutes at 60.0 and 100.0 kW capacities, and 5.0 minutes for capacities of 250.0 kW or more.

<u>Shutdown Time</u>. Wind turbine shutdown time is estimated at 10 seconds at 1.5 and 5.0 kW capacities, 1 minute at 20.0 and 30.0 kW capacities, 2 minutes at 60.0 and 100.0 kW capacities, and 5 minutes for capacities of 250.0 kW or more.

<u>Reliability</u>. Wind turbines have an ordinal score of 2 indicating moderate potential unreliability. Wind turbines are less reliable than diesels because turbines have moving parts with large mass and experience high stresses at high wind speeds.

<u>Environmental Constraints</u>. Wind turbines have an ordinal score of 5, indicating minimum potential environmental constraints. Wind turbines have less environmental constraints than diesels. Wind turbines may generate objectional low-frequency tones.

Location Constraints. Wind turbines have an ordinal score of 3 indicating average locational constraints. Wind turbines have a comparable locational constraint rating to diesels. Wind availability is the major constraint.

<u>Operation Constraints</u>. Wind turbines have an ordinal score of 2 indicating poor turn-down capability with large efficiency penalty. Diesels have better operational constraints. Wind turbines have no overload capability.

Batteries

There are seven types of batteries of interest in this study, although none affect the conceptual system configuration: Zn/Cl_2 (zinc-chlorine), Zn/Br_2 (zinc-bromine), Ni/Fe (nickel-iron), Li-Al/FeS₂ (lithium-aluminum/iron sulfide), Na/S (sodium/sulfur), Advanced Sealed Lead Acid, Redox Cr-Fe. As shown, Figure 46, the system consists of a charger and the battery. However, the charger is shown only because the cost of AC power into the battery (as DC power) must be adjusted for the efficiency of the charger. The efficiency of the charger has been assumed at 90%.

The basis of parameter values is delivered capacity, rather than rated capacity, after battery allowable depth of discharge is accounted for. Most batteries may only be discharged to a fraction of their rated capacity if acceptable long-term performance and life is to be obtained. Allowable depth of discharge is 80% of rated capacity for Ni/Fe, Li-Al/FeS₂, lead acid, and Na/S. Allowable depth of discharge is 100% of rated capacity for Zn/Cl_2 , Zn/Br_2 , and redox.

NOTE: CHARGER INCLUDED ONLY TO ADJUST AC POWER COSTS FOR CHARGER EFFICIENCY

A82010154

Figure 46. BATTERY SYSTEMS

<u>Technology Status.</u> $2n/Cl_2$ batteries are expected to be commercially available in 1990. $2n/Br_2$ batteries are expected to be commercially available in 1990. Ni/Fe batteries are expected to be commercially available in 1985. Na/S batteries are expected to be commercially available in 1990. Lead acid batteries are commercially available. Redox batteries are expected to be commercially available in 1990. Current research is focused on reducing the volume and weight of batteries while increasing efficiency and lifetime.

<u>Type</u>. Battery "Type" parameter values are presented in Table 61. Values are based only on a battery system with a capacity per charge/discharge cycle of one kWhr.

PARAMETE	R: TYPE	TYPE UNITS: Mobile (M) /Transportable (T) (at 1 kWhr capacity)							
YEAR	2n/c1 ₂	Zn/Br ₂	N1/Fe	Li-Al/FeS ₂	Na/S	Lead Acid	Redox Cr-Fe		
1980 1985 1990 2000	NCA NCA M M	NCA NCA M M	NCA M M M	NCA M M	NCA NCA M M	M M M M	NCA NCA M M	1	

Table 61. BATTERY TYPE

<u>System Acquisition Cost</u>. Battery "System Acquisition Cost" parameter values are presented in Table 62. Values are based on a battery system with a capacity per charge/discharge cycle of 1 kWbr.

Table 62. BATTERY SYSTEM ACQUISITION COST

PARAMETER: System Acquisition Cost

UNITS: 1980 Dollars/ kWhr capacity

r of								
a y	80/C1,	Su/br ₃	81/70	11-61/Pe82	3a/5	Land Acids	Rates Cr-Fe	
1980	NCA	NCA	NCA.	NCA	NCA	1.83E02	NCA	
1985	NCA	NCA	1.35E02	9.76E01	NCA	1.24E02	NCA	
1990	9.60E01	6.56E01	1.35E02	9.76E01	8.66E01	1,18E02	7.58E01	
2000	8.66E01	6.24E01	1.29E02	9.26E01	8.26E01	1.18E02	7.20E01	

<u>Annual Operations and Maintenance Cost</u>. Battery "Annual Operations and Maintenance Cost" parameter values are presented in Table 63. Operations and Maintenance cost is taken as 2% of system acquisition cost. Operations and maintenance cost values are based on a battery system with a capacity per charge/discharge cycle of 1 kWhr. Values are based on battery system duty of 2 charge/ discharge cycles per day. Less frequent cycling may result in reduced operations and maintenance costs.

Table 63. BATTERY ANNUAL OPERATIONS AND MAINTENANCE COST

PARAMETER: Annual Operations and Maintenance Cost UNITS: 1980 Dollars/Year per kWhr capacity

PARAMETER:

EFFICIENCY

In/Cl ₂	In/Br ₂	81/74	Li-al/Pala	No/S	Land Acids	Balas Cr-Fe							
ICA	NCA	· NCA	NCA	NCA	3.66	NCA							
NCA	NCA	2.70	1.95	· NCA	2.48	NCA							
. 92	1.31	2.70	1.95	1.73	2,36	1.52							
.73	1.25	2.58	1.85	1.65	2.36	1.44							
	ICA ICA 1.92	ICA NCA ICA NCA 1.92 1.31	ICA NCA NCA ICA NCA 2.70 1.92 1.31 2.70	ICA NCA NCA NCA NCA NCA 2.70 1.95 1.92 1.31 2.70 1.95	ICA NCA NCA NCA NCA ICA NCA 2.70 1.95 NCA I.92 I.31 2.70 1.95 1.73	ICA NCA NCA NCA 3.66 ICA NCA 2.70 1.95 NCA 2.48 I.92 I.31 2.70 1.95 1.73 2.36							

<u>System Efficiency</u>. Battery "System Efficiency" parameter values are presented in Table 64. System efficiency is based on system energy output divided by system energy input for a complete charge/discharge cycle.

Table	64.	BATTERY	SYSTEM	EFFICIENCY

UNITS:

PER CENT

YEAR	zn/c1 ₂	2n/Br ₂	N1/Fe	Li-Al/FeS2	Na/S	Lead Acid	Redox Cr-Fe
1980	NCA	NCA	NCA	NCA	NCA	79.0	NCA
1985	NCA	NCA	65.0	75.0	NCA	82.0	NCA
1990	79.4	71.8	65.0	75.0	82.5	82.0	75.0
2000	83.4	75.4	68.3	82.0	84.0	83.0	78.8

<u>Annual Electricity Required for Charging</u>. Parameter values are presented in Table 65. Parameter values are based on a system that delivers one kWhr to load per charge/discharge cycle, 2 cycles per day, and a 90% availability of the system.

Table 65. ANNUAL ELECTRICITY REQUIRED FOR CHARGING BATTERIES

PARAMETER: Annual Electricity Required for Charging UNITS: kWhr

r of Lue										
Year Vali	In/Ci2	Za/br ₂		L1-61/7082	Bp/5	Land Acids	balos Cr-fo			
1980	NCA	NCA	NCA	NCA	NCA	1.03E03	NCA			
1985	NCA	NCA	1.25E03	1.08E01	NCA	9.89E02	NCA			
1990	1.02E+03	1.13E03	1.25E03	1.08E03	9.83E02	9.89E02	1.08E03			
2000	9.73E+02	1.08E03	1.19E03	9.89E02	9.66E02	9.77E02	1.03E03			

<u>Annual Cost of Electricity for Charging</u>. Parameter values for electricity cost based on 1980 dollars and no real escalation are presented in Table 66. Parameter values are based on a system that delivers one kWhr to load per charge/discharge cycle, 2 cycles per day, and a 90% availability of the system.

> Table 66. ANNUAL COST OF ELECTRICITY FOR CHARGING BATTERIES, 0% FUEL ESCALATION

PARAMETER: Annual Cost of Electricity Required for Charging

UNITS: 1980 Dollars

		BATTERIES									
Year Yal	Sa/Ci ₂	La/br ₂	81/74	L1-41/7082	m a/8	Land acids	Balos Cr-Fo				
1980	NCA	NCA	NCA	NCA	NCA	1.62E01	NCA				
1985	NCA	NCA	3.48E01	3.02501	NCA	2.76E01	NCA				
1990	2.85E01	3.15E01	3.48E01	3.02E01	2.74E01	2.76E01	3.02E01				
2000	2.71E01	3.00E01	3.31E01	2.76E01	2.69E01	2.73E01	2.87E+01				

_
Life-Cycle Cost. Parameter values are based on a 20-year system lifetime, 2 charge/discharge cycles per day, replacements of hatteries when they have reached the end of their cycle lifetime, and 90% availability of the system. Life-cycle costs are in Table 67.

Table 57. BATTERY LIFE CYCLE COST

PARAMETER: Life-Cycle Cost UNITS: 1980 \$ per kWhr

ar of alue					: s		
Year Val	2m/C1 ₂	la/br ₂	B1/7.	Li-Al/Pel2	Ng/S	Land Acida	Rados Cr-To
1980	NCA	NCA	NCA	NCA	NCA	1.80E-01	NCA
1985	NCA	NCA	6.39E-02	6.70E-02	NCA ·	8.48E-02	NCA
1990	4.25E-02	3.64E-02	5.98E-02	4.62E-02	4.49E-02	7.89E-02	2.59E-02
2000	3.92E-02	3.46E-02	5.65E-02	3.66E-02	3.57E-02	7.59E-02	2.46E-02
1							

<u>System Volume</u>. Parameter values are based on a system capacity of 1 kWhr per charge/discharge cycle. Parameter values are presented in Table 68.

Table 68. BATTERY SYSTEM VOLUME

PARAMETER: Volume

UNITS: Cubic feet/kWhr capacity

					S		
Year	ta/Cl ₂	Za/br ₂	61/70	L1-61/Fe82	No/5	Land Acids	Balos Cr-Po
1980	NCA	NCA	NCA	NCA	NCA	9.10	NCA
1985	NCA	NCA	4.88	2,13	NCA	9.10	NCA
1990 T	4.55	2.44	4.88	2.13	5.26	9.10	6.67
2000	4.55	2.44	4.88	2.13	5.26	9.10	6.67

<u>System Weight</u>. Parameter values are based on a system capacity of 1 kWhr per charge/discharge cycle. Parameter values are presented in Table 69.

Table 69. BATTERY SYSTEM WEIGHT

PARAMETER: Weight

UNITS: Pounds/kWhr capacity

				L S		
2m/C1 ₂	In/Brg	B1/7+	LI-AL/FeS2	Ba/S	Land Acida	Bados Cr-Fo
NCA	NCA	NCA	NCA	. NCA	9.80E01	NCA
NCA		5.62E01	2,60E01	NCA	7.36E01	NCA
2.61E01	4.05E01	5.32E01	2.54E01	3.44E01	6.76E01	3.60E01
2.44E01	4.05E01	4.89E01	2.36Eo1	2.83E01	6.28E01	3.60E01
	NCA NCA 2.61E01	NCA NCA NCA NCA 2.61F01 4.05E01	NCA NCA NCA NCA NCA 5.62E01 2.61E01 4.05E01 5.32E01	Za/Cl2 Za/Br2 B1/Fe L1-61/FeS2 NCA NCA NCA NCA NCA NCA S.62E01 2.60E01 2.61E01 4.05E01 5.32E01 2.54E01	NCA NCA NCA NCA NCA NCA NCA 5.62E01 2.60E01 NCA 2.61E01 4.05E01 5.32E01 2.54E01 3.44E01	Za/Cl2 Za/Br2 B1/Fe L1-A1/FeS2 Bs/S Lead acide NCA NCA NCA NCA 9.80E01 NCA NCA S.62E01 2.60E01 NCA 7.36E01 2.61E01 4.05E01 5.32E01 2.54E01 3.44E01 6.76E01

<u>Summary</u>. The 1990 values for the above parameters are summarized in Table 70.

<u>Fuel Requirements and Capabilities</u>. Battery systems are fueled by electricity.

<u>Charging Time</u>. Battery systems have a "Charging Time" of 4 hours. They may be charged more rapidly, but usually with a penalty on efficiency and lifetime.

<u>Discharge Time</u>. Battery systems have a "Discharge Time" of 8 hours. Discharge times of as little as 4 hours are possible with little negative impact on efficiency on lifetime. Short discharge times negatively impact efficiency and lifetime.

<u>Reliability</u>. LiAl/FeS₂ and Na/S battery systems "Reliability" have an ordinal score of 3 indicating average reliability because of their high operating temperature. All other battery systems have a score of 4 indicating moderate reliability.

<u>Environmental Constraints</u>. With the exception of Zn/Cl_2 and Zn/Rr_2 hattery systems, battery systems have an ordinal score of 5 for "Environmental Constraints" indicating minimum potential environmental constraints. Zn/Cl_2 and Zn/Br_2 battery systems have a score of 4 indicating moderate potential environmental constraint because of potential for release of toxic chlorine (Cl_2) or bromine (Br_2) fumes. Table 70. BATTERY SYSTEMS 1990 PARAMETER VALUES, 1 kWhr CAPACITY

.

.

Parameter	Zn/Cl 2	Zn/Br2	N1/Fe	L1-A1/FeS2	Na/S	Lead-Ac1d	Redox Cr-Pe
Type	Mobile	Móbile	Mobile	Mobile	Mobile	Mobile	Mobile
System Acquisition Cost, \$ (1980)	0.96	65.6	561	97.6	86.6	118	75.8
Annuel Operation and Maintenance Cost, \$ (1980)	1.92	1.31	2.70	1.95	1.73	2.36	1.52
Efficiency, X	79.4	9.17	65.0	75.0	82.5	82.0	75.0
Annual Electricity for Charging, MMr	1020	0611	1250	1080	983	686	1080
Annual Cost of Electricity for Charging, \$ (1980)							
OX Fuel Escalation	28.5	31.5	34.8	30.2	27.4	27.6	30.2
5% Fuel Escalation	46.5	51.4	56.8	49.2	44.7	45.0	49.2
10% Fuel Escalation	74.0	81.8	90.3	78.3	71.2	71.6	78.3
Life-Cycle Cost, \$/kWhr stored (1980)							
0% Fuel Escalation	28.5	31.5	34.8	30.2	27.4	27.6	30.2
5% Fuel Escalation	46.5	51.4	56.8	49.2	44.7	45.0	49.2
10% Fuel Escalation	74.0	81.8	90.3	78.3	71.2	71.6	78.3
Life-Cycle Cost, \$/kWhr stored (1980)							
Of Fuel Lecalation	0.0425	0.0364	0.0598	0.0462	0.0449	0.0789	0.0259
5% Fuel Escalation	0.0664	0.0628	0.089	0.0715	0.0679	0.102	0.0511
10% Puel Escalation	0.127	0.13	0.163	0.136	0.126	0.161	0.116
System Volume, ft ³	4.55	2.44	4.88	2.13	5.26	9.10	6.67
System Weight, Ibs	26.1	40.5	53.2	25.4	34.4	67.6	36.0

139

•

.

Location Constraints. Battery systems have an ordinal score of 3 indicating average locational constraints. They must be located near a source of electricity. Toxic or explosive gases can be generated; therefore proper siting is important.

<u>Operation Constraints</u>. Battery systems have an ordinal score of 3 indicating average turn-down capability. They have no overload capability, except as designed.

Thermal Energy Storage Systems

There are six thermal storage materials considered in this study: Olivine Ceramic Brick, Magnesite Ceramic Brick, Calcium Chloride Hexahydrate, Sodium Sulfate Decahydrate, (Glauber's Salt), Sodium Thiosulfate Pentahydrate, and Form-Stable Polyethylene. The two brick materials are charged with electric resistance heating (Figure 47) and operate at temperatures around 1200°F. The latter four materials are phase-change materials and are charged with a working fluid (Figure 47). The operating temperatures are: Sodium Sulfate Decahydrate, about 73°F; Calcium Chloride Hexahydrate, about 81°F; Sodium Thiosulfate Pentahydrate, about 117°F; and Form-Stable Polyethylene, about 225°F. Although all of these media can be used for space heating, the Form-Stable Polyethylene is typically considered for use with absorption chillers.

<u>Technology Status</u>. All media are commercially available except for Sodium Thiosulfate Pentahydrate, which is expected to be commercial in 1985, and Form-Stable Polyethylene, which is expected to be commercial in 1990. The leading system using Sodium Thiosulfate Pentahydrate transfers heat to and from the salt with an immiscible liquid. A way must sill be developed to prevent emulsification of the liquids and consequent replacement of the medium. Commercialization of Form-Stable Polyethylene awaits successful scale-up of the pilot development unit and volume production (estimated to be greater than 10 million pounds per year) before it can be commercialized.

<u>Type</u>. Thermal energy storage systems are mobile or fixed, as shown in Table 71.

PARAMETE	R:TYPE			UNITS: <u>M</u>	bile ^(M) /	[ransport.	able ^(T) /Fi	ixed ^(F)
Thermal Energy Capacity, 10 ³ 8tu	Year	саст 6 н ₂ 0	O ² H OI · ⁵ OS ² BN	0 ² M 5.0 ³ .sm	011vine Ceramic	Magnisite Ceramic	Form-Stable Polyethylene	
50	1980 1985	M M	M M	NCA M	M	м	NCA	
100	1990 2000 1980 1985 1990	M M M M	M M M M	M M NCA M M	M M M M M	M M M M M	NCA M NCA NCA M	
250	2000 1980	M M	M M	M NCA	M M	M M	M NCA	
	1985 1990 2000	M M M	M M M	M M M	M M M	M M M	NCA M M	ł
500	1980 1985 1990	M M M	M M M	NCA M M	F	F F F	NCA NCA M	
1000	2000 1980 1985	M M M	M M M	M NCA M	F F F	F F F	M NCA NCA	
5000	1990 2000 1980 1985	M M M	M M M	M M NCA M	F F F	F F F	M H NCA NCA	
12500	1990 2000 1980	M M M	M M M	M M NCA	F F F	F F F	M M NCA	
25,000	1985 1990 2000 1980	M M M	M M M	M M M NCA	F F F	F F F	NCA M M NCA	
	1985 1990 2000	M M M	M M M	M M M	F F F	F F F	NCA M M	
37,500	1980 1985 1990	F F F	M M M	NCA M M	F F F	F F F	NCA NCA M	
50,000	2000 1980 1985 1990	F F F F	M M M	M NCA M M	F F F F	F F F	M NCA NCA F	
250,000	2000 1980 1985	F F F	M F F	M NCA F	F F F	F F F	F NCA NCA	
	1990 2000	F F	F F	F F	F F	F F	F F	

 Table 71.
 THERMAL ENERGY STORAGE SYSTEM TYPE

System Acquisition Cost. Acquisition costs are shown in Table 72. Costs for the year 1990 are shown in Figure 48 for comparison of the media.

Table 72. THERMAL ENERGY STORAGE SYSTEM ACQUISITION COST

PARAMETE	R:SYSTE	M ACQUIST	TION COST	UNITS:	1980 Dolla	ars	
Thermal Energy Capacity, 10 ³ 8tu	Year	сас1-6 H ₂ 0	ма ₂ SO4, •10 H2 <mark>0</mark>	NaS203.5 H20	Olivine Ceramic	Magnisite Ceramic	Form-Stable Polyethylene
50	1980	503	776	NCA	255	502	NCA
	1985	453	698	491	255	313	NCA
	1990	453	698	491	255	313	812
	2000	453	698	491	255	313	812
100	1980	867	1360	NCA	485	892	NCA
	1985	780	1220	842	485	558	NCA
	1990	780	1220	842	485	558	1400
	2000	780	1220	842	485	558	1400
250	1980	1740	2790	NCA	1130	1880	NCA
	1985	1570	2510	1680	1130	1180	NCA
	1990	1570	2510	1680	1130	1180	2780
	2000	1570	2510	1680	1130	1180	2780
500	1980	2870	4730	NCA	2140	3270	NCA
	1985	2580	4260	2750	2140	2040	NCA
	1990	2580	4260	2750	2140	2040	4460
	2000	2580	4260	2750	2140	2040	4460
1000	1980	4590	7830	NCA	4040	5600	NCA
	1985	4130	7050	4330	4040	3500	NCA
	1990	4130	7050	4330	4040	3500	6710
	2000	4130	7050	4330	4040	3500	6710
5000	1980	10600	21900	NCA	17400	18000	NCA
	1985	9540	19700	9300	17400	11300	NCA
	1990	9540	19700	9300	17400	11300	7950
	2000	9540	19700	9300	17400	11300	7950
12500	1980	26500	32000	NCA	43500	45000	NCA
	1985	23900	28800	23300	43500	28100	NCA
	1990	23900	28800	23300	43500	28100	19900
	2000	23900 53000	28800	23300	43500	28100	19900
25,000	1980		64000	NCA	87000	90000	NCA
	1985	47700 47700	57600	46500	87000	56300	NCA
	1990	47700	57600 57600	46500	87000	56300	39800
27 600	2000	79500	96000	46500 NCA	87000	56300	39800
37,500	1980 1985	71600	86400	69800	131000	135000	NCA
	1990	71600	86400	69800	131000	84400	NCA
	2000	71600	86400	69800	131000	84400	59600
50,000	1980	106000	128000	NCA	174000	84400	59600
50,000	1985	95400	115000	93000	174000	180000 113000	NCA NCA
	1990	95400	115000	93000	174000	113000	79500
	2000	95400	115000	93000	174000	113000	79500
250,000	1980	530000	640000	NCA	870000	900000	NCA
	1985	477000	576000	465000	870000	563000	NCA
	1990	477000	576000	465000	870000	563000	398000
	2000	477000	576000	465000	870000	563000 563000	398000 398000

PARAMETER: SYSTEM ACQUISITION COST UNITS: 1980 Dollars

<u>Operation and Maintenance</u>. Annual O&M costs are shown in Table 73. These costs are graphed for 1990 in Figure 49.

Table 73. THERMAL ENERGY STORAGE OPERATION AND MAINTENANCE COST

PARAMETE		. 0 & M CO	STS	UNITS: 1	980 Dolla	rs	
Thermal Energy Capacity, 10 ³ 8tu	Year	cacı•6 H ₂ 0	Na ₂ SO4 •10 H20	NaS ₂ 03.5 H ₂ 0	()lívine Ceramic	Magnisite Ceramic	For m-Stable Polyethy lene
50	1980	2.63	41.10	NCA	7.88	15.50	NCA
	1985 1990	2.37	37.00 37.00	63.80 63.80	7.88 7.88	9.69 9.69	NCA 24.40
	2000	2.37	37.00	63.80	7.88	9.69	24.40
100	1980	4.98	72.10	NCA	13.10	24.20	NCA
	1985	4.48	64.90	109.00	13.10	15.10	NCA
	1990	4.48	64.90	109.00	13.10	15.10	42.00
360	2000	4.48	64.90	109.0d	13.10	15.15	42.00
250	1980 1985	11.60 10.40	148.00 133.00	NCA 218.00	24.90 24.90	41.40 25.90	NCA NCA
	1990	10.40	133.00	218.00	24.90	25.90	83.40
	2000	10.40	133.00	218.00	24.90	25.90	83.40
500	1980	21.70	251.00	NCA	38.90	59.50	NCA
	1985	19.50	226.00	358.00	38.90	37.20	NCA
	1990	19.50	226.00	358.00	38.90	37.20	134.00
	2000	19.50	226.00	358.00	38.90	37.20	134.00
1000	1980	40.60	415.00	NCA	58.20	80.60	NCA
	1985	36.50	374.00	563.00	58.20	50.40	NCA
	1990	36.50	374.00	563.00	58.20	50.40	201.00
	2000	36.50	374.00	563.00	58.20	50.40	201.00
5000	1980	171.00	1160.00	NCA	97.40	101.00	NCA NCA
	1985 1990	154.00	1040.00	1210.00	97.40 97.40	63.10 63.10	239.00
	2000	154.00	1040.00	1210.00	97.40	63.10	239.00
12500	1980	380.00	1700.00	NCA	244.00	252.00	NCA
12500	1985	342.00	1530.00	3030.00	244.00	158.00	NCA
	1990	342.00	1530.00	3030.00			597.00
	2000	342.00	1530.00	3030.00	244.00	158.00	597.00
25,000	1980	691	3390	NCA	487	504	NCA
-	1985	622	3050	6050	487	315	NCA
	1990	622	3050	6050	487	315	1190
	2000	622	3050	6050	487	315	1190
37,500	1980	976	5090	NCA	734	756	NCA
	1985	878	4580	9070	734 734	473	NCA 1790
	1990	878 878	4580	9070 9070	734	473 473	1790
50,000	2000 1980	1240	4580 6780	NCA	974	1010	NCA
50,000	1985	1120	6100	12100	974	631	NCA
	1990	1120	6100	12100	974	631	2390
	2000	1120	6100	12100	974	631	2390
250,000	1980	4610	33900	NCA	4870	5040	NCA
	1985	4150	30500	60500	4870	3150	NCA
	1990	4150	3050	60500	4870	3150	11900
	2000	4150	30500	60500	4870	3150	11900

Figure 49. THERMAL ENERGY STORAGE 06M COSTS

<u>System Efficiency</u>. All TES systems are presumed to have 95% efficiencies. This is the thermal energy output divided by the fuel required for charging.

Annual Energy Required for Charging. The annual energy required for charging the systems are shown by thermal energy capacity in Table 74. This requirement is shown graphically in Figure 50.

Table 74. ANNUAL ENERGY REQUIRED FOR CHARGING THERMAL ENERGY STORAGE SYSTEMS

PARAMETE	FOR	AL ENERGY CHARGING	REQUIRED	UNITS:	Btu		
, 10 ³ 8tu		o,	02H 01.	M_2 ⁰			Form-Stable Polyethylene
Thermal Energy Capacity,		сас1•6 Н ₂ 0		NaS203.5	မူပ	Magnisite Ceramic	tat hy i
		9	2 ^{S0} 4	2 ⁰ 3			yet S
ë ë č	Year		Na ₂ S	las	Olivine Ceramic	Magnial Ceramic	io.
50	1980 1985	1.92E07 1.92E07	1.92E07 1.92E07	NCA 1.92E07	1.92E07 1.92E07	1.92E07 1.92E07	NCA NCA
	1990	1.92E07	1.92E07	1.92E07	1.92E07	1.92E07	1.92E07
	2000	1.92E07	1.92E07	1.92E07	1.92E07	1.92E07	1.92E07
100	1980	3.84E07	3.84E07	NCA	3.84E07	3.84E07	NCA
	1985	3.84E07	3.84E07	3.84E07	3.84E07	3.84E07	NCA
	1990	3.84E07	3.84E07	3.84E07	3.84E07	3.84E07	3.84E07
	2000	3.84E07	3.84E07	3.84E07	3.84E07	3.84E07	3.84E07
250	1980	9.61E07	9.61E07	NCA	9.61E07	9.61E07	NCA
	1985	9.61E07	9.61E07	9.61E07	9.61E07	9.61E07	NCA
	1990	9.61E07	9.61E07	9.61E07	9.61E07	9.61E07	9.61E07
	2000	9.61E07	9.61E07	9.61E07	9.61E07	9.61E07	9.61E07
500	1980	1.92E08	1.92E08	NCA	1.92E08	1.92E08	NCA
	1985	1.92E08	1.92E08	1.92E08	1.92E08	1.92E08	NCA
	1990	1.92E08	1.92E08	1.92E08	1.92E08	1.92E08	1.92E08
1000	2000	1.92E08	1.92E08	1.92E08	1.92E08	1.92E08	1.92E08
1000	1980	3.84E08	3.84E08	NCA	3.84E08	3.84E08	NCA
	1985 1990	3.84E08	3.84E08 3.84E08	3.84E08 3.84E08	3.84E08 3.84E08	3.84E08 3.84E08	NCA 3.84E08
	2000	3.84E08 3.84E08	3.84E08	3.84E08	3.84E08	3.84E08	3.84E08
5000	1980	1.92E09	1.92E09	NCA	1.92E09	1.91E09	NCA
2000	1985	1.92E09	1.92E09	1.92E09	1.92E09	1.92E09	NCA
	1990	1.92E09	1.92E09	1.92E09	1.92E09	1.92E09	1.92E09
	2000	1.92E08	1.92E09	1.92E09	1.92E09	1.92E09	1.92E09
12500	1980	4.80E09	4.80E09	NCA	4.80E09	4.80E09	NCA
	1985	4.80E09	4.80E09	4.80E09	4.80E09	4.80E09	NCA
	1990	4.80E09	4.80E09	4.80E09	4.80E09	4.80E09	4.80E09
	2000	4.80E09	4.80E09	4.80E09	4.80E09	4.80E09	4.80E09
25,000	1980	9.61E09	9.61E09	NCA	9.61E09	9.61E09	NCA
	1985	9.61E09	9.61E09	9.61E09	9.61E09	9.61E09	NCA
	1990	9.61E09	9.61E09	9.61E09	9.61E09	9.61E09	9.61E09
	2000	9.61E09	9.61E09	9.61E09	9.61E09	9.61E09	9.61E09
37,500	1980	1.44E10	1.44E10	NCA	1.44E10	1.44E10	NCA NCA
	1985 1990	1.44E10 1.44E10	1.44E10 1.44E10	1.44E10 1.44E10	1.44E10 1.44E10	1.44E10 1.44E10	1.44E10
	2000	1.44E10	1.44E10	1.44E10	1.44E10	1.44E10	1.44E10
50,000	1980	1.92E10	1.92E10	NCA	1.92E10	1.92E10	NCA
,	1985	1.92E10	1.92E10	1.92E10	1.92E10	1.92E10	NCA
	1990	1.92E10	1.92E10	1.92E10	1.92E10	1.92E10	1.92E10
	2000	1.92E10	1.92E10	1.92E10	1.92E10	1.92E10	1.92E10
250,000	1980	9.61E10	9.61E10	NCA	9.61E10	9.61E10	NCA
	1985	9.61E10	9.61E10	9.61E10	9.61E10	9.61E10	NCA
	1990	9.61E10	9.61E10	9.61E10	9.61E10	9.61E10	9.61E10
	2000	9.61E10	9.61E10	9.61E10	9.61E10	9.61E10	9.61E10

<u>Annual Fuel Cost</u>. Fuel costs are presented in Table 75. These values reflect constant 1980 dollars, and are not escalated to account for future price increases.

Table 75. ANNUAL COST OF ENERGY FOR CHARGING THERMAL ENERGY STORAGE SYSTEMS

PARAMETE	REQUIRE	COST OF EL D FOR CHAI		UNITS:	1980 Dol:	lars	
Thermal Energy Capacity, 10 ³ Btu	Year	CaC1 • 6 H20	Na ₂ SO4 •10 H20	02N 2.602SEN	01 i vine Ceramic	Magnisite Ceramic	Form-Stable Polyethylene
50	1980	0	0	NCA	89	89	NCA
	1985 1990	0 0 0 0 0 0	0	0	157 157	157 157	NCA
	2000	0	0	0	157	157	0
100	1980	o o	0	NCA	178	178	NCA
	1985	ŏ	ŏ	0	314	314	NCA
	1990	ŏ	0	ō	314	314	0
	2000	o l	0	Ō	314	314	Ō.
250	1980	0	0	NCA	446	446	NCA
	1985	0	0	0	786	786	NCA
	1990	0	0	0	786	786	0
500	2000	0	0	0	786	786	0
500	1980 1985	0	0	NCA	891	891 1570	NCA
	1990	0	0	0	1570 1570	1570	NCA
	2000	0	0	0	1570	1570	0
1000	1980	0	0	0 NCA	1780	1780	0 NCA
	1985	ŏ	ŏ	0	3140	3140	NCA
	1990	0	õ	0	3140	3140	0
	2000	Ō	õ	0	3140	3140	0
5000	1980	0	0	NCA	8910	8910	NCA
	1985	0	0	0	15700	15700	NCA
	1990	0	0	0	15700	15700	0
1 2 7 9 9	2000	0 0 0	0	0 NCA	15700	15700	0 NCA
12500	1980 1985	0	0	0	22300 39300	22300 39300	NCA
	1990	0	0	ő	39300	39300	0
1	2000	0 0 0	0	ŏ	39300	39300	ŏ
25,000	1980	ŏ	ŏ	NCA	44600	44600	NCA
	1985	ŏ	ō	0	78600	78600	NCA
	1990	0	0	0	78600	78600	0
	2000	0	0	0	78600	78600	0
37,500	1980	0	0	NCA	66800	66800	NCA
	1985	0	0	0	118000	118000	NCA
]	1990 2000	0	0	0	118000 118000	118000 118000	0
50,000	1980		0	NCA	89100	89100	NCA
	1985	Ň	ŏ	0	157000	157000	NCA
1	1990	ō	ŏ) õ	157000	157000	0
	2000	Ō	0	0	157000	157000	0
250,000	1980	0	0	NCA	446000	446000	NCA
I	1985		0	0	786000	786000	NCA
	1990 2000	0	0	0	786000 786000	786000 786000	0

Life-Cycle Cost. Life-cycle costs are shown in Table 76 and Figure 51.

Table 76. THERMAL ENERGY STORAGE LIFE CYCLE COST

PARAMETE	R: LIFE-C	YCLE COST		UNITS:	1980 Doll	ars/10 ⁶ B	tu
Thermal Energy Capacity, 10 ³ Btu	Year	CaCl·6 H ₂ 0	Na ₂ SO4 •10 H20	NaS ₂ 0 ₃ ·5 M ₂ 0	0]ivine Ceramic	Magnisite Ceramic	Form-Stable Polyethylene
50 _. 100	1980 1985 1990 2000 1980 1985 1990	1.37 1.23 1.23 1.23 1.23 1.18 1.07 1.07	2.93 2.63 2.63 2.63 2.57 2.31 2.31	NCA 2.69 2.69 2.69 NCA 2.30 2.30	2.81 4.32 4.32 2.75 4.25 4.25	3.63 4.51 4.51 3.40 4.37 4.37	NCA NCA 2.66 2.66 NCA NCA 2.29
250	2000 1980 1985 1990	1.07 0.96 0.86 0.86	2.31 2.11 1.90 1.90	2.30 NCA 1.84 1.84	4.25 2.67 4.18 4.18	4.37 3.14 4.21 4.21	2.29 NCA NCA 1.82
500	2000 1980 1985 1990 2000	0.86 0.80 0.72 0.72	1.90 1.79 1.61 1.61	1.84 NCA 1.51 1.51	4.18 2.62 4.12 4.12	4.21 2.96 4.09 4.09	1.82 NCA NCA 1.46 1.46
1000	1980 1985 1990 2000	0.72 0.64 0.58 0.58 0.58	1.61 1.48 1.33 1.33 1.33	1.51 NCA 1.19 1.19 1.19	4.12 2.56 4.07 4.07 4.07	4.09 2.79 3.99 3.99 3.99	NCA NCA 1.10 1.10
5000	1980 1985 1990 2000	0.38 0.31 0.28 0.28 0.28	0.83 0.74 0.74 0.74	NCA 0.51 0.51 0.51	2.45 3.96 3.96 3.96	2.47 3.79 3.79 3.79 3.79	NCA NCA 0.26 0.26
12500	1980 1985 1990 2000	0.28 0.31 0.28 0.28 0.28	0.48 0.44 0.44 0.44	NCA 0.51 0.51 0.51	2.45 3.96 3.96 3.96	2.47 3.79 3.79 3.79	NCA NCA 0.26 0.26
25,000	1980 1985 1990 2000	0.28 0.28 0.28 0.28 0.28	0.48 0.43 0.43 0.43	NCA 0.51 0.51 0.51	2.45 3.96 3.96 3.96 3.96	2.47 3.79 3.79 3.79	NCA NCA 0.26 0.26
37,500	1980 1985 1990 2000	0.20 0.30 0.27 0.27 0.27	0.43 0.43 0.43 0.43	NCA 0.51 0.51 0.51	2.45 3.96 3.96 3.96	2.47 3.79 3.79 3.79 3.79	NCA NCA 0.26 0.26
50,000	1980 1985 1990 2000	0.30 0.27 0.27 0.27 0.27	0.43 0.48 0.43 0.43 0.43	NCA 0.51 0.51 0.51	2.45 3.96 3.96 3.96	2.47 3.79 3.79 3.79	NCA NCA 0.26 0.26
250 ,000	1980 1985 1990 2000	0.30 0.27 0.27 0.27	0.48 0.43 0.43 0.43	NCA 0.51 0.51 0.51	2.45 3.96 3.96 3.96	2.47 3.79 3.79 3.79	NCA NCA 0.26 0.26

Volume. System volumes are presented in Table 77.

Table 77.	THERMAL	ENERGY	STORAGE	SYSTEM	VOLUME	
-----------	---------	--------	---------	--------	--------	--

PARAMETE	R:	ME		UNITS:_	Cubic Fee	t	
Thermal Energy Capacity, 10 ³ 8tu	Year	cac1·6 H ₂ 0	Na ₂ SO4 .10 H ₂ O	NaS ₂ 03.5 N ₂ 0	01 i vine Ceramic	Magnisite Ceramic	Form-Stable Polyethylene
50	1980	12	14	NCA	8	5	NCA
	1985	12 12	14	7	8	5	NCA
	1990	12	14	7	8	5	10
100	2000	12	14	7	8	5	10
100	1980	24	26	NCA	16	10	NCA
	1985	24	26	13	16	10	NCA
	1990 2000	24 24	26	13	16	10	20
250	1980	59	26	13	16	10	20
230	1985	59	60 60	NCA 33	40	22.5	NCA
	1990	59	60	33	40 40	22.5	NCA
	2000	. 59	60	33	40	22.5 22.5	50
500	1980	120	110	NCA	80	45	50
	1985	120	110	65	80	45	NCA
	1990	120	110	65	80	45	NCA
	2000	120	110	65	80	45	99 99
1000	1980	230	210	NCA	160	90	NCA
	1985	230	210	130	160	90	NCA NCA
	1990	2 3 0	210	130	160	90	200
	2000	230	210	130	160	90	200
5000	1980	1200	920	NCA	800	400	NCA
	1985	1200	920	650	800	400	NCA
	1990	1200	920	650	800	400	990
	2000	1200	920	650	800	400	990
12500	1980	2900	2100	NCA	2000	860	NCA
	1985	2900	2100	1600	2000	860	NCA
	1990	2900	2100	1600	2000	860	2500
	2000	2900	2100	1600	2000	860	2500
25,000	1980	5700	4000	NCA	4000	1650	NCA
	1985	5700	4000	3300	4000	1650	NCA
	1990	5700	4000	3300	4000	1650	5000
37,500	2000 1980	5700	4000	3300	4000	1650	5000
57,500	1985	8500 8500	5700	NCA	6000	2400	NCA
	1990	8500	5700	4900	6000	2400	NCA
	2000	8500	5700 5700	4900	6000 6000	2400	7400
50,000	1980	11000	7400	4900	8000	2400	7400
	1985	11000	7400	NCA 6500	8000	3200 3200	NCA
	1990	11000	7400	6500	8000	3200	NCA 9900
	2000	11000	7400	6500	8000	3200	9900
250,000	1980	56000	31000	NCA	40000	14000	NCA
÷	1985	56000	31000	33000	40000	14000	NCA
	1990	56000	31000	33000	40000	14000	50000
	2000	56000	31000	33000	40000	14000	50000 50000

.

Weight. Weights of the various systems are shown in Table 78.

Ę

<u>Summary</u>. The 1990 values of the above parameters are summarized in Table 79.

PARAMETE	R: WEIGHT	r		UNITS:_P	OUNDS		
Thermal Energy Capacity, 10 ³ 8tu	Year	cact •6 H20	Na ₂ so ₄ ·10 H ₂ 0	NaS203.5 N ₂ 0	Olivine Ceramic	Magnisite Ceramic	Form-Stable Polyethylene
50	1980	870	840	NCA	230	280	NCA
	1985	870	840	580	230	280	NCA
	1990	870	840	580	230	280	610
	2000	870	840	580	230	280	610
100	1980	1600	1600	NCA	450	560	NCA
	1985	1600	1600	1200	450	560	NCA
	1990	1600	1600	1200	450	560	1200
	2000	1600	1600	1200	450	560	1200
250	1980	3400	3600	NCA	1100	1400	NCA
	1985	3400	3600	2900	1100	1400	NCA
	1990	3400	3600	2900	1100	1400	3000
500	2000	3400	3600	2900	1100	1400	3000
500	1980	6100 6100	6700 6700	NCA	2300	2700	NCA
	1985 1990	6100	6700	5800	2300	2700	NCA
	2000	6100	6700	5800	2300	2700	6100
1000	1980	11000	12000	5800 NCA	2300	2700	6100
1000	1985	11000	12000	12000	4500 4500	5400	NCA
	1990	11000	12000	12000	4500	5400	NCA
	2000	11000	12000	12000	4500	5400 5400	12000
5000	1980	39000	52000	NCA	23000	27000	12000 NCA
5000	1985	39000	52000	58000	23000	27000	NCA
	1990	39000	52000	58000	23000	27000	61000
	2000	39000	52000	58000	23000	27000	61000
12500	1980	77000	120000	NCA	57000	67000	NCA
2	1985	77000	120000	140000	57000	67000	NCA
	1990	77000	120000	140000	57000	67000	150000
	2000	77000	120000	140000	57000	67000	150000
25,000	1980	130000	130000	NCA	110000	130000	NCA
	1985	130000	130000	290000	110000	130000	NCA
	1990	130000	130000	290000	110000	130000	300000
	2000	130000	130000	290000	110000	130000	300000
37,500	1980	160000	300000	NCA	170000	190000	NCA
	1985	160000.	300000	430000	170000	190000	NCA
	1990	160000	300000	430000	170000	190000	450000
	2000	160000	300000	430000	170000	190000	450000
50,000	1980	200000	390000	NCA	230000	260000	NCA
	1985	200000	390000	580000	230000	260000	NCA
	1990	200000	390000	580000	230000	260000	610000
	2000	200000	390000	580000	230000	260000	610000
250,000	1980	400000	1600000	NCA	1100000	1 200000	NCA
	1985	400000	h 600000	2900000	100000	120000C	NCA
	1990	400000	µ600000	2900000	100000	1200000	3000 000
	2000	400000	1600000	2900000	1100000.	1200000	B0000 00

Table 78. THERMAL ENERGY STORAGE SYSTEM WEIGHT

Table 79. THERMAL ENERGY STORAGE 1990 PARAMETER VALUES, 1 MILLION Btu CAPACITY

Par Amater Type	Calcium Chloride Mobile	Sodium Sulfate Mobile	Sodium Thiosulfate Mobile	Olivine Ceramic Fixed	Magnesite Ceramic Fixed	Porm-Stable Polyethylene Mobile
System Acquisition Cost. \$ (1980)	4130	1050	4330	4040	3500	6710
Annual Operations and Maintenance Gost, \$ (1980)	36.50	374	563	58.20	50.40	201
Annual Energy Required for Charging, Btu	3.84£08	3.84E08	3.64208	3.84E08	3.84208	3.64 E08
Annual Cost of Energy Required for Charging, \$ (1980)	0	O	o	3140	3140	0
Life-Cycle Cost, \$ (1980)/10 ⁶ Btu						9
Of Fuel Escalation	0.58	1.33	1.19	4.07	66-5	
52 Fuel Recelstion	3.69	4.46	4.30	9.05	8.97	4.21
10% Fuel Escalation	8.34	60.6	8.95	21.79	21.69	8.86
System Volume, ft ³	230	210	130	160	96	200
System Weight, Ibs	11,000	12,000	12,000	4500	5400	12,000

<u>Fuel Requirements and Capabilities</u>. Salt phase-change media can use solar energy or waste heat at temperatures up to about 150°F. Olivine and ceramic brick systems require electricity as fuel for charging. The bricks could be used in systems designed for direct high-temperature heat storage. Form-stable polyethylene requires heat at a temperature of about 225°F.

<u>Charge and Discharge Times</u>. The time required to charge calcium chloride systems is typically 9 hours, for sodium sulfate 7 hours, for sodium thiosulfate 7 hours, for olivine brick 8 hours, for magnesite brick 8 hours, and for form-stable polyethylene 13 hours. The time required to discharge calcium chloride systems is typically 15 hours, for sodium sulfate 7 hours, for sodium thiosulfate 7 hours, for olivine brick 10 hours, for magnesite brick 14 hours, and for form-stable polyethylene 6 hours.

<u>Operation and Maintenance</u>. Calcium chloride systems are very simple to operate and maintain. They have no moving parts unless a fan is used to increase the rate of heat transfer. The plastic tubes holding the salt should not be subjected to temperatures above 150°F. The tubes should he inspected for breaks, as lifetime is decreased when moisture enters or leaves the salt. Additionally, the salt is corrosive, although it is compatible with polyethylene, various plastic films, and drawn and seamed steel.

Some systems uitlizing sodium sulfate and sodium thiosulfate require pumps or agitation for mixing the hydrate, which adds to their O&M requirements. These salts are also corrosive.

The olivine and magnesite systems can operate automatically based on outside air temperature, time-of-day, or a signal from the electric utility; they can also be turned on manually. Moving parts in the system include a fan and damper mechanism to control air flow.

The form-stable polyethylene system is required to operate at 225°F. Its operation will probably be automatically integrated with an absorption airconditioning system.

<u>Reliability</u>. Systems utilizing olivine brick, magnesite brick, calcium chloride, sodium sulfate and form-stable polyethylene have moderate reliability (ordinal score of 4). Sodium thiosulfate systems have average reliability (ordinal score of 3); this lower reliability is expected because of more moving parts.

<u>Environmental Constraints</u>. All systems are expected to have minimum potential environmental constraints (ordinal score of 5). There is a potential for a minor noise problem when fans or pumps are used. There is also a potential for chemical leaks in the salt-based systems; the salts are roughly as toxic as table salt.

Locational Constraints. All thermal enrgy storage systems have moderate locational constraints (ordinal score of 4). For the salt-based systems electricity may be required for fan or pump operation or charging, depending on the application. Some systems rely on passive solar gain, in which case adequate solar insolation must be available at the site.

The olivine and magnesite brick systems require electricity service of 208 volt AC (minimum). Time-of-day electric rates are required for cost savings.

<u>Operational Constraints</u>. Systems using olivine brick, magnesite brick, calcium chloride, sodium sulfate and form-stable polyethylene have average turndown capability (ordinal score of 3). Systems based on sodium thiosulfate have moderate turndown capability with a moderate efficiency penalty (ordinal score of 4).

CONCLUSIONS

The data presented in this report were provided to indicate the relative attributes of each of the technologies. The data were gathered during 1981-1982. Obviously, with developing technologies, the expected performance of the technology changes over time as more is learned about the technology and its performance. The key in technology development for competitive systems is for the developers to change the performance of their technology relative to competition. Consequently, the data provided here represent the technologies and the expectations of development during 1981-1982. As the technologies are developed over time, not only will the absolute values of performance change but so will future expectations of performance improvements and so will the relative performance of the technologies.

Because of this, the data presented here can only represent a starting point from which the technologies must be continuously monitored to insure that significant changes in the relative performance of the various technologies are incorporated into the data base.

63(3)/af/ER

*USCPO:1983-659-062-1112

