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1. Context: Motivation and Goals

About 2 years ago we decided to build a computer-based programming tutor to help students
learn to program in Pascal; we wanted the system to identify the non-eyntactic bugs in a
student's program and tutor the student with respect to the misconceptions that might have
given rise to the bugs. The emphasis was on the system understanding what the student did and
did pot understand; we felt that simply telling the student that there was a bug in line 14 was
not sufficient --- since oftentimes the bug in line 14 was really caused by a whole series of
conceptual errors that could not be localized to a specific line in the program. However, in order
to design the system we needed to know what bugs students did make in their programs and
what misconceptions they typically labored under. On the basis of bug types found in a number
of pencil-and-paper studies with student programmers (novices, intermediates, and advanced)
[9, 10]), we built and classroom tested a first version of such a programming tutor [11]. In the
process of testing that system we instrumented the operating system on a CYBER 175 to
automatically collect a copy of each syntactically correct program the student programmers
attempted to execute while sitting at the terminal; we call this form of data “on-line protocols™.
We collected such protocols on 204 students for an entire semester (7 programming assignments).
We have systematically analyzed only a small portion of these data: the basis for this paper is
the hand analysis of the first syntactically correct program that students generated for their first
looping assignment,! i.e., 204 programs.

The story we tell in this paper deals with our experiences in analyzing these 204 on-line
protocols. In particular, we will describe the observations we made in trying to build a bug
classification scheme; the actual details of what bugs we found, their frequency, etc. can be found
in [5]. The key observation is the following: while one might think that building a classification
scheme for the bugs would be straightforward, it turns out not to be so simple; in fact, we will
argue that:

Bugs cannot be unigquely deacribed on the basis of [features of the buggy program alone; one
must also take the programmer s intentions and knowledge state into account.

2. A Simplified Example

Counsider the problem statement in Figure 1, which is a simplified version of the first looping
problem that the students in our study had to solve in Pascal. From a novice's perspective the
difficult part of this problem is making sure that the negative inputs are filtered out before they
are processed. There are two common approaches to solving this type of problem in an Algol-like
language such as Pascal. In Figure 2 we depict a solution in which a negative input causes

YThis problem is given in Figure 8, which will be discussed in section 4.

J
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execution of one branch of a conditional, while a non-negative input causes execution of the

| major computation of the loop. We call this type of structure s Skip-guord Plan? a

E conditional statement is used to guard the main computation from illegal values. Notice that one

pass through the loop will be made for each input value. The second approach is given in Figure

3; bere an embedded loop filters out the illegal values. Notice that one pass through the outside

loop will be made for each — and only each — legal value. We call the nested loop structure an
Embedded Filter Loop Plan.

Write a program that reads in integers, that represept the daily rainfall in the New Haven area,
and computes the average daily rainfall for the input values. If the input is 3 negative pumber, do
2 not count this value in the average, sad prompt the wser to iaput amother, legal value. Stop
8 reading when 99999 is input; this is a sentinel value and should not be used in the average
e calculation.

Figure 1: Simplified Looping Problem

READ(RAINFALL)
WHILE RAINFALL © 98999 DO
BEGIN
. IF RAINFALL < O
a;, THEN
< WRITELN('BAD INPUT, TRY AGAIN')
3 | ELSE
: BEGIN
TOTAL := TOTAL + RAINFALL;
DAYS := DAYS «+ I;
END;
READ(RAINFALL) ;

- END;

Figure 3: Using a Skip-Guard Flan

Now consider the buggy program in Figure 4. The problem with this program is that if the
user first types a pegative input, and then types the sentinel value 99999, this value will
-~ incorrectly —- be processed as a legitimate value. A number of questions come to mind:

1. How should we classify this bug?
2. What piece of code is to blame?!
3. What mental error on the student’s part might have caused this bug?

R

1
v 1’
|

See [8. 3, 9)for & more complete discumion of programming plans.
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READ(RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
WHILE RAINFALL < 0 DO
BEGIN
WRITELN("BAD INPUT, TRY AGAIN’):
READ(RAINFALL)
END;
IF RAINFALL <> 99999 THEN
BEGIN
TOTAL := TOTAL * RAINFALL;
DAYS DAYS + 1;
READ (RAINFALL)
END;

END;

Figure 3: Using an Embedded Fiiter Loop Plan

4. What piece of code should we change to make the program correct?
In order to answer these questions, however, we need to answer another one first:

What programming approach was the user trying to implement? That is, did the student intend
to implement the skip-guard plan or did he try to implement the embedded Nlter loop
plan’

Answers to the first 4 questions will be different depending on how we answer this Jast question.

READ(RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
WHILE RAINFALL < 0 DO
BEGIN
WRITELN('BAD INPUT, TRY AGAIN');
READ(RAINFALL)
END;
TOTAL := TOTAL ¢ RAINFALL;
DAYS := DAYS =+ 1;
READ(RAINFALL)
END;

Figure 4: Sample Buggy Program

We will continue this example by presenting first an argument that supports the choice of the
skip-guard plan, and then an argument that supports the choice of the embedded filter
loop plan; we will then describe a basis for making a choice between the two competing
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positions. Coansider, then, Figure 5 in which we depict the buggy program again, plus a
generalized, template version of the skip-guard plan. We can describe the buggy program in
terms of a difference description between the it and the generalized plan. As shown in Figure 5.
there are 3 differences:

1. need an IF instead of a WHILE ipside the loop,

2. have an extra read inside the loop,

3. will always execute the processing steps since there is no way to skip around the
processing.

The first difference is a plausible bug for a novice to make; in our examination of novice
programs we have seen novices confuse IF and WHILE: students sometimes construct a loop with
simply an IF, and sometimes they use just the test part of the WHILE statement? [2. 6].
Similarly, the second difference is also plausible for novices; again, we bave found that novices
often add bits of spurious code, oftentimes attempting to mimic the redundancy they often use in
formulating plans and actions in the real world. Finally, if we assume that the programmer
really meant to simply test RAINFALL, then all that is missing is an ELSE to cause the skip
around the computation; novices notoriously have trouble with the ELSE parts of conditionals.
Thus, the buggy code in Figure 5 is not that different from the skip-guard plan. when
considering differences from only this plan it is entirely conceivable that the novice
programmer was trying to implement this plan in his code.

Now consider Figure 6 in which we again depict the buggy program. This time, however, we
show differences between it and a generalized, template version of an embedded filter loop
plan. Notice that the code matches the plan well; the only bug is a missing guard before the
code that processes the input: the running total update and the counter update must be
protected from including a sentinel value in the computation.

The analysis in Figures 5 and 6 would lead to different answers to the first 4 questions above.
For example, if we believe that the analysis in Figure 5 is correct, we might say the following to
the student:*

It seems that you are having some trouble with conditional statements. For example, did you
realize that there exists a statement called [F that allows you to test ...

To correct your program, you might want to add an ELSE clause...

3While this may seem strange to us as expert programmers, if we take s moment to reflect, we can see that using
WHILE for s conditional and a loop, and IF for only the conditional part is somewhat arbitrary, given their mesnings
in English.

“We do not want to argue about the best pedsgogical mrategy for interacting with the student; that in itself is a
very difficult question. The particular response shown is simply meant to illustrate one type of response to this
situation.
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READ (RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
WHILE RAINFALL < 0 DO
BEGIN
WRITELN('BAD INPUT, TRY AGAIN');
READ(RAINFALL)
END;
TOTAL := TOTAL ¢ RAINFALL;
DAYS :=DAYS =+ 1;
READ(RAINFALL)

Skip-Guard Plan

IF x < uin
THEN
BEGIN
print error messsge
END
ELSE
BEGIN
process input

END; END

BUG DESCRIPTION:

. need an IF instesd of a WHILE

. have an extra READ in inner toop

. missing ELSE; processing of input
will never be skipped

Figure 5: Bug Description Assuming Sksp-Guard Plan

Moreover, we would classify the bugs as an (1) incorrect statement type, (2) spurious read, (3)
missing ELSE. On the other hand, if we believe that the analysis in Figure 6 is correct, then we
might say something like the following to the student:

You should notice if the sentinel value follows the input of a pegative value that your program
will compute an incorrect average. ...

The bug type then might be a missing guard (conditional) plan.

By this time the reader’s intuition is surely saying that the correct analysis of the buggy
program in Figure 4 is that the programmer intended to impiement an emébedded filter loop
plan. The bug counts (3 for the skip-guard plan and 1 for the embedded filter loop
plan) provide quantitative support for this decision. However, we feel that the key in the
decision process —- and the basis for our intuition — is our understanding of the student's
program provided by the plan analysis in Figure §: thus, the bug categorization and bug count
Jollow from our understanding of the program —~ and not the other way around. We purposely
choose an example over which there would be little controversy. However, the point was (1) to
show how much reasoning we often do about programs implicitly, and (2) to show how different
bug categorization and bug counts could be as a function of choice of intended underlying plan.

While the above decision was relatively clear, let us perturd the buggy code a bit further and
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READ (RAINFALL) Embedded Filter Loop Plan
WHILE RAINFALL <> 99999 DO
BEGIN WHILE x < min DO
WHILE RAINFALL < 0 DO BEGIN
BEGIN print error message
WRITELN('BAD INPUT, TRY AGAIN’); READ
READ(RAINFALL) END
END; sentinel guard plen
process input

TOTAL := TOTAL + RAINFALL;
DAYS := DAYS + 1;
READ(RAINFALL)

END;

BUG DESCRIPTION:

1. missing conditions! (gusrd) on
processing the input

Figure 8: Bug Description Assuming Embedded Filter Loop Plan

see how murky these type of decisions can -~ and do -— become. In Figure 7 we show three
buggy program fragments; let us compare the bug categorization and bug counts using the two
-* -rnative plans for each of the programs.
o Figure 7a
» Using the embedded filter loop plan we get the following bug differences:
1. the WHILE and IF keywords have been interchanged
2. there is a missing read for a new value
3. there is a missing guard on the subsequent input processing
» Using the sksp-guard plan we get the following bug differences:
1. missing ELSE on the internal IF
e Figure 7b
» Using the embedded filter loop plan we get the following bug differences:
1. the WHILE aad IF keywords have been interchanged
2. there is » missing guard on the subsequent input processing
» Using the sksp-guard plan we get the following bug differences:
1. spurious READ
2. missing ELSE on the internal IF
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e Figure 7¢
» Using the embedded filter loop plan we get the following bug differences:
1. missing read for a new value
2. there is a missing guard on the subsequent input processing
» Using the akip-guard plan we get the following bug differences:
1. the WHILE and IF keywords have been interchanged
2. missing ELSE on the internal IF

We would argue that the programmer of the code in Figure 7a intended to encode a
skip-guard plan: again, the bug counts (3 for the embedded filter loop plan and 1 for the
skip-guard plan) support the intuition that it is more plausible that the programmer simply
left out an ELSE, as opposed to swapping keywords, etc. However, the code in Figures 7b and ¢
are not so easily analyzed: the bug counts are the same and the plausibility of the bug types are
reasonably similar. In order to make a reasoned decision we need to bring other evidence from
the program to bear. For example, in Figure 7b the programmer used a WHILE loop to correctly
implement the outer loop; this is some evidence that he understand: how and when to use this
construct. Thus, we might be confident that the programmer really meant IF in the program in
Figure 7b. On the other hand, the inclusion of the spurious READ is unsettling. However, the
program in Figure 7¢ is certainly the most problematic: the bug counts are the same, the
plausibility of the bugs are similar, and the additional outside information is equivocal. The
moral of this program is that it can be exceedingly difficult to make decisions about plans —- and
bugs --- by simply looking at the code.

The point of these latter examples is to illustrate how quickly the decision about what the
programmer intended gets murky, and how additional information outside the buggy area needs
to be brought to bear. We see again that for the programs in Figure 7 the bug categorization
and bug frequencies change depending on what decision is made about the programmer’s

intention.

Finally, the fact that the programs we have shown are novices’ programs is really irrelevant to
the point in question: the problem is that the intention of the programmer effects the bug
categorization and the bug count. Quite reasonably, we would not expect a professional
programmer to mistake an IF for a WHILE. The observation that we would not expect this
particular confusion would in fact aid us in inferring the intention —- it would not, we believe,
simply make the problem go away. Ip fact, we might well see buggy code such as Figure 4,
Figure 7 from a professional programmer.
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READ(RAIMNFALL)
WRILE RAINFALL <> 99999 DO
BEGIN
IF RAINFALL < O THEN

WRITELN( ‘BAD INPUT TRY AGAIN').

TOTAL = TOTAL » RAINFALL
DAYS = DAYS o |
READ(RATNFALL)

END

READ(RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
IF RAINFALL < O TWEN
EGIN
WRITELN(BAD INRUT TRY AGAIN')
READ(RAINFALL) .
.
TOTAL = TOTAL o RAINFALL.

Page 9

OAYS = DAYS o}
READ(RAINFALL)
END

READ(RAINFALL)
WILE RAINFALL © 99999 0O
BEGIN
WNILE RAINFALL < O 0O
WRITELNC BAD INPUT TRY AGAIN').
TOTAL = TOTAL » RAINFALL.
ODAYS = DAYS <« 1.
READ(RAINFALL)
END

Figure 7: Clouding the Waters: Additional Buggy Programs

3. Methods for Specifying the Intention of a Program
In the above section, the basis for describing bugs was the difference between s program and
the programming plans that specified a correct program. There are other methods of specifying
the intention of a program:
e 1/O Bebavior
¢ Programming Plans |
e Corrected Version of the Buggy Program |

¢ Program Description Language (PDL)
In what follows we will examine each of these in turn, and explore their good points and the bad
points with respect to using a method as a basis for developing bug difference descriptions. 1

1/0 BEHAVIOR

An 1/0O specification for the problem in Figure 1 would be quite close to the problem statement
itself. The obvious problem with this method is its vagueness with respect to the code: many
different code fragments can misbehave in the same manner (e.g., there are many, many ways to
generating an infinite loop -~ but the 1/O result is the same in all cases). One needs to be able
to make finer-grain distinctions than are facilitated by a comparison of the code to simply 1/O
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specifications.

PROGRAMMING PLANS

The major problem with this method is the need to guess what plan the programmer intended
to implement. However, once the decision is made, then describing the bug as a difference
_ between the plan and the code is relatively easy. One method of coping with the plan decision
problem is interviews with the original programmers; this technique has been used to “validate™
3 '- change report data in several software monitoring projects (e.g., [12]). Unfortunately, in a class
of 200 students writing code at different terminals, interviews with subjects is a bit more
difficult.

The major benefit derived from building a bug description using this method is an accurate
reporting of the cause of the bug. That is, clearly the goal of a bug taxonomy in which one
captures bug type and bug frequency is the ability to pinpoint the sources of the bugs: one
would like to know which bugs came from misunderstandings of the specifications document and

which bugs arose from coding errors, etc. For example, in the previous section if we assumed

R that the programmer intended to implement a skip-guard plan then we would say that there
were a number of coding level bugs (e.g., WHILE instead of IF, missing ELSE, spurious READ).
- However, if we assume that the programmer intended to implement an embedded filter loop
- plan, then the source of tlge bug may be a problem of specification interpritation: the

programmer may not bave thought that someone would ever input the sentinel value after

inputing an illegal (negative) value. Thus he felt no need to guard subsequent computation. (An

interview with the programmer would be particularly useful in this specific case.) Thus, bug

= categorization and bug origin is directly influenced by the choice of underlying plan structure in
‘ the buggy program.

CORRECTED VERSION OF THE BUGGY PROGRAM

The typical method of describing a bug is to compare the original buggy program with the
corrected version of that program (e.g., [12, 7, 1]). While there is no guessing as to the intention
of the original programmer, we see 2 basic problems with this approach:

o The choice of the particular corrected program used as the measure so relatively

arbitrary. That is, there are few hard guidelines for making changes to code. Thus,

! different programmerss could well take the same buggy program and correct it in
1 different ways. This would result in two different bug descriptions — an intuitively
uusatisfactory situation. Moreover, different bug descriptions could lead to different
conclusions as to the origins of the bugs, which, afterall, is the the point of doing the
bug categorization in the first place. For example, if the buggy program in Figure
4 were corrected by implementing a skip-guard plan, then the difference between
: the buggy program and the corrected program would result in s bug description
; containing 3 coding level bugs. On the other hand, if the program is corrected by
B putting in aguard around the subsequent computation to protect against s sentinel
value, then the bug description would onmly conmtain 1 bug, a missing conditional
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(guard plan) — which may or may not be a coding level bug (as discussed above).
While we might prefer the programmer to make the latter change, there is no way w
guarentee this situation.
Interviewing the original programmer might shed some light on his intentions -~ and
guide the subsequent bug analysis or even bug correction. However, this additional,
programmer-supplied, information goes beyond the corrected program — and
approaches a bug description based on the programmers original plan While we have
some methodological reservations about using interviews collected after the fact,? the
main issue is that information gotten from the interview is of a different sort than the
information gotten from the corrected program — where the former information is
much more akin to the programming plans described above.

¢ What is actually counted can be quite problematic. For example, if we correct the
buggy program in Figure 7¢ by adding the missing ELSE, we also need to add a
BEGIN-END block around the running total update and the counter update. Should
we count this as 1 bug or 2 bugs’! It seems unfair to count the BEGIN-END block
against the programmer, since this change is required by the “real® change. On the
other hand, however, in the next section we will show programs in which the “real”
bug ss a missing BEGIN-END block. Thus, it is not inconceivable that a programmer
could add the ELSE in Figure 7¢, but forget to put in the now necessary BEGIN-END
block. What one counts is a tricky issue.

The upshot of these two problems with categorizing and counting bugs based on a corrected
version of the program was suggested above: one is less confident of the origins of the bugs, and
thus is less confident about percentages of bugs with those origins. Depending o.n the particular
corrected solution and the particular choice of counting scheme, one could paint a picture of a
program that contained many more coding level errors, say, than specification-based errors. The
worst part of this situation is that we would not have a good way of knowing how right or wrong
this analysis was — since we don't know how the bug categories and counts would have turned
out if a different corrected version were used as the basis for difference descriptions.

PROGRAM DESCRIPTION LANGUAGE (PDL)

PDL's come in all flavors; some are very close to the code, while others are more high level,
and closer to the plan level description. The former PDL would suffer from the same problems as
using a corrected version as the standard. The latter type of PDL would suffer from the problems
associated with using the programming plans as the standard.

5The problems with using interview data has received significant sttention in psychology. For example, Ericsson
and Simon (4] have argued that one can relisbly only use verbal information given by the subject o the eubject is
doing tAe tesk. They argue that such a concurrent verbal report is effectively an on-line dump from short-term
memory. In contrast, a report after the fact could be a story sbout what the subject thought he was thinking, and
that significant distortions can occur in this type of situation. While one might argusbly feel that the Ericsson and
Simon position is a bit extreme, nonetheless, it seems only prudent to exercise care in interpreting interview data.




TR

Ao G

R e TSRS R

Johnson, Draper, Soloway Page 12

4. An Extended Example

Let us now consider an actual example from the on-line protocol data. In Figure 8 we depict
the problem the students were trying to solve; in Figure 9 the program on the left is a buggy
program generated by a student in our study. If we take a “local view” of the bugs in this
program, we can geperate a corrected version as shown in Figure 9 (right hand side). Notice that
if we do a difference description between the corrected and the buggy versions we can come up
with 8 changes:

¢ The rainyday counter, COUNT1, will be always be updated; in order to correct for
the times when a negative rainfall is input, we need to decrement COUNT1. Thus, (1]
added a begin-end block after (NUM < 0) test, and [3] added a decremnent of the
rainyday counter.

e COUNT2 must be made to contain the number of rainy (not just valid) days.
COUNT?2 keeps track of the non-rainy valid days in the loop. Thus, we need to
subtract the non-rainy days (COUNT?2) from the total valid days (COUNT1) in order
to get the pumber of rainy days: [3] changed addition of COUNT! and COUNT? to
subtraction of COUNT? from COUNTL.

o The guard on the average calculation is incorrect. Thus, [4] changed guard on average
calculation to COUNTI.
o The divisor in the average calculation should be the valid day counter, COUNTI, not

the valid, but non-rainy day counter, COUNT2. Thus, [6] changed COUNT? to
COUNT! in the divisor of the average calculation.

o If there is no valid input the program should neither calculate the average, nor should
the program print it out -— as well as not printing out the maximum. Thus, [8] added
a begin-end block after division guard around average calculation and output
atatements.

o The WRITELNSs give a message about what should be output; in order to make the
message agree with the actual output, the variables need to be changed: (7] the valid
day counter needs to be COUNTI, while the [8] rainy day counter needs to COUNT?.

Given the pumber of changes that need to be made to the counters (COUNT1 and COUNT?), it
would appear that the student has some confusion over the roles of the two counters.

The Noash Problem: Noah needs to keep track of the rainfall in the New Haven ares to determine
when to launch his ark. Write a program which he can use to do this. Your program shounld read
the rainfall for each day, stopping when Noah types “90999”, which is not a data value, but a
sentinel indicating the end of input. If the user types in a pegati~e value the program should
reject it, since negative rainfall is not possible. Your program should print out the number of
valid days typed in. the number of rainy days, the average rainfall per day over the period, and
tbe maximum amount of rainfall that fell on any one day.

Figure 8: The Noah Problem: A First Looping Problem

However, consider now a different corrected version of this buggy program as depicted in
Figure 10. A difference description between the buggy version and the corrected version yields the
following set of bugs:

o We can make COUNT only keep track of the rainy days; this is consistent with code
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BUGGY EXAMPLE
BEGIN
WRTTELN ('PLEASE' INFUT AMOUNT OF RAINFALL')
READLN
READ (NUN)
CONIL =+ 0
COWNT2 =0
SUm 0
NIGWaR = 0
WeILE (M © SENTINAL) 00
GEGIN
IF (nm > 0)
THEN
SUR 2 SUM . N
CONTL = COUNT: » |
IF (NUR > NIGHNUM)
THEN
NS : NUm
W ogm oz D)
TUEN
TONTY = CONT2 - 1
MmO
THEN
WAITELN (" ILLEGAL INPUT INPUT NEW VALUE ')
READLN
REAC(NUN)
3]
CNTY = COUNTD « COUNTY
iF (> 0)
THEN
TOTAL = SUM/COUNT?

VRITELN ("AVERAGE RAINFALL wAS ° TOTAL ° INCHES PER DAY') IF (ewmmll > 0 )

WRITELN ('WIGMEST RAINFALL WAS * WIGNNUM * INCWES')
WRITELN (SOUNTY © VALID DAYS wERE ENTERED')
WRITELN ( COUNTY ° RAINY DAYS IN TWIS PERIOOD )
EN

Y TN Y
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CORRECTED VERSION
BEGIN
WRITELN ("PLEASE' INPUT AMOUNT OF RAINFALL').
READLN
READ(NMN) .
oWl =0
COMT2 = 0
Wm0
niGsam = 0.
WILE (M <> SENTINAL) 0O
BEGIN
IF (am > 0)
THEN
SN = SN e N
COUNTY = COUNTL « 1
IF (UM > HIGHNUN)
THEN
NIGHAm = MM
IF (W z 0)
THEN
CONT2 = COMNT2 |
IF (MM < 0)
THEN
bogin (® 0dd this line °*)
connil = comnll - 1; (® odd this line ®}
WRITELN (*ILLEGAL INPUT INPUT NEW VALUE ‘)

-d; (® 0dd thie line *)
READLN
READ (NUW)
(1 J
wonif = esuni! - counis; (® changod (hio line ®)
(* dhanged this kine °)

THEN

dapn (® 0dd this line *)

TOTAL = SUN/esemil,  (® changed this line *)
WRITELN (“AVERAGE RAINFALL WAS ° TOTAL ' INCNES PER DAY
WRITELN ("WIGHEST RAINFALL WAS ° WIGHNUM © [NCHES )
-~ (® add this lime %)
WRITELN(emund g * VALID DAYS VERE ENTERED')  (® chamged this hne ©)
WRITELN(comnt®, * RAINY DAYS IN THIS PERIOD *)  (® chanped this lnme *
o0

o (1] added 2 vegin-end bioch after (WUM ¢ 0) test. and [8] added o decremest of the rainyday cownter
o [8] chranged addition of COUNTL ang COUNT2 to Sedtraction of COUNT2 fros COUNTL

o [4] changed guard on average caiculation to COUNT!

o [8] changed COUNT2 to COUNTL i the divisor of the sverage calcelstion

o [8] adsed 2 deg:n-end diock after givision geard aroend sverage caicelation and ovtpst statements

o [7] the vatig day counter needs to be COUNT!

white the [8] rainy day counter needs to COUNT?

Figure 8: A Buggy Program and a Corrected Version
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already in the program: the line that adds COUNT2 and COUNT1 now makes sense
—~- COUNT2 now keeps track of the valid days, and the divisor in the average
caleulation suggests that COUNT?2 should be the valid day counter. In order to make
COUNT!I perform in this manner, we need to (1] add a begin-end pair around all
computation o fier NUM > 0 teet, up to the NUM == 0 test.

o If there is no valid input the program should neither calculate the average, por should
the program print it out — as well as not printing out the maximum. Thus, we need
to [2] add a begin-end block afer division guard around average caleulation and
output statements.

e The guard on the average calculation is incorrect. Thus, (8] changed guard on average
caleulation to COUNTL.

Which description should we choose’ And why? Notice that neither of the corrected versions
were that unreasonable. However, it would seem to us that one should choose the second bug
description over the first. The basis for that decision is the hypothesized plan structure
underlying the buggy version: it appears to us that the student was trying to structure the
actions in the main loop in terms of cases. For example, the program explicitly tested for NUM
> 0, NUM = 0, and NUM < 0 and took the appropriate actions -~ almost. In order to make
the case structure work, the code following the NUM > 0 up to the NUM = 0 test should be
grouped together. While one cannot put too much faith in the indentation of a novice's
program ® it appears that the indentation supports this analysis. Thus, what is missing from the
main loop is a begin-end pair surrounding the code between the NUM > 0 test and the NUM =
0 test. On this analysis, the student does not have a misunderstanding surrounding the two
counters, but rather has a coding level misunderstanding about how to block code together.
Moreover, this same misunderstanding can explain the lack of a degin-end pair surrounding the
average calculation in the next two write statements. The reduced bug count in the second
descnription follows directly from this apalysis: in effect there are only 3 bugs in this program, 2
of which have the same underlying origin.

This example illustrates a point made earlier: the bug categorization and bug count follow
from an understanding of the program that is provided by the hypothesized plan structure of
the program. That is. to understand a buggy program, one must make inferences about what
plan structure the programmer intended to implement; the program only “makes sense” in terms
of these plan descriptions.

*We have observed in the on-line protocols that the physical layout of & student's program suffers as the student
makes changes to his program in the process of debugging it.
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BUGGY EXAMPLE
BEGIN
WRITELN ("PLEASE' INRUT ANOUNT OF RAINFALL').
READLN
READ(NLW)
COWNTL =0
CONT2 =2 0
SN =0
NIGWAN = O
WHILE (MU <> SENTINAL) DO
BECIN
IF (am > Q)
THEN
SUM = SUR o UM
COUNT] = COUNT] « |
IF (N > HIGHNUM)
THEN
NiGHAN = am
iF (NUm 2 Q)
THEN
CINTZ = COUNT? » |
IF (MM < 0)
THEN
WRITELN ("ILLEGAL INAUT INPUT NEW VALUE')
READLN
READ(Nst)
N0
COUNTZ = COMTZ « COMTL
IF (N > 0)
THEN
TOTAL  * SURM/COMNTZ
WRITELN ( AVERAGE RAINFALL WAS * TOTAL ° INCHES PER DAY')
WRITELN ("WIGMEST RAINFALL WAS ° WIGHMUN ° INCHES')
WRITELN {COUNT2 ° VALIO DAYS WERE ENTERED')
WRITELN (COUNT] - RAINY DAYS N THIS PERIOD )
END

Page 15

ANOTHNER CORRECTED VERSION
®CIN
WRITELN (‘PLEASE' INPUT AROUNT OF RAINFALL')
READLN,
AEAD(NAN)
CONTI s 0
CONT2 2 0.
M s0 .
HIGAm s 0
WIILE (MM > SENTINAL) 0O
eECIN
IF (am > 0)
TN
bopin {® odd thse kine )
SN = SN .
COUNTL = COWNTL o 1
IF (MW > HIGWAM)
THEN
WIGeRm = mm
-d; {® odd thes e *)
IF (am = 0) )
THEN
COUNT2 = COUNT2 o |
IF (MM < 0)
TeEn
WRITELW ('TLLEGAL INRUT INPUT NEW VALUE')
AEADLN
READ(vOm)
00
COUNT2 = COUNTZ * COWNTI
I¥ (esunt? > 0) {® dhonged (Ao line ©)
T™EN
dopn (® 084 this line *)
TOTAL = SUR/COWNTZ
WRITELN (*AVEMAGE MAINFALL WAS ° TOBAL. ° INCHES PER DAY
WRITELN ('WIGHEST MAINFALL WAS * WIGMNUM ° INCHES )
-d; (® 044 this line )
WRITELN (COUNTZ ° VALID OAYS WERE ENTERED')
WRITELN (COUNT] * WAINY DAYS IN THIS PERIOD )
0

o [1] 2dd 2 degin-end pair arround ali computation after WM 5> 0 test uwp to the NUR = 0 test
® [2] 20d 2 deg.n=end bBioct after division guard sround sverage calcuiaton and Outpet statements

o (8] changed guard on average calcetation to COUNTL

Figure 10: A Bugggy Program an an Alteruﬁve Corrected Version
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8. Concluding Remarks

We have argued that a bug description is a difference description between the realization and
the intention specification. We have presented a number of techniques for specifying the intention
and have pointed out the problems associated with each type of specification in developing an
accurate picture of bug types and bug frequency. While no technique is without its problems, we
have argued that the understanding provided by a plan analysis of the buggy program stands a
better chance, as compared to the other techniques, of providing a more accurate categorization
and count of the bugs — and thus a more accurate reflection of the origins of the bugs.
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