" AD-A133 264 CLASSIFYING BUGS IS A TRICKY BUSINESS{U) YALE UNIV NEW
HAVEN CT DEPT OF COMPUTER SCIENCE W L JOHNSON ET AL,
AUG 83 YALEU/CSD/RR-284 N00014-82-K-0714

UNCLASSIFIED F/G 9/2 NL

10 &M K2
2 s i
e g M=

s 5
e

I]
(&)

[

E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS - 1963 - A

e ARl e
v o <

AD- A\33a¢H

E CLASSIFYING BUGS IS A TRICKY BUSINESS

W. Lewis Johnson. Stephen Draper
and Elliot Soloway /

YaleU/CSD/RR #284

August 1983

VR W S

_ YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

) has oo :-A:-. K :.5‘0..‘: :\;«;:.“p;‘—)vd
tor put: el egle; e 92
" ‘ 83 10 04 O

Comribatien L uilintted,

¥

Foo Y% o

|
|

CLASSIFYING BUGS IS A TRICKY BUSINESS

W. Lewis Johnson. Stephen Draper
and Elliot Soloway

YaleU/CSD/RR #284

August 1983

I Loae b s >'zl.\4.nl' .
R S i MR |
* .

i nlhaticn s voduuied :

/2

A xR

SECURITY CLASSIFICATION OF Twi§ BAGE (When Deis Entered)

REPORT DOCUMENTATION PAGE BEP O O B e

T “';;;;w.“ AC) :oKiitBujuo gcm——

4. TITLE (and Sudniile) $. YYPE OF REPORT & PEROD COVERED

Classifying Bugs is a Tricky Business Technical
6. PERFORMING ORG. REPORY NUMBER

T RO THORTS) 3. CONTRACT OR GRANT NUMBER(S)
4l W. Lewis J9hnson, Stephen Draper and NOOO14-82-K-0714

N Elliot Soloway

: S PERFORMING ORGANIZATION NAME AND ADDRESS 10. RROGRAM ELEMENT PROJECT. TASK

. AREA & WORK UNIT NUMBERS
Department of Computer Science

Yale University

New Haven, CT 06520 NR 154-492
1T CONTROLLING OFFICE NAME ANT ADDRESS 12. AEPORT DATE
Personnel and Training Research Programs August 1983
Office of Naval Research (Code 458) 3. NUMBER OF BAGES
Arlington, VA 22217 ' 17

T4 MONICORING AGENCY NAME & ADDRESS(I/ different from Controlling Oftice) | 18. SECURITY CLASS. (of thie report)

unclassified
T8a. DECL ASSIFICATION, DOWNGRADING |
SCHNEOULE

- 8 DISTRIBUTION STATEMENT (of this Repert)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT (of the ebstract entered in Block 20, it diterent frem Repert)

19 SUPPLEMENTARY NOTES

7th Annual NASA/Goddard Workshop on Software Engineering,
Baltimore, 1982.

19 XKEY WORDS (Continue on reverse side (I necessary and Identily by block number)

Software Engineering
Program Bugs

- Program Understanding
Programming Plans

20 AGSTRACT (Continue en reverae side If necessery and identify by bleck number)

see attached page

DD ,’3n"; 1473 toimion oF 1 wov 6813 ORsOLETE)
$ N 0102-LF- 014- 0001 SECUMTY CLASWPICATION OF Tuis $4GE (oen Dore Barersw)

R S e o

R

SECURITY CLASSIFICATION OF THIS PAGE (When Date Enteredd

In order to build a computer-based programming tutor for novice programmers, 1 DG“{‘
~we needed to first classify the bugs we found in their programs on the basis | ~77*’ "4
. of type and frequency. However, the enterprise of classi. ication turns out
to be a complicated process. While one may want to be able to simply use
¥ features in the program itself as the basis for the classification, it turns

out that such a scheme will result in classifications that seem to miss the
4 . mark, i.e., the classifications will not tell you what misconception the
4
L prog;ammer was operating under which caused the bug. To remedy this situation
‘we a¥gle that the programming plans that the programmer intended to use
A should be the basis for a classification scheme. Thus, a bug c%agsification
must take the programmer directly into account. In this paper, Gé‘compare

several different methods of bug classification currently being used in
software engineering projects, and show their weaknesses; while otrr method
of using intended programming plans is not without problems, we—argue that
& it presents a better alternative than the other methods currently being
. employed. 1
'ﬁ Accession For
g NTTS GRARI %
& pPTIC TWB
- Uonnoanted 0
J..citiantion
d T
b Fv . e
‘; - >les
|
lps
E

v A

B
!

$:N 0102 LF-014- 600

SECUMITY CLASSIPICATION OF TiIS PASEThen Dare Bntered)

To Appear: 7th Annual NASA/Goddard Workshop on Software Engineering, Baltimore, 1982.

Classifying Bugs is a Tricky Business

W. Lewis Johnson *
Stephen Draper **
Elliot Soloway *

* Department of Computer Science
Yale University
P.O. Box 2158
New Haven, Connecticut 06520

** Institute for Cognitive Science
University of California, San Diego Mail Code C015
La Jolla, California

This work was co-sponsored by the Personnel and Training Research Groups, Psychological
Sciences Division, Office of Naval Research and the Army Research Institute for the Behavioral
and Social Sciences, Contract No. N00014-82-K-0714, Contract Authority Identification Number,
Nr 154-492. Approved for public release; distribution unlimited. Reproduction in whole or part is

permitted for any purpose of the United States Government.

o 0 Bt e

R S

Qs s _
2oee it A

—es oy

|
|

3 it St A indiosb iR

Johnson, Draper, Soloway Page 2

1. Context: Motivation and Goals

About 2 years ago we decided to build a computer-based programming tutor to help students
learn to program in Pascal; we wanted the system to identify the non-eyntactic bugs in a
student's program and tutor the student with respect to the misconceptions that might have
given rise to the bugs. The emphasis was on the system understanding what the student did and
did pot understand; we felt that simply telling the student that there was a bug in line 14 was
not sufficient --- since oftentimes the bug in line 14 was really caused by a whole series of
conceptual errors that could not be localized to a specific line in the program. However, in order
to design the system we needed to know what bugs students did make in their programs and
what misconceptions they typically labored under. On the basis of bug types found in a number
of pencil-and-paper studies with student programmers (novices, intermediates, and advanced)
[9, 10]), we built and classroom tested a first version of such a programming tutor [11]. In the
process of testing that system we instrumented the operating system on a CYBER 175 to
automatically collect a copy of each syntactically correct program the student programmers
attempted to execute while sitting at the terminal; we call this form of data “on-line protocols™.
We collected such protocols on 204 students for an entire semester (7 programming assignments).
We have systematically analyzed only a small portion of these data: the basis for this paper is
the hand analysis of the first syntactically correct program that students generated for their first
looping assignment,! i.e., 204 programs.

The story we tell in this paper deals with our experiences in analyzing these 204 on-line
protocols. In particular, we will describe the observations we made in trying to build a bug
classification scheme; the actual details of what bugs we found, their frequency, etc. can be found
in [5]. The key observation is the following: while one might think that building a classification
scheme for the bugs would be straightforward, it turns out not to be so simple; in fact, we will
argue that:

Bugs cannot be unigquely deacribed on the basis of [features of the buggy program alone; one
must also take the programmer s intentions and knowledge state into account.

2. A Simplified Example

Counsider the problem statement in Figure 1, which is a simplified version of the first looping
problem that the students in our study had to solve in Pascal. From a novice's perspective the
difficult part of this problem is making sure that the negative inputs are filtered out before they
are processed. There are two common approaches to solving this type of problem in an Algol-like
language such as Pascal. In Figure 2 we depict a solution in which a negative input causes

YThis problem is given in Figure 8, which will be discussed in section 4.

J

e bt con ot TR o .

Johnson, Draper, Soloway Page 3

execution of one branch of a conditional, while a non-negative input causes execution of the

| major computation of the loop. We call this type of structure s Skip-guord Plan? a

E conditional statement is used to guard the main computation from illegal values. Notice that one

pass through the loop will be made for each input value. The second approach is given in Figure

3; bere an embedded loop filters out the illegal values. Notice that one pass through the outside

loop will be made for each — and only each — legal value. We call the nested loop structure an
Embedded Filter Loop Plan.

Write a program that reads in integers, that represept the daily rainfall in the New Haven area,
and computes the average daily rainfall for the input values. If the input is 3 negative pumber, do
2 not count this value in the average, sad prompt the wser to iaput amother, legal value. Stop
8 reading when 99999 is input; this is a sentinel value and should not be used in the average
e calculation.

Figure 1: Simplified Looping Problem

READ(RAINFALL)
WHILE RAINFALL © 98999 DO
BEGIN
. IF RAINFALL < O
a;, THEN
< WRITELN('BAD INPUT, TRY AGAIN')
3 | ELSE
: BEGIN
TOTAL := TOTAL + RAINFALL;
DAYS := DAYS «+ I;
END;
READ(RAINFALL) ;

- END;

Figure 3: Using a Skip-Guard Flan

Now consider the buggy program in Figure 4. The problem with this program is that if the
user first types a pegative input, and then types the sentinel value 99999, this value will
-~ incorrectly —- be processed as a legitimate value. A number of questions come to mind:

1. How should we classify this bug?
2. What piece of code is to blame?!
3. What mental error on the student’s part might have caused this bug?

R

1
v 1’
|

See [8. 3, 9)for & more complete discumion of programming plans.

4

[R A

e S i a2 2 N . ia

Johnson, Draper, Soloway Page 4

READ(RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
WHILE RAINFALL < 0 DO
BEGIN
WRITELN("BAD INPUT, TRY AGAIN’):
READ(RAINFALL)
END;
IF RAINFALL <> 99999 THEN
BEGIN
TOTAL := TOTAL * RAINFALL;
DAYS DAYS + 1;
READ (RAINFALL)
END;

END;

Figure 3: Using an Embedded Fiiter Loop Plan

4. What piece of code should we change to make the program correct?
In order to answer these questions, however, we need to answer another one first:

What programming approach was the user trying to implement? That is, did the student intend
to implement the skip-guard plan or did he try to implement the embedded Nlter loop
plan’

Answers to the first 4 questions will be different depending on how we answer this Jast question.

READ(RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
WHILE RAINFALL < 0 DO
BEGIN
WRITELN('BAD INPUT, TRY AGAIN');
READ(RAINFALL)
END;
TOTAL := TOTAL ¢ RAINFALL;
DAYS := DAYS =+ 1;
READ(RAINFALL)
END;

Figure 4: Sample Buggy Program

We will continue this example by presenting first an argument that supports the choice of the
skip-guard plan, and then an argument that supports the choice of the embedded filter
loop plan; we will then describe a basis for making a choice between the two competing

T A g Ay

[T

T Py O e T ey ww
. i

Johnson, Draper, Soloway Page §

positions. Coansider, then, Figure 5 in which we depict the buggy program again, plus a
generalized, template version of the skip-guard plan. We can describe the buggy program in
terms of a difference description between the it and the generalized plan. As shown in Figure 5.
there are 3 differences:

1. need an IF instead of a WHILE ipside the loop,

2. have an extra read inside the loop,

3. will always execute the processing steps since there is no way to skip around the
processing.

The first difference is a plausible bug for a novice to make; in our examination of novice
programs we have seen novices confuse IF and WHILE: students sometimes construct a loop with
simply an IF, and sometimes they use just the test part of the WHILE statement? [2. 6].
Similarly, the second difference is also plausible for novices; again, we bave found that novices
often add bits of spurious code, oftentimes attempting to mimic the redundancy they often use in
formulating plans and actions in the real world. Finally, if we assume that the programmer
really meant to simply test RAINFALL, then all that is missing is an ELSE to cause the skip
around the computation; novices notoriously have trouble with the ELSE parts of conditionals.
Thus, the buggy code in Figure 5 is not that different from the skip-guard plan. when
considering differences from only this plan it is entirely conceivable that the novice
programmer was trying to implement this plan in his code.

Now consider Figure 6 in which we again depict the buggy program. This time, however, we
show differences between it and a generalized, template version of an embedded filter loop
plan. Notice that the code matches the plan well; the only bug is a missing guard before the
code that processes the input: the running total update and the counter update must be
protected from including a sentinel value in the computation.

The analysis in Figures 5 and 6 would lead to different answers to the first 4 questions above.
For example, if we believe that the analysis in Figure 5 is correct, we might say the following to
the student:*

It seems that you are having some trouble with conditional statements. For example, did you
realize that there exists a statement called [F that allows you to test ...

To correct your program, you might want to add an ELSE clause...

3While this may seem strange to us as expert programmers, if we take s moment to reflect, we can see that using
WHILE for s conditional and a loop, and IF for only the conditional part is somewhat arbitrary, given their mesnings
in English.

“We do not want to argue about the best pedsgogical mrategy for interacting with the student; that in itself is a
very difficult question. The particular response shown is simply meant to illustrate one type of response to this
situation.

Johnson, Draper, Soloway

READ (RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
WHILE RAINFALL < 0 DO
BEGIN
WRITELN('BAD INPUT, TRY AGAIN');
READ(RAINFALL)
END;
TOTAL := TOTAL ¢ RAINFALL;
DAYS :=DAYS =+ 1;
READ(RAINFALL)

Skip-Guard Plan

IF x < uin
THEN
BEGIN
print error messsge
END
ELSE
BEGIN
process input

END; END

BUG DESCRIPTION:

. need an IF instesd of a WHILE

. have an extra READ in inner toop

. missing ELSE; processing of input
will never be skipped

Figure 5: Bug Description Assuming Sksp-Guard Plan

Moreover, we would classify the bugs as an (1) incorrect statement type, (2) spurious read, (3)
missing ELSE. On the other hand, if we believe that the analysis in Figure 6 is correct, then we
might say something like the following to the student:

You should notice if the sentinel value follows the input of a pegative value that your program
will compute an incorrect average. ...

The bug type then might be a missing guard (conditional) plan.

By this time the reader’s intuition is surely saying that the correct analysis of the buggy
program in Figure 4 is that the programmer intended to impiement an emébedded filter loop
plan. The bug counts (3 for the skip-guard plan and 1 for the embedded filter loop
plan) provide quantitative support for this decision. However, we feel that the key in the
decision process —- and the basis for our intuition — is our understanding of the student's
program provided by the plan analysis in Figure §: thus, the bug categorization and bug count
Jollow from our understanding of the program —~ and not the other way around. We purposely
choose an example over which there would be little controversy. However, the point was (1) to
show how much reasoning we often do about programs implicitly, and (2) to show how different
bug categorization and bug counts could be as a function of choice of intended underlying plan.

While the above decision was relatively clear, let us perturd the buggy code a bit further and

‘\‘,4‘1;;;.“'_‘

&

.
2 = .
[NPUE e

-

Johnson, Draper, Soloway Page 7
READ (RAINFALL) Embedded Filter Loop Plan
WHILE RAINFALL <> 99999 DO
BEGIN WHILE x < min DO
WHILE RAINFALL < 0 DO BEGIN
BEGIN print error message
WRITELN('BAD INPUT, TRY AGAIN’); READ
READ(RAINFALL) END
END; sentinel guard plen
process input

TOTAL := TOTAL + RAINFALL;
DAYS := DAYS + 1;
READ(RAINFALL)

END;

BUG DESCRIPTION:

1. missing conditions! (gusrd) on
processing the input

Figure 8: Bug Description Assuming Embedded Filter Loop Plan

see how murky these type of decisions can -~ and do -— become. In Figure 7 we show three
buggy program fragments; let us compare the bug categorization and bug counts using the two
-* -rnative plans for each of the programs.
o Figure 7a
» Using the embedded filter loop plan we get the following bug differences:
1. the WHILE and IF keywords have been interchanged
2. there is a missing read for a new value
3. there is a missing guard on the subsequent input processing
» Using the sksp-guard plan we get the following bug differences:
1. missing ELSE on the internal IF
e Figure 7b
» Using the embedded filter loop plan we get the following bug differences:
1. the WHILE aad IF keywords have been interchanged
2. there is » missing guard on the subsequent input processing
» Using the sksp-guard plan we get the following bug differences:
1. spurious READ
2. missing ELSE on the internal IF

&
’
<
G
1
&

Johnson, Draper, Soloway Page 8

e Figure 7¢
» Using the embedded filter loop plan we get the following bug differences:
1. missing read for a new value
2. there is a missing guard on the subsequent input processing
» Using the akip-guard plan we get the following bug differences:
1. the WHILE and IF keywords have been interchanged
2. missing ELSE on the internal IF

We would argue that the programmer of the code in Figure 7a intended to encode a
skip-guard plan: again, the bug counts (3 for the embedded filter loop plan and 1 for the
skip-guard plan) support the intuition that it is more plausible that the programmer simply
left out an ELSE, as opposed to swapping keywords, etc. However, the code in Figures 7b and ¢
are not so easily analyzed: the bug counts are the same and the plausibility of the bug types are
reasonably similar. In order to make a reasoned decision we need to bring other evidence from
the program to bear. For example, in Figure 7b the programmer used a WHILE loop to correctly
implement the outer loop; this is some evidence that he understand: how and when to use this
construct. Thus, we might be confident that the programmer really meant IF in the program in
Figure 7b. On the other hand, the inclusion of the spurious READ is unsettling. However, the
program in Figure 7¢ is certainly the most problematic: the bug counts are the same, the
plausibility of the bugs are similar, and the additional outside information is equivocal. The
moral of this program is that it can be exceedingly difficult to make decisions about plans —- and
bugs --- by simply looking at the code.

The point of these latter examples is to illustrate how quickly the decision about what the
programmer intended gets murky, and how additional information outside the buggy area needs
to be brought to bear. We see again that for the programs in Figure 7 the bug categorization
and bug frequencies change depending on what decision is made about the programmer’s

intention.

Finally, the fact that the programs we have shown are novices’ programs is really irrelevant to
the point in question: the problem is that the intention of the programmer effects the bug
categorization and the bug count. Quite reasonably, we would not expect a professional
programmer to mistake an IF for a WHILE. The observation that we would not expect this
particular confusion would in fact aid us in inferring the intention —- it would not, we believe,
simply make the problem go away. Ip fact, we might well see buggy code such as Figure 4,
Figure 7 from a professional programmer.

Johnson, Draper, Soloway

READ(RAIMNFALL)
WRILE RAINFALL <> 99999 DO
BEGIN
IF RAINFALL < O THEN

WRITELN(‘BAD INPUT TRY AGAIN').

TOTAL = TOTAL » RAINFALL
DAYS = DAYS o |
READ(RATNFALL)

END

READ(RAINFALL)
WHILE RAINFALL <> 99999 DO
BEGIN
IF RAINFALL < O TWEN
EGIN
WRITELN(BAD INRUT TRY AGAIN')
READ(RAINFALL) .
.
TOTAL = TOTAL o RAINFALL.

Page 9

OAYS = DAYS o}
READ(RAINFALL)
END

READ(RAINFALL)
WILE RAINFALL © 99999 0O
BEGIN
WNILE RAINFALL < O 0O
WRITELNC BAD INPUT TRY AGAIN').
TOTAL = TOTAL » RAINFALL.
ODAYS = DAYS <« 1.
READ(RAINFALL)
END

Figure 7: Clouding the Waters: Additional Buggy Programs

3. Methods for Specifying the Intention of a Program
In the above section, the basis for describing bugs was the difference between s program and
the programming plans that specified a correct program. There are other methods of specifying
the intention of a program:
e 1/O Bebavior
¢ Programming Plans |
e Corrected Version of the Buggy Program |

¢ Program Description Language (PDL)
In what follows we will examine each of these in turn, and explore their good points and the bad
points with respect to using a method as a basis for developing bug difference descriptions. 1

1/0 BEHAVIOR

An 1/0O specification for the problem in Figure 1 would be quite close to the problem statement
itself. The obvious problem with this method is its vagueness with respect to the code: many
different code fragments can misbehave in the same manner (e.g., there are many, many ways to
generating an infinite loop -~ but the 1/O result is the same in all cases). One needs to be able
to make finer-grain distinctions than are facilitated by a comparison of the code to simply 1/O

Johnson, Draper, Soloway Page 10

<y

specifications.

PROGRAMMING PLANS

The major problem with this method is the need to guess what plan the programmer intended
to implement. However, once the decision is made, then describing the bug as a difference
_ between the plan and the code is relatively easy. One method of coping with the plan decision
problem is interviews with the original programmers; this technique has been used to “validate™
3 '- change report data in several software monitoring projects (e.g., [12]). Unfortunately, in a class
of 200 students writing code at different terminals, interviews with subjects is a bit more
difficult.

The major benefit derived from building a bug description using this method is an accurate
reporting of the cause of the bug. That is, clearly the goal of a bug taxonomy in which one
captures bug type and bug frequency is the ability to pinpoint the sources of the bugs: one
would like to know which bugs came from misunderstandings of the specifications document and

which bugs arose from coding errors, etc. For example, in the previous section if we assumed

R that the programmer intended to implement a skip-guard plan then we would say that there
were a number of coding level bugs (e.g., WHILE instead of IF, missing ELSE, spurious READ).
- However, if we assume that the programmer intended to implement an embedded filter loop
- plan, then the source of tlge bug may be a problem of specification interpritation: the

programmer may not bave thought that someone would ever input the sentinel value after

inputing an illegal (negative) value. Thus he felt no need to guard subsequent computation. (An

interview with the programmer would be particularly useful in this specific case.) Thus, bug

= categorization and bug origin is directly influenced by the choice of underlying plan structure in
‘ the buggy program.

CORRECTED VERSION OF THE BUGGY PROGRAM

The typical method of describing a bug is to compare the original buggy program with the
corrected version of that program (e.g., [12, 7, 1]). While there is no guessing as to the intention
of the original programmer, we see 2 basic problems with this approach:

o The choice of the particular corrected program used as the measure so relatively

arbitrary. That is, there are few hard guidelines for making changes to code. Thus,

! different programmerss could well take the same buggy program and correct it in
1 different ways. This would result in two different bug descriptions — an intuitively
uusatisfactory situation. Moreover, different bug descriptions could lead to different
conclusions as to the origins of the bugs, which, afterall, is the the point of doing the
bug categorization in the first place. For example, if the buggy program in Figure
4 were corrected by implementing a skip-guard plan, then the difference between
: the buggy program and the corrected program would result in s bug description
; containing 3 coding level bugs. On the other hand, if the program is corrected by
B putting in aguard around the subsequent computation to protect against s sentinel
value, then the bug description would onmly conmtain 1 bug, a missing conditional

T

]

s
e
i
E~

PRV

[P R S e R — —

Johnson, Draper, Soloway Page 11

(guard plan) — which may or may not be a coding level bug (as discussed above).
While we might prefer the programmer to make the latter change, there is no way w
guarentee this situation.
Interviewing the original programmer might shed some light on his intentions -~ and
guide the subsequent bug analysis or even bug correction. However, this additional,
programmer-supplied, information goes beyond the corrected program — and
approaches a bug description based on the programmers original plan While we have
some methodological reservations about using interviews collected after the fact,? the
main issue is that information gotten from the interview is of a different sort than the
information gotten from the corrected program — where the former information is
much more akin to the programming plans described above.

¢ What is actually counted can be quite problematic. For example, if we correct the
buggy program in Figure 7¢ by adding the missing ELSE, we also need to add a
BEGIN-END block around the running total update and the counter update. Should
we count this as 1 bug or 2 bugs’! It seems unfair to count the BEGIN-END block
against the programmer, since this change is required by the “real® change. On the
other hand, however, in the next section we will show programs in which the “real”
bug ss a missing BEGIN-END block. Thus, it is not inconceivable that a programmer
could add the ELSE in Figure 7¢, but forget to put in the now necessary BEGIN-END
block. What one counts is a tricky issue.

The upshot of these two problems with categorizing and counting bugs based on a corrected
version of the program was suggested above: one is less confident of the origins of the bugs, and
thus is less confident about percentages of bugs with those origins. Depending o.n the particular
corrected solution and the particular choice of counting scheme, one could paint a picture of a
program that contained many more coding level errors, say, than specification-based errors. The
worst part of this situation is that we would not have a good way of knowing how right or wrong
this analysis was — since we don't know how the bug categories and counts would have turned
out if a different corrected version were used as the basis for difference descriptions.

PROGRAM DESCRIPTION LANGUAGE (PDL)

PDL's come in all flavors; some are very close to the code, while others are more high level,
and closer to the plan level description. The former PDL would suffer from the same problems as
using a corrected version as the standard. The latter type of PDL would suffer from the problems
associated with using the programming plans as the standard.

5The problems with using interview data has received significant sttention in psychology. For example, Ericsson
and Simon (4] have argued that one can relisbly only use verbal information given by the subject o the eubject is
doing tAe tesk. They argue that such a concurrent verbal report is effectively an on-line dump from short-term
memory. In contrast, a report after the fact could be a story sbout what the subject thought he was thinking, and
that significant distortions can occur in this type of situation. While one might argusbly feel that the Ericsson and
Simon position is a bit extreme, nonetheless, it seems only prudent to exercise care in interpreting interview data.

TR

Ao G

R e TSRS R

Johnson, Draper, Soloway Page 12

4. An Extended Example

Let us now consider an actual example from the on-line protocol data. In Figure 8 we depict
the problem the students were trying to solve; in Figure 9 the program on the left is a buggy
program generated by a student in our study. If we take a “local view” of the bugs in this
program, we can geperate a corrected version as shown in Figure 9 (right hand side). Notice that
if we do a difference description between the corrected and the buggy versions we can come up
with 8 changes:

¢ The rainyday counter, COUNT1, will be always be updated; in order to correct for
the times when a negative rainfall is input, we need to decrement COUNT1. Thus, (1]
added a begin-end block after (NUM < 0) test, and [3] added a decremnent of the
rainyday counter.

e COUNT2 must be made to contain the number of rainy (not just valid) days.
COUNT?2 keeps track of the non-rainy valid days in the loop. Thus, we need to
subtract the non-rainy days (COUNT?2) from the total valid days (COUNT1) in order
to get the pumber of rainy days: [3] changed addition of COUNT! and COUNT? to
subtraction of COUNT? from COUNTL.

o The guard on the average calculation is incorrect. Thus, [4] changed guard on average
calculation to COUNTI.
o The divisor in the average calculation should be the valid day counter, COUNTI, not

the valid, but non-rainy day counter, COUNT2. Thus, [6] changed COUNT? to
COUNT! in the divisor of the average calculation.

o If there is no valid input the program should neither calculate the average, nor should
the program print it out -— as well as not printing out the maximum. Thus, [8] added
a begin-end block after division guard around average calculation and output
atatements.

o The WRITELNSs give a message about what should be output; in order to make the
message agree with the actual output, the variables need to be changed: (7] the valid
day counter needs to be COUNTI, while the [8] rainy day counter needs to COUNT?.

Given the pumber of changes that need to be made to the counters (COUNT1 and COUNT?), it
would appear that the student has some confusion over the roles of the two counters.

The Noash Problem: Noah needs to keep track of the rainfall in the New Haven ares to determine
when to launch his ark. Write a program which he can use to do this. Your program shounld read
the rainfall for each day, stopping when Noah types “90999”, which is not a data value, but a
sentinel indicating the end of input. If the user types in a pegati~e value the program should
reject it, since negative rainfall is not possible. Your program should print out the number of
valid days typed in. the number of rainy days, the average rainfall per day over the period, and
tbe maximum amount of rainfall that fell on any one day.

Figure 8: The Noah Problem: A First Looping Problem

However, consider now a different corrected version of this buggy program as depicted in
Figure 10. A difference description between the buggy version and the corrected version yields the
following set of bugs:

o We can make COUNT only keep track of the rainy days; this is consistent with code

—— o

2 e

Johnson, Draper, Soloway

BUGGY EXAMPLE
BEGIN
WRTTELN ('PLEASE' INFUT AMOUNT OF RAINFALL')
READLN
READ (NUN)
CONIL =+ 0
COWNT2 =0
SUm 0
NIGWaR = 0
WeILE (M © SENTINAL) 00
GEGIN
IF (nm > 0)
THEN
SUR 2 SUM . N
CONTL = COUNT: » |
IF (NUR > NIGHNUM)
THEN
NS : NUm
W ogm oz D)
TUEN
TONTY = CONT2 - 1
MmO
THEN
WAITELN (" ILLEGAL INPUT INPUT NEW VALUE ')
READLN
REAC(NUN)
3]
CNTY = COUNTD « COUNTY
iF (> 0)
THEN
TOTAL = SUM/COUNT?

VRITELN ("AVERAGE RAINFALL wAS ° TOTAL ° INCHES PER DAY') IF (ewmmll > 0)

WRITELN ('WIGMEST RAINFALL WAS * WIGNNUM * INCWES')
WRITELN (SOUNTY © VALID DAYS wERE ENTERED')
WRITELN (COUNTY ° RAINY DAYS IN TWIS PERIOOD)
EN

Y TN Y

Page 13

CORRECTED VERSION
BEGIN
WRITELN ("PLEASE' INPUT AMOUNT OF RAINFALL').
READLN
READ(NMN) .
oWl =0
COMT2 = 0
Wm0
niGsam = 0.
WILE (M <> SENTINAL) 0O
BEGIN
IF (am > 0)
THEN
SN = SN e N
COUNTY = COUNTL « 1
IF (UM > HIGHNUN)
THEN
NIGHAm = MM
IF (W z 0)
THEN
CONT2 = COMNT2 |
IF (MM < 0)
THEN
bogin (® 0dd this line °*)
connil = comnll - 1; (® odd this line ®}
WRITELN (*ILLEGAL INPUT INPUT NEW VALUE ‘)

-d; (® 0dd thie line *)
READLN
READ (NUW)
(1 J
wonif = esuni! - counis; (® changod (hio line ®)
(* dhanged this kine °)

THEN

dapn (® 0dd this line *)

TOTAL = SUN/esemil, (® changed this line *)
WRITELN (“AVERAGE RAINFALL WAS ° TOTAL ' INCNES PER DAY
WRITELN ("WIGHEST RAINFALL WAS ° WIGHNUM © [NCHES)
-~ (® add this lime %)
WRITELN(emund g * VALID DAYS VERE ENTERED') (® chamged this hne ©)
WRITELN(comnt®, * RAINY DAYS IN THIS PERIOD *) (® chanped this lnme *
o0

o (1] added 2 vegin-end bioch after (WUM ¢ 0) test. and [8] added o decremest of the rainyday cownter
o [8] chranged addition of COUNTL ang COUNT2 to Sedtraction of COUNT2 fros COUNTL

o [4] changed guard on average caiculation to COUNT!

o [8] changed COUNT2 to COUNTL i the divisor of the sverage calcelstion

o [8] adsed 2 deg:n-end diock after givision geard aroend sverage caicelation and ovtpst statements

o [7] the vatig day counter needs to be COUNT!

white the [8] rainy day counter needs to COUNT?

Figure 8: A Buggy Program and a Corrected Version

..;.. Y
T .

W o s E L R

Johnson, Draper, Soloway Page 14

already in the program: the line that adds COUNT2 and COUNT1 now makes sense
—~- COUNT2 now keeps track of the valid days, and the divisor in the average
caleulation suggests that COUNT?2 should be the valid day counter. In order to make
COUNT!I perform in this manner, we need to (1] add a begin-end pair around all
computation o fier NUM > 0 teet, up to the NUM == 0 test.

o If there is no valid input the program should neither calculate the average, por should
the program print it out — as well as not printing out the maximum. Thus, we need
to [2] add a begin-end block afer division guard around average caleulation and
output statements.

e The guard on the average calculation is incorrect. Thus, (8] changed guard on average
caleulation to COUNTL.

Which description should we choose’ And why? Notice that neither of the corrected versions
were that unreasonable. However, it would seem to us that one should choose the second bug
description over the first. The basis for that decision is the hypothesized plan structure
underlying the buggy version: it appears to us that the student was trying to structure the
actions in the main loop in terms of cases. For example, the program explicitly tested for NUM
> 0, NUM = 0, and NUM < 0 and took the appropriate actions -~ almost. In order to make
the case structure work, the code following the NUM > 0 up to the NUM = 0 test should be
grouped together. While one cannot put too much faith in the indentation of a novice's
program ® it appears that the indentation supports this analysis. Thus, what is missing from the
main loop is a begin-end pair surrounding the code between the NUM > 0 test and the NUM =
0 test. On this analysis, the student does not have a misunderstanding surrounding the two
counters, but rather has a coding level misunderstanding about how to block code together.
Moreover, this same misunderstanding can explain the lack of a degin-end pair surrounding the
average calculation in the next two write statements. The reduced bug count in the second
descnription follows directly from this apalysis: in effect there are only 3 bugs in this program, 2
of which have the same underlying origin.

This example illustrates a point made earlier: the bug categorization and bug count follow
from an understanding of the program that is provided by the hypothesized plan structure of
the program. That is. to understand a buggy program, one must make inferences about what
plan structure the programmer intended to implement; the program only “makes sense” in terms
of these plan descriptions.

*We have observed in the on-line protocols that the physical layout of & student's program suffers as the student
makes changes to his program in the process of debugging it.

T P S

i,

P
A

RN

h
i

b b Safyperos e - g " ‘ "

Johnson, Draper, Soloway

BUGGY EXAMPLE
BEGIN
WRITELN ("PLEASE' INRUT ANOUNT OF RAINFALL').
READLN
READ(NLW)
COWNTL =0
CONT2 =2 0
SN =0
NIGWAN = O
WHILE (MU <> SENTINAL) DO
BECIN
IF (am > Q)
THEN
SUM = SUR o UM
COUNT] = COUNT] « |
IF (N > HIGHNUM)
THEN
NiGHAN = am
iF (NUm 2 Q)
THEN
CINTZ = COUNT? » |
IF (MM < 0)
THEN
WRITELN ("ILLEGAL INAUT INPUT NEW VALUE')
READLN
READ(Nst)
N0
COUNTZ = COMTZ « COMTL
IF (N > 0)
THEN
TOTAL * SURM/COMNTZ
WRITELN (AVERAGE RAINFALL WAS * TOTAL ° INCHES PER DAY')
WRITELN ("WIGMEST RAINFALL WAS ° WIGHMUN ° INCHES')
WRITELN {COUNT2 ° VALIO DAYS WERE ENTERED')
WRITELN (COUNT] - RAINY DAYS N THIS PERIOD)
END

Page 15

ANOTHNER CORRECTED VERSION
®CIN
WRITELN (‘PLEASE' INPUT AROUNT OF RAINFALL')
READLN,
AEAD(NAN)
CONTI s 0
CONT2 2 0.
M s0 .
HIGAm s 0
WIILE (MM > SENTINAL) 0O
eECIN
IF (am > 0)
TN
bopin {® odd thse kine)
SN = SN .
COUNTL = COWNTL o 1
IF (MW > HIGWAM)
THEN
WIGeRm = mm
-d; {® odd thes e *)
IF (am = 0))
THEN
COUNT2 = COUNT2 o |
IF (MM < 0)
TeEn
WRITELW ('TLLEGAL INRUT INPUT NEW VALUE')
AEADLN
READ(vOm)
00
COUNT2 = COUNTZ * COWNTI
I¥ (esunt? > 0) {® dhonged (Ao line ©)
T™EN
dopn (® 084 this line *)
TOTAL = SUR/COWNTZ
WRITELN (*AVEMAGE MAINFALL WAS ° TOBAL. ° INCHES PER DAY
WRITELN ('WIGHEST MAINFALL WAS * WIGMNUM ° INCHES)
-d; (® 044 this line)
WRITELN (COUNTZ ° VALID OAYS WERE ENTERED')
WRITELN (COUNT] * WAINY DAYS IN THIS PERIOD)
0

o [1] 2dd 2 degin-end pair arround ali computation after WM 5> 0 test uwp to the NUR = 0 test
® [2] 20d 2 deg.n=end bBioct after division guard sround sverage calcuiaton and Outpet statements

o (8] changed guard on average calcetation to COUNTL

Figure 10: A Bugggy Program an an Alteruﬁve Corrected Version

o

e mis s ca .

Jobnson, Draper, Soloway Page 16

8. Concluding Remarks

We have argued that a bug description is a difference description between the realization and
the intention specification. We have presented a number of techniques for specifying the intention
and have pointed out the problems associated with each type of specification in developing an
accurate picture of bug types and bug frequency. While no technique is without its problems, we
have argued that the understanding provided by a plan analysis of the buggy program stands a
better chance, as compared to the other techniques, of providing a more accurate categorization
and count of the bugs — and thus a more accurate reflection of the origins of the bugs.

R s it P ARG ik o faunaahaa duiionoo. o otharee
- ib-Souiileq

Johposon, Draper, Soloway Page 17

References
1. Basili, V., Perricone, B. Software Errors and Complexity: An Empirical Investigation. Tech.
Rept. TR-1195, University of Maryland, Dept. of Computer Science, 1982.
3. Bonar, J. Understanding the Novice Frogrammer. Dissertation, in preparation.

3. Ebrlich, K., Soloway, E. An Empirical Investigation of the Tacit Plan Knowledge in
Programming. in Human Factors in Computer Systems , J. Thomas and M.L. Schaeider (Eds.).
Ablex Inc., in press.

4. Ericsson, A. and Simon, H. "Verbal reports as data.” Psychological Review 87 (1980),
215-251. l

§. Johnson, L., Draper, S., Soloway, E. The Nature of Bugs in Novices’ Pascal Programs. in
preparation

6. Miller, L. A. "Natural Language Programming: Styles, Strategies, and Contrasts.” /BAM
Syatems Journal 20(1981), 184-215.

7. Ostrand, T., Weyuker, E. Col'zcting and Categoriting Software Error Data in an Industrial
Environment. Tech. Rept. 47, New York University, Dept. of Coimputer Science, 1982.

8. Rich, C. Inspection Methods in Programming. Tech. Rept. AI-TR-604, MIT Al Lab, 1981.

9. Soloway. E., Ehrlich, K., Bonar, J., Greenspan, J. What Do Novices Know About
- Programming? In A. Badre, B. Shneiderman, Ed., Directions in Human-Computer Interactions,
Ablex, Inc., 1982.

10. Soloway, E., Bonar, J., Ebrlich, K. . Cognitive Strategies and Looping Constructs: An
Empirical Study. Communications of the ACM, in press.

11. Soloway, E., Rubin, E., Woolf, B., Bonar, J., Johnson, L. MENO-II: An Intelligent
Programming Tutor. Journal of Computer-Based Instruction, to appear.

{
I
|

12. Weiss, D. Evaluating Software Development By Analysis of Change Data. Tech. Rept.
TR-1120, University of Maryland, Dept. of Computer Science, 1981.

e 2 cheis et cma e . . -

e etade -

- OFFICIAL DISTIRUBTION LIST -~

Private Sector

Arey

Technical Director

U $ Army Research Institute for the
Bekaviorsi aad Social Scieaces

$001 £:sexhover Avense

Alezangria. Virgimia 22333

Nr James Baver

Arsy Research Institute
5001 Eisenhower Avenve
Aierangr:a V:cgin'a 22333

Dr Beatrice J Farr

U S Arsy Research Institute
5C31 E:seahower Avenue
Alexardria Virgiarsy 22333

De Mijten § Katl

witi-ams Teehnical Ared

U S Army Researct Institute
8001 Ersectower Avenze
Alezardria, Virginia 22333

Ne My-shall Narva

L S Army Research Institute for the
Genavioral § Soc:al Sciences

£301 Eisennower Averve

Aiezanaria. Virginia 22333

.
Or Ma~ci¢ € Q'Mest, Se
Cirector Training Research Lad
Asmy Researct Institute
5031 £-gennover Avenve
Alesangdrra Virgrrig 22333

Comsander US Army Research Institute
fer the Behaviora!l 8 Sccia! Sciences
Aten PERIBR (Dr 'ydith Orasamy)
£501 Eisenhower Ave-ue

Alexandria, Virgin:g 22233

Joseph Pscoths. Ph D

Atta PERI~IC

Arsy Research Institute
5001 Eisenhover Avenve
Aierandris. Virginta 22233

Dr Rotert Sssmor

U S Arsy Research Instrtute for the
Behaviorai and Soc:al Scrences

$001 £isennover Avenve

Atetangris, Yirgiaig 22333

Dr Rodert Wisher

Army Regesrch Iastitute
5001 Eisenhower Avense
Alezandria, Virgimig 22333

-

=

copy

copy

copy

copy

copy

tepy

copy

copy

copy

copy

Dr Michae! Geaeseretd
Desartaent of Cosputer Scieace
Staaford Ussvarsity

Stenfore. Caiifornie 04308

Dr - Dedre Geatner

Boit Berseel & Newmse

10 Mouiton Street

Casdrigge, Massachusetts 02130

Dr Rodert Glaser

Lesrning Research & Developuent Center
Usiversity of Pittsdargh

3939 O°'Nara Street

Pittsturgh, Pesasylvanis 15260

Dr Joseph Goguen

SRI Interngtions!

333 Ravenswood Avenve

Menlo Park. Califorais 94028

Dr Bert Green

Johas Hoph:as Us:versity
Oepartaent of Psychoiogy
Chartes & 34th Street
Baitimore, Marylane 21218

Or Jawes G Greemo

LROC

Usiversity of Pittstergh

3939 O'Mara Street

Pittsburgh, Perasyivanis 15213

Dr Bardara Hayes=Roth
Depariment of Computer Sciemce
Stanford University

Stanford. California 95308

Dr Frederict Hayes-Roth
Tetnowledge

525 University Avense

Paio Alto, Catifornis $4301

Glens Greeswvald. Ed

Heman Intelligence Newsietter
P O Bor 1163

Birmingham, Michigan 48012

De Eari Muat

Depariment of Psychology
University of Washiagton
SestiLie, Weshiagton 98105

Dr Marce! Just

Departaent of Psycroiogy
Carnegre=Nelion University
Pittsburgh. Penasylven:s 15213

-

[

copy

copy

copy

copy

copy

copy

cogy

copy

copy

coy

copy

Air FPorce
US Aig Force Office of Scientific i cony
Researsh Or David Kierss 1 copy
Life Sciences Directorate. ML Departaent of Psjychology
Boliiag arr Force Base Usiversity of Arizoss
vashisgton. DC 20332 Tescon, Arizoss 88721
Or Eart A Alluime 1 copy Or Walter Kistsch 1 copy
NG AFNRL (AFSC) Departeest of Psychciogy
Brooks AFS. Terss 78238 Ustversity of Colorado
Sosiger, Colorado 80302
o] Bryas Daltase 1 copy
il AFNRL/LRT Or Stepher Kossiyn 1 copy
R Lowry AFB. Colorade 80230 Departaent of Psychology
The Johe Hophiag Usiversity
] Or Genevieve Haddae 1 copy Bsitimore, Maryisne 21218
Program Masager
% Life Sciences Directorate Or Pat Langley . 1 copy
,.E AFDSR The Rodotics Isstitute
3 Botiiag AFB DC 20332 Carnegie~Me!ion University
= Pittsburgh. Pemasyivanss 15213
R Dr .jons Tangney 1 copy
AFOSA/NL ‘ Dr Jill Larka 1 copy
) Boilng AFE DC 20332 Department of Psychoiogy
e Carnegie=feilon University
; Or Josepn Yasatule 1 copy Pittsbergh, Perasyivants 15213
Es AFWRL/LRT
Lowry AFB, Colorade 80230 i
. Or Alas Lesgoid¢ * 1 copy
M3-ine Corps Lesrsing RED Center
Uscversity of Pritsturgh !
W William Greensp 1 copy 3939 0'Mara Street 5
Edscation Agvisor (£033) Pittshburgh. Peangyivanta 15213 !
g | Education Center. MCDEC
. Quantico. Virginig 22134 Or Jie Levin 1 copy
Untversity of Califorsia
Spec sl Aggigtant for Mariee 1 copy st Sen Diego
Corps Mastters Lasoratory for Comsarative
Ccae 150M Nemas Cogr:tion = (003A
' Otfice of Nava! Resesrch La Jotia. Califorsra 92003
| 805 N Quincy Street
! Ari.agtos. Virginrg 22217 Or Michee! Levise 1 copy
1 Departmest of Educationat Psychrology :
i De A L Slaficshy 1 copy 210 Education Bigg
Screntific AMdvisor (Code RD=1) University of Iitieors
H3. US Marine Corps Champsige. Illinors 61801
' Vashiagton OC 20380
. . Dr Mercis Limn 1 copy
f Departaent of Defesse Untversity of Cattforsia
; Director, Adolescent Reasoning Project
{ Deferge Technical Inforsetion Cester 12 copres Berteley. Catiforars 94720
, Cameron Station. Bleg S ‘
Alerandria. Virginig 22314 Or Joy NeCletlaeg 1 copy i
1 Atts TC Departmest of Psgchoiogy :
L4
} WNelitary Assistant for Troimieg and 1 copy Comtridge. Mossachesetts 02139
' Persosne! Techeology .
K 0ffice of the Under Secretary of Defesse Dr Jemes R Miller 1 copy
: for Resesrch & Engroeering Compoater Thosght Corporation
; foos, 30129. The Pestagon 1721 west Plaso Nighuay
' Washiagtos. OC 20301 Plaso, Terss 78078
Mejor Jjeck Thorpe 1 oepy Or Mars Miiter 1 eopy
DARPA Cosputer Thosght Corporation
; 1400 w1 is0s Bive 172) west Pigae Nighuwey

‘ Arlisgtos, Virgisee 22209 Plase, leses 73078

RN) S
o g -
- ———————— -

e cmmans - onltlie a— b . e

-

Bavy

Rodert Ariers

Code W71}

Nemsa Factors Ladorstory
BAVTRAEQUIPCEN

Orisado, Fiorids 32013

Code N71)

Atta Arther § Blsives

Bava) Trainieg Equipsent Center
Orisado. Flori¢s 32013

Lisigon Scientist

Office of Naval Research
Brancs Office, Losdon

802 39

FPO New York, New York 00510

Or Richard Cantone
Havy Resesrch Lsboratory
Code 7510

Washiagton, OC 20378

Chief of Naval Education sa¢ Traiaing
Liason Office

Air Force Nusse Resosrce Lnonur’
Operations Traiming Divigion
WILLIAMS AFS, Arizony 885224

Or Staeiey Collyer
0ffice of Nevel Techwology
800 ¥ Quincy Street
Ariiagton. Virginip 22217

COR Mide Corras

0ffice of Nave! Resesrch
800 ¥ Quincy Street
Cote 270

Attiagtos. Virginie 22217

Or Jods Fore
Novy Persoare! RED Cester
Ssn Diego. Catiforsis 92152

Or Jude Framtien

Code 7510

Rovy Resesrch Ladorstory
Weshisgtos, DC 20378

Dr Mske Gayoor

Novy Research Ladoratery
Code 7510

Weshington, DC 20378

Or Jie Nolien

Code 14

Novy Persosse! RED Cester
S Diege. Colrforare 02182

Or G0 Neterins
Sevy Porsonse! RED Coster
See Diego. Cstrfersss 021582

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 copy

1 o9y

o A o Sl WS onii - Vet SRR

Or Tom Norse

Xeroz PARC

3333 Copote Wil Rosd

Palo Alte, Catliforsis A4

Dr Aftles Mgaro

Sedavioral Techsology Ladorstories
1045 Elens Avesse, Foerth Floer
Redoado Besch, Califorsin 90277

Dr Dosstd Normss

Cogaitive Sciesce, C-015

Unsw of Califorare, Sea Diego
Ls Jolls, Californin 92083

Dr Jesss Orisesiy

Isstitete for Defease Assipses
1001 ¥ Bessregard Strest
Alessedrin, Virgema 22311

Professor Seysosr Papert
20C-109

NIt

Casbrigge. Massachuserts 02139

Dr Nascy Pessisglos
University of Chicago
Graduste School of Busisens
1101 E S8tk Street
Chicago, Iticsois §0637

Dr Richard A Poilst
Director, Specisl Projects
NECC

2384 Higden Valley Lase
Stilivater, Misnesots 55082

Dr Peter Poison
Departaest of Psychology
University of Colorsdo
BSosider, Colorsdo 00309

Dr Freg Reof

Physics Departamet
Usiversity of Catiforare
Serteley. Cotifornis 894720

Or Lawres Resasch

L

University of Pittsdergd

3938 0'dars Strest

Pittstarge, Pesasyivanis 18213

Mary S Reley

Progres 18 Cogaitive Science

Cester for Wesee lsforsstiee ?'-oq
Uneivergity of Cotiforsss, Ses Drage

Lo Jollg, Coitfornra 929900

br Aodrew Rove

Asericas Iestitetes for Meseered
1008 Toomss Jefferses Dareet. BN
Wetingtes, BC 20007

1 oopy

1 copy

1 copy

1 copy

1 copy

1 ocopy

1 copy

1 copy

1 copy

1 oopy

1 ooy

1 o9y

——— -

“aa

Or Norssn J Kerr

Chref of Navat Technical Training
Naval Avr Stasion Mesphis (78)
Miltington. Tesnessee 38054

Dr Jases Lester

ORR Detachment

495 Seamer Street

Bostos. Rassachesetts 02210

O Wilfiam L Maloy (02)

Chief of Nava) Esecation aad Training
Nava!l Arr Station

Pengaceta Florida 32508

Or Joe Mclach:an
Ravy Persoane! RRD Center
San Drego Califormia 92152

Dr Witliam Moatagee
NFRDC Cooe 13
San Jiego. Catrfornia 92182

Lidrary Cote PROYLL
Navy Perscrnei RRT Tenter
Sen Diego Catifera-a 92152

Tecanicai Director
Navy Fersonse! RRD Center
Saa Diego Caiiforasa 92182

Commanging 2 f.cer

Nava: Researck Ladoratory
Code 2627

vashingten. OC 20330

Qf%ice of Navai Regearch
Codge 433

80C & Quincy Street
Artingron, Virgineg 22217

Personrel & Training Resesrch Growp
Code 442P7

Office of Naval Research

Ariiagton, Virginsg 22217

0f%:ce of the Chief of Navai Qperations
Resesrchr Deveiopment & Studies Branch
or 115

Washingtos DOC 20350

LY Fraat C Petho. WSC. USH (PN D)
CRET (N=432)
8AS

' Pessscols. Fioride 32500

Or Gary Pooct

Operations Resesrch Develgpment
Code S8MX

Neval Postgradeste School
Morterey. Csiiforais 03940

1

copy

copy

copy

copy

copy

cony

copres

<oy

cogy

cory

copy

Dr Erast 7 RotMiopt
Beli Ladoratories
Murray Nell, New Jersey 07974

Dr Willism B Roese

Georg1a Iastitete of Techeology
School of ladestrial & Systess
Eagrioeering

Attssts. Georgis 30332

Dr David Ruaeidart

Ceater for Hemen Inforsstion Process:eg
University of Catifornie, San Diego

La Jolly, Califorais 92093

Dr Michse! J Samet
Perceptronics. Inc

§271 Variel Avense

Woodiang Hills, California 91364

Dr Roger Scaamk

Yale Usiversity

Departaent of Competer Scieace
PO Box 2150

New Haves, Cossecticst 08520

Or Weiter Schee:der
Psychoiogy Depsriment

603 £ Danrel

Champaige. lllisors 61820

Dr Atse Schroenfeld
Mathesatics ané Education
The University of Rochester
Rochester. Ney Yort 14627

Mr Cotin Sheppare

Appiied Psycaciogy Usit
Adairaity Mgrine Technology Est
Tedgiagton Middleses

Vaited Kingdon

Dr K Waltace Sinaito

Progras Director

Ranpower Researcs snd Advisory Service
Seithsonrar lastitetion

001 North Pitt Street

Alexandria, Virgimis 22318

Dr Edward E Serth
Boit Bersnet 3 Newasn
50 Mouitos Street
Camdridge. Massachusetts 02139

Or Richart Seow

Schoo! of Education
Stenfor¢ Vniversity
Steaford. Califorais 94308

Or Kathrya T Spoenr
Psychoiogy Departeest

Orown University

Providence. Rhode Isiend 02912

cory

copy

cony

copy

copy

copy

copy

cory

cory

copy

copy

oy

3
i}

i

——h - s

Or G:t R:carg

Coae 4711

L1 IS,

Qriando, Florids 32813

Dr Worth Scasiang
CNET (N-5)
BAS, Pensacois. Florida 32508

Dr Robdert G Saith

Office of Chief of Haval Operations
OF-987H

washington, OC 20350

Or Alfred F Smoce, D:rector
Training Anaiysis & Evaluation Growp
Department cf ihe Navy

Oriando. Fiorvga 32813

Dr Richard Sorensen
Navy Persanre! RED Center
San Diego Califormia 92152

Or Frederict Steinheiser
CNQ - OP13S
Navy Arnes
Art:ngron Vieg:nia 20370

Reger Werssinger=Bayion

Degartaent cf Adeinistrative Sciences
Naval Pestgraduate School

Monterey Cat:ifornia 93940

Me Jokn N welife
Navy Perscraei R8D Center
San Drego. California 92152

Dr wattzce wutfeck II1
Navy Fersorrel RAD Center
San Drege. Califorain 92182

Pr:vate Sector

Br Jonn R Argerson
Depariment of Psychology
Carnegre=Meiior University
Pitisdburgh Fennsylivania 15213

Dr Jota Annett
Department of Psychoiogy

" University of Warwick

Coventry Cv4 7AY
ENGLAND

Dr WMichael Atwootd
177 = Programaing
1000 Orosoque Lane
Stratford. Coesecticet 08497

Dr Aten Badeeley
Nedical Research Cownc:i
Appiied Psycroiogy Umit
15 Chovcer Rose
Comdridge CB2 26F
ENGLAND

—

copy

copy

copy

copy

copy

copy

¢opy

copy

copy

copy

copy

copy

copy

Dr Ropert Steraderg
Departoent of Psychology

Yaie Usiversity

Box 11A, Yale Station

New Haves, Coanecticet 06520

Dr Aibdert Stevers

Boit Beraset & Newsan

10 Mouitos Street

Casbridge. Massachasetts 02238

David E Stose. Py D
Hazeltine Corporation
7680 Oid Springhovse Road
McLean, Virgimig 22102

Dr Patrict Suppes

Institute for Mathemati cai Studies 1a
the Socist Sciesces

Stanford University

Starford, Califormia 94305

Cr Kihea: Tatswoka

Computer Based Education Research Lad
252 Engroeeriag Research Laboratory
Urdang, Iilinois 61001

Dr Maurice Tetssobs

20 Edwcation Bieg

1310 S Sszth Street
Chaepaige. Iliinons 61820

Dr Perry ¥ Thoradyke
Perceptromics, Inc

545 Migdlefieié Road. Seite 140
Menio Part . Califoreis 94025

Or Dosglas Towre

University of So Califora:a
Bensviorsi Techactogy Labs

1845 S Elens Avenve

Redondo Besch Catifornia 90277

Dr Rurt Vas Len

Xeroxr PARC

3333 Coyote M1t Road

Palo Aito, California 04204

Dr Keith T Wescosrt
Perceptronics. Inc

545 Middlefretd Rosd. Seite 140
Mento Part. Califorais 94025

Vithiom B W Itten

Bell Ladoratories

20-610

Holmde!, New Jersey 07733

Dr Mike Willions

Xeror PARC

3333 Coyote Hili Ros¢

Peio Atto, Califorais 94304

—

copy

copy

copy

copy

copy

copy

cory

copy

copy

copy

copy

copy

fr Patricia Baggett
Departaent of Psycroiogy
University of Colorado
Boulder, Colorado 80309

Mg Carole A Bagley

Minnescta Educationai Competing
Censeriium

2354 Midden Valley Lane
Stiltwater M.anesoty 55082

Dr Jozathaa Bssron
87 Glenn Avense
Berwyn. Peansyivania 19312

Me Avron Sper

Gepartment of Computer Science
Starfored Universtty

Starferg Califormia 94305

Cr JoNs Blact

Yale Univers.ty

Bor 1A Yale Statiee

New Maver (oamecticut 06520

Or Johs § Browa

XEROX Pato Alto Research Center
3233 Coyote Road

Paio°Aito. Californig 94304

Dr Sruce Bychanan

Jepz-tment of Computer Science
Stanford University

Starforé. Caifornia 94305

Or Jarme Cartoredt

Jegartment of Pgychotogy
Carnegre=Meilon University
Pittsdburgh Pennsylvasia 15213

Dr Pat Carpester

Cegartment of Psychaiogy
Carnegre=Meticn University
Pittsburgh Penagylivansa 15213

Dr wittiam Chase

Department of Psychoiogy
Carnegre=Meiion University
Pittsturgh Pesasyivania 15213

Dr Michetine Ch

Lesraing R § D Center
University of Pittshergh

3939 O°Mara Strest

Pittghergh Penssyivenis 15213

—

—

copy

copy

copy

copy

coey

copy

copy

cePy

copy

copy

<oy

Civilian Agencies

Dr Patricia A Butler
NIE~BRN Bi¢g. Stop #7
1200 19th Street WV

Washiagtos. OC 20208

Or Sesas Chipmae

Lesraiag and Development
Nstionat! Jastitete of Education
1200 19t Street Ny

Washagton DC 20208

Edware Esty

Departsest of Edecation. OFRI
NS 4C

1200 19th Street. NV
Washingtos. DC 20208

Edware J Fuentes
Departaent of Edecation
1200 i9th Street, N¥
Washagton, DC 20208

TARE, Tax

Nationa! Institste of Edwcation
200 19t) Street. WV

Vagh agton. DC 20208

Or Jode Mays

Nationg! Iastitute of Education
1200 19th Street. Wvw
Washington DC 20208

Or Arttur Meleed

724 Brows

U S Oept of Education
Vashiagton. DC 20208

Dr Angrew R Moingr

Otfice of Screntific and Eagraeering
Persosnel and Education

Nations! Scirence Fousdation
Washiagton OC 20550 -

Everett Palmer

Research Screntist

Ma:! Stope 239-3

NASA Awes Research Center
Moffett Fielé Catiforeia 96025

Or Nary Stoddacre

C 10, ma: 1 Stop 8296

Los Atgmos Neti0nal Laboratories
Los Alsmos New Mexico @7545

Chief, Pgycooliogrcal Resesrchd Brasch
U s Cosst Quard (G-P=1/72/TP42)
Vashington DOC 20593

=

—

copy

copy

copy

copy

copy

capy

copy

copy

copy

copy

i
|

Dr William Clancey
Department of Computer Scieace
Stasforg University

Stanford. Califormis 94306

Dr Aliaga M Collis

B8oit Berased & Newsan, Inc

50 Mouitos Street

Casdridge. Massachusetts 02138

ERIC Fac:lity~Acquisitions
4833 Rugt)y Avense
Bethesda. Maryland 20014

Mr Wallace Fevrzeig

Departaent of Educationai Techsology
Boit Beranet 2nd Newsan

10 Moultos Street

Cambrigge Massacheserts 02238

Dr Dexter Fletcher
WICAT Resesrch Jastitute
1875 S State Street
Crea Utah 22333

Dr Jown @ Frederiigen

Boit Beranet & Newsan

£0 Mouwiton Street

Camtrigge Massachesects 02138

copy

copy

copy

Copy

copy

cepy

Or Frask Withrow

U S 0ffice of Educatios
400 Marylasnd Avense SW
Vash iagtor. DC 20202

Dr Joseph L Yousg. Director
Mesory & Cogritive Processes
Nations) Scieace Foesdatios
Washagtoe, DC 20850

1 copy

1 copy

