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\\Abstract

A method is presented for determining whether or not two three-parameter item

characteristic curves differ significantly from each other. The method may be

used w_iihin the context of item response theory to detect evidence of item .

compromise, change with time, or group-specific differences (e.g., bias).
’x Approximate sampling distributions are given for the test statistic. Two modes
of use are distinguished, an exploratory mode in which items are identified for
further scrutiny, and a confirmatory mode in which the method may be applied
to. individual items with higher precision. Demonstrations with actual and
f simulated data are reported.

The method involves the derivation of a measure analogous to chi-square, called
a sum of squares (SOS) measure. The SOS measures integrate the difference
between item response curves and assess the statistical significance of the
resulting area based not only on its magnitude but also on the accuracy with

" which the two curves were estimated.
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Id.ntifying Different Item Response Curves

Introduction

Independent samples are drawn from two populations and administered the same
test. Item response curves are estimated for each sample and compared. For a
given item, the graphs of the estimated curves may look quite different across
samples. When can one safely conclude that the population item response
functions differ? In other words, when can one infer from estimated curves that
the same item functions differently in the two populations?

This issue, which originates in item bias studies, arises naturally in many other
settings. If security has failed in one testing center for one or a small number of
items, then large differences in estimated item response functions for the
compromised items are expected between centers. If the format, wording, or
position of an item in a test is changed, then did the item change functionally?
If an item is moved from one test to a new test, is it still functionally the same
item? If an item is restored to use after a decade, have changes in language,
educational practice, or society made the item harder or less discriminating?
Has a revision of a parameter estimation program resulted in reliable differences
in estimated curves?

The research to be reported is an advance over earlier attempts to compare item
characteristic curves. Sampling distributions of measures of differences
between curves are approximated. A technique is introduced to permit the user
to focus on portions of curves of special interest.

A class of statistics for comparing curves, Sum of Squares (SOS) statistics, is
identified and analyzed. Exploratory and confirmatory research designs for
comparing curves are distinguished. Finally, empirical studies with actual and
with simulated data illustrating and validating the theoretical results are
reported.

SOS Statistics
The discrepancy between two curves f and g can be quantified by summing or
integrating squared differences between curves. For example summing over,




say, 600 closely spaced points gives the index
600
Z (f (-3 + 0.01n) - g (-3 + 0.01n) 1 2
n=1
that was used in Linn, Levine, Hastings, and Wardrop, 1980. Essentially the same
theory obtains for the integrals approximated by such sums, such as
3

1ooj Lf(t)~g (1) ]2dt
-3
and more generally

f_a, (£ (t) - g ()12 w(t) at

where w(t) can be specified as
w(t) =100,for-3<t< 3

= 0, otherwise.

The results in this paper are also applicable to more complicated "weight"
functions w(t).

Measures of this type will be called "Sum of Squares" indices or, more briefly,
SOS measures. The non-negative weight function w controls the contribution of
portions of the curve to the measure. When f and E are estimated curves, then
the summation formula

? " 2
(o g-geopiw(ey
and the integral formula

f{?( 0)-g(08)12w(6)ds

define statistics. Such statistics will be called SOS statistics below.

Having the option to choose weights is important. Some portions of estimated
curves are more important than others and some portions, better estimated. If a




test is being used to select enlistees for advanced technical training it is
important to have good measurement over high ability ranges. If the calibrating
sample contains only high ability examinees and no low ability examinees then
the lower portions of the curves will depend on extrapolation only.

In this report constant weights were used only to obtain two SOS formulas

3 .
(a:f (f(6)-g(0)l2 db
-3

1

{b) [f(6)-g(o0)l? de
-2.5

Formula (a) has been used extensively, especially by Linn, Levine, Hastings, and
Wardrop (1981), whose data are reanalyzed. Formula (b) seems more appropriate
for the portions of their data reanalyzed, because very few high ability
examinees are included in the data and because the test has a low information
function (Lord, 1980) over the low ability range. If the interval of 6 is from -3
to +3, the range will include virtually ell cases found in the ability distribution
whose mean is 0 and standard deviation is 1. A range of -2.5 to 1 includes
virtually all cases when the distribution is skewed, as in the studies reported
below. It omits poorly measured low ability cases.

Background

In this section some of the statistics and mathematics supporting this report are
reviewed. Let P ( 6 ; a) be the probability that an examinee sampled from all
those with ability 6 correctly answers an item with parameters a (underlining
indicates that o is a vector) 6 is a scaler and o is a (row) vector of item
perameters <a, b, c>, P is a three-parameter logistic function, defined as

(1.1) P(osa)ze+(l-e) [1-e20 "0

In a typical study o will be estimated from separate samples to yield two

estimates o, and a, of the correct value of a , o . This section develops an
approximation for the integral form of the general SOS statistic, defined as

A

(1.2) (P(035a,)-P(630,) 1%y (0)de.

4
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The weight function w is non-negative and non-zero only over an interval. (Note:
the notation ¢ ,, and o 9 indicate, as before, the first and second alpha
vectors, not the first and second elements of the vector, alpha. The underlining
continues to denote the vector.) When P has continuous partial derivatives the
mean value theorem can be used to develop a tractable approximation of (1.2).

e ——— o o e e s =+ e

In the three-parameter logistic model

(1.3) P(8;0u) - P(8;a3) =

N ,

(ay - az) Ty P(0,a*)

:: ~ ~ p)

+ (by - b3) "—BT P(G;g_*)

’ + (A - - ) 3 p(enn‘*) ‘
i €1 = ¢z oc S g
4 Here o * is a vector on the line segment coanecting o ; ad %, ,
g (1.4) . i‘
e a* = hoy+ (1--h)gl,2 0<h<1,

; The value of h needed in (1.4) will depend on 6 . In this study it has been
; ’ observed that P is so close to being linear over the range between o 1 and &,
that an adequate approximation can be obtained for h = 0.5 for all values of © .

Equation (1.3) can be expressed more compactly with the notation

0 N SR
P(6; o)) - P(O5a,) = (2)-ag) 55 PO a(6)

where -aa— P(6; o *(9)) is a column vector of partial derivatives evaluated at

~

no) o, + - 8) 1 %,. Thus equation (1.3) in this notation becomes

~

~ ~ ~ 8 ~ ~

i A YR A R TYT RW!

o
- - s
-

where o =0.52 , +0.52 , is the mean o estimate.

With this approximation an SOS statistic can be written compactly as
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(2 - 0Q(2; - 39"

Here superscript T indicates vector (and later, matrix) transposition and Q is the
positive semidefinite matrix obtained by integrating with respect to 6 each
term in the matrix

P(650)) (5= PO o )Tw(o)

—~
18}

As evidence for the adequacy of this approximation Table 1 is offered. In this
table 45 items are considered. Item parameters were estimated for Black and
for white examinees. The SOS statistic

3

(P(65 g ) -P(85 0 )] 2de
-3

was computed numerically (Riemann sums on a fine grid) and compared with the
quadratic approximation. These results are typical. Comparing columns two and
three in Table 1, respectively the integral and quadratic forms, close agreement
between the integral and its quadratic approximation was observed. (The
eigenvalues in the table will be referred to later.) Details of the data set may be
found in Linn et al., 1980.

When the estimates _g_u and _@;_ 2 are multivariate normal with known covariance
matrices S, and S; , then the random difference vector (;_ 1- .é;._ o) Will be
multivariate normal with covariance matrix S = 8, + S, , provided the
estimates i 1 and _é,z are obtained from independent samples.

If a,and o, are unbiased estimates of the correct item parameters e o

(where o, indicates the true (unknown) population values, _which a, and o,
estimate) then the expected value of the difference o 1~ 2 o will be zero,

An 808 statistic has approximately the same distribution as the sum of several
independent squared normal variables. The present line of reasoning is intended
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] Table 1.
Quadratic approximation of integral
, i for 45 items. Parameters were computed from white fifth grade and Black sixth
g grade samples (Linn, Levine, Hastings, & Wardrop, 1980).
’ Quadratic
Item Integral Form Eigenvalues of pivTqvpt
fi 1 0.00749 0.00750 0.00318 0.00109 0.00032
3 2 0.01269 0.01280 0.00332 0.00132 0.00032
?ﬂ 3 0.06779 0.06913 0.00809 0.00544 0.00116
4 0.00555 0.00559 0.00361 0.00140 0.00103
A 5 0.01806 0.01823 0.00274 0.00156 0.00098
3 6 0.00433 0.00429 0.00303 0.00119 0.00035
¥ 7 0.00051 0.00051 0.00292 0.00116 0.00025
_;a 8 0.01985 0.02005 0.00234 0.00086 0.00043
:;\ 9 0.03331 0.03432 0.00608 0.00259 0.00129
& 10 0.00348 0.00348 0.00258 0.00095 0.00042
11 0.00295 0.00293 0.00230 0.00084 0.00049
) 12 0.01015 0.01021 0.00560 0.00140 0.00092
13 0.00303 0.00304 0.00258 0.00168 0.00087
14 0.01319 0.01329 0.00214 0.00098 0.00029
' 15 0.00391 0.00391 0.00277 0.00114 0.00025
: 16 0.00120 0.00119 0.00276 0.00106 0.00034
17 0.03035 0.02718 0.00279 0.00221 0.00107
18 0.00538 0.00538 0.00186 0.00109 0.00085
19 0.00722 0.00725 0.00151 0.00079 0.00028
. 20 0.01250 0.01254 0.00167 0.00077 0.00053
. 21 0.00570 0.00570 0.00228 0.00087 0.00048
F 1 22 0.02531 0.02306 0.00240 0.00179 0.00097
;: ! 23 0.00564 0.00557 0.00240 0.00087 0.00064
e 24 0.00203 0.00203 0.00213 0.00106 0.00083
25 0.02476 0.02464 0.06258 0.00329 0.00254
26 0.03518 0.03568 0.00153 0.00075 0.00067
| 27 0.00751 0.00757 0.00469 0.00145 0.00101
# 28 0.00833 0.00837 0.00258 0.00098 0.00035
7
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Table 1, continued.

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

0.00240
0.01085
0.02497
0.00429
0.00383
0.03503
0.01222
0.03942
0.00484
0.00567
0.00737
0.03315
0.00605
0.00433
0.04684
0.00450
0.00918

0.00237
0.01089
0.02577
0.00428
0.00376
0.03550
0.01228
0.03769
0.00485
0.00568
0.00744
0.03398
0.00607
0.00435
0.04829
0.00452
0.00934

0.00165
0.00363
0.00795
0.00177
0.00164
0.00273
0.01083
0.00699
0.00139
0.00178
0.00165
0.01101
0.00632
0.01019
0.03279
0.00251
0.00191

0.00080
0.00146
0.00178
0.00141
0.00089
0.00107
0.00234
0.00252
0.00105
0.00149
0.00097
0.00248
0.00194
0.00226
0.00614
0.00114
0.00154

0.00068
0.00121
0.00142
0.00084
0.00066
0.00086
0.00104
0.00207
0.00077
0.00097
0.00082
0.00121
0.00119
0.00133
0.00131
0.00082
0.00104




to make this more specific. Let o temporarily denote an arbitrary multivariate

normal random vector, and let Q temporarily denote a given (not estimated)
positive semidefinite (i.e., non-negative latent roots) symmetric matrix. If the
following conditions hold for o and some matrices,

E(a)=0
Cov(_a_)=E(_a_T_g_)=S

s = vDvT where V is orthonormal and D is diagonal with positive
diagonal elements

D’l = matrix of square roots of elements of D
D'* - (D*)'l

then the transformed random vector 8 = gvﬁi is a vector of independent
standard normal variables. This follows from the identities

E(8) =E(a)VD ¥ =0

cov(8) =E (D WTaTavp¥)

= ptVTE (oT o) vpt
= pvTsvp

=I.

A statistic & Qa_ T thus can be rewritten
= (avp~h) ptvTqvpi(a vD)T
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where 8 is a vector of independent standard normal variables. If U diagonalizes
D*VTQVD}, i.e., if U is an orthonormal matrix and

)\1 (o} (o}
A = 0 A2 0
o 0 As

is a diagonal matrix such that
pivTqvp? = y auT,

then aQaT = (BUWAMBWT. BU =< x1, xz, x;>, being an orthonormal
transformation of independent standard normal variables, is also a vector of
independent standard normal variables. This estabhsh&s that a Q(x has the
same distribution as the random variable )\1x1 + )\zxz + N x; where the X; are
independent standard normal variables and the A are elgenvalues of
pivTqupt,

The above is used in the following form. If Oq and ;2 are independent
multivariate normal vectors with covariance matncee S and Sy and equal
expected values, and if Q is symmetric positive semldeflmte, then 2y -2, is
multivariate normal with zero expectatxon and covanance matrix s equal to
S+ S,. The random variable (0.-a2) Q (0L1-az) will have the same
distribution as the variable 3. A;x.’ where the x; are independent standard
normal variables and the A i’ in the notation of the preceding paragraph, the
eigenvalues of D*VTQVD*.

This result is important because it shows that an SOS statistic has approximately
the same distribution as a homogeneous gquadratic form in normal variables.
These variables generalize the central chi square distribution. There are no
tables for the variables, but there is literature (Johnson and Kotz, 1967) which
provides a variety of methods for computing their distribution.

In this report the estimates of item parameters 2 1.%:are approximations of
maximum likelihood estimates for an item's parameters (a, b, and ¢). The
methods here reported are also valid for other estimates (such as Bayesian) if the
estimates show asymptotic normality. This validity holds because the derivation

10
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does not use maximum likelihood, but only multivariate normality. The
estimates c?u and (;z are based on samples from different populations. The
covariance matrices S, and S are obtained by inverting information
matrices. The condition E ( ou) E( a2 ) is obtained from the "null hypothesis"
of no bias, i.e., that the correct conditional probability curve is the same for
each population, and the matrix Q is obtained by the mean value theorem
approximation. To calculate the probability of obtaining an observed statistic
under the null hypothesis, a recently developed numerical procedure for inverting
the Laplace transformation of the distribution of the statistic is used (Levine and
Williams, 1982).

Every one of the above conditions can be questioned; every one of the
assumptions and approximations can be refiAned. For example, the approximate
maximum likelihood estimates o1 . a; are statistically biased and the
matrix Q is estimated from data.— Actuarand simulation data are therefore
needed for an evaluation of the extent to which the assumptions and
approximations result in useful methods.

Exploratory vs. Confirmatory Studies
Two anticipated uses of SOS statistics are exploratory and confirmatory. In

some situations a low power, easily implemented exploratory index is needed to
screen for items requiring further investigation. Other situations call for the use
of a precise test to confirm or reject a hypothesis about one or a small number
of items,

Consider the problem of item security. An inexpensive exploratory test makes
possible routine, periodic screening for compromised items. If an item has been
disclosed, its item response function will be different when a sample is drawn
from a secure test center or from a population tested prior to disclosure. After
an exploratory study has tagged a particular item as possibly compromised, the
item can be grouped with safe items for the more precise confirmatory study.

The steps in an exploratory study are:

(E1) Estimate item response functions from two samples drawn from two

populations.

11
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(E2) Estimate covariance matrices for the estimated item parameters.
(E3) Equate the two populations and place the curves on a common ability
scale.

(E4) Compute the SOS statistic for each pair of estimated curves.

(ES) Calculate the probability of observing a value of SOS as large or larger
than the sample SOS under the null hypothesis that the two curves are
equal.

Steps (E1) - (E4) are essentially the same as those in Linn et al., (1980, 1981).
Step (E5) is an attempt to measure the significance and replicability of large SOS
values.

_ The equating step (E3) is especially problematical in exploratory studies, when
i ability distributions are markedly different. Confirmatory studies circumvent
equating problems. The principal steps in confirmatory studies are described
below for the important special case in which only one item is suspected of being
- compromised.

£ Cy Merge item response data from two independent samples for a subtest
consisting of unbiased items.

(C2) Estimate abilities from the merged file.

(C3) Calculate maximum likelihood item parameter estimates, treating
estimated abilities as actual abilities separately for each population on
the suspected item.

(Cq) Compute the covariance matrix for the item parameter estimates.

(C5) Same as (E4)

(Cs6) Same as (ES)

——— e o -
{

Note that in the confirmatory study estimation using an unbiased subtest
automatically equates and places estimated abilities on a common scale. In fact,
if the merged sample of examinees has a much broader range of ability than
either component samples, then the quality of subtest item parameter estimates
is likely to be improved, and the ability estimates will be more precise. In this
sense, in the confirmatory study, ability distribution differences can be an asset
rather than a liability. Furthermore, in the confirmatory study there is no
"multiple comparison problem,” and the "large sample theory" used to deduce
12
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asymptotic multivariate normality of parameter estimates can be shown to be
more nearly correct.

Further details on exploratory and confirmatory methods are given in the
empirical sections of this report.

Empirical Studies: Introduction and Overview

In the remainder of this report a sequence of empirical studies with reading test
data is described. These studies were undertaken to make an initial
determination of whether or not the procedure developed here would function as
the derivations indicated when exposed to operational data. The first, an
exploratory study with actual data, is a partial replication of Linn et al,(1981).
Three items were identified as possibly biased in that study. The second, an
exploratory study with simulated data having roughly the same ability
distribution and item parameters as the first study, demonstrates that isolated
biased items can be separated from unbiased items by SOS statistics. In the
study, an unbiased item, item 7, was incorrectly identified as biased. In the third
study, a confirmatory study with the same simulation parameters as the second
study, the three biased items (numbers 6, 19, and 26) were clearly identified as
biased and the incorrectly identified item (7) was correctly reclassified as
unbiased. In a final confirmatory study with actual data, a strong indication of
bias was obtained for one of the three original items.

This report deals only with populations defined by educational achievement. If
performance on an item requires two component skills, one of which is commonly
taught during the fifth grade, then, under a variety of complex but obvious
conditions, estimated item characteristic curves should reliably differ for fifth
and sixth grade students. It is preferred to strengthen the understanding of these
new methods in this uncontroversial domain before presenting results on
populations defined by race or income level.

Exploratory Study: Actual Data

The first study replicates Linn et al, (1980, 1981) with minor changes in their

methods and a sample from the same data set. A spaced sample of 1940

examinees was selected from the 2910 available low income, white, fifth grade

(LW5) examinees completing Form F (45 items) of the Metropolitan Achievement
13
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Test (Durost, Bixler, Wrightstone, Prescott, & Balow, 1970), Reading
Comprehension section. A second sample of 1948 (selected from 2752) low
income, white, sixth grade (LW6) examinees was also formed. Item parameters
were computed for each sample using LOGIST (Wood, Wingersky, and Lord,
1976). Item parameter covariance matrices were approximated by inverting
matrices of sample averages of second partial derivatives (Linn et al. 1980,
Appendix A). Four examinees from the LW6 sample with such unusual test
performance that LOGIST failed to estimate an ability in the interior of the
interval from 6 = -4 to 6 = +4 were excluded from the averages, leaving a
sample of 1944. The four examinees on whom convergence failed were not used
in any subsequent steps. The LW6 abilities and item parameters were linearly
transformed to place them on approximately the same scale as the LWS5
parameters. (See Linn et al. (1980, Appendix B) for details of the equating
procedure.)

Item characteristic curves were compared with the SOS statistic obtained
by integrating the squared difference between unit weighted curves where
-3 <8< +3. Adequate agreement with the earlier results (Linn et al. 1980) was
observed. A separate report of the replication is anticipated.

After examining the cumulative distribution function of the estimated abilities it
was decided to consider integrating the difference between curves between -2.5
and 1 only, where most cases were concentrated. Only 5 percent of the LW6
sample obtained scores greater than 1. The major SOS statistic for this sequence

of studies was
1 ~ ~ 2
[P(6; o ,)-P(8;a,)"d6.
-205 -

Table 2 gives the SOS values and probabilities for selected items. Items 6, 19,
and 26 showed the largest SOS values. The probability of observing the obtained
or larger SOS values in each case was estimated to be less than 0.01. These were
the only items with significance less than 0.01, and they were selected for
special attention in the sequel. The item with the next largest SOS value was
item 31 with p > .10, which is not considered statistically significant. Table 3
gives item parameters for LWS and equated LW6 parameters. Note that 28 of
the 45 LW5 values for the ¢ parameter (those where ¢ = 0.235) and 33 of the 4$
14
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Table 2
Exploratory LWS vs. LW8, actual data.
SOS values and their probabilities.

SOs
Item Statistic Probability (P)
1 0.00489 0.728
2 0.00246 0.439
3 0.00030 0.028
4 0.00008 0.007
5 0.00477 0.701
6 0.03361 0.999
7 0.00745 0.811
8 0.00224 0.353
9 0.00224 0.380
10 0.00492 0.679
11 0.00653 0.783
12 0.00669 0.879
13 0.00092 0.136
14 0.00444 0.637
15 0.00634 0.756
16 0.00495 0.656
17 0.00924 0.917
18 0.00748 0.971
19 0.01881 0.995
20 0.00866 0.916
21 0.00042 0.041
22 0.00048 0.065
23 0.00048 0.051
24 0.00153 0.281
25 0.00382 0.493
28 0.02077 0.998
27 0.00179 0.497
28 0.00567 0.748
29 0.00021 0.017
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Table 2, continued.
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

0.00142
0.01311
0.00217
0.00259
0.00133
0.00084
0.00086
0.00084
0.00260
0.00759
0.00035
0.00113
0.00147
0.00055
0.00473
0.00155

¢ R S Ml S w5, T it

0.407
0.895
0.496
0.516
0.398
0.371
0.193
0.158
0.578
0.895
0.116
0.387
0.255
0.237
0.669
0.314
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Table 3
Estimated item parameters from LW5/LWS6.
Exploratory study on the LWS$ ability scale.

LW5 LW§
Item 8 b; ¢ 8 bj e
1 0.675  -1.621 0.235 0.747  -1.413  0.230
2 0.757  -1.436 0.235 0.728  -1.611 0.230
3 0.426 0.652 0.235 0.377 0.720 0.230
4 1.364 1.044  0.235 1.295 1.081 0.230
5 0.710  -0.203  0.235 0.659 0.005  0.230
6 0.868  -0.882  0.235 0.786  -1.435 0.230
7 1.200 -1.101 0.235 1.016  -1.305  0.230 ]
8 1.299  -0.288 0.235 1.068  -0.347 0.230
9 0.540 0.316 0.235 0.652  0.148 0.230
_ 10 0.966  -0.439 0.235 0.912  -0.631 0.230
i 11 1.363  -0.133  0.260 1.028  -0.339  0.230
12 1.293 1.452 0.243 0.806 1.387  0.230
13 0.679  0.230 0.235 0.616  0.334  0.230
14 1.574  -0.811 0.142 1.921  -0.721 0.230
15 1.563  -0.969 0.235 1.205  -0.840  0.230
| 16 1.032  -0.823  0.235 0.848  -0.977  0.230
: 17 0.822 0.729  0.220 0.638 0.608 0.230
i 18 2.000 1.000 0.186 1.796 1.004 0.230
i 19 2.000 -0.374 - 0.171 1.947  -0.511  0.230
20 1.956 0.285  0.303 1.309 0.108  0.230
21 1.364  -0.246 0.235 1.308  -0.216  0.230
1 22 0.901 0.709 0.235 0.829 0.661 0.230
23 0.988  0.012  0.235 1.060 -0.025  0.230
24 1.037 0.292  0.220 1.160  0.382  0.230
25 0.515 2.119  0.238 1.191 1.561  0.258
26 1.303  0.313 0.145 1.078  0.250  0.210
27 1.871 1,185  0.281 1.947 1.005  0.297
1.172  -0.464  0.238 1.399  -0.348  0.230

17
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Table 3, continued. I

29 1.570  0.372  0.235 1.619  0.343  0.230 |
30 1.401  1.285  0.239 1.850  1.125  0.260

31 0.879  1.556  0.235 0.458  1.743  0.230 i

| 32 1.519  0.756  0.235 1.541  0.871  0.260 |
33 1.903  0.378  0.235 1.593  0.420  0.210
E 34 2.000 0.883 0.160 1.723 0.957 0.146
¥ 35 2.000  1.738  0.235 1.944  1.476  0.230
36 0.915  1.485  0.235 0.905  1.328  0.230
37 2.000  0.554 0,220 1.947  0.588  0.210
38 2.000  0.878  0.287 1.886  0.913  0.260
39 1.841  0.392  0.235 1.446  0.326  0.260
40 2.000  1.291  0.220 1.670  1.408  0.210
4 41 2.000 1.492 0.235 1.690 1.518 0.247
4 42 0.750  1.214  0.235 0.616  1.210  0.230
43 2.000  1.622  0.243 1.947  1.592  0.230
44 1.215  -0.084  0.235 1.373  0.033  0.230
o 45 1.876  0.829  0.235 1.390  0.833  0.230

- ——
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LW6 values for the c parameter (those where ¢ = 0.23) are assigned by LOGIST to
approximated default values. Such assignments affect asymptotic normality and
so are part of the set of violations of the assumptions (page 11) whose effect the
simulation is evaluating.

Exploratory Study: Simulation Data

The purpose of this study was to determine whether SOS statistics can identify
isolated biased items under ideal conditions. Data files SLW5 and SLW6 were
constructed by simulation to parallel LW5 and LW6. The abilities used for SLWS
were the abilities estimated by LOGIST from LW5. The abilities used for SLW6
were the abilities estimated for LW6 transformed to the LW5 scale by the
empirical equating transformation derived in the earlier study 0 + (1.027) 6 +
0.399. This is a linear transformation which does not change the meaningfulness
of the ability measurements, since measurement based on item response theory
is unique only up to a linear transformation.

The 1999 abilities were obtained for the SLW5 simulation by using all 1940
estimated @'s from the LW5 at least once and the first 59 © 's twice. The 1999
abilities for the SLW6 simulation were obtained by using all 1944 transformed
estimated LW6 6 's at least once and the first 55 twice.

Except as indicated below, the item parameters for both SLW5 and SLW6 were
the LOGIST estimated LW6 item parameters transformed to the LWS5 ability
scale by the following transformations, which are derived from the
transformation given above for the theta values.

a * a; (1.027)

b; ~ (1.027) b; + 0.399,

%Y
Except for items 6, 19, and 26 all c;'s were set equal to 0.21, a value typical of
those found for the ¢ parameter when convergence succeeds with large samples.

The nine parameters for items 6, 19, and 26 for SLW5 were the estimated LW$

parameters. The nine parameters for items 6, 19, and 26 for SLW6 were the
19
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transformed estimated LW6 parameters. Only a;'s less than or equal to 1.7 were
wed. Any g, found to be greater than 1.7 by the above procedure was changed to
1.7.

Table 4 gives the SOS statistic values and their probabilities. All three of the
critical items were clearly identified as biased at the 0.01 level. The SOS values
were 0.036 (item 6), 0.035 (item 19), 0.023 (item 26). Only one of the unbiased
items, item 7, with the very large SOS value of 0.043 was significant at the 0.01
level. The remaining items had generally small SOS values, the largest of which
was only 0.006.

Confirmatory Study: Simulation Data

The purpose of a confirmatory study is to confirm or disconfirm the suspicion of
bias raised for items in an exploratory study. A merged file of 1998 simulees
was formed of 999 simulated LW5 examinees and 999 simulated LW6 examinees.
The abilities were the 999 thetas in each file, LW5 and LW6, which followed
serially the last of the abilities used for the exploratory simulations (page 19).

In constructing the merged file a process called "cloning" was used. A 49 item,
rather than a 45 item, test was constructed as follows. All LW5 simulees were
coded as not having reached items 46, 47, 48, and 49. The LW6 examinees wers
coded as not having reached items 6, 7, 19, and 26. The response to item 6 was
moved to the 4611 position, item 7 to the 4733 position, ete. In this way the
abilities are held to a common scale by the 41 common items, but LOGIST is free

to fit different parameters for each group for the cloned items.

This procedure was used in order to evaluate the confirmatory design with
readily available sof tware. It would have been preferable, although infeasible, to
run LOGIST on the 41 common items and fit each of the special items
separately. The procedure actually used permits the possibly biased items to
influence the ability estimates.

In order to make the probabilities in this study comparable to the probabilities in

the exploratory study, a correction for sample size was used. The covariance

matrix of the estimated parameters (under ideal conditions, such as perfectly

estimated abilities) are inversely proportional to sample size. The
20
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i Table 4
4 Exploratory study, simulation data, SOS value and probabilities.
, (Rounding has produced numbers of 1 and 0. The + and - signs indicate that such
Q values have been rounded and are not accurate to the last decimal.)
Item SOS Statistic Probability (P)
1 0.00582 0.803
ki 2 0.00202 0.394
3 0.00081 0.125
3 4 0.00095 0.272
i 5 0.00015 0.009
6 0.03641 0.999*
7 0.04337 1.000-*
8 0.00137 0.213
9 0.00515 0.702
10 0.00010 0.004
11 0.00015 0.008
§ 12 0.00245 0.548
' 13 0.00040 0.043
14 0.00027 0.020
‘ 15 0.00046 0.043
| 16 0.00084 0.131
17 0.00096 0.167
18 0.00127 0.365
19 0.03465 1.000-*
20 0.00004 0.001 L
“ : 21 0.00188 0.338
‘ i 22 0.00029 0.033
‘ 23 0.00326 0.549
: 24 0.00433 0.720
" 25 0.00068 0.208
26 0.02268 0.999°*
27 0.00529 0.922
28 0.00193 0.328
29 0.00370 0.709
21
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Table 4, continued.
30
31
32
33
34
35
36
37
38
39
49
41
42
43
4
45

0.00325
0.00025
0.00091
0.00246
0.00294
0.00120
0.00002
0.00151
0.00298
0.00330
0.00000+
0.00150
0.00004
0.00034
0.00232
0.00384

£ o b ik i et 9o

0.776
0.033
0.229
0.523
0.711
0.467
0.001
0.354
0.732
0.640
0.000+
0.557
0.002
0.166
0.438
0.773

* =p <001
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exploratory studies have sample sizes equal to 1999. Therefore the estimated
covariance matrices were multiplied by actual size and divided by 1999 to
compensate for sample size.

The results confirm bias at the 0.01 level for the truly biased items. The "false
alarm item" (number 7) no longer appears biased, and its SOS value has a
probability of occurring by chance of over 0.13. The results are summarized in
Table 5. Note that the probability associated with item 7 is .8683, or
Lt approximately 1-0.13. Thus the test appears to have high power at normally
‘ acceptable alpha levels.

Confirmatory Study: Actual Data
All of the remaining LW5 and LW6 examinees were merged for a confirmatory

study. This produced sample sizes somewhat smaller than the sample sizes in the
simulation confirmatory studies: 970 LW5 examinees and 804 LW6 examinees.
-gi Items 6, 19, and 26 were cloned, and the procedures described in the preceding
i section, implemented. Results with sample sizes corrected to 999 and 1999 are {

presented in Table 6.

o

The evidence for bias is strongest for item 26. The estimated item parameters
<a, b, e> for the fifth and sixth graders were <1.06, -0.032, 0.09> and <1.18,
0.063, 0.21> . The discrepancy between the estimated curves seems
| attributable primarily to the discrepant estimates of c;. (See Table 7 for item
| response functions and their confidence intervals.) It is tempting to conjecture
that one of the distractor options ceases to be effective after fifth grade
instruection.

Conclusions

One mode of the procedure described in this report may be used to develop SOS
statistics which identify items which appear to be biased. That mode is the
exploratory mode. The other mode, the confirmatory mode, can be used to
examine the suspect items and to determine, with relatively high statistical
power, whether the hypothesis of no difference between the items can be
rejected at specified alpha levels. The probabilities of observed SOS values

R S
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Table §
SOS values and their associated probability values
for items suspected of being biased, simulated data.

Probability corrected Probability uncorrected
Item SOos for sample size for sample size
6 0.08507 0.9999998 0.9998
7 0.00764 0.8683 0.6453
19 0.01302 0.9907 0.9104
26 0.17929 0.9977 0.9615
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Table 6
SOS values and their associated probability values
for items suspected of being biased, actual data.

1 Probability corrected ]
to sample size of:
E Item S08 1999 999

i 6 0.0123 0.944 0.789
A 19 0.0013 0.209 0.095

5 26 0.0166 0.997 0.957
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4
Table 7
j‘f Conditional probabilities P(1|6) and their confidence intervals for
3 item 26, confirmatory study, actual data, LW5 vs. LW6.
6 M -300 ‘2.0 -1 -0 o l 2.0 3.0
P(1| (6 -20,)) 002 006 0.8 0.51 084 0.9 0.9
LW5 P(1]8) 0.10 0.2 023 056 0.88 0.98 1.00 ?
P(1/(8+ 209 ) 0.17 017 0.27 0.60 092 0.99 1.00
P(LI(8-20) 011 0.4 024 053 086 0.97 995
| Lwe P(1le) 021 022 029 058 0.895 0.98  1.00
K P(1[(6+ 204 )) 031 031 035 063 0925 0.99 1.00
i
|
X
!
]
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were not found to be monotonically related to SOS values. The orderings of
items given by SOS and P(SOS) are different, and this seems entirely proper. If
an item is very poorly estimated it will probably have a large SOS value but a
small P(SOS). For example, Linn et al.(1980, 1981) found a very large SOS
value for their statistic for item 25. In this replication with their statistic and
the present sample, that finding is confirmed by obtaining a very large SOS
value. However, P(SOS) was very small. Examination of plots of confidence
intervals showed the poor estimation.

For item 25, much of the discrepancy between the curves was for extreme
values of © where few subjects were available. Integration on the interval
(-2.5, 1] instead of 3, 3] resulted in a decreased SOS value. The change to the
shorter ability interval gives higher weight to those segments of the curves
having the most examinees for estimation. Linn has proposed defining an SOS
statistic with w ( 8 ) proportional to the number of examinees available for
estimation at level 6 . This statistic is currently under evaluation.

Limitations

The weakest link in our analysis is the estimation of the covariance matrices. In
this author's opinion, LOGIST is clearly the best parameter estimation program
available for the three-parameter logistic model. However, it has many ad hoe
features (such as the assignment of default values), and its estimates only
approximate maximum likelihood estimates. Moreover, its numerous options
cause various deviations from maximum likelihood. Furthermore, the statistical
theory for maximum likelinood estimation for item response models is
incomplete. It has not been proven that maximum likelihood estimates are
asymptotically normal with covariance matrices given by inverted information
matrices. The assumption that covariance matrix entries are inversely
proportional to sample size for fixed test length has not been proven. The
method of estimating covariance matrices used in this paper ignores the error in
estimating abilities. These problems are not insurmountable. An attempt to
validate a method for computing covariance matrices for the joint estimation of
abilities and item parameters is currently being undertaken. In addition there
are promising developments in parameter estimation being completed in other
laboratories. Such methods can be incorporated into the framework developed in
this paper.
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