
iD-Ri.33 253 ON THE MAXIMUM LIKELIHOOD ESTIMATE FOR LOGISTIC i
ERRORS-IN-VARIRBLES REGRE..(U) NORTH CAROLINA UNIV AT
CHAPEL HILL INST OF STATISTICS R J CARROLL MAY 83

UNCLASSIFIED MINED SER-1528 AFOSR-TR-83-8773 F/G 12/1i N

EimhomhohmoiE



-- 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A



77 
-$:%.. ',

zoa

* - Ul)*



UNCLASSIFIED
SICURITY CLASSIFICATION OF THIS PAGE (3Wo Date Efttered _________________

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1.WPOR NUM8111 2. GOVT ACCESSION NO: 7 RECIPIENTS 3CATALOG NUMBER

4. 'TITLE (wed Sloblittlo S. TYPE OF REPORT & PERIOD COVERED

"ON THE MAXIMUM LIKELIHOOD ESTIMATE FOR
LOGISTIC ERRORS-IN-VARIABLES REGRESSION MODELS"1 Annual RPR

7. AUTHORWs) 11. CONTRACT OR GRANT NUMBER(a)

Raymond J. Carroll

_________________________________________ F49620-82-C-0009
%9. PERFORMING ORGANIZATION NAME ANID ADDRESS 10. PROGRAM ELEMENT PROJECT. TASK-

AREA 6 WORK UNIT NUJMBERS
University of North Carolina
Department of Statistics
Chapel Hill, North Carolina PE611O2E; 2304/A5

1I. CONTROLLING OFFICE N4AME AND ADDRESS 12. REPORT DATE
*AFOSR/NM May 1983

Bldg. 410 13. NUMBER OF PAGES
Bolling AFB, DC 20332 11

1.MONITORING AGENCY NAME & ADOOESS(il dlifrent fromt Controlline Office) IS. SECURITY CLASS. (of thal report)

UNCLASSIFIED
S.OECLAPISSIF I C ATION DOWNOR A OfNG0

SEDLE

IS. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the oberoce mitered In Block 20, it different from Report)

16. SUPPLEMENTARY NOTES

'I

III. KEY WORDS (Continue on reverse e*ft tnoce.aery' and Identify by block numaber)

Binary regression, Measurement error, Logistic regression, Maximum
likelihood, Functional models.

20. ABSTRACT (Continue on reverse .ff* N necessary and identify by block number)

- 1 Maximum likelihood estimates for errors-in-variables models are not
always root-N consistent. We provide an example of this for logistic
regression.

poll

DD I AN 731473UNCLA SSIFIED
SECURITY CLASSIFICATION OFP THIS PAGE (UWien De



ON THE MAXIMUM LIKELIHOOD
ESTIMATE FOR LOGISTIC ERRORS-IN-VARIABLES REGRESSION MODELS

by

R. J. Carroll*

University of North Carolina at Chapel Hill

*Research supported by the Air Force Office of Scientific Research
Grant AFOSR-F49620 82 C 0009.

Acsion For
NTIS A A&Z
DTIC TAB 13U-a4twounod C 3
Jus t Ifteat

By~Distribution/

Availability Codes
-Avail and/or

Dist Special

This t.,agpprove.." ,' Z reve, -1. .7 reloeeIANf 
1AnDimrlb. ..: nilmited,

; r , ~~~~~~....... .... ................-... ,. ........ ,...-...,.....--... .- , .. .



ABSTRACT

Maximum likelihood estimates for errors-in-variables models are not

always root-N consistent. We provide an example of this for logistic

regression.

SOME KEY WORDS: Binary regression, Measurement error, Logistic regression,

Maximum likelihood, Functional models.
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I. INTIRODUCTION

Logistic regression is a popular device for estimating the probability

*of an event such as the development of heart disease from a set of predictors,

e.g., systolic blood pressure. The simplest form of this model is logistic

regression through the origin with a single predictor:

(1) Pr{Yi=lIci = G(a0ci) = {l+exp(-aoCi)1

where a0 and {ci} are scalars (i=l,...,N). In many applications, the predictors

are measured with substantial error; a good example of this is systolic blood

pressure, see Carroll, et al (1983). Thus, we observe

(2) Ci = ci + Vi

where the errors {v i } are assumed here to be normally distributed with mean zero

and variance a

The functional errors-in-variables logistic regression model is the case

where (1) and (2) hold and the true values (ci} are unknown constants. The

parameters are a0 and (c i; there are (N+Il) parameters with N observations, so

classical maximum likelihood theory does not apply. Up to a constant, the

log-likelihood is

- N2-N log e - (2a 2) - I  (Cici)2

inl

N
+ I fYi logeG(c i)+(l-Yi)loge (l-G(aci))}

The linear functional errors in variables model (Kendall and Stuart (1979))

takes a form similar to (1) and (2), although of course (1) is replaced by the

usual linear regression model with variance 02. If a2 a 2 or 022 is known,
CC E
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then the linear functional maximum likelihood estimate exists and is both

consistent and asymptotically normally distributed.

In this note, we show that for the functional logistic errors-in-variables

model (1) and (2), even if a2 is known, the maximum likelihood estimate cannot

be consistent and asymptotically normally distributed about a 0* The result

can be extended to multiple logistic regression, and it is true even it we

replicate (2) a finite number M times. If the number of replicates M as

the sample size N - -, then the functional maximum likelihood estimate can

be shown to be consistent whether a2 is known or not.

II. THE THEOREM

In model (1) with the {ci } known, the ordinary maximum likelihood estimate

for a0 satisfies
' 0 c i c ( Y i - G (a 1c i ) ) ..i4l

In the presence of measurement error, the naive estimator would solve

N.< (3) 0 = i c.(Yi-G( 2C i))
""i=l 1i l

However, because of correlations, it turns out that

N

(4) lim E N-1  Ci (Yi-G(a0 Ci)) 0
i=l

Condition (4) says that the defining equation (3) for a2 is not even

consistent at the true value a0. Under these circumstances, it is well

known from the theory of M-estimators that the usual naive estimator a2

converges not to a0 but to the value a* satisfying

N
lim E N C C (Yi-G(aCi)) = 0

assuming such a value a* exists and is unique.*1i~

A . V ~ V ' . * . *~ ..
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Assuming it exists and is unique, the functional MLE a0 satisfies an

equation analogous to (3):

-( 

C 

i=l

where

62

(6) (a)= ci *a2 (Y-G i

It is easy to construct examples for which an analogue to (4) holds:

1 N
(7) lira E N-  c i(a 0 )(Yi-G(~ci(aO)) ) O.

.5N4oi=l

* 2One example of (7) is the extraordinarily easy problem a = 1 and c. = (-l)

The only question is whether (7) is enough to guarantee that the functional

MLE a0 cannot be asymptotically normally distributed about the true value a0 .

This is the case.

Theorem Suppose that o2 is known and that

(A.1) The maximum likelihood estimate a0 exists;N

(A.2) Nl I  ci  A (JAI <
i=l1

CA,,) N 1  c 2  B C0 < B < CO).
I ~(A.3) N 1  c2 B0Bca

i=l 1

Then, if

(A.4) N(Co-zO) = 0p(1)

we must have that (7) fails, i.e.,

N
(8) lim E N- I  e ei(a0)(Yi-G( 0 i(0))) = 0.

N-.c i=l

The theorem as stated does not readily follow from the theory of M-estimators

unless one assumes the existence of a unique a* which satisfies (8), along with

,. , , . . .,. .- .. .. . .,-*., . A**., ..
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other regularity conditions. The proof we give avoids these complications

because it exploits the form of the logistic function G.

III. PROOF OF THE THEOREM

it is most transparent to take = 1. By formal differentiation, 6O

simultaneously satisfies (6) and

(9) N-  e. cC){G(a8i(a)) - Yi} = 0.

i=l

Assumptions (A.2) and (A.3) imply that
2

(10) max{c2/N : 1 9 i : N} 0
1

From (2) and (6), it follows that

(11) lim max sup Iec(a)-vi/Cl+llt0I4lcil) =0 (1)
C-) Isi<N a-a0 <C p

Further, since the fv i ) are normally distributed,1P

i p
(12) max(Ivi I N-  1 5 i : N} - 0

Lemma It follows that if (A.1)-(A.4) hold, then

p
(13) max)I( L Cc0) - C()I : 1 i < N) 0.

Proof of the Loma. Define

Hi(u,a) - u-ci-vi.c{G(au) = Y i,

Hi(ci(a), 0) = 0.

The partial derivatives of Hi are.

DiHi(u,a) = -L Hi(uG) = 1 = 2G(au){1-G(ou)}

D2Hi(u,a) - -L Hi(ua) - (G(Cau) - +11 auG(au){(-G(au).

By the chain rule,

. e ' ., e f,;,¢ ' ';r ... .,., ., , o-, .... . . , .. - .- . . .. . .-..... ... .. .. .... -..
| | ii '| | l-.. . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . , . . .. . .
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(14) e i (a) - [D1Hi {e i (a) )] 1D 2Hi {e i (a), a}

From (10)-(12) and (14) it follows that for every M > 0,

N max sup e. (a) l"!ea I a-o0 1 <W/

=0 { max sup Ic i (a)IN1 P---i 0
jP l--iON I a-%OI </N-

This means that for every M > 0,

max sup Iei (a) - 8i(a 0)1 [ P 0o
* l<i<N Ic-a 01</N

which by (A.4) completes the proof of 
the Lenma.

We must prove that (A.1)-(A.4) imply (8). We are first going to show

that

N p
(15) N" N. )i a{G(a0 i (a 0 ))-Yi} PO.

• .. ii=l

The term in (15) can be written as A1N +A 2 N +A 3 N, where

=N-I

AIN N l {( ) - i(a 0 )}[G{a 0 ei(a 0 )a - Y]
i=1

N
A2  N I e (a O) [G{a 0 e i (o 0 )}- G{&0 ei (a 0 )}]

2N =l i0

A 3NN ei(6O)[G{a 0 ei(a0)1 - Yi•
a i=1

By (9), A3N - 0 and, since G is bounded, the Lemma and (A.4) gives AIN _ 0

Because G and its derivative are bounded, the Lemma says that A2N O

as long as N N

N ai 0 a~&)2 0 (1 and N 1  c {e1(a0)12  0 p(1),
V 1 .. . .

.p-. .. . . .. • ..-.. . ...-.. •... , . .. ' -- . ...... , , .... .- .
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which follow from (A.3), (10) and (11). Since (15) holds, to prove (8) we

merely need to show that

,{ 1 -*0

N-l i (0o) (YiG(acoiO) P

-E{Si (ao )(Yi-G(aOi i(aO)) )

This follows from Chebychev's inequality and (A.3), completing the proof. 0

The Theorem does not follow from ordinary likelihood calculations because

the number of parameters increases with the sample size.

IV. A SIMULATION STUDY

To give some idea of the effect of measurement error, we conducted a

small Monte-Carlo study of the logistic regression model

Pr{Yi = 11 = G(ci/2 - 1), i=l,...,N

Here the values {ci} were randomly generated as normal random variables with

2
mean zero and variance 3 = ac, while the measurement errors were normally

distributed with mean zero and variance 2 = a2, with each {c') being
v i

replicated twice. We chose the two sample sizes N = 200,400 and took 100

simulations for each sample size.

In Table I we report the Monte-Carlo efficiencies of the usual naive

estimator and the functional MLE with respect to the logistic

regression based on the correct values {ci1. If the replicates of ci are

Cil,Ci 2 , we used Ci = (C +C )/2 and estimated the variance of C.-c i by theClC11 il i2) 131

sample variance of (Cil-C 12 )/2.

The results make it clear that neither the usual naive method nor the

functional MLE are acceptable. Further work is clearly needed to identify

good methods.

,3 "i '- " ! ii ." . .. '." .- '7:.-'--,;,--'.-.-"..:.. ; . * .. * : .. * ; .. ... ; . ] . - -.. -. - - - ;. -
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TABLE 1

Monte-Carlo Mean Squared Error Efficiencies
Relative to Logistic Regression Based On The

True Predictors

.Pr{Y i li } = G(a+oc.), a = , a = -1.0

i= ...,N

USUAL FUNCTIONAL
LOGISTIC MLE

a N=200 0.74 0.25
N=400 0.46 0.32

N=200 0.27 0.15
N=400 0.09 0.24

a+a N=200 1.13 0.59
N=400 0.60 0.53

a+20 N=200 0.38 0.28
v N=400 0.13 0.43

S.°
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