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ABSTRACT

Starting with an exact definition of classes of SIMD (single
instruction, multiple data) systems, a general approach to obtain-
ing lower time bounds by data flow analysis is ?resented. Several
interconnection schemes, such as the square net, the perfect shuf-
fle, the infinite binary tree, etc. are analyzed with respect to
their data transfer possibilities. For some types of computational
problems the data dependencies are analyzed in a quantitative way.
From both types of analysis, lower time bounds result for many com-
binations of SIMD systems and computational problems, for example,
2)(log N) for on-line quadtree-net systems and the computation of
Voronoi diagrams for N planar points, 9(N) for off-line diagonal-
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.V)@ for off- or on-line Illiac-net systems and sorting of N items.

The support of the U.S. Air Force Office of Scientific Research under
Grant AFOSR-77-3271 is gratefully acknowledged, as is the help of
Janet Salzman in preparing this paper. The author thanks the govern-
ment of the German Democratic Republic for financial support and
Azriel Rosenfeld for his efforts in making the author's stay in
College Park possible and effective as well.

*Permanent address: Friedrich Schiller University, Department of
Mathematics, University Tower 17th Floor, DDR-
6900 Jena, German Democratic Republic

/,



UNCLASSIFIED
K r irC&lO *r %T-tt SAGE , Da,. FrF P&.r d)SREPORT DOCUMENTATION PAGE READ INS-.RUCTiONS

R DBEFORE COMPLETING FORM
S 83 782 2. GOVT ACCESSION NO. 3-EfIPIENT'S CATALOG NUMBER

4 4. TITLE (and Subtitle) S. TYPE OF REPORT 4 PERIOD COVERED
ANALYSIS OF DATA FLOW FOR SIMD SYSTEMS Teohnical

6. PERFORMING ORG. REPORT NUMBER

CS-1257; CAR-I
7. AUTMOR(m) 6. CONTRACT OR GRANT NUMBER(,)
Reinhard Klette AFOSR-77-3271

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
Center for Automation Research AREA &WORK UNIT NUMBERS

University of Maryland
College Park, MD 20742 PE61102; 2304/A2

1. CONT OLLING DFFICE NAME AND ADDRESS 12. REPORT DATEMath & Info. Sciences, AFOSR/NM March 1983
Bolling AFB 13. NUMBER OF PAGES
Washington, DC 20332 67

14. MONITORING AGENCY NAME & ADDRESS(il different from Coenrolino Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

ISa. DECLASSIFICATION DOWNGRADING
SCHEDULE

I6. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIIUTION STATEMENT (*I the abstract enttred in Stock 20, it diflerent from Report) Oh For

DTIC TA.. U111m~u20 oed Q]
Justif leat Io-v

IS. SUPPLEMENTARY NOTES

By
_-R Dltrtbut Ion/

,.. Availabillity fcdb,

19. ABSTRACT (Cntnue on revere dle it necesery and Idlentify by block number)

Starting with an exact defirition of classes of SIMD (single
instruction, multiple data) systems, a general approach to obtaining
lower time bounds by data flow analysis is presented. Several inter
connection schemes, such as the square net, the perfect shuffle,
the infinite binary tree, etc. are analyzed with respect to their
data transfer possibilities. For some types of computational prob-
lems the data dependencies are analyzed in a quantitative way.

DD. 1473 E ,iyoN OF, .I NO O IS §SOLTE UNCLASSIFIED
.ECURIv CLASS.ICA,ON Of 7v-t PAGE rNl" Ls! # -..



UNCLASSIFIED ______

SrIruviTv CLASSIFICAT10ON OF Tb.IS PAZE'17ion Date Enfered)2

From both-types of analysis, lover time bouiads result fc.. maiiy com-
binations of SII4D systems and computational problems, for example,
fl(log N) for on-line quadtree-net systems and the computation of

* Voronoi diagrams for N planar points, Q(N) for off-line diagonal-
net systems and the two-dimensional discrete Fourier transform, and
QT(v%) for off- or on-line Illiac-net systems and sorting of N items.

UNCLASSIFIED __

S[:UaIT Y C.. &S5r,:-A! 3v TV iS PA3L'%'s,. DO. -*



0. Introduction

A general approach to characterizing the inherent complexity

of computational problems is given by the quantitative analysis

of the extent of the data flow that has to be performed during

the solution of these problems. On the other hand, any parallel

processing system possesses a restricted ability for fast data

transfer determined essentially by the interconnection pattern of

the processing elements. In the present paper, these general

observations, as previously mentioned by GENTLEMAN (1978), SIEGEL

(1979), ABELSON (1980), or KLETTE (1980), will be transformed in-

to precise definitions of local, global and total data transfer

within SIMD systems, and the corresponding definitions of local,

global and total data dependencies for computational problems as

well. The basic relation between these corresponding notions -

the computational time must at least be sufficient for realizing

the necessary extent of data transfer - will be represented in a

so-called data transfer lemma that outlines the starting point of

our formalized method of obtaining lower time bounds by data flow

analysis. This approach will be illustrated by application to a

variety of different parallel processing architectures where the

unifying feature will be that we shall use SIMD models that employ

an interconnection network and use no shared memory. Our parallel

processing systems will be abstract models of computation where

the level of abstraction may be compared with that of a random

access machine (RAM); cp. AHO et al. [2] for this model of serial

computation. For computational problems such as those mentioned
-1-d
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in the present paper the author was inspired by the digital

image processing area, where reference is made to ROSENFELD et al.

[9] and KLETTE [5]. But, of course, this does not represent

a serious restriction; e.g., matrix multiplication or pattern

matching are computational problems of general importance.

The general SIMD model as used in this paper is character-

ized by a finite or infinite set of processing elements (PEs),

an interconnection network, and a central processing unit (CPU).

For a rough scheme of an SIMD system which the reader may have

in mind throughout this paper, see Fig. 1.

CPU. The CPU has a (central) random access memory which

consists of a finite or infinite sequence of registers r0 ,rl,r 2,

... with a distinguished accumulator r0 . Let Dp U be the depth

of this random access memory, i.e., the number of CPU registers,

. for lD cP. . Furthermoce, let WCpU be the word length of these

* registers (number of bit positions), which is assumed to be con-

stant for all CPU registers, for IfWc . The CPU spreads a

single instruction stream to the synchronized working PEs. The

programs of the system are stored in a, potentially size-unlimited,

special program memory of the CPU. Part of any instruction ad-

dressed to the PEs is an enable/disable mask to select a subset

of the PEs that are to perform the given instruction; the remaining

PEs will be idle. The CPU may read the accumulator contents of

any one PE of a specified subset of all PEs, and is able to transfer

its accumulator contents to some of the PE accumulators. Any data

transfer between CPU and PEs is restricted to serial mode.

i.
r_. . . . . . . . . . . . . .[ . . . . . . . . . . . . .
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PEs. Each PE has some (local) random access memory which

consists of a finite or infinite sequence of registers r0 ,rI,

r2 ,... with a distinguished register r0 called the accumulator.

* Let DPE be the depth of these random access memories, i.e.,

this depth is assumed to be constant for all PEs of a given

system, for l5DPE f- . Furthermore, let WPE be the unique word

length of the PE registers, for 15WPE f: . Each PE is capable

of performing some basic operations which take place in its

accumulator. Direct data access is restricted to its own regis-

ters, to the accumulators of the directly connected PEs in the

sense of the given interconnection network, and, possibly, to

the accumulator of the CPU. The PEs are indexed by integers

or tuples of integers. Each PE knows its index. Let NpE,

0<NpE- , be the number of PEs of a given system, and ind=
PE

l be the set of all PE indices of a given SIMD
PE

system.

Interconnection network. Each PE is located in a node of

a given undirected graph representing the two-way interconnec-

tion scheme. Any PE may uniquely identify the different edges

connected to its node by using a given coding scheme. Let NIN

be the branching degree of the network, i.e., the maximum degree

of the nodes of the given graph, for ONIN< W.b I
For the selection of a specialized SIMD model the following

system features may be concretely specified:

o off-line or On-line communication with the outside world,

. special values for NpE ,NINDCPU,DpEWcpU or WPE,

* the set ind,



* the interconnection network structure including the

edge coding scheme,

. the CPU instruction set including the available set of

enable/disable masks as well as the nethod of the data ex-

change between CPU and PEs, and

* the restrictions on the system in communication with

the outside world, i.e., input and output management.

Note that as regards the technical realization of an SIMD com-

puting facility, in principle, one implementation may offer

different ways to run such a system, i.e., the working princi-

ples of several SIMD models as considered in the present paper

may be unified within one implementation. Essentially, this

is the problem of constructing a flexible interconnection net-

work with reconfigurability, and/or of running a system using

different modes.

The outline of this paper .is as follows. In the first

section we shall present some standardized system description

features for specifications of SIMD models. In Section 2 we

shall describe how the data flow of an SIMD system may be mea-

sured by functions in a quantitative way. Then, in Section 3

the corresponding notions of data dependencies will be explained

for computational problems. In Section 4 the data transfer lemma

will be given as well as some applications of this lemma to dif-

ferent models of computation for lower time bound determination.

Our concluding remarks are given at the end of the paper.



The standard SIMD models as described in Section 1 consti-

tute the framework of a parallel simulation system (PARSIS)

presently under implementation; cp. LEGENDI[7] for a similar

project for simulation of cellular processors.

-4
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1. OFF-NETs and ON-NETs

In our experience in parallel program design the exclusion

of given technical restrictions, e.g., on NpE, NIN, etc., in

the first steps of problem solutions, enables us to find important

methods of parallelization of solution processes as well as gen-

eral features for system description. Of course, for concrete

implementation quite a lot of time must be spent in taking given

restrictions for NpE, NIN, etc. into consideration. The present

paper is concerned with the first phase, the theoretical prepara-

tion for the second phase, which is the concrete implementation.

In this sense, we shall deal with abstract SIMD models throughout

this paper. More detailed discussion will be the subject of forth-

coming papers, depending on the progress of the PARSIS project.

The common one-accumulator computer, e.g., the random access

machine (RAM) in the sense of AHO et al. [2], may be considered

as the simplest example of an abstract SIMD system - NPE=0 and

DC=Wc= . We shall use the RAM as the underlying model forCPU CPU

serial data processing where, in distinction to [2], infinite

precision, real number arithmetic is assumed, which is conveni-

ent for our theoretical considerations of computational problems

such as the Fourier transform, or for operations on infinite sets

of points in the real plane, by avoiding discussions of round-off

errors. In this sense, our standardized system description fea-

tures start with the declaration of abstract registers.

Abstract registers. For an STMD system with abstract regis-

ters we assume that any _ 'ste may store one real number at a

time, without any special encoding tricks. For our theoretical



considerations in this paper, it is not important to specify

how the reals are stored in these abstract registers by spe-

cial bit representations.

Standard register enumeration. We assume a unique

enumeration of all registers as follows. For registers rm of

- the PE with index j or (j,k), called PE(j) or PE(j,k) in the

- sequel, we use the integer tuples (j,m) or (j,k,m), respec-

tively, and for register rm of the CPU just the integer m.

Uniform network structure. Either NIN=O, or N IN="pl and

. the network structure is characterized by p different functions

f0,fl,'...,f pl on the set ind of all PE indices in the follow-

ing way. For j,kEind, PE(j) and PE(k) are directly connected

iff there exists an i, Ofinp-l, such that fi (j)=k. Because of

our assumption that all connections are two-way it follows that

(^j,k~ind) [(viE{0,1,... ,p-l )f fi (j) =k= (vh 10,i, .... ,p-l})

fh(k)=j].

In [10] the functions f0 ,f1 ,...,fp1 were called interconnection

functions. With the exception of a fixed set of PEs at the net-

• work border, we also claim that all PEs are directly connected to

exactly p different PEs. When fi (j)=k, PE(k) is called the ith

neighbor of PE(j). In this way, the edge coding scheme for uni-

form networks is defined. For each PE, the neighborhood consists

of all (i.e., at most p) neighbor PEs. Examples of infinite net-

". works as well as finite networks matching our uniformity demand

" are given in Table 1. In the sequel we shall use these networks

as defined here.

....'" . z . '......-. ....... .-...-.-...... ." * -. * - .. . ...



Some remarks are necessary regarding Table 1. The left-

right 2i (LR2I) network and the left-right-up-down 2i network

(LRUD2I) network were used for vector machines in PRATT et al.

(8] and KLETTE et al. [6], respectively, without the restriction

*. by an integer m as stated in Table 1. Note that we have restricted our-

selves to interconnection networks with finite branching degree. The

special form of the set ind in the Quadtree network is determined

by our standard PE address masking scheme as defined later on.

The finite uniform networks mentioned in Table 1 were studied by

SIEGEL [101 - the perfect shuffle (PS), the ILLIAC, the Cube,

the plus-minus 2 (PM2I), and the wrap-around plus-minus 2i

(WPM2I) network, with the modification that the PS network is

an undirected graph to match our uniform network convention,

i.e., for the PS network the inverse shuffle function was

added in comparison to [10]. For jEind={0,l,...,2M-l} let

am_, ... ala 0 denote the binary representation of j and ai de-

note the complement of ai . Then

exch(a 1 " ala =am ... a o

shuf(am_1  a 1aa0  a m-2 - 1 ;10 am-1 8

-1
shuf (am_1 ... aa 0) = a 0 a a

[' icub i (m 1  1i 0aa_ 0 0 
=- -2a

cube. (a ... a.aia_ 1 ... a a ai+laiai_ ... a0 ,

WPM+i(am-1 . i - a0) -bm 1 ... i ... b ,

-. where bi l...bob I...bi+ibi=(ai. ..aa ...ai )+ 1 d1-1 m- i~l1 11 0 n-l i+l i

7114 WPM-i(a m-l''' ai''a 0 )=  b m-1'''bi'''.b0'f

where b ... bbm bib (a aa a a)-

mod 2m , for O-<i<m and ml.

Standard PE masking scheme. As standard masks we shall use

the simple bit patterns for PE indices as used, for example, in

[10]. In the case of integer indices, a standard PE address mask

. ..



is given by an arbitrary, non-empty word on the alphabet {0,l,x}

enclosed by brackets, where x represents the "don't care" situa-

tion. The only PEs that will be active are those whose address

(i.e., index) matches the mask from right to left, where the

indices are given in binary representation; 0 matches 0, 1

*" matches 1, and either 0 or 1 matches x. For example, by mask

[x] all PE's are activated. For the representation of concrete

standard masks within programs, etc. we take liberties such as

[all PE'S] instead of [x], or [odd PE's] instead of [lx] if the

rightmost bit position is assumed to be the sign position. In

the case of integer tuple indices, the standard PE address masks

are arbitrary tuples of non-empty words on {0,l,x} enclosed by

brackets. Note that for infinite networks as given in Table 1

any given PE address mask activates an infinite manifold of PE's.

For example, the mask [Oxx] applied to the bintree network will

activate the processing elements PE(2) and PE(3) on layer 1 of

the bintree, disables layer 2, enables the first four PE's of

layer 3, and so on, where the common binary representation of

non-negative integers is assumed for the PE indices of the bin-

tree network.

Abstract CPU instruction set. For any one of our theore-

tical SIMD systems, we shall assume that its CPU instruction

set may be obtained by special interpretation and selection of

the instructions of an abstract CPU instruction reservoir de-

fined as follows. There are two different types of instructions,

parallel instructions for activating some of the PEs, and serial

instructions where the CPU itself is addressed for certain



activity. Any parallel instruction consists of a PE address

mask, an operation code (READ, WRITE, LOAD, STORE, OP, or

OP 9+1,!l), and an operation address a where we shall use

the standard register ennumeration for explaining the mean-

ing of these operation addresses. For the serial instruc-

tions, we assume branching instructions JUMP b, JGTZ b, JZERO

b, JLTZ b (where b symbolizes an instruction number in a CPU

program and the contents of the CPU accumulator are tested),

the HALT instruction, and instructions consisting of an opera-

tion code (READ, WRITE, LOAD, STORE, OP 1 , or OP2). See Table
2

2 for the complete abstract CPU instruction set without jump

and stop instructions. In the case of a parallel instruction,

OP1 denotes a unary operation determining the new accumulator

contents of all activated PEs by a certain transformation of the

contents of the register addressed by a as well as the old accu-

mulator contents of the activated PEs; and OPt+ 1 denotes an (P+i)-

ary operation in the same sense. For the activated PE(j) the

operation address m indicates the contents of register (j,m),*m

indicates the contents of register (j,n) if the nonnegative inte-

ger n is the contents of register (j,m) at that moment (i.e., in-

direct operand addressing, in any situation of incorrect program-

ming; e.g., in the case that (j,m) does not have a nonnegative

integer contents at that moment, an interrupt of the programmed

system is assumed), and the operand : i, i2,..., i for tl indi-

cates the contents of the accumulators of those neighbors of

the activated PEs that are encoded by ili, 2 ,...,i, according to

1 2



the edge coding scheme of the interconnection network. LOAD

and STORE have the obvious meanings that the accumulator con-

tents of the activated PEs are replaced by the addressed

value, or copied to the addressed registers, respectively.

READ and WRITE denote the necessary operations for communica-

tion with the outside world where the source and the destina-

tion of the data in the "outside world" remain unspecified

(certain places within a computing environment not belonging

to the given SIMD system itself). In the case of a serial

instruction, the unary operation OP1 and the binary operation

OP 2 produce new CPU accumulator contents by a certain transfor-

mation of the addressed values, where in the case of OP2 the old

CPU accumulator contents is used as the operand in the first

position. READ, WRITE, LOAD, and STORE have the obvious fixed

meanings. The operands =x,m,*m, and (j) indicate the data unit

x itself, the contents of CPU register m, the contents of CPU

register n if register m contains the nonnegative number n at

that moment, and the contents of register (j,O), respectively.

Note that with this abstract CPU instruction set data transfer

between the CPU and the PEs is possible via the accumulators

in serial mode only. Furthermore, for a specialized SIMD model,

it is convenient to identify the basic computational power of

the PEs and the CPU with that of the RAM as represented by the

RAM instruction set (2, Fig. 15], roughly speaking. In this

way, an interesting point is provided by the description of how

the PEs are able to perform local logical decisions in SIMD

mode as we shall explain in Example I by equation (1) for a spe-

cial SIMD model.



Off-line I/O convention. For the off-line communication of

an SIMD system with the outside world we assume that a special

set of input registers of the system is fixed such that all other

registers of the system contain value zero at the beginning of

any computation (moment t=O) as it is assumed for those input

*- registers not actually needed for the placement of input data.

S..Each of the input registers may contain at most one data unit

of the input data. Thus, for concrete problem solutions, it

* is necessary to specify

* what data structure is assumed for the given input data,

and

* how the data are placed in the given input register set.

Also, a set of output registers of the system must be fixed. In

this sense, for concrete problem solutions it has to be clear

. what is the desired data structure for the output data, and

- how this data structure has to be stored, or computed in

the predetermined output register set.

As off-line I/O convention we declare that for a certain L,

l5 LfDcpU , the CPU registers 0,1,...,L-1 are fixed to be input

and output registers, and for any PE(j), if there exists a certain

m:O such that register (j,m) is fixed to be an input register

(output register) then register (j,O) is an input register (output

register) as well. What is true for the register holds for the

accumulator, too.

on-line I/O convention. For the on-line communication of

an SIMD system with the outside world some registers are predeter-

mined to act as input and/or output registers. As on-line I/O



convention we adopt the same rules as in the off-line case.

But, at the beginning of any on-line computation (moment t=0),

all registers of the system are assumed to hold value zero.

Input data or output data may enter or leave the system at a

moment as specified by the CPU program according to READ or

WRITE instructions. In any correct program these input (out-

put) instructions have to be addressed to a proper subset of all

registers specified as input (output) registers. For the in-

put(output) data it is assumed that there exists a memory facili-

ty in the outside world from where (to where) the input (output)

data are obtained (given) by the system. Thus, for concrete

problem solutions it is necessary to specify

o what data structures are assumed for the input and out-

put data, and

* how these data are partitioned into waves of information

such that one wave may enter (leave) the system per input

(output) operation as performed according to the CPU program.

The size of these waves of information, i.e., the number of data

units forming those waves, may alter during a computation process,

and just one data unit, for example by LOAD = x, will be considered

to be the simplest case of a wave of information.

Uniform cost criterion. For measuring the time complexity

of computations, we assume that any (basic) instruction of the

SIMD system needs one unit of time for performance on this system.

Definition 1. A model of computation SYS is called a standard

off-line network system (SYS E OFF-NET) iff SYS is defined by

J:!
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* a CPU and a fixed set of indexed IEs, with concrete

values for DCpU and DpE,

: abstract registers if not otherwise specif(ed, and the

standard register enumeration,

e a uniform interconnection network with ONIN.

- the standard PE masking scheme,

e a special interpretation and selection (.f instructions

of the abstract CPU instruction set where

(OFF.l) no READ and WRITE instructions are cox:tained in

the instruction set of SYS,

(OFF.2) for the CPU all RAM instructions [2, Fig. 1.51

except READ and WRITE are avilable,

" (OFF.3) for NIN=p-'l at least one instruction of the type

[all PE's] OPp+1  0.......,p-1 is available, and

(OFF.4) for any output register (j,O), i.e., accumulator

of PE(j), at least one instruction of the type

OP2 (j)is available, i.e., the CPU may have con-

trol of any outputting PE,

" the off-line I/O convention, and

" the uniform cost criterion.

For the defined class OFF-NET we may define subclasses -

" e.g., OFF-NET to be the set of all SYSEOFF-NET having the

branching degre p=NIN, OFF-SQUARE to be the set of all SYS(

OFF-NET having a square network as defined in Table 1, OFF-

BINTREE with the same reference to Table 1, OFF-PS= t! OFF-PSm,
m=l

or just OFF-RAM.

* . . . . . .

. * .



Example 1. Let us consider thE: followinj special SIMD

system EXAMI4P OFF-SQUARE. Let D D ='.Additionally

CPU PE

to the CPU registers 0,1,.. .,L-1 for a certain Lil, all the,

accumulators (j,k,0), O-4 jM and 0-k N for some > ,N-1, are

fixed as input and output registers of EXAMPL. The system

possesses the following instruction set:

[inask] ADD) cx,ct formi, *in, :i 1 .,.fori 1 .,,

[mask] OP a, for in, *m, :i for i, 0,1,2,3- 1,2,

[mask] LOAD (x,(x for in, tin, :i for iE{0,l,2,31,

[mask] STORE cL,c for in, *niiforii

LOAD a~ for =x, in, *mn, (j,k),

STORE x,, for mn, *in, (j,k),

OP, cx,a for -x, in, *in, (j,k),

JUMP b, JCT,'Z b, JZERO b, JLTZ b, and HALTr.

Here, [inask] represents an arbitrary PE addr- sF mask, OP1I is

ABS (absolute value) or SIGN (signum function), OP 2is ADD,

SUB, MULT, or D)IV, for the tuples tj,k) with 0-j* M and 0-k. N.

To give a short illustration of the com~uting power of

EXAMPI let us consider the computation o.T the parallel Foberl-

gradient (cp. 19] for its importance to dic,,itil image proces-

sing), where the input image A = (ask of siz3 M N is assumed

to be stored in the PE input registers (a in register (j,k,jk

0)) at the beginning of the computation. At the end of the .'*(m-

putation, value max{:ajk-aj+lk+l-. a j+lka'k+,.' has to h(

present in register (j,k,0).



By performing the following sequence of parallel instructions,

1. (all PEs] STORE 1 7. [all PEs] STORE 3

2. [all PEs] LOAD :2 8. [all PEsI LOAD 1

3. [all PEs] STORE 2 9. [all PEs] LOAD :1

4. [all PEs] LOAD :1 10. [all PEs] SUB 2

5. [all PEsJ SUB 1 11. [all PEs] ABS 0

6. [all PEs] ABS 0 12. [all PEs] STORE 4

all registers (j,k,3) contain value jajk-aj+lk+l, and all

registers (j,k,4) contain value Iaj+l,k-ajk+ll' for 0-j<M

and 0£k<N. These values may be considered as two MxN mat-

rices B and C. For max(BC)=(max{bjkcjk}) we have

max(B,C)=B x sign(B-C) + Cx sign(C-B) + B - Bx signB-CI, (1)

where x means the parallel MULT operation (cross product of two

matrices), and sign the parallel SIGN operation. Using this

formula, the parallel Roberts gradient may be computed on the

. defined special OFF-SQUARE system within time 29 or less, inde-

pendent of the values of M and N, as the reader may check easily.

Note that formula (1) describes a way in which the PEs are able

to perform local logical decisions in SIMD mode.

Example 2. By some easily described modifications, the sys-

tem EXAMPI may be altered dramatically. Replace the square net-

work by LRUD2Im , for m<max{log 2M, log2N), let WPE=l, and replace

the parallel operations ADD, OP1 and OP2 by logical operations

AND, NOT, and OR, respectively. What results is a special OFF-

LRUD2Im system EXAMP2 which essentially coincides with the PBS

(paralleles Bin~rbildverarbeitungssystem). The computational

power of the PBS was extensively studied in [4].



Definition 2. A model of computation SYS is called a

standard on-line network system (SYSEON-NET) iff SYS is defined

by

. a CPU and a fixed set of indexed PES, with concrete

values for D pU and DPEI

* abstract registers if not otherwise specified, and the

standard register enumeration,

* a uniform interconnection network with 0 N

. the standard PE masking scheme,

* a special interpretation and selection of instructions

of the abstract CPU instruction set where, for NIN 2,

an integer tuple (p,q) may be denoted to be the charac-

teristic of SYS in the following sense:

(ON.l) P=NIN and lq<p,

(ON.2) a proper subset {ilfi2,..., q I of all directions

{0,l,...,p-l} is specified,

(ON.3) at least one instruction of the type

[all PE's] OPq+l : ii 2 ,...q

is available,

(ON.4) for any of the instructions [mask] LOAD : j or

Ima;k] O~k(+l) : lJ 2 ,." jk, k>l, it follows

that j,jlJ 2I.kE{-{il2,..iq},

(ON.5) for any of the instructions [mask] STORE :jlJ2

..'.k' kil, it follows that jlj 2 '...,jkE{0,1,

i}, i.e., the results of con-

secutive parallel operations may be shifted through

the system in directions

only, and, furthermore
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(ON.6) for the CPU all RAM instructions are avilable

including READ and WRITE,

(ON.7) for any output register (j,O), at least one

instruction of the type OP2 (j) is available,

* the on-line I/O convention, and

- the uniform cost criterion.

For the defined class ON-NET we may define subclasses -

e.g., ON-NET p,q to be the set of all ON-NET systems withepg.

characteristic (p,q), ON-LR2Im to be the set of all SYSEON-

i
NET having a left-right 2 network as defined in Table 1, ON-

ILLIACm with the same reference to Table 1, ON-PM2I= U ON-

PM2Im or just ON-RAM. m=l

Any infinite network class OFF-LINEAR or ON-DIAGONAL may

be considered as an abstraction of a finite network system,

or as the union of classes of finite network systems in the fol-

lowing way.

Definition 3. Let OFF-IN be the set of all OFF-NET systems

which are defined by a special infinite network IN, e.g., IN=

m
LINEAR or IN=LRUD2I m . A model of computation SYS is called a

finite OFF-IN system (SYSEFIN-OFF-IN) iff there exists a system

SYS0EOFF-IN such that SYS may be obtained as a restriction of

SYS0 in the fol].owing sense:
0

Let ind and D be the PE index set and the PE memory depth

for SYS0, respectively. A finite cut-off of the PE register set

of SYS0 is defined by a certain finite subset ind of ind0 and a
00

(possibly infinite) memory depth D PE-D p. The work of SYS may

be described as follows. All registers in a certain finite cut-

off of SYS0 are available in SYS but all registers not in this



finite cut-off will be considered to be dummy registers, i.e.,

they are assumed to store value zero if addressed as an oper-

and, and to "forget" any value handed over to them; this is the

only difference between SYS0 and SYS.

Analogously the set FIN-ON-IN may be defined.

Example 3. An example of a FIN-ON-BINTREE system may be

specified as follows. Let DCPU= - and DPE --m 2 . The finite

m_cut-off of the bintree network is given by ind={l,2,...,2 -1}.

Additionally to the CPU accumulator which acts as an input

and output register (L=1), the registers (2 m-,0), (2m- +1,0),

in- M-1...,(2m-1,0), i.e., the accumulators of the 2 leaf node

PEs, are fixed as input registers, and register (1,0), i.e.,

the accumulator of the top node PE, is fixed as an output

register. The system possesses the following instruction set:

[mask] ADD a, a for m, * m, 1, : 2, : 1,2,

[mask] OPct , a for m, * m, 1, 2 and Z=1,2,

' . [mask] LOAD a , a for m, *m, : 1, 2,

[mask] STORE a , a for m, * m, 0,

[subset leaf nodes] READ 0,

- * [top node] WRITE 0,

LOAD a , a for =x, m, *m, (1),

STORE a , a for m, *m, (1),

OP a , for =x, m, *m, (1), and 9=1,2,

READ 0,

WRITE a , a for =x,0,

JUMP b, JGTZ b, JZERO b, JLTZ b, HALT.



* .[ Here, [mask] represents an arbitrary PE address, OP1 either

ABS or SIGN, OP2 one of the operation codes ADD, SUB, MULT, or

DIV. Altogether, a FIN-ON-BINTREE system EXAMP3 is defined

-..- which may be obtained by a restriction of an infinite ON-BINTREE

model where infinite sets of input and output PE registers are

available in the infinite origin.

To give a short illustration of the computational power of

the system EXAMP3 let us consider the computation of the arith-i - ' ' "  I N-I N 2 _
1 N-l

* * metical average j E a.,N=2 and n odd, for M consecutive
i=0

waves of information (aOal,...,aNl) where ai is fed to the
nN-1

accumulator of the PE2 n-l+i), for i=0,l,...,N-l. In order of

the M consecutive waves of information the arithmetical average

have to leave the system via register (1,0).

For initialization of the system, at first the instruction

LOAD=N, STORE (1), [top node] STORE 1 will be performed in this

order. For M>(n-l)/2 the following sequence of instructions is

executed (n-l)/2 times:

[leaf nodes] READ 0,

[all PEs] ADD : 1,2,

[leaf nodes] LOAD 1,

[all PEs] ADD : 1,2,

followed by the following sequence of instructions which is exe-

cuted M-[(n-l)/2] times:

[top node] DIV 1,

[top node] WRITE 0,

(leaf nodes] READ 0,

[all PEs] ADD : 1,2,

r -l n k' i l , i : '" , ... . . - ... • , • "' .. . - _ . . . . .- . . .. _. . . .
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[leaf nodes] LOAD 1,

[all PEs] ADD : 1,2.

' Finally, the following sequence of instructions is executed

(n-3)/2 times:

[top node] DIV 1,

[top node] WRITE 0,

[all PEs] ADD : 1,2,

[all PEs] ADD : 1,2,

followed by the last two instructions [top node] DIV 1 and

[top node] WRITE 0. Thus, altogether, the arithmetic averages

of Ma> (n-l)/2 consecutive waves of information (aOal,...,aN-1)

-" may be computed within 6M+n basic operations of EXAMP 3, in-

stead of O(N-M) basic operations in the serial case using a RAM

as model for computation.

In conclusion, we point out that SIND now denotes not a

general concept (single-instruction, multiple data) but an exactly

defined class of models for computation, namely the union of all

system classes given by Definitions 1, 2, and 3.

. .*



2. Local, global, and total data flow measures

Let SYSESIMD; throughout this paper such a special parallel

processing system will be used as a standard system for con-

siderations of data transfer restrictions in computing systems.

Any computational process performed on such a model SYS may

be uniquely specified by a CPU program n and a concrete input

situation I characterized by the placement of input values in-

to the set of input registers if off-line mode is used, or by

the partition of the input data into consecutive waves of infor-

mation fed to some of the input registers of the system from the

outside world if on-line mode is used.

As suggested by applications to visual perception, the set

of input registers of the model SYS may be considered as the

retina of the system, and any new wave of information to this

set of input registers represents a snapshot of the outside

world. In this sense, after t steps of a computational process

characterized by a program v and an input situation I, for any

register r of the system we may mark out a certain receptive

field rec (r,t) containing all the names of those input registers

which have had any influence on the contents of register r up

to the moment t, where new waves of information to the retina of

the system create new names of the input registers, formally

represented by r (0 ) ,r ( ) ,r (2 ) ,...,r(i) ,... for register r.

Standard register names. At time t=O of any computational

process, each register r in our standard enumeration possesses

(0)
the name r (0 . At t=0 let the wave number WN=O also. At time

t+l assume that a serial or parallel READ instruction, or an



instruction LOAD=x, OP1 =x, or OP 2 =x has to be performed. Then,

by this operation we obtain WN-WN+l and the new names r for

all registers which were addressed by these instructions. For

(WN)
example, the number (j,c(j,m)) in the case of an instruction

[mask] READ * m for all activated processing elements PE(j),

where c(j,m) denotes the actual contents of register (j,m), or

the name 0 (WN) in the case of an instruiction OP2=x.i2
Definition 4. Let SYSESIMD. btandard register names are

assumed. For a program u of SYS, an input situation I of SYS,

a register r of SYS, and an arbitrary moment t O, the receptive

I
" field recr (r,t) is recursively defined as follows:

moment t=0:

r" r(0) if input register r stores an
input value according to I, for

off-line mode,

rec (r,O) =

empty set, otherwise

moment t+l,tO:

At moment t+l a certain instruction has to be applied according

to n and I, or the HALT instruction is assumed for this moment.

(i) Depending on this instruction, if it is one of those listed

in Table 3, the changes of receptive fields are defined as given

in this Table where we omit the indices n and I for simplification

of the expressions. In the case of parallel instructions, the

mentioned changes are valid for all activated PEs PE(j) where

j matches [mask].

(ii) For the parallel or serial LOAD instructions the changes

of receptive fields are the same as for the corresponding OP1

instructions.
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(iii) In the case of a WRITE, JUMP, or HALT instruction no

changes of receptive fields appear.

* (iv) In the case of a JGTZ, JZERO, or JLTZ instruction no

" changes of receptive fields appear in step t+l, but the

* set rec(O,t) will be added at moment t'>t+2 to any receptive

field that alters at moment t' according to (i) or (ii), if

at moment t' an instruction has to be performed covered by

cases (i) and (ii). For example, the instruction [mask] OP2

m, at moment t'>t+2, will produce the changes rec((j,O),t')=

rec((j,0),t'-l)Urec((j,m), t'-l)Urec(O,t) for all activated

-= PEs.

For illustration of this definition, consider the special

OFF-SQUARE system as defined in Example 1. Let I be any con-

crete input situation for computing the parallel Roberts gra-

dient and let u be the sequence of the 12 parallel instructions
' (0)

as given there. At moment t=O we have rec((j,k,O),O)={(j,k,O) },

for 0_<j<M and O<k<N, and for any ofher register r of the system

EXAMP 1, rec(r,O) is the empty set. After performing the 12 in-

.Istructions of n the reception fields of maximal cardinality 2

* belong to the registers (j,k,O), (j,k,3) and (j,k,4), for 0_jf

M-2 and Ok_<N-2, where, e.g., rec((j,k,0),12)={(j+l,k,0)(0)

(j,k+l,0) () For the system defined in Example 3, and the

. program and the input situation as described there, after per-

* forming the 6M+n instructions the receptive field of maximal

- cardinality NM+l belongs to the register (1,0), i.e., to the ac-

cumulator of the top node PE.

I



Definition 5. Let SYSESIMD. For a set R of registers of

SYS and a moment t O define the local data transfer function

ASYS by

X SY S (Rt) = max max max card(rec I (r,t)),
7T I rER

the global data transfer function ySYS by

SS ( R t ) = max max card( U rec (r,t)),
SS I rER

the total data transfer function uSYS by

5 YS(Rit) max max Z card(rec (r,t)).
Tr I rER

By this definition, it follows immediately that the func-

tions XSy S , ySS and TSyS are monotonically increasing for any

set R of registers of SYS and increasing values of t. Further-

more,

X SYS (R,t) E ySYS(Rt) !S TSYS (Rt) (2)

for all models SYSESIMD, sets R of registers and moments t o.

Also note that for any model SYS, if within t steps of an ar-

bitrary program n for SYS starting with an arbitrary input

situation I for SYS at most CSYS(t) input data may be fed to

the system, then
. ¥YS(Rt) < (t), and (3.1)

SYS SYS

(R,t) < (R,t) *card(R) , (3.2)

for any set R of registers of SYS and tO.

Example 4. In Section 4 we shall characterize the way

to use these data transfer functions for obtaining lower time

bounds for concrete computational problems. For serial data

processing we shall apply the system RAML, cp. [2, Fig. 1.5],



as a model for computation, where RL={0,l, 2 ,...,L-1}, L>1,

is assumed to be the set of all input/output registers of

such a machine (DcPu=*, NPEm0, WCPU=-). For t>O, we have

OFFRAML (t)=L+t and aON)RAML(t)=t. For OFF-RAM= U OFF-RAML,L=I
note that wOFFRAM (t) =max OFF- (t) is not defined.

Furthermore, we have { 1l for Of~tf-(L-l)/2j
"QFF-RAML(RL~t) (4.1)

i(L+I)/2j +t, otherwise,

XOFF-A (RL't)

YOFFRAML (RLt) = L+t, and (4.2)

9 (4.3)T OFFRAM(RL,t) = L(t-LL/2j+l) for t>- L/2J,

in the case of using the RAML in off-line mode, and

XONRAM(RLt) = YONRAML(RLIt) - t, (4.4)

R t(t+l)/2 for t-<L

ON RAML ( R L , t )  =(4.5)

L (t- (L/2) +h) for tL,

in the case of using the RAML in on-line mode. The maximal

data flow for obtaining equation (4.1) is possible by indirect

addressing OP2 *m, followed by OP2 x operations. For (4.3),

the same sequence of operations is extended by L-1 instruc-

tions STORE m. For (4.4), t operations of the type OP2=x may

be considered. For small t the exact derivation of the func-

tion tOFF _RAML represents a sophisticated problem already,

for this quite simple model of serial computation.

Example 5. For further illustration of the concrete deri-

vation of these data transfer functions, let us consider both

systems EXAMPi and EXAMP3 as defined above.



For the system EXAMPI, first we see that wEXAMP (t)=

MN+L+t, for t>O. Let RM, N be the set {(j,k,0): 0!_j<M and

0_:k<N} of all PE input/output registers of the system. By

using t operations of the type

[all PE's] ADD :0,1,2,3

we obtain the maximal local and total data transfer within the

field of PE accumulators, where

XEXAMP(RMN,t)=2t2+2t+l, (5.1)
3

2 t+l 2 2(t+l) )(+) 52
(2t 2+2t+l)MN - (--- (t+l) + ) (M+N) - (5.2)

EXAMP1 ( RM,N' t) _ (2t-+2t+l) MN,

for 2t+lf-min{M,N}, by elementary combinatorial considerations

and (3.2). For t>t =M/2J LN/2J we have~0

MN+(t-t 0 ) lX EXAMPl(RM,N't) _<MN+L+t. (5.3)

For t>t 0=M+N-2 we can easily see that

M2N + (t-t0 ) f- tEXAM(RMN't) f- MN(MN+L+t). (5.4)

Finally, for the case of global data transfer we obtain

MN for t=O

YEXAMP1(RM,N t) = MN + 2t + 1 for 2t+l<_L and t>0 (5.5)

MN + [(L-l)/2J+t for 2t+l>L

where, for 2t+l-L, the maximal global data transfer is possible

by t operations of the type ADD *mt and one operation STORE(j,k),

e.g.

For the system EXAMP3, at first we have w EXAMP3(t)=t-N, for

n-l
N=2 and t>_0 by using t operations of the type

[leaf nodes] READ 0.

Let Ro={O,(i,0)} be the set of the two distinguished output re-

gisters of this system EXAMP3. By using the instruction pair
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[leaf nodes] READ 0,

[all PEs] ADD :1,2

repeated (m-i) times, ml; the single instruction

[leaf nodes] READ 0

again;and finally (n-i) instructions

[all PEs] ADD :1,2,

we obtain the maximal local data transfer for register (1,0)

in any case t !m. We have

0 for t=0

XEXAMP3(RO,t) = 2t-  for lft~n-i (6.1)

m'N for t=n+2m-t,m>l

and 9=1 or t=2,

for all tt0. Analogously, for the same set R0 and t 0

0 for t=0,

YEXAMP3(ROt) = 2t-1 for ltEn-l,

m-N for t=n+2m-2, m>l,

m.N+l for t=n+2m-l, m~l,

0 for t=0,

tEXAMP3(Rot) 2 t-  for lst~n+l,

2m-N for t=n+2m-l, m-l,

2m.N+l for t=n+2m, ml.

Of course, the values ofX EXAMP3' YEXAMP3' and rEXAMP3 depend on

the choice of the set R0, and may be quite different for some

other sets of registers.

Definition 6. Let CLASScSIMD. The general data transfer

functions are defined as follows, for such a set CLASS of models

of computation, for t,n0:

r.
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ACLASS(t) denotes the maximal value of all kss(R,t),

PCLASS(n,t) denotes the maximal value of all YsYS(R,t)

with card (R)=n, and

TCLASS(nt) denotes the maximal value of all TSs (R,t)

with card (R)=n, where SYS is an arbitrary element of

CLASS, and R denotes a set of registers of SYS.

Interesting examples of CLASS are sets like OFF-NETp, cN-NETpq,

OFF-SQUARE, OFF-BINTREE, or ON-HEXAGONAL, where these general

data transfer functions are fully defined.

Theorem 1. For standard off-line network systems and

2'p<- we have

2t+l for p=2

AOFF-NETp (t) =

( p-) tl)+l for p?3,P( p- 2

and

r OFF-NET p(n,t) = TOFF-NET p(n,t) = n- AOFF-NET p(t),

for n,t O.

Proof. First, let us consider the local situation. For

p=2, the maximal transfer of data units is possible by indirect

addressing to the CPU accumulator, e.g. For pf3, there exist

special OFF-NETp models SYSt such that, according to (OFF.3),

at any moment 1 s!t the maximal possible number of p(p-l)s-1

new names of input registers may enter the receptive field of

a certain register r, for t O. Thus,

.. .... .. . .



s~i t-1) -
X SY({r},t) = 1 + Z p(p-l)s = p((Pl )+lXSYSt s p-

t s=0

For the total and global situation note that by choosing

sufficiently complex SYSn, for n,t:O, the maximal local

situations of data transfer characterized by receptive fields

of cardinality AOFF NETp(t) at moment t may appear in n dif-
p

ferent registers at time t such that these registers are far

enough from one another so that their receptive fields are

pairwise disjoint. o

Example 6. By (4.1) and Theorem 1, it follows that

AOFFRAM (t)=AOFF NET(t)=2t+l, for tO. Of course, this
2coincidence is not true in the total and global cases. Accord-

ing to Theorem 1 we have rOFF-NET 2(n,t)=TOFFNET2 (n,t)=n(2t+l),

for n,t 0, but by elementary considerations rOFF-RAM(n,t)=2 t+n,

for n~l and tO, and TOFFRAM(n,t)=2n(t-n+2 )-2 , for t~n 2.

In Table 4 the general local data transfer functions are

collected for some classes of off-line systems as defined in

Section 1. For these classes, the functions AOFFNET as given

in Theorem 1 act as upper bounds, where the proper value of p

has to be specified. The classes OFF-LINEAR, OFF-PS, OFF-

BINTREE and OFF-QUADTREE represent examples for the maximal

transfer situations as characterized by Theorem 1, for p=2,3,5,

respectively.

Some remarks about Table 4 and about the other networks

which were defined in Table 1.



1. For the bintree, triangle and quadtree network note

that the maximal receptive fields may be obtained for central

nodes of these tree structures only, and not at the top node.

The maximal possible cardinalities of receptive fields of top

node accumulators are given for illustration of this fact.

-. 2. For all examples of CLASS given in Table 4, we have

r rOFF-CLASS(n,t)=TOFF-CLASS(n,t)=n.AOFF-CLASS(t), for n,t>O.

3. The hexagonal, square, triagonal, and diagonal networks

are special examples of infinite graphs of constant degree p

such that the general local data transfer function is equal to

t 2 + t + 1. Such networks correspond to usual digital met-
2 2

* rics for the orthogonal grid in a natural way, e.g., the metrics

* d4 or d8 as used in digital image processing, cp. [9], to the

square or diagonal network, respectively.

4. For the networks CUBEm , PM2I m , WPM2Im, LR2Im , or LRJD2Im ,

*. the derivation of the three general data transfer functions repre-

sents a very sophisticated problem. Of course, the values of

these functions depend on the value of m, and the consideration

of classes like

CUBE = U CUBE m

m 2

would lead to undefined general data transfer functions. In [4]

the general local data transfer functions were analyzed for some

concrete SIMD systems similar to FIN-OFF-LR2Im or FIN-OFF-LRUD2Im

systems like EXAMP2 which was defined above. But, for the present

paper, we recommend data transfer analysis for specialized (finite)

SIMD systems to the interested reader, and are satisfied with some

hints:

. - * . . .



CUBEm  For this system, the exact derivation of the local

transfer function should be a solvable task. We have

t
.. " = Z (m) for t<m

AOFFCUBEm(t) 2 m  for t=m

2 (t-m) for t>m.

' For example, we have AOFF-CUBE 256 (4) = 177,589,057 and AOFF-CUBE 256( 8)

is about 4-1014.

PM2Im For this, as for the other "power-of-two systems,"

* the analysis of data flow represents quite a hard problem, cp.

[4]. But, to give the reader some feeling about the complexity

of the data transfer functions for these systems, some values

will be collected:

= 1 for t=O

= 2 for t=l

AOFFPM2Im(t) = 2(m-1) (m-2)+4 for t=2

" 2m for t = [m/2]

S2 m+ l (t-[m/21) for t> fm/21.

, Note that exponential increase changes to linear increase at

*" t=rm/21.

WPM21 m: It may be that this is the most complicated situa-

tion of any network; we have



=1for t=O

=2 for t=l1

AOFF-WM2Im (t)

2 m for t=rm/21

m+1S2 (t-rm/21) for t~rm/21.

This great difficulty in analyzing data paths should be a hint

to the limited practical importance of this network.

LR21Im :For brevity we shall use the function a(i)=

*.2=. 11,) I 12+ 1(i13.

j (il- (~l -il).We found the following

interesting values:

1 for t=O

2m+1 for t=l

2(m-2) 2+4m+l for t=2

2
l+6m+4(m-2) +2oa(m-4) for t=3

l+8m+6 (m-2) 2 +4 c(m-4) +

m-6 for t=4
A OFF-LR2Im (t) =+4- T M~i

2
l+l0m+8(m-2) +6*a(m-4)+

m-6
+8 Z a-) for t=5

m-8 i
+8 Z Y,~i

i=l j=l

2M. *t-cm for t--(m-l)/21
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The contents cm depend on the value of m only, for example

c2 =-i, c3=l, c4 =7, c5 =25, c6=71, c7 =185, c8 =455, c9=1081, and

c 10=2503. Because the LR2Im is an infinite network r OFFLR2Im

(n,t)=TOFFLR2Im(n,t)=n-AOFFLR2 Im(t), for n,t>0.

_LRUD21: Of course, we have

AOFFLRUD2Im(t) 2  AOFFLR2Im(t)-l, for t0, and, because

LRUD2Im is an infinite network we have FOFFLRUD2Im(n,t)=TFJD2?

(n,t)=n- AOFFLRUD2I m(t), for n,t 0.

Theorem 2. For standard on-line network systems and 2Ip<-,

1<qfp-i,

0 for t=O,

AON-NETp(t) = 2t-1 for ttl and q=l,
p,q (qt-l)/(q-1) for til and qL2,

and rFON-NETp, q (nlt)=TON-NETpq (.n,t)=n- AON=NET (t), for n,t 0.and (~t)=oNN~p~p,q

Proof. Consider the local data transfer situation first. At

t=l assume that a sufficiently large set of input registers ob-

tain input data in parallel by a READ instruction. Then (q-l)/

* (q-l)=2t-l=l for q!2, or t=l. For q=l, the maximal local trans-

fer situation, i.e., the maximal transfer of data units to a given

registeris pcssible by indirect addressing. Thus, AON-NET (t)=
p'l

2t-1 for t~l. For q>2, according to (ON.3) it follows that

t-i
A NET (t) = Z q=(q -l)/(q-l),p,q i=0

where these maximal cardinalities of receptive fields may be ob-

tained in certain PE accumulators. For given n, t 0, by choosing

a sufficiently large field of PEs obtaining input data in their

accumulators at the first instruction (i=l), n receptive fields

of maximal cardinality AONNETp,q (t) may be pairwise disjoint. o
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Example 7. By (4.4) we know that A (t)=FR (n,t)=t,

ON-RAM ON-RAM

for t-0 and n>l, and thus AON-RAM(t)<AON-NET (t) as well as
p,1

TONRAM (n,t)<roNNET (n,t) for t>2 and n>l. Furthermore,
p,l

n"1
TON RAM(n,t)=n(t-2 +f), for t~n-l, and thus TONRAM (n, t)TONNET

p,l
(n,t) for t>n>2.

In Table 5 for classes of on-line systems mentioned in

Section 1 some results on the analysis of general local data trans-

fer functions are collected. For these classes the functions

given in Theorem 2 act as upper bounds where the proper values of

p and q have to be correlated. By ON-IN we denote a
2""q

special ON-IN system with fixed set {ili 2 ... ,i q } according to

(ON.2). The classes ON-LINEAR{0 }, ON-BINTREEI 2 }" and ON-

QUADTREE'I 2 3 4 " represent examples for maximal transfer situa-

tions as characterized by Theorem 2.

Some remarks about Table 5 and about the other networks

which were defined in Table 1:

1. For all examples of CLASS in Table 5 we have FON-CLASS (n,t)=

TON CLASS(n,t)=n- AONCLASS(t), for n,t O.

2. The class ON-PS{0 ,1} denotes special SIMD systems using

the PS network in its original [10] meaning. Let f0=l, f1 =l, f2=2,

fn+2=f n +fn+l"' where

f fn = [(I+V5) n+l_ (I-V)n+l]/V5- n+l

denotes the nth Fibonacci number, n 0. We have AONPS (t)=
tol}

t
Z fn=fn+2-2  for t 0; cp. [3] for a similar result.

n=1

3. For the bintree, triangle, and quadtree network note that

the maximal receptive fields may be obtained for the top node

accumulator, for {il,i2,....,q} equal to {l,2}, {1,2,3,4},

{1,2,3,4}, respectively.



4. The analysis of the general data transfer functions for

classes ON-CUBEm , ON-PM2Im ON-WPM2Im, ON-LR2Im , and ON-LRUD2Im

will not be considered in the present paper.



3. Local, global, and total data dependence measures

For parallel processing systems, the optimal time for the

solution of a computational problem depends upon the data

transfer abilities of the given system as well as on the prin-

cipal possibilities of parallelization of a solution process

for a given problem. The first may be characterized by the data

transfer functions A S T by a general system analysisSYSSYSSYS
* as considered in Section 2. The second property, however, re-

quires individual consideration of the given computational prob-

lem.

For example, consider the multiplication of two NxN real

2
matrices A-B=C. For a given system SYS assume that all N ele-

ments of matrix C have to be computed in N2 different output

* registers represented by the set ROUT. Let rEROUT, ROROUT,

and R1 be the set of N distinctive registers for outputing the

N diagonal elements of C. Then it follows that XS(r,t*)?2N,

YsYS(RlIt*) 2N2 and v SYS(R 0 ,t*)£2N.card(R0 ) if the product A.B

is to be computed on SYS within time t*. Thus, if the functions

ASYS, rSy S or TSy S are known, lower time bounds are derivable from

*these inequalities for the solution time t* immediately, where

'* the maximal lower time bound from the three possible values is

taken as the result. For example, according to our considerations

in Section 2 for the system EXAMPI we have t*>VN-il under the as-

sumption that M=2N. But note that a better lower time bound for

this system and the matrix multiplication problem may be obtained

by more specialized considerations as demonstrated by GENTLEMAN

(3, Theorem 1]. Because each data unit transfer from a certain



register rI to a certain register r2 of the system EXAMPI may

be performed in the reverse direction, from r2 to rI, in the

same time, the proof of Theorem 1 in (3] matches the situation

*[ given by the system EXAMPI, i.e., for rERouT we have XEXAMPI

* (r,2t*)N 2 , and thus t*>_(2N
2 _1) 1/2 1

-44

For a general approach to the derivation of lower time bounds

for parallel processing systems we shall use the quantitative

*j description of data dependencies of the desired output data in

relation to the input data specification, for computational

*i problems which may be identified with special functions as de-

scribed later on.

Definition 7. Let n,ml. Let f be an n-ary function defined

on a certain set domain(f) of n-tuples of real numbers, and into

the set of m-tuples of real numbers. For an n-tuple (xl,x 2 ,...,

x n )Edomain(f), define

subi(X. ,X2,...,Xn)={j : l_<jsn & (Vx' (Xl,X2 ,  ,Xj-1,X'

xj+1 ,...,xn)Edomain(f) & proJi (f(xl'x2, .. . x n ) )

-: proji(f(xl,x2,... x I  Xj+l,-..Xn))

to be the set of all positions j such that changes in the jth

component of (XlIX2 ,...IXn) have an effect on the projection

projif, for l_!i_<m. Then, define

Xf = max max card(subi(xl x2 ,...,xn)),(xlX 2 , . . . ,x n )  1l-<i-m

m
Yf = max card( U sub (xlX ... )), and

X , 2 , .... ,xn )
m

~f = max z card(subi (X,2...
(xlix2 P,...xn) i=

*.. * *.



The function f is called locally d-dependent iff d--Xf, globally

d-dependent iff d-yf, and totally d-dependent iff d--Tf, for an

integer dTO.

By this definition, for arbitrary functions f defined on

n-tuples of real numbers and into the set of m-tuples of real

numbers, it follows immediately that Xf=Yf=f if m=l, and for

m~l

nf Y f, (7.1)

yf fn, and (7.2)

r <m;x (7.3)
f f*

For example, in the case of the following function f,S x l + x 2  if x5=0

f(xl,x 2 ,x3 ,x4 ,x5 ) =

" 3 + x4  if x5 0,

we have sub1 (xl1x2 ,x3 ,x4 ,0)={l,2,5} if x1 +x 2 #x 3 +x 4, and sub1 (xI ,

x2 ,x3 ,x4 ,
0 )={l,2} if xl+x2=X3+X4 . Because of .f=yf= f=3, this

function is local, global, or total 1-, 2-, and 3-dependent, but

* not 4- or 5-dependent.

Now, in a sequence of examples, the data dependence measures

as given by Definition 7 will be analyzed for certain computational

problems. The results are collected in Table 6, i.e., the follow-

ing examples may be considered as explanatory remarks to this

table.

Example 8. The multiplication of two NxN real matrices may

be considered as a 2N -ary function into the set of N -tuples of

, real numbers. For this computational problem, it is evident that
. =2N,

XMATRIX-MULTIPLICATION '
2"- = 2N2 and

"MATRIX-MULTIPLICATION a

T MATRIX-MULTIPLICATION = 2N3 '



where these maximal values of data dependence are true for each

input vector of length 2N containing non-zero values in all

positions. By this example it follows that the upper bounds

. (7.2) and (7.3) cannot be reduced in general. The inversion

of an NxN real matrix in place may be considered as an N -ary

function into the set of N -tuples of real numbers. We have

MATRIX-INVERSION-IP = YMATRIX-INVERSION-IP N  and

. MATRIX-INVERSION-IP = N4I

where this maximal case of data dependence appears for any

matrix containing non-zero values in all N2 positions. These

data depence quantities may be considered as a direct conse-

quence of the data dependence quantities for the determinant

of an NxN real matrix,

XDETERMINANT = YDETERMINANT TDETERMINANT N

The solution of a system of N linear equations in N unknowns

may be considered as an (N 2+N)-ary function into the set of

N-tuples of real numbers. We obtain

LINEAR-EQUATIONS =LINEAR-EQUATIONS +N, and
3 2TLINEAR-EQUATIONS = N +N

Transposing an NxN real matrix in place may be considered as

an N2-ary function into the set of N -tuples of real numbers,

*TRANSPOSITIONIP 
= 1, and

2
T TRANSPOSITION-IP TRANSPOSITION-IP N

but for binary operations on permutated NxN real matrices in

place, (aij) i,j=0,,...,Nl_(oP2(a i  (j) )ij=Ol,...,N-l'

. . .



considered as N2 -ary functions into the set of N2-tuples of real

numbers,

..-TRIX- ,-IP = 2 for v id,

".! = N2
YMATRIX- u-IP , and

tMATRIX- n = 2N 2-card{(i,j):OSi,j!N-i & n(i,j)=(i,j)},

the transposition may be considered as a special permutation n*,

MATRIX - 2N 2-N, and op2 as the exchange operation in
this case, oP2(aij,a *(i,j)) = (a *(i,j),aij) , where the second

component of these resulting tuples will be considered as a dummy

result.

Example 9. In this example, three two-dimensional transforms

of NxN pictures will be dealt with. First, the Fourier transform

of an NxN complex matrix (2D-DFT, two-dimensional discrete

2Fourier transform, cp. [9]) may be considered as a 2N -ary func-

tion into the set of 2N2-tuples of real numbers. In this case,

we have

2N 2-4<X_ -2N2-,
2N ~ D-DFT-

'2D-DFT = 2N2, and

2N ~ 2 and<W 2
2N4:52D-DFT-4N42N

2

where these maximal values of data dependence are true for each

input vector of length 2N2 containing non-zero values in all posi-

tions. For the exact determination of X2DDFT and c2D-DFT' the

influence of different values of N has to be studied. The Walsh

transform of an NxN real matrix (2D-WT, two dimensional Walsh

transform, cp. [9]) may be considered as an N -ary function into

the set of N-tuples of real numbers,



,-N2X2 = N and
2D WT Y2D WT a

4
t 2D WT N

where these maximal values of data dependence are true for any

* - input vector of length N2. The computation of the parallel

Roberts gradient (see Example 1) on images of size MxN may

be considered as an MN-ary function into the set of MN-tuples

of real numbers. For this function,

XROBERTS GRADIENT =

TROBERTSGRADIENT = MN, and

tROBERTS-GRADIENT = 4MN-2M-2N-2,

by considering the case of non-zero values in all MN positions,

and by paying attention to border effects.

Example 10. The computation of the convex hull of a simple

polygon, cp. [5], where the N extreme points of the polygon are

given by coordinate tuples of real numbers starting with the

uppermost-leftmost point, may be considered as a 2N-ary function

into the set of 2N-tuples of real numbers. In the resulting

vector of length 2N, there appear all coordinate tuples of the

extreme points of the convex hull of the given polygon in order,

starting with the uppermost-leftmost point, and with the same run

orientation as the given polygon. Positions actually not needed

in this resulting 2N-tuple contain value zero by assumption. In

this case, it follows that

CH SIPOL = TCH SIPOL = 2N, and

2N 2 8N+ 2 5T CH SIPO
L <4N 2

SIPO



by analyzing the input situation of special convex polygons

with N extreme points as illustrated in Fig. 2, for N4. The

computation of the convex hull of N planar points, cp. [5],

given by coordinate tuples of real numbers, may be considered

as a 2N-ary function into the set of 2N-tuples of real numbers

as described above, analogously to the simple polygon situation.

- For this problem,

XCH POINT = YCH POINT = 2N, and

'-. = 4N 2

"CHPOINT

where these maximal values are true for any input situation.

The computation of the Voronoi diagram of N planar points,

cp. [5], given by coordinate tuples of real numbers, may be

considered as a 2N-ary function into the set of (18N-33)-tuples

of real numbers in the following sense. The Voronoi diagram

may have 2N-5 vertices at most, and, as a special planar graph,

3N-6 edges at most, for N 3. See Fig. 3 for an illustration of

the construction of such a "maximal Voronoi diagram," where

the number v(N) of vertices, and the number e(N) of edges sat-

isfy the recursive equations

v(3) = 1, e(3) = 3,

v(N+l) v(N)+2, and e(N+l) = e(N)+3

for N_3. The 18N-33=3(2N-5)+4(3N-6) positions of the resulting

vector of a Voronoi diagram computation we consider as a unique

characterization of a Voronoi diagram by linearization of adja-

cency lists for this special graph structure with the positions

for each vertex where two are reserved for the coordinate values

and one for a common pointer, and two times two positions for

,° ..
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each edge - for the index of the vertex at the other end of

the edge, or for the slope of the edge, and for a common

pointer. For concrete inputs of N points, positions actually

not needed in the resulting (18N-33)-tuple contain value zero

by assumption. Then, we have

XVORONOIDIAGRAM= TVORONOI-DIAGRAM - 2N, and

12N-3 TVORONOIDIAGRAM 2N(l8N-33 ),

for N>-3, where the local and global case may be analyzed by

using a regular N-gon, and for the total case a Voronoi dia-

gram in the sense of Fig. 3, with 2N-5 points, was used where

each point of the diagram essentially depends on three input

points, i.e., on six coordinate values.

Example 11. Matching of a pattern of length M against a

string of length N (M:N and the elements of pattern and string

are assumed to be reals) may be considered as a (N+M)-ary func-

tion into the set of (N-M+l)-tuples on {0,l} where, for

f PAT E N M T H N (Pl P2 ' . OPm; s ,s ,.. Sm )=(el,e 2 eN  1)

3 we have ei=l iff si+j=pj+l , for all j=0,l,...,M-l, and ei=0

otherwise, for i=1,2,...,N-M+l. We have

"PATTERN-MATCHING = 24,

PATTERN MATCHING = M+N, and
TPATTERNMATCHINGTPATTERN MATCHING = 2M(N-M+l).

In all three cases, the maximal dependence may be analyzed for

the trivial input situation Pi=sj=const, for i=l,2,...,M and j=

1,2,...,N. Detection of a pattern of length M within a string

of length N,M5N, may be considered as a (N+M)-ary function into



the set {0,1} where the output is equal to max{e i :i=1,2,...,

N-M+l & fPATTERN MATCHING(PI'P2 '''''pM ; sl'S 2 ''...sN)=(el'e 2
'

...,eNM+l)} for input (plP2,. ' , M sl's2 '...'SN)" Then,

max{2M,M+ tN/Mi }-PATTERN SIGNALIZATIONM+N.

Note that this represents the first example of a computational

problem where the equality Yf=n remains an open problem, for

an n-ary function f with n=N+M in the case of pattern detection.

As a last example, sorting of N real numbers may be considered

as an N-ary function into the set of N-tuples of real numbers.

2.' For this very important problem, we have

XSORTING = TSORTING = N, and

2
tSORTING N

where these maximal values are true for N pairwise different

input values.



!71

4. Data transfer lemma and applications

Between the quantitative descriptions of data transfer for

SIMD systems (Section 2) and of data dependence for computa-

tional problems(Section 3), the following direct relation

holds.

Lemma 1. (Data Transfer Lemma). Let SYSESIMD, and let v

be an arbitrary program for SYS for the computation of a func-

tion f which is n-ary and has m-tuple values. Let R denote

the set of output registers of SYS where the m-tuples appear

at the end of the computation (card (R)=m, off-line mode),

or those output registers of SYS via which the computed values

of the m-tuples leave SYS in certain waves of information (card

(R)_<m, on-line mode). Then, the computation of f(xl,x2,...,Xn)

on SYS by u requires at least t0 steps of computation for a given

input (x ,x 2 , ... ,x 0 ) Edomain(f), where ASy S (t 0 )>xf, FSy s (card

(R),t 0 ) - ¥ f , and TSYS (card(R),t 0 ) -Vf.

Proof. Let us consider the local off-line or on-line situ-

ation. Assume that Xf=card(subi (Xl,X 2 ,..Xn)), for a given in-

put vector (xl,X 2 ,...Ixn) , and for a given position i, lim.

Let subi(XlX 2 ,...,Xn)={j 1 ,J 2 ,...,3xf}. For any position i

k=l,2,. **,Xf, either the name of an input register receiving

value x at a given moment will be transfered to the receptive

field rec 'x2''''xn) (r,t * ) by some operational instruc-

tions only, if value proji(f(xlx 2,...,Xn)) appears in register

r(i)ER at time t*<t 0 of computation, or during the t* steps of

computation of proji(f(xl,x2 ,...,xn)) at least one test instruc-

tion JGTZ, JZERO, or JLTZ must be performed where the contents of

. . . . .!



the CPU accumulator depends on the input value x. at the3Jk
moment of testing. In the second case, if the test instruc-

tion is followed by certain operational instructions directed

to register r i) the name of the input register receiving

value x. at a given moment will be transferred to the recep-Ik

tive field rec (x l 'x 2 '''' 'xn ) (r(i ),t* ), tco; cp. (iv) in Defi-

nition 4. Without loss of generality, assume that jlJ 2 ,...,jv,

V:f- f, denote all the positions which have produced register
names in the receptive field rec(xlIx2I..,xn) I)

rv=If, then lfcard(rec (xl 'x 2 " 'Xn) (r() t*))x (t) follows

immediately. For v<Xf, let tl~t2 ... ,Itw be all the moments

* where test instructions have to be performed according to T

"7• and input (xlX 2 , ...,Xn) such that the contents of the CPU ac-

cumulator depend on one of the input values x. ,...,x

.v+l f
at least, at the moments of testing. Consider the following

program v' computing something unspecified, produced by v and

(XX 2 ,...,xn) in the following way:

- all test instructions at moments tilt 2 ,...,t w will be

deleted in v, and

- all other instructions of ff will be performed according

to ff and input (x), in the same order, where

all instructions LOAD a or OP1 a, for a equal to =x,m,*m,

or (j), will be replaced by OP2 a, for the same value of

a, if such instructions appear in ff.

Thus, the receptive field of register 0, i.e., the CPU accumu-

lator, will increase monotonically according to n' and (xlX 2,

..'X After t*-w operations according to r'' rec(O,t*-w)

.e



contains all input register names for the input data xj ,...,, v+l1

xj . This receptive field will be combined with rec (x
l x 2 '  "Xn)

M Mf
r t*-w)>rec(Xl'X2''" 'X n ) (r (i l t*) at moment t*-w+lnt* by

adding an instruction OP2 a (see conditions (OFF.2) and (ON.6))

or OP 2 (j) (see conditions (OFF.4) and (ON.7)) to 1'. Thus, Xf

* card(recxl'X2' "" "Xn) (0,t*-w+l))5Ay (t*-w+l)-A5y (t o ). Note

that the off-line or on-line I/O convention is necessary to en-

sure that a non-accumulator PE register r (i) may be replaced by

the accumulator of the same PE which is an output register, too.

*For this replacement, parallel STORE instructions may be replaced

* by parallel OP1 instructions using the same masks for PE addresses.

What we have explained is one of the possible ways to ensure

the necessary data transfer within time limit to, for the local

off-line or on-line situation. The essential point in the program

transformation from f to v' may be characterized by the word

"linearization," because all test instructions could be deleted,

in fact. This linearization approach may be used for the local,

- global and total situation in the following way.

For the given program v and an input situation I, all the

* performed instructions will be written as a linear sequence S0 .

-'* We obtain sequence S1 by deletion of all instructions JLTZ,JZERO,

" JGTZ, JUMP, WRITE, and HALT in sequence S . Now, for the special

case of an on-line program, if in sequence S0 there were some

* STORE instructions in front of a WRITE instruction directed to

* certain output registers r(R, then these STORE instructions will

- be shifted to the end of sequence SI . In the resulting sequence



S2 , all serial or parallel OP, a or LOAD a instructions will

21

be replaced by an OP2 a instruction formally, in the same

position for the same value of a. For the resulting sequence

S3 we have monotonically increasing receptive fields for all

accumulators, for the CPU and PEs. Also, by the described

step from S1 to $2' for sequence S3 the receptive fields of

output registers will be monotonically increasing for conse-

cutive output waves of information. Now, if in the original

sequence S there was no test instruction, our program lin-

earization is finished. In the other case, in S3 we shall

place an instruction JZERO, e.g., in that position where the

last test instruction was located in sequence So . Now consider

an arbitrary output register rER. If there is an operational

instruction behind the JZERO instruction directed to r then

register r will obtain the receptive field of the CPU accumu-

lator containing all the register names corresponding to tested

input values, cp. (iv) in Definition 4. If there is no opera-

tional instruction behind the JZERO instruction directed to r

then we shift the last instruction directed to r in front of

the JZERO instruction to a position behind this instruction.

By consideration of all registers rER, our program linearization

is finished. Note that the length of the resulting linear in-

struction sequence is restricted by the length of the original

sequence S

Now assume that Xf=card(subi(xlX 2 ,...,X)) for a certain i,
m m

li:n, yf=card( U subi(yly 2 ,...,yn)) and Tf= Z card(subi (Zi ,i=l i=lizl

z2 ,...,Zn) , for certain input vectors (XliX 2 ,...,Xn), (yly 2 ,.,

yn ) , (Zl1,Z2 ,...,Zn). These input vectors characterize input



situations Ix  ,Iy I for SYS. By linearization of ,r according

to these input situations we obtain linear programs lx, y# z,

respectively, all of length fto. Thus, we have

X (Xl,X2..,xn)Trx (R,t 0) _f

. .• (Yl,Y2, • Yn)  >y (R,t0) f'

(zl,Z2 '...,Zn)
ITz (R't0)

which proves our statements. 0

Corollary 1. Let LASScSIMD. For any system SYSECLASS,

the computation of a function f which is into the set of m-

tuples of real numbers requires at least t0 steps of computa-

tion in the worst case, where ACLASS(t0)-Af, FCLASS(m't0)>_ f,

and TCLASS (m, t) -rf.

Proof. Immediately by Lemma 1 where the generalization

about all programs computing the function f is used as well

as about all systems of CLASS. For the on-line case note that

there may already be a certain m0 -m such that r (m0 t0 ) _

.f, and TCLASS(mo,to)_> f. o

Example 12. Let CLASS={EXAMPl} and consider the computa-

tion of the parallel Roberts gradient as described in Example

1. In this case we get tne trivial lower time bound 1 only;

an upper bound was 29. Now, let CLASS={EXAMP3} and consider the

computation of the arithmetical averages of M consecutive waves

of information of length N=2 as described in Example 3. Here,
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- -by Corollary 1 we obtain the lower time bound n+2M-2=max{n-l,

n+2M-2, n+M-l}, cp. equation (6.1), (6.2), (6.3), for values

Xf=N,f=N-M and Tf=N-M. An upper bound was 6M+n.

Using common asymptotic notations, for both examples the

optimal times 0(1) and O(M+n) are known as a result.

Theorem 3. For any system SYSEOFF-NETp, p 2, the computa-

tion of a function f which is into the set of m-tuples of real

numbers requires at least t0 steps of computation in the worst

case, where

t0 ->max{ (dl-l)/2, (d2-m)/2m, (d3-m)/2m}

for p=2, and for p_>3

logp_1 (d2 (p-2)+2) -log p 1m-1.586,

if f is locally d1-dependent, globally d2 -dependent, and totally

d3-dependent.

Proof. Immediately by Theorem 1, Definition 7 and Corollary

1 where the relation log p>l.586, pi-3, was used. 0

In Table 7 are collected, for the classes of off-line systems

defined in Section 1, the lower time bounds that may be obtained

by using Corollary 1. Because the classes OFF-LINEAR, OFF-PS,

OFF-BINTREE and OFF-QUADTREE represent examples for the maximal

transfer situation as characterized by Theorem 1, for these

- classes the lower time bounds are as given by Theorem 3. If a

function f into the set of m-tuples is globally or totally d'-

dependent, then the value d has to be replaced by d'/m in the



lower time bounds given in Table 7, to obtain the corresponding

values for the global or total situation.

Theorem 4. For any system SYSEON-NETpq, 2-p<-, l:q<p, the

" computation of a function f which is into the set of m-tuples of

real numbers requires at least t0 steps of computation in the worst

. case, where

t0:x{(dl+l)/2, (d2+m)/2m, (d3+m)/2m}

for q=l, and for q!2

t 0max{log (dl(q-l)+l), logq(d2(q-l)/m + 1),

logq (d 3 (q-l)An+ 1},

if f is locally d1-dependent, globally d2-dependent, and totally

d3-dependent.

Proof. Immediately by Theorem 2, Definition 7 and Corollary

1. 0

In Table 8 arecollected, for the classes of on-line systems

defined in Section 1, the lower time bounds that may be obtained

by using Corollary 1. Because the classes ON-LINEAR{01 , ON-

BINTREE 1 ,2}' and ON-QUADTREE 1 ,2 ,3 ,4} represent examples for

maximal transfer situations as characterized by Theorem 2, for

these classes the lower time bounds are as stated by Theorem 4.

As in the case of Table 7, if a function f into the set of m-tuples

is globally or totally d'-dependent, then the value d has to be re-

placed by d'/m in the lower time bounds given in Table 8, for ob-

taining the corresponding values for the global or total situation.

Note that value m may be replaced by a value m0!m for special ON-

NET systems.



5. Conclusions

In this paper we have given a general framework for the

description of parallel processing systems, and explained

how data flow may be used for analyzing lower time bounds in

general. Note that this approach may be applied to supercompu-

ters as well as to on-chip realizations. Problems connected

with the technical features of architecture elements were by-

passed by the selected level of abstract system description.

*Thus, in the discussion of parallel algorithms for a given

model SYSESIMD we may have in mind quite different technical

implementations, but we may discuss parallel algorithms for

all of them at once using the abstract model SYSESIMD. For

example, an important problem is given by the necessary deci-

sion between different structures of parallel processing systems

to ensure efficient algorithmic solutions for classes of com-

putational problems such as mentioned in Example 8 (matrix-type

computations), 9 (two-dimensional transforms), 10 (geometric

problems), or 11 (combinatorial problems). According to our

considerations in [4] the selection of parallel algorithms cru-

cially depends on the given parallel processing system and

• * comparisons between different SIMD systems on the basis of know-

-... ledge about optimal algorithms represents quite a hard task.

Also, there are nearly as many different models for parallel

processing as papers on this topic, making comparative studies

of different parallel structures nearly impossible. In the

present paper an attempt was made to propose a classification

i .. * .



- of special parallel processing systems which have been of wide-

spread interest in the past. The proof of the practicability

of the proposed exact definition of SIND systems will be the

* subject of forthcoming papers; the first programs of the PARSIS

project fit well into this framework.

By using Tables 6,7, and 8 the interested reader may ob-

tain lower time bounds for different combinations of SIMD

systems and computational problems, e.g., the lower time bound

10lo2 (N 2+1) for the two-dimensional Walsh transform on ON-

TRIANGLE systems. The characterization of data dependencies

for computational problems as given by Definition 7 may be

* refined, e.g., by consideration of changes of function values

* not only by changing arguments in one position but in several

positions.
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Figure 1. Scheme of an 5114D system.



Figure 2. Convex polygon for analyzing the
maximal possible data dependence
situation, for N?4.
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Instruction Possible operation addresses a

- [mask] READ a M; *

[mask] WRITE a Mn;

[mask] LOAD a M; 1M

[mask] STORE a Mn; :M "2 .

[mask] OP 1 a in; *pJ;

[mask] OP2 a in;M

[mask] OP 1+1 : 1 i..,i

READ a Mn;

WRITE a =x; in;

*LOAD a =X; Mn; *in; Mj

*STORE a Mn; *m; (j)

OP 1 a =X; Mn; *yM. (j)

OP 2 a =x; M; ; (j)

Table 2. Abstract CPU instruction set without test and
-, stop instructions.



Instructions Changes of receptive fields

[mask) OP 1 m rec((J,O),t+l) - recC(j,m),t)

(mask) OP1 'in rec((J,O),t+l) - rec(CI,inbt)U

rec((J,c(j,n)) ,t)

(mask] OP :i rec((J,O),t+l) =rec(Cf M(j),t)

[mask) OP 2 Is rec((J,O),t+l) a rec((J,O),t)U

rec (Cj,m) , t)

[muask] OP 2 'in rec((J,O),t+l) - rec(CJ,O),t)U

rec C Ci,m) ,t) Urec C(I ,c~j ,i)) ,t)

(mask) OP,+1 :i1 ,i2,..,i8 rec((J,O),t+l) - rec((J,O),t)Urec((f. (j),
O),t)urecC(f C2j1),t)U ... U

rec(Cf. Mj),),t)

(mask] STORE mn rec((J,m),t~l) - rec((J,O),t)

[mask] STORE 'in recC(J,cj,n),t+l) =recC(JO),t)U

recC(O(j ) , t)

(mask] STORE i1 0i 2 ....,i rec(Cf i C M,O),t+l) -recCMj.),t),

12

rec(J,O),t),...,recC(f1 (j),O),t+1)

rec((j,o) ,t)

[mask] READ is rec~j,m),t+l) - {CJm)(N

(mask] READ *m recC(j,c~j,m),t+l) - rec((J,m),t)U

((J,c(J,n)) (WN

OP1 -X recCO,t+l) -= N

OP1 m recCO,t+l) =rec(m,t)

OP1 'a recCO~t+1) - rec~m~t)Urec~c(m),t)

OP1 Mj rec(O,t+l) - rec((J,O),t)

%OP 2 a X recCO,t+l) -recCO,t)U{OCNWN)}

OP 2 m rec(O,t+l.) - rsc(O,t)Urec~m,t)

0P2 '*u recCO,t+l) - recCO,t)Urec(m,t)U

rec c m) ,t)

OP2 Mj recCO,t+l) -rec(O,t)Urec(CJ,O),t)

STR2 e~~+)-rcOt

STORE a rec(cm,t+l) -rec(O,t)Urcmt

STORE Ci) rec~C~j,),tel) - rec(O,t)Urcmt

HEUD a reaCmn,t+l) - Ca (WN)I

READ 'a rec~c(m),t+l) -rec~m,t)U(c~m) (

Table 3. Changes of receptive fields in step t-l.



CLASS p A OFF-CLASS(t) t=4 t=8

LINEAR 2 t19 17

HEXAGONAL 3 323 t~ 31 109

*SQUARE or 2
ILIC4 2t +3t+1 41 145

2
TRIAGONAL 6 3t +3t+1 61 215

DIAGONAL 8 4t 2 +4t+1 81 289

PS 3 3*2 t2 46 766

BINTREE 3 3-2t-2 46 766

top node 2 t~ll 31 511

TRIANGLE 5 3-2 t+l +t 2_ 2t-.5  99 1,579

top node 2t+1 31 511

QUADTREE 5 (5-4t-2)/3  426 109,226

top node (4t+1 1)/3  341 87,381

Table 4. General local data transfer functions for off-
line systems.



CLASS p {ili2,.. ,Iq} AONCLAS (t) t=4 t=8

LINEAR 2 t01 2t-1 7 15

HEXAGONAL 3 {0,1} t(t+l)/2 10 36

{01 2t-1 7 15

SQUARE or

ILLIAC 4 10,1,21 t2  16 64

{O,2} t(t+l)/2 10 36

{0,1}, {0 2t-1 7 15

5 2 5
TRIAGONAL 6 {0,1,2,3,41 2t - + 31 121

3 2 1

(0,2,3,41 lt - t 22 92

22

10,2,41 t 16 64

DIAGONAL 8 (0,1,2,3,4,6,71 7 7 43 197

2 -

BINTREE 3 {1,21 2t-1 15 255

{0,11 t(t+l)/2 10 36

!-' TRIANGLE 5 {I,2,3,41 2t-i 15 255

L QUADTREE 5 11,2,3,41 (4t-1)/3 85 21,845

P0,11 t+3- (l-) t+3
PS 3(tll (1(+v3) -1V) 1

t3
t V2 ) -2 11 87

L " -u
[ i Table 5. General local data transfer functions for on-line systems.

* .. . . . . . .



Computational problem f n m Yff f f

2 2 23
MATRIX MULTIPLICATION 2N N 2N 2N 2N3

2 2 2 2 4MATRIX INVERSION IP N N N N N

22DETERMINANT N 1 N2

2 2 2 3 2
LINEAR EQUATIONS N2+N N N2+N N2+N N3+N

TRANSPOSITION IP N2  N2 2 2

MATRIX nIP N2  N 2 N2 2N2_#{i'j):

for nr3id 1 (ij)=(ij) }

2D-DFT 2N2  2N2  >2N 2-4 2N2  >2N 4

2N2 - 4N 4-2N 2

*2 2 2 2 4
2D-WT N N N N N

ROBERTS GRADIENT MN NM 4 MN 4MN-2M-2N-2

CH SIPOL 2N 2N 2N 2N ?2N2 -8N+12
:54N 

2

VORONOI DIAGRAM 2N 18N-33 2N 2N ?12N-30
<36N 2-66N

PATTERN MATCHING N+M N-M+l 2N M+N 2M(N-M+l)

PATTERN SIGNALIZATION N+M 1 max{2M,M+LN/MJ}, nM+N

SORTING N N N N N2

Table 6. Local, global and total data dependence measures.



CLASS p lower time bound d=128 d=1282

LINEAR 2 (d-l)/2 64 8,192

HEXAGONAL 3 (8 5 1/2_1)/2 9 105

. SQUARE or 4 ((2d-1) 1/2-i)/2 8 91
ILLIAC

4 1 1/2
TRIANGONAL 6 (( - )-1)/2 7 74

- (dl/2_
DIAGONAL 8 (d _1)/2 6 64

PS 3 log 2 (d+2)-I .586 6 13

-..- BINTREE 3 log2 (d+2)-I.586 6 13

top node log 2 (d+l)-l 7 14

TRIANGLE 5 t 0 og 2 (d-t+2t0+5)2.586 5 12
top node log2 (d+l)-1 7 14

QUADTREE 5 log4 (3d+2)-i.161 4 7

top node log4 (3d+l)-l 5 7

Table 7. Lower time bounds for off-line systems in OFF-CLASS
for computing a local d-dependent function.



CLASS p {1il, q} Lower time bound d=128 d=1282

LINEAR 2 {0} (d+l)/2 65 8,193

1/2HEXAGONAL 3 {0,l} ((8d+l) -1)/2 16 181

SQUARE or ILLIAC 4 10,1,21 d1 / 2  12 128

TRIAGONAL 6 {0,1,2,3,41 (( d- ) 12 -)/2 7 81

D 3 1/26
DIAGONAL 8 {,1,2,3,4,6,7}((5 -7 ) -1/2 6 64

BINTREE 3 {1,21 log 2 (d+l) 8 15

. TRIANGLE 5 1,2,3,41 log2 (d+l) 8 15

QUADTREE 5 1,2,3,4) log 4 (3d+1) 5 8

PS 3 10,11 f t0+2>d+2 for the 11 21

Fibonacci numbers
f0,f flf2, ...

Table 8. Lower time bounds for on-line systems in
ON-CLASS for computing a local d-dependent
function.

. .. ......
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