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ABSTRACT

Starting with an exact definition of classes of SIMD (single
instruction, multiple data) systems, a general approach to obtain-
ing lower time bounds by data flow analysis is Jresented. Several
interconnection schemes, such as the square net, the perfect shuf-
fle, the infinite binary tree, etc. are analyzed with respect to
their data transfer possibilities. For some types of computational
problems the data dependencies are analyzed in a quantitative way.
From both types of analysis, lower time bounds result for many com-
binations of SIMD systems and computational problems, for example,
lﬁklog N) for on-line quadtree-net systems and the computation of
Voronoi diagrams for N planar points, £(N) for off-line diagonal-
pet systems and the two-dimensional discrete Fourier transform, and
ggxqg) for off- or on-line Illiac~net systems and sorting of N items.
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0. Introduction

A general approach to characterizing the inherent complexity
of computational problems is given by the quantitative analysis
of the extent of the data flow that has to be performed during
the solution of these problems. On the other hand, any parallel
processing system possesses a restricted ability for fast data
transfer determined essentially by the interconnection pattern of
the processing elements. In the present paper, these general
observations, as previously mentioned by GENTLEMAN (1978), SIEGEL
(1979), ABELSON (1980), or KLETTE (1980), will be transformed in-
to precise definitions of local, global and total data transfer
within SIMD systems, and the corresponding definitions of local,
global and total data dependencies for camputational problems as
well. The basic relation between these corresponding notions -
the computational time must at least be sufficient for realizing
the necessary extent of data transfer - will be represented in a
so-called data transfer lemma that outlines the starting point of
our formalized method of obtaining lower time bounds by data flow
analysis. This approach will be illustrated by application to a
variety of different parallel processing architectures where the
unifying feature will be that we shall use SIMD models that employ
an interconnection network and use no shared memory. Our parallel
processing systems will be abstract models of computation where
the level of abstraction may be compared with that of a random
access machine (RAM); cp. AHO et al. [2] for this model of serial

computation. For computational problems such as those mentioned
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in the present paper the author was inspired by the digital
m image processing area, where reference is made to ROSENFELD et al.
;? [9] and KLETTE [5]. But, of course, this does not represent

a serious restriction; e.g., matrix multiplication or pattern

matching are computational problems of general importance.

The general SIMD model as used in this paper is character-
ized by a finite or infinite set of processing elements (PEs),
an interconnection network, and a central processing unit (CPU).
For a rough scheme of an SIMD system which the reader may have
in mind throughout this paper, see Fig. 1.

CPU. The CPU has a (central) random access memory which
congists of a finite or infinite sequence of registers ryeTy oo
... with a distinguished accumulator rq. Let D,,, be the depth

C
of this random access memory, i.e., the number of CPU registers,

for ISDCPUEw.. Furthermoie, let WCPU be the word length of these

registers (number of bit positions), which is assumed to be con-

stant for all CPU registers, for lEWCPUS°° . The CPU spreads a
single instruction stream to the synchronized working PEs. The
programs of the system are stored in a, potentially size-unlimited,
special program memory of the CPU. Part of any instruction ad-
dressed to the PEs is an enable/disable mask to select a subset

of the PEs that are to perform the given instruction; the remaining
PEs will be idle. The CPU may read the accumulator contents of

any one PE of a specified subset of all PEs, and is able to transfer

its accumulator contents to some of the PE accumulators. Any data

transfer between CPU and PEs is restricted to serial mode.
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PEs. Each PE has some (local) random access memory which
consists of a finite or infinite sequence of registers EyrLys
Fyreee with a distinguished register r, called the accumulator.

Let D be the depth of these random access memories, i.e.,

PE
this depth is assumed to be constant for all PEs of a given

system, for 1=D__=<~ . Furthermore, let WPE be the unique word

PURARP IR

. PE

.

- length of the PE registers, for 1sW,.s= . Each PE is capable
?! of performing some basic operations which take place in its

accumulator. Direct data access is restricted to its own regis-
ters, to the accumulators of the directly connected PEs in the
ey

E! sense of the given interconnectcion network, and, possibly, to

the accumulator of the CPU. The PEs are indexed by integers

or tuples of integers. Each PE knows its index. Let NPE'

OENPES°° , be the number of PEs of a given system, and ind=
» {jl,jz,...,jN } be the set of all PE indices of a given SIMD
-~ PE

system.

Interconnection network. Each PE is located in a node of

3 a given undirected graph representing the two-way interconnec-
tion scheme. Any PE may uniquely identify the different edges

‘connected to its node by using a given coding scheme. Let NIN

DO be the branching degree of the network, i.e., the maximum degree

of the nodes of the given graph, for OSNIN<=

For the selection of a specialized SIMD model the following
system features may be concretely specified:
e off~line or gn-line communication with the outside world,

e gpecial values for NPE’NIN'DCPU’DPE'WCPU’ or WPE’

ﬁ e the set ind,




e the interconnection network structure including the
edge coding scheme,
e the CPU instruction set including the available set of

enable/disable masks as well as the method of the data ex-

change between CPU and PEs, and
e the restrictions on the system in communication with

the outside world, i.e., input and output management.
Note that as regards the technical realization of an SIMD com-

puting facility, in principle, one implementation may offer

different ways to run such a system, i.e., the working princi-
ples of several SIMD models as considered in the present paper
may be unified within one implementation. Essentially, this
is the problem of constructing a flexible interconnection net-
work with reconfigurability, and/or of running a system using
different modes.

The outline of this paper .is as follows. 1In the first
section we shall present some standardized system description
features for specifications of SIMD models. In Section 2 we
shall describe how the data flow ¢f an SIMD system may be mea-
sured by functions in a quantitative way. Then, in Section 3
the corresponding notions of data dependencies will be explained
for computational problems. 1In Section 4 the data transfer lemma
will be given as well as some applications of this lemma to dif-
ferent models of computation for lower time bound determination.

Our concluding remarks are given at the end of the paper.

...........................
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The standard SIMD models as described in Section 1 consti-
tute the framework of a parallel simulation system (PARSIS)
presently under implementation; cp. LEGENDI {7] for a similar

project for simulation of cellular processors.
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1. OFF-NETs and ON-NETs

In our experience in parallel program design the exclusion
of given technical restrictions, e.g., on NPE' NIN’ etc., in
the first steps of problem solutions, enables us to find important
methods of parallelization of solution processes as well as gen-
eral features for system description. O0Of course, for concrete
implementation quite a lot of time must be spent in taking given

restrictions for NPE’ N,y etc. into consideration. The present

I
paper is concerned with the first phase, the theoretical prepara-
tion for the second phase, which is the concrete implementation.
In this sense, we shall deal with abstract SIMD models throughout
this paper. More detailed discussion will be the subject of forth-
coming papers, depending on the progress of the PARSIS project.

The common one-accumulator computer, e.g., the random access
machine (RAM) in the sense of AHO et al. [2], may be considered
as the simplest example of an abstract SiMD system - NPE=O and
DCPU=WCPU=<°' We shall use the RAM as the underlying model for
serial data processing where, in distinction to [2], infinite
precision, real number arithmetic is assumed, which is conveni-
ent for our theoretical considerations of computational problems
such as the Fourier transform, or for operations on infinite sets
of points in the real plane, by avoiding discussions of round-off
errors. In this sense, our standardized system description fea-

tures start with the declaration of abstract registers.

Abstract registers. For an STMD system with abstract regis-

ters we assume that any . "ste may store one real number at a

time, without any special encoding tricks. For our theoretical

PV R T
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considerations in this paper, it is not important to specify
how the reals are stored in these abstract registers by spe-

cial bit representations.

i Yy AW
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Standard register enumeration. We assume a unique

enumeration of all registers as follows. For registers rn of
the PE with index j or (j,k), called PE(j) or PE(j,k) in the
sequel, we use the integer tuples (j,m) or (j,k,m), respec-

tively, and for register r. of the CPU just the integer m.

Uniform network structure. Either NIN=°’ or NIN=pzl and

o the network structure is characterized by p different functions
- fO’fl""’fp—l on the set ind of all PE indices in the follow-

N ing way. For j,k€ind, PE(j) and PE(k) are directly connected

7

iff there exists an i, 0<i<p-1, such that fi(j)=k. Because of

our assumption that all connections are two-way it follows that

I-J.N

(Ajrkeiﬂi_) [(ViG{O']-:---rP“l})fi(j)=kE(Vh€{op1p °"Ip-1})

< nficreyf

£, (k) =31.

In [10] the functions fo'f1'°"'fp-1 were called interconnection

functions. With the exception of a fixed set of PEs at the net-
work border, we also claim that all PEs are directly connected to
exactly p different PEs. When fi(j)=k, PE(k) is called the ith
j neighbor of PE(j). In this way, the edge coding scheme for uni-
form networks is defined. For each PE, the neighborhood consists
i of all (i.e., at most p) neighbor PEs. Examples of infinite net-
works as well as finite networks matching our uniformity demand

. are given in Table 1. 1In the sequel we shall use these networks

as defined here.




Some remarks are necessary regarding Table 1. The left-
right Zi (LR2I) network and the left-right-up-down 2i network
(LRUD2I) network were used for vector machines in PRATT et al.
(8] and KLETTE et al. [6], respectively, without the restriction
by an integer m as stated in Table 1. Note that we have restricted our-
selves to interconnection networks with finite branching degree. The
special form of the set ind in the Quadtree network is determined
by our standard PE address masking scheme as defined later on.
The finite uniform networks mentioned in Table 1 were studied by
SIEGEL [10] - the perfect shuffle (PS), the ILLIAC, the Cube,
the plus-minus 2i (PM2I), and the wrap-around plus-minus Zi
(WPM2I) network, with the modification that the PS network is
an undirected graph to match our uniform network convention,
i.e., for the PS network the inverse shuffle function was
added in comparison to [10]. For jéigg={0,l,...,2m-l} let
ap_1 +-- 333, denote the binary representation of j and Ei de-
note the complement of a;. Then

exch(a  _;, ... a3,5) = a

m=1 *°° 3130¢

shuf(am_l cee alao) = a cer 242

0%m-1"

-1
Sth (am_l o o o alao) - aoam-l oo ® azal’

m=-2

oo.a ees A,

o) = an-1 14131841 - @g¢

mel ccc Py e+e by

cube; (@p_y -+ 35473335

wPM+i(a cee By eos ao) = b

m-1 i

where b;_;...bgb ;...b, b.=(a, ;...aga ;...a;,,3;)+1 mod 2",

WPM_i(am_l...ai...ao)= by, y--+Pj--:bg,
where b, _; ... bobm_l cee bi+lbi = (ai_l R P IR a;4135)"
mod 2™, for 0si<m and mz1.

Standard PE masking scheme. As standard masks we shall use

the simple bit patterns for PE indices as used, for example, in

{10]. In the case of integer indices, a standard PE address mask

........ - Fadiia B . T e TR T e W e WL W, W
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is given by an arbitrary, non-empty word on the alphabet {0,1,x}
il enclosed by brackets, where x represents the "don't care" situa-
tion. The only PEs that will be active are those whose address

(i.e., index) matches the mask from right to left, where the

indices are given in binary representation; 0 matches 0, 1
matches 1, and either 0 or 1 matches x. For example, by mask
[x] all PE's are activated. For the representation of concrete
standard masks within programs, etc. we take liberties such as
[all PE's] instead of [x], or [odd PE's] instead of [1x] if the
rightmost bit position is assumed to be the sign position. 1In
the case of integer tuple indices, the standard PE address masks
are arbitrary tuples of non-empty words on {0,1,x} enclosed by
brackets. Note that for infinite networks as given in Table 1
any given PE address mask activates an infinite manifold of PE's.
For example, the mask [0xx] applied to the bintree network will
activate the processing elements PE(Z) and PE(3) on layer 1 of
the bintree, disables layer 2, enables the first four PE's of
layer 3, and so on, where the common binary representatior of
non-negative integers is assumed for the PE indices of the bin-
tree network.

Abstract CPU instruction set. For any one of our theore-

tical SIMD systems, we shall assume that its CPU instruction

set may be obtained by special interpretation and selection of
the instructions of an abstract CPU instruction reservoir de-
fined as follows. There are two different types of instructions,
parallel instructions for activating some of the PEs, and serial

instructions where the CPU itself is addressed for certain

L e T e . . . N s
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activity. Any parallel instruction consists of a PE address

mask, an operation code (READ, WRITE, LOAD, STORE, OP, or
OP8+1,821), and an operation address a where we shall use
the standard register ennumeration for explaining the mean-

ing of these operation addresses. For the serial instruc-

tions, we assume branching instructions JUMP b, JGTZ b, JZERO

b, JLTZ b (where b symbolizes an instruction number in a CPU
program and the contents of the CPU accumulator are tested),

the HALT instruction, and instructions consisting of an opera-
tion code (READ, WRITE, LOAD, STORE, OPl, or OPZ)’ See Table

2 for the complete abstract CPU instruction set without jump

and stop instructions. In the case of a parallel instruction,
OPl denotes a unary operation determining the new accumulator
contents of all activated PEs by a certain transformation of the
contents of the register addressed by a as well as the old accu-
mulator contents of the activated PEs; and Ope+1 denotes an (f+1)-
ary operation in the same sense. For the activated PE(j) the
operation address m indicates the contents of register (j,m),*m
indicates the contents of register (j,n) if the nonnegative inte-
ger n is the contents of register (j,m) at that moment (i.e., in-
direct operand addressing, in any situation of incorrect program-
ming; e.g., in the case that (j,m) does not have a nonnegative
integer contents at that moment, an interrupt of the programmed
system is assumed), and the operand : ijsdiyree.,i, for =1 indi-
cates the contents of the accumulators of those neighbors of

the activated PEs that are encoded by ili’z"“'ir according to

T L TR L T R W W U O S W R G it ot o B B B B e B, o
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the edge coding scheme of the interconnection network. LOAD
and STORE have the obvious meanings that the accumulator con-
tents of the activated PEs are replaced by the addressed
value, or copied to the addressed registers, respectively.
READ and WRITE denote the necessary operations for communica-
tion with the outside world where the source and the destina-
tion of the data in the "outside world" remain unspecified
(certain places within a computing environment not belonging
to the given SIMD system itself). 1In the case of a serial
instruction, the unary operation oP, and the binary operation
OP2 produce new CPU accumulator contents by a certain transfor-
mation of the addressed values, where in the case of OP2 the old
CPU accumulator contents is used as the operand in the first
position. READ, WRITE, LOAD, and STORE have the obvious fixed
meanings., The operands =x,m,*m, and (j) indicate the data unit
x itself, the contents of CPU register m, the contents of CPU
register n if register m contains th2 nonnegative number n at
that moment, and the contents of register (j,0), respectively.
Note that with this abstract CPU instruction set data transfer
between the CPU and the PEs is possible via the accumulators

in serial mode only. Furthermore, for a specialized SIMD model,
it is convenient to identify the basic computational power of

the PEs and the CPU with that of the RAM as represented by the

RAM instruction set [2, Fig. 15], roughly speaking. 1In this
»ﬁ: way, an interesting point is provided by the description of how
t! the PEs are able to perform local logical decisions in SIMD

mode as we shall explain in Example 1 by equation (1) for a spe-

LA A A ag o

cial SIMD model.
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Off-line I/0 convention. For the off-line communication of

an SIMD system with the outside world we assume that a special
set of input registers of the system is fixed such that all other
registers of the system contain value zero at the beginning of
any computation (moment t=0) as it is assumed for those input
registers not actually needed for the placement of input data.
Each of the input registers may contain at most one data unit
of the input data. Thus, for concrete problem solutions, it
is necessary to specify
¢ what data structure is assumed for the given input data,
and
e how the data are placed in the given input register set.
Also, a set of output registers of the system must be fixed. 1In
this sense, for concrete problem solutions it has to be clear
e what is the desired data structure for the output data, and
e how this data structure has to be stored, or computed in
the predetermined output register set.
As off-line I/0 convention we declare that for a certain L,

1<L=D the CPU registers 0,1,...,L-1 are fixed to be input

cpu’
and output registers, and for any PE(j), if there exists a certain
m>0 such that register (j,m) is fi*ed to be an input register
(output register) then register (j,0) is an input register (output
register) as well. What is true for the register holds for the

accumulator, too.

on-line I/0 convention. For the on-line communication of

an SIMD system with the outside world some registers are predeter-

mined to act as input and/or output registers. As on-line I/O
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Zﬂ convention we adopt the same rules as in the off-line case.

But, at the beginning of any on-line computation (moment t=0),
all registers of the system are assumed to hold value zero.
Input data or output data may enter or leave the system at a
moment as specified by the CPU program according to READ or
WRITE instructions. 1In any correct program these input (out-
put) instructions have to be addressed to a proper subset of all
registers specified as input (output) registers. For the in-

put (output) data it is assumed that there exists a memory facili-

- ty in the outside world from where (to where) the input (output)
data are obtained (given) by the system. Thus, for concrete
problem solutions it is necessary to specify

x> e what data structures are assumed for the input and out-
h put data, and

= e how these data are partitioned into waves of information

such that one wave may enter (leave) the system per input

(output) operation as performed according to the CPU program.
The size of these waves of information, i.e., the number of data
units forming those waves, may alter during a computation process,
and just one data unit, for example by LOAD = x, will be considered
to be the simplest case of a wave of information.

Uniform cost criterion. For measuring the time complexity

of computations, we assume that any (bacic) instruction of the
SIMD system needs one unit of time for performance on this system.

Definition 1. A model of computation SYS is called a standard

off-line network system (SYS ¢ OFF-NET) iff SYS is defined by

“

.
[ NS SR Yy
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e a CPU and a fixed set of index.d PEs, with concrete

values for and D

DCPU PE’

e abstract registers if not otherwise specif «d, and the
standard register enumeration,

e a uniform interconnection network with O?NIN"W,

e the standard PE masking scheme,

e a special interpretation and selection «f instructions

of the abstract CPU instruction set where

(OFF.1) no READ and WRITE instructions are cortained in
the instruction set of SYS,

(OFF.2) for the CPU all RAM instructions (2, Ir'ig. 1.5]
except READ and WRITE are avilable,

(OFF.3) for N_ .=p-1l at least one instruction of the type

IN

[all PE's] OP : 9,.,...,p~1 is avaylable, and

p+l
(OFF.4) for any output register (j,0), i.e., accumulator

of PE(j), at least one instruction of the type

OPZ(j)is available, i.e., the CPU may have con-
trol of any outputting PE,

e the off-line 1/0 convention, and

e the uniform cost criterion.

For the defined class OFF-NET we may define subclasses -
e.qg., OFF—NETP to be the set of all SYS¢OFF-NET having the
branching degreu p=NIN' OFF-SQUARE to be the set of all SYS¢
OFF-NET having a square network as defined in Table 1, OFF-

o

BINTREE with the same reference to Table 1, OFF-PS= U OFF—PSm,
mn=1
or just OFF-RAM.




Example 1. Let us consider the followinj special SIMD

system EXAMPl - OFF-SQUARE. Let DCPU=DPE=m . Additionally
to the CPU registers 0,1,...,L-1 for a certain i.'1, all the
accumulators (j,k,0), 0-3 M and 0k -N for some M,N-1, are
fixed as input and output registers of EXAMPL. The system
possesses the following instruction set:
[mask] ADD «,a for m, *m, :i],...,if for il,...,i,
£40,1,2,33,
[mask] OP a,a for m, *m, :i for i¢{0,1,2,3:, += 1,2,
[mask] LOAD «,a for m, *m, :i for i€{0,1,2,3},
[mask] STORE a,a for m, *m,:il,...,iﬂ for il""'ii
€{0,1,2,3},
LOAD a,a for =x, m, *m, (j,k),
STORE a,x for m, *m, (j,k),
OP, a,a for -x, m, *m, (j,k),
JUMP b, JGTZ b, JZERO b, JLTZ b, and HALT.
Here, [mask] represents an arbitrary PE address mask, or, is
ABS (absolute value) or SIGN (signum function), OP2 is ADD,
SUB, MULT, or DIV, for the tuples (j,k) with 0 jvM and 0 k- N.
To give a short illustration of the computing power of

EXAMPl let us consider the computation o’ the parallel EKobert:

gradient (cp. 19] for its importance to digital image proces-
sing), where the input image A = (ajk) of siza M N 1s assumed

to be stored in the PE input registers (ajk in register (j, k,
0)) at the beginning of the computation. At the end of the cim-
putation, value max(‘ajk-aj+1,k+l-' 'aj+1,k-aj,k+L'} has to Ix

present in register (j,k,0).
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By performing the following sequence of parallel instructicns,

1. [all PEs] STORE 1 7. [all PEs] STORE 3
2. [all PEs] LOAD :2 8. [all PEs] LOAD 1
3. [all PEs] STORE 2 9. [f{all PEs] LOAD :1
4. [all PEs] LOAD :1 10. [all PEs] SUB 2
5. [all PEs] SUB 1 11. [all PEs] ABS 0
6. [all PEs] ABS 0 12. [all PEs] STORE 4

all registers (j,k,3) contain value |ajk'aj+1,k+1" and all

registers (j,k,4) contain value | for 0<j<M

3441,k"24, kel 7
and 0<k<N. These values may be considered as two MxN mat-
rices B and C. For max(B,C)=(max{bjk,cjk}) we have

max(B,C)=B X sign(B-C) + Cx sign(C-B) + B - Bx sign|B-C],
where X means the parallel MULT operation (cross product of two
matrices), and sign the parallel SIGN operation. Using this
formula, the parallel Roberts gradient may be computed on the
defined special OFF-SQUARE system within time 29 or less, inde-
pendent of the values of M and N, as the reader may check easily.
Note that formula (1) describes a way in which the PEs are able
to perform local logical decisions in SIMD mode.

Example 2. By some easily described modifications, the sys-
tem EXAMPl may be altered dramatically. Replace the square net-
work by LRUD2I™, for m<max{log2M, logzN}, let WPE=1, and replace
the parallel operations ADD, OP1 and OP2 by logical operations
AND, NOT, and OR, respectively. What results is a special OFF-
LRUD2I™ system EXAMP2 which essentially coincides with the PBS
(paralleles Bindrbildverarbeitungssystem). The computational

power of the PBS was extensively studied in [4].

(1)




Definition 2. A model of computation SYS is called a

standard on-line network system (SYS€ON-NET) iff SYS is defined

by
e a CPU and a fixed set of indexed PEs, with concrete
values for DCPU and DPE'
e abstract registers if not otherwise specified, and the
standard register enumeration,
e a uniform interconnection network with O§NIN<w ’
e the standard PE masking scheme,
e a special interpretation and selection of instructions
of the abstract CPU instruction set where, for NIN*Z,
N an integer tuple (p,q) may be denoted to be the charac-
_i teristic of SYS in the following sense:
3 (ON.1) P=N_y and 1l=q<p,
_i (ON. 2) a proper subset {il,iz,...,iq} of all directions
g {0,1,...,p-1} is specified,
: (ON. 3) at least one instruction of the type
; [all PE's] OP 41 iyedgeeeeiiy
§ is available,
: (ON. 4) for any of the instructions [mask] LOAD : j or
ﬁ [mask] OPy (1) : 3ysdps---sdys k71, it follows
”: SEUSE 15 S PYTROUE NI S0 PUDRIE S
(ON.5) for any of the instructions [mask] STORE : jl,jz,

...,jk, k=1, it follows that jl,jz,...,jke{o,l,
...,p-l}-{il,lz,...,lq}, i.e., the results of con-
secutive parallel operations may be shifted through

the system in directions {0,1,...,p-]}-{il,i2,...,io}

only, and, furthermore




(ON.6) for the CPU all RAM instructions are avilable

including READ and WRITE,
(ON.7) for any output register (j,0), at least one
instruction of the type OPZ(j) is available,

e the on-line I/0 convention, and

e the uniform cost criterion.

For the defined class ON-NET we may define subclasses -
e.g., ON-NETp’q to be the set of all ON-NET systems with
characteristic (p,q), ON-LR2I™ to be the set of all SYSEON-
NET having a left-right 2i network as defined in Table 1, ON-

@

ILLIAC™ with the same reference to Table 1, ON-PM2I= U ON-
pM2I™, or just ON-RAM. =

Any infinite network class OFF-LINEAR or ON-DIAGONAL may
be considered as an abstraction of a finite network system,
or as the union of classes of finite network systems in the fol-
lowing way.

Definition 3. Let OFF-IN be the set of all OFF-NET systems

which are defined by a special infinite network IN, e.g., IN=
LINEAR or IN=LRUD2I". A model of computation SYS is called a

finite OFF-IN system (SYS€FIN-OFF-IN) iff there exists a system

SYS,.€OFF-IN such that SYS may be obtained as a restriction of

0
SYS, in the following sense:

Let ind, and DgE be the PE index set and the PE memory depth
for SYSO, respectively. A finite cut-off of the PE register set

of SYS0 is defined by a certain finite subset ind of ind0 and a

(possibly infinite) memory depth DPESDgE' The work of SYS may
be described as follows. All registers in a certain finite cut-

off of SYS, are available in SYS but all registers not in this




finite cut-off will be considered to be dummy registers, i.e.,
they are assumed to store value zero if addressed as an oper-
and, and to "forget" any value handed over to them; this is the
only difference between SYS, and SYS.

Analogously the set FIN-ON-IN may be defined.

Example 3. An example of a FIN-ON-BINTREE system may be
specified as follows. Let DCPU:” and DPE=m22. The finite
cut-off of the bintree network is given by ;gg;{l,z,...,zm-l}.
Additionally to the CPU accumulator which acts as an input

m-1

and output register (L=1), the registers (2m_1,0), (2 +1,0),

m-1 leaf node

...,(Zm-l,O), i.e., the accumulators of the 2
PEs, are fixed as input registers, and register (1,0), i.e.,

the accumulator of the top node PE, is fixed as an output

register. The system possesses the following instruction set:

[mask] ADD a,a form, *m, : 1, : 2, : 1,2,

(1]
=

-
(1]

[mask] OPza , @ for m, * m, 2 and %=1, 2,
[mask] LOAD @ , ¢« for m, *m, : 1, : 2,

[mask] STORE a2 , o« for m, * m, : O,

[subset leaf nodes] READ 0,

[top node] WRITE O,

Loap ¢ , o for =x, m, *m, (1),

S STORE a , a for m, *m, (1),

E: OPy a , a for =x, m, *m, (1), and #=1,2,
' READ 0,

' : WRITE o« , o for =x,0,

T. JUMP b, JGTZ b, JZERO b, JLTZ b, HALT.
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Here, [mask] represents an arbitrary PE address, OPl either
ABS or SIGN, OP2 one of the operation codes ADD, SUB, MULT, or
DIV. Altogether, a FIN-ON-BINTREE system EXAMP3 is defined
which may be obtained by a restriction of an infinite ON-BINTREE
model where infinite sets of input and output PE registers are
available in the infinite origin.

To give a short illustration of the computational power of
the system EXAMP3 let us consider the computation of the arith-
metical average T NEI ai,N=2n_1

i=0
waves of information (ao,al,...,a

and n odd, for M consecutive

) where a;. is fed to the

N-1 i

accumulator of the PE(2n-1+i), for i=0,1,...,N=1. In order of

the M consecutive waves of information the arithmetical average

have to leave the system via register (1,0).

For initialization of the system, at first the instruction
LOAD=N, STORE (1), [top node] STORE 1 will be performed in this
order. For M>(n-1)/2 the following sequence of instructions is

executed (n-1)/2 times:

[leaf nodes] READ 0,
[all PEs] ADD : 1,2,
[leaf nodes] LOAD 1,
[all PEs] ADD : 1,2,

followed by the following sequence of instructions which is exe-

cuted M-[(n-1)/2] times:

[top node] DIV 1,
o (top node] WRITE O,
5! [leaf nodes] READ O,
[all PEs] ADD : 1,2,

Fa SR Sl Ses s Sy g
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[leaf nodes] LOoAD 1,
{all PEs] ADD : 1}1,2.
Finally, the following sequence of instructions is executed

(n-3)/2 times:

[top node] -DIV 1,
{top node] WRITE O,
[all PEs] ADD : 1,2,
[all PEs] ADD : 1,2,

followed by the last two instructions [top node] DIV 1 and
[top node] WRITE 0. Thus, altogether, the arithmetic averages
of M>(n-1)/2 consecutive waves of information (ao,al,...,aN_l)
may be computed within 6M+n basic operations of EXAMP 3, in-
stead of O(N-M) basic operations in the serial case using a RAM
as model for computation.
In conclusion, we point out that SIMD now denotes not a
general concept (single-instruction, multiple data) but an exactly
defined class of models for computation, namely the union of all

system classes given by Definitions 1, 2, and 3.




2. Local, global, and total data flow measures

Let SYS¢SIMD; throughout this paper such a special parallel
processing system will be used as a standard system for con-
siderations of data t;ansfer restrictions in computing systems.
Any computational process performed on such a model SYS may
be uniquely specified by a CPU program n and a concrete input
situation I characterized by the placement of input values in-
to the set of input registers if off-line mode is used, or by
the partition of the input data into consecutive waves of infor-
mation fed to some of the input registers of the system from thev
outside world if on-line mode is used.

As suggested by applications to visual perception, the set
of input registers of the model SYS may be considered as the
retina of the system, and any new wave of information to this
set of input registers represents a snapshot of the outside
world. In this sense, after t steps of a computational process
characterized by a program n and an input situation I, for any
register r of the system we may mark out a certain receptive
field rec:(r,t) containing all the names of those input registers
which have had any influence on the contents of register r up
to the moment t, where new waves of information to the retina of
the system create new names of the input registers, formally

(0 (1) (2 (1)

represented by r reeesX 1.+. fOr register r.

Standard register names. At time t=0 of any computational

process, each register r in our standard enumeration possesses

the name r(o). At t=0 let the wave number WN=0 also. At time

t+1 assume that a serial or parallel READ instruction, or an
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instruction LOAD=x, Op,=x, or OP2=x has to be performed. Then,

by this operation we obtain WN«WN+l1 and the new names r(WN) for

all registers which were addressed by these instructions. For

)(WN)

example, the number (j,c(j,m) in the case of an instruction

[mask] READ * m for all activated processing elements PE(j),
where c(j,m) denotes the actual contents of register (j,m), or

(WN)

the name 0 in the case of an instrnction 0P2=x.

Definition 4. Let SYS€SIMD. standard register names are

assumed. For a program w of SYS, an input situation I of SYS,
a register r of SYS, and an arbitrary moment t>0, the receptive
field rec: (r,t) is recursively defined as follows:

moment t=0:

r(o) if input register r stores an
input value according to I, for
off-line mode,

I
rec"(r,O) =
empty set, otherwise

moment t+1,t=0:

At moment t+l a certain instruction has to be applied according

to n and I, or the HALT instruction is assumed for this moment.

(i) Depending on this instruction, if it is one of those listed
E in Table 3, the changes of receptive fields are defined as given
E: in this Table where we omit the indices n and I for simplification
fg of the expressions. In the case of parallel instructions, the
E mentioned changes are valid for all activated PEs PE(j) where
p j matches [mask].

(ii) For the parallel or serial LOAD instructions the changes

of receptive fields are the same as for the corresponding oP,

instructions.




(iii) In the case of a WRITE, JUMP, or HALT instruction no

changes of receptive fields appear.

(iv) In the case of a JGTZ, JZERO, or JLTZ instruction no
changes of receptive fields appear in step t+l, but the

set rec(0,t) will be added at moment t'=t+2 to any receptive
field that alters at moment t' according to (i) or (ii), if
at moment t' an instruction has to be performed covered by
cases (i) and (ii). For example, the instruction [mask] OP2
m, at moment t'=t+2, will produce the changes rec((3j,0),t')=
rec((j,0),t'-1)Urec((j,m), t'-1)Urec(0,t) for all activated
PEs.

For illustration of this definition, consider the special
OFF-SQUARE system as defined in Example 1. Let I be any con-
crete input situation for computing the parallel Roberts gra-
dient and let n be the sequence of the 12 parallel instructions

)(0)}'

as given there. At moment t=0 we have rec((j,k,0),0)={(j,k,0
for 0<j<M and 0<k<N, and for any other register r of the system
EXAMP 1, rec(r,0) is the empty set. After performing the 12 in-
structions of y the reception fields of maximal cardinality 2
belong to the registers kj,k,O), (j,k,3) and (j,k,4), for O<js
M-2 and 0s<ksN-2, where, e.g., rec((j,k,0),12)={(5+1,k,0) ‘O,
(j,k+1,0)(0)}. For the system defined in Example 3, and the
program and the input situation as described there, after per-
forming the 6M+n instructions the receptive field of maximal

cardinality NM+l1l belongs to the register (1,0), i.e., to the ac-

cumulator of the top node PE.
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Definition 5. Let SYS¢SIMD. For a set R of registers of

SYS and a moment t>0 define the local data transfer function

Asys PY

XSYS(R,t) = max max max card(recI (r,t)),
b I re€R

the global data transfer function Ygys by

(R,t) = max max card( U rec:(r,t)),

y
SYS v I r€R

the total data transfer function =t by

SYS

_ I
YS(R,t) = max max 2 card(rec"(r,t)).

T
S n I rer

By this definition, it follows immediately that the func-

tions A and T are monotonically increasing for any

sys’ Tsys SYS

set R of registers of SYS and increasing values of t. Further-
more,
(R,t)

(R, t) (R, t) (2)

*sys = Tsys = Tsys
for all models SYS€SIMD, sets R of registers and moments t=0.
Also note that for any model SYS, if within t steps of an ar-
bitrary program n for SYS starting with an arbitrary input
situation I for SYS at most mSYS(t) input data may be fed to
the system, then

(R,t) = (t), and (3.1)

Ysys ®gys

(R,t) = (R,t) *card(R), (3.2)

Tsys *sys
for any set R of registers of SYS and t=0.

Example 4. 1In Section 4 we shall characterize the way
to use these data transfer functions for obtaining lower time

bounds for concrete computational problems. For serial data

processing we shall apply the system RAM, , cp. (2, Fig. 1.5],

Sl e N . R R B
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as a model for computation, where RL={0,1,2,...,L-1}, L=1,

is assumed to be the set of all input/output registers of

such a machine (DCPU=”.’ Npp=0, WCPU=~). For t>0, we have

m (t)=L+t and o (t)=t F - = RAMI

OFF -RAM - . or OFF-RAM= U OFF- R
L ON RAML L=1

note that w,np. oo\ (t)=max mOFF-RAML(t) is not defined.

L
Furthermore, we have

2t+1 for 0s<t=[(L-1)/2)
xOFF_RAML(RL,t) - (4.1)

[ (L+1)/2) +t, otherwise,
XOFF-RAML(RL't)
YOFF-RAML(RL't)

(Rp,t)

L+t, and (4.2)

(4.3)

TOFF-RAML L(t-|L/21+1) for tz|(L/2},

in the case of using the RAM, in off-line mode, and

XON-RAML(RL’t) = YON-RAML(RL't) = t, (4.4)
t(t+l)/2 for t=L

‘rON-RAML(RL't) (4.5)

L(t-(L/2)+%) for t=L,

in the case of using the RAM, in on-line mode. The maximal

data flow for obtaining equation (4.1) is possible by indirect

addressing OP, *m, followed by 0P2=x operations. For (4.3),

the same sequence of operations is extended by L-1 instruc-

tions STORE m. For (4.4), t operations of the type 0P2=x may

be considered. For small t the exact derivation of the func-

tion Topp-RaM

for this quite simple model of serial computation.

represents a sophisticated problem already,

Example 5. For further illustration of t he concrete deri-
vation of these data transfer functions, let us consider both

systems EXAMP1l and EXAMP3 as defined above.
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For the system EXAMPl, first we see that w (t)=

EXAMP1
MN+L+t, for t>0. Let RM,N be the set {(j,k,0): 0<j<M and
0<k<N} of all PE input/output registers of the system. By
using t operations of the type

[all PE's]) ADD :0,1,2,3

we obtain the maximal local and total data transfer within the

field of PE accumulators, where
2

\examp1 Ry, o £)=2t7+2¢641, (5.1)
3
(2t242t+1)MN - E%i - (t+1)2 4+ Eiﬁgll_)(M+N) < (5.2)

Texampl (Ry, s t) = (2t7+26+1) MN,

for 2t+l1<min{M,N}, by elementary combinatorial considerations
and (3.2). For t2t0=lM/21 - IN/2] we have

MN+(t-to)sx t) <MN+L+t. (5.3)

exampl Ry, N’

For t2t0=M+N-2 we can easily see that

2.2

M'N" + (t—to) < MN(MN+L+t). (5.4)

Finally, for the case of global data transfer we obtain

MN for t=0

YEXAMPl(RM,N't) = MN + 2t + 1 for 2t+l<L and t>0 (5.5)

MN + {(L-1)/2]+t for 2t+1>L
where, for 2t+1=L, the maximal global data transfer is possible

by t operations of the type ADD *m_ and one operation STORE(j,k),

t
e.g.
For the system EXAMP3, at first we have wEXAMP3(t)=t-N, for

n=2""1

and t=0 by using t operations of the type
[leaf nodes] READ 0.
Let R0={0,(l,0)} be the set of the two distinguished output re-

gisters of this system EXAMP3. By using the instruction pair

R ol L N A A e L T




{leaf nodes] READ O,
[all PEs] ADD :1,2
repeated (m-1l) times, m=1l; the single instruction

[leaf nodes] READ 0

again; and finally (n-l) instructions

[all PEs] ADD :1,2,
we obtain the maximal local data transfer for register (1,0)
i in any case t>m. We have
) 0 for t=0
A (Ry,t) =) 2%t for 1lstsn-1 (6.1)
EXAMP3 ' 0’ "1 =t= .

m*N for t=n+2m-¢,m>1
and #=1 or ¢=2,

for all t=0. Analogously, for the same set R, and t=0

1] for t=90,
(R.,t) =) 2t°1 for 1st=n-1
YExaMP3 ' "0’ =t=n=L,
m-N for t=n+2m-2, m>1,
m-N+1 for t=n+2m-1, m=>1,
0 for t=0,
x (R, t) 2t-1 for lstsn+l
EXAMP3'70’ - '
2m«N for t=n+2m-1, nm>1,
2m-N+1 for t=n+2m, m>1l.

Of course, the values<3fxExAMP3, YEXAMP3' and TEXAMP 3 depend on

the choice of the set Ro, and may be quite different for some

é

other sets of registers.

—————
E Y [N

Definition 6. Let CLASScSIMD. The general data transfer

functions are defined as follows, for such a set CLASS of models

of computation, for t,n=0:
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(t) denotes the maximal value of all A (R,t),

AcLass SYS

(n,t) denotes the maximal value of all ¥y (R,t)

Terass
with card (R)=n, and

SYS

TCLASS(n't) denotes the maximal value of all =« YS(R,t)

S
with card (R)=n, where SYS is an arbitrary element of
CLASS, and R denotes a set of registers of SYS.

’

Interesting examples of CLASS are sets like OFF—NETp,ON-NETpq
I
OFF-SQUARE, OFF-BINTREE, or ON-HEXAGONAL, where these general

data transfer functions are fully defined.

Theorem 1. For standard off-line network systems and

2<p<~ we have

2t+1 for p=2
AOFF-NETp(t) = .
p(igg%%—:£)+l for p=3,
and
FOFF-NETp(n't) = TOFF-NETp(n't) = n- AOFF-NETp(t)'

for n,t=0.

Proof. First, let us consider the local situation. For
p=2, the maximal transfer of data units is possible by indirect
addressing to the CPU accumulator, e.g. For p=3, there exist
special OFF-NETp models SYS, such that, according to (OFF.3),
at any moment l=s<t the maximal possible number of p(p-l)s"l

new names of input registers may enter the receptive field of

a certain register r, for t=0. Thus,
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A ({r},t) =1+ % p(p-l)

SYS, s=0 p-2

For the total and global situation note that by choosing

sufficiently complex SYS for n,t>0, the maximal local

n,t’
situations of data transfer characterized by receptive fields

of cardinality AOFF-NET (t) at moment t may appear in n dif-
ferent registers at time t such that these registers are far
enough from one another so that their receptive fields are

pairwise disjoint. o

Example 6. By (4.1) and Theorem 1, it follows that

(t)=A " (t)=2t+l, for t=0. Of course, this

AoFF-RAM OFF-NET,
coincidence is not true in the total and global cases. Accord-

ing to Theorem 1 we have T (n,t)=n(2t+1)

OFF-NETz(n’t)=TOFF-NET2

for n,t=0, but by elementary considerations T (n,t)=2t+n,

OFF-RAM

for n=1 and t=0, and T (n,t)=2n(t-n+2)-2, for t=n=2.

OFF-RAM
In Table 4 the general local data transfer functions are
collected for some classes of off-line systems as defined in

Section 1. For these classes, the functions AOFF-NET as given

P
in Theorem 1 act as upper bounds, where the proper value of p

has to be specified. The classes OFF-LINEAR, OFF-PS, OFF-
BINTREE and OFF-QUADTREE represent examples for the maximal
transfer situations as characterized by Theorem 1, for p=2,3,5,
respectively.

Some remarks about Table 4 and about the other networks

which were defined in Table 1.

’
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1. For the bintree, triangle and quadtree network note
that the maximal receptive fields may be obtained for central
nodes of these tree structures only, and not at the top node.
The maximal possible cardinalities of receptive fields of top
node accumulators are given for illustration of this fact.

2. For all examples of CLASS given in Table 4, we have
(n,t)=T

(n,t)=n-A (t), for n,t=0.

TorF-cLASS OFF-CLASS OFF-CLASS

3. The hexagonal, square, triagonal, and diagonal networks
are special examples of infinite graphs of constant degree p
such that the general local data transfer function is equal to
% t2 + % © + 1. Such networks correspond to usual digital met-
rics for the orthogonal grid in a natural way, e.g., the metrics
d4 or d8 as used in digital image processing, cp. [9], to the
square or diagonal network, respectively.

4. For the networks CUBE™, pM21™, wpM2I™, LR21™, or LRUD2I™,
the derivation of the three general data transfer functions repre-
sents a very sophisticated problem. Of course, the values of
these functions depend on the value of m, and the consideration

of classes like

CUBE = U CUBE™
m=>2

would lead to undefined general data transfer functions. In [4]
the general local data transfer functions were analyzed for some
concrete SIMD systems similar to FIN-OFF-LR2I™ or FIN-OFF-LRUD2I™
systems like EXAMP2 which was defined above. But, for the present

paper, we recommend data transfer analysis for specialized (finite)

SIMD systems to the interested reader, and are satisfied with some

& hints:

----- L . . . - .
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CUBE™: For this system, the exact derivation of the local

transfer function should be a solvable task. We have

t
= Z (?) for t<m
i=0
A (t) )=z 2" for t=
OFF-CUBEM -
> 2m+1(t—m) for t-m.
For example, we have AOFF-C033256 (4) = 177,589,057 and AOFF_CUBEZSG(S)
is about 4-10%4,
- PM2I™: For this, as for the other "power-of-two systems,"

the analysis of data flow represents quite a hard problem, cp.
[4]. But, to give the reader some feeling about the complexity

of the data transfer functions for these systems, some values

ACRION : ) IO

will be collected:

=1 for t=0

= 2 for t=1
AOFF-PMZIm(t) = 2(m-1) (m-2)+4 for t=2

é 2m for £=[m/2]

> 2m+1(t-lm/21) for t={m/21,

Note that exponential increase changes to linear increase at
t=Tm/21.
wpM2I™: It may be that this is the most complicated situa-

tion of any network; we have




=1 for t=0

= 2 for t=1
Aopp-wpm2rm(t) ¢ - y

> 2™ for t=Im/21

> 2™ (o my21) for t>Im/27.

This great difficulty in analyzing data paths should be a hint
to the limited practical importance of this network.

LR2I™: For brevity we shall use the function o(i)=

i
b j2= %(i+l)— %(i+l)2+ %(i+1)3. We found the following
j=1

interesting values:

1 for t=0
2m+1l for t=1
2(m-2)2+4m+l for t=2
1+6m+4 (m=2) 2+2 o (m=4) for t=3

1+8m+6 (m=2) 244+ o (m-4) +

m-6 ' for t=4
Aopp-Lr21™(®) = *4- 2 o (1)
i=}
14+10m+8 (m=-2) %+6 - o (m=4) +
m-6
+8+ 2z ol(i)+ for t=5
_ i=1
T m-8 i

g +8 = 5 ol(3)
Ej : i=1 §=1

t-c for t=|(m-1)/2}
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The contents Cm depend on the value of m only, for example

c2=-l, c3=1, c4=7, c5=25, c6=7l, c7=185, c8=455, c9=1081, and
= m . U

€10 2503. Because the LR2I" is an infinite network T oFF-LR2I™

(n,t)=TOFF_LRZIm(n,t)=n-AOFF_LRZIm(t), for n,t=0.

LRUD2I™®: of course, we have

AOFF-LRUDZIm(t)zz' AOFF-LRZIm(t)-l’ for t=0, and, because

m . . e _
LRUD2I" is an infinite network we have FOFF-LRUDZIm(n’t)_%X?-LmnmIm

(n,t)=n- A m(t), for n,t=0.

OFF-LRUD21I

i RO

Theorem 2. For standard on-line network systems and 2sp<w,

1=g=p-1,
0 for t=0,
AON-NETp q(t) = { 2t-1 for t=l1 and g=1,
14
(qt-l)/(q-l) for t=1 and g=2,
and T (n,t)=T (n,t)=n- A (t), for n,t=0.
N-NET ON-NET ON=NET
° pP.d p.4d E pP.q

Proof. Consider the local data transfer situation first. At
=] assume that a sufficiently large set of input registers ob-
tain input data in parallel by a READ instruction. Then (g-1)/
(g=1)=2t-1=1 for g=2, or t=1. For g=1, the maximal local trans-

fer situation, i.e., the maximal transfer of data units to a given

register, is pcssible by indirect addressing. Thus, AON-NET (t)=
p,1
2t-1 for t=l. For g=2, according to (ON.3) it follows that
el ¢
A (¢) = Z gq'=(q -1)/(gq-1),
-NET .
ON-NET, . 120

where these maximal cardinalities of receptive fields may be ob-
tained in certain PE accumulators. For given n, t20, by choosing
a sufficiently large field of PEs obtaining input data in their
accumulators at the first instruction (i=1l), n receptive fields

(t) may be pairwise disjoint. o

of maximal cardinality A
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Example 7. By (4.4) we know that A (t)=T (n,t)=t,

ON-RAM
(t) as well as

ON-RAM

for t>0 and n=>1, and thus AON-RAM(t)<A0N-NETp L

(n,t) for t>2 and n>1. Furthermore,
p,1

(n,t)=n(t-2+3), for tzn=1, and thus T

(n,t)<T

IﬂON-RAM ON-NET

Ton-RAM (n,t)<T

(n,t) for t=n=2,

ON-RAM ON-NET

p,l

In Table 5 for classes of on-line systems mentioned in
Section 1 some results on the analysis of general local data trans-
fer functions are collected. For these classes the functions
given in Theorem 2 act as upper bounds where the proper values of

p and g have to be correlated. By ON-IN we denote a

{il,iz,...,iq}
special ON-IN system with fixed set {il,iz,...,iq} according to

(ON.2). The classes ON-LINEAR ON-BINTREE , and ON-

{0}’ {1,2}
QUADTREE represent examples for maximal transfer situa-
{1,2,3,4}

tions as characterized by Theorem 2.

Some remarks about Table 5 and about the other networks

which were defined in Table 1:

1. For all examples of CLASS in Table 5 we have FON-CLASS(n’t)z

(n,t)=n- (t), for n,t=0.

Ton-cLaASS A oN-cLASS

2., The class ON-PS denotes special SIMD systems using

{0,1}
the PS network in its original [10] meaning. Let f0=l, fl=1, f2=2,

I =fn+fn+l""' where

n+2
£,=1(1+/5) o (1-vs) " /vs.

denotes the nth Fibonacci number, nz0. We have A (t)=
ON-PS{0 1}
t 3 3
z fn=fn+2-2, for t>0; cp. [3] for a similar result.

=1
3. For the bintree, triangle, and quadtree network note that

the maximal receptive fields may be obtained for the top node
accumulator, for {il’iZ""'iq} equal to {1,2}, {1,2,3,4},

{1,2,3,4}, respectively.




4. The analysis of the general data transfer functions for
classes ON-CUBE™, ON-PM2I™, ON-wWPM2I™, ON-LR2I™, and ON-LRUD2I®

N will not be considered in the present paper.
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3. Local, global, and total data dependence measures

For parallel processing systems, the optimal time for the
solution of a computational problem depends upon the data
transfer abilities of the given system as well as on the prin-
cipal possibilities of parallelization of a solution process
for a given problem. The first may be characterized by the data

transfer functions A by a general system analysis

sys’ 'sys’ Tgys

as considered in Section 2. The second property, however, re-
quires individual consideration of the given computational prob-
lem.

For example, consider the multiplication of two NxN real
matrices A-B=C. For a given system SYS assume that all N2 ele-

2

ments of matrix C have to be computed in N° different output

registers represented by the set ROUT' Let rEROUT' ROSROUT’

and R; be the set of N distinctive registers for outputing the

N diagonal elements of C. Then it follows that X
2

SYS(r,t*)?ZN,

* . ] -
(Rl,t*)22N and TSYS(RO’t )= 2N card(R;) if the product A-B

Ysys
is to be computed on SYS within time t*, Thus, if the functions

Asysr Tgys ©F Tgys

these inequalities for the solution time t* immediately, where

are known, lower time bounds are derivable from

the maximal lower time bound from the three possible values is
taken as the result. For example, according to our considerations
in Section 2 for the system EXAMP1 we have t*>VN-1 under the as-
sumption that M=2N. But note that a better lower time bound for
this system and the matrix multiplication problem may be obtained
by more specialized considerations as demonstrated by GENTLEMAN

{3, Theorem 1]. Because each data unit transfer from a certain

N R P P A W Y Py DUR T TUNE TN, D
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register r, to a certain register r, of the system EXAMPl may

1
be performed in the reverse direction, from r, to ry, in the

same time, the proof of Theorem 1 in ({3] matches the situation
given by the system EXAMP1l, i.e., for rEROUT we have XEXAMPl
(r,2¢%)2N%, and thus t*:1(an?-1)1/2- 1.

For a general approach to the derivation of lower time bounds
for parallel processing systems we shall use the quantitative
description of data dependencies of the desired output data in
relation to the input data specification, for computational
problems which may be identified with special functions as de-

scribed later on.

Definition 7. Let n,m>1, Let f be an n-ary function defined

on a certain set domain(f) of n-tuples of real numbers, and into

the set of m-tuples of real numbers. For an n-tuple (xl'x2""'

xn)edomain(f), define

- subi(xl,xz,...,xn)={j : 1<j<n & (Vx'#xj)(xl.xz,-...xj_l,x',
_ xj+1, cee ,xn) €domain (f) & proji(f(xl,xz, .o ,xn) ) #

= proji(f(xl,xz,...,xj_l,x',xj+l,...,xn))}

- to be the set of all positions j such that changes in the jth

component of (xl,xz,...,xn) have an effect on the projection

projif, for 1=i<m. Then, define

A, = max max card(sub, (X, ,X,/s...,X_)),
£ (xl,xz,...,xn) l<i=m 177172 n
m
Y = max Card( U SUb-(X 'x 'oo"x ))' and
£ (xl,xz,...,xn) i=1 1771772 n
m
Te = max z card(subi(xl,xz,...,xn)).

(xl,xz,...,xn) i=1




The function f is called locally d-dependent iff dfxf, globally

d-dependent iff dSYf, and totally d-dependent iff d=s=t for an

fl

integer d=0.
By this definition, for arbitrary functions f defined on
n-tuples of real numbers and into the set of m-tuples of real

numbers, it follows immediately that Xf=yf=Tf if m=1, and for

m=>1
)\fSYfSTf, (7.1)
Yesn, and (7.2)
Tme-xf. (7.3)

For example, in the case of the following function f,
Xy + X, if x5=0

f(xl,xz,x3,x4,x5)

Xy + X, if xS#O,

3
we have subl(xl,xz,x3,x4,0)={l,2,5} if xl+x2#x3+x4, and subl(xl,
x2,x3,x4,0)={l,2} if xl+x2=x3+x4. Because of xf=yf=rf=3, this
function is local, global, or total 1-, 2-, and 3-dependent, but
not 4- or 5-dependent.

Now, in a sequence of examples, the data dependence measures
as given by Definition 7 will be analyzed for certain computational
problems. The results are collected in Table 6, i.e., the follow-
ing examples may be considered as explanatory remarks to this
table.

Example 8., The multiplication of two N«N real matrices may

be considered as a 2N2-ary function into the set of Nz-tuples of

real numbers. For this computational problem, it is evident that

\MATRIX-MULTIPLICATION — 2N
= on2
YMATRIX-MULTIPLICATION ~ 2N ¢ and
_ o3
= 2N73,

TMATRIX-MULTIPLICATION

.............. L, . g e e 2Tt e et e s




where these maximal values of data dependence are true for each
input vector of length 2N2 containing non-zero values in all
positions. By this example it follows that the upper bounds
(7.2) and (7.3) cannot be reduced in general. The inversion

of an NxN real matrix in place may be considered asanlNz-ary

function into the set of Nz-tuples of real numbers. We have

_ _ .2
AMATRIX-INVERSION-IP ~ YMATRIX-INVERSION-Ip ~ N » and
_ od
TMATRIX-INVERSION-IP ~ N ¢

where this maximal case of data dependence appears for any

2 positions. These

matrix containing non-zero values in all N
data depence quantities may be considered as a direct conse-
quence of the data dependence quantities for the determinant

of an NxN real matrix,

2
X 3 - -
DETERMINANT YDETERMINANT TDETERMINANT N

The solution of a system of N linear equations in N unknowns

may be considered as an (N2+N)-ary function into the set of

N-tuples of real numbers. We obtain

- = 2
M.INEAR-EQUATIONS ~ YLINEAR-EQUATIONS _ N *N. and

N3+N2.

TLINEAR-EQUATIONS

Transposing an NxN real matrix in place may be considered as

an Nz-ary function into the set of Nz-tuples of real numbers,

MpraNsPOSITION-IP ~ 1+ 3nd

=N2'

Y TRANSPOSITION-IP T PRANSPOSITION-IP

but for binary operations on permutated NxN real matrices in

place, (a;5); j=0,1,...,8-1"P2(255:3 (5 §)))4,5=0,1,...,N-1"
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- MY N SN PR S S PO DR AT Ry S : PP NP SR ST ST SR TS VT S S




considered as Nz-ary functions into the set of Nz-tuples of real

numbers,

= 2 for n#id,

= N2, and

XMATRIX- n=IP

YMATRIX~- n-IP

2 . . . .
TMATRI X~ n—-IP 2N“-card{(i,j) :0=<i,j=sN-1 & n(i,j)=(i,3)},

the transposition may be considered as a special permutation n*,

= 2 . .
TMATRIX- v -IP _ 2N“-N, and op, as the exchange operation in

this case, opz(aij,a = (a )'aij)’ where the second

w*(i,3)) n* (i,
component of these resulting tuples will be considered as a dummy
result.

Example 9. In this example, three two-dimensional transforms

of NxN pictures will be dealt with. First, the Fourier transform

of an NxN complex matrix (2D-DFT, two-dimensional discrete
Fourier transform, cp. [9]) may be considered as a 2N2-ary func-
tion into the set of 2N2-tuples of real numbers. 1In this case,

we have

2 <
) R V—

Y2D-DFT = 2N%, and

2N4ST 4

2_1’

2

T54N -2N7,

2D-DF
where these maximal values of data dependence are true for each

input vector of length 2N2 containing non-zero values in all posi-

tions. For the exact determination of A and v the

2D-DFT 2D-DFT’
influence of different values of N has to be studied. The Walsh

transform of an NxN real matrix (2D-WT, two dimensional Walsh

transform, cp. [(9]) may be considered as an Nz-ary function into

the set of Nz-tuples of real numbers,




; *2p wr = Y2p wr = N?, and
v T2D WT N
%; where these maximal values of data dependence are true for any
input vector of length Nz. The computation of the parallel

Roberts gradient (see Example 1) on images of size MxN may

be considered as an MN-ary function into the set of MN-tuples

LR P T

of real numbers. PFor this function,

-4 LN

= MROBERTS_GRADIENT ~ %’

YROBERTS GRADIENT ~ N and

Z TROBERTS_GRADIENT ~ ‘MN-2M-2N-2,

by considering the case of non-zero values in all MN positions,
and by paying attention to border effects.

Example 10. The computation of the convex hull of a simple

polygon, cp. [5], where the N extreme points of the polygon are
?: given by coordinate tuples of real numbers starting with the
uppermost-leftmost point, may be considered as a 2N-ary function
into the set of 2N-tuples of real numbers. In the resulting
vector of length 2N, there appear all coordinate tuples of the
extreme points of the convex hull of the given polygon in order,
starting with the uppermost-leftmost point, and with'the same run
orientation as the given polygon. Positions actually not needed
'E in this resulting 2N-tuple contain value zero by assumption. 1In
this case, it follows that
= 2N, and

*cn_stpoL = YcH_sIPOL

X 2 2
2N -8N+1251CH_SIP0L54N
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by analyzing the input situation of special convex polygons
with N extreme points as illustrated in Fig. 2, for N=4. The

computation of the convex hull of N planar points, cp. [5],

given by coordinate tuples of real numbers, may be considered
as a 2N-ary function into the set of 2N-tuples of real numbers
as described above, analogously to the simple polygon situation.

For this problem,

Ycu_pornt - 2N. and

= 4n?,

‘cn_POINT
“CH_POINT
where these maximal values are true for any input situation.

The computation of the Voronoi diagram of N planar points,

cp. [5], given by coordinate tuples of real numbers, may be
considered as a 2N-ary function into the set of (18N-33)-tuples
of real numbers in the following sense. The Voronoi diagram
may have 2N-5 vertices at most, and, as a special planar graph,
3N-6 edges at most, for N=3. See Fig. 3 for an illustration of
the construction of such a "maximal Voronoi diagram," where
the number v(N) of vertices, and the number e(N) of edges sat-
isfy the recursive equations

v(3) =1, e(3) = 3,

v(N+l) = v(N)+2, and e(N+l) = e(N)+3
for N=3. The 18N-33=3(2N-5)+4(3N-6) positions of the resulting
vector of a Voronoi diagram computation we consider as a unique
characterization of a Voronoi diagram by linearization of adja-
cency lists for this special graph structure with the positions
for each vertex where two are reserved for the coordinate values

and one for a common pointer, and two times two positions for

W e g
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each edge - for the index of the vertex at the other end of
the edge, or for the slope of the edge, and for a common
pointer. For concrete inputs of N points, positions actually
not needed in the resulting (18N-33)-tuple contain value zero
by assumption. Then, we have
MORONOI-DIAGRAM ~ YVORONOI-DIAGRAM ~ 2N+ and
12N=3=TyoRroNoI-DIAGRAM=ZN (18N-33),
for N=3, where the local and global case may be analyzed by
using a regular N-gon, and for the total case a Voronoi dia-
gram in the sense of Fig. 3, with 2N-5 points, was used where
each point of the diagram essentially depends on three input

points, i.e., on six coordinate values.

Example 1l. Matching of a pattern of length M against a

string of length N (M=N and the elements of pattern and string
are assumed to be reals) may be considered as a (N+M)-ary func-
tion into the set of (N-M+l)-tuples on {0,1} where, for

EpATTERN MATCHING(P1+P7 -+ - /Pyi S1r85r---sSp)=(eg sy eeirey )

we have ei=1 iff Si+j=pj+1' for all j=0,1,...,M-1, and ei=0

otherwise, for i=1,2,...,N-M+1. We have

MPATTERN MATCHING = M/
YPATTERN MATCHING ~ M*N. and

TPATTERN MATCHING
In all three cases, the maximal dependence may be analyzed for
the trivial input situation pi=sj=const, for i=1,2,...,M and j=

1,2,...,N. Detection of a pattern of length M within a string

of length N,M=N, may be considered as a (N+M)-ary function into
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the set {0,1} where the output is equal to max{ei : i=1,2,...,

N-M+l & fPATTERN_MATCHING(pl'Pz""'pM’ S)¢Syree-sSy)=(e),€y,
""eN-M+l)} for input (py,P,/s+.+,Pyi S7+5,s+:-sSy). Then,
max {2M,M+ |[N/Mj }=\ <M+N.

PATTERN SIGNALIZATION
Note that this represents the first example of a computational
problem where the equality Yg=n remains an open problem, for
an n-ary function f with n=N+M in the case of pattern detection.

As a last example, sorting of N real numbers may be considered

as an N-ary function into the set of N-tuples of real numbers.

For this very important problem, we have

MSORTING ~ = N, and

Y SORTING

=N2
TSORTING '

where these maximal values are true for N pairwise different

input values.
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4. Data transfer lemma and applications

Between the quantitative descriptions of data transfer for
SIMD systems (Section 2) and of data dependence for computa-
tional problems(Section 3), the following direct relation
holds.

Lemma 1. (23&2 Transfer kgggg). Let SYS€SIMD, and let n
be an arbitrary program for SYS for the computation of a func-
tion f which is n-ary and has m-tuple values. Let R denote
the set of output registers of SYS where the m-tuples appear
at the end of the computation (card (R)=m, off-line mode),
or those output registers of SYS via which the computed values
of the m-tuples leave SYS in certain waves of information (card
(R)<m, on-line mode). Then, the computation of f(xl,xz,...,xn)
on SYS by v requires at leasttb steps of computation for a given
input (xl,xz,...,xo)Edomain(f), where ASYS(tO)zkf, FSYS(card

(R),to)zvf, and T (card(R),to)ETf.

SYs

Proof. Let us consider the local off-line or on-line situ-
ation. Assume that Xf=card(subi(x1,x2,...xn)), for a given in-

put vector (xl,xz,...,xn), and for a given position i, l<ism.

o

AR «. § iGN

Let Subi(xl'x2'""xn)={j1'j2""'jxf}‘ For any position ik'
k=1,2,...,xf, either the name of an input register receiving
value xj at a given moment will be transfered to the receptive

k .
fielad recéxl'x2""'xn) (r(l),t*) by some operational instruc-

-y

g tions only, if value proji(f(xl,xz,...,xn)) appears in register

r(l)eR at time t*sto of computation, or during the t* steps of
computation of proji(f(xl,xz,...,xn)) at least one test instruc-

tion JGTZ, JZERO, or JLTZ must be performed where the contents of

.......
)
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the CPU accumulator depends on the input value xj at the

k
moment of testing. In the second case, if the test instruc-
tion is followed by certain operational instructions directed
(1)

to register r the name of the input register receiving

value x. at a given moment will be transferred to the recep-
k .

tive field recéxl'xz""'xn) (r(l),t*), tco; cp. (iv) in Defi-

nition 4. Without loss of generality, assume that jl’jz""’jv’

vsxf, denote all the positions which have produced register

(Xl,xz,. . .,Xn)

. (r D) exy. 1f

names in the receptive field rec

v=rg, then nfScard(recéxl'xz";"xn)(r(l),t*))sx (to) follows

SYS
immediately. For v<Xf, let tl,tz,...,tw be all the moments
where test instructions have to be performed according to «
and input (xl,xz,...,xn) such that the contents of the CPU ac-

cumulator depend on one of the input values xj ,...,xj
A
v+l f

at least, at the moments of testing. Consider the following
program n' computing something unspecified, produced by n and
(xl,xz,...,xn) in the following way:
- all test instructions at moments tl'tz""’tw will be
deleted in w, and
- all other instructions of n will be performed according
to v and input (xl,xz,...,xn), in the same order, where
all instructions LOAD a or OPl a, for a equal to =x,m,*m,
or (j), will be replaced by OP2 a, for the same value of
a, if such instructions appear in n.
Thus, the receptive field of register 0, i.e., the CPU accumu-
lator, will increase monotonically according to n' and (Xl'x2'

...,xn). After t*-w operations according to n', rec(0,t*-w)
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contains all input register names for the input data x. pecey

v+l
Xy - This receptive field will be combined with recé?l’x2""'xn)
A

f

(r(i) (xl,x2'o.¢IXn) (i)

N £%*) at moment t*-w+lst* by

yt*-w) 2rec (r
adding an instruction 0P2<1 (see conditions (OFF.2) and (ON.6))
or OPZ(j) (see conditions (OFF.4) and (ON.7)) to n'. Thus, xfs
(t*-w+l)=A

card(recé?l'xz”"'xn)(0,t*-w+l))5A (ty) . Note

SYS SYS
that the off-line or on-line I/0 convention is necessary to en-
sure that a non-accumulator PE register r(i) may be replaced by
the accumulator of the same PE which is an output register, too.
For this replacement, parallel STORE instructions may be replaced
by parallel OP1 instructions using the same masks for PE addresses.

wWhat we have explained is one of the possible ways to ensure
the necessary data transfer within time limit tgr for the local
off-line or on-line situation. The essential point in the program
transformation from » to n' may be characterized by the word
"linearization," because all test instructions could be deleted,
in fact. This linearization approach may be used for the local,
global and total situation in the following way.

For the given program n and an input situation I, all the
performed instructions will be written as a linear sequence SO‘
We obtain sequence S1 by deletion of all instructions JLTZ,JZERO,
JGTZ, JUMP, WRITE, and HALT in sequence SO' Now, for the special
case of an on-line program, if in sequence s0 there were some
STORE instructions in front of a WRITE instruction directed to

certain output registers r¢R, then these STORE instructions will

be shifted to the end of sequence Sl' In the resulting sequence

ke VPP Py W S S I T '.un CR SO LIPS PP UL ST VLI I NN W SN U Wl WY Wt WA Sy Wy




Sz, all serial or parallel OPl a or LOAD a instructions will
be replaced by an OP2 e instruction formally, in the same
position for the same value of a. For the resulting sequence

S, we have monotonically increasing receptive fields for all

3
accumulators, for the CPU and PEs. Also, by the described

step from Sl to SZ’ for sequence S3 the receptive fields of
output registers will be monotonically increasing for conse-
cutive output waves of information. Now, if in the original
sequence So there was no test instruction, our program lin-
earization is finished. 1In the other case, in S3 we shall

place an instruction JZERO, e.g., in that position where the
last test instruction was located in sequence So' Now consider
an arbitrary output register r€R. If there is an operational
instruction behind the JZERO instruction directed to r then
register r will obtain the receptive field of the CPU accumu-
lator containing all the register names corresponding to tested
input values, cp. (iv) in Definition 4. If there is no opera-
tional instruction behind the JZERO instruction directed to r
then we shift the last instruction directed to r in front of

the JZERO instruction to a position behind this instruction.

By consideration of all registers r€R, our program linearization
is finished. Note that the length of the resulting linear in-
struction sequence is restricted by the length of the original

sequence S,.

Now assume that xf=card(subi(x1,x2,,,,,xn)) for a certain i,
m m
1<i=n, Yf=card(i£1 subi(yl,yz,...,yn)) and Tf=i21 card(subi(zl,
22,...,zn), for certain input vectors (xl,xz,...,xn), (Yl’y2"“'

yn), (zl,zz,...,zn). These input vectors characterize input

> NPW SPNCIP. foatal tat alala_an  aTa . a. s .
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situations I Iz for SYS. By linearization of v according

xIIyI

to these input situations we obtain linear programs w_,n

X a

’

Y 2

respectively, all of length sto. Thus, we have

(XI,Xz,..-,xn) >\
M (R,tg) = £
Y(erYZI--~IYn)

"y

T(zl,zz,...,zn)

ZTeer
TTz (R,to) f

(R,to)sz'

which proves our statements. o

Corollary 1. Let (LASScSIMD. For any system SYS€CLASS,

the computation of a function £ which is into the set of m-

tuples of real numbers requires at least to steps of computa-
tion in the worst case, where ACLASS(tO)zxf' PCLASS(m'tO)sz'

and T (m,to)ztf.

CLASS

Proof. Immediately by Lemma 1 where the generalization
about all programs computing the function f is used as well
as about all systems of CLASS. For the on-line case note that
there may already be a certain mosm such that FCLASS(mo'tO)z

Yer and T (mo,to)ztf. 0

CLASS

Example 12. Let CLASS={EXAMPl} and consider the computa-
tion of the parallel Roberts gradient as described in Example
1. 1In this case we get tae trivial lower time bound 1 only;
an upper bound was 29. Now, let CLASS={EXAMP3} and consider the
computation of the arithmetical averages of M consecutive waves

n-1

of information of length N=2 as described in Example 3. Here,
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by Corollary 1 we obtain the lower time bound n+2M-2=max{n-1,
n+2M-2, n+M-1}, cp. equation (6.1), (6.2), (6.3), for values
=N,yf=N-M and Tf=N°M. An upper bound was 6M+n.

Using common asymptotic notations, for both examples the

e

optimal times ©(1l) and O0(M+n) are known as a result.

Theorem 3. For any system SYSGOFF—NETP, p=2, the computa-
tion of a function f which is into the set of m-tuples of real
numbers requires at least to steps of computation in the worst
case, where

tOZmax{(dl-l)/Z, (dz-m)/Zm, (d3-m)/2m}
for p=2, and for p=3

t zmaxflogp_l(dl(p-2)+2)-1.586,

0
logp_l(dz(p—2)+2)-logp_1m-l.586,
logp_1(d3(p-2)+2)-logp_lm-l.586},

if £ is locally d4d,-dependent, globally dz-dependent, and totally

1

d.,~-dependent.

3

Proof. Immediately by Theorem 1, Definition 7 and Corollary

1 where the relation logp_lp>1.586, p=3, was used. oo

In Table 7 arecollected, for the classes of off-line systems
defined in Section 1, the lower time bounds that may be obtained
by using Corollary 1. Because the classes OFF-LINEAR, OFF-PS,
OFF-BINTREE and OFF-QUADTREE represent examples for the maximal
transfer situation as characterized by Theorem 1, for these
classes the lower time bounds are as given by Theorem 3. If a
function £ into the set of m~tuples is globally or totally 4d'-

dependent, then the value d has to be replaced by d'/m in the

. PR SRy L -L--'-AAL‘_.L,;.;LJ"_Lj




lower time bounds given in Table 7, to obtain the corresponding
values for the global or total situation.

Theorem 4. For any system SYSGON-NETp'q, 2<p<=, l=qg<p, the
computation of a function f which is into the set of m-tuples of
real numbers requires at least to steps of computation in the worst
case, where

tozmax{(d,+1)/2, (d,+m)/2m, (dz+m)/2m}
for g=1, and for gq=2

tozmax{logq(dl(q-l)+1). logq(dz(q-l)/m + 1),

1ogq(d3(q-l)ﬁn*-1},

if £ is locally dl-dependent, globally dz-dependent, and totally

d3-dependent.
Proof. Immediately by Theorem 2, Definition 7 and Corollary
l1. o

In Table 8 arecollected, for the classes of on-line systems
defined in Section 1, the lower time bounds that may be obtained
by using Corollary 1. Because the classes ON-LINEAR{O}, ON-

represent examples for

BINTREE » and ON-QUADTREE

{1,2} {1,2,3,4)
maximal transfer situations as characterized by Theorem 2, for
these classes the lower time bounds are as stated by Theorem 4.

As in the case of Table 7, if a function f into the set of m-tuples
is globally or totally d'-dependent, then the value d has to be re-
placed by d'/m in the lower time bounds given in Table 8, for ob-

taining the corresponding values for the glohal or total situation.

Note that value m may be replaced by a value mOSm for special ON-

NET systems,.
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5. Conclusions

In this paper we have given a general framework for the
description of parallel processing systems, and explained
how data flow may be used for analyzing lower time bounds in
general. Note that this approach may be applied to supercompu-
ters as well as to on-chip realizations. Problems connected
with the technical features of architecture elements were by-
passed by the selected level of abstract system description.
Thus, in the discussion of parallel algorithms for a given
model SYS€SIMD we may have in mind quite different technical
implementations, but we may discuss parallel algorithms for
all of them at once using the abstract model SYS¢SIMD. For
example, an important problem is given by the necessary deci-
sion between different structures of parallel processing systems
to ensure efficient algorithmic solutions for classes of com-
putational problems such as mentioned in Example 8 (matrix-type
computations), 9 (two-dimensional transforms), 10 (geometric
problems), or 11 (combinatorial problems). According to our
considerations in [4] the selection of parallel algorithms cru-
cially depends on the given parallel processing system and
comparisons between different SIMD systems on the basis of know-

ledge about optimal algorithms represents quite a hard task.

Also, there are nearly as many different models for parallel

processing as papers on this topic, making comparative studies

?f of different parallel structures nearly impossible. In the

present paper an attempt was made to propose a classification
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of special parallel processing systems which have been of wide-
spread interest in the past. The proof of the practicability
of the proposed exact definition of SIMD systems will be the
subject of forthcoming papers; the first programs of the PARSIS
project fit well into this framework.

By using Tables 6,7, and 8 the interested reader may ob-
tain lower time bounds for different combinations of SIMD
systems and computational problems, e.g., the lower time bound
logz(N2+1) for the two-dimensional Walsh transform on ON-
TRIANGLE systems. The characterization of data dependencies
for computational problems as given by Definition 7 may be
refined, e.g., by consideration of changes of function values
not only by changing arguments in one position but in several

positions.
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Figure 1. Scheme of an SIMD system.
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Figure 2, Convex polygon for analyzing the
maximal possible data dependence
situation, for N>4.
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Figure 3. Voronoi diagrams for N=3,4,5,6 with 2N-5=
1,3,5,7 vertices and 3N-6=5,6,9,12 edges,
respectively.
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Instruction

Possible operation addresses a

WRITE «

STORE o

*m
*m
*m;

*m;

..

il,lz,...,ll

WRITE o

STORE a

=

it
-

-e

®

~-e

*m

*m

*m;
(3)
*m;

*m;

(3)

(3)
(3)

Table 2.

Abstract CPU instruction set without test and
stop instructions.
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Instructions
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Changes of receptive fields

{mask] OP, m

1
(mask] OPl m

[mask] OPl :i

[mask] OP2 m
[mask] OP2 *m

[mask] OP¢+1:11,12,...,1¢

[mask] STORE m
[mask] STORE *m

(mask] STORE : il'iz""'ia

[mask] READ m .

(mask] READ *m

rec((j,0) ,t+l) = rec((j,m),t)

rec((j,0) ,t+l) = rec((j,m),t) U
rec((j,c(j,m)),t)

rec((j;o),t+1) - reC((fi(j)'o)lt)

rec((j,0),t+l) = rec((j,0),t)U
rec((j,m},t)

rec((j,0),t+l) = rec((j,0),t)u
rec((j,m),t)Urec{(j,c(j,m)),¢t)

rec((j,0) ,t+l) = rec((j,O),t)Urec((fi (j).,
0) ,t)Urec((£; (3),0),£)U...U 1
2

rec( (£, (3),0),¢t)
1.

rec((j,m) ,t+l) = rec((jlo)lt)

rec((j,c(j,m),t+l) = rec((j.0),t)V
rec((j'm),t)

rec((fil(j).o).t+1) = rec((j,0),t),
rec((fi (3),0),t+l) =
2
reC((j,O),t),...,rec((f1 (3),0),t+l) =
[4
rec((3j,0),t)
rec(i,m,t+l) = ((§,m ")

rec((j,c(j,m),t+l) = rec((j,m),t)u
((3,c(3,m) ("

OP1 - x
OP1 m
opr, *m
or, (3)
OP, = x
OPz n
orp, *m

or, (3)
STORE m
STORE *m
STORE (J)
HEAD m
READ *m

" rec(0,t+1) = {0V,

rec(0,t+l) = rec(m,t)

rec(0,t+l) = rec(m,t)Urec(c(m),t)
rec(0,t+l) = rec((j,0),t)
rec(0,t+l) = :ec(o,t)U(O(WN)}
rec(0,t+l) = rec(0,t)Urec(m,t)

rec(0,t+l) = rec(0,t)Urec(m,t)V
rac(c(m),t)

rec(0,t+l) = rec(0,t)Urec((j,0),t)
rec(m,t+l) = rec(0,t)

rec(c(m) ,t+l) = rec(0,t)Urec(m,t)
rec((j,0) ,t+l) = rec(0,t)
rec(m,t+1) = (m‘"™}

rec(c(m) ,t+l) = recim,t)U{c(m) (W) }

Table 3. Changes of recsptive fields in step t-l.




CLASS p Aopp-crass (E) t=4 t=8
LINEAR 2 2t+1 9 17
HEXAGONAL 3 %t?+%t+1 31 109
SQUARE or 2
SQUARE 4 224341 41 145
TRIAGONAL 6 3t243t+41 61 215
DIAGONAL 8 4tl44t+4l 81 289
PS 3 3-2%2 46 766
BINTREE 3 3-2%_2 46 766
top node : 2ty 31 511
PRIANGLE 5 3.2+, 2 5¢ 5 99 1,579
top node : 2t+1-1 31 511
QUADTREE 5 (5-4%-2)/3 426 109,226
top node . (a¥*1.1)/3 341 87,381

Table 4. General local data transfer functions for off-
line systems.
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CLASS P {11,12,...,1q} AON-CLASS(t) t=4 =8
LINEAR 2 {0} 2t-1 7 15
HEXAGONAL 3 {0,1} t(t+1)/2 10 36
{0} 2t-1 7 15
SQUARE or 2
ILLIAC 4 {0,1,2} t 16 64
{0,2} t(t+l)/2 10 36
{0,1}, {0} 2t-1 7 15
52 5
TRIAGONAL 6 {0,1,2,3,4} 262- e+l 31 121
{0,2,3,4} 2L 22 92
2t 732
2
{0,2,4} t 16 64
7.2 7
DIAGONAL 8 {0,1,2,3,4,6,7}  5t%- Jt+l 43 197
BINTREE 3 {1,2} 2t-1 15 255
= {0,1} £(t+1) /2 10 36
F, TRIANGLE 5 {1,2,3,4} 2t 15 255
L QUADTREE 5 {1,2,3,4} (4%-1)/3 85 21,845
e pS 3 {0,1} (L 1+vE) T3 a-vB) ¥3y,
o ' v5.2t3) 2 11 87
L, Table 5. General local data transfer functions for on-line systems.
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Computational problem f a m xf Yg Te

2 2 2 3
MATRIX MULTIPLICATION 2N N 2N 2N 2N
MATRIX INVERSION IP N2 N2 N2 N? N4

2 2
DETERMINANT N 1 N
LINEAR EQUATIONS N2 +N N N2+N N24+N N3 +n2
TRANSPOSITION IP N2 N2 1 N2 N2
MATRIX n IP N2 N2 2 N2 2N2—#{(i,j):

for n#id m(i,j)=(1i,3)}
2D-DFT 2N2 282 22n%-4 282 > N4
<2n%-1 <an?-2n2
2D-WT N2 N2 N2 N2 n?
ROBERTS GRADIENT MN NM 4 MN  4MN-2M-2N-2
CH SIPOL 2N 2N 2N 2N =2N2-8N+12
<4n?
VORONOI DIAGRAM 2N 18N-33 2N 2N =12N-30
<36N%-66N

PATTERN MATCHING N+M  N-M+1 2N M+N  2M(N-M+1)
PATTERN SIGNALIZATION N+M 1 > max {2M,M+ [N/M] }, =M+N
SORTING N N N N N2

Table 6.

Local, global and total data dependence measures.
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2
CLASS P lower time bound d=128 d=128

LINEAR 2 (d-1)/2 64 8,192
nexacovar 3 (Ja- 31721y, 9 105
SQUARE or _W1/2_ 8 91
ILLIAC 4 ((2d-1) 1)/2
TRIANGONAL 6  ((3a- D)/2-1)/2 7 74
DIAGONAL 8 (a/2-1),2 6 64
PS 3 1092(d+2)-l.586 6 13
BINTREE 3 logz(d+2)-l.586 6 13
top node logz(d+l)-1 7 14
TRIANGLE 5 tylog, (d-tg+2t0+5) -2.586 5 12
top node logz(d+l)-l ' 7 14
QUADTREE 5 log4(3d+2)-1.161 4
top node log4(3d+1)-l

Table 7. Lower time bounds for off-line systems in OFF-CLASS
for computing a local d-dependent function.
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CLASS P {il,...,iq} Lower time bound d=128 d=128
LINEAR 2 {0} (d+1)/2 65 8,193
1/2
HEXAGONAL 3 {0,1} ((8d+1) -1)/2 16 181
1/2
SQUARE or ILLIAC 4 {0,1,2} d 12 128
TRIAGONAL 6 {0,1,2,3,4} ((gd-%)l/z-l)/z 7 81
DIAGONAL 8 {0,1,2,3,4,6,7}((§d-%41/2-1)/2 6 64
BINTREE 3 {1,2} 1og2(d+1) 8 15
TRIANGLE 5 {1,2,3,4} log, (d+1) 8 15
QUADTREE 5 {1,2,3,4} log,(3d+l) 5 8
PS 3 {0,1} ft0+zza+2 for the 11 21
Fibonacci numbers
A2 SN YRR

T

able 8. Lower time bounds for on-line systems in

ON-CLASS for computing a local d-dependent
function.
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